
Extremely Efficient Constructions of Hash Functions, with
Applications to Hardness Magnification and PRFs

Lijie Chen* Jiatu Li† Tianqi Yang‡

June 9, 2022

Abstract

In a recent work, Fan, Li, and Yang (STOC 2022) constructed a family of almost-universal
hash functions such that each function in the family is computable by (2n + o(n))-gate circuits
of fan-in 2 over the B2 basis. Applying this family, they established the existence of pseudoran-
dom functions computable by circuits of the same complexity, under the standard assumption
that OWFs exist. However, a major disadvantage of the hash family construction by Fan, Li,
and Yang (STOC 2022) is that it requires a seed length of poly(n), which limits its potential
applications.

We address this issue by giving an improved construction of almost-universal hash func-
tions with seed length polylog(n), such that each function in the family is computable with
POLYLOGTIME-uniform (2n + o(n))-gate circuits. Our new construction has the following ap-
plications in both complexity theory and cryptography.

• (Hardness magnification). Let α : N → N be any function such that α(n) ≤ log n/ log log n.
We show that if there is an nα(n)-sparse NP language that does not have probabilistic cir-
cuits of 2n + O(n/ log log n) gates, then we have (1) NTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2)

NP 6⊆ SIZE[nk] for every constant k. Complementing this magnification phenomenon, we
present an O(n)-sparse language in P which requires probabilistic circuits of size at least
2n − 2. This is the first result in hardness magnification showing that even a sub-linear
additive improvement on known circuit size lower bounds would imply NEXP 6⊂ P/poly.
Following Chen, Jin, and Williams (STOC 2020), we also establish a sharp threshold
for explicit obstructions: we give an explict obstruction against (2n − 2)-size circuits,
and prove that a sub-linear additive improvement on the circuit size would imply (1)
DTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2) P 6⊆ SIZE[nk] for every constant k.

• (Extremely efficient construction of pseudorandom functions). Assuming that one of in-
teger factoring, decisional Diffie-Hellman, or ring learning-with-errors is sub-exponentially
hard, we show the existence of pseudorandom functions computable by POLYLOGTIME-
uniform AC0[2] circuits with 2n + o(n) wires, with key length polylog(n). We also show
that PRFs computable by POLYLOGTIME-uniform B2 circuits of 2n + o(n) gates follow
from the existence of sub-exponentially secure one-way functions.

*CSAIL, MIT, Massachusetts, USA. Email: lijieche@mit.edu
†IIIS, Tsinghua University, Beijing, China. Email: lijt19@mails.tsinghua.edu.cn
‡IIIS, Tsinghua University, Beijing, China. Email: yangtq19@mails.tsinghua.edu.cn

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 86 (2022)

mailto:lijieche@mit.edu
mailto:lijt19@mails.tsinghua.edu.cn
mailto:yantq19@mails.tsinghua.edu.cn

Contents

1 Introduction 3
1.1 Randomness-efficient and strongly-explicit almost universal hash functions 4
1.2 Implications on sharp bootstrapping results . 5

1.2.1 Sharp magnification threshold for probabilistic circuits 6
1.2.2 Sharp magnification thresholds for explicit obstruction 8

1.3 Strongly uniform pseudorandom functions . 9
1.4 Intuition . 10

1.4.1 Construction of randomness efficient almost-universal hash functions 10
1.4.2 Applications to hardness magnification and construction of PRFs 12

2 Preliminaries 13
2.1 Probability Theory . 13
2.2 Circuit Classes . 14
2.3 Hash and 1-detector . 14
2.4 ε-biased set and k-wise independence . 15
2.5 Expander Graphs . 16
2.6 Graph with large girth . 16

3 Randomness-efficient low-complexity hash functions 16
3.1 General construction from 1-detectors . 17
3.2 Randomness-efficient low-complexity 1-detectors . 19
3.3 Shrinkage reduction of hash function . 21
3.4 Explicitness of our construction . 24
3.5 Uniformity of our construction . 25

4 Sharp bootstrapping results from hash functions 26
4.1 Hardness magnification for all sparse NP languages 26
4.2 Hardness magnification for MCSP . 28
4.3 Explicit obstruction . 29
4.4 Unconditional lower bounds for sparse languages . 30

5 Low-complexity PRFs from hash functions 32
5.1 PRF and Levin’s trick . 32
5.2 Low-complexity PRFs in B2 circuit . 33
5.3 Low-complexity PRFs in low-depth circuits . 34

A Strongly explicit high-girth graphs 39

2

1 Introduction

Background and motivation. Universal hash families1, introduced by Carter and Wegman [CW79],
are among the most useful and well-studied objects in computer science, with applications to both
real-world systems and the theory of computation (e.g., algorithm design, complexity theory, and
cryptography). Its wide applications motivate the problem of constructing universal hash func-
tions with the smallest computational overhead. After decades of research, optimal constructions
(up to a constant factor) have been obtained in both the RAM model [PP08] and the Boolean circuit
model [IKOS08].

In particular, the investigation of hash functions with small circuit complexity was motivated
by the program of constructing low-complexity cryptographic primitives. Ishai, Kushilevitz, Os-
trovsky, and Sahai [IKOS08] showed that universal hash functions can be constructed with linear-
size circuits, which, combined with Levin’s trick of domain extension (see, e.g., [BR17]), led to
linear-size constructions of pseudorandom functions (PRFs) and many other cryptographic prim-
itives, under the standard assumption that one-way functions (OWFs) exist.

In a recent work, Fan, Li, and Yang [FLY21] proved that almost universal hash functions2 are
sufficient for constructing extremely efficient PRFs. They then constructed almost universal hash
functions with 2n + o(n) circuit complexity in both general and CC0[2] circuits3, and proved the
optimality of the constant factor 2 (i.e., there is no 2n−O(1)-size almost-universal hash construc-
tion). As a consequence of their almost-universal hash construction, they presented 2n + o(n)-size
constructions of PRFs assuming OWFs exist. However, a major disadvantage of the hash construc-
tions in [FLY21] is that they require a seed of length O(n log n) to sample a circuit from the hash
family, which greatly limits their applications.

Overview of our results. The main technical contribution of this paper is to improve the hash
constructions in [FLY21] for both general and CC0[2] circuits by reducing the seed length from
O(n log n) to polylog(n). Moreover, we observe that the improvement of the seed length makes
the hash family explicit in a strong sense: the local topology of the circuit computing the hash
function can be obtained with a uniform algorithm (e.g., given a gate index, compute its gate type
and which gates’ outputs are fed into this gate) in poly-logarithmic time given a seed of poly-
logarithmic length. We call such hash family POLYLOGTIME-uniform; see Theorem 1.1 for the
details.

Despite being weaker than universal hash functions, our new randomness-efficient low-complexity
hash constructions allow us to obtain two important consequences in complexity theory and cryp-
tography.

• (Hardness magnification) Following the kernelization method developed by Chen, Jin, and
Williams [CJW19; CJW20], we present extremely sharp bootstrapping results for hardness
magnification and explicit obstruction. In particular, we show that a 2.01n lower bound for
any sparse NP language against probabilistic B2 circuits would imply a major breakthrough:

1Recall that a universal hash family has the property that for a function drawn from the family, the hash values of
any distinct pair of inputs collide with probability 2−m, where m is the bit length of the hash value.

2In an almost universal hash family, the hash collision probability is a negligible function (e.g., 1/2log2 n) instead of
1/2m for m-bit hash values. It is weaker than a universal hash family, but is still useful in many applications.

3For general circuits we mean B2 circuits, in which each gate is of fan-in 2 and can compute an arbitrary Boolean
function in B2 ≜ F2 × F2 → F2. CC0[2] is a sub-class of AC0[2] representing the constant-depth circuits consisting of
only unbounded fan-in XOR gates. The complexity of CC0[2] circuits are measured in the number of wires instead of
gates.

3

NP does not have nk-size circuits for every fixed constant k. We also obtain stronger conse-
quences with the same lower bound for MCSP using the explicitness of our hash family.4

• (Extremely efficient PRFs) Following [IKOS08; FLY21], our new hash constructions imply
extremely efficient PRFs as well. Under the sub-exponential decisional Diffie-Hellman as-
sumption (see, e.g., [BR17]), we can construct a PRF computable by AC0[2] circuits of wire
complexity 2n + o(n) with polylog(n) seed length (instead of poly(n) in [FLY21]).5 Further-
more, the AC0[2]-computable PRF is POLYLOGTIME-uniform, which implies a parallel al-
gorithm to print the AC0[2] circuit. Similar results also hold for general circuits assuming
sub-exponentially secure one-way function exists.

Both of the above consequences crucially rely on our improvement upon [FLY21] on seed
length and explicitness; we believe that our new hash construction will find further applications
in other areas of computer science.

1.1 Randomness-efficient and strongly-explicit almost universal hash functions

Before stating our main theorem, we first define the notion of an almost universal hash family
and its properties. A family of hash functions is defined as H = {Hn}n≥1, where each Hn is
a distribution of functions from {0, 1}n to {0, 1}m for output length m = m(n). For a function
ε : N → R, we say H is ε-almost universal if for all sufficiently large n ∈ N, and for every two
distinct inputs x, y ∈ {0, 1}n, it holds that

Pr
h←Hn

[h(x) = h(y)] ≤ ε(n).

We sayH is linear if every function in the family is linear over the field F2.
We are now ready to present our construction of almost universal hash functions. The theorem

is formally proved as Theorem 3.9.

Theorem 1.1 (Unconditional construction of extremely efficient almost universal hash). Let ℓ ≜
log2 n/ log log n. There is a family of linear Θ(ℓ)-output exp(−Ω(ℓ))-almost universal hash func-
tionsH = {Hn}n≥1 satisfying the following properties.

(Low complexity) Each function h ∈ supp(Hn) is computable by a CC0[2] circuit with at most
2n + o(n) wires.

(Randomness efficient) Hn is samplable with seed length r = O(ℓ log2 n) in polynomial time.
More formally, there exists a polynomial-time algorithm G that takes 1n and a seed v of
length r and outputs (the description of) a function hv ∈ supp(Hn), such that Hn and
G(1n,Ur) are identical distributions (if we identify a function with its description), where
Ur is the uniform distribution over {0, 1}r. The function hv is said to be corresponding to the
seed v.

4The Minimum Circuit Size Problem with size parameter s(n) (MCSP[s(n)]) is defined as follows: given a string x
of length N = 2n, determine whether there exists an n-input s(n) size circuit with x as its truth table.

5The existence of PRFs computable by AC0[2] circuits might sound surprising, given that there exists a natural
property against sub-exponential-size AC0[2] and natural properties can be used to break PRFs [RR97]. However,
a closer look at the arguments in [RR97] shows that the natural property against AC0[2] only gives a large quasi-
polynomial-time (i.e., 2logk n for some large constant k) adversary breaking PRFs computable by AC0[2]. This does
not contradict our PRF construction in AC0[2], as our construction is only secure against exp(log2 n/ log log n)-time
adversaries; see Theorem 1.8 for details.

4

(POLYLOGTIME-uniform) There exists a polynomial-time algorithmAwhich takes a tuple (n, v, i, j)
as the input6, and outputs the source of the jth in-wire of the ith gate in the CC0[2]-circuit (with
2n + o(n) wires) computing the function hv ∈ supp(Hn) corresponding to the seed v.

(Strongly explicit) There exists a polynomial-time algorithm B(n, v, i, j) satisfying the following:
Let v be a seed, hv ∈ supp(Hn) be the F2-linear function corresponding to v, and M be the
m × n F2-matrix such that hv(x)i = ∑n

j=1 Mi,jxj for any i ∈ [m]. It holds that B(n, v, i, j)
outputs Mi,j. ♦

The POLYLOGTIME-uniformity and strongly explicitness characterize the explicitness of our
hash construction in two different senses. The former one captures the explicitness of the 2n +
o(n)-size circuit computing the hash function, while the latter one focuses on the linear transfor-
mation corresponding to the hash function.

Here we briefly discuss why the notion of POLYLOGTIME-uniformity is important for our
(and other potential) applications. POLYLOGTIME-uniformity is the most natural definition of
parallel uniformity. It says that our hash function is parallel-efficient not only in the evaluation
phase (since it is in sparse CC0[2]) but also in the pre-processing phase, i.e., to construct the cir-
cuit according to the seed. With a POLYLOGTIME-uniform hash family, we are able to construct
POLYLOGTIME-uniform low-complexity PRFs under standard assumptions, which is beneficial
to the overall efficiency of other cryptographic systems involving PRFs (see, e.g., [BR17]). The
“strongly explicitness” of our construction will be useful in proving hardness magnification theo-
rems for MCSP, see Section 4.2.

Table 1 summarizes the differences between our new construction and known low-complexity
constructions in [IKOS08; CJW19; FLY21].

Output size m Seed Length Circuit Class Uniformity/Explicitness

Folklore7 m ≤ n log n + O(m) linear-size NC1 P-uniform8

[IKOS08] m ≤ n O(n) linear-size NC1 P-uniform

[FLY21] m = O
(

log2 n
log log n

)
O(n log n) 2n + o(n) size CC0[2] P-uniform

Ours m = O
(

log2 n
log log n

)
polylog(n) 2n + o(n) size CC0[2]

POLYLOGTIME-uniform
and strongly explicit

Table 1: Comparison of known constructions of almost universal hash functions. Note that the
collision probability of these hash function are exp(−Ω(m)) for output length m. The construction
in [IKOS08] is in addition a pairwise-independent hash function.

1.2 Implications on sharp bootstrapping results

Prior works in Hardness Magnification. Proving strong circuit lower bounds against explicit
functions is one of the most significant challenges in complexity theory. However, despite decades

6The input lengths to A and the algorithm B in the next bullet are both O(log n) + r = polylog(n), so their running
times are actually polylogarithmic in n.

7This is done by sampling over the output bits of Spielman’s ECC [Spi96] with an random sampling based on an
expander walk (see Lemma 3.2 of [CJW19]).

8A hash construction is P-uniform if there is a polynomial time algorithm that prints the circuit computing a hash
function given its seed v.

5

of efforts, it remains unknown whether NP has linear-size circuits. The strongest explicit circuit
lower bounds against general fan-in 2 circuits (known as B2 circuits) is 3.1n− o(n) [LY21], follow-
ing [DK11; FGHK16]. A 5n− o(n) lower bound is known against U2 circuits [LR01; IM02]9.

A recently discovered phenomena in computational complexity called hardness magnification
(see, e.g., [OS18; OPS21; MMW19; CJW19; Che+20]) provides new insights in bridging the gap
between what we can prove and what we want to prove regarding circuit lower bounds. It says
that a relatively weak circuit lower bound (e.g., n · polylog(n) size against B2 circuits) for some
special problems would imply major breakthroughs like NP ⊈ P/poly.

Most interestingly, the required lower bounds for hardness magnification are only slightly
stronger than provable lower bounds. For instance, Chen, Jin, and Williams [CJW20] showed
that an n2+ε lower bound against probabilistic De Morgan formulas for MCSP would imply NP ⊈
SIZE[nk] for all k, while an n2−o(1) lower bound for the same problem can be proved using a variant
of the random restriction method in [Hås98; Tal14; IMZ19; HS17; OPS21]. For more related works
on hardness magnification, see [Che+20] for a comprehensive summary.

Still, there are asymptotically significant gaps between what are provable and what suffice to
bootstrap in all known results. For example, [MMW19] says that proving a slightly super-linear
circuit lower bound for a sparse version of MCSP would already imply NP ⊈ P/poly. However, the
best unconditional lower bound for any language in NP is only 3.1n− o(n) [LY21], which is still far
from the superlinear threshold for bootstrapping. This is formally discussed in [GHKK18], which
shows that the current technique for proving unconditional circuit lower bounds is not capable of
breaking the linear barrier. Hence, even proving a super-linear lower bound for MCSP seems out
of reach.

Overview of results in this section. By slightly generalizing the computation model to prob-
abilistic circuits, we observe that even a sub-linear improvement over the known lower bounds
would be enough to imply breakthroughs in complexity theory. For example, we show that im-
proving a known 2n −O(1) probabilistic circuit lower bound for particular sparse languages to
2n + O(n/ log log n) would imply NP 6⊆ SIZE[nk] for every constant k. Regarding circuit lower
bounds for deterministic time classes, we also obtain a similar threshold phenomenon by study-
ing explicit obstructions; see Section 1.2.2 for details.

1.2.1 Sharp magnification threshold for probabilistic circuits

Notation. Formally, a probabilistic circuit deciding a language L is a distribution D over circuits
that outputs the wrong answer with probability at most 1/poly(n) on any input x, i.e., for all
x ∈ {0, 1}n it holds that PrD←D [D(x) 6= L(x)] < 1/poly(n).10 We say a language L is s(n)-sparse
if for all sufficiently large n, L ∩ {0, 1}n has size at most s(n).

We first present the most standard form of our result, which gives fixed polynomial lower
bounds for NP. This theorem is a special case of our general theorem of hardness magnification,
which is stated and proved as Theorem 4.1.

Theorem 1.2 (Hardness magnification, high-end). Let α(n) ≜ log n/ log log n. If there exists an

9A U2 circuit consists of fan-in 2 gates computing all binary functions except for XOR and its complement.
10Note that in contrast to robust classes like BPP, our result is actually sensitive to the error probability in the defi-

nition of probabilistic circuits, since the complexity overhead of error reduction is costly in the linear-size setting. For
simplicity, we stick to the definition with error 1/poly(n).

6

nα(n)-sparse language in NP that does not have probabilistic circuits11 of size 2n +O(n/ log log n),
then we have (1) NTIME[2n] ⊈ SIZE

[
2n1/5

]
and (2) NP 6⊆ SIZE[nk] for every constant k.12 ♦

Let us compare this theorem with Theorem 1.2 of [CJW19]. They proved that NP ⊈ SIZE[nk]
follows from the non-existence of O(n)-time randomized algorithms with nε bits of advice and
O(log n) bits of randomness for 2no(1)

-sparse NP languages. In our theorem, we trade the sparsity
for the exact constants in the running time of the randomized algorithm, showing that even a
2n + o(n) probabilistic circuit lower bound is enough.

Theorem 1.2 allows us to bootstrap a non-trivial lower bound for sparse languages in NP to
strong sub-exponential lower bounds. If we only want a super-polynomial circuit lower bound
for NEXP, then the assumption can be considerably weakened. The following theorem is another
extreme case of Theorem 4.1.

Theorem 1.3 (Hardness magnification, low-end). Let α(n) ≜ log n/ log log n. If there is an nα(n)-
sparse language in NTIME

[
2no(1)

]
that is not computable by probabilistic circuits of size 2n +

O(n/ log log n), then NEXP ⊈ P/poly. ♦

We show that a nearly-matching lower bound is provable, from the proof of the 2n − O(1)
lower bound for pseudorandom functions in [FLY21]. This complements the bootstrapping above,
and shows that there is only a gap of an additive sub-linear term towards breakthrough circuit lower
bounds. The following theorem is formally proved as Corollary 4.11.

Theorem 1.4. There is an explicit O(n)-sparse language L computable in P, such that every prob-
abilistic circuit deciding L must have size at least 2n− 2. ♦

Comparison with known lower bounds. We remark that a better-than-2n circuit lower bound
against probabilistic B2 circuits can indeed be proved for certain non-sparse languages in P from
known average-case lower bounds. This is because given a probabilistic circuit with small error
probability, we can guarantee the existence of a particular circuit that approximates the language
well by an averaging argument. In particular, the following lower bound of Chen and Kabanets
[CK16] implies that no probabilistic circuits of size 2.49n can decide an explicit language in P.

Theorem 1.5 (Theorem 4.8, [CK16]). There is a language L in P such that for any B2 circuit C of
size 2.49n,

Pr
x←{0,1}n

[C(x) = L(x)] ≤ 1
2
+

1
2Ω(n)

.
♦

Note that every sparse language must be easy on average as a trivial circuit outputting 0 can ap-
proximate it well. As a result, it is impossible to obtain a breakthrough directly from our hardness
magnification result and an average-case lower bound. Nevertheless, linear-size lower bounds
against general circuits of size greater than 2n is a widely-studied problem for decades, so this
magnification phenomenon may give us more insights on the setting of small linear size circuits.
Following [Che+20], our results achieve a “hardness magnification frontier”.

11Although it is not explicitly stated for simplicity, we mention that the lower bound required to obtain a break-
through in Theorem 1.2, Theorem 1.3, and Theorem 1.6 can be weakened to the one-sided error case. That is, we only
need to show that for any sparse language L ∈ NP, no probabilistic circuit of small size could output 1 with certainty
for any x ∈ L and output 0 with high probability otherwise.

12We remark that we can indeed obtain a conclusion that is stronger than both (1) and (2), albeit it is more technical:

for all c > 0 there exists some c′ > c such that NTIME
[
2c′n1/5

]
⊈ SIZE

[
2cn1/5

]
.

7

Better magnification results for meta-complexity problems. We also show that weak circuit
lower bounds for specific meta-complexity problems such as MCSP imply consequences stronger
than that of Theorem 1.2. Formally, we define MCSP[s(n)] as the language taking a truth table of
length N = 2n as input, and decides whether it admits a circuit of size at most s(n). The following
theorem is formally proved as Theorem 4.3.

Theorem 1.6. Let N = 2n be the truth table length of n-input Boolean functions and n ≤ s(n) ≤
n2/ log n be any size function. If MCSP[s(n)] does not have probabilistic circuits of size 2N +
O(N/ log log N), then there exists some c > 0 such that ⊕P ⊈ SIZE

[
2Nc]

. ♦

Unfortunately, our lower bound technique in proving Theorem 1.4 cannot be used to derive a
lower bound for MCSP. We leave proving an unconditional 2n− o(n) circuit size lower bound for
MCSP, even against deterministic circuits, as an interesting open problem.

1.2.2 Sharp magnification thresholds for explicit obstruction

A drawback of Theorem 1.2 and Theorem 1.3 is that the conclusion only gives circuit lower bounds
for nondeterministic time classes such as NTIME[2n]. By studying a stronger notion called explicit
obstruction, we are able to obtain a bootstrapping theorem with tight threshold, which gives cir-
cuit lower bounds for deterministic time classes such as TIME[2n].

Explicit obstruction. An explicit obstruction of size S(n) against C is an algorithm A running in
poly(n, S(n)) time, such that on input 1n, A outputs a set En = {(xi, yi)} of size S(n) such that
xi ∈ {0, 1}n and yi ∈ {0, 1} for every i, and xi 6= xj for every i 6= j. The set has the property that,
for all circuit C ∈ C, there exists some i ∈ [S(n)] such that C(xi) 6= yi. This can be viewed as an
explicit proof of the hardness of C computing any n-bit function f that is consistent with En, since
one can always efficiently find a counter-example from the explicit obstruction. Indeed, giving an
explicit obstruction of polynomial size would directly imply P ⊈ C. This concept is first suggested
by Mulmuley [Mul11] in the context of geometric complexity theory, where he argued that explicit
obstructions might be essential in proving arithmetic circuit lower bounds. For more discussions
on explicit obstruction, see [CJW20].

Our results. Our theorem below shows that in the case of general Boolean circuits, even present-
ing such an obstruction for very small linear-size circuits would imply breakthrough circuit lower
bounds. It is proved formally as Corollary 4.9 and Theorem 4.5.

Theorem 1.7. Let α(n) = log n/ log log n. The following holds.

• There is an explicit obstruction of poly(n)-size against (2n− 2)-size B2 circuits.

• If for some β(n) ≥ ω(n/ log log n), there is an explicit obstruction of size nα(n) against 2n +

β(n)-size B2 circuits, then we have (1) DTIME[2n] ⊈ SIZE
[
2n1/5

]
and (2) P ⊈ SIZE[nk] for

every k.13 ♦

13Similar to Theorem 1.2, we can indeed obtain a stronger conclusion that for all c > 0 there exists a c′ > c such that

DTIME
[
2c′n1/5

]
⊈ SIZE

[
2cn1/5

]
.

8

1.3 Strongly uniform pseudorandom functions

Utilizing the POLYLOGTIME-uniformity and short seed length of our hash constructions, we can
apply them to the framework in [IKOS08; FLY21] to obtain extremely uniform low-complexity
pseudorandom functions (PRFs) with short key length. Recall that a PRF is a family of distribu-
tions over functions that are indistinguishable from uniformly random functions by efficient ad-
versaries. We show, from standard cryptography assumptions, that each member of a PRF can be
constructed by circuits of size 2n + o(n); moreover, the construction itself can be POLYLOGTIME-
uniform as well.

Formally, an m-output t-secure pseudorandom function is a family F = {Fn}n≥1 of distribu-
tions Fn on n-input m-output Boolean functions that fools every probabilistic t(n)-time adversary
A, i.e., ∣∣∣∣ Pr

f←Fn

[
A f (1n) accepts

]
− Pr

g:{0,1}n→{0,1}m
[Ag(1n) accepts]

∣∣∣∣ < 1
t

.

We say that C has key length s(n) ifFn is samplable (by a poly(n)-time algorithm) with s(n) random
bits. Similar to the hash functions, we say that F is computable by POLYLOGTIME-uniform C-
circuits, if s(n) ≤ polylog(n) and there exists an algorithm A(n, v, i, j) running in polylog(n) time
(hence polynomial in its input length), that outputs the type of the ith gate and the jth descendant
of the ith gate in the C-circuit computing the function fv ∈ supp(Fn) keyed by v.

Since our hash functions can be implemented in CC0[2], we can obtain uniform PRFs in differ-
ent circuit models based on different assumptions.

Theorem 1.8 (Uniform low-complexity PRFs). There is a t = t(n) = exp
(

Ω
(

log2 n
log log n

))
and the

following candidates of t-secure PRFs. Let ε be an arbitrarily small constant.

B2 circuits. Assuming OWFs against exp(nε)-time adversaries exist, there exists a family of t-
secure PRFs with key length polylog(n) computable by POLYLOGTIME-uniform B2 circuits
of size 2n + o(n) and depth polylog(n) simultaneously.

NC1 circuits. Assuming exp(nε)-secure PRFs in NC1 exist, there exists a family of t-secure PRFs
with key length polylog(n) computable by POLYLOGTIME-uniform B2 circuits of size 2n +
o(n) and depth log n + O(log log n) simultaneously.

AC0[2] circuits. Assuming exp(nε)-secure PRFs in NC1 exist, there exists a family of t-secure PRFs
with key length polylog(n) computable by POLYLOGTIME-uniform AC0[2] circuits of wire
complexity 2n + o(n). ♦

Note that the assumption for our NC1 and AC0[2] constructions can be derived from standard
assumptions such as sub-exponentially hard decisional Diffie-Hellman [NR04] or Ring Learning-
with-Error [BPR12], as well as other constructions like [MV15; AR16]. We also mention that quasi-
polynomial security is known to be optimal for AC0[2] PRFs by [RR97] (see, e.g., [BR17]).

Our PRF constructions are the first to achieve extremely low-complexity (efficient evaluation),
short key length, and POLYLOGTIME-uniformity (parallel pre-processing) simultaneously from
standard assumptions. Prior to our result, only PRF candidates with O(n log n) key length com-
putable by P-uniform circuits of the same sizes were known [FLY21] in these three circuit classes,
improved on the linear-size NC1 PRFs by Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS08] and the
AC0[2] PRF due to Viola [Vio15] with n · polylog(n) wire complexity and key length. Our improve-
ment could also improve the efficiency of other cryptographic primitives involving PRFs such as

9

message authentication code (MAC) and CCA-secure encryption (see, e.g., [IKOS08; BR17]). See
Section 1.3 [FLY21] for more discussions on low-complexity PRFs.

Remark. As pointed out by an anonymous reviewer, assuming a PRF against exp(nε)-time adver-
saries (as we did in Theorem 1.8), we can reduce the key length to polylog(n) generically by directly
applying such a PRF to the keys (here we are actually using the PRF as a PRG of sub-exponential
stretch). Particularly, letF = {Fn}n≥1 be the low-complexity PRF in [FLY21], m = m(n) ≤ poly(n)
be the key length of Fn, and G = {Gn}n≥1 be a PRF against exp(nε)-time adversaries. Let fn,k be
the function in Fn with key k, and ttm(f) be the first m bits in the truth table of the function f . We
can defineH = {Hn}n≥1 as

Hn =
{

fn,ttm(g) | g ∈ Gdlog2/ε me
}

.

ThenH is a PRF with the same circuit complexity asF , while the key length is only poly(dlog2/ε me) =
polylog(n). However, it is not clear how to directly reduce the uniformity to POLYLOGTIME-
uniform in this way.

1.4 Intuition

We now briefly discuss the ideas behind our new results. Since our hash construction is based on
the previous construction by Fan, Li, and Yang [FLY21], we will first recall their original construc-
tion and then discuss how to reduce the key length and make the construction POLYLOGTIME-
uniform and strongly explicit. After that, we will explain how to derive sharp bootstrapping
results and construct POLYLOGTIME-uniform PRFs from the new hash construction.

1.4.1 Construction of randomness efficient almost-universal hash functions

The 2n + o(n) almost universal hash in [FLY21]. Our starting point is the low-complexity hash
function H in [FLY21] from high-girth graphs14. The constructed H is linear over F2. Hence,
in order to make it almost universal, we only need to guarantee that for every non-zero input
x ∈ {0, 1}n \ 0n,H(x) 6= 0 with high probability.

Their hash functionH is the concatenation of two “hash functions”Hlight andHheavy. The for-
mer one ensures thatHlight(x) 6= 0 with high probability for any non-zero x with small Hamming
weights (0 < |x| ≤ n/2), and the latter one ensures that Hheavy(x) 6= 0 for any x with large Ham-
ming weights (|x| > n/2). The construction ofHheavy is quite simple: for any non-zero input with
Hamming weight larger than n/2, a random sampling of n/ log n positions over all input bits in-
cludes a 1 with high probability; the hash Hlight that deals with non-zero inputs with Hamming
weights smaller than n/2 is in fact a combinatorial primitive called 1-detector: a distribution L
over n-bit functions such that for any non-zero x with Hamming weight at most r (which is called
the range of the 1-detector), L(x) 6= 0 with high probability.

Fan, Li, and Yang [FLY21] presented a construction of low-complexity 1-detectors using high-
girth graphs. Consider an undirected graph with m vertices and n edges, the girth of G is the
length of the shortest cycle in it. Let G be a graph with n = Θ(m log m) and girth g = Ω

(
log n

log log n

)
(see, e.g., [LU95; Cha03]), then the required 1-detector (with range r = n/2) is a depth-1 CC0[2]
circuit whose topology is the vertex-edge incident graph of G, with input bits being randomly

14The girth of an undirected graph is the length of the shortest cycles in it. A high-girth graph usually means a graph
G = (V, E) with girth Ω(logk n), where k = 2|E|/|V| is the average degree of vertices.

10

permuted. More formally, the edges of G are randomly permuted and assigned to the n input bits
of the circuit, and each of the m nodes in G is assigned to an output gate computing the XOR of
the input bits corresponding to the adjacent edges of the node.

The crucial observation leading to the analysis of their construction is that every input x with
an all-zero output would imply a subset S of edges in G of size |x| such that every vertex is adjacent
to even number of edges in S, which further leads to a cycle in G of size at most |x| that does not
likely to exist in a high-girth graph.

Now we present the analysis more formally. We call a subset S of edges good if at least one of
the vertices is adjacent to an odd number of edges in S. It is easy to see that an input x with non-
zero output corresponds to a good subset of size |x|. Therefore, the 1-detector above has range r
if and only if for all 0 < ℓ ≤ r, a randomly chosen subset of size ℓ is good with high probability.
Consider the cases for ℓ < g and g ≤ ℓ ≤ n/2 separately.

1. Note that the graph has girth at least g = Ω
(

log n
log log n

)
. Every subset S of size ℓ < g is good,

since the induced subgraph of a bad subset S would contain a cycle of size at most |S|.

2. Otherwise let ℓ ∈ [g, n/2]. We claim that if we have chosen all but the first dg/3e edges,
there will be at most one bad subset containing the ℓ− dg/3e chosen edges: if both S1 and S2
are two distinct bad subsets containing them, their symmetric difference S1 ⊕ S2 would also
be a bad subset of size at most 2dg/3e < g, which is impossible as discussed above. This
means that if a subset of edges of size ℓ is randomly chosen, it will not hit a bad subset with
high probability.

Derandomizing the construction. The original hash in [FLY21] requires O(n log n) bits of seed
in Hlight to permute the input bits and another O(n) bits of seed in Hheavy to randomly sample
n/ log n input bits. To reduce the overall seed length to polylog(n), we need to derandomize both
of these two parts.

To derandomize Hlight (i.e., the 1-detector L based on high-girth graphs), we need to look into
the correctness proof of it. Let x be an input with Hamming weight smaller than the range r of the
1-detector. It can be verified that the analysis of the 1-detector is correct as long as the 1-indices
of x are randomly permuted (i.e., the 1-indices are randomly assigned to distinct edges in G).
So if we restrict ourselves to the cases r = log3 n (instead of n/2 in [FLY21]), then a log3 n-wise
(almost) independent permutation15 would already be sufficient. In particular, we use the k-wise
ε-dependent permutation by Kaplan, Naor, and Reingold [KNR09] with seed length O(k log n +
log(1/ε)) = O(log4 n), where k = log3 n and ε = exp(− log2 n) in our setting.

Apart from the 1-detector, we also need to derandomize the random sampling part in Hheavy.
We need to carefully choose the parameters so that we can handle all x with Hamming weights
greater than log3 n (since our 1-detector can only handle those below this threshold). In order to
achieve negligible collision probability, we can sample n/ log n number of bits. This is done with
a folklore sampling trick via k-wise independent hash functions, which requires O(log4 n) bits of
randomness using [AGHP90].

Note that the collision probability of our derandomized hash function is exp(−Ω(log2 n
log log n)),

which is the same as the original construction in [FLY21] up to the constant hidden in Ω(·).
15A k-wise almost independent permutation is a distribution F of permutations over [n] such that for all 0 ≤ i0 <

i1 < · · · < ik−1 < n, the distribution (F (i0),F (i1), . . . ,F (ik−1)) is statistically close to (R(i0),R(i1), . . . ,R(ik−1)),
whereR is a truly random permutation.

11

Reducing the output length. The hash function above has Θ(n/ log n) output bits, whereas an
ordinary universal hash with the same collision probability has output length only polylog(n).
Fortunately, the output length can be reduced to polylog(n) with little overhead in seed length and
circuit complexity. Since the composition of two almost universal hash functions is still almost
universal, we compose the hash above with itself to reduce the output length to Θ(n/ log2 n). We
can then compose the resulting hash function with an almost universal hash with output length
polylog(n) and (CC0[2]) circuit complexity o(n log2 n) in [CJW19] based on ε-biased sets [AGHP90]
and expander walks, the overall circuit complexity can still be bounded by 2n + o(n).

In fact, there is a trade-off between circuit depth and seed length in our hash construction by
setting up the parameters more carefully. The approach described above can be computed by
depth-3 CC0[2] circuits and requires a seed length O(log4 n). If we allow the depth to be 300, the
seed length can be reduced to log3.01 n.

Making the construction explicit and uniform. There are several main components in our hash
construction that are not obviously strongly explicit and POLYLOGTIME-uniform. The first one
is the high-girth graph construction of 1-detectors in Hlight. We observe that the local topology
around an edge or vertex in the high-girth graphs constructed by [LU95] can be obtained within
poly-logarithmic time; see Appendix A for a formal argument. The k-wise almost-independent
random permutation used in our 1-detectors forHlight is also strongly explicit according to [KNR09].
ThereforeHlight is strongly explicit. It is also easy to verify thatHheavy is strongly explicit given the
k-wise ε-dependent distribution in [AGHP90]. Finally, the hash function in [CJW19] for shrinkage
reduction is strongly explicit, since both of its two components (i.e., ε-biased sets and expander
graphs) are strongly explicit (see [KNR09; AB09]).

1.4.2 Applications to hardness magnification and construction of PRFs

Sharp hardness magnification. We first show how to apply our new hash construction to obtain
an extremely sharp hardness magnification result for all sparse NP languages (i.e., Theorem 1.2
and Theorem 1.3), following [CJW19; CJW20]. Recall that [CJW19, Theorem 1.2] proved that if
there is a 2no(1)

-sparse NP language L that cannot be computed by cn-size probabilistic circuits for
some big constant c� 1, then NP ⊈ SIZE[nk] for all constant k.

[CJW19, Theorem 1.2] is proved by taking the contrapositive: assuming that NP ⊆ SIZE[nk] for
some k, we first sample h from a proper hash function family to kernelize any sparse language L in
NP (i.e., a randomized reduction from the sparse language L to another (non-sparse) NP problem
L′ with much smaller input size m � n1/k), then use the SIZE[nk] circuit D for L′ (which has
size mk � n) to solve L. Now, composing the hash function h together with D gives a linear-
size probabilistic circuit computing L. This proves the contrapositive of our desired theorem.
Due to technical reasons, in the proof above one also has to combine the hash function h with
an error-correcting code. While there is an efficient construction of linear-size error-correcting
codes [Spi96], it has size cn for some constant c � 2. Hence, the size of encoding circuits for
error-correcting codes become the bottleneck which prevents further improvement.

We are able to avoid using error-correcting codes by utilizing properties of the new almost-
universal hash construction (the construction of [CJW19] works for all k-perfect hash). In more
details, let H(v, x) : {0, 1}O(ℓ log2 n) × {0, 1}n → {0, 1}m(n) be the hash function given by Theorem
1.1 with ℓ = log2 n/ log log n. For any sparse language L, we define an intermediate problem as
follows: L′ = {(v, h) | ∃x ∈ {0, 1}n ∩ L s.t. H(v, x) = h}. By the definition, for any no-instance
x ∈ {0, 1}n \ L, the probability that there exists an yes-instance x′ ∈ L ∩ {0, 1}n having the same

12

hash value with x can be bounded by exp(−Ω(ℓ)) · |L ∩ {0, 1}n| = n−ω(1). Hence by checking
whether (v, H(v, x)) ∈ L′ for a random seed v, we can determine with high probability whether
x ∈ L. This gives us a simple probabilistic circuit to decide L that only needs one evaluation of the
hash function H (which is of circuit complexity 2n + o(n)) and one oracle query to L′. Given the
assumption that NP ⊆ SIZE[nk], we can show that L′ can be decided by circuits of size o(n), hence
the overall circuit complexity would be 2n + o(n).

Uniform pseudorandom functions. We now briefly describe how our hash function can be used
to obtain POLYLOGTIME-uniform pseudorandom functions with polylog(n) key length. Following
the framework established in [IKOS08; FLY21], we use Levin’s trick, which says that the compo-
sition of a PRF and an almost universal hash function is also pseudorandom. More formally, let
F = {Fn}n≥1 be a family of PRF secure against any exp(nε)-time adversary, andH = {Hn}n≥1 be
an almost universal hash function with output length logc n, then the composition F ◦H is also a
PRF against any polynomial-time adversary as long as c > ε−1. Let c = 2ε−1 and C be any circuit
class. By assuming a PRF (secure against any exp(nε)-time adversary) with polynomial key length
computable by P-uniform C-circuits of size o(exp(nε)), we can then obtain a PRF (secure against
any polynomial-time adversary) computable by POLYLOGTIME-uniform 2n + o(n) size C-circuits
with polylog(n) key length, using our POLYLOGTIME-uniform efficient hash with polylog(n) seed
length. Note that for C ∈ {B2,NC1,AC0[2]}, we can implement such PRF candidates by plugging
in standard constructions based on the existence of OWFs against any sub-exponential adversary
for B2 circuits, and decisional Diffie-Hellman [NR04] or Ring Learning-with-Errors [BPR12] for
NC1 and AC0[2] circuits.

2 Preliminaries

Notation. We define [n] ≜ {0, 1, . . . , n − 1}, Bn,m as the set of all functions from Fn
2 to Fm

2 and
Bn ≜ Bn,1. The Hamming weight of x ∈ Fn

2 , denoted by |x|, is defined as the number of 1’s in x;
the Hamming distance ∆(x, y) of x and y from Fn

2 is defined as the Hamming weight of the bitwise
XOR of them. The concatenation of two strings x and y is denoted by x‖y, and the ith bit of x (0-
indexed) is denoted by xi. Graphs are undirected by default. We assume that all functions used as
parameters of our constructions are poly-logarithmic time constructible, i.e., for any function ℓ(n)
that is used as a parameter in our results, there is a polynomial-time algorithm A such that A(n)
outputs the binary representation of ℓ(n).

We use x ← D to denote a random element x sampled from a distribution D, and D(x0) ≜
Prx←D [x = x0]. Natural numbers are represented in binary when being fed into Turing machines
or circuits; and 1n represents the unary representation of n. We assume basic familiarity with cryp-
tographic primitives like one-way functions and pseudorandom functions, and typical complexity
classes like P, NP, and ⊕P (see, e.g., [AB09]).

2.1 Probability Theory

Let U (S) be the uniform distribution supported on a set S, and Uℓ ≜ U ({0, 1}ℓ). A family D =
{Dn}n≥1 of distributions is said to be samplable with seed length ℓ(n) (or ℓ(n)-samplable) if there is
a polynomial-time algorithm A such that A(1n,Uℓ(n)) samples Dn. For every s ∈ {0, 1}ℓ, we say
A(1n, s) is the element corresponding to the seed s.

13

The statistical distance between two distributionsD1 andD2 over a set S, denoted by SD(D1,D2),
is defined as

SD(D1,D2) ≜
1
2 ∑

u∈S
|D1(u)−D2(u)| .

A distribution D2 is said to be δ-close to D1 if their statistical distance is at most δ.
Statistical distance characterizes the intractability of distinguishing two distributions by any

test (even computationally unbounded): if D1 and D2 have statistical distance at most δ, then for
any stochastic process T, |Pru←D1,T[T(u) = 1]− Pru←D2,T[T(u) = 1]| ≤ δ.

2.2 Circuit Classes

In this paper we will work with various circuit classes. In general, a circuit is an acyclic graph
where each of its nodes can be an input variable, a constant c ∈ {0, 1}, or a gate. One or more
nodes are marked as output nodes (together with an index i denoting the corresponding output
bit). The depth of a circuit is the number of edges on the longest path from any input variable to
an output node. An n-input m-output circuit computes a function in Bn,m.

B2 circuits. A B2 circuit (or general circuit) contains fan-in-2 gates that can compute any binary
function f ∈ B2. The size of a B2 circuit refers to the number of gates involved.

NC1 circuits. An NC1 circuit is a B2 circuit with O(log n) depth. Note that a single-output NC1

circuit of depth d can be converted into a formula of size O(2d).

CC0[2] circuits. A CC0[2] circuit is a constant-depth circuit with only XOR gates of unbounded
fan-in. It is easy to see that CC0[2] circuits can only compute linear functions over F2. The
complexity of a CC0[2] circuit is usually measured by the number of wires.

AC0[m] circuits. An AC0[m] circuit is a constant-depth circuit with fan-in-1 NOT gates and un-
bounded fan-in gates over {AND,OR,MODm}, where MODm(x1, . . . , xk) = 1 if and only if
x1 + x2 + · · · + xk ≡ 0 (mod m). Similar to CC0[2] circuits, the complexity of an AC0[m]
circuit is measured by the number of wires.

A probabilistic B2 circuit (or simply a probabilistic circuit) with input size n and output size m
is a distribution Cn over n-input m-output B2 circuits. The circuit complexity of a probabilistic
circuit is defined as the maximum complexity of functions in its support. A family C = {Cn}n≥1
of n-input 1-output probabilistic circuit is said to decide a language L with error probability ε = ε(n)
if for sufficiently large n and all x ∈ Fn

2 , PrC←Cn [C(x) 6= L(x)] ≤ ε.

2.3 Hash and 1-detector

Definition 2.1 (Almost universal hash function). Let m = m(n) and ε = ε(n) be two parameters.
An m-output ε-almost universal hash function is a family of distributions H = {Hn}n≥1, where Hn
is supported on Bn,m, such that Prh←Hn [h(x) = h(y)] ≤ ε(n) for all x 6= y and sufficiently large n.
The parameter ε is called its collision probability. It is linear if every function in the support ofHn is
linear. It is said to be s(n)-samplable if the family H of distributions is samplable with seed length
s(n). ♦

We will make heavy use of the notion of 1-detectors in [FLY21], as parts of our almost universal
hash construction.

14

Definition 2.2 (1-detector). An m-output (randomized) 1-detector with range r and error ε is a family
of distributions D = {Dn}n≥1, where Dn is supported on linear functions in Bn,m, such that for
sufficiently large n, PrL←Dn [L(x) 6= 0] ≤ ε(n) for all x ∈ Fn

2 satisfying 0 < |x| ≤ r. It is said to be
s(n)-samplable if the family D of distributions is samplable with seed length s(n). ♦

We emphasize that the definition requires the functions in the family of distributions to be
linear. This ensure that, for any randomized 1-detector Dn with range r and error ε, and any
x1 6= x2 with Hamming distance at most r, it holds that PrL←Dn [L(x1) 6= L(x2)] ≤ ε(n).

The shrinkage of a hash function (or 1-detector) is defined as the input length n divided by the
output length m (e.g., poly-logarithmic shrinkage means m = n/polylog(n)).

2.4 ε-biased set and k-wise independence

To derandomize the low-complexity hash function in [FLY21], we need several standard deran-
domization tools including strongly explicit ε-biased sets, k-wise independent distributions, and
k-wise independent permutations.

Definition 2.3 (ε-biased set). For any n ≥ 1 and ε ∈ (0, 1/2), a set S ⊆ Fn
2 is said to be ε-biased if

for all non-zero v ∈ Fn
2 , Prw←S[〈w, v〉 = 0] ∈ [1/2− ε, 1/2 + ε]. ♦

Theorem 2.4 (Alon, Goldreich, Håstad, and Peralta [AGHP90]). For any constant ε ∈ (0, 1/2),
there is a family {Sn ⊆ Fn

2}n≥1 of ε-biased sets such that |Sn| = Õ(n2). Moreover, there is an
algorithm A(n, i, j) running in time poly(log n) that computes the jth bit of the ith vector in Sn. ♦

Definition 2.5. A k-wise ε-dependent distribution with length n and alphabet size p is a distribu-
tion D over [p]n such that for all 0 ≤ i1 < i2 < · · · < ik < n, the distribution over [p]k obtained by
restricting D to the ith

1 , ith
2 , . . . , ith

k coordinates is ε-close to the uniformly distribution over [p]k. It is
said to be a k-wise independent distribution if ε = 0. ♦

Theorem 2.6 (Alon, Goldreich, Håstad, and Peralta [AGHP90]). Let ε = ε(n) > 0 be a parame-
ter. There is an algorithm A such that A(1n, k,Ur) runs in time poly(n, log(1/ε)) and samples a
k-wise ε-dependent distribution with length n and alphabet size 2 for every 1 ≤ k ≤ n, where
r = O(k + log log n + log(1/ε)). Moreover, there is an algorithm B such that B(n, k, v, i) runs
in poly(log n, k, log(1/ε)) time and computes the ith coordinate of the string corresponding to the
seed v. ♦

Definition 2.7. Let n ≥ 1 be the number of elements, and Pn be the set of all permutations over [n].
A k-wise ε-dependent permutation is a distribution D over Pn such that for all 0 ≤ i1 < i2 < · · · <
ik < n, the distribution of (f (i1), f (i2), . . . , f (ik)) with f ← D is ε-close to the uniform distribution
over {(j1, j2, . . . , jk) | j1, . . . , jk ∈ [n] are pairwisely distinct}. ♦

Theorem 2.8 (Kaplan, Naor, and Reingold [KNR09], Theorem 5.9). Let n be a power of 2, 2 ≤
k ≤ n, and ε > 2−n. There is an n-element k-wise ε-dependent permutation that is samplable
with seed length O(k log n + log(1/ε)). Moreover, there is an algorithm A(n, v, i) that runs in
poly(log n, k, log(1/ε)) time and outputs ρv(i) for the permutation ρv corresponding to the seed
v. ♦

15

2.5 Expander Graphs

We will need strongly explicit expander graphs in our proofs. We first recall the definition of
expander graphs.

Definition 2.9. An n-vertex d-regular graph G is called an (n, d, λ) expander graph (or (n, d, λ)-
graph) if λ2(G) ≤ λ, where λ2(G) denotes the second largest eigenvalue of normalized adjacency
matrix (i.e., adjacency matrix divided by d) of G. A family of graphs {Gn}n≥1 is an expander graph
family if there exists constants d and λ < 1 such that for all sufficiently large n, Gn is an (n, d, λ)-
graph. ♦

We will make use of the following construction of strongly explicit expander graphs.

Theorem 2.10 (Strongly explicit expander; see [AB09, Theorem 21.19]). There exists an expander
graph family {Gn}n≥1 and an algorithm A(n, v, i) that runs in polylog(n) time (i.e., polynomial in
input length) and outputs the ith neighbor of the node v in Gn, where v ∈ [n] and i ∈ [d]. ♦

Performing random walk on expanders is a standard derandomization technique. Consider
the task to find a good element from n elements in which there is a constant fraction of them being
good. A trivial approach is to sample ℓ independently random elements, which has exp(−Ω(ℓ))
error probability but requires ℓ log n random bits. By applying the following lemma, we can re-
duce the randomness complexity to O(log n + ℓ) while keeping the error probability to be expo-
nentially small.

Lemma 2.11 (Expander walk; see [AB09, Theorem 21.12]). Let G be an (n, d, λ)-graph and S be a
subset of vertices of size at most βn for some β ∈ (0, 1). Let X1, X2, . . . , Xk be random variables
denoting a random walk in G (where X1 is uniformly chosen), then

Pr[∀1 ≤ i ≤ k, Xi ∈ S] ≤
(
(1− λ)

√
β + λ

)k−1
. ♦

2.6 Graph with large girth

The girth of an undirected graph is the length of the minimum cycle in it. We need the following
construction of strongly explicit graphs with large girth.

Theorem 2.12 (Adapted from [LU95]; see Appendix A). Let r = r(n) = no(1) be a parameter. For
every sufficiently large n, there exists an m = Θ(n

r) and a regular graph Gm,n with m vertices, n
edges, and girth Ω(log n

log r). Moreover, there exists a polylog(n)-time algorithmA(n, i) for i ∈ [n] that

outputs the indices of the two endpoints of the ith edge in Gm,n, and a polylog(n)-time algorithm
B(n, i, j) for i ∈ [m] that outputs the jth edge attaching to the ith vertex. ♦

3 Randomness-efficient low-complexity hash functions

In this section, we present constructions of randomness-efficient low-complexity hash functions
with various parameters and properties.

In Section 3.1, we show almost universal hash functions can be constructed from 1-detectors
(Lemma 3.2). In Section 3.2 we give a derandomized version of construction of 1-detectors from [FLY21]

16

based on high-girth graphs (Lemma 3.3), and use that to construct a low-complexity hash function
with poly-logarithmic seed-length and n/polylog(n) output length (Theorem 3.4).

In Section 3.3, we show how to reduce the output length from n/polylog(n) to polylog(n), by
composing almost universal hash families. Finally, in Section 3.4 and 3.5, we establish the uni-
formity and explicitness of our constructions, which are essential for our applications to hardness
magnification and PRF constructions.

Notation. In this section, for a constructionHwith parameters a, b, c, we will useHâ,b̂,ĉ to denote
the specific construction H with the parameters specified to â, b̂ and ĉ. When the parameters are
obvious from the context, we often omit the subscripts and simply write it asH.

3.1 General construction from 1-detectors

We first give a general construction of almost universal hash functions from 1-detectors, using the
following sampling procedure.

Lemma 3.1. For all integers n, b and r such that b ≤ n and max{10n/b, 10 log log n} ≤ r ≤ n, there
is a distribution Dsamp

n,b,r supported on [n]b samplable by O(r log(n/b)) bits, such that the following
conditions hold:

1. (Hitting Condition). For all x ∈ Fn
2 with |x| ≥ r, it holds that

Pr
(w0,...,wb−1)←Dsamp

n,b,r

 ∧
j∈[b]

[xwj = 0]

 ≤ 2 exp
(
− br

2n

)
. (1)

2. (Ordering) For every (w0, . . . , wb−1) ∈ supp(Dsamp
n,b,r), it holds that w0 < w1 < · · · < wb−1.

3. (Explicitness) There are algorithms Asamp
n,b,r (v, i) and Bsamp

n,b,r (v, j) running in poly(log n, r) time
such that

Asamp
n,b,r (v, i) outputs

{
j if wj = i for some j ∈ [b],
⊥ otherwise;

Bsamp
n,b,r (v, j) outputs wj.

where (w0, . . . , wb−1) ∈ supp(Dsamp
n,b,r) is the vector corresponding to the seed v. ♦

Proof. We firstly describe a sampling procedure that satisfies Equation (1) but has a long seed
length and then reduce the seed length to O(r log(n/b)) bits using the explicit k-wise ε-dependent
distribution from Theorem 2.6. The sampling procedure is simple: we first partition [n] into b
consecutive groups g0, g1, . . . , gb−1 of size either bn/bc or dn/be; we then uniformly choose an
ij ∈ gj for each j ∈ [b]; finally we output the tuple (i0, i1, . . . , ib−1).

For any x ∈ Fn
2 with Hamming weight at least r, for some ℓ ≤ r, there are ℓ groups such that

there are at least r 1-indices (i.e., the corresponding bits of x are 1) in these groups. Assume that
there are aj 1-indices in the jth among these ℓ groups. The probability that none of the 1-indices is
sampled is at most

ℓ

∏
j=1

(
1−

ajb
2n

)
≤ exp

(
ℓ

∑
j=1

log
(

1−
ajb
2n

))
≤ exp

(
−

ℓ

∑
j=1

ajb
2n

)
≤ exp

(
− br

2n

)
. (2)

17

A trivial implementation of the sampling procedure above needs seed length O(b log(n/b)):
for each group, we sample a random binary string of length t ≜ dlog(n/b)e indicating the index
we want to choose. Therefore, we would need to sample bt bits in total. The observation here is
that the argument in (2) only involves ℓ ≤ r groups. Hence, the analysis still works if we sample
those required bt bits from an rt-wise exp(−br/(2n))-dependent distribution with alphabet 2.
Note that this incurs an additional error of exp(−br/(2n)).

By Theorem 2.6, the distribution is samplable with seed length

O(rt + log log(bt) + br/(2n)) = O(r log(n/b)),

and the algorithmsAsamp
n,b,r and Bsamp

n,b,r can be constructed straightforwardly from the algorithm B in
Theorem 2.6.16 □

Now we are ready to give the construction of our hash function from 1-detectors. Recall that
their definitions are given in Section 2.3.

Construction 1 (Hash function HL from 1-detectors L). Let n be the input length and b(n) =
o(n) be a parameter. Given a randomized 1-detector L = {Ln}n≥1 with range r̂, we construct a
hash functionHLb = {Hn}n≥1 as follows.

• Let Dsamp be the distribution in Lemma 3.1 with parameters n, b and r = r̂. For each L in the
support of L and each D = (j0, . . . , jb−1) in the support of Dsamp, we define a function hL,D
as

hL,D(x) ≜ L(x)‖xj0‖xj1‖ . . . ‖xjb−1 .

• Hn is then defined to be the distribution generated as follows: sample L ← Ln and D ←
Dsamp, and then output hL,D. ♦

We show that Construction 1 indeed gives almost universal hash functions.

Lemma 3.2 (HL is a linear almost universal hash). LetL = {Ln}n≥1 be an m̂-output ŝ-samplable
randomized 1-detector with error ε̂ and range r̂, such that m̂ = o(n) and r̂ = ω(log n). Let
b = b(n) = o(n) be a parameter and r = r(n) = r̂(n). The followings hold forHLb :

1. HLb has output length m = m̂ + b.

2. HLb is (ŝ + r̂ log(n/b))-samplable.

3. HLb is a linear ε-almost universal hash function, where ε ≜ ε̂ + exp(−Ω(br/n)). ♦

Proof. The first two items follow directly from the definition of HL from Construction 1. So we
will only establish the last item. We need to show that for any two inputs x1 6= x2 from {0, 1}n,
their hash values collide with probability at most ε.

Consider the following two cases depending on whether the Hamming distance between x1
and x2 is small or large:

16To compute Asamp
n,b,r (v, i) for some i belonging to the group ga, we only need to check if i is the selected element of

the group ga, and then output a if the answer is yes, and output ⊥ otherwise.

18

• If 0 < ∆(x1, x2) ≤ r, then by the definition of randomized 1-detector (Definition 2.2), L(x1)
equals to L(x2) with probability at most ε̂ for L ← Ln (note that L is a linear function over
F2). Since the hash values contain the output of the 1-detector as the first m̂ bits, the hash
values collide with probability at most ε̂.

• If ∆(x1, x2) > r, then y ≜ x1 ⊕ x2 has Hamming weight at least r. By Lemma 3.1, a random
D ← Dsamp

n,b,r fails to contain all 1-indices of y with probability at most exp(−Ω(br/n)), which
means that the last b bits of the hash values of x1 and x2 collide with probability at most
exp(−Ω(br/n)).

It follows immediately that the collision probability is at most ε = ε̂ + exp(−Ω(br/n)). □

3.2 Randomness-efficient low-complexity 1-detectors

Now we will present the construction of randomness-efficient low-complexity 1-detectors. Apply-
ing Lemma 3.2, this construction yields a hash function with inverse-super-polynomial collision
probability, short seed length, and moderately large shrinkage.

Intuition. Our construction is essentially a derandomized version of the randomized 1-detector
based on high-girth graphs in [FLY21]. The randomized 1-detector supports on depth-1 CC0[2]
circuits with o(n) gates and wire-complexity 2n. The topology of any depth-1 CC0[2] circuit can
be considered as the edge-vertex incident graph of an undirected graph Gm,n = (V, E), that is, we
identify the m gates with the vertices, and the n variables with the edges in the graph. One can
check that if Gm,n has girth g, the corresponding circuit would directly make a (deterministic) m-
output 1-detector with range g− 1: assume that it is not the case, the bad input x with Hamming
weight w < g specifies a subset of edges T ⊆ E which forms a Eulerian cycle of size w < g. By a
similar argument, [FLY21] boosts the range to n/2 by randomly permuting the input bits.

The construction of [FLY21] does not suffice for our application because we need Θ(n log n)
bits to sample a random permutation. Fortunately, it can be derandomized. By looking into its
correctness proof, we can see that if we replace the random permutation by an r-wise almost
independent permutation (see Theorem 2.8), it can still achieve 1-detection for range r and roughly
quasi-polynomial error probability.

Now we specify the construction of our 1-detector Lhg (hg stands for high-girth graphs).

Construction 2 (Construction of the 1-detector Lhg from high-girth graphs). Let k = k(n) = no(1)

be the shrinkage parameter, log n ≤ r(n) ≤ n/2 be the range. Let γ = γ(n) ≜ log2 n/ log k.
Lhg

k,r = {Ln}n≥1 is constructed as follows.

• Let n′ be the smallest power of two that is larger than n. Let Gm,n′ be the regular graph
with m = Θ(n′/k) vertices, n′ edges, and girth g = Θ(log n/ log k) from Theorem 2.12. Let
D = {Dn′} be the explicit family of r-wise 2−γ-dependent permutation in Theorem 2.8.

• Let Γ(i) be the set of indices of edges incident to the ith vertex in Gm,n′ . For each permutation
σ ∈ supp(Dn′), we define a function Lσ : {0, 1}n → {0, 1}m as

Lσ(x)i ≜
⊕

j∈[n] s.t. σ(j)∈Γ(i)

xj ∀i ∈ [m].

• Ln is then defined to be the distribution generated as follows: sample σ ← Dn′ and then
output Lσ. ♦

19

Lemma 3.3 (Lhg is a 1-detector). Let k = k(n) = no(1) be the shrinkage parameter, log n ≤ r(n) ≤
n/2 be the range. The followings hold for Lhg

k,r = {Ln}n≥1:

1. Lhg
k,r has output size Θ(n/k) and seed length O(r log n).

2. Every L ∈ Ln can be computed by depth-1 CC0[2] circuits of wire complexity at most 2n, or
B2 circuits of size 2n and depth log k + O(1).

3. Lhg
k,r is a randomized 1-detector with range r and error exp(−Ω(log2 n/ log k)). ♦

Proof. Recall that γ = log2 n/ log k from Construction 2. For the first item, the output size follows
directly from the definition of Lhg

k,r. The seed length of Lhg
k,r equals the seed length of the required

r-wise 2−γ-dependent permutation, which is O(r log n + γ) = O(r log n) from Theorem 2.8 (note
that r ≥ log n). The second item follows directly from the definition of Lσ in Construction 2
together with the fact that Gm,n′ has maximum degree O(k) (since it is regular).

In the rest of the proof we establish the third item. We need to show that for any non-zero
x ∈ Fn

2 , the probability that L(x) = 0 with L ← Ln is at most exp(−Ω(γ)). For any input x with
Hamming weight 0 < |x| < g (where g is the girth of Gm,n), we must have Lσ(x) 6= 0 for all
σ ∈ Dn′ , since otherwise we can extract from the edges {σ(i) | xi = 1 ∧ i ∈ [n]} a cycle of size
length less than g. Now we consider the case when g ≤ |x| ≤ r. Let i1, i2, . . . , i|x| be the indices
corresponding to the 1’s in x (i.e., xij = 1 for all j). Since our construction is linear, only these bits
can influence the output. Also, by the r-wise 2−γ-dependence of Dn′ , we have

Pr
σ←Dn′

[Lσ(x) = 0] = Pr
σ←Dn′

 ∧
i′∈[m]

[
|{ij | σ(ij) ∈ Γ(i′)}| is even

]
≤ Pr

S⊆[n′],|S|=|x|

 ∧
i′∈[m]

[
|S ∩ Γ(i′)| is even

]+ 2−γ

= E
S⊆[n′]
|S|=|x|−α

 Pr
S′⊆[n′]\S
|S′|=α

 ∧
i′∈[m]

[
|(S ∪ S′) ∩ Γ(i′)| is even

]
+ 2−γ.

(
α ≜

⌈ g
3

⌉)

The final observation is that for any fixed S, there should be at most one S′ satisfying the condition
in the summation. Indeed, if two sets S′1 and S′2 satisfy the condition at the same time, then the
symmetric difference of them contains a cycle in Gm,n′ of length 2α < g for sufficiently large n,
contracting the fact that Gm,n′ has girth g. In particular, it means for every fixed S, we have

Pr
S′⊆[n′]\S
|S′|=α

 ∧
i′∈[m]

[
|(S ∪ S′) ∩ Γ(i′)| is even

] ≤ 1(
n′ − |x|+ α

α

) .

Since α = dg/3e = Θ(log n/ log k), putting everything together, for sufficiently large n we have

Pr
σ←Dn

[Lσ(x) = 0] ≤ 1

(n′−|x|+α
α)

+ 2−γ = exp(−Ω(γ)). □

20

Plugging Lhg into Construction 1 with appropriately chosen parameters, we immediately ob-
tain a linear hash Hmd with poly-logarithmic seed length and shrinkage as follows. (Here md
stands for moderate, meaning that the hash has moderate (poly-logarithmic) shrinkage.)

Construction 3 (Construction of hash Hmd with poly-logarithmic shrinkage). Let β ∈ (0, 2] be

a constant and ω(log n) ≤ δ(n) ≤ O(log2 n
log log n) be the error parameter. Hmd

β,δ = {Hn}n≥1 is con-
structed as follows.

• Setting k = logβ n and r = δ logβ n, Lhg = Lhg
k,r (from Construction 2) is an O(δ logβ+1 n)-

samplable Θ(n/ logβ n)-output randomized 1-detector with range r and error exp(−Ω(δ)).

• Setting b = n/ logβ n,Hmd is now defined to beHLhg

b (from Construction 1). ♦

The following theorem follows directly from the Construction 3, Lemma 3.2, and Lemma 3.3.

Theorem 3.4 (Properties of the intermediate hash construction Hmd). Let β ∈ (0, 2] be the shrink-

age parameter and ω(log n) ≤ δ(n) ≤ O(log2 n
log log n) be the error parameter. The followings hold for

Hmd
β,δ = {Hn}n≥1:

1. Hmd
β,δ is a linear O(δ logβ+1 n)-samplable Θ(n/ logβ n)-output exp(−Ω(δ))-almost universal

hash function.

2. Every H ∈ Hn can be computed either by a depth-1 CC0[2] circuit of wire complexity 2n, or
by a B2 circuit of size 2n and depth β log log n + O(1). ♦

3.3 Shrinkage reduction of hash function

Now we reduce the output length of the hash function Hmd in Construction 3 from n/polylog(n)
to polylog(n) with little overhead in its circuit complexity and seed length, which is crucial for
our applications. The idea is simple: we composite it with a hash with large shrinkage, short
seed length, and relatively larger circuit complexity. In particular, we can use the following hash
constructionHexpw of Chen, Jin, and Williams [CJW19]. (Here expw stands for expander walk.)

Construction 4 (Hash function Hexpw from expander walk [CJW19]). Let ℓ = ℓ(n) be the output
length. Hexpw

ℓ = {Hn}≥n is constructed as follows.

• Let {Sn}n≥1 be a family of 0.1-biased set from Theorem 2.4 and {Gn}n≥1 be the family of
strongly explicit expanders from Theorem 2.10. Assume that Sn = {w0, w1, . . . , wt−1} for
t = Õ(n2).

• For each walk v = (v0, v1, . . . , vℓ−1) ∈ [t]ℓ of length ℓ on Gt, we define a hash function
hv : {0, 1}n → {0, 1}ℓ as

hv(x) ≜ 〈wv0 , x〉 ‖ 〈wv1 , x〉 ‖ . . . ‖
〈
wvℓ−1 , x

〉
,

where 〈a, b〉 denotes the inner product over F2.

• Hn is then defined to be the distribution generated as follows: samples a random walk v of
length ℓ on Gt uniformly at random, then outputs hv. ♦

21

Lemma 3.5 (Properties of the hash construction Hexpw from [CJW19]). Let ℓ = ℓ(n) be the out-
put length. The followings hold forHexpw

ℓ = {Hn}n≥1:

1. Every H ∈ supp(Hn) can implemented by a depth-1 CC0[2] circuit of wire complexity nℓ or
a B2 circuit of size nℓ and depth log n + O(1).

2. Hexpw
ℓ is a linear O(log n + ℓ)-samplable ℓ-output exp(−Ω(ℓ))-almost universal hash func-

tion. ♦

Proof. The first item follows directly from the definition of hv from Construction 4. In the follow-
ing we establish the second item.

The linearity, seed length, and output length are straightforward to verify, thus we only an-
alyze the collision probability. Since the hash function is linear, we only need to show that for
any non-zero x ∈ Fn

2 , Prh←Hn [h(x) = 0] ≤ exp(−Ω(ℓ)). By Theorem 2.4, we know that for any
non-zero x, at least 0.4 fraction of vectors w ∈ Sn satisfies 〈w, x〉 = 1. Then by Theorem 2.11, a ran-
dom walk of length ℓ will find one of such w with probability 1− exp(−Ω(ℓ)). This immediately
implies that h(x) 6= 0 with probability at most exp(−Ω(ℓ)) for h← Hn. □

Next we formally define the composition of two hash function families.

Definition 3.6 (Composition of hash families). Let F = {Fn}n≥1 and G = {Gn}n≥1 be two fam-
ilies of hash functions. The composition of F and G is defined as F ◦ G = {(F ◦ G)n}n≥1, where
(F ◦ G)n is the following distribution: let m = m(n) be the output length of G, we sample f ← Fm
and g← Gn, and then output f ◦ g. ♦

The following proposition is crucial for the analysis of our final hash construction.

Proposition 3.7. The composition H′ ◦ H of an ε1-almost universal hash function H′ and an ε2-
almost universal hash functionH is an (ε2(n) + ε1(m(n)))-almost universal hash function, where
m(n) is the output length ofH. Moreover,H′ ◦ H is linear if both ofH′ andH are linear. ♦

The following is a simple corollary of Proposition 3.7.

Corollary 3.8. For any t ≥ 2, non-increasing ε = ε(n), and output length parameter ℓ(n) ≤ n, the
tth order composition of an ℓ-output ε-almost universal hashH with itself, denoted byH◦t, is also
a hash function with collision probability t · ε(ℓ̂), where ℓ̂ = ℓ ◦ ℓ ◦ · · · ◦ ℓ(n) (t− 1 times) is the
input of the outer-most hash. Moreover,H◦t is linear ifH is linear. ♦

We are now ready to specify our final hash constructionHfinal with polylog(n) output length.

Construction 5 (Construction of Hfinal with polylog(n) output length). Let β ∈ (0, 2] be a pa-

rameter and ω(log n) ≤ ℓ(n) ≤ O(log2 n
log log n) be a non-decreasing function. We define

Hfinal
β,ℓ ≜ Hexpw

ℓ ◦
(
Hmd

β,ℓ

)◦d 2
β e

. ♦

We analyze the properties of Hfinal constructed above by combining the composition proposi-
tion (Proposition 3.7 and Corollary 3.8) together with properties of Hexpw (Lemma 3.5) and Hmd

(Theorem 3.4).

22

Theorem 3.9 (Properties of the final hash construction Hfinal). Let β ∈ (0, 2] be a constant and

ω(log n) ≤ ℓ(n) ≤ O(log2 n
log log n) be a non-decreasing function. The followings hold for Hfinal

β,ℓ =

{Hn}n≥1:

1. Hfinal
β,ℓ is a linear O(ℓ logβ+1 n)-samplable Θ(ℓ̂)-output exp(−Ω(ℓ̂))-almost universal hash

function, where ℓ̂ = ℓ(Θ(n/ logβ·d 2
β e n)).

2. Every H ∈ Hn can be computed by depth-(1 + d 2
βe) CC

0[2] circuits of wire complexity 2n +

O
(

nℓ̂
log2 n

)
, or by B2 circuits of size 2n + O

(
nℓ̂

log2 n

)
and depth log n + O(1). ♦

Proof. LetHmd = Hmd
β,ℓ andHexpw = Hexpw

ℓ be the hash functions described in Construction 5. We
also useHmd

n andHexpw
n to denote the distributions over n-input hash functions inHmd andHexpw,

respectively.

Hfinal is almost universal with polylog(n) output length. Let m̂ be the output length of (Hmd)◦d
2
β e,

and ℓ̂ ≜ ℓ(m̂) = ℓ(Θ(n/ logβ·d 2
β e)). By a simple induction and Theorem 3.4 we know that for any

1 ≤ d ≤ d 2
βe, (Hmd)◦d is a linear O(ℓ logβ+1 n)-samplable Θ(n/ logβd n)-output exp(−Ω(ℓ̂))-

almost universal hash function. In particular, when d = d 2
βe, we know that (Hmd)◦d

2
β e is a linear

O(ℓ logβ+1 n)-samplable Θ(n/ logβ·d 2
β e n)-output exp(−Ω(ℓ̂))-almost universal hash function.

Now apply Proposition 3.7 and Lemma 3.5, we know thatHfinal = Hexpw ◦ (Hmd)◦d
2
β e is a linear

O(ℓ logβ+1 n)-samplable Θ(ℓ̂)-output exp(−Ω(ℓ̂))-almost universal hash function.

Complexity with CC0[2] circuits. By Theorem 3.4, every H ∈ supp(Hmd
n) can be computed by a

depth-1 CC0[2] circuit with wire complexity 2n. Also, by Lemma 3.5, every H ∈ supp(Hexpw
n) can be

computed by a depth-1 CC0[2] circuit with wire complexity nℓ. Since the output length of (Hmd)◦d

is Θ(n/ logβd), the total wire complexity of a hash function from the support ofHexpw ◦ (Hmd)◦d
2
β e

can be bounded by

2n + O

d 2
β e−1

∑
d=1

n
logβd n

+
n

logβ·d 2
β e n
· ℓ̂ = 2n + O

(
nℓ̂

log2 n

)
.

The depth complexity can be verified straightforwardly.

Complexity with B2 circuits. We only analyze the depth since the analysis of the size complexity
is similar to the analysis above. By Theorem 3.4 and Lemma 3.5, every H ∈ supp(Hmd

n) can
be computed by a B2 circuit with depth β log log n + O(1), and every H ∈ supp(Hexpw

n) can be
computed by a B2 circuit with depth log n + O(1). Therefore the total depth of a hash function

from the support ofHexpw ◦ (Hmd)◦d
2
β e is at most

d 2
β e−1

∑
d=0

[
β log log

(
Θ

(
n

logβd n

))
+ O(1)

]
+ log

(
Θ

(
n

logβ·d 2
β e n

))
= log n + O(1).

□

23

3.4 Explicitness of our construction

Apart from the seed length, shrinkage and collision probability, the explicitness of the a hash func-
tion is also critical for many applications. That is, given a seed v (which is usually much shorter
than the input, say |v| = polylog(n)), whether we can obtain information about the hash function
corresponding to the seed v efficiently. In this section we show that our hash constructions are
indeed explicit in a strong sense, which is crucial for our application to hardness magnification.

Definition 3.10 (Locally explicit hash function). A family of polylog(n)-samplable distributions
over m-output linear functions (e.g., linear hash functions or 1-detectors) H = {Hn}n≥1 is said
to be locally explicit if each input bit only influences polylog(n) output bits, and there exists an
algorithmA(n, v, i) running in polylog(n) time that returns the list of output bits influenced by the
ith input bit in the hash function corresponding to the seed v. ♦

Note that any linear function can be realized as x 7→ Mx for some transformation matrix M
over F2. Clearly, a locally explicit linear hash has a sparse transformation matrix, and we can
efficiently list all 1-entries in any column of it. By performing a sparse matrix multiplication, we
can immediately obtain the following proposition.

Proposition 3.11. The composition of two locally explicit hash families is locally explicit. ♦

Now we verify that our constructions of the randomness-efficient low-complexity hash func-
tions are indeed locally explicit.

Theorem 3.12. Let k = k(n) = no(1) be the shrinkage parameter and log n ≤ r(n) ≤ n/2 be the
range. The 1-detector Lhg

k,r in Construction 2 is locally explicit. ♦

Proof. Recall that the 1-detector in Construction 2 consists of two components: a depth-1 CC0[2]
circuit whose topology is determined by the high-girth graph from Theorem 2.12, and a random
permutation of the input bits according to the k-wise almost independent permutation from The-
orem 2.8. Given the seed v of the 1-detector (i.e., the seed for the permutation) and an index i.
According to Theorem 2.8, we can obtain σv(i) in poly(log n, |v|) time, where σv is the permutation
corresponding to the seed v. To find all the output bits influenced by the ith input bit, we only
need to find the two endpoints of the σv(i)-th edge in the high-girth graph, which can be done in
polylog(n) time by Theorem 2.12. □

Theorem 3.13. Let β > 0 be the shrinkage parameter and δ = δ(n) ≤ O(log2 n
log log n) be the error

parameter. The hash familyHmd
β,δ in Construction 3 is locally explicit. ♦

Proof. Recall that the hash functionH in Construction 3 is obtained by the 1-detector Lhg in Con-
struction 2 and the reduction in Construction 1. The output of the hashHmd

β,δ consists of two parts:
the output of the 1-detector Lhg, and several randomly sampled bits from the input. Since Lhg

is locally explicit by Theorem 3.12, it is sufficient to show that the sampling procedure is locally
explicit. More precisely, given a seed v of the sampling procedure and an index i, we need to
compute efficiently all the indices j such that wj = i for the vector (w0, . . . , wb−1) corresponding
to the seed v. This can be done using the algorithm Asamp from Lemma 3.1. □

Theorem 3.14. Let ℓ = ℓ(n) = polylog(n). The hash family Hexpw
ℓ in Construction 4 is locally

explicit. ♦

24

Proof. Let Sn = {w0, . . . , wt−1} with t = Õ(n2) is a 0.1-biased set from Theorem 2.4 and Gt is the
expander in Theorem 2.10. The hash function in Construction 4 is defined as

hv(x) ≜ 〈wv0 , x〉 ‖ 〈wv1 , x〉 ‖ . . . ‖
〈
wvℓ−1 , x

〉
,

where v = (v0, . . . , vℓ−1) ∈ [t]ℓ is a random walk on Gt. Given the seed v (i.e., the seed of a random
walk), we can produce v0, v1, . . . , vℓ−1 in polylog(n, ℓ) = polylog(n) time by Theorem 2.10. Then
using the algorithm A in Theorem 2.4 we can check for each j whether the ith bit of wvj is 1, which
indicates whether the jth output bit is influenced by the ith input bit. Enumerating all j ∈ [ℓ] gives
a required polylog(n) time algorithm listing all the outputs influenced by a particular input bit. □

Using Theorem 3.13, Theorem 3.14, and Proposition 3.11, we immediately obtain the explicit-
ness of Construction 5.

Corollary 3.15. Let β ∈ (0, 2] be a parameter and ℓ = ℓ(n) ≤ O(log2 n
log log n) be a non-decreasing

function. The hash familyHfinal
β,ℓ in Construction 5 is locally explicit. ♦

3.5 Uniformity of our construction

We have shown in Theorem 3.9 that our hash function can be computed by extremely sparse
CC0[2] circuit or B2 circuits with small size and depth simultaneously. It remains to clarify the
uniformity of our hash construction, i.e., the complexity we need to construct the circuit given the
input length and the seed.

The definitions of uniformity vary with respect to the complexity measures, which can be
chosen according to the applications. Typical choices include space complexity (e.g., LOGSPACE-
uniform, see Section 6.2.1 of [AB09]), time complexity (e.g., polynomial-time uniform), parallel
time (see, e.g., Section 3 of [LW13]), and descriptive complexity (see, e.g., [HAB02]). If we choose
the time complexity, for instance, we can define P-uniformity as the existence of the polynomial-
time algorithm that prints the circuit given 1n and the seed v. Indeed, it is easy to check that the
2n + o(n) size B2 and CC0[2] circuits for Construction 5 in Theorem 3.9 is P-uniform.

Since our hash function can be evaluated in low-depth circuit models such as NC1 and CC0[2],
the parallel time to generate the circuit also seems to be crucial for its further applications. There-
fore in this section we will discuss the POLYLOGTIME-uniformity of our hash functions, defined
as follows.

Definition 3.16. Let C be a circuit class. A family of polylog(n)-samplable distributions over m-
output functions (e.g., hash functions or 1-detectors) H = {Hn}n≥1 is said to be computable with
POLYLOGTIME-uniform S(n)-size (measured in size, depth, wire complexity, etc) C-circuits if each
of the functions hv ∈ supp(Hn) corresponding to the seed v is computable by an S(n)-size C-circuit,
supplemented with the following polylog(S(n))-time algorithms:

SIZE(n, v) returns the size of the C-circuit Cv computing hv;

TYPE(n, v, i) returns the type of the ith node in the circuit Cv, which indicates (1) whether it is a
gate, an input variable or a constant; (2) whether it is an output node; and (3) the type (if it
is a gate or a constant) or index (if it is an input variable and/or output node) of it;

EDGE(n, v, i, j) returns the jth input of the ith node if the ith node is a gate in Cv.

OUT(n, v, i) returns the number of the ith output node.

25

It is guaranteed that the nodes are numbered in topological orders, and in particular, the input
variables are numbered from 1 to n. ♦

We claim that all our results of circuit complexity for the constructions in the previous parts
of this section are in fact POLYLOGTIME-uniform. It is straightforward to check the claim, so we
only sketch the proof and left the details to the readers.

Theorem 3.17 (Uniformity of Theorem 3.9). Let β ∈ (0, 2] be a parameter and ℓ = ℓ(n) ≤ O(log2 n
log log n)

be a non-decreasing function. The hash functionHfinal
β,ℓ in Construction 5 can be computed either by

POLYLOGTIME-uniform depth-(1 + d 2
βe) CC

0[2] circuits of wire complexity 2n + O(n/ log log n),
or by POLYLOGTIME-uniform B2 circuits of size 2n + O(n/ log log n) and depth log n + O(β−1)
simultaneously. ♦

Proof (Sketch). Since the POLYLOGTIME-uniformity is close under composition, we only need
to verify that Construction 3 and Construction 4 are POLYLOGTIME-uniform. The uniformity of
Construction 3 directly follows from the algorithm B in Theorem 2.12, the algorithm A in Theo-
rem 2.8, and the algorithm A in Lemma 3.1. The uniformity of Construction 4 follows from the
algorithm A in Theorem 2.4 and the algorithm A in Theorem 2.10. Note that the circuit for Con-
struction 4 should be slightly modified to make EDGE(n, ·, ·) polylog(n)-time computable. Take
the CC0[2] case for example: each of the output gates has fan-in exactly n (instead of |wvi | for the ith

output bit, see Construction 4 for the notation); the jth input wire of the ith output gate is connected
to the jth input or a constant 0 according to the jth bit of wvi . □

4 Sharp bootstrapping results from hash functions

We now show the extremely sharp bootstrapping results for small linear size circuits based on the
almost universal hash function constructed above, using a refined kernelization method of Chen,
Jin, and Williams [CJW19; CJW20].

We will first prove the general hardness magnification theorem for all sparse NP languages
in Section 4.1. In Section 4.2, we will present stronger hardness magnification results for MCSP,
which will utilize the explicitness of our hash construction. Then we will show in Section 4.3 that
similar techniques can be applied to obtain a bootstrapping result for explicit obstructions (see, e.g.,
[CJW20]), which formalizes the explicit proofs of circuit lower bounds. In Section 4.4, we con-
struct explicit obstructions and prove circuit lower bounds that tightly match these bootstrapping
results.

4.1 Hardness magnification for all sparse NP languages

We first prove the most general version of the hardness magnification result. More discussions are
presented after the proof.

Theorem 4.1. Let s = s(n) and T = T(n) be two functions such that

• ω(log n) ≤ s(n) ≤ O(log2 n/ log log n), s(Θ(n/ log2 n)) = Θ(s(n)), s is non-decreasing;

• nγ ≤ T(n) ≤ 2O(n), where γ > 1 is an absolute large constant.

26

Then, if there is a 2s(n)-sparse language L in NTIME[T(n)], such that L cannot be computed by
probabilistic circuits of size 2n + O(ns/ log2 n) within error exp(−Ω(s)), it then follows that
NTIME

[
T
(

2O(n1/5)
)]

⊈ SIZE
[
2cn1/5

]
for all c > 1. ♦

Proof. Towards a contradiction we assume that NTIME
[

T
(

2O(n1/5)
)]
⊆ SIZE

[
2cn1/5

]
for some

c > 1. Let L be a 2s(n)-sparse language in NTIME [T(n)]. We now show that L can be computed by
probabilistic circuits of size 2n + O(ns/ log2 n) within error exp(−Ω(s)).

Let H = Hfinal
β,ℓ = {Hn}n≥1 be the linear O(ℓ log1+β n)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-

almost universal hash function in Theorem 3.9 with ℓ(n) = O(s) and β = 2, such that the collision
probability is at most 2−2s17. The circuit complexity of each h ∈ supp(Hn) is bounded by 2n +
O(ns/ log2 n). Since H is efficiently samplable, there is a polynomial time algorithm M(1n, v, ·)
computing the hash function corresponding to the seed v, where |v| = O(ℓ log3 n) = O(s log3 n).18

We now define an intermediate language L′ = {(n, v, h) | ∃x ∈ {0, 1}n ∩ L, M(1n, v, x) = h}.
For any sufficiently large n, we pad the language to make the corresponding length of the tuple in
L′ has length exactly m = m(n) = b(log(n)/(2c))5c to obtain L′′. That is, for sufficiently large n
and v, h of appropriate length, we define

zn,v,h ≜ (n, v, h)‖1‖0m(n)−|(n,v,h)|−1

and we have
zn,v,h ∈ L′′ ⇔ (n, v, h) ∈ L′.

Using the straightforward non-deterministic algorithm for L′ (guessing x ∈ {0, 1}n and deter-
mine whether M(1n, v, x) = h), we can show that L′′ ∈ NTIME

[
T
(

2O(m1/5)
)]
⊆ SIZE

[
2cm1/5

]
, the

second containment follows from our assumption.
The key in our argument is an algorithm for the sparse language L with an oracle access to this

intermediate problem L′′, and then replace the oracle with the small size circuit by assumption.
This is formalized in the following lemma.

Lemma 4.2. There is a uniform family D = {Dn}n≥1 of probabilistic oracle circuits of size 2n +
O(ns/ log2 n), such that for every input length n, the followings hold:

1. Every D ∈ supp(Dn) contains at most one L′′ oracle gate of fan-in blog5(n)/(32c5)c.

2. D decides the language L with error at most 2−s. ♦

Proof. Consider the following probabilistic circuit family D = {Dn}n≥1. Given input x of length
n, Dn is constructed as follows: we randomly choose a seed v to sample a hash function hv from
Hn; and then query whether zn,v,hv(x) is in L′′ via the oracle gate, where hv is the hash function
corresponding to the seed v. The circuit complexity of Dn equals the circuit complexity of the
hash function hv, which is at most 2n + O(ns/ log2 n) by Theorem 3.9, and every D ∈ supp(Dn)
only needs to call the L′′ oracle once with input length m = blog5(n)/(32c5)c. Clearly, by the
definition of L′′, for any x ∈ L, Dn accepts x with probability 1. For any x /∈ L, we have

Pr
v
[Dn accepts x]

17In particular, assume that α is a constant such that H is exp(−αℓ)-almost universal hash function, then we take
ℓ(n) = d2s/αe.

18That is, for every x ∈ {0, 1}n and every seed v, we have M(1n, v, x) = hv(x), where hv is the hash function
corresponding to the seed v.

27

= Pr
h←Hn

[
∃x′ ∈ L ∩ {0, 1}n s.t. h(x) = h(x′)

]
≤ ∑

x′∈L∩{0,1}n

Pr
h←Hn

[
h(x) = h(x′)

]
=2s · 2−2s

≤2−s. □

Now applying Lemma 4.2 and replacing the oracle query by circuits using the fact that L′′ ∈
SIZE

[
2cn1/5

]
, we finish the proof of Theorem 4.1. □

We now discuss some typical choices of parameters in the above theorem. Let the sparsity

parameter s(n) = log2 n
log log n .19

• A standard form of hardness magnification result similar to the one in [CJW19] but quanti-
tatively stronger can be obtained by choosing T(n) = poly(n). Then the theorem says that, if
there exists an nlog n/ log log n-sparse language in NP that does not have probabilistic circuits of
size 2n + O(n/ log log n), then NTIME

[
2O(n1/5)

]
⊈ SIZE

[
2cn1/5

]
for all c > 0. By a padding

argument, this implies that NP ⊈ SIZE[nc] for all c > 0. This establishes Theorem 1.2.

• Being less ambitious, we can let T(n) = 2no(1)
and show that, even the existence of an

nlog n/ log log n-sparse language in NTIME
[
2no(1)

]
that does not have probabilistic circuits of

size 2n + O(n/ log log n), would be enough to imply that NTIME

[
22

o(n1/5)
]
⊈ SIZE

[
2cn1/5

]
,

and hence NTIME
[
2no(1)

]
⊈ SIZE[nc] for all c > 0 and NEXP ⊈ P/poly, which would already

be a major breakthrough in circuit complexity. This establishes Theorem 1.3.

4.2 Hardness magnification for MCSP

We now utilized the strongly explicit hash function constructed above to obtain a stronger hard-
ness magnification theorem for MCSP. Intuitively, this is possible since the yes-instances of MCSP
can be efficiently encoded in a much shorter string. Indeed, for MCSP[s(n)], one only need
O(s(n) log s(n)) bits to encode a small circuit, instead of 2n bits for a whole truth table.

We assume a paddable encoding of circuits, i.e., any string x and x‖0 encode the same circuit.
This can be done with only a constant overhead. For a circuit C, we use the notation 〈C〉 to denote
its encoding.

Theorem 4.3. Let n ≤ s(n) ≤ O(n2/ log2 n) be a non-decreasing size parameter that satisfies
s(log(Θ(n/ log2 n))) = Θ(s(log n)). Let N = 2n be the truth table length. Let g = g(n) =
s(n) log s(n). If MCSP[s(n)] cannot be computed by probabilistic circuits of size 2N +O(Ng/ log2 N)
within error exp(−Ω(g)), then there is some c ∈ (0, 1) such that ⊕P ⊈ SIZE

[
2Nc]

. ♦

Intuition. The proof is similar to the one for Theorem 4.1, but we need to make the oracle from
Lemma 3.1 computable in ⊕P instead of in super-polynomial non-deterministic time. Concretely,
we need to slightly modify the intermediate problem so that we can make use of the strongly
explicitness of our hash constructionHfinal.

19For a typical 2s(n)-sparse language in NP, consider MCSP[n1.9] on input length N = 2n.

28

Proof. Towards a contradiction, suppose that ⊕P ⊆ SIZE
[
2Nc]

for all c ∈ (0, 1), we now prove
that MCSP[s(n)] can be computed by probabilistic circuits of size 2N + O(Ng/ log2 N) within
error 2−Ω(g(n)).

Let N = 2n be the truth table length of n-input functions. Take H = Hfinal
β,ℓ = {HN}N≥1 to

be the linear O(ℓ log1+β N)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-almost universal hash function
in Theorem 3.9 with ℓ(N) = O(g(n)) = O(g(log N)) and β = 2, such that the collision probability
is at most 2−2g.20

We denote the hash function of input length N corresponding to the seed v as HN,v(·). By the
strongly explicitness (Corollary 3.15), there exists a algorithm M(N, v, i, j) running in polylog(N) =
poly(n) time that decides whether the ith output bit depends on the jth input bit in HN,v. Note that
for a circuit C of input length n,21

HN,v(tt(C))i =
N−1

∑
j=0

M(N, v, i, j) · C(j) (mod 2),

and M(N, v, i, j) ·C(j) can be computed in poly(n, |〈C〉|) time, so the language Lh = {(N, i, v, 〈C〉) |
HN,v(tt(C))i = 1} is decidable in⊕P. Hence if we define an intermediate language L′ = {(N, v, h) |
∃C ∈ SIZE[s(n)], HN,v(tt(C)) = h} similar to the proof of Theorem 4.1, it is now decidable in NP
given oracle access to ⊕P.

Let m = O(ℓ log3 n) be the input length of L′. Note that L′ ∈ NP⊕P ⊆ BPP⊕P ⊆ P⊕P/poly ⊆
⊕P/poly, where NP⊕P ⊆ BPP⊕P follows from [VV86] (see also [For09]) and P⊕P/poly ⊆ ⊕P/poly

follows from ⊕P⊕P ⊆ ⊕P [PZ83]22 Since ⊕P ⊆
[
2Nc]

for all c ∈ (0, 1) by the assumption, we
know that the evaluation of ⊕P/poly circuits can be computable in SIZE

[
2Nc]

for all c ∈ (0, 1),

which implies that L′ ∈ SIZE
[√

N
]
. The rest of the proof follows similar to Theorem 4.1 and the

fact that the m = O(ℓ log3 N) = o(log5 N). □

4.3 Explicit obstruction

We now formally state and prove our results regarding explicit obstructions. We begin by formally
defining the notion of explicit obstructions.

Definition 4.4 (Explicit obstruction). An explicit obstruction of size S(n) computable in C against D
is a family of lists of input-output pairs O = {On}n≥1 satisfying the following.

• |On| ≤ S(n) for all sufficiently large n.

• There is a machine in C that prints the set On given input 1n.

• For every n, On = {(xi, yi)} satisfies that xi 6= xj for all i 6= j.

• For all sufficiently large n, and for every n-inputD circuit f , there is a pair (xi, yi) ∈ On such
that f (xi) 6= yi. ♦

20Note that since s(n) ≤ O(n2/ log2 n), we have ℓ(N) = O(log2 N/ log log N) and ℓ is non-decreasing. Hence, ℓ
satisfies the requirements in Theorem 3.9.

21Here we use the notation tt(C) to represent the truth table of C. Particularly, if C is a single-output circuit of n
inputs, then tt(C) is a string of length 2n such that tt(C)i = C(i).

22Since ⊕P⊕P ⊆ ⊕P implies that P⊕P ⊆ ⊕P, it follows that the evaluation of polynomial-size circuits with ⊕P
oracles can be computable in ⊕P, which further implies that P⊕P/poly ⊆ ⊕P/poly.

29

Theorem 4.5. There is an absolute constant γ > 0 such that the following holds. Let nγ ≤
T(n) ≤ 2n and log n ≤ s(n) ≤ min{O(log2 n/ log log n), log T(n)} being non-decreasing and
satisfying s(Θ(n/ log2 n)) = Θ(s(n)). If there is an explicit obstruction of size 2s(n) computable in
DTIME[T(n)] against 2n+O(n/ log log n)-size circuits, then DTIME

[
T
(

2O(n1/5)
)]

⊈ SIZE
[
2cn1/5

]
for all c > 1. ♦

Proof. Let t(n) = 2s(n). Towards a contradiction we assume that there is some constant c > 1, such
that DTIME

[
T
(

2O(n1/5)
)]
⊆ SIZE

[
2cn1/5

]
. Suppose that O = {On}n≥1 is an explicit obstruction

against 2n+O(n/ log log n) size circuits. For any sufficiently large input length n, we suppose that
On = {(xn,1, yn,1), (xn,2, yn,2), . . . , (xn,t(n), yn,t(n))}. Our goal is to design a circuit with extremely
small size, but agree with On on all its input-output pairs. Following the similar proof outline as
for Theorem 4.1, we begin by using an almost universal hash function to kernalize the inputs from
On.

Let H = Hfinal
ℓ,β = {Hn}n≥1 be the linear O(ℓ log1+β n)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-

almost universal hash function in Theorem 3.9 with ℓ(n) = O(s) and β = 2 such that the collision
probability is at most 2−3s. Let n be a sufficiently large input length. We call a hash function h good
if it is perfect on the inputs in On, i.e., any two distinct inputs in On have different hash values
assigned by h. For a randomly chosen function h ← Hn, the probability of it not being good is
bounded by

Pr
h←Hn

[
∃1 ≤ i < j ≤ t(n) s.t. h(xn,i) = h(xn,j)

]
≤ ∑

1≤i<j≤t(n)
Pr

h←Hn

[
h(xn,i) = h(xn,j)

]
≤
(

2s

2

)
2−3s ≤ 2−s.

So a good hash function always exists in the support of Hn for all sufficiently large n. For any
large input length n, we arbitrarily fix such a good hash and denote its seed by vgood

n .
Let hv be the hash function corresponding to the seed v. We define an intermediate language

L′ = {(n, v, h) | ∃1 ≤ i ≤ t(n), yn,i = 1 ∧ hv(xn,i) = h}. We again pad its input to have length ex-
actly m = b(log(n)/(2c))5c, and form a padded language L′′. Then L′′ ∈ DTIME

[
T
(

2O(m1/5)
)]
⊆

SIZE
[
2cm1/5

]
. We also note that 2cm1/5 ≤

√
n.

Then we consider the function fn(x) ≜ L′(n, vgood
n , Hn(v

good
n , x)), where Hn(v, ·) is the hash

function inHn corresponding to the seed v. By an argument similar to that of Theorem 4.1, we can
show that fn can be decided by a circuit of size 2n +O(n/ log log n) +

√
n = 2n +O(n/ log log n),

but totally agrees withOn, contradicting to the assumption thatO is an explicit obstruction against
circuits of such size. □

4.4 Unconditional lower bounds for sparse languages

Now we complement the results mentioned in previous subsections by constructing an explicit
obstruction against B2 circuits of size 2n−O(1) and a corresponding sparse language in P with a
2n−O(1) probabilistic circuit lower bound. They form sharp bootstrapping thresholds together
with Theorem 4.1 and Theorem 4.5.

30

The main idea behind our explicit obstruction is the investigation of a combinatorial structure
in Boolean circuits called critical path introduced in [FLY21], which was used to prove 2n−O(1)
circuit lower bounds for PRFs and hash functions.

For the simplicity of presentation, we assume without loss of generality that our circuits are
normalized, in the sense that there is no non-output gates with out-degree 0. This is without loss of
generality since redundant gates with out-degree 0 can be removed.

Definition 4.6 (Critical path). Let C be a circuit, and u be an input variable of it. The critical path
of u in C is a sequence of vertices v0, v1, . . . , vk satisfying the following conditions:

1. v0 = u, and vi is a descendent of vi−1 for all i ≥ 1, and

2. out-degree(vi) = 1 for all 0 ≤ i < k, and out-degree(vk) 6= 1. ♦

Fix a circuit with n input bits, we can obtain a total of n critical paths. The crucial observation in
[FLY21] is that, if all critical paths do not intersect with one another, then the circuit must contain
at least 2n−O(1) gates. This is formalized below.

Lemma 4.7 ([FLY21], Lemma 6.4). For any normalized n-input single-output circuit C with no in-
tersecting critical paths and no input variables with out-degree 0, the number of gates in the circuit
is at least 2n− 2. ♦

Let O = {On ⊆ {0, 1}n × {0, 1}}n≥1, where

On = {(x, 0) | |x| ∈ {0, 2, n− 2, n− 1}} ∪ {(x, 1) | |x| ∈ {1, n}}.

In the remaining part of the section, we will first prove that O is an explicit obstruction against
2n− 2 size circuits, and then present a general connection between explicit obstruction and prob-
abilistic circuit lower bounds.

Explicit obstruction. According to Lemma 4.7, we only need to prove that any circuit with inter-
secting critical paths or input variables with out-degree 0 does not fully agree with O. For circuits
with input variables of out-degree 0, this can be verified straightforwardly. Now we prove the
case for circuits with intersecting critical paths.

Lemma 4.8. For any circuit Cn : {0, 1}n → {0, 1} with intersecting critical paths, there must exist
a pair (x, b) ∈ On such that Cn(x) 6= b. ♦

Proof. Suppose that the critical paths of u and v in Cn intersect. Let G be the first gate on the
intersection. Let fG be the function computed by G. Assume that we take a restriction ρ to all
variables except u and v, and consider the restricted function Cn↾ρ. The key observation is that,
for any ρ, there are functions ϕρ, ψρ, χρ : {0, 1} → {0, 1} such that

Cn↾ρ(u, v) = χρ(fG(ϕρ(u), ψρ(v))).

Based on the characterization of different functions in B2, we call a function f quadratic if it
has the form f (u, v) = ((u ⊕ c1) ∧ (v ⊕ c2)) ⊕ c3. We call a function linear if it has the form
f (u, v) = u⊕ v⊕ c. The pivotal point in [FLY21] is that for a fixed pair of u and v, Cn↾ρ cannot be
quadratic under some restriction ρ1, then become linear under another restriction ρ2. However,
by checking the truth table it can be verified that our construction of On forces Cn↾ρ to be the
linear function (u, v) 7→ u⊕ v for all-zero restriction, and the quadratic function (u, v) 7→ u∧ v for
all-one restriction, which leads to contradiction. □

Corollary 4.9. O is an explicit obstruction against 2n− 2 size B2 circuits. ♦

31

Probabilistic circuit lower bound. We now present a general reduction from explicit obstruction
to probabilistic circuit lower bounds for sparse languages in P.

Lemma 4.10. For any circuit class C, if there exists an explicit obstruction O of size S(n) against
C, then every language agreeing withO cannot be computed by probabilistic C-circuits with error
probability less than 1

S(n) , even infinitely often. ♦

Proof. Towards contradiction, let L be a language agreeing withO, and assume that there exists a
probabilistic C-circuit C computing L with error probability smaller than 1

S(n) , for infinitely many
n. Then for those n, we have

E
C
[|{(x, b) ∈ On | C(x) 6= b|}] < 1.

By the averaging argument, there exists a deterministic circuit that agrees with all pairs in On.
This guarantees the existence of a family of circuit in C that agrees with O on those n, which leads
to a contradiction. □

In particular, let L = {Ln}n≥1 be a language such that Ln ≜ {x ∈ {0, 1}n | (x, 1) ∈ On}, then it
is a sparse language in P that agrees with O. Together with Corollary 4.9, we obtain the following
lower bound.

Corollary 4.11. There exists a O(n)-sparse language in P that cannot be computed (even infinitely
often) by probabilistic B2 circuits of size 2n− 2 with error probability smaller than 1

2n2 . ♦

Remark. We note that the error probability in the lower bound cannot be trivially boosted to 1/3,
since the complexity overhead of error reduction is not affordable when we are dealing with small
linear-size circuits. Therefore it might be significantly more difficult to prove a similar circuit
lower bound with constant error probability.

5 Low-complexity PRFs from hash functions

In this section, we will present the consequences of our hash constructions for low-complexity
constructions of pseudorandom functions. We will discuss the Levin’s trick for PRF construction
in Section 5.1, and then present our constructions of PRFs for B2 and low-depth circuits in Section
5.2 and 5.3, respectively.

5.1 PRF and Levin’s trick

Definition 5.1 (Pseudorandom functions). Let s = s(n), m = m(n), and ε = ε(n). An (s, ε)-secure
m-output pseudorandom function (PRF) is a family F = {Fn}n≥1 of distributions Fn over Bn,m such
that no probabilistic s(n)-time adversary could distinguish f ← Fn from a truly random function
g← U (Bn,m) with advantage ε(n) given oracle access to the functions, i.e.,∣∣∣∣ Pr

f←Fn

[
A f (1n) accepts

]
− Pr

g←U (Bn,m)
[Ag(1n) accepts]

∣∣∣∣ < ε.

for all probabilistic s(n)-time algorithm A and sufficiently large n. ♦

32

A PRF is said to be s-secure if it is (s, 1/s)-secure. In particular, a PRF is said to be polynomially
secure if it is nk-secure for all constants k ≥ 1, and it is said to be sub-exponentially secure if it is
exp(nε)-secure for some constant ε ∈ (0, 1). Similar to the hash functions, we define the key (seed)
length, circuit complexity, composition, P-uniformity, and POLYLOGTIME-uniformity of PRFs.

Following [IKOS08; FLY21], the key to construct low-complexity PRFs is Levin’s trick: the
composition of a PRF and an almost universal hash function is still a PRF.

Lemma 5.2 (Levin’s trick, see, e.g., [BR17; FLY21]). Let s = s(n), m = m(n), ε = ε(n), and δ =
δ(n). The composition F ◦ H of an (s, ε)-secure PRF F and a polynomial-time computable m-
output δ-almost universal hash H is an (ŝ, ε̂)-secure PRF if ŝ(n) ≤ s(m(n))− poly(n) and ε̂(n) ≥
ε(m(n)) + ŝ(n)2 · δ(n) for sufficiently large n. ♦

Note that the circuit complexity of the resulting PRF mostly depends on the complexity of the
hash function, since we can reduce the complexity of the “pseudorandom kernel” by reducing the
length of the hash value. Indeed, we need to balance the complexity and security by tuning the
output length of the hash function: it should be sufficiently small to reduce the complexity of the
original PRF, while it has to be moderately large to guarantee the security of the constructed PRF.

5.2 Low-complexity PRFs in B2 circuit

Now we discuss the low-complexity PRF construction in B2 circuits. We first introduce the as-
sumption for the security of our PRF construction.

Assumption 5.3. There exists a sub-exponentially secure polynomial-time computable pseudo-
random function with polynomial key length.

Note that by the celebrated works of Goldreich, Goldwasser, and Micali [GGM86], the exis-
tence of sub-exponentially secure PRF is equivalent to the existence of sub-exponentially secure
pseudorandom generator, which is further equivalent to the existence of sub-exponentially secure
one-way function [HILL99].

Theorem 5.4. Assuming Assumption 5.3, there exists an exp
(

Ω
(

log2 n
log log n

))
-secure PRF with key

length polylog(n) computable by POLYLOGTIME-uniform B2 circuits of size 2n + O(n/ log log n)
and depth polylog(n) simultaneously ♦

Proof. Since any polynomial-time computable function can be computed by a P-uniform polynomial-
size B2 circuit, the existence of polynomial-time PRF implies the existence of PRF computable by P-
uniform polynomial-size B2 circuits. Under Assumption 5.3 we can obtain an (exp(nε), exp(nε))-
secure PRF F computable by P-uniform polynomial-size B2 circuits for an ε ∈ (0, 1). From Con-

struction 5, Theorem 3.9, and Theorem 3.17 with ℓ = log2 n
log log n and β = 1, we can construct a

polylog(n)-samplable Θ(ℓ)-output exp(−Ω(ℓ))-almost universal hash function H computable by
POLYLOGTIME-uniform 2n + O(n/ log log n) size B2 circuits. We increase the output length of H
to m = dlog2/ε(n)e to obtain H′ by padding constant outputs. We now prove that F ◦ H′ is the
desired exp(−Ω(ℓ))-secure PRF.

Recall that H′ is an m-output exp(−cℓ)-almost universal hash function for some constant c ∈
(0, 1). According to Lemma 5.2, we know that for ŝ(n) ≜ exp(cℓ/4), F ◦ H′ is an ŝ-secure PRF,
since for sufficiently large n,

exp(mε)− poly(n) ≥ exp(log2 n)− poly(n) ≥ ŝ,

exp(−mε) + ŝ2 · exp(−cℓ) ≤ exp(− log2 n) + exp(−cℓ/2) ≤ 1
ŝ

.

33

Because the key of F ◦H′ consists of the seed of H′ (with input length n) and the key of F (with
input length m), the key length would be polylog(n) + poly(m) = polylog(n).

It is straightforward to verify thatF ◦H′ can be computed by B2 circuits of size 2n+O(n/ log log n)
and depth polylog(n) + poly(m) = polylog(n), so it remains to show that the circuit computing it is
POLYLOGTIME-uniform. We only demonstrate the evaluation of function EDGE(n, v, i, j) (i.e., the
jth input node of the ith node in the circuit computing function keyed by v) and remark that the
evaluations of other functions (SIZE,TYPE, and OUT) can be done in a similar way.

Given a key v = v1‖v2 where v1 is the seed for H′ and v2 is the key for F , we firstly decide
whether the ith node is inside the hash H′ or the PRF F (which can be done since we can com-
pute the number of nodes in H in polylog(n) time given v1). In the former case, we can use the
EDGE(n, v1, ·, ·) function for the hash functionH′, since it is POLYLOGTIME-uniform. In the latter
case, we can draw the circuit computing F given key v2 in polylog(n) time (since F is P-uniform,
and the input length is m = polylog(n)), and then find out the jth input node of the ith node. □

Remark. It can be easily verified that if we do not require the PRF to be computable within
polylog(n) depth, we can in fact rely on the following (possibly) weaker assumption: the existence
of exp(nε/4)-time computable exp(nε)-secure PRFs with polynomial key length for an ε > 023. By
[GGM86; HILL99] (implicitly), this assumption follows from the existence of exp(nε/8)-time com-
putable OWFs against any exp(nε)-time adversary for an ε > 0. We stick to Assumption 5.3 since
it has been a quite standard assumption.

5.3 Low-complexity PRFs in low-depth circuits

To construct efficient PRFs in low-depth circuit classes such as NC1 and AC0[2] using our low-
complexity hash functions, we need to rely on the existence of low-depth PRFs. In particular,
we will need the existence of (sub-exponentially secure) NC1 PRFs to construct efficient NC1 and
AC0[2] PRFs.

Assumption 5.5 (NC1 PRF). There exists a sub-exponentially secure PRF with polynomial key
length computable by P-uniform polynomial-size NC1 circuits.

Note that it is unknown whether such assumption can be reduced to more elementary ones
such as the existence of certain kinds of one-way functions. Nevertheless, it follows from stan-
dard cryptographic assumptions such as sub-exponential decisional Diffie-Hellman [NR04] or
sub-exponential Ring Learning-with-Error [BPR12].

Theorem 5.6. There exists a exp
(

Ω
(

log2 n
log log n

))
-secure PRF with polylog(n) key length computable

by POLYLOGTIME-uniform B2 circuits of size 2n +O(n/ log log n) and depth log n +O(log log n)
simultaneously under Assumption 5.5. ♦

Proof. We will use the construction in the proof of Theorem 5.4 by replacing the PRF F with a
PRF computable by P-uniform NC1 circuits. We only check the circuit depth of the construction
since other properties can be established similarly as in the proof of Theorem 5.4. By Theorem
3.17, the B2 circuit computing the hash functionH (andH′) in the proof of Theorem 5.4 has depth
log n +O(1). Since the output length ofH′ (i.e., the input length of the original PRF) is polylog(n),
the depth of the original PRF would be log(polylog(n)) = O(log log n). Therefore the total depth
would be log n + O(log log n). □

23The POLYLOGTIME-uniformity follows from the folklore simulation of P algorithms by POLYLOGTIME-uniform
circuits (see, e.g., [LW13]).

34

To construct AC0[2] PRFs from Assumption 5.5, we need a folklore reduction from logarithmic
depth circuits to AC0 circuits. In particular, we show how to transform a polynomial-size NC1

circuit to an AC0 circuit of size 2O(nε) and depth O(1/ε).

Lemma 5.7. Let f be a function computable by P-uniform NC1 circuits. For any constant ε > 0, f
is computable by POLYLOGTIME-uniform AC0 circuits of 2O(nε) size and O(1/ε) depth. ♦

Proof. Suppose that f is computable by an NC1 circuit C of depth d log n. Let k = d/ε. We
partition C into k layers of chunks, each of depth ε log n. In such case, each chunk only depends
on O(2ε log n) = O(nε) number of gates, so we can expand it into a CNF of size 2O(nε). After
expanding all the chunks, we get an AC0 circuit C′ of size 2O(nε) and depth 2k = O(1/ε).

Let N = 2O(nε) be the size of C′. To show the uniformity, we observe that to compute the local
structure of a gate, we only need to evaluate one of the chunks on a given input, which can be
done in poly(n) = polylog(N) time. □

Theorem 5.8. There exists a exp
(

Ω
(

log2 n
log log n

))
-secure PRF with polylog(n) key length computable

by POLYLOGTIME-uniform AC0[2] circuits with 2n + O(n/ log log n) wires under Assumption
5.5. ♦

Proof. We will use the construction in the proof of Theorem 5.4 by replacing the PRF F with a
PRF computable by P-uniform NC1 circuits. Suppose that the parameter m in the proof of The-
orem 5.4 is at most logc n. Initiating Lemma 5.7 with ε = 1/(2c), we can compute the PRF F
with an POLYLOGTIME-uniform AC0 circuit with 2O(

√
log n) = no(1) wires. It immediately fol-

lows that our PRF construction is computable by POLYLOGTIME-uniform AC0[2] circuits with
2n + O(n/ log log n) wires. The other parts are the same as the proof of Theorem 5.4. □

Acknowledgements

We are grateful for Ryan Williams for insightful discussions during this project and many helpful
comments on a draft of this paper. We would also like to thank Ce Jin for discussions during the
early stage of this research project and anonymous reviewers for their comments. Lijie Chen is
supported by NSF CCF-2127597 and an IBM Fellowship.

35

References

[AGHP90] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. “Simple Constructions
of Almost k-Wise Independent Random Variables”. In: 31st Annual Symposium on
Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume
II. IEEE Computer Society, 1990, pp. 544–553. DOI: 10.1109/FSCS.1990.89575 (cit.
on pp. 11, 12, 15).

[AR16] Benny Applebaum and Pavel Raykov. “Fast Pseudorandom Functions Based on Ex-
pander Graphs”. In: Theory of Cryptography - 14th International Conference, TCC 2016-
B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I. Vol. 9985. Lecture
Notes in Computer Science. 2016, pp. 27–56. DOI: 10.1007/978-3-662-53641-4_2
(cit. on p. 9).

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009. ISBN: 978-0-521-42426-4 (cit. on pp. 12, 13, 16, 25).

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. “Pseudorandom Functions and
Lattices”. In: Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK,
April 15-19, 2012. Proceedings. Vol. 7237. Lecture Notes in Computer Science. Springer,
2012, pp. 719–737. DOI: 10.1007/978-3-642-29011-4_42 (cit. on pp. 9, 13, 34).

[BR17] Andrej Bogdanov and Alon Rosen. “Pseudorandom Functions: Three Decades Later”.
In: Tutorials on the Foundations of Cryptography. Springer International Publishing,
2017, pp. 79–158. DOI: 10.1007/978- 3- 319- 57048- 8_3 (cit. on pp. 3, 4, 5, 9, 10,
33).

[CW79] Larry Carter and Mark N. Wegman. “Universal Classes of Hash Functions”. In: J.
Comput. Syst. Sci. 18.2 (1979), pp. 143–154. DOI: 10.1016/0022-0000(79)90044-8
(cit. on p. 3).

[Cha03] L. Sunil Chandran. “A High Girth Graph Construction”. In: SIAM J. Discret. Math.
16.3 (2003), pp. 366–370. DOI: 10.1137/S0895480101387893 (cit. on p. 10).

[Che+20] Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Ján Pich, Ninad Rajgopal, and
Rahul Santhanam. “Beyond Natural Proofs: Hardness Magnification and Locality”.
In: 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14,
2020, Seattle, Washington, USA. Vol. 151. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020, 70:1–70:48. DOI: 10.4230/LIPIcs.ITCS.2020.70 (cit. on pp. 6,
7).

[CJW19] Lijie Chen, Ce Jin, and R. Ryan Williams. “Hardness Magnification for all Sparse
NP Languages”. In: 60th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019. IEEE Computer Society,
2019, pp. 1240–1255. DOI: 10.1109/FOCS.2019.00077 (cit. on pp. 3, 5, 6, 7, 12, 21, 22,
26, 28).

[CJW20] Lijie Chen, Ce Jin, and R. Ryan Williams. “Sharp threshold results for computational
complexity”. In: Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM, 2020, pp. 1335–1348.
DOI: 10.1145/3357713.3384283 (cit. on pp. 3, 6, 8, 12, 26).

36

https://doi.org/10.1109/FSCS.1990.89575
https://doi.org/10.1007/978-3-662-53641-4_2
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1137/S0895480101387893
https://doi.org/10.4230/LIPIcs.ITCS.2020.70
https://doi.org/10.1109/FOCS.2019.00077
https://doi.org/10.1145/3357713.3384283

[CK16] Ruiwen Chen and Valentine Kabanets. “Correlation bounds and #SAT algorithms for
small linear-size circuits”. In: Theor. Comput. Sci. 654 (2016), pp. 2–10. DOI: 10.1016/
j.tcs.2016.05.005 (cit. on p. 7).

[DK11] Evgeny Demenkov and Alexander S. Kulikov. “An Elementary Proof of a 3n - o(n)
Lower Bound on the Circuit Complexity of Affine Dispersers”. In: Mathematical Foun-
dations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw,
Poland, August 22-26, 2011. Proceedings. Vol. 6907. Lecture Notes in Computer Science.
Springer, 2011, pp. 256–265. DOI: 10.1007/978-3-642-22993-0_25 (cit. on p. 6).

[FLY21] Zhiyuan Fan, Jiatu Li, and Tianqi Yang. “The Exact Complexity of Pseudorandom
Functions and the Black-Box Natural Proof Barrier for Bootstrapping Results in Com-
putational Complexity”. In: Electron. Colloquium Comput. Complex. (2021). To appear
in STOC 2022, p. 125. URL: https://eccc.weizmann.ac.il/report/2021/125 (cit.
on pp. 3, 4, 5, 7, 9, 10, 11, 13, 14, 15, 16, 19, 31, 33).

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S.
Kulikov. “A Better-Than-3n Lower Bound for the Circuit Complexity of an Explicit
Function”. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA. IEEE Com-
puter Society, 2016, pp. 89–98. DOI: 10.1109/FOCS.2016.19 (cit. on p. 6).

[For09] Lance Fortnow. “A Simple Proof of Toda’s Theorem”. In: Theory Comput. 5.1 (2009),
pp. 135–140. DOI: 10.4086/toc.2009.v005a007 (cit. on p. 29).

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct random
functions”. In: J. ACM 33.4 (1986), pp. 792–807. DOI: 10.1145/6490.6503 (cit. on
pp. 33, 34).

[GHKK18] Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov.
“On the limits of gate elimination”. In: J. Comput. Syst. Sci. 96 (2018), pp. 107–119. DOI:
10.1016/j.jcss.2018.04.005 (cit. on p. 6).

[Hås98] Johan Håstad. “The Shrinkage Exponent of de Morgan Formulas is 2”. In: SIAM J.
Comput. 27.1 (1998), pp. 48–64. DOI: 10.1137/S0097539794261556 (cit. on p. 6).

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “A Pseu-
dorandom Generator from any One-way Function”. In: SIAM J. Comput. 28.4 (1999),
pp. 1364–1396. DOI: 10.1137/S0097539793244708 (cit. on pp. 33, 34).

[HAB02] William Hesse, Eric Allender, and David A. Mix Barrington. “Uniform constant-
depth threshold circuits for division and iterated multiplication”. In: J. Comput. Syst.
Sci. 65.4 (2002), pp. 695–716. DOI: 10.1016/S0022-0000(02)00025-9 (cit. on p. 25).

[HS17] Shuichi Hirahara and Rahul Santhanam. “On the Average-Case Complexity of MCSP
and Its Variants”. In: 32nd Computational Complexity Conference, CCC 2017, July 6-9,
2017, Riga, Latvia. Vol. 79. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017, 7:1–7:20. DOI: 10.4230/LIPIcs.CCC.2017.7 (cit. on p. 6).

[IMZ19] Russell Impagliazzo, Raghu Meka, and David Zuckerman. “Pseudorandomness from
Shrinkage”. In: J. ACM 66.2 (2019), 11:1–11:16. DOI: 10.1145/3230630 (cit. on p. 6).

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Cryptography with
constant computational overhead”. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008. ACM, 2008,
pp. 433–442. DOI: 10.1145/1374376.1374438 (cit. on pp. 3, 4, 5, 9, 10, 13, 33).

37

https://doi.org/10.1016/j.tcs.2016.05.005
https://doi.org/10.1016/j.tcs.2016.05.005
https://doi.org/10.1007/978-3-642-22993-0_25
https://eccc.weizmann.ac.il/report/2021/125
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.4086/toc.2009.v005a007
https://doi.org/10.1145/6490.6503
https://doi.org/10.1016/j.jcss.2018.04.005
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1145/3230630
https://doi.org/10.1145/1374376.1374438

[IM02] Kazuo Iwama and Hiroki Morizumi. “An Explicit Lower Bound of 5n - o(n) for
Boolean Circuits”. In: Mathematical Foundations of Computer Science 2002, 27th Interna-
tional Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings. Vol. 2420.
Lecture Notes in Computer Science. Springer, 2002, pp. 353–364. DOI: 10.1007/3-
540-45687-2_29 (cit. on p. 6).

[KNR09] Eyal Kaplan, Moni Naor, and Omer Reingold. “Derandomized Constructions of k-
Wise (Almost) Independent Permutations”. In: Algorithmica 55.1 (2009), pp. 113–133.
DOI: 10.1007/s00453-008-9267-y (cit. on pp. 11, 12, 15).

[LR01] Oded Lachish and Ran Raz. “Explicit lower bound of 4.5n - o(n) for boolena cir-
cuits”. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July
6-8, 2001, Heraklion, Crete, Greece. Ed. by Jeffrey Scott Vitter, Paul G. Spirakis, and
Mihalis Yannakakis. ACM, 2001, pp. 399–408. DOI: 10.1145/380752.380832. URL:
https://doi.org/10.1145/380752.380832 (cit. on p. 6).

[LU95] Felix Lazebnik and Vasiliy A. Ustimenko. “Explicit Construction of Graphs with
an Arbitrary Large Girth and of Large Size”. In: Discret. Appl. Math. 60.1-3 (1995),
pp. 275–284. DOI: 10.1016/0166-218X(94)00058-L (cit. on pp. 10, 12, 16, 39, 40).

[LY21] Jiatu Li and Tianqi Yang. “3.1n - o(n) Circuit Lower Bounds for Explicit Functions”.
In: Electron. Colloqu ium Comput. Complex. (2021). To appear in STOC 2022, p. 23. URL:
https://eccc.weizmann.ac.il/report/2021/023 (cit. on p. 6).

[LW13] Richard J. Lipton and Ryan Williams. “Amplifying circuit lower bounds against poly-
nomial time, with applications”. In: Comput. Complex. 22.2 (2013), pp. 311–343. DOI:
10.1007/s00037-013-0069-5 (cit. on pp. 25, 34).

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. “Weak lower bounds on
resource-bounded compression imply strong separations of complexity classes”. In:
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019. ACM, 2019, pp. 1215–1225. DOI: 10.1145/
3313276.3316396 (cit. on p. 6).

[MV15] Eric Miles and Emanuele Viola. “Substitution-Permutation Networks, Pseudoran-
dom Functions, and Natural Proofs”. In: J. ACM 62.6 (2015), 46:1–46:29. DOI: 10 .
1145/2792978 (cit. on p. 9).

[Mul11] Ketan Mulmuley. “On P vs. NP and geometric complexity theory: Dedicated to Sri
Ramakrishna”. In: J. ACM 58.2 (2011), 5:1–5:26. DOI: 10.1145/1944345.1944346 (cit.
on p. 8).

[NR04] Moni Naor and Omer Reingold. “Number-theoretic constructions of efficient pseudo-
random functions”. In: J. ACM 51.2 (2004), pp. 231–262. DOI: 10 . 1145 / 972639 .
972643 (cit. on pp. 9, 13, 34).

[OPS21] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. “Hardness Magnification
Near State-of-the-Art Lower Bounds”. In: Theory Comput. 17 (2021), pp. 1–38 (cit. on
p. 6).

[OS18] Igor Carboni Oliveira and Rahul Santhanam. “Hardness Magnification for Natural
Problems”. In: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018. 2018, pp. 65–76. DOI: 10.1109/FOCS.2018.00016 (cit. on p. 6).

38

https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/3-540-45687-2_29
https://doi.org/10.1007/s00453-008-9267-y
https://doi.org/10.1145/380752.380832
https://doi.org/10.1145/380752.380832
https://doi.org/10.1016/0166-218X(94)00058-L
https://eccc.weizmann.ac.il/report/2021/023
https://doi.org/10.1007/s00037-013-0069-5
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/2792978
https://doi.org/10.1145/2792978
https://doi.org/10.1145/1944345.1944346
https://doi.org/10.1145/972639.972643
https://doi.org/10.1145/972639.972643
https://doi.org/10.1109/FOCS.2018.00016

[PP08] Anna Pagh and Rasmus Pagh. “Uniform Hashing in Constant Time and Optimal
Space”. In: SIAM J. Comput. 38.1 (2008), pp. 85–96. DOI: 10.1137/060658400 (cit. on
p. 3).

[PZ83] Christos H. Papadimitriou and Stathis Zachos. “Two remarks on the power of count-
ing”. In: Theoretical Computer Science, 6th GI-Conference, Dortmund, Germany, January
5-7, 1983, Proceedings. Vol. 145. Lecture Notes in Computer Science. Springer, 1983,
pp. 269–276. DOI: 10.1007/BFb0009651 (cit. on p. 29).

[RR97] Alexander A. Razborov and Steven Rudich. “Natural Proofs”. In: J. Comput. Syst. Sci.
55.1 (1997), pp. 24–35. DOI: 10.1006/jcss.1997.1494 (cit. on pp. 4, 9).

[Sho88] Victor Shoup. “New Algorithms for Finding Irreducible Polynomials over Finite Fields”.
In: 29th Annual Symposium on Foundations of Computer Science, White Plains, New York,
USA, 24-26 October 1988. IEEE Computer Society, 1988, pp. 283–290. DOI: 10.1109/
SFCS.1988.21944 (cit. on p. 40).

[Spi96] Daniel A. Spielman. “Linear-time encodable and decodable error-correcting codes”.
In: IEEE Trans. Inf. Theory 42.6 (1996), pp. 1723–1731. DOI: 10.1109/18.556668 (cit. on
pp. 5, 12).

[Tal14] Avishay Tal. “Shrinkage of de Morgan Formulae by Spectral Techniques”. In: 55th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014. IEEE Computer Society, 2014, pp. 551–560. DOI: 10.
1109/FOCS.2014.65 (cit. on p. 6).

[VV86] Leslie G. Valiant and Vijay V. Vazirani. “NP is as Easy as Detecting Unique Solutions”.
In: Theor. Comput. Sci. 47.3 (1986), pp. 85–93. DOI: 10.1016/0304-3975(86)90135-0.
URL: https://doi.org/10.1016/0304-3975(86)90135-0 (cit. on p. 29).

[Vio15] Emanuele Viola. “The communication complexity of addition”. In: Comb. 35.6 (2015),
pp. 703–747. DOI: 10.1007/s00493-014-3078-3 (cit. on p. 9).

A Strongly explicit high-girth graphs

In this section, we will examine the construction of bipartite high-girth graphs of Lazebnik and
Ustimenko [LU95], and verify that it is indeed strongly explicit, thereby proving Theorem 2.12.

Let q be an odd prime power. Let P and L be two infinite sequences of elements from Fq
indexed as follows:

P =
〈

p1, p1,1, p1,2, p2,1, p2,2, p′2,2, p3,2, . . . , pi,i+1, pi+1,i, pi+1,i+1, p′i+1,i+1, pi+1,i+2, . . .
〉

L =
〈
l1, l1,1, l1,2, l2,1, l2,2, l′2,2, l3,2, . . . , li,i+1, li+1,i, li+1,i+1, l′i+1,i+1, li+1,i+2, . . .

〉
.

The names P and L mean points and lines, respectively, due to certain geometric intuition of the
construction. We say P is incident with L if they satisfy the following set of equations

E1 =

l1,1 − p1,1 = l1 p1

l1,2 − p1,2 = l1,1 p1

l2,1 − p2,1 = l1 p1,1

, Ei =

li,i − pi,i = l1 pi−1,i

l′i,i − p′i,i = li,i−1 p1

li,i+1 − pi,i+1 = li,i p1

li+1,i − pi+1,i = l1 p′i,i

(∀i ≥ 2) (3)

39

https://doi.org/10.1137/060658400
https://doi.org/10.1007/BFb0009651
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1109/SFCS.1988.21944
https://doi.org/10.1109/18.556668
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1109/FOCS.2014.65
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/s00493-014-3078-3

One can verify that for every point P, a line L incident with it is uniquely determined by l1, since
all other coordinates of L can be computed from the equations above iteratively. Similarly for
every line L, a point P incident with it is uniquely determined by p1.

Let Pk ∈ Fk
q be the length-k prefix of P, and Lk ∈ Fk

q be the length-k prefix of L. We define
D(k, q) = (V1, V2, E ⊆ V1 ×V2) to be the following bipartite graph:

V1 = V2 = Fk
q;

(u, v) ∈ E ⇐⇒ ∃(P, L), P is incident with L, u = Pk, and v = Lk.

Equivalently, u and v are connected if and only if they satisfy the first k equations of ∪iEi in (3).
Note that |V1| = |V2| = qk, |E| = qk+1, and the graph is q-regular.

Theorem A.1 (Lazebnik and Ustimenko [LU95]). Let k ≥ 3 be an odd integer and q be an odd
prime power. Then the girth of D(k, q) is at least k + 5. ♦

For our purpose, it is sufficient to consider q = pr for prime p = O(1). To construct the graph
explicitly, we need to evaluation field operations over Fq for a prime power q in polylog(q) time,
for which we need a representation of Fq. Recall that Fq is isomorphic to Fp[x]/(Q(x)) for any
irreducible degree-r polynomial Q ∈ Fp[x]. So the explicit representation of Fq follows from the
construction of irreducible polynomials by Shoup [Sho88].

Theorem A.2 (Shoup [Sho88]). There is a deterministic algorithm that constructs a degree-n irre-
ducible polynomial over Fp given an integer n and a prime power p in poly(n, p) time. ♦

Now we check that D(k, q) is strongly explicit, in the sense that given the index i of an edge, we
can obtain the indices j1 and j2 in poly(k, log q) time such that the ith edge connects the jth1 vertex
in V1 and the jth2 vertex in V2. Let q = pr for a prime p = O(1). We number the vertices and edges
as follows.

1. We identify the elements in the finite field Fq as length-r vectors from [p]r, and number all
the elements in the lexicographic order.

2. We identify the vertices in both V1 and V2 (that are length k sequences of elements in Fq) as
length-kr vectors from [p]kr, and number them in the lexicographic order.

3. For any i ∈ [qk] and j ∈ [q], the (iq + j)th edge connects the ith vertex P in V1 and the unique
vertex L = (l1, . . .) in V2 connected to P such that l1 is the jth element in Fq.

Under such a numbering scheme, given the index iq + j of an edge with i ∈ [qk] and j ∈ [q], we
can easily determine its two endpoints in poly(k, log q) time.

Now we are ready to prove Theorem 2.12.

Remainder of Theorem 2.12. Let r = r(n) = no(1) be a parameter. For every sufficiently large n,
there exists an m = Θ(n

r) and a regular graph Gm,n with m vertices, n edges, and girth Ω(log n
log r).

Moreover, there exists a polylog(n)-time algorithm A(n, i) for i ∈ [n] that outputs the indices of
the two endpoints of the ith edge in Gm,n, and a polylog(n)-time algorithm B(n, i, j) for i ∈ [m] that
outputs the jth edge attaching to the ith vertex. ♦

40

Proof. Let q be the power of 3 in the interval [r, 3r). Applying Theorem A.2, we construct a fixed
representation of Fq in polylog(q) time so that the field operations over Fq can be evaluated in
polylog(q) time. Let k ≜ blogq nc − 1 (i.e., k is the largest integer such that qk+1 ≤ n), ℓ ≜ dn/qk+1e,
and m ≜ 2qkℓ. Note that

m ≤ 2qk
(

n
qk+1 + 1

)
=

2n
q

+
2qk+1

q
≤ O

(n
r

)
,

m ≥ 2qk · n
qk+1 ≥ Ω

(n
r

)
,

and therefore m = Θ(n/r). Now we construct a graph Gm,n with ℓ connected components as
follows. Each of the first ℓ − 1 connected components is a copy of D(q, k) with 2qk vertices and
qk+1 edges. The last connected component is a subgraph of D(q, k) with 2qk vertices but only the
first n− qk+1(ℓ− 1) edges.

By Theorem A.1, it is easy to see that the girth of Gm,n is at least k = Ω(log n/ log q) = Ω(log n
log r).

According to our numbering scheme and related discussions, it is also easy to verify that given
an edge index i, we can compute the two endpoints of the ith edge in Gm,n in polylog(n) time.
Furthermore, the jth edge attaching to the ith vertex can be easily computed since each of the q
edges attaching to the ith vertex is uniquely determined by l1 ∈ Fq or p1 ∈ Fq (see Equation 3). □

41 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

