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Abstract

For n ∈ N and d = o(log log n), we prove that there is a Boolean function F on n bits
and a value γ = 2−Θ(d) such that F can be computed by a uniform depth-(d + 1) AC0 circuit
with O(n) wires, but F cannot be computed by any depth-d TC0 circuit with n1+γ wires. This
bound matches the current state-of-the-art lower bounds for computing explicit functions by
threshold circuits of depth d > 2, which were previously known only for functions outside
AC0 such as the parity function. Furthermore, in our result, the AC0 circuit computing F is
a monotone read-once formula (i.e., an AND-OR tree), and the lower bound holds even in the
average-case setting with respect to advantage n−γ.

Our proof builds on the random projection procedure of Håstad, Rossman, Servedio, and
Tan, which they used to prove the celebrated average-case depth hierarchy theorem for AC0

(J. ACM, 2017). We show that under a modified version of their projection procedure, any
depth-d threshold circuit with n1+γ wires simplifies to a near-trivial function, whereas an
appropriately parameterized AND-OR tree of depth d + 1 maintains structure.
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1 Introduction

One of the main challenges in complexity theory is to prove that small circuits cannot compute
explicit functions. It is a leading approach towards proving P 6= NP (by proving that some
function in NP has superpolynomial circuit complexity) and other major conjectures (e.g., if
there is a function in E with exponential circuit complexity, then BPP = P [IW97]). Counting
arguments imply that there exist functions with exponential circuit complexity, but we are
interested in explicit constructions. That is, the goal is to construct a function that on the one
hand has high circuit complexity, but on the other hand is computable by uniform algorithms that
are as efficient as possible (e.g., the function is in E, NP, or even P.)

A classic line of work studied classes of shallow circuits, which can be considered as models
for fast parallel computation, such as AC0 ( AC0[⊕] ( TC0 ⊆ NC1. These classic works showed
lower bounds on the size of shallow circuits computing explicit functions, including:

• Sub-exponential lower bounds against AC0 circuits [Ajt83; FSS84; Yao85; Hås87; Cai89;
Kli01; BIS12; IMP12; Hås14].

• Sub-exponential lower bounds against AC0[⊕] circuits [Raz87; Smo87; RSS18; OSS19;
Vio20].

• Slightly super-linear lower bounds against TC0 circuits [HMP+93; IPS97; CSS18; ACW16;
KW16; HHT+22].

• Slightly sub-cubic lower bounds against De Morgan formulas1 [Sub61; Khr71; And87; IN93;
PZ93; Hås98; Tal14; CKK+15; KRT17; Tal17a; Bog18].

In each case, the classic lower bounds (many of which date back to the 1980s or before) assert
that the circuits in question cannot compute certain functions in P, such as the parity function,
the majority function, or variations on Andreev’s function [And87].

1.1 Hard functions in extremely weak complexity classes

The foregoing “hard functions” are in fact computable in uniform NC1 (i.e., by uniform formulas
of logarithmic depth). What lower bounds can we prove for functions that are computable in
even weaker complexity classes? Taking this question to the extreme, what lower bounds can we
prove for functions computable in uniform AC0, the weakest complexity class among the classes
described above?

Question 1.1 (hard functions in extremely weak complexity classes). Among known circuit lower
bounds for functions in P (e.g., parity, majority, Andreev’s function), in which cases can we prove a similar
lower bound for a function computable in uniform AC0?

At first, trying to strengthen the aforementioned classic lower bounds so that the hard
function is in uniform AC0 doesn’t seem to make any sense, because a function in AC0 cannot be
hard for AC0, let alone hard for AC0[⊕], TC0, or NC1. However, this problem does make sense
if we allow the AC0 circuit computing the hard function to be bigger or deeper compared to the
circuits for which the function is hard.2

1Recall that NC1 is equivalent to polynomial-size De Morgan formulas.
2We remark that for each constant k, it is trivial to prove the existence of a function computable by a non-uniform

depth-2 polynomial-size AC0 circuit that cannot be computed by general Boolean circuits of unbounded depth and size
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The motivation underlying Question 1.1 is both conceptual and technical. Conceptually, each
affirmative answer to an instance of Question 1.1 shows that the circuits in question have severe
limitations – limitations that are not captured by classic lower bounds where the hard function
comes from a more powerful class. Technically, each affirmative answer requires an analysis that
is more challenging than an analysis demonstrating a lower bound in P. In particular, typical
circuit lower bound approaches (e.g., random restrictions or probabilistic degree) demonstrate
the weakness of AC0, but an affirmative answer to an instance of Question 1.1 requires a lower
bound approach that demonstrates the strengths of uniform AC0.

Lower bounds against AC0. Perhaps the first line of work studying Question 1.1 compares AC0

circuits to deeper AC0 circuits. Improving earlier work by Sipser [Sip83] and Yao [Yao85], Håstad
showed a lower bound of 2nΩ(1/d)

on the size of depth-d AC0 circuits simulating a certain AC0

circuit of depth d+ 1 and size O(n) [Hås87, Chapter 6]. This lower bound is quantitatively similar
to the lower bounds for computing the parity function [Hås87], yielding an affirmative answer to
one instance of Question 1.1. These “depth hierarchy” results were upgraded to a tight average-
case depth hierarchy in a celebrated work by Håstad, Rossman, Servedio, and Tan [HRS+17]
(following work by O’Donnell and Wimmer [OW07] that proved the special case of depth 3
versus depth 2).3

Lower bounds against AC0[⊕]. From work of O’Donnell and Wimmer [OW07] and
Amano [Ama09], one can show that there is a function computable by uniform depth-
(d + 1) AC0 formulas of size O(n) that requires super-polynomial-size depth-d AC0[⊕] circuits.
(This implication is explained in work by Limaye, Sreenivasaiah, Srinivasan, Tripathi, and
Venkitesh [LSS+21].) Furthermore, Limaye et al. recently showed that AC0[⊕] circuits of size s
and depth d cannot compute a function computable by uniform AC0 formulas of slightly larger
size poly(s) and the same depth d [LSS+21]. This result was quantitatively strengthened by
Limaye, Srinivasan, and Tripathi [LST19]. All of these separations build on a line of research
studying the complexity of the “coin problem” [SV10; BV10; Aar10; Ste13; CGR14; LV18; GII+19;
LST19; Agr20; BGW20; LSS+21; BGZ22].

Quantitatively, these lower bounds for computing functions in uniform AC0 do not match
the lower bounds against AC0[⊕] for computing functions in P. Indeed, every depth-d AC0[⊕]
circuit computing the majority function must have size 2nΩ(1/d)

[Raz87; Smo87; OSS19]. The gap
is inherent: as a special case of a result by Allender and Hertrampf [AH94], every function in
AC0 can be computed by a depth-4 AC0[⊕] circuit of size 2polylog(n). Thus, AC0[⊕] is an instance
of Question 1.1 where the answer is negative.

Lower bounds against De Morgan formulas. Another affirmative answer to an instance of
Question 1.1 is given in Filmus, Meir, and Tal’s recent work [FMT21]. They show that there is
a function in uniform AC0 that cannot be computed by De Morgan formulas of sub-cubic size

s def
= nk, by considering a maximally hard function on approximately log s variables. As usual in circuit complexity, we

are interested in uniform upper bounds. One can also show the same lower bound for uniform AC0 under plausible
assumptions such as the existence of a function g ∈ E with exponential circuit complexity. (Indeed, in polynomial
time, it is possible to construct the truth table for g on O(log s)-bit inputs and then construct a DNF of size poly(s)
computing that truth-table.) We are interested in unconditional constructions.

3Also, Viola showed that there is a partial function computable by depth-d randomized AC0 circuits that cannot be
computed by depth-(d + 1) AC0 circuits [Vio14].
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n3−o(1), which is only slightly weaker than the Ω̃(n3) lower bounds that are known for computing
functions in P [Hås98; Tal14; Tal17a].

1.2 Our contribution: Hardness of AC0 for threshold circuits

In this work we provide an affirmative answer to Question 1.1 for the case of constant-depth LTF
circuits of super-linear size. Recall that in an LTF circuit, each gate computes an arbitrary linear
threshold function (LTF), i.e., a function of the form Φ(x) = 1 ⇐⇒ ∑i wi · xi ≥ θ, where w ∈ R|x|

and θ ∈ R. The class TC0 consists of functions computable by LTF circuits of constant depth
and polynomial size. This circuit class has been extensively studied since the 1960s (see, e.g.,
the classical work by Muroga, Toda, and Takasu [MTT61]), with a particularly vigorous interest
in the last decade. The recent interest has been both due to attempts to realize the algorithmic
approach of Williams [Wil13] for this class, and due to the sharp rise in practical importance of
neural networks. (An LTF circuit can be viewed as a Boolean analogue of a neural network.) See,
e.g., prior work by the current authors [HHT+22] for a survey of recent works and results.

Prior lower bounds. In the 1990s, Impagliazzo, Paturi, and Saks [IPS97] showed that the
parity function cannot be computed by LTF circuits of depth d and size n1+c−d

, where c > 1
is a universal constant. (Throughout this paper, we measure the size of an LTF circuit by the
number of wires.) It is still an open problem to prove a quantitatively better lower bound for
a function in NP. This worst-case lower bound was recently extended to average-case lower
bounds for computing parity or a version of Andreev’s function [And87] by Chen, Santhanam,
and Srinivasan [CSS18], and a subsequent work by the current authors showed a lower bound
for computing gap-MCSP [HHT+22]. Note that these “hard functions” are in P (or NP in the case
of MCSP), but they are not in AC0.4

Many prior works have shown that functions in AC0 are hard for various subclasses of LTF
circuits with specific structural restrictions.5 A long line of research has studied lower bounds
for simulating AC0 by LTF ◦ PARITY circuits and the related topic of “threshold degree” lower
bounds for AC0 [MP69; KP97; OS10; BT15; She18a; She18b; BT21; SW21]. An overlapping line of
research has studied “sign rank” lower bounds for AC0 [RS10; BT16; BT21; SW21], which imply
lower bounds for simulating AC0 by LTF ◦MAJ circuits [FKL+01]. Complementary lower bounds
are also known for simulating AC0 by MAJ ◦ LTF circuits [BS92; She09; BVW07; She11]. Beame
and Huynh showed a lower bound for simulating AC0 by MAJ ◦ SYM ◦ AND circuits [BH12],
improving earlier work by Chattopadhyay [Cha07]. Håstad and Goldman proved a lower bound
for simulating depth-(d + 1) monotone AC0 circuits by depth-d monotone LTF circuits [HG91],
improving a result by Yao [Yao89]. Krause and Pudlák showed a lower bound for simulating
depth-(d + 1) AC0 circuits by depth-d circuits of the form LTF ◦ AC0 [KP98].

Note that none of the preceding results apply to the question of simulating AC0 circuits by
general depth-d LTF circuits, where d can be a large constant.

Our new lower bound. Our main result is that for any d, there exists an explicit function F
computable by a depth-(d + 1) AC0 circuit that is hard for LTF circuits of super-linear size and
depth d, without any structural restrictions. Indeed, for a universal constant c > 1, we show

4For the proof that MCSP is not in AC0, see work by Allender, Buhrman, Koucký, van Melkebeek, and
Ronneburger [ABK+06].

5In fact, the works mentioned here managed to prove super-polynomial lower bounds for these subclasses.
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that LTF circuits of depth d and size n1+c−d
cannot compute F. Needless to say, this significantly

strengthens the known limitations of such LTF circuits.

Theorem 1.2 (hardness of AC0 against LTF circuits). Let n ∈ N be sufficiently large, let d ≤
1
20 log log(n), and let γ = 2−10·d. There exists an explicit depth-(d + 1) read-once AC0 formula F = F(n)

d+1
on n input bits such that for every depth-d LTF circuit f with at most n1+γ wires,

Pr
x∈{0,1}n

[ f (x) = F(x)] ≤ 1
2
+ n−γ.

Observe that our theorem is an average-case lower bound: The fraction of n-bit inputs on
which the LTF circuit correctly computes the AC0 function is not much more than half. Prior to
our work, not even a worst-case lower bound of this form was known.

To elaborate on the hard function F, it is a simple layered “AND-OR-AND- · · · ” tree over the
variables (so it is also a monotone function), where gates at distance i from the inputs all have
the same fan-in fi. The fan-ins grow rapidly as we move up the tree, namely f1 = 2−Θ(d) · log n,
f2 = Θ̃(2 f1) = n2−Θ(d)

, and fi+1 = Θ̃( f 100
i ) for i ≥ 2. (See Section 4.1 for further details.) Note that

since F is a read-once formula, it has O(n) wires.

Impossibility of depth-reduction using LTF gates. In Theorem 1.2, the hard function F can
be computed using just a single additional layer of depth, compared to the LTF circuits for which
the lower bound is shown. Thus, Theorem 1.2 is an impossibility result for the task of using
threshold gates to decrease the depth of a given circuit: Even if we are allowed to increase the
number of wires from O(n) to n1+γ, it is still impossible in general to decrease the depth by even
one layer. Our theorem can be interpreted as saying that some functions have an intrinsic “depth
complexity” that is robust to changes in the gate set (i.e., from AND/OR gates to LTF gates), at
least in the near-linear size regime.

In contrast, Allender and Hertrampf [All89; AH94] showed that AC0 can be simulated by LTF
circuits of depth three and size 2polylog(n). (See also followup work by Yao [Yao90] and Beigel
and Tarui [BT94].) This upper bound [All89; AH94] shows that using LTF circuits with 2polylog(n)

wires allows for a massive depth-reduction, whereas our lower bound (Theorem 1.2) asserts that
using LTF circuits with only n1+c−d

wires does not allow for any depth reduction at all.

1.3 Tightness of our result

When d is constant, the correlation bound n−γ in Theorem 1.2 cannot be significantly improved:

• Every depth-(d + 1) AC0 circuit with O(n) wires and top fan-in m can be approximated,
with success probability 1/2 + Ω(1/m), by a depth-d AC0 circuit with O(n) wires. (This
follows from the discriminator lemma [HMP+93].)

• Every monotone function can be approximated, with success probability 1/2 +
Ω((log n)/n), by a constant or a variable. (This follows from the Kahn-Kalai-Linial
theorem [KKL88].)

• Every AC0 circuit (of any constant depth and any polynomial size) can be approximated,
with success probability 1/2 + 2−polylog(n), by a depth-2 threshold circuit with polylog(n)
wires. (This follows from the Linial-Mansour-Nisan theorem [LMN93].)
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For completeness, we include proofs of the three preceding bounds in Appendix A. It is an
interesting problem to close the gaps between our correlation bound and the three preceding
bounds, especially the last one.

In addition, we show a “hardness magnification” result that complements Theorem 1.2. Recall
that such results assert that specific, seemingly-minor improvements to known lower bounds
would imply dramatic, strong lower bounds for powerful models of computation. (An intensive
recent interest in such results was sparked by the work of Oliveira and Santhanam [OS18],
who coined the term, following older results such as those by Srinivasan [Sri03] and Allender
and Koucký [AK10].) Regarding TC0, prior work shows that tiny improvements in the known
lower bounds for certain NC1-complete functions or for MCSP would yield lower bounds for LTF
circuits of arbitrarily large polynomial size [AK10; CT19; CJW20; HHT+22]. In the same spirit,
we show that even a very small improvement to the size bound in Theorem 1.2 would yield a
function in AC0 that is hard for LTF circuits of arbitrarily large polynomial size. (Recall that F(n)

d+1
denotes the depth-(d + 1) AND-OR tree from Theorem 1.2.)

Theorem 1.3 (hardness magnification for our construction). Let d0 ∈ N and k > 1 be constants.
Suppose that for all sufficiently large n, the function F(n)

d0+1 can be computed by depth-d0 LTF circuits

with nk wires. Then for all sufficiently large n and all 2d0 ≤ d ≤ 1
20 log log n, the function F(n)

d+1 can be
computed by depth-d LTF circuits with Õ(n1+k·10−d

) wires.

In particular, suppose that for every sufficiently large constant d and sufficiently large n, the
function F(n)

d+1 cannot be computed by depth-d LTF circuits with n1+2−3·d
wires (slightly improving

the n1+2−10·d
bound from Theorem 1.2). Under that assumption, Theorem 1.3 implies that F(n)

d+1
cannot even be computed by depth-d LTF circuits with any poly(n) number of wires. The proof
of Theorem 1.3 is simple and relies on the recursive structure of F(n)

d+1 (see Section 9).
The optimal size complexity of depth-d LTF circuits computing our depth-(d + 1) AND-OR

tree F(n)
d+1 remains unclear. However, taken together, our results and Allender and Hertrampf’s

upper bound [All89; AH94] essentially narrow down the optimal size complexity to two relatively
small intervals. Either the optimal size complexity is n1+2−Θ(d)

(for all sufficiently large n and d
with d ≤ 1

20 log log n), or else the optimal size complexity is between nω(1) and npolylog(n) (for
each constant d ≥ 4 and infinitely many n).

2 Technical overview

We prove our result using the method of random projections, which is a generalization of the
traditional method of random restrictions that (to the best of our knowledge) was first used by
Impagliazzo and Segerlind [IS01]. A projection maps each variable either to a constant (0 or 1) or
else to another variable. The key feature distinguishing projections from traditional restrictions is
that a projection might “merge” multiple variables by mapping them to a single variable, thereby
keeping the variables alive but “tying them together.”

For this technical overview, let us focus on the problem of proving a worst-case separation
between depth-d LTF circuits and depth-(d + 1) AND-OR trees, and let us focus on the case that
d is constant. Such a separation follows from the following theorem.

Theorem 2.1 (see Theorems 5.1 and 6.1). Let d ∈ N be a constant, let γ = 2−10·d, and let n ∈ N be
sufficiently large. There exists an explicit depth-(d + 1) read-once AC0 formula F = F(n)

d+1 on n input bits,
a random projection π, and a distribution σ such that:

5



1. (Survival of the AND-OR tree) With probability 1− o(1) over π ∼ π, the projected function F�π

is o(1)-unbiased under σ, i.e., ∣∣∣∣Pr
σ
[F�π(σ) = 1]− 1

2

∣∣∣∣ = o(1).

2. (Simplification of any LTF circuit) For any depth-d LTF circuit f on n input bits with at most n1+γ

wires, with probability 1− o(1) over π ∼ π, the projected function f �π is o(1)-close to a constant
under σ, i.e., there is some b ∈ {0, 1} such that

Pr
σ
[ f �π(σ) = b] = 1− o(1).

The distribution σ is simply an i.i.d. product distribution (with biased marginals).
Furthermore, projecting according to π and then assigning values according to σ yields the
uniform distribution over {0, 1}n, which is why we actually get an average-case separation.

Both our hard function F and our projection π are based on the work of Håstad, Rossman,
Servedio, and Tan [HRS+17]. We do modify the parameters, but still, the fact that the
hard function F survives the projection (Item 1 above) follows from a fairly straightforward
generalization of their analysis. The main challenge is showing that LTF circuits simplify under
the specific random projection procedure π (i.e., proving Item 2).

Random projections and LTF circuits. The last couple of decades have seen the development of
what is often referred to as the structural theory of linear threshold functions, which can be viewed
as a special case of the “structure vs. randomness” paradigm. One of the main applications of
this body of knowledge is the analysis of the effect of random and pseudorandom restrictions on LTF

circuits of depth d and size at most n1+2−O(d)
[Ser07; DGJ+10; CSS18; Tel18; HHT+22].

The main technical contribution of our work is showing that this body of knowledge can
be extended so that it works in an inherently different setting, namely the setting of random
projections as discussed above. The projections that we analyze are quite different than
traditional random restrictions: Not only are variables sometimes merged, but also the assigned
values are heavily biased, and the values assigned to them have significant correlations. Indeed,
these projections cannot even be considered “pseudorandom,” but we nevertheless show that
LTF circuits of depth d simplify under these projections. The underlying technical challenges
require extending and refining techniques used in previous works in the last decade.

In Section 2.1, we describe the hard function F, the projection π, and the distribution σ in
more detail (the full definitions are given in Section 4), and we briefly explain why F survives
the projection. Then, in Sections 2.2–2.4, we discuss the proof that LTF circuits simplify under π,
step-by-step.

2.1 Setup and high-level plan

Let us describe our random projection procedure. As mentioned above, our projection procedure
is essentially the procedure from the work of Håstad, Rossman, Servedio, and Tan [HRS+17]
but with modified parameters. This projection procedure is intricate and delicate. One of our
contributions is to devise an alternative way of thinking about the projection procedure that
hides some complexity, enabling us to analyze its effect on LTF circuits. This abstraction might
be useful in other contexts as well. While the new perspective is enough to carry out most of our
analysis, we do still rely on the original perspective for some parts of the analysis. (Readers who
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are familiar with the work of Håstad et al. [HRS+17] are encouraged to refer to Section 6.1, in
which we prove the formal connection between the two perspectives.) We now give an overview
of the procedure from the new perspective.

The random projections. We denote by b1−β a Bernoulli RV that gets value 1 with probability
1− β. The projection procedure works in d iterations. For the first iteration, consider the gates
of F just above the inputs, denoted g1, . . . , gt, which are all AND gates. We partition the variables
into disjoint blocks B1, . . . , Bt, where Bj consists of the variables that feed into the gate gj. Then,
in each block Bj independently, for suitable parameters p1, β1 > 0:

1. With probability p1 the block survives, in which case a random subset of its variables of
density ≈ β1 is kept alive,6 and all the other variables in the block are assigned the value 1
(recall that the gj is an AND gate).

2. If the block does not survive, the variables are assigned values from b1−β1 independently,
except that the probability that all variables are assigned 1 is artificially decreased.

Note that the expected fraction of living variables in such an iteration is approximately p1 =
p1 · β1. In the end of the iteration, we merge the living variables in each surviving block; using
the terminology of Håstad, Rossman, Servedio, and Tan [HRS+17], we project these variables
to a single new variable. We consider this new variable to be a “level-1 variable” whereas the
original input variables are level-0 variables. We denote the end-result of this assignment and
merging (i.e., projection) process by π(1), and we refer to any projection with the above structure
as a corrupted biased block projection. (See Definitions 6.2 and 6.3.)

After applying π(1), we can identify each AND gate gj either with a constant (in case a
variable in Bj was assigned 0, or all variables in Bj were assigned 1), or with the living variable
corresponding to the “merged” variables in Bj (in case some variables in Bj were left alive, and
all the others were assigned 1). We thus recurse into the next iteration with a circuit of smaller
depth on the level-1 variables. Subsequent iterations of the projection, denoted π(2), . . . , π(d),
will be parameterized by different values of p2, . . . , pd and β2, . . . , βd. The projection π(i)

maps level-(i − 1) variables to level-i variables (or constants). The projection π referred to
in Theorem 2.1 applies π(1), . . . , π(d) successively, thereby mapping level-0 variables to level-d
variables or constants.

Loosely speaking, our goal is to prove that each iteration of the procedure above reduces
the depth of F by exactly one layer, and simultaneously reduces the depth of any LTF circuit
by at least one layer; thus, after d iterations, F maintains structure whereas any LTF circuit
of depth d trivializes. As articulated in Theorem 2.1, our notions of “maintaining structure”
and “trivialization” are defined with respect to a suitable distribution σ. Similarly, at each
intermediate stage, we carry out our analysis with respect to a corresponding intermediate
distribution σ(i) over the level-(i − 1) variables. This distribution is also an i.i.d. product
distribution with suitably biased marginals (the bias differs from one i to the next).

Specifying the parameters. Let us now motivate our choice of parameters, informed by prior
work on LTF circuits. In Håstad, Rossman, Servedio, and Tan’s work (on AC0 circuits) [HRS+17],
the fraction pi of living variables is essentially the same from one iteration to the next: p1 ≈
p2 ≈ · · · ≈ pd. In contrast, previous restriction procedures for LTF circuits apply d rounds
of restrictions where the fraction of living variables decreases from one iteration to the next:

6Specifically, we include each element with probability β1 and condition on getting a nonempty set.
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pi+1 = (pi)
C for a large constant C > 1. We follow suit, and adapt the AND-OR tree and

the random projections above to use corresponding parameters. Accounting for the required
changes to maintain the properties above, the resulting AND-OR tree is such that the fan-ins of
gates in the tree grow rapidly as we go up the layers.

Being more specific, recall that we are assuming that the depth d+ 1 is constant for simplicity.
For a parameter M (where M ≈ nε for a small constant ε > 0), we define a sequence of
parameters M1 = M and Mi+1 = M100

i for i = 1, . . . , d− 1. We choose the fan-ins in the AND-OR
tree such that under a uniform random input, for each gate g at distance i ≤ d from the inputs,
the subformula rooted at g has acceptance probability roughly 1/Mi if i is even or 1− 1/Mi if i
is odd, and overall, the AND-OR tree has acceptance probability roughly 1/2. In more detail, we
set

fi = fan-ins at distance i from inputs ≈


log(M1) i = 1
Mi−1 · ln(Mi) 2 ≤ i ≤ d
Md · ln(2) i = d + 1

pi = probability that a block survives under π(i) ≈ 1/
√

Mi

βi =
bias parameter of π(i)

(biased toward 1 if i is odd, 0 if i is even)
= 1/

√
Mi−1

σ(i) = distribution over level-(i− 1) variables =

{
b1−βi to each variable (i.i.d.) i odd
bβi to each variable (i.i.d.) i even.

For the precise values, see Sections 4 and 6.1.
For intuition, we remark that our AND-OR tree corresponds to a d-fold composition that

alternates between the well-known tribes function (a read-once DNF) and its Boolean dual (a
read-once CNF), with widths approximately log(M1), . . . , log(Md). The tribes function and its
dual are approximately balanced, so the composition is also approximately balanced. The top
fan-ins of these CNFs and DNFs are approximately M1 · ln(2), . . . , Md · ln(2), and hence after
merging adjacent layers when possible, we get a depth-(d + 1) tree with the fan-ins as described
above.

Observe that for i ≥ 2, the values that π(i) assigns to fixed variables are highly biased,
alternately toward 1 or toward 0.

As mentioned above, the proof that F survives the projection procedure simply generalizes
the analysis in Håstad, Rossman, Servedio, and Tan’s work [HRS+17] to our different parameter
setting. Intuitively, the “blockwise” correlations that are present in the projections π(1), . . . , π(d)

(e.g., recall that when π(1) keeps a variable alive, it assigns 1 to all of the non-surviving variables
in that block) are tailored to the AND-OR-tree and designed to keep it alive. See Section 5 for
details. The innovative part in our argument is showing that LTF circuits simplify under the
projections.

LTF circuits simplify under projections: The high-level plan. Our argument has a high-level
structure similar to the ones in prior work [CSS18; Tel18; HHT+22], but instead of arguing about
the effects of traditional random restrictions, we now argue about the effects of each random
projection π(i) above (for any fixed i ∈ [d]). For simplicity, we assume from now on that i is odd,
in which case the assigned values of π(i) are biased toward 1 and the corresponding gate in F is
an AND gate.
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Similarly to the analysis in prior work by the authors [HHT+22] (also implicit in the work of
Chen, Santhanam, and Srinivasan [CSS18]), we will work with hybrid computational models. That
is, on the way to proving that any LTF circuit f becomes (close to) a constant, we argue that
after intermediate projections π(i) the circuit can be computed by a computational model that
combines decision trees and LTF circuits; specifically, the tree queries variables to reach a leaf,
and the leaf is labeled by an LTF circuit that is then applied to the input.7

Our proof has three main steps:

1. As a first step, we prove that applying π(i) to any LTF (i.e., any single gate in f ) makes
the LTF extremely close to a constant, with somewhat high probability. This probability is
high, but not enough to allow a union bound on all gates. We will elaborate in Section 2.2.

2. Our second step is to argue that applying π(i) to any LTF circuit of depth d + 1− i with
n1+2−O(d)

wires simplifies the circuit, with somewhat high probability, to be very close to a
decision tree with LTF circuits of depth d − i at its leaves, where the depth of the tree is
significantly smaller than the number of living variables under π(i). We will elaborate in
Section 2.3.

3. The final step is to show that applying π(i) to a decision tree with LTF circuits of depth
d + 1 − i at its leaves simplifies the tree, with high probability, such that it is close to a
shallower decision tree in which the leaves are labeled by depth d− i LTF circuits. We will
elaborate in Section 2.4.

We stress that in all the statements above, the notion of “approximating a function” (i.e.,
when saying that a restricted function is close to a simpler function) refers to the distribution
σ(i+1), rather than to the uniform distribution. Having proved the three steps above, the proof
will analyze the applications of π(i) for i = 1, . . . , d, arguing at each iteration i that the circuit
simplifies with respect to the “next” distribution σ(i+1). In the last step the circuit will be
a decision tree that queries only a sub-constant fraction of its variables. Such a tree cannot
approximate the AND (or OR) function F�π under σ(d+1). Indeed, with high probability over π,
the tree is close to a constant under σ(d+1), whereas F�π is nearly balanced (because σ(d+1) is
biased).

2.2 Random projections simplify any single LTF

Chen, Santhanam, and Srinivasan showed that a random restriction that keeps a p-fraction of the
variables alive simplifies any single LTF to be exp(−p−Ω(1))-close to a constant, with probability
at least 1− pΩ(1) [CSS18]. A motivating observation for our analysis is that a biased restriction,
which keeps a p-fraction of variables alive and fixes the other variables independently by b1−β,
simplifies any unweighted threshold function to be exp(−p−Ω(1))-close to a constant with respect to
any product distribution, with probability 1− (p/β)Ω(1).8 In other words, for any bias β > 0
of assignments to the fixed variables, the probability that an unweighted LTF fails to simplify is

7This hybrid model is simpler than the one considered in the authors’ prior work [HHT+22], since the latter also
allowed queries to LTF gates at internal nodes of the tree.

8To see this, let Φ be an n-bit unweighted LTF, and let 1/n ≤ p ≤ 1/2. Consider a random restriction ρ that keeps a
random subset S of p · n variables alive and fixes the variables in [n] \ S independently according to b1−β. Hoeffding’s
inequality implies that (with respect to any fixed product distribution) the function is ε-close to a constant only if the
sum of values assigned to variables in [n] \ S falls in an interval of length O(

√
log(1/ε) · p · n) (see Corollary 3.14).

By the Berry-Esseen theorem (see Lemma 6.9), the probability of this event is at most O(
√

log(1/ε) · (p/β)).
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(p/β)Ω(1), compared to the pΩ(1) bound that Chen, Santhanam, and Srinivasan showed in their
setting [CSS18].

We extend this statement to hold for an arbitrary (weighted) LTF rather than just the un-
weighted LTFs; to hold when the values assigned to fixed variables are correlated (i.e., within
each block, if the block survives then all fixed variables are simultaneously assigned the value
1, and otherwise the probability of the all-ones string is artificially decreased); and to hold also
when considering a merging of the variables after applying the restriction. In this more challeng-
ing setting, we show a slightly worse error bound of (p/β2)Ω(1) compared to (p/β)Ω(1):

Theorem 2.2 (LTFs simplify under corrupted biased block projections; informal, see Theorem 6.5).
Let Φ be an LTF on n variables, let π be a corrupted biased block projection with parameters p and β,
and let σ be a product distribution (possibly with biased marginals). Assume that each block Bj satisfies
ε/n ≤ (1− β)|Bj| ≤ p. Then the probability that Φ�π is not ε-close to a constant under σ is

O
((

p
β2

)1/3

· log
(n

ε

))
.

Before explaining the ideas in the proof, let us comment on the subtlety of the parameters
obtained in Theorem 2.2. First, in Theorem 2.2, we assume both upper and lower bounds
on the quantity (1 − β)|Bj|. That is, we assume that the block size |Bj| is neither too big
nor too small. Fortunately, this “Goldilocks” condition is indeed satisfied by our projections
π(1), . . . , π(d) with high probability.9 (It is also satisfied by Håstad, Rossman, Servedio,
and Tan’s projections [HRS+17].) Thus, Theorem 2.2 applies to π(i) with failure probability
O((pi/β2

i )
1/3 · log(n/ε)).

Secondly, the projections in Håstad, Rossman, Servedio, and Tan’s original work [HRS+17]
satisfy p ≈ β. For such parameters, the bound of Theorem 2.2 would be useless. However,
our modified projections have parameters p and β that vary from one iteration to the next, and
crucially, the bias parameter β in each iteration is approximately equal to the block survival
probability p in the previous iteration, i.e., βi ≈ pi−1. A key property of our projections is that
they are “increasingly aggressive” in the sense that pi � pi−1 (specifically pi ≈ p100

i−1). Therefore,
the bound of Theorem 2.2 is indeed small when we apply it to our projections.

To prove Theorem 2.2, we generalize the “structure vs. randomness” approach that
Chen, Santhanam, and Srinivasan used to show that LTFs simplify under traditional random
restrictions [CSS18]. Loosely speaking, their proof first analyzes “regular” LTFs, i.e., LTFs in
which the weights are reasonably well-spread (this is the “random” case). Under the assumption
of regularity, they argue that the weighted sum of assigned values is anti-concentrated, and
thus unlikely to land in the small interval that would cause the restricted LTF to be somewhat
balanced. To complement this analysis, they analyze LTFs that have a small number of “heavy”
variables (this is the “structure” case). If the number of heavy variables is sufficiently small,
then it is possible to fix them and reduce to the regular case, and otherwise they show anti-
concentration among these “heavy” variables alone.

To make this approach work in our setting, the main challenge is establishing anti-
concentration in the regular case.10 Recall that in the projection π(i), after the set of living

9Actually, in the rare event that a block is an unacceptable size, our projection assigns values to all variables in that
block from an i.i.d. product distribution independently of the other blocks (see Definition 6.3), and we show that this
does not affect the rest of the analysis.

10By comparison, our analysis of non-regular LTFs is a relatively straightforward adaptation of techniques from
prior work. Note that both the regular and the non-regular cases contribute to the final error bound in Theorem 2.2,
and as discussed, that error bound forces us to use a careful choice of parameters in our construction.
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variables has been fixed, non-surviving variables in surviving blocks are always assigned the
value 1; this deterministic assignment does not contribute any anti-concentration at all. In
non-surviving blocks, the assignment is random, but the assigned values are not independent,
because the probability of the all-ones assignment is artificially decreased. The effect of this
“corruption” within a single block is limited (because the all-ones assignment would be rare
even without corruption). However, there are many blocks, and the overall effect is statistically
significant; nevertheless, our goal is to show anti-concentration despite these corruptions.

To prove anti-concentration of the weighted sum of the assigned values, we first observe
that with high probability, the variables in non-surviving blocks have a constant fraction of the
total `2-weight. (By “`2-weight,” we mean the sum of the squares of the weights.) We may
therefore focus on such variables (and ignore the non-surviving variables in surviving blocks).
To handle the corruptions in non-surviving blocks, we show that the weighted sum of assigned
values to fixed variables in non-surviving blocks can be represented as the weighted sum of
truly independent Bernoulli variables, plus an error term. The sum of independent variables is
anti-concentrated by the Berry-Esseen theorem (see Lemma 6.9). To handle the error term, we
bound its variance (this is where we use the assumption that the blocks are not too small, in
which case the all-ones assignment would be rare even without corruption; see Lemma 6.7 for
details). We thereby show that the error term is concentrated, and therefore it does little harm to
the anti-concentration property of the sum of independent variables.

The anti-concentration established by the preceding arguments must be compared to the `2-
weight of the living variables. Here we face another potential pitfall: When variables are merged,
their weights effectively add, which typically increases the `2-weight of the living variables
(making the LTF more balanced). This potential pitfall is the reason that we assume that the
blocks are not too big. The assumption in Theorem 2.2 implies that with high probability, the
number of variables that are merged in each block is small – only O(log(n/ε)) – and therefore
the detrimental effect of mergings is limited.

2.3 Random projections simplify LTF circuits (if we allow some queries)

The next step is to argue that for every LTF circuit f of slightly super-linear size, with high
probability, π(i) “simplifies” the entire bottom layer of f . Ideally, we are hoping that the gates
in the bottom layer become close to constants. We cannot simply apply a union bound to claim
that they are all close to constants simultaneously, because the failure probability in Theorem 2.2
might be too large. Instead, following prior work, we argue that after querying a sub-linear number
of the remaining variables, each gate in the bottom layer is either close to a constant (over the
distribution σ(i+1)) or has fan-in one. Thus, the projected circuit f �π(i) can be approximated (over
σ(i+1)) by a decision tree whose leaves are labeled by shallower LTF circuits.

Given appropriate techniques from prior work [CSS18; Tel18; KL18; HHT+22; BKK+22], this
is the easiest part of our argument, because those techniques do not depend on the assignments
to fixed variables, but rather only on concentration properties of the number of living variables
inside certain sets. We include a brief explanation of the argument here for completeness (see
Section 6.3 for details).

We partition the gates in the bottom layer of f into “heavy gates” and “light gates” based on
their fan-in. Most light gates have only one (or zero) living variable feeding into them after the
projection, so they can be replaced with a wire (or eliminated), and we query the variables feeding
into the remaining light gates (there are few such variables, because these gates are light). Most
heavy gates become close to a constant by Theorem 2.2, and we query all the variables feeding
into the remaining heavy gates. The total number of such queries is bounded because the total
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number of wires in the circuit is bounded. (The latter argument is carried out by a standard
bucketing technique, looking at all gates with fan-in roughly 2i for each i and using the simple
observation that there can be at most w/2i such gates for each i.)

2.4 Random projections simplify decision trees with LTF circuits at their leaves

The previous step yielded a decision tree T with LTF circuits at its leaves. The last key piece in
our proof is arguing that each such decision tree simplifies, under π(i), to a shallower decision
tree with shallower LTF circuit at its leaves. (Indeed, we need the tree depth to decrease by a
factor of ≈ pi, and we need the circuits to decrease by one layer.)

First, we show that the tree depth indeed shrinks, with high probability, by a factor of ≈ pi.
This turns out to be not as straightforward as it might seem, due to correlations and mergings in
π(i); see Lemma 7.1 for details. Nonetheless, the more interesting part of the argument is arguing
that we can use shallower LTF circuits at the leaves. The natural strategy to try and prove this is
to claim that for each leaf, the corresponding circuit simplifies under π(i) with high probability,
and thus the fraction of “bad” leaves is small and we can replace those by constants, obtaining a
tree with similar functionality.

The problem with this approach is the correlations between variables in the same block under
the projection π(i). At each fixed leaf, simplification occurs with high probability, but we must
analyze the random leaf reached when we apply π(i) to T and then plug in an input sampled
from σ(i+1). In particular, the leaf is determined in part by π(i), and the event of reaching a
particular leaf can be correlated with the event that simplification fails at that leaf. It is therefore
not clear how to show that simplification occurs with high probability at the random leaf that we
reach.11

Dealing with this issue is the most subtle part of our argument, and it involves a two-step
approach.

Preprocessing the tree. As a first step, we “preprocess” the tree T, transforming it into a new
tree T̃. The new tree T̃ simulates T and in fact refines T in the following way: if T ever queries
too many variables in a block, or if T ever queries a variable in some block and observes a 0
(a somewhat unlikely event as bits are biased towards 1), then T̃ queries all variables in that
block. It turns out that these modifications are not too costly, in the sense that after applying the
projection π(i), the two projected trees T�π(i) and T̃�π(i) have similar query complexities. Briefly,
this holds for the following two reasons:

• The event of querying too many variables in a single block can only happen so many times
given T’s depth bound, and most such blocks don’t survive the projection, so these events
only cause T̃�π(i) to perform a few additional queries compared to T�π(i) .

• If a variable xj in block B is observed to be 0, we have two cases. If the block B is
non-surviving under π(i), then T̃�π(i) does not need to query any variable in B, because
they are all assigned. On the other hand, if the block B is surviving, then the individual
variable xj ∈ B must survive in π(i), because non-surviving variables in surviving blocks
are assigned the value 1. Therefore, in this case, both T�π(i) and T̃�π(i) query the single

11In previous work [HHT+22] a similar challenge occurred, since the path to each leaf contained LTFs. However,
the challenge there was significantly easier, since the number of LTFs on a path was small and thus it was possible to
easily upper bound their effect on the resulting distribution.
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“merged” variable corresponding to the entire block B. Thus, in either case, observing a 0
ultimately does not cause T̃�π(i) to perform any additional queries compared to T�π(i) .

Conditional analysis of corrupted biased block projections. For the second step, consider the
process of applying π(i) to T̃ and then plugging in an input sampled from σ(i+1). We analyze
the joint distribution of π(i) and σ(i+1) conditioned on the event of reaching a leaf `. Because of
the preprocessing step, we can make a “win-win” argument: for each block, either (a) the tree
queries every single variable in the block, or (b) the tree only makes a few queries to the block
and observes 1 each time. In case (a), we can assume without loss of generality that the circuit
C` labeling the leaf ` ignores all variables in that block, hence we can ignore the block. In case
(b), the constraints on the queries help us to bound the extent to which conditioning distorts the
distributions of π(i) and σ(i+1).

For example, we show that the event we are conditioning on in case (b) is a high-probability
event regardless of whether the block survives, and hence the conditioning has little effect on the
block’s survival probability. By analyzing our projection distribution in more detail, we show
that instead of applying π(i) to the circuit C`, plugging in an input sampled from σ(i+1), and
conditioning on the event of reaching `, we can equivalently imagine applying another corrupted
biased block projection π̃, plugging in an input sampled from another product distribution σ̃, and not
conditioning on anything. The parameters of π̃ and ỹ are slightly different than the parameters
of π(i) and σ(i+1), but our analysis of a single circuit is sufficiently robust against these small
distortions to conclude that T simplifies with high probability.

2.5 Putting it all together

To summarize our discussion so far, we show that when we apply the random projection π(i) to a
decision tree Ti−1 with LTF circuits at its leaves, we get another decision tree Ti with LTF circuits
at its leaves that is “simpler” in the sense that the circuit-depth decreases by 1. The tree Ti agrees
with the projected function Ti−1�π(i) with high probability under the product distribution σ(i+1).
To finish the proof, we need to apply some type of triangle inequality. For example, we know
that T1 ≈ T0�π(1) and T2 ≈ T1�π(2) ; we want to conclude that T2 ≈ T0�π(2)◦π(1) .

We are indeed able to show that Td ≈ T0�π(d)◦···◦π(1) by relying upon a crucial feature of the
projections π(1), . . . , π(d) and the product distributions σ(1), . . . , σ(d+1). These projections and
product distributions are compatible with each other, in the sense that applying π(i) and then
assigning values sampled from σ(i+1) yields exactly the distribution σ(i). (See Lemma 5.2.)

The same feature (the “completion property”) is also crucial in the work of Håstad, Rossman,
Servedio, and Tan [HRS+17]. However, the completion property plays a different role in their
work than it does in ours. Their work is focused on average-case lower bounds; they rely on
the fact that applying π(d) ◦ · · · ◦π(1) and then assigning values sampled from σ(d+1) yields the
uniform distribution over inputs. The completion property is likewise an essential ingredient of
our average-case separation, but the distinction is that in our setting, the completion property
would still be crucial even if we were merely aiming for a worst-case separation. After all, the
simplification we achieve at intermediate stages of our argument is itself only approximate,
forcing us to use techniques designed for average-case separations.

The completion property holds trivially in the traditional setting of truly random restrictions,
because the values assigned by the restriction are themselves independent and uniform. In both
our work and the work of Håstad et al. [HRS+17], there are correlations between the values
assigned to different variables, which are essential for ensuring that the AND-OR tree F survives.
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In both works, the purpose of merging variables (i.e., the purpose of using projections rather than
restrictions) is to achieve the completion property despite these correlations.

Organization

In Section 4 we formally define our hard AND-OR functions (in Section 4.1), and random
projections (in Section 4.2). Section 5 is dedicated to proving that the hard function survives
the sequence of random projections. Sections 6 and 7 establish that random projections simplify
any LTF circuit with a bounded number of wires to (nearly) a constant (see Theorem 6.1). Finally,
we prove Theorem 1.2 by putting things together in Section 8. Hardness magnification for our
construction (Theorem 1.3) is proved in Section 9.

3 Preliminaries

3.1 Approximations

Throughout this paper, the notation a± b denotes the interval [a− b, a + b] rather than the two-
point set {a− b, a + b}. The following inequalities are standard.

Proposition 3.1 (The approximation 1− c ≈ e−c for small c). If c < 1, then

exp
(
− c

1− c

)
≤ 1− c ≤ exp(−c).

(In fact, the right-hand inequality holds for all c ∈ R.) Consequently, if c ∈ [0, 1/2], then

1± c ⊆ exp(0± 2c) and exp(0± c) ⊆ 1± 2c.

3.2 Projections

A projection is a generalization of a restriction in which a variable can be assigned a value or
mapped to a new variable.12 In the formal definition, we include 0 and 1 in the domain of the
projection to facilitate reasoning about compositions.

Definition 3.2 (Projections). A projection is a function π : X ∪ {0, 1} → Y ∪ {0, 1}, where X and Y
are sets of formal Boolean variables, with the property that π(0) = 0 and π(1) = 1.

If π(xi) ∈ Y , we say that xi survives the projection. Observe that the composition of two
projections, denoted π2 ◦ π1, is once again a projection.

We will sometimes identify a projection π : X ∪ {0, 1} → Y ∪ {0, 1} with the corresponding
string π ∈ (Y ∪ {0, 1})X . As a special case, we identify each binary string y ∈ {0, 1}Y with a
projection y : Y ∪ {0, 1} → {0, 1} in the natural way. This identification allows us to compose
strings with projections. If π : X ∪ {0, 1} → Y ∪ {0, 1} is a projection and y ∈ {0, 1}Y , then
y ◦ π ∈ {0, 1}X .

Recall that we will use projections in which the assignments to fixed variables are biased,
alternating between being very close to 1 and being very close to 0. The following definition
facilitates swapping the roles of 0 and 1 in a projection, in order to present projections with such
biases as “complements” of one another.

12Filmus, Meir, and Tal study a natural, more general model of projections in which a variable might be mapped to
the negation of another variable [FMT21]. We have no need of this extra generality, so we omit it from our definition
for simplicity.
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Definition 3.3 (Complement projection). Let π : X ∪ {0, 1} → Y ∪ {0, 1} be a projection. The
complement projection π : X ∪ {0, 1} → Y ∪ {0, 1} is defined as follows: for xi ∈ X , we set

π(xi) =

{
1− π(xi) if π(xi) ∈ {0, 1}
π(xi) if π(xi) ∈ Y .

3.3 Functions

Definition 3.4 (Applying a projection to a function). Let f : {0, 1}X → Ω be a function and let
π : X ∪ {0, 1} → Y ∪ {0, 1} be a projection. The projected function f �π : {0, 1}Y → Ω is given by

f �π(y) = f (y ◦ π).

That is, we assign a value to each variable in X by first applying the projection π and then, if it survives,
plugging in the appropriate coordinate of y. The original function f is evaluated on this assignment.

Definition 3.5 (Approximators). Let f , f̃ : {0, 1}n → {0, 1}, let X be a distribution over {0, 1}n, and
let ε > 0. We say that f̃ approximates f under X with error ε if

Pr
x∼X

[
f̃ (x) 6= f (x)

]
≤ ε.

As a special case, when f̃ is a constant function, we say that f is ε-close to constant under X. If f is
not ε-close to constant under X, then we say that f is ε-far from constant under X. We say that f is
ε-unbiased under X if E[ f (X)] ∈ 1

2 ± ε.

3.4 The Bernoulli distribution and product distributions

We denote product distributions over {0, 1}t using the following notation.

Definition 3.6. For α ∈ [0, 1], let bα denote the distribution of a Bernoulli random variable that takes
value 1 with probability α and 0 with probability 1− α. For t ∈N, let bt

α denote the product distribution
of t independent bits, each distributed according to bα. More generally, for a vector ~α ∈ [0, 1]t, let b~α
denote the product distribution with t coordinates with marginal distributions bα1 , . . . , bαt . If X is a set
of variables, we also write bXα to denote the distribution b|X |α , thought of as an assignment to X .

To facilitate swapping the roles of 0 and 1, we generalize the notation bα as follows.

Definition 3.7. For b ∈ {0, 1} and α ∈ [0, 1], let bα→b denote the distribution of a Bernoulli random
variable that takes value b with probability α and 1− b with probability 1− α. We similarly define bt

α→b
and bXα→b.

3.5 Conditional independence

We record the following elementary fact that we use several times.

Lemma 3.8. Let x1, . . . , xt be independent random variables. Let E be an event of the form E =
E1 ∧ · · · ∧ Et, where Ej depends only on xj. Then x1, . . . , xt are conditionally independent given E , and
furthermore, for each j ∈ [t], the conditional distributions (xj | E) and (xj | Ej) are identical.
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3.6 Concentration bounds

Theorem 3.9 (Multiplicative Chernoff bounds). Let x1, . . . , xn be independent random variables in
[0, 1], and let µ = E[∑n

i=1 xi]. Then, for any δ > 0,

Pr

[
n

∑
i=1

xi > (1 + δ) · µ
]
≤ exp

(
− δ2

δ + 2
· µ
)

,

and for any δ ∈ (0, 1),

Pr

[
n

∑
i=1

xi < (1− δ) · µ
]
≤ exp

(
−δ2

2
· µ
)

.

The following three variants of the Chernoff bound all follow readily from Theorem 3.9; see
Appendix B for the proofs. The first variant is a convenient “additive error” setting of parameters.

Corollary 3.10. Let x1, . . . , xn be independent random variables in [0, 1], let µ ≥ 0, and suppose
E[∑n

i=1 xi] ≤ µ. Then, for any ε > 0,

Pr

[
n

∑
i=1

xi > 2µ + 3 ln(1/ε)

]
≤ ε.

The second variant is a version of the Chernoff bound designed for the situation that the
expectation µ is itself only approximately equal to some “ideal” value µ∗.

Corollary 3.11. Let x1, . . . , xn be independent random variables in [0, 1]. Let µ = E[∑n
i=1 xi], let µ∗ > 0,

let ε ∈ (0, 1/2), and assume that µ ∈ µ∗ · (1± ε). Then for any δ ∈ (2ε, 1),

Pr

[
n

∑
i=1

xi 6∈ µ∗ · (1± δ)

]
≤ 2 exp

(
−δ2 · µ∗

42

)
.

The third variant is a version of the Chernoff bound for random bits that are not independent.

Corollary 3.12 (Upper Chernoff bound for correlated random bits). Let x0, . . . , xn and y1, . . . , yn be
discrete random variables (not necessarily independent) where yi ∈ {0, 1}. Assume that for every i ∈ [n],
the variables y1, . . . , yi are determined by xi. Let ζ > 0, and assume that for every i ∈ [n] and every
x ∈ Supp(xi−1), we have

Pr[yi = 1 | xi−1 = x] ≤ ζ.

Then for any ε > 0,

Pr

[
n

∑
i=1

yi > 2ζ · n + 3 ln(1/ε)

]
≤ ε.

We will use Hoeffding’s inequality to prove that certain LTFs are close to constant under
product distributions.

Theorem 3.13 (Hoeffding’s inequality). Let w ∈ Rn, let x1, . . . , xn be independent random variables
with xi ∈ [0, wi], and let µ = E[∑n

i=1 xi]. Then, for any R > 0,

Pr

[∣∣∣∣∣µ− n

∑
i=1

xi

∣∣∣∣∣ ≥ R · ‖w‖2

]
≤ 2 exp

(
−2R2) .
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Corollary 3.14 (sufficient condition for being close to constant under a product distribution). Let
Φ be an LTF on t input bits, say Φ(x) = 1 ⇐⇒ ∑t

i=1 wi · xi ≥ θ. Let ~α ∈ [0, 1]t, let µ = ∑i αi · wi,
and let ε > 0. If

|θ − µ| > 1
2

√
ln(2/ε) · ‖w‖2,

then Φ is ε-close to constant under b~α.

4 The setup: AND-OR trees and corresponding random projections

4.1 The AND-OR tree

Let d ∈ N. Our “hard function” is a depth-(d + 1) AND-OR tree (a monotone read-once AC0

formula). The gates at distance i from the inputs are AND gates if i is odd and OR gates if i is
even. Historically, the “grandparent” of our construction is Sipser’s function [Sip83], which is an
AND-OR tree in which every gate has the same fan-in n1/(d+1). Håstad, Rossman, Servedio,
and Tan studied a variant where the fan-ins are different in the bottom-most and top-most
layers [HRS+17]. We will modify the construction still further. In this section, we define a family
of trees in which the fan-ins are allowed to vary from one layer to the next (although gates in the
same layer always have the same fan-in). Ultimately, we will pick parameters so that the fan-ins
increase as we go up the tree, as discussed after the statement of Theorem 1.2 and in Section 2.1.

The fan-ins are governed by a sequence of parameters ~M = (M1, . . . , Md) ∈Nd, where M1 is
a power of two. Ideally, when we plug in a uniform random input, we want each gate at distance
i ≤ d from the inputs to output 1 with probability 1/Mi (resp. 1− 1/Mi) assuming i is odd (resp.
even), and we want the final output gate to output 1 with probability 1/2. (When it comes time
to analyze LTF circuits, we will fix Mi = M100i−1

. The results of this section and the next hold for
a generic choice of M1, . . . , Md, so let us leave them unfixed for now.)

In reality, there will be some roundoff errors. Each gate at distance i from the inputs will
output 1 with probability ci (resp. 1− ci) assuming i is odd (resp. even), where ci will be close to
the “ideal” value 1/Mi but potentially slightly smaller. The precise definition follows.

Definition 4.1 (The AND-OR tree Fd+1, ~M). Let ~M = (M1, . . . , Md) ∈ Nd, where M1 is a power of
two. Let Md+1 = 2 and let c0 = 1/2. For i = 1, . . . , d + 1, let fi be the smallest integer such that
(1− ci−1)

fi ≤ 1/Mi and let ci = (1− ci−1)
fi . The function Fd+1, ~M is defined by a depth-(d + 1) read-

once formula of alternating levels of AND gates and OR gates, starting with variables feeding into AND
gates. For i ∈ [d + 1], the fan-in of each gate at distance i from the inputs is fi. For each gate v, let Fv
denote the subformula rooted at v and let Children(v) denote the set of gates feeding into v. (See Table 1
and Figure 1.)

One can show by induction on i that ci indeed has the interpretation that we claimed prior to
Definition 4.1:

Proposition 4.2. Let i ∈ {0, 1, . . . , d + 1}, let b = i mod 2, and let v be a gate a distance i from the
inputs. Then

Pr
x∈{0,1}n

[Fv(x) = b] = ci.

Let M = min{M1, . . . , Md}; we will often assume that M is greater than some sufficiently
large constant (independent of d). For comparison, the function studied by Håstad, Rossman,
Servedio, and Tan [HRS+17] is parameterized by a single value m and is attained as a special case
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Parameter Meaning Value to have in mind

d Depth = d + 1 O(1) *

ci ci = E[Fv] where height(v) = i (odd) 1/Mi **

Mi Tree is constructed so that ci ≈ 1/Mi M100i−1
*

M min{M1, . . . , Md} n2−Θ(d)
**

fi Fan-in at distance i from inputs


log(M1) i = 1
Mi−1 · ln(Mi) 1 < i ≤ d
Md · ln(2) i = d + 1

**
**

Table 1: The parameters of the AND-OR tree Fd+1, ~M.

*The definition of Fd+1, ~M allows for other values, but these are the values we are most in-
terested in.
**These values are approximate.

x1 x2

∧

x f1

1− c0 1− c0

· · ·

f1

· · ·

· · ·

∧

xn

1− c0 1− c0

· · ·

f1

· · ·

· · ·

∨ ∨

c1 c1 c1

· · ·
c1

f2

c1 c1

· · ·

· · ·

· · ·

· · ·

1− c2 1− c2

f2

...

fd+1

· · ·

· · ·

...
...

· · ·

Figure 1: The AND-OR tree Fd+1, ~M. The depth is d + 1. The output gate is ∧ if the depth is odd
and ∨ if the depth is even. The label of a wire is the expectation of that wire when the input to
the formula is chosen uniformly at random from {0, 1}n.
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of Definition 4.1 by taking M1 = M2 = · · · = Md = 22m. We now estimate the fan-ins f1, . . . , fd+1
and the probabilities c1, . . . , cd+1.

Claim 4.3. Assume M is sufficiently large. Then

c1 = 1/M1

ci = (1/Mi) · (1± 1/M) for i ∈ {2, . . . , d + 1}
f1 = log(M1)

fi = Mi−1 · ln(Mi) · (1± 3/M) for i ∈ {2, . . . , d + 1}.

Proof. Since M1 is a power of two, f1 = log(M1) and c1 = 1/M1. For all i ≥ 1 we have ci ≤ 1/Mi
by construction, and therefore for i > 1 we have

ci > (1/Mi) · (1− ci−1) ≥ (1/Mi) · (1− 1/Mi−1) ≥ (1/Mi) · (1− 1/M), (4.1)

completing the proof of the bounds for ci. Furthermore, for i > 1, we have

1
ln(1/(1− ci−1))

≤ 1
ci−1

by Proposition 3.1

≤ Mi−1

1− 1/M
by Equation (4.1)

≤ Mi−1 · (1 + 2/M),

and
1

ln(1/(1− ci−1))
≥ 1− ci−1

ci−1
by Proposition 3.1

≥ 1− 1/Mi−1

1/Mi−1
since ci−1 ≤ 1/Mi−1

≥ Mi−1 · (1− 1/M).

Therefore, for i > 1, we have

fi =

⌈
ln(Mi)

ln(1/(1− ci−1))

⌉
∈ Mi−1 · ln(Mi) · (1± 3/M).

In particular, since cd+1 = E[Fd+1, ~M] and Md+1 = 2, Claim 4.3 implies that Fd+1, ~M is
approximately balanced.

4.2 The sequence of random projections

We wish to prove that an arbitrary depth-d LTF circuit with n1+γ wires cannot compute (or
even approximate) the AND-OR tree Fd+1, ~M. To do so, as discussed in Section 2, we will apply
a sequence of random projections π(1), . . . , π(d). We will argue that after these projections, the
AND-OR tree is still nontrivial, whereas the LTF circuit will be drastically simpler. To get started,
in this section, we define the projections π(1), . . . , π(d).

We associate a formal variable xv with any gate v in the tree defining Fd+1, ~M including the
leaves. We denote by Xi the set of variables associated with gates at distance i from the inputs.
For each internal vertex v, we let Children(xv) = {xu : u ∈ Children(v)}. The projection π(i)

maps Xi−1 ∪ {0, 1} → Xi ∪ {0, 1}. Moreover, each variable will always be projected to 0, 1, or
its parent. Let π(1...i) = π(i) ◦ π(i−1) ◦ · · · ◦ π(1), so π(1...i) maps X0 ∪ {0, 1} → Xi ∪ {0, 1}. We
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identify X0 with the original input variables of the AND-OR tree, so it makes sense to apply π(1...i)

to Fd+1, ~M.
For i = 1, . . . , d + 1 independently, sample a “tentative” assignment σ(i) to Xi−1 by

independently assigning each variable according to the Bernoulli distribution b1−βi→i mod 2,
where

βi
def
=

{
1/2 if i = 1
M−1/2

i−1 if i ∈ {2, . . . , d + 1}.
(4.2)

That is,
σ(i) ∼ bXi−1

1−βi→i mod 2.

For each variable xv ∈ Xi and each xu ∈ Children(xv), the projection π(i) will either assign
π(i)(xu) = σ

(i)
u or else it will keep xu alive, i.e., π(i)(xu) = xv. Now let us explain how π(i)

decides which variables will stay alive.

Definition 4.4 (The projection π(i) for i = 1, . . . , d). Assume that we have already sampled
π(1), . . . , π(i−1). Let b = i mod 2. For each gate v at distance i from the inputs independently: Let
Bv be the set of children of xv such that the corresponding subformulas are not yet determined, i.e.,

Bv = {xu ∈ Children(xv) : Fu�π(1...i−1) ≡ xu} .

For each xu ∈ Children(xv) \ Bv, set π(i)(xu) = σ
(i)
u . Regarding the variables in Bv:

1. If |Bv| 6∈ ( fi/
√

Mi−1) · (1±M−1/8), then set π(i)(xu) = σ
(i)
u for each xu ∈ Bv. (Define M0 = 1.)

2. Otherwise, if σ
(i)
Bv

= bBv , then with probability M−1/4
i , set π(i)(xu) = σ

(i)
u = b for all xu ∈ Bv.

With the remaining probability, sample ϕ∼ bBv
βi

conditioned on ϕ 6= 0Bv , and for each xu ∈ Bv, set

π(i)(xu) =

{
xv if ϕu = 1

σ
(i)
u = b if ϕu = 0.

3. Otherwise (σ(i)
Bv
6= bBv )13, with probability 1− qi(|Bv|) (see Equation (1) below), set π(i)(xu) =

σ
(i)
u for each xu ∈ Bv. With the remaining probability, for each xu ∈ Bv, set

π(i)(xu) =

{
xv if σ

(i)
u = 1− b

σ
(i)
u if σ

(i)
u = b.

(See Table 2.)

As discussed in Section 2, our projections π(1), . . . , π(d) are based on the projections
studied by Håstad, Rossman, Servedio, and Tan [HRS+17]. The main modification is suitably
generalizing the definition to accommodate the varying fan-ins in the AND-OR tree Fd+1, ~M. (We
also made some other minor changes for convenience, but they are not essential.)

Note that when i = 1, case 1 does not happen. Also, we always have

(π(i))Bv ∈ {0, 1}Bv ∪ {b, xv}Bv .

13This is the most common case.
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Parameter Meaning Value

i π(i) maps Xi−1 ∪ {0, 1} → Xi ∪ {0, 1} 1, 2, . . . , d

b More-likely value for each bit of σ(i) i mod 2

βi Bias of each bit of σ(i)

{
1/2 i = 1
1/
√

Mi−1 1 < i ≤ d

qi(·) Pr[survival | case 3] 1/
√

Mi (approximate)

Table 2: The parameters of the projections π(1), . . . , π(d). Recall that σ(i) is a “tentative
assignment” to the variables in Xi−1.

That is, if π(i) keeps any variables in Bv alive, then it assigns the value b to the remaining
variables in Bv. The definition of π(i) refers to a value qi(·), which we define as follows:

qi(t)
def
=

(1− βi)
t

1− (1− βi)t ·
1− βi+1

βi+1
· (1−M−1/4

i ). (1)

(The reason for this formula will become clear later, in the proof of Lemma 5.2.) Since the
definition of π(i) uses qi(t) as a probability, we must verify that qi(t) ∈ [0, 1], at least for the
values of t that actually arise in the definition of π(i). For the sake of analysis that will come
later, we also give estimates for the values (1− βi)

t and qi(t).

Lemma 4.5. Assume M is sufficiently large. Suppose that either (a) i = 1 and t = f1, or else (b) 1 < i ≤ d
and t ∈

(
fi/
√

Mi−1
)
· (1±M−1/8). Then qi(t) ∈ [0, 1]. If additionally Mi ≤ exp(M1/16/2), then

(1− βi)
t = (1/Mi) · (1± 2M−1/16)

and qi(t) =
(

1/
√

Mi

)
· (1± 3M−1/16).

Proof. If i = 1 and t = f1 = log(M1), then we have the exact equality (1− β1)
t = 1/M1. In the

other case,

(1− βi)
t ≤ exp(−tβi) by Proposition 3.1

≤ exp(−( fi/Mi−1) · (1−M−1/8))

≤ exp(− ln(Mi) · (1− 3/M) · (1−M−1/8)) by Claim 4.3 (4.3)

≤ M−1+o(1)
i ,

where the o(1) term goes to 0 as M→ ∞. Consequently, in either case,

qi(t) ≤
M−1+o(1)

i

1−M−1+o(1)
i

· 1− 1/
√

Mi

1/
√

Mi
· (1−M−1/4

i ) ≤ M−1/2+o(1)
i ≤ 1.

Clearly qi(t) ≥ 0, so qi(t) ∈ [0, 1]. Now assume Mi ≤ exp(M1/16/2). Then in the i > 1 case,
continuing from Equation (4.3), we have

(1− βi)
t ≤ exp(− ln(Mi) · (1− 2M−1/8))
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= exp(− ln(Mi) + ln(Mi) · 2M−1/8)

≤ exp(− ln(Mi) + (M1/16/2) · 2M−1/8)

= (1/Mi) · exp(M−1/16),

and (1− βi)
t ≥ exp

(
− tβi

1− βi

)
by Proposition 3.1

≥ exp
(
− t√

Mi−1
·
(

1 + 2/
√

Mi−1

))
≥ exp

(
− ln(Mi) · (1 + M−1/8) · (1 + 3/M) · (1 + 2/

√
M)
)

by Claim 4.3

≥ exp
(
− ln(Mi) · (1 + 2M−1/8)

)
≥ (1/Mi) · exp

(
−M−1/16

)
.

Thus, by Proposition 3.1,

(1− βi)
t ∈ (1/Mi) · exp

(
0±M−1/16

)
⊆ (1/Mi) · (1± 2M−1/16).

Consequently,

qi(t) ∈
(1/Mi) · (1± 2M−1/16)

1− (1/Mi) · (1± 2M−1/16)
· 1− 1/

√
Mi

1/
√

Mi
· (1− 1/M1/4

i )

⊆ (1/
√

Mi) · (1± 3M−1/16).

5 The AND-OR tree survives the projections

In this section, we will show that with high probability, the AND-OR tree Fd+1, ~M remains
nontrivial after applying the projections π(1), . . . , π(d). In particular, the projected function
computes an AND or OR of approximately

√
Md · ln(2) many variables.

Theorem 5.1 (The AND-OR tree survives the projections). Assume M is sufficiently large. With
probability at least 1−O(M−1/4) over π(1), . . . , π(d), the projected function (Fd+1, ~M)�π(1...d) is an AND

gate (if d + 1 is odd) or an OR gate (if d + 1 is even) with fan-in
√

Md · ln(2) · (1± 5M−1/8). Moreover,
in this case, the projected function is (6M−1/8)-unbiased under σ(d+1), i.e.,

E
σ(d+1)

[
(Fd+1, ~M)�π(1...d)(σ(d+1))

]
∈ 1

2
± 6M−1/8.

Theorem 5.1 and its proof mimic the analysis by Håstad, Rossman, Servedio, and
Tan [HRS+17].

5.1 The completion property

Following the analysis of Håstad, Rossman, Servedio, and Tan [HRS+17], the first step of the
proof of Theorem 5.1 is to prove that the projections π(1), . . . , π(d) are “compatible” with the
distributions σ(1), . . . , σ(d+1) in a certain sense. This lemma will also be useful later, when we
prove that LTF circuits simplify under π(1), . . . , π(d) (see the proof of Proposition 7.6).
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Lemma 5.2 (The completion property). Let i ∈ [d] and assume M is sufficiently large. Conditioned on
any fixed values for π(1), . . . , π(i−1), the random variables σ(i) and σ(i+1) ◦π(i) are identically distributed
over {0, 1}Xi−1 .

Proof. It suffices to focus on a single gate v at distance i from the inputs and consider the
assignment to its children. Looking at the definition of π(i), whether we are in Case 1 depends
only on the history π(1), . . . , π(i−1), which we have fixed. If we are in Case 1, then the lemma
is trivial, so assume that we are not in Case 1. The set Bv is also determined by the history
π(1), . . . , π(i−1), so it is fixed. Define

κv =

{
b if σBv = bBv

1− b otherwise,

or equivalently, κv is b if we are in Case 2 and 1− b if we are in Case 3.
Let Sv ⊆ Bv be the set of variables that π(i) keeps alive, i.e., Sv = (π(i))−1(xv). For any

nonempty set S ⊆ Bv, we have

Pr[κv = b ∧ Sv = S] = (1− βi)
|Bv| · (1−M−1/4

i ) ·
β
|S|
i · (1− βi)

|Bv|−|S|

1− (1− βi)|Bv|
.

Meanwhile,
Pr[κv = 1− b ∧ Sv = S] = qi(|Bv|) · β|S|i · (1− βi)

|Bv|−|S|.

By our choice of qi(·) (Equation (1)), we have

Pr[κv = b ∧ Sv = S]
Pr[κv = 1− b ∧ Sv = S]

=
(1− βi)

|Bv| · (1−M−1/4
i )

(1− (1− βi)|Bv|) · qi(|Bv|)
=

βi+1

1− βi+1
,

and consequently
Pr[κv = b | Sv = S] = βi+1.

Note that the right-hand side has no dependence on S. Furthermore, recall that when Sv 6= ∅,
the projection π(i) assigns b to all variables in Bv \Sv, so in particular, when Sv 6= ∅, the action of
π(i) on Bv is a deterministic function of Sv. Therefore, conditioned on the event Sv 6= ∅, the bit
κv is independent of π(i) and distributed according to bβi+1→b. Consequently, the random variables

σ
(i+1)
v ◦ (π(i))Children(v) and κv ◦ (π(i))Children(v) are identically distributed.14

Now, recall that when κv = b, we are in Case 2, so for each xu ∈ (π(i))−1(xv), we have
σ
(i)
u = b. Meanwhile, when κv = 1− b, we are in Case 3, so for each xu ∈ (π(i))−1(xv), we have

σ
(i)
u = 1− b. Thus, either way,

κv ◦ (π(i))Children(v) = (σ(i))Children(v),

so σ
(i+1)
v ◦ (π(i))Children(v) and (σ(i))Children(v) are identically distributed, completing the proof.

By induction, Lemma 5.2 immediately implies the following corollary.

Corollary 5.3 (The cumulative completion property). Assume M is sufficiently large. For any i ∈ [d],
the random variable σ(i+1) ◦π(1...i) is distributed identically to σ(1), i.e., it is distributed uniformly over
{0, 1}X0 .

14Recall that the notation κ ◦ π refers only to the final (composed) projection, regardless of the way each of its
components (i.e., κ and π) affected the final projection.
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5.2 Subformula collapse probabilities

The next step in the proof of Theorem 5.1 is to analyze the effect of the projections π(1), . . . , π(i)

on gates at distance i from the inputs.

Lemma 5.4 (Subformula collapse probabilities). Assume M is sufficiently large. Let i ∈ [d] and let
b = i mod 2. For each gate v at distance i from the inputs,

Pr[Fv�π(1...i) ≡ b] ∈ M−5/4
i · (1± 3/M) (5.1)

Pr[Fv�π(1...i) ≡ 1− b] ∈ 1−M−1/2
i · (1± 3M−1/4) (5.2)

Pr[Fv�π(1...i) ≡ xv] ∈ M−1/2
i · (1± 2M−1/4). (5.3)

Moreover, for each gate v at distance i + 1 from the inputs,

Pr
[
|{u ∈ Children(v) : Fu�π(1...i) ≡ xu}| /∈ fi+1√

Mi
· (1±M−1/8)

]
≤ e−

M1/4 ·ln(Mi+1)
50 . (5.4)

Proof. The proof is by induction on i. We start with a base case. When i = 1, we have b = 1
and Fv is an AND of f1 variables. Looking at the definition of π(1), the AND collapses to 1 with
probability 2− f1 ·M−1/4

1 = M−5/4
1 , showing that Equation (5.1) holds in this case.

Now consider any i ∈ [d] and assume that Equation (5.1) holds for distance i. Let v be a gate
at distance i from the inputs. We have

ci = Pr[Fv(σ
(1)) = b] (Proposition 4.2)

= Pr[Fv(σ
(i+1) ◦π(1...i)) = b] (Corollary 5.3)

= Pr[Fv�π(1...i) ≡ b] + Pr[Fv�π(1...i) ≡ xv] · βi+1,

and hence

Pr[Fv�π(1...i) ≡ xv] =
(M−1

i −M−5/4
i ) · (1± 3/M)

M−1/2
i

= M−1/2
i · (1± 2M−1/4),

completing the proof of Equation (5.3). From the definitions of π(1), . . . , π(d), it should be clear
that Fv�π(1...i) is either a constant or else xv, so Equation (5.2) follows, since the three probabilities
must sum to 1.

Next, let v be a gate at distance i + 1 from the inputs. Like in the definition of π(i+1), let Bv
be the set of children xu ∈ Children(xv) such that Fu�π(1...i) ≡ xu. Then by Equation (5.3),

E[|Bv|] ∈
(

fi+1/
√

Mi

)
· (1± 2M−1/4),

and the events Fu�π(1...i) ≡ xu for u ∈ Children(v) are independent, so by a suitable Chernoff
bound (Corollary 3.11),

Pr
[
|Bv| /∈

(
fi+1/

√
Mi

)
· (1±M−1/8)

]
≤ 2 exp

(
−M−1/4 · fi+1

42 ·
√

Mi

)
≤ exp

(
−M1/4 · ln(Mi+1)

50

)
,

where the last inequality uses Claim 4.3. This completes the proof of Equation (5.4).
Now let us circle back and prove Equation (5.1) when i > 1. Let v be a gate at distance

i ∈ {2, . . . , d}. We may assume by induction that Equation (5.1) holds for distance i− 1. Let E be
the event that Fv has already collapsed to a constant before π(i) is applied, i.e.,

Fv�π(1...i−1) ≡ 0 or Fv�π(1...i−1) ≡ 1.
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Let p(i)0,b be the probability (with respect to the choice of π(1), . . . , π(i−1)) that E occurs and the
constant is b, i.e.,

p(i)0,b = Pr[Fv�π(1...i−1) ≡ b].

Next, let p(i)1,b be the probability (this time with respect to the choice of π(1), . . . , π(i)) that E does

not occur, case 1 of the definition of π(i) happens, and Fv�π(1...i) ≡ b. Furthermore, let p(i)2 be the
probability (again with respect to the choice of π(1), . . . , π(i)) that E does not occur and case 2 of
the definition of π(i) happens. Observe that

Pr[Fv�π(1...i) ≡ b] = p(i)0,b + p(i)1,b + p(i)2 ·M
−1/4
i .

By Equation (5.1),

p(i)0,b = Pr[Fv�π(1,...,i−1) ≡ b] = ∏
u∈Children(v)

Pr[Fu�π(1,...,i−1) ≡ b]

≤ (1− 0.9 ·M−1/2
i−1 ) fi

≤ exp
(
−0.8 ·

√
Mi−1 · ln(Mi)

)
< M−3

i .

Meanwhile, by Equation (5.4),

p(i)1,b ≤ exp
(
−M1/4 · ln(Mi)

50

)
< M−3

i .

Next, we estimate p(i)2 . We have

ci = Pr[Fv(σ
(1)) = b] (Proposition 4.2)

= Pr[Fv(σ
(i) ◦π(1...i−1)) = b] (Corollary 5.3)

= p(i)0,b + p(i)1,b + p(i)2 ,

so
p(i)2 = ci − p(i)0,b − p(i)1,b = (1/Mi) · (1± 1/M)± 2M−3

i = (1/Mi) · (1± 2/M).

Therefore,

Pr[Fv�π(1...i) ≡ b] = p(i)0,b + p(i)1,b + p(i)2 ·M
−1/4
i = M−5/4

i · (1± 3/M).

5.3 Wrapping up the proof that the AND-OR tree survives the projections

Theorem 5.1 follows readily from Lemma 5.4.

Proof of Theorem 5.1. Let b = d mod 2 and let Vd be the set of gates at distance d from the
inputs (i.e., children of the root gate). By Equation (5.1), for any gate v ∈ Vd,

Pr [Fv�π(1...d) ≡ b] = O
(

M−5/4
d

)
.

By the union bound, when we apply π(1...d), the probability that there is any v ∈ Vd such that Fv

collapses to b is at most O(M−5/4
d · fd+1) = O(M−1/4

d ). Meanwhile, by Equation (5.4), except with
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probability exp(−Ω(M−1/4)) < O(M−1/4), the number of gates v ∈ Vd such that Fv�π(1...d) ≡ xv
is ( fd+1/

√
Md) · (1±M−1/8). Assume that this event occurs and that for every v ∈ Vd, we have

Fv�π(1...d) 6≡ b. When d + 1 is odd, b = 0, so this indeed implies that the projected function
(Fd+1, ~M)�π(1,...d) is an AND gate with fan-in

fd+1√
Md
· (1±M−1/8) =

√
Md · ln(2) · (1± 5/M1/8).

Similarly, when d + 1 is even, b = 1, so (Fd+1, ~M)�π(1,...d) is an OR gate of the same fan-in.
Finally, let us show that in this case, the projected function is approximately balanced under

σ(d+1). Indeed,

Pr
σ(d+1)

[
(Fd+1, ~M)�π(1,...d)(σ(d+1)) = 1− b

]
≤
(

1− 1/
√

Md

)√Md·ln(2)·(1−5M−1/8)

≤ exp
(
− ln(2) · (1− 5M−1/8)

)
=

1
2
· exp

(
5M−1/8

)
≤ 1

2
+ 5M−1/8 by Proposition 3.1,

and

Pr
σ(d+1)

[
F�π(1...d)(σ(d+1)) = 1− b

]
≥
(

1− 1/
√

Md

)√Md·ln(2)·(1+5M−1/8)

≥ exp
(
− 1/

√
Md

1− 1/
√

Md
·
√

Md · ln(2) · (1 + 5M−1/8)

)
by Proposition 3.1

≥ exp
(
− ln(2) · (1 + 6M−1/8)

)
≥ 1

2
− 6M−1/8 by Proposition 3.1.

6 LTF circuits simplify under the projections

In the previous section, we showed that the depth-(d + 1) AND-OR tree Fd+1, ~M retains structure
under the random projections π(1), . . . , π(d). In contrast, we will show that any depth-d
LTF circuit with a bounded number of wires simplifies to a constant (approximately) under
π(1), . . . , π(d). This contrast will allow us to conclude that the AND-OR tree cannot be computed
(or even approximated) by such a circuit. The theorem below continues using the definitions and
notations established in Section 4.

Theorem 6.1 (LTF circuits simplify under the projections). Let M be a sufficiently large power of two,
let d ∈ N, and use the parameters Mi = M100i−1

for i = 1, . . . , d to define the projections π(1), . . . , π(d).
Assume d ≤ 0.05 · log100 M. Let X0 ∪ {0, 1} be the domain of π(1), let n = |X0|, and let f be a depth-d
LTF circuit on X0 with w wires. The probability that the projected function f �π(1...d) is ξ-far from constant
under the product distribution σ(d+1) is at most ξ, where

ξ ≤ M−1/96 · dw/ne ·O(log n)d+O(1). (6.1)
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(Recall that the projections π(1), . . . , π(d) are defined in Definition 4.4, and X0 is the set of
input variables to the AND-OR tree Fd+1, ~M that is defined in Definition 4.1.) The point is that if w
is slightly larger than n, then the leading M−1/96 term of Equation (6.1) more than compensates
for the w/n term.

6.1 Corrupted biased block projections

In the definition of π(i), recall that we first pick a tentative assignment σ(i), and then we randomly
decide which variables to keep alive (if any) instead of assigning them the value stipulated by σ(i).
For the proof of Theorem 6.1, it will be helpful to reason in the reverse order: first we randomly
choose the set of variables to keep alive, and then we assign values to the other variables. This
process is captured by the following definitions.

Definition 6.2 (corrupted biased assignment). The (1− q)-corrupted (1− β)-biased assignment
for a set B of variables, denoted corrbB

1−β,1−q, is the following distribution over {0, 1}B:

1. With probability q, we fix each variable independently according to b1−β.

2. With probability 1 − q, we fix each variable according to b1−β conditioned on not fixing all
variables in B to 1.

Definition 6.3 (corrupted biased block projection). Let X = {x1, . . . , xn} and Y = {y1, . . . , yt} be
sets of Boolean variables with t ≤ n. Let π : X ∪ {0, 1} → Y ∪ {0, 1} be a random projection. We say
that π is a p-surviving (1− β)-biased (1− q)-corrupted (ν, ν′)-block projection if for each variable
yj ∈ Y there is an associated “block” Bj ⊆ X such that B1, . . . , Bt are disjoint; and for each j, either
Bj = ∅ or else (1− β)|Bj| ∈ [ν, ν′]; and π behaves as follows:

1. Independently for each j ∈ [t] such that Bj 6= ∅:

(a) With probability pj ≤ p, the block survives: Sample ϕ ∼ b
Bj
1−β conditioned on ϕ 6= 1Bj , and

for each variable xi ∈ Bj, set

π(xi) =

{
1 if ϕi = 1
yj if ϕi = 0.

(b) With probability 1− pj, the block is non-surviving, in which case we fix all the variables in

Bj according to corrb
Bj
1−β,1−qj

for some qj ≤ q.

(We will consider empty blocks to be “non-surviving.”)

2. Independently of all the blocks, we assign values to the remaining variables, i.e., the variables in
X \ (B1 ∪ · · · ∪ Bt), from the product distribution bX\(B1∪···∪Bt)

1−β .

(See Table 3.)

In Definition 6.3, the constants 0 and 1 do not play the same role: each non-surviving variable
in a surviving block is assigned 1, and in a non-surviving block, the assignment is biased toward
1 (thinking of β as small). This is just for the sake of convenience; when we want to swap the
roles of 0 and 1, we will use the complementation operation given in Definition 3.3.

We allow empty blocks in Definition 6.3. This, too, is just for the sake of convenience. Because
we allow empty blocks, the set Y can include each variable yj that we “care about,” regardless of
whether π ever actually maps any variables to yj.
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Parameter Meaning Approximate value for π(i)

p Max survival probability of a block 1/
√

Mi

β Pr[var not assigned 1]

{
1/2 i = 1
1/
√

Mi−1 1 < i ≤ d

ν and ν′ Bounds for (1− β)block size 1/Mi

q Pr[non-corrupted | non-surviving] M−1/4
i

Table 3: The parameters of a corrupted biased block projection.

6.1.1 Integrating the two definitions of the projection procedure

Continuing with the definitions and notations of Section 4: We now show that the
projections π(1), . . . , π(d) (given by Definition 4.4) are corrupted biased block projections (up
to complementation).

Lemma 6.4 (integration lemma). Let d ∈ N, let ~M ∈ Nd with M1 a power of two, let M =
min{M1, . . . , Md}, and assume M is sufficiently large. Let i ∈ [d], let pi = 2/

√
Mi, let νi = 1/2Mi, let

qi = 2M−1/4
i , and recall that

βi =

{
1/2 if i = 1
1/
√

Mi−1 if i > 1.

Assume that Mi ≤ exp(M1/16/2). Conditioned on any fixed values for π(1), . . . , π(i−1), either π(i)

(if i is odd) or the complement projection π(i) (if i is even) is a (pi)-surviving (1− βi)-biased (1− qi)-
corrupted (νi, 3νi)-block projection.

Proof. Let v be a vertex at distance i from the inputs in the AND-OR tree Fd+1, ~M. Recall that
π(1), . . . , π(i−1) (i.e., the history) determines whether v falls in Case 1 in Definition 4.4 of π(i).
If we are in Case 1, then the block associated with the variable xv is ∅. Assume now that we
are in Cases 2 or 3 in the definition of π(i) for this vertex v. In this case, we consider the set
Bv that appears in the definition of π(i) to be the block associated with xv. (Note that Bv is also
determined by π(1), . . . , π(i−1).) By Lemma 4.5, we indeed have

(1− βi)
|Bv| ∈ (1/Mi) · (1± 2M−1/16) ∈ [νi, 3νi].

Let us now analyze the probability that the block survives. Looking at the definition of π(i), the
survival probability is

(1− βi)
|Bv| · (1−M−1/4

i ) + (1− (1− βi)
|Bv|) · qi(|Bv|).

Applying Lemma 4.5 again, we can estimate this survival probability as

(1/Mi) · (1± 2M−1/16) · (1−M−1/4
i ) + (1± 2/Mi) ·

(
1/
√

Mi

)
· (1± 3M−1/16)

⊆
(

1/
√

Mi

)
· (1± 4M−1/16) ⊆ [0, pi].
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Next, let us analyze the case that the block survives. In this case, all of the non-surviving variables
are indeed projected to i mod 2, which is 1 after complementing if i is even. Furthermore,
conditioned on the block surviving, the set of surviving variables is indeed distributed correctly.

Finally, we must analyze the case that the block does not survive. Observe that we might
think of Cases 2 and 3 as follows. We flip biased coins c2,v, c3,v with Pr[c2,v = 1] = M−1/4

i and
Pr[c3,v = 1] = qi(|Bv|). We decide what to do in Cases 2 and 3 based on the results of c2,v and
c3,v. Furthermore, the coins may be correlated or anti-correlated in any way as long as their
marginals are as above since we never “read” both the values of c2,v and c3,v. Since in our case
Pr[c2,v = 1] + Pr[c3,v = 1] ≤ 1 we may assume that it never happens that both c2,v = 1 and
c3,v = 1.15 In terms of these coins c2,v and c3,v, the projection π(i) has the following properties.

• Conditioned on (c2,v, c3,v) = (1, 0), the block does not survive, and the assignment comes
from the product distribution bBv

1−βi
(after complementing if i is even).

• Conditioned on (c2,v, c3,v) = (0, 1), the block survives.

• Conditioned on (c2,v, c3,v) = (0, 0) and reaching Case 2, the block survives.

• Conditioned on (c2,v, c3,v) = (0, 0) and reaching Case 3, the block does not survive, and
the assignment comes from the conditional distribution (ϕ ∼ bBv

1−βi
| ϕ 6= 1Bv) (again, after

complementing if i is even).

• (c2,v, c3,v) = (1, 1) cannot happen (see discussion above about the choice of the correlation
between these coins).

Thus, conditioned on non-survival, the assignment is some convex combination of the product
distribution bBv

1−βi
and the conditional distribution (ϕ ∼ bBv

1−βi
| ϕ 6= 1Bv); that is, it is a (1− q)-

corrupted (1− βi)-biased distribution for some parameter q. We conclude the proof by verifying
that q ≤ qi. We have

q =
Pr[(c2,v, c3,v) = (1, 0)]

Pr[(c2,v, c3,v) = (1, 0)] + Pr[Case 3] · Pr[(c2,v, c3,v) = (0, 0)]

=
M−1/4

i

M−1/4
i + (1− o(1)) · (1−M−1/4

i − qi(|Bv|))
= M−1/4

i · (1± o(1)) ≤ 2M−1/4
i .

6.2 LTFs simplify under corrupted biased block projections

At this point we have shown that the projections π(1), . . . , π(d) are corrupted biased block
projections. We will next analyze the effect of a corrupted biased block projection on a single LTF
gate. Our goal is to prove the following.

Theorem 6.5 (LTFs simplify under corrupted biased block projections). Let X and Y be sets of
variables with |Y| = t ≤ n = |X |. Let Φ = (w, θ) be an LTF on X . Let π : X ∪ {0, 1} → Y ∪ {0, 1}

15More precisely, think of a joint way to sample c2,v, c3,v as follows: pick a random real number z uniformly in [0, 1],
set c2,v = 1 if and only if z ∈ [0, M−1/4

i ] and c3,v = 1 if and only if z ∈ [1− qi(|Bv|), 1]. The two intervals are disjoint,
since M−1/4

i + qi(|Bv|) < 1.
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be a p-surviving (1− β)-biased (1− q)-corrupted (ν, ν′)-block projection, where β ≤ 1/2. Then for any
ε > 0 and any~α ∈ [0, 1]t, the probability that Φ�π is ε-far from constant under b~α is at most

O
(
(p1/3 + (ν′)1/3) · β−2/3 · log

( n
ε · ν

))
.

In particular, when pO(1) ≤ ν ≤ ν′ ≤ p (this will be the case when we analyze π(1), . . . , π(d);
see Lemma 6.4), the failure probability bound above simplifies to

O

((
p
β2

)1/3

· log
(

n
ε · p

))
.

As a reminder, in the theorem statement, Φ�π denotes the result of applying the projection π,
in the sense of both fixing some variables and merging some living variables. (See Definition 3.4.)
In particular, the meaning of (being far from constant under) b~α is that each surviving block Bj
(which corresponds to a merged variable) has bias αj in this distribution, and biases αj for non-
surviving blocks Bj are ignored.

Recall that we are working toward proving Theorem 6.1, which says that LTF circuits simplify
under the projections. In Theorem 6.1, the input distribution to the projected function is σ(d+1),
which is a product distribution where every variable has the same bias. The reader might
therefore wonder why Theorem 6.5 allows a whole vector of potentially-distinct biases~α. Without
going into detail, the reason is that at intermediate stages of the analysis, the distributions σ(i)

will get “distorted” because we will condition on certain events. See Section 2.4 for an informal
discussion of this issue, or see Section 7 for details. For now, the reader might wish to focus on
the case that the biases αj are all equal, for simplicity.

6.2.1 Bounding the number of living variables per block

The first step in the proof of Theorem 6.5 is to argue that with high probability, no block has
many surviving variables. This follows by a fairly straightforward Chernoff-bound argument:

Lemma 6.6 (each block has at most a few living variables). Let X and Y be sets of variables with
|Y| = t ≤ n = |X |. Let π : X ∪ {0, 1} → Y ∪ {0, 1} be a p-surviving (1− β)-biased (1− q)-corrupted
(ν, ν′)-block projection with blocks B1, . . . , Bt. Let I ⊆ X be the set of living variables, i.e., I = π−1(Y).
Then

Pr
[

max
j∈[t]
|I∩ Bj| > 3 ln(n/ν)

]
≤ O(p + ν′).

Proof. Without loss of generality, we may assume that ν′ ≤ 1/2, because otherwise the
conclusion of the lemma is trivial. Fix any nonempty block B = Bj. With probability at least
1 − p, the block B does not survive, in which case I ∩ B = ∅. With probability at most p,
the block B does survive. Conditioned on B surviving, to determine which variables within B
survive, the projection samples ϕ ∼ bB

1−β conditioned on ϕ 6= 1B, and then ϕ−1(0) is the set of
living variables in that block. Thus, conditioned on B surviving, we can bound the probability
that many variables within B survive by

Pr
ϕ∼bB

1−β

[|ϕ−1(0)| ≥ 2β · |B|+ 3 ln n | ϕ 6= 1B] =
Pr[|ϕ−1(0)| ≥ 2β · |B|+ 3 ln n]

Pr[ϕ 6= 1B]

≤ 1/n
1− (1− β)|B|
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≤ 1/n
1− ν′

≤ 2/n,

where the first inequality follows from the Chernoff bound (see Corollary 3.10). Therefore,

Pr[|I∩ B| ≥ 2β · |B|+ 3 ln n] ≤ 2p/n.

The lemma follows by a union bound over the t ≤ n blocks, because

ν ≤ (1− β)|B| ≤ exp(−β · |B|)

and therefore β · |B| ≤ ln(1/ν).

6.2.2 Decomposing corrupted biased block projections

For the second step of the proof of Theorem 6.5, recall that we can think of a corrupted biased
block projection as occurring in two stages: first the set of surviving variables is chosen, and
then values are assigned to the non-surviving variables. For this section, we focus on the second
stage: understanding the distribution over assignments.

Non-surviving variables in surviving blocks are always assigned the value 1. The more
interesting case is the non-surviving blocks. We now analyze weighted sums of the assignments
to variables in a collection of non-surviving blocks. The following claim decomposes any such
sum to a weighted sum under a “non-corrupted” biased assignment minus a low-variance error
term. We denote the number of variables here by n′ and the number of blocks by t′, since we
will later on apply this lemma to the set of nonempty non-surviving blocks in a projection with
n variables and t blocks.

Lemma 6.7 (decomposing corrupted biased block assignments). Let w ∈ Rn′ , let [n′] = B1 ∪ · · · ∪
Bt′ be a partition, let β, q ∈ [0, 1], and let q1, . . . , qt′ ∈ [0, q]. Sample z ∈ {0, 1}n′ as follows: for each
block Bj independently, we sample zBj from corrb

Bj
1−β,1−qj

. Sample z̃ ∼ bn′
1−β. Let 0 ≤ ν ≤ ν′ ≤ 1/2, and

assume that for every j, we have (1− β)|Bj| ∈ [ν, ν′]. Then:

1. The total variation distance between z and z̃ is at most t′ · ν′.

2. The sum ∑n′
i=1 wi · zi is identically distributed to (∑n′

i=1 wi · z̃i)− err, where the summation is over
the reals, and

Var[err] ≤ O
(

β · ν′ · log(1/ν) · ‖w‖2
2
)

. (6.2)

Note that we do not claim that err is independent of the z̃i’s. We only argue that err satisfies
the variance bound given by Eq. (6.2).

Proof of Lemma 6.7. The distribution of z is equivalent to the following two-step process: For
each j ∈ [t′] independently, sample tentative values z̃Bj ∼ b

Bj
1−β; and then, if z̃Bj = 1Bj , then with

probability 1− qj, choose a subset of Bj by including each element independently with probability
β and conditioning on the set being nonempty, and then flip the assignments of every variable in
that set to 0. In other words, to sample the vector z, for each block Bj independently, we set

zBj = z̃Bj − yj · s(j). (6.3)
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Here yj is an indicator variable that takes value 1 with probability 1 − qj if z̃Bj = 1Bj , and

otherwise takes the value 0. Meanwhile, s(j) is sampled from b
Bj
β conditioned on s(j) 6= 0Bj ,

independently of z̃Bj and yj. The arithmetic in Eq. (6.3) is over the vector space RBj .
By the union bound,

Pr[z 6= z̃] ≤
t′

∑
j=1

Pr[yj = 1] ≤
t′

∑
j=1

(1− β)|Bj| ≤ t′ · ν′,

establishing the claimed total variation bound. Now define

xj = ∑
i∈Bj

s(j)
i · wi

err =
t′

∑
j=1

yj · xj.

By construction, the two distributions defined in the statement are identical. Our goal now is to
prove the variance bound claimed in Eq. (6.2). Let j ∈ [t′] and let νj = (1− β)|Bj| ∈ [ν, ν′]. For
every distinct pair i, i′ ∈ Bj, we have

Pr
[
s(j)

i = 1
]
=

β

1− νj

Pr
[
s(j)

i = s(j)
i′ = 1

]
=

β2

1− νj
.

Consequently,

E[x2
j ] = ∑

i,i′∈Bj

wi · wi′ ·E
[
s(j)

i · s
(j)
i′

]
=

β

1− νj
· ∑

i∈Bj

w2
i +

β2

1− νj
· ∑

i 6=i′∈Bj

wi · wi′

E[xj]
2 =

∑
i∈Bj

wi ·E
[
s(j)

i

]2

=
β2

(1− νj)2 ·

∑
i∈Bj

wi

2

≥ β2

1− νj
·

∑
i∈Bj

wi

2

because
1

1− νj
≥ 1

≥ β2

1− νj
· ∑

i 6=i′∈Bj

wi · wi′ because ∑
i∈Bj

w2
i ≥ 0

=⇒ Var[xj] ≤
β

1− νj
· ∑

i∈Bj

w2
i .
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Since xj and yj are independent, we have

Var[yj · xj] = E[y2
j ] ·E[x2

j ]−E[yj]
2 ·E[xj]

2

= E[y2
j ] · Var[xj] + Var[yj] ·E[xj]

2

≤ νj ·

 β

1− νj
· ∑

i∈Bj

w2
i +

β2

(1− νj)2 ·

∑
i∈Bj

wi

2


≤ νj · β ·
(

1
1− νj

+
β

(1− νj)2 · |Bj|
)
· ∑

i∈Bj

w2
i (Cauchy-Schwarz)

≤ νj · β ·
(

1
1− νj

+
ln(1/(1− β)|Bj|)

(1− νj)2

)
· ∑

i∈Bj

w2
i by Proposition 3.1

≤ ν′ · β · (2 + 4 · ln(1/ν)) · ∑
i∈Bj

w2
i

= O

ν′ · β · log(1/ν) · ∑
i∈Bj

w2
i

 .

Finally, the random variables {xj · yj}j∈[t′] are independent, so

Var[err] =
t′

∑
j=1

Var[yj · xj] ≤ O
(
ν′ · β · log(1/ν) · ‖w‖2

2
)

.

6.2.3 The structured case: Regular LTFs

Recall that we are working toward proving that LTFs simplify under corrupted biased block
projections (Theorem 6.5). We first analyze the special case of regular LTFs.

Definition 6.8 (regular LTF). Let µ > 0. A vector w ∈ Rn is µ-regular if |wi| ≤ µ · ‖w‖2 for every
i ∈ [n]. An LTF Φ = (w, θ) is µ-regular if w is µ-regular.

The benefit of regularity is that it allows us to use the Berry-Esseen theorem to establish
anti-concentration, as we show next.

Lemma 6.9 (anti-concentration for regular linear combinations). Let µ > 0 and let w ∈ Rn be
µ-regular. Let α ∈ (0, 1), sample z ∼ bn

α , and let Z = ∑n
i=1 zi · wi. Then for any θ ∈ R and any R > 0,

we have

Pr [|Z− θ| ≤ R · ‖w‖2] ≤
√

2/π · R + 2µ√
α · (1− α)

.

Proof. Let xi = zi · wi − α · wi, so xi has mean 0 and variance α · (1− α) · w2
i . Let

σ =
√

∑
i
Var[xi] =

√
∑

i
α(1− α) · w2

i =
√

α(1− α) · ‖w‖2 .

Let X = ∑i xi/σ. By the Berry-Esseen theorem, X behaves like a standard Gaussian (with mean
zero and unit variance) up to CDF distance

∑i E[|xi|3]
σ3 =

α · (1− α) · (1− 2α + 2α2) · ‖w‖3
3

α3/2 · (1− α)3/2 · ‖w‖3
2

=
1− 2α + 2α2√

α · (1− α)
· ‖w‖

3
3

‖w‖3
2

<
µ√

α · (1− α)
,
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where we used the fact that E[|xi|3] = |wi|3 · α · (1− α) · (1− 2α + 2α2). Now,

|Z− θ| ≤ R · ‖w‖2 ⇐⇒
∣∣∣∣∣σ · X + α

n

∑
i=1

wi − θ

∣∣∣∣∣ ≤ R · ‖w‖2

⇐⇒
∣∣∣∣X− θ − α ∑n

i=1 wi

σ

∣∣∣∣ ≤ R · ‖w‖2

σ
.

The probability of a standard Gaussian being in any fixed interval of length ` is at most `/
√

2π,
since the standard Gaussian PDF has maximum value 1/

√
2π. Therefore,

Pr
[∣∣∣∣X− θ − α ∑n

i=1 wi

σ

∣∣∣∣ ≤ R · ‖w‖2

σ

]
≤ 2R · ‖w‖2

σ ·
√

2π
+

2µ√
α · (1− α)

=

√
2/π · R√

α · (1− α)
+

2µ√
α · (1− α)

.

Let us now show that under a corrupted biased block projection, a regular LTF is likely to
become close to a constant.

Lemma 6.10 (regular LTFs simplify under corrupted biased block projections). Let X and Y
be sets of variables with |Y| = t ≤ n = |X |. Let Φ = (w, θ) be a µ-regular LTF on X . Let
π : X ∪ {0, 1} → Y ∪ {0, 1} be a p-surviving (1− β)-biased (1− q)-corrupted (ν, ν′)-block projection,
where β ≤ 1/2. Then for any ε > 0 and any~α ∈ [0, 1]t, the probability that Φ�π is ε-far from constant
under b~α is at most

O

(
µ√

β
+ (p1/3 + (ν′)1/3) · log

( n
ε · ν

))
.

Proof. We may assume without loss of generality that ν′ ≤ 1/2, because otherwise the claimed
failure probability is greater than 1. Let B1, . . . , Bt be the blocks. We first consider the choice of
which variables will survive the projection. We will identify three “good” events and assume by
the union bound that all of them occur simultaneously.

Weight of variables in surviving blocks. Let S ⊆ [t] be the random variable that is the set of
surviving blocks. The expected “weight” of variables in surviving blocks is

E

∑
j∈S

∑
i∈Bj

w2
i

 =
t

∑
j=1

Pr[j ∈ S] · ∑
i∈Bj

w2
i ≤ p · ‖w‖2

2,

and therefore by Markov’s inequality,

Pr

∑
j∈S

∑
i∈Bj

w2
i ≤

3
4
‖w‖2

2

 ≥ 1− (4/3)p. (6.4)

(The event above is the first “good” event.)
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Weight of living variables. Let I ⊆ [n] be the set of living variables, i.e., I = π−1(Y). The
expected weight of variables in I is

E

[
∑
i∈I

w2
i

]
=

t

∑
j=1

Pr[j ∈ S] · ∑
i∈Bj

Pr[i ∈ I | j ∈ S] · w2
i

≤
t

∑
j=1

p · ∑
i∈Bj

β

1− ν′
· w2

i ≤ 2 · p · β · ‖w‖2
2.

Therefore, by Markov’s inequality, for a parameter R > 0 that we will choose later,

Pr

[
∑
i∈I

w2
i ≤ 2 · R · p · β · ‖w‖2

2

]
≥ 1− 1/R. (6.5)

(The event above is the second “good” event.)

Number of living variables per block. By Lemma 6.6,

Pr
[

max
j∈[t]
|I∩ Bj| ≤ 3 ln(n/ν)

]
≥ 1−O(p + ν′). (6.6)

(The event above is the third “good” event.)
Condition on S = S and I = I, where S and I are arbitrary sets for which the three good

events above all occur. Recall that in surviving blocks, variables that are not alive are assigned
the value 1. We now consider the choice of assignment to the variables in the non-surviving
blocks.

Let K = [n] \ (I ∪ J) where J is the set of fixed variables in surviving blocks. We consider the
choice of assignment to variables in K, and for each i ∈ K let zi = π(xi) ∈ {0, 1}. By Lemma 6.7,
the random variable ∑i∈K wi · zi is distributed identically to the random variable(

∑
i∈K

wi · z̃i

)
− err ,

where z̃ ∼ bK
1−β and err has bounded variance as asserted in Lemma 6.7. (Recall that some

variables in K might not belong in blocks; for such variables we simply have that zi = z̃i, whereas
the error term err is only due to the variables in blocks.)

Without loss of generality, we may assume that the two random variables are coupled in
such a way that they are always equal (not just identically distributed). Let η = E[err]. We will
identify two more “good” events and assume by the union bound that both occur, and then we
will argue that in this case, the projected function is unbalanced.

Anti-concentration of the product distribution z̃. Define w′ ∈ RS by w′j = ∑i∈I∩Bj
wi.

Unpacking all the definitions, the projected function Φ�π : {0, 1}Y → {0, 1} is given by

Φ�π(y) = 1 ⇐⇒ ∑
j∈S

yj · w′j + ∑
i∈J

wi + ∑
i∈K

zi · wi ≥ θ

⇐⇒ ∑
i∈K

zi · wi ≥ θ −∑
j∈S

yj · w′j −∑
i∈J

wi .

35



Recall that we are ultimately interested in plugging in a value y sampled from the product
distribution b~α. With respect to such a choice, the expected value for the RHS above is

τ
def
== θ −∑

j∈S
αj · w′j −∑

i∈J
wi .

The bad case is that ∑i∈K zi · wi ≈ τ; in such a case, the projected function is somewhat
balanced. Let us argue that this bad event has low probability, and as a first step we argue that
the bad event ∑i∈K z̃i · wi ≈ τ + η has low probability. (Recall that η = E[err].)

Since the good event in Eq. (6.4) has occurred, we have ‖wK‖2 ≥ 1
2 · ‖w‖2, and therefore

the vector wK is (2µ)-regular (because for each i ∈ K we have that |wi| ≤ µ ‖w‖2 ≤ 2µ ‖wK‖2).
Therefore, by Lemma 6.9, for a parameter R′ that we will choose later,

Pr

[∣∣∣∑
i∈K

z̃i · wi − (τ + η)
∣∣∣ ≤ R′ · ‖wK‖2

]
≤
√

2/π · R′ + 4µ√
β(1− β)

,

and using the facts that ‖wK‖2 ≥ 1
2 · ‖w‖2 and β ≤ 1/2 we get that

Pr

[∣∣∣∑
i∈K

z̃i · wi − (τ + η)
∣∣∣ > (R′/2) · ‖w‖2

]
≥ 1− 2/

√
π · R′ + 4

√
2µ√

β
. (6.7)

(The event above is another good event.)

Concentration of the error term. By Lemma 6.7 and Chebyshev’s inequality,

Pr[|err− η| ≤ (R′/4) · ‖w‖2] ≥ 1− Var[err]

(R′/4)2 · ‖w‖2
2

≥ 1−O
(

ν′ · log(1/ν) · β
(R′)2

)
. (6.8)

(The above is our last good event.) Condition on z = z, z̃ = z̃, and err = err, where z̃ and err are
such that the two preceding good events occur.

Imbalance of the projected function. Let

θ′ = θ −∑
i∈K

zi · wi −∑
i∈J

wi

such that

Φ�π(y) = 1 ⇐⇒ ∑
j∈S

yj · w′j ≥ θ′ .

Then, unpacking the definitions and relying on the fact that the good events in Eq. (6.7) and
Eq. (6.8) have occurred, we have

∣∣∣θ′ −(∑
j∈S

αj · w′j

) ∣∣∣ = ∣∣∣∑
i∈K

zi · wi − τ
∣∣∣ = ∣∣∣ (∑

i∈K
wi · z̃i

)
− err− τ

∣∣∣
≥ (R′/4) · ‖w‖2 .
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Furthermore, since the good events of Eq. (6.5) and Eq. (6.6) occurred, we have that

∥∥w′
∥∥2

2 = ∑
j∈S

(
∑

i∈I∩S
wi

)2

≤ ∑
j∈S
|I ∩ S| · ∑

i∈I∩S
w2

i (Cauchy-Schwartz)

≤ 3 ln(n/ν)) ·∑
i∈I

w2
i

≤ 6 ln(n/ν) · R · p · β · ‖w‖2
2 .

Therefore, ∣∣∣θ′ −(∑
j∈S

αj · w′j

) ∣∣∣ ≥ R′√
6 · ln(n/ν) · R · p · β

·
∥∥w′

∥∥
2 .

Let

R′ =
1
2
·
√

6 · R · p · β · ln(n/ν) · ln(2/ε) + (ν′ · log(1/ν))1/3 ·
√

β ,

and note that the first term ensures that R′ is large enough so that we have

∣∣∣θ′ −(∑
j∈S

αj · w′j

) ∣∣∣ ≥ 1
2
·
√

ln(2/ε) ·
∥∥w′

∥∥
2 ,

and therefore, by Corollary 3.14, the projected function Φ�π is ε-close to constant under ~α, as
claimed.

Failure probability. Summing up over all five good events, the total failure probability is
bounded by

O

(
p + 1/R + ν′ +

R′ + µ√
β

+
ν′ · log(1/ν) · β

(R′)2

)
,

and plugging in our value for R′ this becomes

O

(
p + 1/R + ν′ +

√
R · p · log(n/ν) · log(1/ε) + (ν′ · log(1/ν))1/3 +

µ√
β

)
.

Now, choosing

R = (p · log(n/ν) · log(1/ε))−1/3 ,

the total failure probability is

O

(
p1/3 · log1/3(n/ν) · log1/3(1/ε) + (ν′ · log(1/ν))1/3 +

µ√
β

)
,

and the simpler bound in the lemma’s statement follows immediately.
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6.2.4 The general case: Arbitrary LTFs

At this point, we are ready to analyze an arbitrary (not-necessarily-regular) LTF. The analysis
relies on the concept of a critical index.

Definition 6.11. Let Φ be an LTF, say Φ(x) = 1 ⇐⇒ ∑n
i=1 wi · xi ≥ θ, where the variables are ordered

in descending order of weight (|w1| ≥ |w2| ≥ · · · ≥ |wn|). For µ > 0, the µ-critical index of Φ is the
smallest i ∈ [n] such that w>i is µ-regular, or ∞ if no such i exists.

Proof of Theorem 6.5. Assume without loss of generality that the variables are ordered in
descending order of weight (|w1| ≥ |w2| ≥ · · · ≥ |wn|). Let the blocks be B1, . . . , Bt. Let k be a
parameter that we will choose later, and let H ⊆ [t] be the set of indices j such that Bj ∩ [k] 6= ∅,
so in particular |H| ≤ k.

We consider a modified projection π′ in which all the variables in blocks in H are outside
blocks (and hence get assigned uniform values from b1−β). We claim that the total variation
distance between π and π′ is at most (p + ν′) · k. To see this, recall that each of the ≤ k blocks
in H survives with probability at most p under π, and assuming that none of them survives,
Lemma 6.7 guarantees that the total variation distance is at most k · ν′. Thus, for the remainder
of the proof we will analyze π′ instead of π.

Let µ > 0 be another parameter that we will choose later. Denoting the µ-critical index of Φ
by κ, the proof proceeds by a case analysis.

Case 1 (large head): κ > k. Let I ⊆ [n] be the set of surviving variables. By Lemma 6.6, except
with probability O(p + ν′), for every block B, we have |I ∩ B| ≤ 3 ln(n/ν). Condition on I = I,
where I is an arbitrary set such that this good event occurs, and let J = [n] \ I. For i ∈ J, let zi
denote the assignment to the ith variable. Let R ⊆ [k] be a set of indices that we will choose later.
By the definitions of H and π′, we have R ⊆ J. Condition on any assignment zJ\R = zJ\R to the
variables outside R.

Like in the proof of Lemma 6.10, let S ⊆ [t] be the set of surviving blocks, and define w′ ∈ RS

by w′j = ∑i∈I∩Bj
wi. That way, the projected LTF Φ�π is given by

Φ�π(y) = 1 ⇐⇒ ∑
j∈S

yj · w′j + ∑
i∈J\R

zi · wi + ∑
i∈R

zi · wi ≥ θ.

As a reminder, we are ultimately interested in plugging in a value y sampled from the product
distribution b~α. With respect to that choice, the expected value for the linear combination above
is

∑
j∈S

αj · w′j + ∑
i∈J\R

zi · wi + ∑
i∈R

zi · wi.

Therefore, define
τ = θ −∑

j∈S
αj · w′j − ∑

i∈J\R
zi · wi.

The bad case is that ∑i∈R zi ·wi ≈ τ; in such a case, the projected function is somewhat balanced.
Let us show that this bad case occurs with low probability.

A lemma by Servedio [Ser07, Lemma 4.5] (together with the bound 1 − µ2 ≤ exp(−µ2))
guarantees that for any 1 ≤ i < j ≤ κ + 1,

|wj| ≤ ‖w≥j‖2 ≤ exp(−µ2 · (j− i)/2) · ‖w≥i‖2 ≤ µ−1 · exp(−µ2 · (j− i)/2) · |wi|. (6.9)
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Define
∆ = d2 · ln(3/µ) · µ−2e,

and let i1 = 1 and iq+1 = iq + ∆. That way, if iq+1 ≤ κ + 1, then Equation (6.9) implies that
|wiq+1 | ≤ |wiq |/3. Define

r = d(1/β) · ln(1/µ)e

` =
1
2

√
3 ln(n/ν) · ln(2/ε)

k = ir + d2 ln(4`/µ) · µ−2e = O

(
β−1 · log2(1/µ) + log log( n

ε·ν )

µ2

)
R = {i1, . . . , ir} ⊆ [k].

That way, since I ∩ [k] = ∅ and κ > k, Equation (6.9) implies that

‖wI‖2 ≤ ‖w≥k‖2 ≤ µ−1 exp(−µ2 · (k− ir)/2) · |wir | ≤ |wir |/(4`).

Furthermore, by the Cauchy-Schwarz inequality,

‖w′‖2
2 ≤

t

∑
j=1
|I ∩ Bj| · ∑

i∈I∩Bj

w2
i ≤ 3 ln(n/ν) · ‖wI‖2

2

and thus
‖w′‖2 ≤

2`√
ln(2/ε)

· ‖wI‖2.

Therefore, for any two distinct assignments zR, z′R ∈ {0, 1}r, denoting by i∗ ∈ R the smallest
index such that zi∗ 6= z′i∗ , we have∣∣∣ 〈zR, wR〉 −

〈
z′R, wR

〉 ∣∣∣ = ∣∣∣ ∑
i∈R
i≥i∗

wi · (zi − z′i)
∣∣∣

≥ |wi∗ · (zi∗ − z′i∗)| − ∑
i∈R\[i∗]

|wi · (zi − z′i)|

≥ |wi∗ | − ∑
i∈R\[i∗]

|wi|

≥ |wi∗ | −
∞

∑
q=1
|wi∗ |/3q

= |wi∗ |/2
≥ |wir |/2
≥ 2` · ‖wI‖2

≥
√

ln(2/ε) · ‖w′‖2.

It follows that there is at most a single assignment zR ∈ {0, 1}r such that∣∣∣∣∣∑i∈R
zi · wi − τ

∣∣∣∣∣ ≤ 1
2

√
ln(2/ε) · ‖w′‖2.
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Consequently, since we assumed that the variables in R are all outside the blocks,

Pr
zR

[∣∣∣∣∣∑i∈R
zi · wi − τ

∣∣∣∣∣ ≥ 1
2

√
ln(2/ε) · ‖w′‖2

]
≥ 1− (1− β)r ≥ 1− µ.

Assume that the above good event occurs. In this case, by Corollary 3.14, the projected function
is indeed ε-close to constant.

Case 2 (small head): κ ≤ k. Condition on any assignment to the first κ variables. We claim that
the action of the projection π′ on the remaining n− κ variables is another p-surviving (1− β)-
biased (1 − q)-corrupted (ν, ν′)-block projection. Indeed, recall that we defined π′ in such a
way that that the first k ≥ κ variables are outside blocks. In the definition of a p-surviving
(1 − β)-biased corrupted (ν, ν′)-block projection, variables outside blocks are assigned values
from b1−β independently of the action of the projection on the other variables. By the definition
of κ, the residual LTF to which we are applying this projection is µ-regular. By Lemma 6.10, the
probability that the residual LTF is ε-far from constant under b~α is at most

O

(
µ√

β
+ (p1/3 + (ν′′)1/3) · log

(
n− κ

ε · ν

))
.

The overall failure probability. Including the total variation distance between π and π′ and
the failure probabilities in the two cases, the total failure probability is at most

O

(
(p + ν′) · k + µ√

β
+ (p1/3 + (ν′)1/3) · log

( n
ε · ν

))
.

Choose

µ =
(p1/3 + (ν′)1/3) · log(1/ν)

β1/6 .

Then plugging in our choice of k and using log2(1/µ) ≤ O(log(1/ν)), the total failure
probability is bounded by

O

(
(p + ν′) · (β−1 · log2(1/µ) + log log( n

ε·ν ))

µ2 +
µ√

β
+ (p1/3 + (ν′)1/3) · log

( n
ε · ν

))
≤ O

(
(p1/3 + (ν′)1/3) · β−2/3 · log

( n
ε · ν

))
as claimed.

6.3 LTF circuits simplify under corrupted biased block projections

Next, we would like to show that corrupted biased block projections decrease the depth of an
LTF circuit. More accurately, we will show that under such a projection, a depth-∆ LTF circuit
can be approximated by a decision tree with depth-(∆ − 1) LTF circuits at the leaves. In the
following proposition, we assume that ν′ ≤ p; this assumptions can be removed, but it is helpful
for simplifying the bounds.
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Proposition 6.12 (LTF circuits simplify under π). Let X and Y be sets of variables with |X | = n ≥
t = |Y|. Let ∆ ≥ 1, and let f be a depth-∆ LTF circuit on X with w wires. Let π : X ∪ {0, 1} →
Y ∪ {0, 1} be a p-surviving (1− β)-biased (1− q)-corrupted (ν, ν′)-block projection. Assume β ≤ 1/2
and ν′ ≤ p. Then for every~α ∈ [0, 1]t and every ε > 0, except with probability

p1/12 · β−1/6 · polylog
(n · w

ε · ν

)
,

the projected function f �π can be approximated under b~α with error ε by a depth-D decision tree whose
leaves are labeled by depth-(∆− 1) LTF circuits with w wires, where

D ≤ p13/12 · w · β−1/6 · polylog
(n · w

ε · ν

)
.

The key point is that in the bound on D, the exponent of p is greater than 1. For comparison,
the number of remaining variables after applying π is roughly p · β · n. When we eventually
analyze the projections π(1), . . . , π(d) that we defined in Section 4.2, we will have p = βC for a
large constant C. Thus, when w is only slightly larger than n, the p13/12 term in the bound on D
will ensure that D is significantly smaller than p · β · n and hence the tree is nontrivial.

Proof. Let ζ be the failure probability from Theorem 6.5 with approximation error ε/w, so
(recalling ν ≤ ν′ ≤ p) we have

ζ = O
(

p1/3 · β−2/3 · log
(n · w

ε · ν

))
.

Let G be the set of gates Φ in f such that every input to Φ is a variable. (Informally, G is the
“bottom layer” of f , but formally we don’t require f to be layered.) Partition G = GH ∪ GL,
where GL (“light gates”) is the set of gates with fan-in at most

√
ζ · p−1 and GH = G \GL (“heavy

gates”). Let A be the set of gates Φ ∈ GH such that Φ�π is (ε/w)-far from constant under b~α. For
each gate Φ ∈ GH \A, let cΦ ∈ {0, 1} be the constant toward which Φ�π is biased under b~α.

Let the blocks be B1, . . . , Bt. We say that two distinct blocks Bi, Bj are a connected pair if there
exists a light gate Φ ∈ GL such that a variable from Bi feeds into Φ and a variable from Bj feeds
into Φ. We say that the connected pair survives if Bi and Bj are both surviving blocks.

The tree queries the surviving connected pairs and the surviving blocks feeding into A. The
node reached at that point is a leaf, labeled by the circuit obtained from f �π by (a) plugging in the
value of each queried variable, and (b) replacing each gate Φ ∈ GH \A with the corresponding
constant cΦ. This means that every gate in G has zero or one variables feeding into it, so (possibly
after some simplification) the circuit has depth ∆− 1.

For any input y ∈ {0, 1}t to this tree, if for every Φ ∈ GH \A we have Φ(y) = cΦ, then the tree
correctly computes f �π(y). Therefore, by the union bound, the tree correctly computes f �π(y)
with probability 1− ε over the choice of y ∼ b~α. Now let us bound the depth of the tree (with
high probability with respect to the random choice of projection π).

Light gates. The probability that any particular connected pair survives is at most p2. The
number of connected pairs is at most

√
ζ · p−1 ·w, since each wire participates in at most

√
ζ · p−1

connected pairs. Therefore, in expectation, the number of connected pairs that survive is at most
p2 ·
√

ζ · p−1 · w = O(
√

ζ · p · w). By Markov’s inequality, except with probability ζ1/4, the total
number of connected pairs that survive is at most O(ζ1/4 · p · w).
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Heavy gates. By the Chernoff bound (see Corollary 3.10), for any particular gate Φ, the
probability that more than 2p · fan-in(Φ) + 3 ln(w/ζ) blocks with a variable feeding into Φ
survive the projection is at most ζ/w. Therefore, by the union bound, with probability 1− ζ,
every gate Φ has at most O(p · fan-in(Φ) + log(w/ζ)) surviving blocks feeding into it. Assume
that this is the case.

For each gate Φ, we have Pr[Φ ∈ A] ≤ ζ. Partition GH = G(1)
H ∪ · · · ∪ G(log w)

H , where

G(i)
H = {Φ ∈ GH : fan-in(Φ) ∈ [2i−1, 2i)}. Fix some i ∈ [log w]. We have E

[∣∣∣A∩ G(i)
H

∣∣∣] ≤ ζ ·
∣∣∣G(i)

H

∣∣∣.
Therefore, by Markov’s inequality,

Pr
[∣∣∣A∩ G(i)

H

∣∣∣ > ζ3/4 ·
∣∣∣G(i)

H

∣∣∣] ≤ ζ1/4.

By the union bound, with probability 1− ζ1/4 · log w, for every i, we have
∣∣∣A∩ G(i)

H

∣∣∣ ≤ ζ3/4 ·
∣∣∣G(i)

H

∣∣∣.
Assume that this is the case. Then the number of surviving blocks feeding into heavy gates in A
is bounded by

O

(
log w

∑
i=1

∣∣∣A∩ G(i)
H

∣∣∣ · (p · 2i + log(w/ζ))

)
≤ O

(
log w

∑
i=1

ζ3/4 ·
∣∣∣G(i)

H

∣∣∣ · (p · 2i + log(w/ζ))

)
≤ O

(
ζ3/4 · p · w + ζ3/4 · |GH | · log(w/ζ)

)
= O(ζ1/4 · p · w · log(w/ζ)),

where the last line uses the fact that |GH | ≤ w · p/
√

ζ. Summing up, the total failure
probability is ζ1/4 + ζ + ζ1/4 · log w = O(ζ1/4 · log w), and the total number of queries is
O(ζ1/4 · p · w + ζ1/4 · p · w · log(w/ζ)) = O(ζ1/4 · p · w · log(w/ζ)).

7 Decision trees with LTF circuits at their leaves simplify under the
projections

7.1 Bounding the number of survivors that a decision tree can find

In the previous section, we showed that under a corrupted biased block projection, a depth-d
LTF circuit becomes a decision tree T with depth-(d − 1) LTF circuits at the leaves. To make
further progress, we would like to analyze the effect of an additional corrupted biased block
projection π on such a decision tree. We will eventually argue that the tree simplifies further,
being approximated by a decision tree T′ with depth-(d− 2) LTF circuits at the leaves.

As discussed in Section 2.4, T′ will operate in two phases. In the first phase, it will make
queries to simulate the tree portion of T until it reaches a leaf, labeled by a depth-(d− 1) circuit
C. In the second phase, T′ will simulate C using a decision tree with leaves labeled by depth-
(d− 2) circuits, just like in the previous section. This strategy is natural enough, but there are
some challenges, because variables are not all independent, so the distributions get distorted
when we condition on reaching some vertex in T. In particular, the main challenge in the first
phase will be to bound the number of queries. The main challenge in the second phase will be
to bound the probability of error.

Our goal in this section is to prove the following lemma, which is the key to analyzing the
first phase. In the first phase, T′ must query yj if the simulation of T queries some surviving
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variable in the block Bj.16 Therefore, we are interested in bounding the number of blocks in
which a decision tree T can find a surviving variable. The following lemma accomplishes that
(and a little bit more due to the second bullet point).

Lemma 7.1 (Shallow decision trees cannot find many survivors). Let X and Y be sets of variables
with |X | = n ≥ t = |Y|. Let π : X ∪ {0, 1} → Y ∪ {0, 1} be a p-surviving (1− β)-biased (1− q)-
corrupted (ν, ν′)-block projection with blocks B1, . . . , Bt, where p ≤ 1/2, β ≤ 1/2, and ν′ ≤ 1/8. Let T
be a depth-D decision tree on X , let y ∈ {0, 1}Y , and let17 S be the number of blocks j ∈ [t] such that
either

• T(y ◦π) queries some surviving variable xi ∈ Bj, or

• T(y ◦π) makes at least 1/β queries to variables in Bj and Bj survives.

Then for every ζ ∈ (0, 1/2),

Pr[S ≤ O(p · β · D + log(1/ζ))] ≥ 1− ζ.

Note that the standard model of a decision tree has Boolean output labels on its leaves.
However, the output of T plays no role in Lemma 7.1. (In particular, the expression “T(y ◦ π)”
should be interpreted to mean “the computation of T on y ◦π” rather than “the output of T on
y ◦π.”) We can therefore consider the leaves of T to be unlabeled; it might be helpful to think of
T as outputting the identity of the leaf that it reaches.

The intuition behind Lemma 7.1 is as follows.

• Suppose that T makes fewer than 1/β queries to some blocks. Each of these blocks
survives with probability p. Within each surviving block, each queried variable survives
with probability O(β), and these events are nearly independent. (They are not perfectly
independent because we condition on a non-empty set of surviving variables in the block,
but the block has considerably more than 1/β variables, so the conditioning should have
little impact.) These queries should therefore contribute O(p · β · D) to S.

• Meanwhile, suppose that T makes more than 1/β queries to a block. Given its budget of
D total queries, T can only afford to make this many queries to β · D distinct blocks. Each
of these blocks survives with probability at most p, so once again, these events should only
contribute O(p · β · D) to S.

Formalizing this intuition is not completely straightforward, in part because T is allowed to be
adaptive. Nevertheless, Lemma 7.1 is true; the rigorous proof follows.

Proof. For each vertex v in T, let var(v) ∈ X be the variable that v queries. Furthermore, let
prev(v) be the set of variables xi ∈ X such that (a) there is some proper ancestor u of v with
var(u) = xi, and (b) there is some block Bj that contains both xi and var(v). Let v1, . . . , vD be the
random sequence of internal vertices that T(y ◦π) visits.18

Let ρ ∈ {0, 1, ?}X be the restriction corresponding to π, i.e., ρi = ? if xi survives and
ρi = π(xi) ∈ {0, 1} otherwise. Furthermore, define r ∈ {0, 1, ?}D by letting rk = ρvar(vk). Since
y is fixed, the bit (y ◦ π)i is determined by ρi. Therefore, the values r1, . . . , rk−1 determine the
vertices v1, . . . , vk.

Let R = d1/βe. Write S = |Q1|+ |Q2|, where
16Actually, the construction of T′ involves some mild preprocessing of T, leading to a few extra queries, but they

are handled by the second bullet point in Lemma 7.1.
17“S” for “survivors.”
18We may assume that every root-to-leaf path in T has length precisely D without loss of generality.
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• Q1 is the set of k ∈ [D] such that query k is to a surviving variable (rk = ?), query k is
among the first R− 1 queries to its block (i.e., |prev(vk)| ≤ R− 2), and each previous query
to that block was to a non-surviving variable (i.e., ρprev(vk) ∈ {0, 1}prev(vk)).

• Q2 is the set of k ∈ [D] such that query k is to a variable in a surviving block, query k is the
Rth query to its block (i.e., |prev(vk)| = R− 1), and each previous query to that block was
to a non-surviving variable (i.e., ρprev(vk) ∈ {0, 1}prev(vk)).

Each of the above definitions requires ρprev(vk) ∈ {0, 1}prev(vk). In fact, for each k ∈ Q1 ∪Q2, we
have ρprev(vk) = 1prev(vk), because in a surviving block, all non-surviving variables are assigned
the value 1.

We will show that

Pr[|Q1| ≤ O(p · β · D + log(1/ζ))] ≥ 1− ζ/2 (7.1)

and similarly
Pr[|Q2| ≤ O(p · β · D + log(1/ζ))] ≥ 1− ζ/2, (7.2)

which will complete the proof.

Claim 7.1.1. Equation (7.1) holds.

Proof. For brevity, we write r1...k−1 to denote (r1, . . . , rk−1). Fix some k ∈ [D] and a string
r ∈ Supp(r1...k−1) ⊆ {0, 1, ?}k−1. Let us bound the conditional probability Pr[k ∈ Q1 | r1...k−1 = r].
As mentioned previously, the string r1...k−1 determines v1, . . . , vk; let v1, . . . , vk be the vertices such
that

r1...k−1 = r =⇒ v1 = v1 ∧ · · · ∧ vk = vk.

Then

Pr[k ∈ Q1 | r1...k−1 = r] = Pr[k ∈ Q1 | ρvar(v1) = r1 ∧ · · · ∧ ρvar(vk−1) = rk−1].

Assume that the conditional probability above is nonzero. Then var(vk) is in some block Bj, and
for each k′ < k, if var(vk′) ∈ Bj, then rk′ = 1 (as discussed after the definitions of Q1 and Q2).
Furthermore, |prev(vk)| ≤ R− 2. The only remaining requirement in the definition of Q1 is that
query k is to a surviving variable, so

Pr[k ∈ Q1 | r1...k−1 = r] = Pr[var(vk) survives | ρvar(v1) = r1 ∧ · · · ∧ ρvar(vk−1) = rk−1].

Now, for each k′ < k, if var(vk′) 6∈ Bj, then the predicate ρvar(vk′ )
= rk′ has no effect on the above

conditional probability by Lemma 3.8. Therefore,

Pr[k ∈ Q1 | r1...k−1 = r] = Pr
[
var(vk) survives | ρprev(vk) = 1prev(vk)

]
≤ Pr[var(vk) survives]

Pr[ρprev(vk) = 1prev(vk)]
.

For some qj ∈ [0, 1], we have

Pr
[
ρprev(vk) = 1prev(vk)

]
≥ (1− p) · Pr

[
(corrb

Bj
1−β,1−qj

)prev(vk) = 1prev(vk)
]

≥ (1− p) · Pr
ϕ∼b

Bj
1−β

[ϕprev(vk) = 1prev(vk) ∧ϕ 6= 1Bj ]

= (1− p) · (1− β)|prev(vk)| · (1− (1− β)|Bj|−|prev(vk)|).
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Since |prev(vk)| ≤ 1/β and β ≤ 1/2, we have (1− β)|prev(vk)| ≥ (1/2)2 = 1/4, and therefore

Pr
[
ρprev(vk) = 1prev(vk)

]
≥ (1− p) · (1/4) · (1− 4 · (1− β)|Bj|)

≥ (1− p) · (1/4) · (1− 4 · ν′)

≥ 1
16

. (7.3)

Therefore,

Pr[k ∈ Q1 | r1...k−1 = r] ≤ 16 · Pr[var(vk) survives] ≤ 16 · p · β
1− ν′

≤ 19 · p · β.

The random variable r1...k−1 determines Q1 ∩ [k− 1], so we may now apply the upper Chernoff
bound for correlated random bits (Corollary 3.12), completing the proof of Equation (7.1). �

Claim 7.1.2. Equation (7.2) holds.

Proof. Let K = {k ∈ [D] : |prev(vk)| = R − 1}, and let ki be the ith element in K; that is,
k1 < k2 < . . . and K = {k1, k2, . . . }. Note that |K| ≤ D/R, because each ks ∈ K corresponds to
R distinct queries.

Fix an integer s ≤ D/R, fix a string r ∈ Supp(r1...ks−1), and denote k = |r|+ 1. 19 We will
condition on the event r1...ks−1 = r, and towards doing so we first argue that it is identical to the
event r1...k−1 = r. The direction ⇒ follows since conditioning on the former, we have ks = k. To
see the direction⇐, note that the condition r1...k−1 = r implies that v1 = v1, . . . , vk = vk for some
fixed vertices v1, . . . , vk; then, there are precisely s values 1 ≤ k1 < k2 < · · · < ks = k such that
for every s′ ≤ s have |prev(vks′

)| = R− 1 (since r ∈ Supp(r1...ks−1) for our fixed choice of s).
We bound the conditional probability Pr[ks ∈ Q2 | r1...ks−1 = r], as follows:

Pr[ks ∈ Q2 | r1...ks−1 = r] = Pr[k ∈ Q2 | r1...k−1 = r]
= Pr[k ∈ Q2 | ρvar(v1) = r1 ∧ · · · ∧ ρvar(vk−1) = rk−1].

Assume that the conditional probability above is nonzero. Then var(vk) is in some block Bj, and
for each k′ < k, if var(vk′) ∈ Bj, then rk′ = 1. As already discussed, |prev(vk)| = R− 1. The only
remaining requirement in the definition of Q2 is that query k is to a variable in a surviving block,
so

Pr[ks ∈ Q2 | r1...ks−1 = r] = Pr[Bj survives | ρvar(v1) = r1 ∧ · · · ∧ ρvar(vk−1) = rk−1].

Once again, for each k′ < k, if var(vk′) 6∈ Bj, then the predicate ρvar(vk′ )
= rk′ has no effect on the

above conditional probability by Lemma 3.8. Therefore,

Pr[ks ∈ Q2 | r1...ks−1 = r] = Pr
[

Bj survives | ρprev(vk) = 1prev(vk)
]

≤
Pr[Bj survives]

Pr[ρprev(vk) = 1prev(vk)]

≤ 16 · p,

where the last step follows by the same calculation as Equation (7.3). The random variable r1...ks−1
determines Q2 ∩ [ks−1], so we may once again apply the upper Chernoff bound for correlated
random bits (Corollary 3.12), completing the proof of Equation (7.2). �

19Indeed, the random variable r1,...,ks−1 is supported over strings of different lengths, and we condition on a fixed r
from its support of length that we denote by k− 1.
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The lemma follows by combining the two latter claims.

7.2 Conditional corrupted biased block projections

As discussed in Section 2.4 and the previous section, we would like to analyze the effect of a
corrupted biased block projection π on a decision tree T that has LTF circuits at the leaves. We
would like to prove that under the projection, the tree becomes a decision tree T′ with shallower
LTF circuits at the leaves. The tree T′ operates in two phases: the first phase simulates the tree
portion of T until it reaches a leaf labeled by a circuit C, and the second phase simulates C. The
purpose of this section is to help with the analysis of the second phase.

In our analysis, we will consider sampling an input y to the projected function T�π from the
product distribution bt

α. To bound the error, we will be interested in the distribution of (π, y)
conditioned on reaching a particular leaf. The following lemma will help us to reason about this
conditional probability distribution. We stress that our condition asserts what happens after the
composition y ◦π is applied, and we ask how this condition affects the distributions of π and of
y. The following lemma asserts that the condition has little effect on these distributions (other
than the obvious effect of fixing the relevant values), as long as we only condition on a small
number of variables in each block. We begin by focusing on a single block.

Lemma 7.2 (conditioning on a few variables being fixed to 1 by y ◦π doesn’t change the general
structure of (π, y ◦ π)). Let B = {x1, . . . , xm} be a nonempty set of variables and let y be one more
variable. Let π : B ∪ {0, 1} → {y, 0, 1} be a p-surviving (1− β)-biased (1− q)-corrupted (ν, ν′)-block
projection, where all of B is a single block, p, ν′, q ≤ 0.01, and β ≤ 1/2. Sample y ∼ bα independently
of π. Let Q ⊆ B with |Q| ≤ 1/β, let Q = B \ Q, and let E be the event (y ◦ π)Q = 1Q. Then the
conditional joint distribution (

πQ, (y ◦π)Q

)
| E (7.4)

is identical to a joint distribution (π̃, ỹ ◦ π̃), where:

1. The projection π̃ is a p̃-surviving (1− β)-biased (1− q̃)-corrupted (ν, ν̃′)-block projection for some
p̃ ≤ O(p), ν̃′ ≤ O(ν′), and q̃ ∈ [0, 1] with q̃ ≤ O(q + p), where the big-O notation hides universal
constants.

2. The bit ỹ is distributed according to bα̃ for some α̃ ∈ [0, 1].

3. The random variables π̃ and ỹ are independent.

To be clear, in Equation (7.4), the expression πQ refers to the action of the projection π on
variables outside Q. Similarly, (y ◦ π)Q denotes the substring of the composition y ◦ π that is
obtained by deleting the coordinates in Q. The domain of π̃ is Q ∪ {0, 1}.

Proof. For any set X of variables, let corrb
X
1−β,1−q′ be the following distribution over {0, 1}X :

1. With probability q′, we assign 1 to every variable in X .

2. With probability 1 − q′, we sample an assignment from the conditional distribution
(ϕ∼ bX1−β | ϕ 6= 1X ).
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Observe that for any q ∈ [0, 1], if we let q′ = q · (1− β)|X |, then the two distributions corrbX1−β,1−q

and corrb
X
1−β,1−q′ are identical (see Definition 6.2). For this proof, it will be more convenient to

reason about corrb
X
1−β,1−q′ .

Let y′ ∼ bα̃ be independent of (π, y); the value α̃ will be specified later (in particular, it will
be carefully chosen to ensure that π̃ and ỹ are independent). Define

y′′ =

{
y if some variable in Q survives, i.e., π−1(y) ∩Q 6= ∅
y′ otherwise.

The joint distribution (π̃, ỹ) is defined to be the conditional joint distribution

(πQ, y′′) | E .

Observe that when π does not keep any variables in Q alive, the bit y has no effect on (y ◦π)Q
anyway; indeed, (y ◦π)Q = πQ in this case. Thus, although y′′ and y are not necessarily equal,
we nevertheless always have the equality

(y′′ ◦π)Q = (y ◦π)Q.

Therefore, the joint distribution (π̃, ỹ ◦ π̃) is indeed identical to the conditional distribution of
Equation (7.4).

Our remaining task is to prove Items 1-3. In the proof that π̃ is a biased corrupted block
projection, we will view Q as a single block. We partition the event E into four cases.

1. Let E1 be the event that some variable in Q survives and E occurs, i.e.,

π−1(y) ∩Q 6= ∅ and (y ◦π)Q = 1Q.

2. Let E2 be the event that ∅ 6= π−1(y) ⊆ Q and y = 1. (This implies that (y ◦π)Q = 1Q.)

3. Let E3 be the event that π = 1B.

4. Let E4 be the event that π ∈ {0, 1}B \ {1B} and πQ = 1Q.

Note that the above four cases are mutually exclusive and E = E1 ∪ E2 ∪ E3 ∪ E4. Let us first
analyze π and y conditioned on Ei for each i ∈ [4]. Then, later, we will analyze the probability of
Ei conditioned on E for each i. Together, these analyses will reveal the distribution of (π̃, ỹ ◦ π̃).

The case E1. When E1 occurs, the new block Q survives. Each variable in Q either is assigned 1
or else survives. For any ψ ∈ {0, 1}Q \ {1Q}, looking at the definition of a corrupted biased block
projection, we have

Pr[π−1(y) ∩Q = ψ−1(0) | E1] = Pr
ϕ∼bB

1−β

y∼bα

[ϕQ = ψ | ϕQ 6= 1Q ∧ (ϕQ = 1Q ∨ y = 1)]

= Pr
ϕ∼bQ

1−β

[ϕ = ψ | ϕ 6= 1Q],
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which is precisely the distribution on living variables stipulated by the definition of a corrupted
biased block projection in the case when the block survives. Meanwhile,

Pr[y′′ = 1 | E1 ∧π−1(y) ∩Q = ψ−1(0)]

= Pr[y = 1 | E1 ∧π−1(y) ∩Q = ψ−1(0)]

= Pr[y = 1 | E ∧π−1(y) ∩Q = ψ−1(0)]

= Pr
ϕ∼bB

1−β

y∼bα

[y = 1 | ϕQ = ψ ∧ (ϕQ = 1Q ∨ y = 1)]

=
Pry,ϕ[y = 1∧ϕQ = ψ]

Pry,ϕ[ϕQ = ψ ∧ (ϕQ = 1Q ∨ y = 1)]

=
Pry[y = 1]

Pry,ϕ[ϕQ = 1Q ∨ y = 1]
(independence)

=
Pry[y = 1]

1− Prϕ[ϕQ 6= 1Q]Pry[y 6= 1]
(independence)

=
α

1− (1− α) · (1− (1− β)|Q|)
.

Crucially, the last expression has no dependence on ψ. We can therefore define

α̃ =
α

1− (1− α) · (1− (1− β)|Q|)
,

ensuring that when we condition on E1 and any particular value for πQ, the bit y′′ has bias α̃.

The case E2. When E2 occurs, the full block B survives, but the new block Q does not survive.
This means that under this case πQ = 1Q surely.

The case E3. When E3 occurs, the block B does not survive, hence the new block Q does not
survive either and is assigned the all 1s string.

The case E4. When E4 occurs, the block B does not survive (hence the new block Q does not
survive either). For any ψ ∈ {0, 1}Q,

Pr[πQ = ψ | E4] = Pr
ϕ∼bB

1−β

[ϕQ = ψ | ϕQ = 1Q,ϕ 6= 1B]

= Pr
ϕ∼bB

1−β

[ϕQ = ψ | ϕQ 6= 1Q],

which is precisely the distribution on assignments in the corrupted case 2 of the definition of a
biased corrupted block projection.

The overall distribution. To summarize, we have shown that conditioned on E1, the new
block Q survives and πQ follows precisely the distribution of the “surviving block” case of
the definition of a (1− β)-biased corrupted block projection;20 conditioned on E2 ∪ E3, the new

20To be more precise, the distribution is that of the “surviving block” case of a p0-surviving (1− β)-biased (1− q0)-
corrupted (ν0, ν′0)-block restriction, for any values of p0, q0, ν0, ν′0 (since the four latter parameter values do not affect
the distribution in the “surviving block” case).
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block does not survive and πQ is the all 1s assignment; and conditioned on E4, the new block

does not survive and πQ is sampled from the product distribution bQ
1−β conditioned on not being

the all 1s string.
Consequently, conditioned on the new block not surviving, the assignment is sampled from

corrb
Q
1−β,1−q̃′ for some q̃′. We would like to show that the distribution is corrbQ

1−β,1−q̃ for some

q̃ ∈ [0, 1]. To do so, we bound q̃′, the probability of sampling the all-ones string in the non-
surviving case, as follows:

Claim 7.2.1. We have that q̃′ ≤ (1− β)|Q| · (1.1q + 6p) ≤ (1− β)|Q|.

Proof. We have

q̃′ = Pr[E2 ∪ E3 | E2 ∪ E3 ∪ E4] ≤
Pr[E2]

Pr[E3 ∪ E4]
+

Pr[E3]

Pr[E3 ∪ E4]
. (2)

First let us analyze the denominator Pr[E3 ∪ E4]. Let q′ be the probability that π is all ones
conditioned on non-survival, i.e., q′ = q · (1− β)|B|. We have

Pr[E3 ∪ E4] = Pr[B non-surviving∧πQ = 1Q]

= Pr[B non-surviving] ·
(

q′ · 1 + (1− q′) · (1− β)|Q| − (1− β)|B|

1− (1− β)|B|

)
≥ Pr[B non-surviving] · ((1− β)|Q| − (1− β)|B|) (7.5)
≥ (1− p) · (1/4− ν′) ≥ 0.99 · 0.24 ≥ 1/5

because p, ν′ ≤ 0.01, |Q| ≤ 1/β, and β ≤ 1/2, thus (1− β)|Q| ≥ (1− β)1/β ≥ 0.52 = 1/4. Now
we analyze the two terms on the right-hand side of Equation (2) separately. For the first term,
we have

Pr[E2]

Pr[E3 ∪ E4]
≤ Pr[E2]

1/5
≤ 5p · (1− β)|Q|

1− (1− β)|B|
≤ 5p · (1− β)|Q|

1− ν′
≤ 6p(1− β)|Q|

where we used ν′ ≤ 0.01. Meanwhile, the second term is bounded by

Pr[E3]

Pr[E3 ∪ E4]
≤ Pr[B non-surviving] · q′

Pr[B non-surviving]((1− β)|Q| − (1− β)|B|)
by Equation (7.5)

= q · (1− β)|B|−|Q|

1− (1− β)|B|−|Q|

and since
(1− β)|Q| ≤ (1− β)|B|−1/β ≤ e · ν′ ≤ 0.03

we have Pr[E3]
Pr[E3∪E4]

≤ 1.1q · (1− β)|B|−|Q|. Overall, we get that q̃′ ≤ (1− β)|Q| · (1.1q + 6p). The
claim follows since q, p ≤ 0.01. �

Let q̃ = q̃′/(1− β)|Q| ≤ 1. The distribution corrb
Q
1−β,1−q̃′ is identical to corrbQ

1−β,1−q̃. Therefore,
conditioned on non-survival, π̃ is indeed a corrupted biased assignment. This shows that
π̃ is indeed a p̃-surviving (1 − β)-biased (1 − q̃)-corrupted (ν̃, ν̃′)-block projection for some
parameters p̃, ν̃, ν̃′, and q̃ ≤ 1.1q + 6p. Let us now bound the remaining parameters p̃, ν̃,
and ν̃′.
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We have Pr[E ] ≥ Pr[E3 ∪ E4] ≥ 1/5. Therefore, the survival probability is given by

p̃ = Pr[E1 | E ] =
Pr[π−1(y) ∩Q 6= ∅ ∧ E ]

Pr[E ] ≤ Pr[B surviving]
Pr[E ] ≤ 5 · p.

Next, observe that
(1− β)|Q| ≥ (1− β)|B| ≥ ν,

so we can take ν̃ = ν, and (1− β)|Q| ≤ e · ν′ so indeed, we can take ν̃′ = e · ν′.
Finally, consider any value π ∈ {0, 1}Q ∪ {1, y}Q. Conditioned on π̃ = π, what is the bias

of ỹ? Equivalently, conditioned on πQ = π and E , what is the bias of y′′? If π−1(y) 6= ∅,
then conditioning on πQ = π and E is equivalent to conditioning on πQ = π and E1. Under
the latter conditioning, we showed that y′′ has bias α̃, with no dependence on π. Meanwhile,
if π−1(y) = ∅, then conditioned on πQ = π and E , we have y′′ = y′, and hence once again,
y′′ has bias α̃, with no dependence on π. Therefore, overall, ỹ is indeed independent of π̃ and
distributed according to bα̃.

We now extend Lemma 7.2 to the case of multiple blocks. This lemma is the reason that we
have had to consider product distributions with a whole vector~α of potentially-different biases,
instead of assuming that every coordinate has the same bias.

Lemma 7.3 (extending Lemma 7.2 to multiple blocks). Let X and Y be sets of variables with
|X | = n ≥ t = |Y|. Let π : X ∪ {0, 1} → Y ∪ {0, 1} be a p-surviving (1 − β)-biased (1 − q)-
corrupted (ν, ν′)-block projection with blocks B1, . . . , Bt, where p, ν′, q ≤ 0.01 and β ≤ 1/2. Sample
y ∼ bYα independently of π. Let Q ∈ {0, 1, ?}X , and assume that for every block j ∈ [t], either (a)
QBj ∈ {0, 1}Bj , or else (b) QBj ∈ {1, ?}Bj and |Q−1(1)∩ Bj| ≤ 1/β. Let E be the event that y ◦π agrees
with Q, i.e.,

E ⇐⇒ ∀xi ∈ X , Qi ∈ {(y ◦π)i, ?}.

Then the conditional joint distribution(
πQ−1(?), (y ◦π)Q−1(?)

)
| E

is identical to a joint distribution (π̃, ỹ ◦ π̃), where:

1. The projection π̃ : Q−1(?)∪{0, 1} → Y ∪{0, 1} is a p̃-surviving (1− β)-biased (1− q̃)-corrupted
(ν, ν̃′)-block projection for some p̃ ≤ O(p), ν̃′ ≤ O(ν′), and q̃ ∈ [0, 1] with q̃ ≤ O(q + p).

2. The vector ỹ is distributed over {0, 1}Y according to b~α′ for some~α′ ∈ [0, 1]t.

3. The random variables π̃ and ỹ are independent.

Proof. For convenience, let B0 be the set of variables that are not in blocks, i.e., B0 = X \ (B1 ∪
· · · ∪ Bt). For each j ∈ {0, . . . , t}, let Ej be the event that (y ◦π)Bj agrees with QBj , i.e.,

Ej ⇐⇒ ∀xi ∈ Bj, Qi ∈ {(y ◦π)i, ?}.

By Lemma 3.8, the random variables(
πQ−1(?)∩B0

, (y ◦π)Q−1(?)∩B0

)
, . . . ,

(
πQ−1(?)∩Bt

, (y ◦π)Q−1(?)∩Bt

)
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are conditionally independent given E , and the distribution of
(

πQ−1(?)∩Bj
, (y ◦π)Q−1(?)∩Bj

)
is

the same whether we condition on E or on Ej.
Now consider a fixed j. If j = 0, then

(πQ−1(?)∩B0
| E0)

is distributed according to bQ−1(?)∩B0
1−β , and (y ◦ π)Q−1(?)∩B0

= πQ−1(?)∩B0
. We will consider

these variables to still be outside the blocks. Now suppose j ∈ [t]. In π̃, the jth block is

B̃j
def
= Q−1(?) ∩ Bj. If B̃j = ∅, then we can set ~α′j arbitrarily; say ~α′j = 0. Finally, if B̃j 6= ∅,

then we are in the situation of Lemma 7.2, completing the proof.

7.3 Simplification of decision trees with LTF circuits at the leaves

In this section, we will show that corrupted biased block projections simplify decision trees that
have LTF circuits at the leaves. Recall that we already analyzed the case that the initial function is
simply an LTF circuit f (Proposition 6.12). In that case, we argued that with high probability over
the projection π, we have a low approximation error with respect to the input y to the projected
function f �π . Going forward, it will be more convenient to bound the approximation error on
average over π. In other words, we will bound the probability of error with respect to the random
choice of π and the independent random choice of y. The following definition will help us to
reason about this type of average-case approximation.

Definition 7.4 (Approximation with low average error). Let f and f̃ be jointly distributed random
functions mapping {0, 1}n → {0, 1}, let X be a distribution over {0, 1}n, and let ε > 0. We say that f̃
approximates f under X with average error ε if

Pr
(f,̃f)
x∼X

[
f̃(x) 6= f(x)

]
≤ ε.

Here x is sampled independently of
(

f, f̃
)

whereas f and f̃ may be correlated.

In our application, f will be the projection of a function under a random projection π, and
f̃ will be an approximator that is designed based on π. Definition 3.5 is the special case of
Definition 7.4 where f and f̃ are deterministic functions.

Proposition 7.5 (Simplification of decision trees with LTF circuits at their leaves). Let X and
Y be sets of variables with |X | = n ≥ t = |Y|. Let T be a depth-D decision tree whose leaves
are labeled by depth-∆ LTF circuits with at most w wires on input variables X , where ∆ ≥ 1. Let
π : X ∪ {0, 1} → Y ∪ {0, 1} be a random projection, and assume that either π or the complement
projection π is a p-surviving (1− β)-biased 0.99-corrupted (ν, ν′)-block projection. Assume β ≤ 1/2
and ν′ ≤ p ≤ 0.01. Then for every α ∈ [0, 1], the projected function T�π can be approximated under bYα
with average error ε by a depth-D′ decision tree T′ whose leaves are labeled by depth-(∆− 1) LTF circuits
with w wires, where

D′ ≤ O(p · β · D) + dp13/12 · w · β−1/6e · polylog(nw/ν)

ε ≤ p1/12 · β−1/6 · polylog(nw/ν).

We emphasize that the tree T′ is a random variable (determined by π).
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Proof. Assume first that it is π rather than π that is a p-surviving (1− β)-biased 0.99-corrupted
(ν, ν′)-block projection. We will define a decision tree T̃ on the variable set X that computes the
same function as T with some additional convenient properties. For an input z ∈ {0, 1}X , the
new tree T̃(z) simulates T(z) until it reaches a leaf `0 labeled by a circuit C`0 . Then, for each
block j ∈ [t], if either

• the simulation made at least 1/β queries to Bj, or

• the simulation queried a variable xi where i ∈ Bj and found that zi = 0,

then our tree T̃ queries all remaining unqueried variables in the block Bj. The vertex ` of T̃ that
is reached at the end of this process is a leaf, and we label it with the circuit C` obtained from C`0

by plugging in all the values learned by all the queries that have occurred. Thus, C` computes a
function of only those variables that are not queried on the path from the root to `.

Let L be the set of leaves of T̃. For a leaf ` ∈ L and a string z ∈ {0, 1}X , we let `(z) indicate
whether T̃(z) reaches `. Furthermore, let Q` ∈ {0, 1, ?}X be the string describing the path from
the root to `. That is, if ` has a proper ancestor v that queries some variable xi and the outgoing
“xi = b” edge is on the path from v to `, then we set (Q`)i = b; if none of `’s proper ancestors
query xi, then we set (Q`)i = ?. Observe that

`(z) = 1 ⇐⇒ ∀xi ∈ X , (Q`)i ∈ {zi, ?}.

By the construction of T̃, for every block j ∈ [t], either (a) (Q`)Bj ∈ {0, 1}Bj , or else (b)
(Q`)Bj ∈ {1, ?}Bj and |Q−1

` (1) ∩ Bj| ≤ 1/β. This matches the hypothesis on Q of Lemma 7.3.
Sample y ∼ bt

α independently of π. Then Lemma 7.3 guarantees that the conditional joint
distribution (

πQ−1
` (?), (y ◦π)Q−1

` (?)

)
| `(y ◦π) = 1

is identical to a joint distribution (π̃(`), ỹ(`) ◦ π̃(`)) such that

• The projection π̃(`) : Q−1
` (?) ∪ {0, 1} → Y ∪ {0, 1} is a p̃-surviving (1− β)-biased (1− q̃)-

corrupted (ν, ν̃′)-block projection for some p̃ ≤ O(p), ν̃′ ≤ O(ν′) ≤ O(p), and q̃ ≤ 1. By
increasing p̃ by a constant factor if necessary, we can ensure that ν̃′ ≤ p̃.

• The vector ỹ(`) is distributed according to b~α′ for some~α′ ∈ [0, 1]t.

• The random variables π̃(`) and ỹ are independent.

Let us apply Proposition 6.12 with approximation error ν. Proposition 6.12 tells us that with
high probability (say 1− ζ) over the choice of π̃(`), the function (C`)�π̃(`) can be approximated
under ỹ(`) with error ν by a depth-D0 decision tree T(`) with leaves labeled by depth-(∆− 1) LTF
circuits with at most w wires, where

D0 = ( p̃)13/12 · w · β−1/6 · polylog(nw/ν)

= p13/12 · w · β−1/6 · polylog(nw/ν)

ζ = ( p̃)1/12 · β−1/6 · polylog(nw/ν)

= p1/12 · β−1/6 · polylog(nw/ν).

(Recall that C` is the circuit labeling the leaf `.) When the preceding good event does not occur,
set T(`) ≡ 0.

52



The tree T(`) is a random variable that is determined by π̃(`). Furthermore, we may assume
without loss of generality that T(`) ignores variables yj for which (π̃(`))−1(yj) = ∅ (i.e., it does
not query such variables, and the circuits at its leaves do not look at such variables). Therefore,
if a variable yj is not ignored by T(`), then the value of yj can be deduced by looking at π̃(`) and
querying a suitable coordinate of y ◦ π̃(`). Consequently, for each projection π ∈ Supp(π̃(`)),
there is a depth-D0 decision tree T[`, π] : {0, 1}Q−1

` (?) → {0, 1} with leaves labeled by depth-
(∆− 1) LTF circuits with at most w wires such that for every y ∈ {0, 1}Y , we have

T(`)(y) = T[`, π̃(`)](y ◦ π̃(`)).

We stress that for fixed ` and π, the tree T[`, π] is not a random variable.
Now we will define a tree T′0 based on π. (Our final tree T′ will be a slightly-modified version

of T′0.) On input y ∈ {0, 1}Y , the tree T′0 simulates T̃(y ◦π) until it reaches a leaf `. Then, the tree

T′0 simulates the tree portion of T
[
`, πQ−1

` (?)

] (
(y ◦π)Q−1

` (?)

)
until it reaches a leaf `′, labeled by

some circuit C`′ . The corresponding vertex of T′0 is also a leaf labeled by C`′ .
Let us prove correctness, i.e., let us bound the failure probability Pr[T′0(y) 6= T�π(y)], where

the probability is taken with respect to both the choice of projection π (which determines the
truth table of T′0) and the choice of input y. We can write

Pr
[
T′0(y) 6= T�π(y)

]
= Pr

[
T′0(y) 6= T̃�π(y)

]
= ∑

`∈L
Pr[`(y ◦π) = 1] · Pr

[
T′0(y) 6= T̃�π(y) | `(y ◦π) = 1

]
.

For a fixed leaf ` ∈ L, we have

Pr
[
T′0(y) 6= T̃�π(y) | `(y ◦π) = 1

]
= Pr

[
T
[
`, πQ−1

` (?)

] (
(y ◦π)Q−1

` (?)

)
6= C`

(
(y ◦π)Q−1

` (?)

)
| `(y ◦π) = 1

]
= Pr

[
T
[
`, π̃(`)

] (
ỹ(`) ◦ π̃(`)

)
6= C`

(
ỹ(`) ◦ π̃(`)

)]
= Pr

[
T(`)

(
ỹ(`)
)
6= C`�π̃(`)

(
ỹ(`)
)]

≤ ζ + ν.

Therefore, overall,

Pr[T′0(y) 6= T�π(y)] ≤ ∑
`∈L

Pr[`(y ◦π) = 1] · (ζ + ν) = ζ + ν.

Now let us bound the complexity of T′0. Let us argue that for each fixed y, with high
probability over π, the tree T′0(y) does not make too many queries to its input y. (Ultimately we
want a depth bound that holds for all y simultaneously; that will come later.) Recall that in the
first phase, T′0(y) simulates T̃(y ◦π) until it reaches a leaf. By the definition of T̃, the number of
queries to y that this simulation requires is equal to the number of blocks j ∈ [t] such that one of
the following three conditions holds:

• T(y ◦π) queries some surviving variable xi ∈ Bj, or

• Bj survives and T(y ◦π) makes at least 1/β queries to variables in Bj, or
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• Bj survives and T(y ◦π) queries a variable xi ∈ Bj such that (y ◦π)i = 0.

The last condition actually implies the first, because in a surviving block Bj, every non-surviving
variable is assigned 1. Meanwhile, by Lemma 7.1, with probability 1− ν, the number of blocks
satisfiying one of the first two conditions is at most O(p · β · D + log(1/ν)).

In the second phase, T′0(y) simulates T[`, π] for a particular ` and π. This tree has depth D0,
so overall, with probability 1− ν, the tree T′0(y) makes D′ = O(p · β ·D + D0 + log(1/ν)) queries.
Our final tree T′ simulates T′0, except that if the simulation tries to make D′ + 1 queries, then the
corresponding vertex of T′ is a leaf labeled with the constant 0 function. This only increases the
average error by ν, so overall, we get a depth-D′ tree with leaves labeled by depth-(∆− 1) circuits
and with average error ζ + 2ν. Summing up and using ν ≤ p yields the desired bounds.

Now, finally, let us consider the case that it is π rather than π that is a p-surviving (1− β)-
biased p-corrupted ν-block projection. We reduce to the previous case using the fact that the
class of decision trees with leaves labeled by LTF circuits is closed under negation of inputs. That
is, define

T(x1, . . . , xn) = T(1− x1, . . . , 1− xn).

Then T can also be computed by a depth-D decision tree with leaves labeled by depth-∆ LTF
circuits with at most w wires. Therefore, applying what we have already proven, we get an
approximator T′ for Tπ under bt

1−α. Now define

T′(y1, . . . , yt) = T′(1− y1, . . . , 1− yt).

Then T′, like T′, can be computed by a depth-D′ decision tree with leaves labeled by depth-
(∆− 1) LTF circuits with at most w wires. Furthermore, if we sample y ∼ bt

α independently of
π and define y = (1− y1, . . . , 1− yt), then

Pr
[
T′(y) 6= T�π(y)

]
= Pr

[
T′(y) 6= T(y ◦π)

]
≤ ε.

7.4 Iterative analysis of the sequence of projections

In this section, our goal is to apply Proposition 7.5 successively for each projection π(1), . . . , π(d),
arguing that an initial LTF circuit gets simpler and simpler with each projection, ultimately
proving Theorem 6.1. We begin by arguing that after applying π(1), . . . , π(i), the circuit becomes
a shallow decision tree with depth-(d − i) circuits at the leaves. (As a reminder, the notion of
approximation in the statement below is specified in Definition 7.4.)

Proposition 7.6 (π = π(d) ◦ · · · ◦π(1) simplifies any LTF circuit of depth d). Let M be a sufficiently
large power of two, let C ≥ 97 be an integer, assume d ≤ 0.05 · logC M, let Mi = MCi−1

for i = 1, . . . , d,
and let ~M = (M1, . . . , Md). Let Fd+1, ~M be the corresponding AND-OR tree defined in Section 4.1, let
π(1), . . . , π(d) be the corresponding projections defined in Section 4.2, let X0 be the set of input variables
of Fd+1, ~M, and let n = |X0|. Let f be a depth-d LTF circuit on X0 with w wires. Let i ≤ d and let
b = i + 1 mod 2. The projected function f �π(1...i) can be approximated under the product distribution
σ(i+1) with average error ε by a decision tree of depth D with leaves labeled by depth-(d− i) LTF circuits
with at most w wires, where

D ≤ M−1/96 · w · Ki · logK(nw)

M1 ·M2 · · ·Mi−1 ·
√

Mi
and ε ≤ M−1/48 · i · logK(nw)

for a suitably large universal constant K.
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Proof. The proof is by induction on i. The base case i = 0 is trivial, so consider i > 0. Let
Ti−1 be the tree that approximates f �π(1...i−1) by the induction hypothesis. Using the assumption
d ≤ 0.05 · logC M, we have

Mi ≤ MCd ≤ MM0.05 ≤ exp(M1/16/2),

for sufficiently large M. Therefore, we may apply Lemma 6.4: conditioned on any fixed values
for π(1), . . . , π(i−1), either π(i) or the complement projection π(i) is a pi-surviving (1− βi)-biased
(1− qi)-corrupted (νi, 3νi)-block projection, where pi = 2/

√
Mi, νi = 0.5/Mi, qi = 2M−1/4

i , and
βi is given by Equation (4.2). Therefore, Proposition 7.5 gives a tree Ti that approximates Ti−1�π(i) .
Let us bound the average error of this approximation:

Pr
[

f �π(1...i)(σ(i+1)) 6= Ti(σ
(i+1))

]
≤ Pr

[
f �π(1...i)(σ(i+1)) 6= Ti−1�π(i)(σ(i+1))

]
+ Pr

[
Ti−1�π(i)(σ(i+1)) 6= Ti(σ

(i+1))
]

.

We can bound the first term using the completion property (Lemma 5.2) and the induction
hypothesis:

Pr
[

f �π(1...i)(σ(i+1)) 6= Ti−1�π(i)(σ(i+1))
]
= Pr

[
f �π(1...i−1)(σ(i+1) ◦π(i)) 6= Ti−1(σ

(i+1) ◦π(i))
]

= Pr
[

f �π(1...i−1)(σ(i)) 6= Ti−1(σ
(i))
]

≤ (i− 1) ·M−1/48 · logK(nw).

Meanwhile, the second term is bounded by Proposition 7.5:

Pr
[
Ti−1�π(i)(σ(i+1)) 6= Ti(σ

(i+1))
]
≤ p1/12

i · β−1/6
i · polylog(nw/νi)

=

{
M−1/24

i ·M1/12
i−1 · polylog(nw)

M−1/24
i · 21/6 · polylog(nw)

if i > 1
if i = 1

≤ M−Ci−1/24+Ci−2/12 · logK(nw) for a suitable K

≤ M−Ci−1/48 · logK(nw) (C ≥ 4)

≤ M−1/48 · logK(nw).

Adding up completes the bound on ε.
Now let us bound the depth of Ti, denoted by Di. Let Di−1 be the depth of Ti−1 and note that

D0 = 0. By Proposition 7.5, we get

Di ≤ O(pi · βi · Di−1) + p13/12
i · w · β−1/6

i · polylog(nw/νi)

≤
{

(K/2)·Di−1√
Mi ·
√

Mi−1
+ M−13/24

i ·M1/12
i−1 · w · polylog(nw) if i > 1

M−13/24
i · 21/6 · w · polylog(nw) if i = 1

for a suitable choice of K. Let us first bound the first term of the i > 1 expression. By induction,
we have

Di−1 ≤
M−1/96 · w · Ki−1 · logK(nw)

M1 ·M2 · · ·Mi−2 ·
√

Mi−1
.
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Therefore, the first term of the i > 1 expression is at most

M−1/96 · w · Ki · logK n
2 ·M1 ·M2 · · ·Mi−1 ·

√
Mi

.

Now let us bound the i = 1 expression and (simultaneously) the second term of the i > 1
expression. By a suitable choice of K, each of these terms is bounded by

M−Ci−1·13/24+Ci−2/12 · w · logK(nw),

which is at most

M−Ci−1·25/48 · w · logK(nw)

since C ≥ 4. For comparison,

M1 ·M2 · · ·Mi−1 ·
√

Mi = M1+C+C2+···+Ci−2+Ci−1/2

≤ MCi−1·(1/2+1/(C−1))

≤ MCi−1·49/96 (C ≥ 97.)

Therefore, each of the terms in question is at most

M−Ci−1/96 · w · logK(nw)

M1 ·M2 · · ·Mi−1 ·
√

Mi
.

Overall,

Di ≤

(
1
2 ·M−1/96 · Ki + M−Ci−1/96

)
· w · logK(nw)

M1 ·M2 · · ·Mi−1 ·
√

Mi
≤ M−1/96 · Ki · w · logK(nw)

M1 ·M2 · · ·Mi−1 ·
√

Mi
.

We are now ready to prove Theorem 6.1, restated below for convenience.

Theorem 6.1 (LTF circuits simplify under the projections, restated). Let M be a sufficiently large
power of two, let d ∈ N, and use the parameters Mi = M100i−1

for i = 1, . . . , d to define the projections
π(1), . . . , π(d). Assume d ≤ 0.05 · log100 M. Let X0 ∪ {0, 1} be the domain of π(1), let n = |X0|, and let
f be a depth-d LTF circuit on X0 with w wires. The probability that the projected function f �π(1...d) is ξ-far
from constant under the product distribution σ(d+1) is at most ξ, where

ξ ≤ M−1/96 · dw/ne ·O(log n)d+O(1). (7.6)

Proof. We may assume w ≤ n2, since otherwise the theorem is trivial. Therefore, O(log w) =
O(log n), and taking i = d, Proposition 7.6 gives a tree T of depth

D ≤ M−1/96 · w · 2O(d) · polylog(n)
M1 ·M2 · · ·Md−1 ·

√
Md

that approximates f �π(1...d) under σ(d+1) with average error

ε ≤ M−1/48 · polylog(n).
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By Markov’s inequality,

Pr
π(1),...,π(d)

[
Pr

σ(d+1)
[T(σ(d+1)) 6= f �π(1...d)(σ(d+1))] ≤

√
ε

]
≥ 1−

√
ε. (7.7)

Condition on π(1) = π(1), . . . , π(d) = π(d), where π(1), . . . , π(d) are any projections such that the
above good event occurs. Recall that the projections determine the tree T; let T be the tree such
that this conditioning implies T = T. Let π(1...d) = π(d) ◦ · · · ◦ π(1).

Since we are considering i = d, we have a decision tree with leaves labeled by “depth-0” LTF
circuits, i.e., the leaves are labeled by constants. Let b = d + 1 mod 2, let ` be the leaf that T
reaches on input bXd , and let z ∈ {0, 1} be the label of `. We will argue that T(σ(d+1)) reaches `
with high probability, and therefore T(σ(d+1)) outputs z with high probability. Indeed, let S ⊆ Xd
be the set of variables that are queried on the path from the root to `, and note that |S| ≤ D.
Recall that σ(d+1) is distributed according to bXd

1−βd→b. Therefore,

Pr
[

T(σ(d+1)) 6= z
]
≤ Pr

[
σ
(d+1)
S 6= bS

]
≤ D · βd (Union bound)

≤ M−1/96 · w
M1 ·M2 · · ·Md

· 2O(d) · polylog(n).

Therefore,

Pr
σ(d+1)

[
f �π(1...d)(σ(d+1)) 6= z

]
≤
√

ε + M−1/96 · w
M1 ·M2 · · ·Md

· 2O(d) · polylog(n)

≤ M−1/96 ·
⌈

w
M1 ·M2 · · ·Md

⌉
· 2O(d) · polylog(n)

≤ M−1/96 · dw/ne · f1 · f2 · · · fd+1

M1 ·M2 · · ·Md
· 2O(d) · polylog(n)

≤ M−1/96 · dw/ne ·O(log n)d+O(1),

where the last line uses Claim 4.3 and the fact that Mi ≤ n for every i.
To summarize, we have shown that with probability 1−

√
ε over the choice of π(1...d) = π(1...d),

the function f �π(1...d) is ξ-close to a constant under the distribution σ(d+1), where ξ = M−1/96 ·
dw/ne ·O(log n)d+O(1). Since ξ >

√
ε, we are done.

8 Putting everything together: LTF circuits vs. AND-OR trees

In this section, we will complete the proof of our main theorem (Theorem 1.2), namely, the
existence of a depth-(d + 1) AND-OR tree F that is average-case hard for depth-d LTF circuits
with a super-linear number of wires. We begin with a crude bound on the number of variables
in our AND-OR tree Fd+1, ~M.

Claim 8.1. Let M be a sufficiently large power of two, let d ∈ N, and let Mi = M100i−1
for i = 1, . . . , d.

Let n = |X0| where X0 is the set of input variables to the AND-OR tree Fd+1, ~M defined in Definition 4.1.

Then n < M2·100d−1
.
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Proof. We have n = f1 · f2 · · · fd+1, where f1, . . . , fd+1 are the fan-ins given in Definition 4.1. By
Claim 4.3,

d+1

∏
i=1

fi ≤ log(M) ·
(

d

∏
i=2

2 ·M100i−2 · ln(M100i−1
)

)
· 2 ·M100d−1 · ln(2)

<
d

∏
i=1

M1.1·100i−1
(M is sufficiently large)

= M1.1·(100d−1)/99

< M2·100d−1
.

Proof of Theorem 1.2. For each M ∈ N, let powers(M) = (M, M100, . . . , M100d−1
). Let nM be the

number of variables |X0| in the AND-OR tree Fd+1,powers(M). Let M be the largest power of two

such that nM ≤ n, let Mi = M100i−1
, let ~M = powers(M), and let F = Fd+1, ~M. Then we can

consider F to be a function on n variables that ignores the last n− nM input variables.
We must show that M is “sufficiently large,” i.e., larger than some universal constant. To do

so, we rely on the assumption that n is sufficiently large. Let M∗ be the largest power of two that
is smaller than (say) log n. By Claim 8.1,

nM∗ ≤ M2·100d−1

∗ < 2
√

log n < n,

where the second inequality uses the assumption d ≤ 1
20 log log n. Consequently, M ≥ M∗, so

indeed, M is sufficiently large.
Let w = n1+2−9d

and suppose f is a depth-d LTF circuit on n variables with at most w wires.
We may assume without loss of generality that f ignores all variables outside X0. Therefore, by
the cumulative completion property (Corollary 5.3), we have

Pr
x∈{0,1}n

[ f (x) = F(x)] = Pr
π(1),...,π(d),σ(d+1)

[ f (σ(d+1) ◦π(1...d)) = F(σ(d+1) ◦π(1...d))]

= E
π(1),...,π(d)

[
Pr

σ(d+1)

[
f �π(1...d)(σ(d+1)) = F�π(1...d)(σ(d+1))

]]
.

By Theorem 5.1, except with probability O(M−1/4) over the choice of π(1), . . . , π(d), the
function F�π(1...d) is (6M−1/8)-unbiased under the product distribution σ(d+1). Meanwhile,
Theorem 6.1 gives a bound on a value ξ such that except with probability ξ, the function f �π(1...d)

can be approximated under the product distribution σ(d+1) with error ξ by a constant function.
Fix any π = π(1...d) such that both of these good events occur. Let z ∈ {0, 1} be the constant that
approximates f �π. Then

Pr
σ(d+1)

[
f �π(σ

(d+1)) = F�π(σ
(d+1))

]
≤ ξ + Pr

σ(d+1)

[
F�π(σ

(d+1)) = z
]

≤ 1
2
+ ξ + 6M−1/8.

Now let us bound ξ. Theorem 6.1 gives the bound

ξ ≤ M−1/96 · dw/nMe ·O(log n)d+O(1),
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so we need to bound w/nM. Recall that w = n1+2−9d
. By Claim 4.3,

n < n2M ≤ log(2M) ·
(

d

∏
i=2

2 · (2M)100i−2 · ln((2M)100i−1
)

)
· 2 · (2M)100d−1 · ln(2)

≤ 2d ·
(

d

∏
i=1

4100i−1

)
· log(M1) ·

(
d

∏
i=2

Mi−1 · ln(Mi)

)
·Md · ln(2)

≤ 2d · 42·100d−1 · log(M1) ·
(

d

∏
i=2

Mi−1 · ln(Mi)

)
·Md · ln(2) (8.1)

≤ 4d · 42·100d−1 · nM.

Therefore,
ξ ≤ M−1/96 · n2−9d · 42·100d−1 ·O(log n)d+O(1).

Incorporating the chance of getting a bad π(1...d), overall, we get

Pr
x∈{0,1}n

[ f (x) = F(x)] ≤ 1
2
+ O(M−1/4) + 2ξ + 6M−1/8

≤ 1
2
+ M−1/96 · n2−9d · 42·100d−1 ·O(log n)d+O(1).

Now we need to argue that the M−1/96 term is small enough to overpower the other terms. By
Claim 8.1, n < n2M ≤ (2M)2·100d−1

, so

M ≥ 1
2

n0.5·100−(d−1)
,

and hence
M−1/96 ≤ O

(
n−(0.5/96)·100−(d−1)

)
≤ O

(
n−2−8d

)
.

Thus,

Pr
x∈{0,1}n

[ f (x) = F(x)] ≤ 1
2
+ n−2−8d · n2−9d · 42·100d−1 ·O(log n)d+O(1)

≤ 1
2
+ n−2−9d · 42·100d−1 ·O(log n)d+O(1)

≤ 1
2
+ n−2−9d · n2−10d

because d ≤ 1
20

log log n

≤ 1
2
+ n−2−10d

.

9 Hardness magnification for our construction

We first give an informal overview of the proof of Theorem 1.3. We exploit the recursive
structure of F(n)

d+1. The bottom d0 + 1 layers of F(n)
d+1 are a collection of subformulas.

Each subformula applies the same function (say F̃d0+1) to some subset of the input
variables. The function F̃d0+1 is an AND-OR tree of depth d0 + 1 with fan-ins approximately
log(M1), M1 ln(M2), M2 ln(M3), . . . , Md0 ln(Md0+1), where Mi = M100i−1

. Thus, F̃d0+1 is quite
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similar to F(n′)
d0+1 for some n′ that is much smaller than n. The only difference is that the fan-in of

the output gate is different in F̃d0+1 than it is in F(n′)
d0+1. In particular, the function computed by

F̃d0+1 is significantly biased, whereas the function computed by F(n′)
d0+1 is nearly balanced.

To address this difference, we view F̃d0+1 as a restriction of F(m)
d0+1 for a value m that is slightly

larger than n′ (but still much smaller than n). By assumption, F(m)
d0+1 has depth-d0 LTF circuits

with only mk wires, hence so does F̃d0+1, and hence we can use those LTF circuits to decrease the
depth of F(n)

d while barely increasing the number of wires. The rigorous proof follows.

Proof of Theorem 1.3. Like in the proof of Theorem 1.2, let powers(M) = (M, M100, . . . , M100d−1
).

Let M be such that F(n)
d+1 = Fd+1,powers(M) (applied to the first nM variables where possibly nM < n).

Let ~M = (M1, . . . , Md) = powers(M), and let f1, . . . , fd+1 be the sequence of fan-ins in Fd+1, ~M.
Like in the proof of Theorem 1.2, we may assume that M is sufficiently large.

Let K = 1000 · ln(M), let M′ = MK, let M′i = (M′)100i−1
, let ~M′ = (M′1, . . . , M′d0

), and let
f ′1, . . . , f ′d0+1 be the sequence of fan-ins in Fd0+1, ~M′ . We claim that for every i ∈ [d0 + 1], we have
f ′i ≥ fi. Indeed, by Claim 4.3, we have f ′1 = log(M′1) > log(M1) = f1, and for i = 2, . . . , d0, we
have

f ′i ≥
1
2
·M′i−1 · ln(M′i) =

1
2
· K100i−2 ·Mi−1 · ln(M′i) > 2 ·Mi−1 · ln(Mi) ≥ fi,

and finally

f ′d0+1 ≥
1
2
·M′d0

· ln(2) = ln(2)
2
·Md0 · K

100d0−1

=
ln(2)

2
·Md0 · (1000 ln M)100d0−1

> 2 ·Md0 · 100d0 · ln(M) ·Md0

= 2 ·Md0 · ln(Md0+1) ≥ fd0+1.

Therefore, for each gate v of Fd+1, ~M at distance d0 + 1 from the input, there is a restriction ρv
such that Fv = Fd0+1, ~M′�ρv

. (The restriction ρv fixes some variables to 1 and keeps all other

variables alive.) Let m be the number of input variables of Fd0+1, ~M′ . Then Fd0+1, ~M′ = F(m)
d0+1,

so by assumption, Fd0+1, ~M′ can be computed by a depth-d0 LTF circuit with at most mk wires.

Consequently, F(n)
d+1 can be computed by a depth-d LTF circuit with at most O(n ·mk) wires.

Now let us bound m, the number of variables in Fd0+1, ~M′ . We claim that for every i ∈ [d0 + 1],
we have

f ′i ≤ Mi−1 · 2K100i−2 · 100i−1 · ln(KM),

defining M0 = 1 for convenience. Indeed, by Claim 4.3, f ′1 = log(M′1) ≤ 2 ln(KM); for
i = 2, . . . , d0, we have

f ′i ≤ 2 ·M′i−1 · ln(M′i) = 2 · K100i−2 ·Mi−1 · 100i−1 · ln(KM);

and finally
f ′d0+1 ≤ 2 ·M′d0

· ln(2) = 2 · K100d0−1 ·Md0 · ln(2).
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Therefore,

m =
d0+1

∏
i=1

f ′i ≤
d0+1

∏
i=1

Mi−1 · 2K100i−2 · 100i−1 · ln(KM)

=

(
d0+1

∏
i=2

Mi−1

)
·O(log n)2·100d0

=

(
d+1

∏
i=d−d0+2

Mi−1

)100−(d−d0)

·O(log n)2·100d0

<

(
d+1

∏
i=d−d0+2

fi

)100−(d−d0)

·O(log n)2·100d0

< n100−(d−d0) ·O(log n)2+100d0 .

Since d0 and k are constants, it follows that F(n)
d+1 can be computed by a depth-d LTF circuit

with at most Õ(n1+k·100−(d−d0)) wires. Assuming d ≥ 2d0, the number of wires is indeed at most
Õ(n1+k·100−d/2

) = Õ(n1+k·10−d
).
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A Positive results for average-case depth reduction

In this section, we record proofs for the three positive results mentioned in Section 1.3, showing
that the correlation bound in our main result (Theorem 1.2) cannot be significantly improved.
First we consider the problem of decreasing the depth of a linear-size AC0 circuit by a single
layer.

Proposition A.1. Let d ≥ 0 and let F be a depth-(d + 1) AC0 circuit over n input bits with w wires and
top fan-in m ≤ w. There exists a depth-d AC0 circuit f with at most w wires such that

Pr
x∈{0,1}n

[ f (x) = F(x)] ≥ 1
2
+

1
4m

.

Proposition A.1 is well-known and follows easily from the discriminator lemma of Hajnal,
Maass, Pudlak, Szegedy, and Turan [HMP+93]. We include a proof only for completeness. The
proof below does not explicitly invoke the discriminator lemma, but it amounts to essentially the
same argument.

Proof. Assume without loss of generality that the output gate of F is an OR gate. If E[F] ≥
1
2 +

1
4m , then we can take f ≡ 1. Assume now that E[F] < 1

2 +
1

4m . Let F1, . . . , Fm be the children
of the output gate of F, so F(x) =

∨m
i=1 Fi(x). By the union bound, E[F] ≤ E[F1] + · · ·+E[Fm], so

there is some i such that E[Fi] ≥ 1
m E[F]. Furthermore, Fi ≤ F, so

Pr
x∈{0,1}n

[Fi(x) = F(x)] = Pr
x∈{0,1}n

[F(x) = 0] + Pr
x∈{0,1}n

[Fi(x) = 1]

≥ 1−
(

1− 1
m

)
·E[F]

≥ 1−
(

1− 1
m

)
·
(

1
2
+

1
4m

)
≥ 1

2
+

1
4m

.

Therefore, we can take f = Fi.

Next, we consider the problem of approximating an arbitrary monotone function in low
depth.
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Proposition A.2. Let F be a monotone Boolean function on n input bits. There exists a Boolean function
f that depends on at most one variable such that

Pr
x∈{0,1}n

[ f (x) = F(x)] ≥ 1
2
+ Ω

(
log n

n

)
.

Proposition A.2 follows easily from the Kahn-Kalai-Linial theorem [KKL88]. Once again, the
implication is well-known; we include a proof only for completeness.

Proof. If E[F] > 3/4 or E[F] < 1/4, then we can take f to be a constant function. Assume now
that E[F] ∈ [1/4, 3/4]. By the Kahn-Kalai-Linial theorem [KKL88], there exists a variable with
influence Ω((log n)/n), i.e., there exists i ∈ [n] such that

Pr
x∈{0,1}n

[F(x(i←0)) 6= F(x(i←1))] ≥ Ω
(

log n
n

)
,

where x(i←b) is the string obtained from x by setting coordinate i to the value b. We can write

Pr
x∈{0,1}n

[F(x) = xi] = E
x∈{0,1}n

[
Pr

b∈{0,1}
[F(x(i←b)) = b]︸ ︷︷ ︸

(*)

]
.

For any fixing of x ∈ {0, 1}n, if F(x(i←0)) = F(x(i←1)), then quantity (*) is 1/2. On the other hand,
if F(x(i←0)) 6= F(x(i←1)), then because F is monotone, F(x(i←0)) must be 0 and F(x(i←1)) must be
1, so quantity (*) is 1. Therefore,

Pr
x∈{0,1}n

[F(x) = xi] =
1
2
+

1
2

Pr
x∈{0,1}n

[F(x(i←0)) 6= F(x(i←1))] ≥ 1
2
+ Ω

(
log n

n

)
.

Finally, we consider the problem of approximating an arbitrary AC0 circuit (of any constant
depth and any polynomial size) by LTF circuits with depth bounded by a universal constant.

Proposition A.3. Let d ≥ 1 and let F be a depth-d AC0 circuit over n input bits with w wires. There
exists a depth-2 LTF circuit f with at most O(log2d−2 w) wires such that

Pr
x∈{0,1}n

[ f (x) = F(x)] ≥ 1
2
+

1

nO(logd−1 w)
.

Proposition A.3 follows easily from the Linial-Mansour-Nisan theorem [LMN93]. (Actually,
to get the specific bounds in Proposition A.3, one should use the later work by Boppana [Bop97];
see also later improvements by Håstad [Hås01] and Tal [Tal17b].) We include the proof for
completeness.

Proof. Let g(x) = (−1)F(x). There is a value k = O(logd−1 w) such that [LMN93; Bop97; Hås01;
Tal17b]

∑
S⊆[n]
|S|>k

ĝ(S)2 ≤ 1/2.

By Parseval’s theorem, ∑S⊆[n] ĝ(S)2 = 1, so ∑S⊆[n],|S|≤k ĝ(S)2 ≥ 1/2. Therefore, there is some
S ⊆ [n] with |S| ≤ k such that

|ĝ(S)| ≥ Ω
(

1
(n + 1)k/2

)
.
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By considering ¬F if necessary, we may assume without loss of generality that ĝ(S) > 0. Let
f (x) =

⊕
i∈S xi. Then

Pr
x∈{0,1}n

[ f (x) = F(x)] =
1
2
+

1
2

E
x∈{0,1}n

[(−1) f (x) · (−1)F(x)] =
1
2
+

1
2

ĝ(S) ≥ 1
2
+

1

nO(logd−1 w)
.

Finally, since f is a symmetric function on at most O(logd−1 w) variables, it can be computed by
a depth-2 LTF circuit with at most O(log2d−2 w) wires [HMP+93].

B Proofs of concentration bounds

In this section, for completeness, we record the proofs of the variants of the Chernoff bound that
we use.

Proof of Corollary 3.10. Assume without loss of generality that µ = E[∑n
i=1 xi] and µ > 0.

Taking δ = 1 + 3 ln(1/ε)
µ ≥ 1 in Theorem 3.9, we get

Pr

[
n

∑
i=1

xi > 2µ + 3 ln(1/ε)

]
≤ exp

(
− δ

δ + 2
· (µ + 3 ln(1/ε))

)
= exp

(
−
(

1− 2
δ + 2

)
· (µ + 3 ln(1/ε))

)
≤ exp

(
−1

3
· 3 ln(1/ε)

)
= ε.

Proof of Corollary 3.11. We can calculate

µ∗ · (1 + δ) ≥ µ · 1 + δ

1 + ε
= µ ·

(
1 +

δ− ε

1 + ε

)
≥ µ · (1 + δ/3).

By Theorem 3.9, therefore,

Pr

[
n

∑
i=1

xi > µ∗ · (1 + δ)

]
≤ Pr

[
n

∑
i=1

xi > µ · (1 + δ/3)

]
≤ exp

(
− (δ/3)2

2 + δ/3
· µ
)

≤ exp
(
−δ2 · µ∗ · (1− ε)

32 · (2 + 1/3)

)
≤ exp

(
−δ2 · µ∗

42

)
.

Similarly,

µ∗ · (1− δ) ≤ µ · 1− δ

1− ε
= µ ·

(
1− δ− ε

1− ε

)
≤ µ · (1− δ/2) ,

and hence

Pr

[
n

∑
i=1

xi < µ∗ · (1− δ)

]
≤ Pr

[
n

∑
i=1

xi < µ · (1− δ/2)

]
≤ exp

(
− (δ/2)2

2
· µ
)
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≤ exp
(
−δ2 · µ∗ · (1− ε)

22 · 2

)
≤ exp

(
−δ2 · µ∗

16

)
.

The union bound completes the proof.

Proof of Corollary 3.12. Sample r1, . . . , rn ∈ [0, 1] independently and uniformly at random.
Define ỹ1, . . . , ỹn ∈ {0, 1} by the following iterative procedure. Having already picked ỹ1 =
y1, . . . , ỹi−1 = yi−1, let

ỹi = 1 ⇐⇒ ri ≤ Pr[yi = 1 | y1 = y1, . . . , yi−1 = yi−1].

Observe that (ỹ1, . . . , ỹn) is distributed identically to (y1, . . . , yn).
Next, for each i ∈ [n], define zi ∈ {0, 1} by

zi = 1 ⇐⇒ ri ≤ ζ.

Observe that z1, . . . , zn are independent and Pr[zi = 1] = ζ.
We claim that (with probability 1) for every i ∈ [n], we have ỹi ≤ zi. To see it, let y1, . . . , yi−1

be arbitrary, and let X be the set of x ∈ Supp(xi−1) such that

xi−1 = x =⇒ y1 = y1, . . . , yi−1 = yi−1.

(Recall that xi−1 determines y1, . . . , yi−1.) Then

Pr[yi = 1 | y1 = y1, . . . , yi−1 = yi−1] = Pr[yi = 1 | xi−1 ∈ X ]

=
∑x∈X Pr[xi−1 = x] · Pr[yi = 1 | xi−1 = x]

∑x∈X Pr[xi−1 = x]

≤ ζ ·∑x∈X Pr[xi−1 = x]
∑x∈X Pr[xi−1 = x]

= ζ.

Thus, indeed, ỹi = 1 =⇒ zi = 1.
Therefore,

Pr

[
n

∑
i=1

yi > 2ζ · n + 3 ln(1/ε)

]
≤ Pr

[
n

∑
i=1

zi > 2ζ · n + 3 ln(1/ε)

]
≤ ε,

where the last step follows from Corollary 3.10.
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