
Efficient decoding up to a constant fraction of the code
length for asymptotically good quantum codes

Anthony Leverrier∗ Gilles Zémor†

June 15, 2022

Abstract

We introduce and analyse an efficient decoder for the quantum Tanner codes
of [LZ22] that can correct adversarial errors of linear weight. Previous decoders
for quantum low-density parity-check codes could only handle adversarial errors of
weight O(

√
n logn). We also work on the link between quantum Tanner codes and

the Lifted Product codes of Panteleev and Kalachev, and show that our decoder can
be adapted to the latter. The decoding algorithm alternates between sequential and
parallel procedures and converges in linear time.

1 Introduction

1.1 Contributions

Historically, a major motivation behind the study of classical low-density parity-check
(LDPC) codes was the possibility of efficient decoding. In his thesis, Gallager showed
that random LDPC codes were asymptotically good codes with high probability and
proposed a first decoding algorithm based on message passing [Gal62]. Much later, Sipser
and Spielman introduced expander codes which are explicit LDPC codes with a minimum
distance linear in their length n, together with an efficient decoder that provably corrects
adversarial errors of linear weight [SS96]. These expander codes are a special instance of
Tanner codes [Tan81] defined on a ∆-regular expander graph: bits are associated to the
edges of the graph while parity-check constraints are enforced at each vertex via small
linear codes of length ∆.

The LDPC property may be of even greater interest in the quantum case because
such codes can significantly reduce the required overhead for fault-tolerant quantum
computing [Got14]. For this, it is enough to find a code family encoding Θ(n) logical
qubits within n physical qubits, with a sufficient minimum distance d = Ω(nα) for some
α > 0 and an efficient decoding algorithm. Quantum expander codes, which are obtained
by taking the hypergraph product [TZ14] of two expander codes, form one such family

∗Inria, France. anthony.leverrier@inria.fr
†Institut de Mathématiques de Bordeaux, UMR 5251, France. zemor@math.u-bordeaux.fr

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 88 (2022)

when combined with the small-set-flip decoder [LTZ15, FGL18]. This decoder corrects
adversarial errors of weight proportional to the minimum distance, that is O(

√
n). Very

recently, Panteleev and Kalachev discovered a first family of asymptotically good quan-
tum LDPC codes [PK21a] and suggested that a decoder similar to that of quantum
expander codes might be able to correct errors of large weight in linear time.

In the present paper, we describe such a linear-time decoder for quantum Tanner
codes [LZ22], a family of good quantum LDPC codes obtained by applying the Tanner
code construction to a Left-Right Cayley complex [DEL+21, BE21] rather than to a
graph. This decoder can correct adversarial errors of linear weight. Previously, the best
decoder available was able to correct error of weight O(

√
n logn) [EKZ20].

1.2 Context and history

Quantum LDPC codes. Quantum error correcting codes (QECC), initially devised
to fight decoherence with the goal of building large-scale quantum computers, have be-
come a central object of study in fields as diverse as computer science, topological phases
in physics, quantum information and even quantum gravity. Probably the best-known
QECC is the toric code of Kitaev which corresponds to the degenerate ground-space of
a simple local Hamiltonian defined on a torus [Kit03]. It is a 22-dimensional subspace
encoding 2 qubits within the Hilbert space (C2)⊗n of n physical qubits, defined as the
common eigenspace with eigenvalue 1 of a set of n−2 commuting Pauli operators, called
generators. The minimum distance of a code is the minimal weight1 of a Pauli opera-
tor that commutes with all the generators but that cannot be written as a product of
generators. The toric code achieves a remarkable distance of Θ(

√
n), which remains the

current record for quantum codes with generators acting locally in a topological space
of constant dimension. In general, the parameters of such local codes are rather severely
constrained by the ambient space [BT09, BPT10, Del13, BK22], and it is useful to relax
the locality constraint and only require that the generators of the code have constant
weight, but are otherwise arbitrary2. In addition, we ask that any qubit is involved in at
most a constant number of generators. Such QECC are called LDPC.

An important stepping stone in the study of quantum LDPC codes was the constant-
rate3 generalisation of the toric code called hypergraph (or homological) product con-
struction that forms a quantum LDPC code from two arbitrary classical LDPC codes
[TZ14]. In particular, if the classical codes are asymptotically good, then the result-
ing QECC has constant rate and a minimum distance d = Θ(

√
n). Ideas from higher-

dimensional expansion were useful to break the so-called square-root barrier for the min-
imum distance, but only by polylogarithmic factors [EKZ20, KT21]. A much more im-
pressive improvement came from the idea of adding a twist to the homological product
construction [HHO20] to obtain d = Θ̃(n3/5). Further generalizations, either balanced
product codes or lifted product codes, were developed in [BE21] and [PK20] and finally

1The weight of a Pauli operator is the number of qubits on which the operator acts nontrivially.
2We do not require the generators to be geometrically local anymore, and they can therefore act on

an arbitrary set of qubits. This set should simply be of constant size.
3The rate of a QECC is the ratio k/n of the number k of logical qubits per physical qubit.

2

led to the asymptotically good quantum LDPC codes of Panteleev and Kalachev [PK21a].
Hidden behind this final construction lies a higher-dimensional generalization of a graph
called a Left-Right Cayley complex introduced in [DEL+21] to construct (classical) locally
testable codes. Combining this complex, which is a balanced product of Cayley graphs,
with the Tanner code construction of [Tan81] yields an alternative family of good quan-
tum LDPC codes called quantum Tanner codes [LZ22]. It should be emphasized that
before these recent works, it was completely unclear whether quantum LDPC codes with
a minimum distance significantly above

√
n could exist at all.

Decoders for quantum LDPC codes. Topological codes, such as the toric code and
its various generalizations in higher dimensions, are by far the most studied quantum
LDPC codes. In particular, they now come with relatively efficient decoders that solve
the following problem: given the syndrome of a physical Pauli error e, i.e. the list of
generators that do not commute with the error, return a guess ê for the error such that e
and ê differ by a product of generators4, which is sufficient since generators act trivially
on the codespace. This is a crucial relaxation compared to the classical decoding problem
which requires to recover the exact error. While this could suggest at first sight that the
decoding problem is simpler in the quantum case, this is in fact far from clear. A typical
issue arises when the error corresponds to half a generator. In that case, it might not
be clear for the decoder how to break the symmetry between the two equivalent errors
corresponding to each half of the generator. A related observation is that the value of the
error on a given qubit is never well defined since it is straightforward to find equivalent
errors with a distinct action on that qubit. These issues are by now relatively well under-
stood for topological codes and the minimum weight perfect matching decoder [Edm65]
yields a decoder with very good performance and a reasonable complexity of O(n3).
Faster decoders exist for topological codes, for instance Union-Find has essentially a lin-
ear complexity in the worst case and performs optimally for errors of weight less than
(d − 1)/2 [DN21].

Decoding more general, non tolopological LDPC codes, appears to be more chal-
lenging. While some solutions behave reasonably well against random errors, most no-
tably the combination of Belief Propagation and Ordered Statistics Decoding proposed
in [PK21b], an important challenge is to understand how well one can correct adver-
sarial errors. Inspired by a decoder of Hastings [Has14] for 4-dimensional hyperbolic
codes [GL14], the small-set-flip (SSF) decoder of quantum expander codes can correct
Θ(

√
n) errors and works in a greedy fashion by trying to find small local patterns that

can decrease the syndrome weight [LTZ15]. The decoder of [EKZ20] exploits the homo-
logical product structure in a more global way to (slightly) beat the

√
n bound. The

recent invention of good quantum LDPC codes raises the natural question of whether
one can indeed correct adversarial errors of linear weight in polynomial, or even linear
time5. We answer this question in the affirmative, but note that our decoder is somewhat

4In this case, e and ê are called equivalent.
5We note that [LH22] studies such a decoder for a possible construction of asymptotically good

quantum LDPC codes that relies on a conjecture about the existence of 2-sided lossless expander graphs

3

more complicated than SSF. In particular, while the normal mode of the decoder is very
similar to SSF, we also need to consider an exceptional mode to take care of potentially
problematic error patterns.

The paper is organised as follows. Section 2 gives an overview of the paper, recalls the
construction of the quantum Tanner codes, describes the decoding algorithm and states
our main result showing that the decoder corrects all error patterns of weight below a
constant fraction of the code length. Section 3 is a preliminary to the detailed part
of the paper and introduces the required technical material. Section 4 gives a detailed
description of the quantum Tanner codes which rely here on a quadripartite version of
the left-right Cayley complex and not a bipartite version as in [LZ22], since this would
complicate the exposition. Similarly, Section 5 discusses the decoding algorithm and
the tools used in its analysis. Section 6 is the core of the paper, giving the precise
description of the decoder and its detailed analysis, and establishing the main theorem.
Finally, Section 7 explores the links between the quantum Tanner codes and the lifted
product codes of Panteleev and Kalachev, and explains how our decoding algorithm
yields an efficient decoder for the lifted product codes as well, thereby solving an open
problem of [PK21a].

2 Overview

The left-right Cayley complex. We recall the construction of the square complex
of Dinur et al. [DEL+21]. It is an incidence structure X between a set V of vertices,
two sets of edges EA and EB, that we will refer to as A-edges and B-edges, and a set
Q of squares (or quadrangles). The vertex-set V is defined from a group G. While we
considered a bipartite complex in [LZ22], we take here a quadripartite version as it will
simplify the exposition. The vertex set is therefore partitioned as V = V00∪V01∪V10∪V11,
with each part identified as a copy of the group G. Formally, we set Vij = G × {ij} for
i, j ∈ {0,1}. We also have two self-inverse subsets A = A−1 and B = B−1 of the group G:
for i ∈ {0,1}, a vertex v = (g, i0) ∈ Vi0 and a vertex v′ = (g′, i1) ∈ Vi1 are said to be related
by an A-edge if g′ = ag for some a ∈ A. Similarly, for j ∈ {0,1}, vertices v = (g,0j) and
v′ = (gb,1j) are said to be related by a B-edge if g′ = gb for some b ∈ B. The sets EA and
EB make up the set of A-edges and B-edges respectively, and define graphs GA and GB
where GA consists of two copies of the double cover of the left Cayley graph Cay(G,A)
and GB consists of two copies of the double cover of the right Cayley graph Cay(G,B).

Next, the set Q of squares is defined as the set of 4-subsets of vertices of the form

{(g,00), (ag,01), (gb,10), (agb,11)}.

The four vertices of a square threrefore belong to the four distinct copies of G, as depicted
on Figure 1.

with free group action.

4

An advantage of the quadripartite version we consider here is that we do not need to
enforce any additional constraint on G,A,B such as the Total No-Conjugacy condition
defined in [DEL+21] requiring that ag ≠ gb for all choices of g, a, b.

g ∈ V00

ag ∈ V01 agb ∈ V11

gb ∈ V10

Figure 1: Square {(g,00), (ag,01), (agb,11), (gb,10)} of the complex.

If we restrict the vertex set to V0 ∶= V00 ∪ V11, every square is now incident to only
two vertices: one in V00 and one in V11. The set of squares can then be seen as a set of
edges on V0, and it therefore defines a bipartite graph that we denote by G◻0 = (V0,Q).
Similarly, the restriction to the vertices of V1 ∶= V01 ∪ V10 defines the graph G◻1 , which
is an exact replica of G◻0 : both graphs are defined over two copies of the group G, with
g, g,′ ∈ G being related by an edge whenever g′ = agb for some a ∈ A, b ∈ B. We assume for
simplicity that A and B are of the same cardinality ∆. For any vertex v, we denote by
Q(v) the Q-neighbourhood (or link) of v which is defined as the set of squares incident
to v. The Q-neighbourhood Q(v) has cardinality ∆2 and is isomorphic to the product
set A ×B: the situation is illustrated on Figure 2 and discussed in detail in Section 4.

Quantum Tanner codes on the complex X. A Tanner code, or expander code,
on a ∆-regular graph G = (V,E) is the set of binary vectors indexed by E (functions
from E to F2), such that on the edge neighbourhood of every vertex v ∈ V , we see a
codeword of a small code C of length ∆ [Tan81, SS96]. We denote the resulting code by
Tan(G,C) ⊂ FE2 .

Following [LZ22], we consider quantum Tanner codes which are quantum CSS codes
formed by two classical Tanner codes C0 and C1 with support on the set Q of squares
of a Left-Right Cayley complex. The CSS construction requires both codes to satisfy
the orthogonality condition C⊥0 ⊂ C1. Enforcing this condition requires some care for the
choice of the local codes of C0 and C1. We will define local codes on the space FA×B2 that
we may think of as the space of matrices whose rows (columns) are indexed by A (by
B). If CA ⊂ FA2 and CB ⊂ FB2 are two linear codes, we define the tensor (or product) code
CA⊗CB as the space of matrices x such that for every b ∈ B the column vector (xab)a∈A
belongs to CA and for every a ∈ A the row vector (xab)b∈B belongs to CB. Recall that
the dual C⊥ of a code C is the set of words orthogonal to all words in C:

C⊥ ∶= {x ∈ F∣C∣2 ∶ ⟨x, y⟩ = 0 ∀y ∈ C}.
We finally define C0 and C1 to be the following classical Tanner codes:

C0 = Tan(G◻0 , (CA ⊗CB)⊥), C1 = Tan(G◻1 , (C⊥A ⊗C
⊥
B)⊥),

5

Q(g,00) Q(gb,10)

Q(ag,01) Q(agb,11)

b b

a

a

Figure 2: The four local views Q(v) that contain the square
{(g,00), (ag,01), (agb,11), (gb,10)}. The views of two vertices connected by an
A-edge (resp. a B-edge) share a row depicted in red (resp. a column in blue). The
labeling is chosen to ensure that a given square, such as the one in red and blue,
is indexed similarly, by (a, b) here, in the four local views. The σX -type generators
are codewords of CA ⊗ CB in the local views of V00 ∪ V11; the σZ-type generators are
codewords of C⊥A ⊗ C⊥B in the local views of V01 ∪ V10. They automatically commute
since their support can only intersect on a shared row or column (as depicted), and the
orthogonality of the local codes ensure that they commute on this row or column.

with bits associated to each square of Q and local constraints enforced at the vertices
of V0 and V1, respectively. Let us denote C0 ∶= CA ⊗ CB and C1 ∶= C⊥A ⊗ C

⊥
B, so that

Ci = Tan(G◻i ,C
⊥
i) for i ∈ {0,1}. To check the orthogonality condition between the two

codes, it is convenient to look at their generators (or parity-checks). We define a C0-
generator for C0 (resp. a C1-generator for C1) as a vector of FQ2 whose support lies entirely
in the Q-neighborhood Q(v) of V0 (resp. V1), and which is equal to a codeword of C0

(resp. C1) on Q(v). The Tanner code C0 (resp. C1) is defined as the set of vectors
orthogonal to all C0-generators (resp. C1-generators). The condition C⊥0 ⊂ C1 simply says
that all C0-generators are orthogonal to all C1-generators: this follows from the fact that
if a C0-generator on v0 ∈ V0 and a C1-generator on v1 ∈ V1 have intersecting supports,
then v0 and v1 must be neighbours in the left-right Cayley complex and their local views
must intersect on either a column or a row, on which the two generators equal codewords
of CA and C⊥A, or of CB and C⊥B (see Fig. 2).

We denote by Q = (C0,C1) the quantum Tanner code obtained in this way from C0

and C1, and recall the main result from [LZ22].

6

Theorem 1 (Quantum Tanner codes are asymptotically good [LZ22]). There exists an
infinite family of square complexes X such that the following holds. For any ρ ∈ (0,1/2),
ε ∈ (0,1/2) and δ > 0 satisfying −δ log2 δ − (1 − δ) log2(1 − δ) < ρ, randomly choosing CA
and CB of rates ρ and 1 − ρ yields, with probability > 0 for ∆ large enough, an infinite
sequence of quantum codes Q = (C0,C1) of rate (2ρ−1)2, length n and minimum distance
⩾ δn/4∆3/2+ε.

Concretely, the complexes X that work in Theorem 1 are all complexes such that
Cay(G,A) and Cay(G,B) are Ramanujan graphs and for which ∆ is fixed, independent
of the complex size, and large enough.

The proof of Theorem 1 in [LZ22] went along the following lines: If one considers a
codeword x of C◻1 and identifies it with its support, a set of squares that reduces to a
set of edges in the graph G◻1 , then this is a subgraph of minimum degree at least δ∆, a
lower bound on the minimum distance of the component dual tensor code. Expansion
in G◻1 is not quite enough to deduce that ∣x∣ must be large, but if ∣x∣ is small, expansion
does tell us that its local views on vertices of V1 must have a small weight (close to ∆)
on average. If we decompose these local views, which have the structure of dual tensor
codewords on A×B, as sums of column vectors, i.e. elements of CA⊗FB2 , and row vectors
in FA2 ⊗CB, then, the definition of the complex X tells us that the individual column and
row vectors from these local views also exist in the Q-neighbourhoods of vertices of V0.
Switching to expansion in the graphs GA and GB, we obtain that most individual column
CA-codewords and row CB-codewords from the Q-neighbourhoods of vertices of V1, must
cluster around local views of vertices of V0. A local analysis of these clustered local view
then shows that adding some non-zero tensor codeword must reduce its Hamming weight,
and in this way one obtains iteratively that the global codeword x of C1 can be expressed
as a sum of generators, which yields the lower bound on the minimum distance.

Robustness of the component codes CA and CB. Crucial to the analysis sketched
above is the ability to claim that if a dual tensor codeword x = (xab) ∈ FA×B2 has suf-
ficiently small weight, then it can be expressed as a sum x = r + c, where the union of
row codewords r ∈ FA2 ⊗CB and the union of column codewords c ∈ CA ⊗ FB2 are both of
small weight. This is a robustness property. More precisely, we say that a dual tensor
code (C⊥A ⊗C

⊥
B)⊥ = CA ⊗ FB2 + FA2 ⊗CB is w-robust if any codeword x of weight ⩽ w has

its support included in the union of ∣x∣/dA columns and ∣x∣/dB rows, where dA and dB
are the minimum distances of CA and CB. A similar notion is used both in [DEL+21]
and [PK21a]. What was shown in [LZ22] is that for any ε > 0 and large enough ∆, when
CA and CB are chosen at random, then the dual tensor codes (CA⊗CB)⊥ and (C⊥A⊗C

⊥
B)⊥

are both ∆3/2−ε-robust with high probability. This property will again be crucial when
considering decoding issues.

The decoding problem. A standard property of QECC is that the ability to correct
all Pauli errors of weight up to t implies the ability to correct arbitrary errors of weight
less than t. For a CSS code, bit flips and phase flips can be decoded independently, and

7

it is therefore sufficient to consider only one type of errors. Since we chose CA and CB
of rate ρ and 1 − ρ, respectively, we see that the classical Tanner codes C0 and C1 have
the same parameters and that the resulting quantum Tanner codes will protect equally
well against bit flips and phase flips. Without loss of generality, we therefore consider a
phase-flip error with support on e ∈ FQ2 . This error is detected by the classical Tanner
code C1, and the goal of the decoder is to output an error candidate ê such that e+ê ∈ C⊥0 .
Recall indeed that an element of C⊥0 is a sum of generators, and therefore acts trivially
on the codespace. For this reason, it is not necessary to recover the exact error e, and
any equivalent error in the coset e + C⊥0 is equally good.

An approach mentioned in [LZ22] for decoding (classical) Tanner codes is to define a
mismatch vector that summarises how the local decoders associated to each local code
may disagree about the error, and then try to locally modify this mismatch in order to
reduce its weight. It is natural to see the error e as a collection of local views on the
vertices of V1: abusing notation slightly, we can write e = {ev}v∈V1 , where we see the local
views ev both as small length vectors in FQ(v)2 and as vectors of FQ2 with 0 coordinate
values outside Q(v). Since each square of Q belongs both to a local view of V01 and to
a local view of V10, we have that ∑v∈V01 ev = ∑v∈V10 ev. For each vertex v ∈ V1, one can
compute a local error εv with support on Q(v) of minimal Hamming weight yielding the
corresponding local syndrome. This gives a decomposition of the local views of the error

ev = εv + cv + rv,

with cv ∈ CA ⊗ FB2 , rv = FA2 ⊗ CB, and εv of minimal Hamming weight. Here, we have
that cv + rv is a codeword of the dual tensor code C⊥1 = CA ⊗ FB2 + FA2 ⊗ CB. The issue
is that the local views {εv}v∈V1 are in general not consistent and do not define a global
error candidate. We measure this inconsistency by defining the mismatch vector

Z ∶= ∑
v∈V1

εv ∈ FQ2 . (1)

If it is equal to zero, it means that each square/qubit is affected the same value for
the two views it belong to, and the decoder is able to define a global error. Otherwise,
the support of Z corresponds to the set of squares for which the local views disagree.
Exploiting the previous remark that ∑v∈V1 ev = 0, we can rewrite the mismatch as

Z = ∑
v∈V1

rv + cv = C0 +R0 +C1 +R1,

where we defined

C0 = ∑
v∈V10

cv, R0 = ∑
v∈V01

rv, C1 = ∑
v∈V01

cv, R1 = ∑
v∈V10

rv.

The idea behind our decoder is to find a decomposition {r̂v, ĉv}v∈V1 such that Z =
∑v∈V1 r̂v + ĉv. In that case, the decoder will output the error candidate ê = {êv}v∈V1 with

êv ∶= εv + r̂v + ĉv. (2)

8

In particular, the vectors e and ê differ by an element of C1 (since they have the same
syndrome on V1), and a sufficient condition to guarantee the success of the decoder is
that ∣e + ê∣ is less than the minimum distance. In that case, it means that e and ê
necessarily differ by an element of C⊥0 , that is a sum of generators. It is not difficult to
see that ∣Z ∣ = O(∣e∣). Therefore if ∣e∣ ⩽ κn for some sufficiently small κ > 0 and if the
algorithm can find ê of weight at most O(∣Z ∣), then the decoder will return a correct
solution since the minimum distance is linear in n.

We now describe the main subroutine of decoding algorithm, which aims at finding
a decomposition Z = ∑v∈V1 r̂v + ĉv. We will keep track of 5 vectors initialized as follows

Ẑ ∶= Z, Ĉ0 ∶= 0, R̂0 ∶= 0, Ĉ1 ∶= 0, R̂1 ∶= 0.

It will alternate between two procedures:

Sequential procedure in V0. While there exists some v ∈ Vii and cv ∈ CA ⊗ FB2 , rv ∈
FA2 ⊗CB such that ∣Ẑ + cv + rv ∣ < ∣Ẑ ∣, perform the update:

Ẑ ← Ẑ + cv + rv, Ĉi ← Ĉi + cv, R̂i ← R̂i + rv.

Now it may happen that this sequential decoder will get stalled at some point, and not
be able to decrease the Hamming weight ∣Ẑ ∣ by a local modification on aQ-neighbourhood
of a vertex of V0. When this happens, we can consider the subgraph of G◻0 induced by the
vector (R0 +C0) ∩ (R1 +C1) and realise that its minimum degree must be at least δ∆/2
(provided the initial error e is of sufficently small weight). Conceptually, this subgraph
does not look very different from a Tanner codeword, and if we follow the blueprint of
the proof of the lower bound on the minimum distance (sketched just after Theorem 1),
then it is natural to expect that the stalled decoder will be unlocked simply by switching
the sequential decoding procedure to vertices of V1. However, we cannot quite make this
work. The issue is that we again need robustness of the component codes CA,CB, and
this time the robustness parameter w = ∆1/2−ε guaranteed us by random choice falls just
short. To circumvent this problem, we use a more complicated decoding procedure to
unlock the stalled sequential decoder. It consists of two rounds of parallel decoding.

Parallel decoding procedure.

– First parallel decoding step, on vertices of V1. Identify vertices of V1 for
which there exists cv ∈ CA⊗FB2 , rv ∈ FA2 ⊗CB and subsets A0 ⊂ A and B0 ⊂ B of the
local coordinate sets that are sufficiently large and such that the Hamming weight
of Ẑ + cv + rv decreases sufficiently on the reduced coordinate set A0 ×B0. For all
vertices v where this is satisfied, update as before:

Ẑ ← Ẑ + cv + rv, Ĉj ← Ĉj + cv, R̂i ← R̂i + rv.

See Section 6.1 for a precise description of the criteria for updating.

9

– Second parallel decoding step, on vertices of V0. Identify vertices of V0 for
for which there exists cv ∈ CA⊗FB2 , rv ∈ FA2 ⊗CB such that ∣Ẑ+cv+rv ∣ < ∣Ẑ ∣. Among
all possible choices, maximise the difference ∣Ẑ ∣ − ∣Ẑ + cv + rv ∣. For all such vertices
perform the update

Ẑ ← Ẑ + cv + rv, Ĉj ← Ĉj + cv, R̂i ← R̂i + rv.

What the decoder does by default is apply the sequential decoding procedure. When-
ever this is not possible, it applies the parallel decoding procedure. It continues until
Ẑ = 0, at which point it stops and outputs (R̂0, Ĉ0, R̂1, Ĉ1).

A word of comment is in order here. As mentioned above, what happens is that when
the sequential decoder is stalled, we cannot guarantee the existence of a Q-neighbourhood
Q(v), for v ∈ V1, on which we can decrease ∣Ẑ ∣. But this is almost the case: what we
can guarantee is the existence of vertices v for which one can decrease ∣Ẑ ∣ on a large
subset of Q(v). Furthermore, this will be the case for most vertices of V1 on whose
Q-neighbourhoods Ẑ has a large Hamming weight: this is why we apply this tweaked
local decoding procedure in parallel on all possible vertices of V1. After this first parallel
decoding step we cannot guarantee that ∣Ẑ ∣ has decreased, however we can guarantee a
substancial decrease of ∣Ẑ ∣ after the second parallel decoding step described above.

Finally, the output of the decoder gives us a decomposition Z = Ĉ0 + R̂0 + Ĉ1 + R̂1 of
the original mismatch (1). For v ∈ V01, the local view r̂v of R̂0 and the local view ĉv of
Ĉ1 give the required local view (2) of a candidate global error vector ê, while for v ∈ V10

the local view êv of ê stems from the local views of R̂0 and Ĉ1.
Our main result states that the above decoder will always succeed in producing an

adequate error vector ê, provided the initial error weight ∣e∣ is a sufficiently small fraction
of the code length.

Theorem 2. There exists a constant κ, depending only on δ, a lower bound for the
minimum distances of both component codes CA and CB, such that for large enough fixed
∆, the above decoding algorithm corrects all error patterns of weight less than κn/∆4 for
the quantum Tanner code of length n = ∣Q∣.

Since the decoder needs only to look at Q-neighbourhoods on which the mismatch
∣Z ∣ is nonzero, by carefully keeping track of this set of vertices, we obtain a decoder that
runs in linear time.

A direct consequence of the analysis is the soundness of the code, a weaker property
than local testability that asserts that sufficiently small errors have a syndrome with a
weight proportional to that of the error (local testability would require this to hold for
arbitrary errors). This result was previously established for quantum Tanner codes in
[HL22].

Interestingly, our decoder can be adapted to work with the asymptotically good codes
of Panteleev and Kalachev [PK21a]. In particular, we show that the theorem above still
holds for these codes, provided the error patterns have weight at most κn/∆6. Along the
way, we point out the hidden relation between the quantum Tanner codes and the lifted
product codes of [PK21a].

10

Additional comments. So as to not let the analysis of the decoder become overly
burdensome, we have not tried to make the constant κ explicit in Theorem 2, nor have
we tried to optimise the dependency in ∆ of the number of correctable errors. For a
similar reason, we have left out possible variations on the decoder. In particular, since
one has to resort to parallel decoding when the sequential decoder is stalled, a natural
temptation is to make the decoder fully parallel and replace the sequential decoding step
by a parallel one. We do not anticipate difficulties of a novel nature in doing so, but
our analysis stems rather naturally from a sequential approach to decoding, and we have
tried to limit the flow of technicalities by avoiding these variations.

As mentioned in [PK21a] and [LZ22], the question of alternatives to random choice
for the component codes CA,CB remains open. Additionally, finding component codes
CA,CB with better robustness would simplify our analysis and yield a fully sequential
decoder. On the other hand, showing that decoding a linear number of adversarial errors
is possible with reduced robustness potentially simplifies the search for constructions of
adequate component codes.

Acknowledgements. We would like to thank Benjamin Audoux, Alain Couvreur, Shai
Evra, Omar Fawzi, Tali Kaufman, Jean-Pierre Tillich, and Christophe Vuillot for many
fruitful discussions on quantum codes over the years. We acknowledge support from
the Plan France 2030 through the project ANR-22-PETQ-0006. GZ also acknowledges
support from the ANR through the project QUDATA, ANR-18-CE47-0010.

11

3 Preliminaries

3.1 Expander Graphs

Let G = (V,E) be a graph. Graphs will be undirected but may have multiple edges.
For S,T ⊂ V , let E(S,T) denote the multiset of edges with one endpoint in S and one
endpoint in T . Let G be a ∆-regular graph on n vertices, and let ∆ = λ1 ⩾ λ2 ⩾ . . . ⩾ λn be
the eigenvalues of the adjacency matrix of G. For n ⩾ 3, we define λ(G) ∶= max{∣λi∣, λi ≠
±∆}. The graph G is said to be Ramanujan if λ(G) ⩽ 2

√
∆ − 1.

We recall the following version of the expander mixing lemma (see e.g. [HLW06]) for
bipartite graphs.

Lemma 3 (Expander mixing lemma). Let G be a connected ∆-regular bipartite graph on
the vertex set V0 ∪ V1. For any pair of sets S ⊂ V0, T ⊂ V1, it holds that

∣E(S,T)∣ ⩽ ∆

∣V0∣
∣S∣∣T ∣ + λ(G)

√
∣S∣∣T ∣.

3.2 Tanner codes

A binary linear code of length n is an F2-linear subspace of Fn2 . For sets E of cardinality
∣E∣ = n, it will be convenient for us to identify Fn2 with FE2 , which we can think of as the
space of functions from E to F2. Identication with Fn2 amounts to defining a one-to-one
map between E and [n] = {1,2, . . . , n}, i.e. a numbering of the elements of E.

Let G = (V,E) be a regular graph of degree ∆, and for any vertex v denote by E(v)
the set of edges incident to v. Assume an identification of FE(v)2 with F∆

2 for every v ∈ V .
Let x ∈ FE2 be a vector indexed by (or a function defined on) the set E. Let us define
the local view of x at vertex v as the subvector xv ∶= (xe)e∈E(v), i.e. x restricted to the
edge-neighbourhood E(v) of v.

Let C0 be a linear code of length ∆, dimension k0 = ρ0∆, and minimum distance
d0 = δ0∆. We define the Tanner code [Tan81] associated to G and C0 as

Tan(G,C0) ∶= {x ∈ FE2 ∶ xv ∈ C0 for all v ∈ V }.

In words, the Tanner code is the set of vectors over E all of whose local views lie in C0.
By counting the number of linear equations satisfied by the Tanner code, we obtain

dimTan(G,C0) ⩾ (2ρ0 − 1)n. (3)

We also have the bound [SS96, Gur10] on the minimum distance d of the Tanner code:

d ⩾ δ0(δ0 − λ(G)/∆)n.

Therefore, if (Gi) is a family of ∆-regular expander graphs with λ(Gi) ⩽ λ < d0, and if
ρ0 > 1/2, then the associated family of Tanner codes has rate and minimum distance
which are both Ω(n), meaning we have an asymptotically good family of codes, as was
first shown in [SS96].

12

3.3 Quantum CSS codes

A quantum CSS code is specific instance of a stabilizer code [Got97] that can be defined
by two classical codes C0 and C1 in the ambient space Fn2 , with the property that C⊥0 ⊂
C1 [CS96, Ste96]. It is a low-density parity-check (LDPC) code whenever both C0 and C1

are the kernels of sparse parity-check matrices. The resulting quantum code Q = (C0,C1)
is a subspace of (C2)⊗n, the space of n qubits:

Q ∶= Span

⎧⎪⎪⎨⎪⎪⎩
∑
z∈C⊥1

∣x + z⟩ ∶ x ∈ C0

⎫⎪⎪⎬⎪⎪⎭
,

where {∣x⟩ ∶ x ∈ Fn2} is the canonical basis of (C2)⊗n. The dimension k of the code counts
the number of logical qubits and is given by

k = dim (C0/C⊥1) = dimC0 + dimC1 − n.

Its minimum distance is d = min(dX , dZ) with

dX = min
w∈C0∖C⊥1

∣w∣, dZ = min
w∈C1∖C⊥0

∣w∣.

We denote the resulting code parameters by Jn, k, dK and say that a code family (Qn)n
is asymptotically good if its parameters are of the form

Jn, k = Θ(n), d = Θ(n)K.

An n-qubit Pauli error E1 ⊗ . . . ⊗ En with Ei ∈ {1, σX , σY , σZ}6 is conveniently de-
scribed by two n-bit strings (e0, e1) ∈ Fn2 × Fn2 via the mapping

1↦ (0,0), σX ↦ (1,0), σY ↦ (1,1), σZ ↦ (0,1),

which forgets global phases. The parity-check matrices of C0 and C1 give rise to syndrome
maps σ0, σ1 ∶ Fn2 → Fm2 that associate a pair of syndromes (σ0(e0), σ1(e1)) ∈ Fm2 × Fm2 to
any n-qubit Pauli error (e0,e1) ∈ Fn2 × Fn2 . The decoding problem for a stabilizer code is
as follows: given a syndrome (σ0(e0), σ1(e1)), recover the error up to an element of the
stabilizer group, that is return (ê0, ê1) such that e0 + ê0 ∈ C⊥1 and e1 + ê1 ∈ C⊥0 .

While an optimal decoding of random errors would typically exploit possible corre-
lations between e0 and e1, it is always possible to correct both errors independently.
Here, we will be concerned with the adversarial setting where e0 and e1 are of suffi-
ciently low weight, but otherwise arbitrary. In that case, both errors should be decoded
independently, and we will focus on the case where (e0 = 0,e1 = e) in the following.

6The 1-qubit Pauli matrices are defined by 1 = (1 0
0 1) , σX = (

0 1
1 0) , σZ = (

1 0
0 −1) and σY = iσXσZ .

13

3.4 Tensor codes and dual tensor codes: robustness

Definitions and results for this section are taken from [LZ22], to which we refer for proofs
and comments.

Let A and B be two sets of size ∆. We define codes on the ambient space FA×B2 that
we may think of as the space of matrices whose rows (columns) are indexed by A (by
B). If CA ⊂ FA2 and CB ⊂ FB2 are two linear codes, we define the tensor (or product)
code CA ⊗ CB as the space of matrices x such that for every b ∈ B the column vector
(xab)a∈A belongs to CA and for every a ∈ A the row vector (xab)b∈B belongs to CB. It is
well known that dim(CA ⊗CB) = dim(CA)dim(CB) and that the minimum distance of
the tensor code is d(CA ⊗CB) = d(CA)d(CB).

Consider the codes CA ⊗ FB2 and FA2 ⊗ CB consisting respectively of the space of
matrices whose columns are codewords of CA and whose rows are codewords of CB. We
may consider their sum CA ⊗ FB2 + FA2 ⊗ CB which is called a dual tensor code, since it
is the dual code of the tensor code C⊥A ⊗ C

⊥
B = (C⊥A ⊗ FB2) ∩ (FA2 ⊗ C⊥B). It is relatively

straightforward to check that d(CA ⊗ FB2 + FA2 ⊗CB) = min(d(CA), d(CB)).

Definition 4. Let 0 ⩽ w ⩽ ∆2. Let CA and CB be codes of length ∆ with minimum
distances dA and dB. We shall say that the dual tensor code C = CA⊗FB2 +FA2 ⊗CB is w-
robust, if for any codeword x ∈ C of Hamming weight ∣x∣ ⩽ w, there exist A′ ⊂ A,B′ ⊂ B,
∣A′∣ ⩽ ∣x∣/dB, ∣B′∣ ⩽ ∣x∣/dA, such that xab = 0 whenever a ∉ A′, b ∉ B′.

Proposition 5. Let CA and CB be codes of length ∆ with minimum distances dA and
dB, and suppose C = CA ⊗ FB2 + FA2 ⊗ CB is w-robust with 0 < w < dAdB. Then for any
codeword x ∈ C such that ∣x∣ ⩽ w, there exist A′ ⊂ A,B′ ⊂ B, ∣A′∣ ⩽ ∣x∣/dB, ∣B′∣ ⩽ ∣x∣/dA
and a decomposition x = c + r, with c ∈ CA ⊗ FB′

2 and r ∈ FA′2 ⊗CB.

Proof. To see this, apply the definition and write x = r′ + c′, with r′ab = c′ab for any
(a, b) ∈ (A ∖ A′) × (B ∖ B′). The restrictions of r′ and c′ to (A ∖ A′) × (B ∖ B′) both
belong to the code obtained by tensoring C ′

A and C ′
B, the punctured codes deduced from

CA and CB by throwing away coordinates of A′ and B′. This code is the same as the
punctured code obtained from CA⊗CB by throwing away the coordinates A′×B∪A×B′.
Therefore, there exists a tensor codeword of CA⊗CB = CA⊗FB2 ∩FA2 ⊗CB that coincides
with c′ = r′ on (A ∖A′) × (B ∖B′): adding this tensor codeword to both c′ and r′ yields
the required pair r, c such that x = r + c.

Proposition 6. Let CA and CB be codes of length ∆ and minimum distances dA, dB such
that the dual tensor code CA ⊗ FB2 + FA2 ⊗ CB is w-robust with w ⩽ dAdB/2. Then, any
word x close to both the column and row code is also close to the tensor code: precisely,
if d(x,CA ⊗ FB2) + d(x,FA2 ⊗CB) ⩽ w then

d(x,CA ⊗CB) ⩽ 3

2
(d(x,CA ⊗ FB2) + d(x,FA2 ⊗CB)) . (4)

Definition 7. Let CA ⊂ FA2 and CB ⊂ FB2 . For integers w,p, let us say that the dual
tensor code CA ⊗ FB2 + FA2 ⊗ CB is w-robust with p-resistance to puncturing, if for any

14

A′ ⊂ A and B′ ⊂ B such that ∣A′∣ = ∣B′∣ = ∆ −w′, with w′ ⩽ p, the dual tensor code

CA′ ⊗ FB
′

2 + FA
′

2 ⊗CB′

is w-robust.

We shall need the following result on the robustness of random dual tensor codes.

Theorem 8. Let 0 < ρA < 1 and 0 < ρB < 1. Let 0 < ε < 1/2 and 1/2 + ε < γ < 1. Let
CA be a random code obtained from a random uniform ρA∆ ×∆ generator matrix, and
let CB be a random code obtained from a random uniform (1 − ρB)∆ × ∆ parity-check
matrix. With probability tending to 1 when ∆ goes to infinity, the dual tensor code

CA ⊗ FB2 + FA2 ⊗CB

is ∆3/2−ε-robust with ∆γ-resistance to puncturing.

4 Detailed description of quantum Tanner codes

We recall the ingredients that enable us to define the family of asymptotically good
quantum LDPC codes introduced in [LZ22]. The only difference with [LZ22] is that we
prefer to work here with a quadripartite version of the Cayley complex since it gives a
simpler description of the decoding algorithm. This quadripartite version was mentioned
in passing in [LZ22], but quadripartite square complexes are particular instances of bi-
partite square complexes, and any bipartite square complex with the required expansion
properties was acceptable for the the lower bound of Theorem 1 on the minimum distance
to hold. Below we discuss the quadripartite structure in some more detail.

4.1 Left-right Cayley complexes (quadripartite version)

A left-right Cayley complex X is introduced in [DEL+21] from a group G and two sets
of generators A = A−1 and B = B−1. As in [DEL+21] we will restrict ourselves, for the
sake of simplicity, to the case ∣A∣ = ∣B∣ = ∆. The complex is made up of vertices, A-
edges, B-edges, and squares. The vertex set consists of four copies of the group G in the
quadripartite version, V = V00 ∪ V10 ∪ V01 ∪ V11 with Vij = G × {ij}. We will also use the
notation V0 ∶= V00 ∪V11 and V1 ∶= V01 ∪V10. The A-edges are pairs of vertices of the form
{(g, i0), (ag, i1)} and B-edges are of the form {(g,0j), (gb,1j)} for g ∈ G,a ∈ A, b ∈ B,
i, j = 0,1. We denote by EA and EB these two edge sets. The associated graphs are
denoted by GA = (V,EA) and GB = (V,EB). A square is a set of four vertices of the form
{(g,00), (ag,01), (gb,10), (agb,11)}. The set of squares (or quadrangles) of the complex
is denoted by Q. Every vertex is incident to exactly ∆2 squares. For a vertex v, the set
of incident squares is called the link of v, or Q-neighbourhood, and denoted by Q(v).

The sets of generators A and B will be chosen so that the Cayley graphs Cay(G,A)
and Cay(G,B) are non-bipartite Ramanujan graphs. It should be understood that when
writing Cay(G,A) we implicitely mean the Cayley graph defined by left multiplication

15

by elements of A, while Cay(G,B) stands for the Cayley graph defined by right multipli-
cation by elements of B. The sets A and B could in principle be chosen to be identical,
but we keep a distinct notation for both sets, in particular in order to allow the above
abuse of notation to be non-confusing.

We see that the subset of edges of EA that connect vertices of V00 to vertices of V01

make up a double cover of the Cayley graph Cay(G,A), the edges EA that connect V10 to
V11 make up a second copy of the same double cover. Therefore, the graph GA is a disjoint
union of two copies of the double cover of Cay(G,A). Similarly, GB is a disjoint union of
two copies of the double cover of Cay(G,B). We will regularly talk about expansion in
GA (or GB) to mean expansion in either of the connected components of GA (GB).

Let us introduce one additional graph that exists on the complex X, and that
we denote by G◻. This graph puts an edge between all pairs of vertices of the form
{(g, i), (agb, i)}, g ∈ G,a ∈ A, b ∈ B, i = 0,1. The graph G◻ is therefore made up of two
connected components, on V0 and V1, that we denote by G◻0 and G◻1 . We note that G◻ is
regular of degree ∆2, and may have multiple edges.

If Cay(G,A) and Cay(G,B) are Ramanujan, then G◻ inherits some of their expansion
properties. Specifically:

Lemma 9. Assume that Cay(G,A) and Cay(G,B) are Ramanujan graphs, then

λ(G◻0) ⩽ 4∆, λ(G◻1) ⩽ 4∆.

The proof follows from the fact that the adjacency matrix of G◻ is the product of the
adjacency matrices of GA and GB, and that these two adjacency matrices commute, by
definition of the square complex. See [LZ22] for a little more detail.

4.2 Labelling Q-neighbourhoods

We will define Tanner codes on G◻0 and G◻1 , which implies a labelling of the coordinates
in every Q-neighbourhood Q(v). There is a natural labeling of Q(v) by the set A ×B,
namely a one-to-one map φv ∶ A ×B → Q(v), which we now state explicitely.

We set

for v = (g,00) ∈ V00, φv(a, b) = {(g,00), (ag,01), (gb,10), (agb,11)},
for v = (g,01) ∈ V01, φv(a, b) = {(g,01), (a−1g,00), (gb,11), (a−1gb,10)},
for v = (g,10) ∈ V10, φv(a, b) = {(g,10), (ag,11), (gb−1,00), (agb−1,01)},
for v = (g,11) ∈ V11, φv(a, b) = {(g,11), (a−1g,10), (gb−1,01), (a−1gb−1,00)}.

The map φv thus defined is obviously one-to-one, and one easily checks that:

Any two vertices v = (g, i0) and w = (gb, i1), i = 0,1, that are connected through a
B-edge (labelled b), have a common “column”, i.e. their Q-neighbourhoods share exactly
∆ squares that are labelled (a, b), a ∈ A, in both Q(v) and Q(w).

Similarly,

16

Any two vertices v = (g,0i) and w = (ag,1i), i = 0,1, that are connected through
an A-edge (labelled a), have a common row, i.e. their Q-neighbourhoods share exactly ∆
squares that are labelled (a, b), b ∈ B, in both Q(v) and Q(w).

The situation is illustrated on Figure 2. Summarising, any two vertices connected
by B-edge (an A-edge) have a common column (row) in their Q-neighbourhoods, that
is labelled by the same b ∈ B (a ∈ A). This is the reason for the possibly intriguing
inversions in the definition of φv: without these inversions the Q-neighbourhoods of two
neighbouring vertices would still share a common row or a common column, but their
indexes in their respective local views would be inverse of each other. This would still
be manageable but slightly less convenient.

4.3 Local codes

The constraints of a Tanner code consist of local constraints from small codes enforced
on the local view of each vertex. For quantum Tanner codes, now that all local Q-
neighbourhoods are isomorphic to A×B, we may put local constraints that are codewords
of the tensor codes CA ⊗CB and C⊥A ⊗C

⊥
B.

Recall that the generators of the quantum Tanner code correspond to a basis of
CA ⊗ CB in each local view of V00 ∪ V11 (for the σZ-type generators) and to a basis
of C⊥A ⊗ C

⊥
B in each local view of V01 ∪ V10 (for the σX -type generators). The classical

code C0 ⊂ FQ2 correcting σX -type errors is the Tanner code on the graph G◻0 with local
constraints corresponding to the dual tensor code (CA⊗CB)⊥ = C⊥A⊗FB2 +FA2 ⊗C⊥B. With
the notation of Section 3.2, C0 = Tan(G◻0 ,C⊥A ⊗ FB2 + FA2 ⊗ C⊥B). Similarly, the classical
code C1 ⊂ FQ2 correcting σZ-type errors is the Tanner code on the graph G◻1 with local
constraints corresponding to the dual tensor code (C⊥A ⊗C

⊥
B)⊥ = CA ⊗FB2 +FA2 ⊗CB, i.e.

C1 = Tan(G◻1 ,CA ⊗ FB2 + FA2 ⊗CB).

Summary. A large enough ∆ is chosen, together with an infinite family of groups G
with generating sets A,B, ∣A∣ = ∣B∣ = ∆, such that the left Cayley graph Cay(G,A) and
the right Cayley graph Cay(G,B) are Ramanujan. The quadripartite left-right square
complex X is defined by G,A,B.

For the conditions for the component codes that together with the above square com-
plexesX will yield asymptotically good quantum codes, we recall Theorem 16 from [LZ22].

Theorem 10. Fix ρ ∈ (0,1/2), ε ∈ (0,1/2), γ ∈ (1/2 + ε,1) and δ > 0. If ∆ is large
enough and CA and CB are codes of length ∆ such that

1. 0 < dimCA ⩽ ρ∆ and dimCB = ∆ − dimCA,

2. the minimum distances of CA,CB,C⊥A,C
⊥
B are all ⩾ δ∆,

3. both dual tensor codes C⊥0 = (CA ⊗ CB)⊥ and C⊥1 = (C⊥A ⊗ C
⊥
B)⊥ are ∆3/2−ε-robust

with ∆γ-resistance to puncturing (see Definition 7),

17

then the quantum code Q = (C0,C1) has length ∣Q∣, dimension at least (1 − 2ρ)2∣Q∣ and
minimum distance at least ∣Q∣δ/4∆3/2+ε.

It was proved in [LZ22] (see also Theorem 8), that for any fixed ρ and δ > 0 such that
−δ log2 δ − (1 − δ) log2(1 − δ) < ρ, then for any fixed ε, γ and ∆ large enough, randomly
choosing CA and CB with the required rates will yield codes that satisfy conditions 2 and
3 in Theorem 10 with high probability. In the sequel we will set, somewhat arbitrarily,
γ = 1 − ε, so as to minimise the number of constants, and we will naturally assume that
the codes CA and CB satisfy the conditions of Theorem 10.

5 The decoding strategy

We recall that we consider without loss of generality a bit-flip error e ∈ FQ2 and wish to
correct it with the help of the classical Tanner code C1. The goal of the decoder is to
output some guess ê ∈ FQ2 and it is successful if e + ê ∈ C⊥0 .

For a vertex v ∈ V , denote by ev the local view of e on Q(v), i.e. its restriction
to Q(v), which we also extend back to FQ2 by padding it with 0s. The error e can be
identified with the collection of local views e = {ev}v∈V1 and we note that they satisfy
∑v∈V01 ev = ∑v∈V10 ev, since (Q(v))v∈V01 and (Q(v))v∈V10 are both partitions of Q. The
Hamming weight of e is

∣e∣ = ∑
v∈V01

∣ev ∣ = ∑
v∈V10

∣ev ∣.

As observed in [LZ22], a possible approach to decoding a Tanner code is to consider
the mismatch of the error e. It is defined as follows. For each vertex v ∈ V1, one
can compute an error εv of minimal Hamming weight yielding the corresponding local
syndrome. This gives a decomposition of the local views of the error ev = εv + cv + rv
with cv ∈ CA ⊗FB2 , rv = FA2 ⊗CB, and εv of minimal Hamming weight. In the case where
ev = εv for all v ∈ V1, then the decoder has succeeded in recovering the true error. In
general, however, we have ev ≠ εv for some v ∈ V1. The mismatch vector in FQ2 defined
as Z ∶= ∑v∈V1 εv then characterises the inconsistency between the local views in V10 and
V01. From ∑v∈V1 ev = 0, we obtain that

Z = ∑
v∈V1

rv + cv.

We observe that the minimality of εv implies that ∣ev + cv + rv ∣ ⩽ ∣ev ∣ and therefore
∣cv + rv ∣ ⩽ 2∣ev ∣. This immediately shows that

∣Z ∣ ⩽ ∑
v∈V1

∣rv + cv ∣ ⩽ 2 ∑
v∈V1

∣ev ∣ = 4∣e∣.

We note that the quantum Tanner codes are a priori not locally testable, and there-
fore the Hamming weight of the mismatch can be much smaller than that of the error
(otherwise a simple test for detecting an error would be to sample bits of the mismatch).

18

The idea behind the decoder will be to find a decomposition {r̂v, ĉv}v∈V1 such that
Z = ∑v∈V1 r̂v + ĉv. In that case, the decoder will return the following guess for the
decomposition of the error: {êv}v∈V1 with

êv ∶= εv + r̂v + ĉv.

In particular, the vectors e and ê differ by an element of C1 since they both give the
same syndrome, and a sufficient condition to guarantee the success of the decoder is that
∣e + ê∣ < dmin(Q).

Since each column A × {b} of a Q-neighbourhood Q(v) appears also in the Q-
neighbourhood of a neighbouring vertex, we have that for either v ∈ V00 or v ∈ V10,
each column subvector of cv is a codeword of CA that appears in two local views, one
indexed by a vertex of V10 and one by a vertex of V00: for v ∈ V01 ∪V11, we have that any
column subvector of cv lies both in the local view around a vertex of V01 and around a
vertex of V11.

A similar observation also holds for row codewords: This implies that one can also
define couples (cv, rv) for all vertices of V0.

It is convenient to define four vectors associated with the collection {rv, cv}v∈V1 ,

C0 = ∑
v∈V10

cv, R0 = ∑
v∈V01

rv, C1 = ∑
v∈V01

cv, R1 = ∑
v∈V10

rv,

that provide a decomposition of the mismatch:

Z = C0 +R0 +C1 +R1.

Note that (C0,R0,C1,R1) and {rv, cv}v∈V are in one-to-one correspondence.
We will denote this decomposition as

Z = (C0,R0,C1,R1) = {rv, cv}v∈V .

The decoder then simply aims at finding a valid decomposition Ẑ = (Ĉ0, R̂0, Ĉ1, R̂1) of
Z and this decomposition will yield the correct guess provided that ∣e + ê∣ = ∣∑v∈V10 cv +
rv + ĉv + r̂v ∣ = ∣C0 +R1 + Ĉ0 + R̂1∣ is less than the minimal distance of the quantum Tanner
code.

A natural idea for the decoder is to progressively decrease the weight of Z, so as to
obtain a consistent assignment that will correspond to the output of the decoder. To do
this, one can look for some vertex v, as well as some local codeword cv + rv of the dual
tensor code such that ∣Z+cv+rv ∣ < ∣Z ∣. If it was always possible to guarantee the existence
of such a vertex and local codeword, then one would simply repeat the operation until
reaching a complete decomposition of the mismatch. At each step, the weight of the
mismatch decreases by at least 1, so at most ∣Z ∣ steps are required. In addition, we
observe that ∣Ĉ0+R̂1∣ ⩽ ∆2∣Z ∣ ⩽ 4∆2∣e∣ and we recall that ∣C0+R1∣ = ∑v∈V10 ∣cv+rv ∣ ⩽ 2∣e∣.
We conclude that if we could always find a vertex and a local codeword that could be
added to the mismatch to decrease its weight, then the decoder would return a valid
correction provided the initial error is not too large:

∣e∣ ⩽ dmin(Q)
4∆2 + 2

.

19

Unfortunately, we only know how to prove the existence of local codewords decreasing
the weight of Z if the local dual tensor code is w-robust with w > ∆3/2, and we recall
that Theorem 8 only asserts that randomly chosen codes CA ⊗ FB2 + FA2 ⊗CB and C⊥A ⊗
FB2 + FA2 ⊗C⊥B are w-robust for w = O(∆3/2−ε) for random codes CA,CB.

For this reason, we need to tweak this natural decoder in order to deal with error
configurations (described by their mismatch Z) whose weight cannot be decreased locally
by the addition of some cv + rv. For this purpose, we will add a parallel procedure that
will be described in detail in Section 6. The actual decoder will apply the sequential local
procedure described above, though we will only need to apply it to vertices of V0, and
resort to the parallel procedure whenever the sequential decoder is stalled. The parallel
procedure will consist of two phases, the first will be applied to vertices of V1, and the
second to vertices of V0. While it may not be possible to decrease locally the Hamming
weight of the mismatch when the sequential decoder is stalled, we will show that together,
the two steps of the parallel procedure will significantly decrease the Hamming weight
of Z, by a factor which becomes close to

√
∆ when the exponent ε that defines the

robustness parameter w = ∆3/2−ε tends to 0. Since the sequential procedure decreases ∣Z ∣
at every step, the number of sequential steps is at most linear in ∣Z ∣, and therefore in the
Hamming weight ∣e∣ of the initial error, provided it is not too large. Since any parallel
step divides ∣Z ∣ by a constant, the total number of parallel steps is logarithmic in ∣e∣.

In both cases, sequential and parallel, the decoder needs only look at Q-neighbour-
hoods on which the mismatch ∣Z ∣ is nonzero: therefore, by carefully keeping track of the
set of vertices for which the mismatch is nonzero, the decoder can run in linear-time in
the standard uniform cost computational model.

Norm and minimal decomposition of the mismatch. The analysis of the decoder
will rest on a careful study of a situation where the sequential decoder is stalled, that is,
where there does not exist any vertex (in V0) where one can add a codeword of the dual
tensor code that would decrease the Hamming weight of Z. (If the sequential decoder
is never stalled, then there is essentially nothing to prove.) The parallel procedure that
will unlock the situation will consist of two steps. While the combination of both steps
will reduce the Hamming weight ∣Z ∣ of the mismatch, it is not the case of the first part
alone. In order to keep track of the progress of the decoding algorithm, we will therefore
require another metric beside the Hamming weight: this role will be played by the norm
of the decomposition, that will be a proxy for the number of vertices of V0 for which
cv + rv ≠ 0.

First, note that there are many valid decompositions of the mismatch since adding
any codeword of the tensor code CA ⊗CB to both rv and cv does not change their sum.
For an element r ∈ FA2 ⊗CB or c ∈ CA⊗FB2 , we denote by ∥r∥ or ∥c∥ the number of nonzero
rows (for r) or columns (for c) in its support:

∥r∥ ∶= min{∣A′∣ s.t. A′ ⊆ A, supp(r) ⊂ FA
′

2 ⊗CB},

∥c∥ ∶= min{∣B′∣ s.t. B′ ⊆ B, supp(c) ⊂ CA ⊗ FB
′

2 }.

20

The norm ∥Z∥ of the decomposition is then simply:

∥Z∥ ∶= ∥C0∥ + ∥R0∥ + ∥C1∥ + ∥R1∥,

with

∥C0∥ ∶= ∑
v∈V10

∥cv∥, ∥R0∥ ∶= ∑
v∈V01

∥rv∥, ∥C1∥ ∶= ∑
v∈V01

∥cv∥, ∥R1∥ ∶= ∑
v∈V10

∥rv∥.

It will be useful for us to consider a minimal decomposition of the mismatch, Z =
(C0,R0,C1,R1), which simply corresponds to a decomposition of minimal norm. We
define the norm ∥Z∥ of the mismatch to be the norm of a such minimal decomposition:

∥Z∥ ∶= min
Z is a decomposition of Z

∥Z∥.

A minimal decomposition has the property that for each vertex, it is not possible to
add a codeword of CA ⊗ CB that decreases the norm of the local view: for each v ∈ V ,
and each u ∈ CA ⊗CB, it holds that

∥rv + cv + u∥ ⩾ ∥rv + cv∥.

6 Analysis of the decoder

6.1 The decoding algorithm

The goal of the algorithm is to find a small decomposition of Z. We will keep track of 5
vectors initialized as follows

Ẑ ∶= Z, Ĉ0 ∶= 0, R̂0 ∶= 0, Ĉ1 ∶= 0, R̂1 ∶= 0.

It will alternate between two procedures:

Sequential procedure. This procedure is relatively natural, and consists of modifying
Ẑ locally, i.e. in some Q(v), so as to decrease the Hamming weight of Ẑ. Specifically,
while there exists some v ∈ V00 or v ∈ V11, and cv ∈ CA ⊗ FB2 , rv ∈ FA2 ⊗ CB such that
∣Ẑ + cv + rv ∣ < ∣Ẑ ∣, perform the update:

Ẑ ← Ẑ + cv + rv, Ĉj ← Ĉj + cv, R̂i ← R̂i + rv.

Parallel procedure. Ideally, we would like the sequential procedure to be applicable
until we have Ẑ = 0, at which point decoding would be complete. However, we cannot
always guarantee the existence of a vertex for which we can decrease the Hamming weight
of Ẑ. The sequential decoder may be stalled. At this point we switch to an alternative
procedure which will unlock the situation. We remark that we could try to extend the
sequential procedure to vertices of V1 and not just apply it to vertices of V0 as specified
above. However, we cannot guarantee that this extended sequential decoder will not stall

21

as well, and we will deal with the stalled decoder through a procedure whose analysis
only needs to know that sequential decoder is stalled on V0. This alternative procedure
consists of two parallel decoding steps.

The first parallel decoding step is the most involved. It consists of looking for all ver-
tices v of V1 for which the weight of Ẑ can be decreased, not on all their Q-neighbourhood
Q(v), but on a sufficiently large subset of Q(v), i.e. indexed by some A0 ×B0 for A0 ⊂ A,
B0 ⊂ B. We give below the precise criteria for vertices v for which the decoder updates
Ẑ on Q(v). We cannot guarantee that this first parallel decoding step decreases the
Hamming weight of Ẑ. However, we will show that this first parallel decoding step sig-
nificantly decreases the number of active vertices of V0: the active vertices v of Ẑ, for
v ∈ Vij , are the vertices on whose Q-neighbourhoods we have Ri +Cj ≠ 0, for a relevant
decomposition Z = (C0,R0,C1,R1) of Ẑ. We shall be more precise with the definition
of this set when we start the analysis. Specifically it divides this number by a quantity
close to ∆. Proving this (as stated in Theorem 23) will be the most technical part of the
analysis of the decoder.

The second parallel decoding step is conceptually simpler. It consists simply of looking
for all vertices of V0 on which the value of ∣Ẑ ∣ can be decreased and simultaneously
updating Ẑ on all such vertices. Precisely:

Second parallel decoding step. Simultaneously, for each v ∈ V0, search for codewords
cv ∈ CA ⊗ FB2 , rv ∈ FA2 ⊗CB such that ∣Ẑ + cv + rv ∣ < ∣Ẑ ∣. If such cv, rv exist, choose cv, rv
that maximize the difference ∣Ẑ ∣ − ∣Ẑ + cv + rv ∣ and perform the update

Ẑ ← Ẑ + cv + rv, Ĉj ← Ĉj + cv, R̂i ← R̂i + rv

for the appropriate i, j ∈ {0,1}.
Just by relying on the fact that the number of active vertices of V0 has been greatly

reduced after the first parallel decoding step, it will be relatively straightforward to show
that afer the second parallel decoding step, the Hamming weight of Ẑ must incur a
significant reduction from its value from before the first parallel decoding step. Together,
both parallel steps, first on V1 and then on V0, enable us to unlock the situation and
divide the Hamming weight of Ẑ by a quantity that we will show to be close to

√
∆.

We now finish this description of the decoder by giving the precise description of the
first parallel decoding step. We need to recall that the dual tensor code CA⊗FB+FA⊗CB
is w-robust with resistance to puncturing p with w = ∆3/2−ε and p ⩾ ∆γ , where ε > 0 can
be taken arbitrarily close to 0 and γ < 1 can be taken arbitrarily close to 1. For simplicity
we will choose γ = 1 − ε.

First parallel decoding step. The tweaked decoder does the following: on V1 it looks,
in parallel, for vertices v for which it can identify a partition A = A0 ∪A′′ and a partition
B = B0 ∪ B′′ such that ∣A′′∣ ⩽ ∆γ/2 and ∣B′′∣ ⩽ ∆γ/2 and which satisfy the following
properties:

– the value of ∣Ẑ ∣ on the restricted local view A0 ×B0 of Q(v) is > w/2,

22

– there exists rv + cv ∈ CA0 ⊗FB0 +FA0 ⊗CB0 such that ∣rv + cv ∣ > w, and replacing Ẑ
by Ẑ + rv + cv decreases the value of ∣Ẑ ∣ on A0 ×B0 so that it becomes < w/2.

The behaviour of the decoder on the Q-neighbourhood of such a vertex v is then to

– first update Ẑ to Ẑ + rv + cv, update R̂i to R̂i + rv, and Ĉj to R̂j + cv,

– look for individual rows and columns onQ(v), on which it is possible to decrease the
weight of Ẑ by adding a single (column) codeword of CA or a single (row) codeword
of CB. If such rows or columns exist it updates Ẑ, R̂i, Ĉj correspondingly, and stops
its treatment of Q(v) when there are no more such rows or columns.

We stress that this whole procedure is applied in parallel to all Q-neighbourhoods from
the original stalled Ẑ.

6.2 Analysis of the parallel procedure

We suppose the sequential decoder is stalled. We let Z = (R0,C0,R1,C1) be a minimum
representation of the current stalled mismatch Ẑ, meaning that ∥Z∥ = ∥Ẑ∥. In particular
we will keep in mind that Z is locally minimal, meaning that its norm cannot be decreased
by adding a codeword of the tensor code in a single local view. The decoder does not
know of such a representation, but analysing it will be key to understanding what the
decoder is able to do from the sole observation of Ẑ, which it does see. We will denote
by Z ′ = (C ′

0,R
′
0,C

′
1,R

′
1) the representation of the updated value of Ẑ ′ of Ẑ after the first

parallel decoding step. This representation is deduced from Z through local updates
as specified by the above description of the algorithm during the first parallel decoding
step. We note that Z ′ does not have to be a minimal representation. Similarly, we define
Z ′′ = (C ′′

0 ,R
′′
0 ,C

′′
1 ,R

′′
1) to be the representation of the updated mismatch Ẑ ′′ after the

second parallel decoding step, again deduced from Z ′′ through the specified updates of
R̂i, Ĉj .

Let us denote by S0 = S00 ∪ S11 the set of vertices v ∈ Vii of the stalled sequential
decoder such that Ri +Ci is non-zero on Q(v). Note that S0 depends on the choice Z of
the representation of Ẑ. We call these vertices the active vertices of Z (or simply of Ẑ
when its representation is implicit).

It will be useful to keep in mind that for any vertex v of Vii ⊂ V0, the fact that the
sequential decoder cannot decrease ∣Ẑ ∣ locally means that on Q(v), the Hamming weight
of (R0 + C0) ∩ (R1 + C1) is at least half the Hamming weight of Ri + Ci: otherwise we
could decrease ∣Ẑ ∣ by updating Ẑ to Ẑ + rv + cv where rv + cv is the value of Ri +Ci on
Q(v).

We first start by drawing consequences from this fact that will tell us a lot about the
structure of S0 and the local views of R0 +C0 and R1 +C1 on the Q-neighbourhoods of
V0.

Let 0 < β < 1/2. Let us define Colβ0 to be the set of columns in all Q-neighbourhoods
of V00 (we could also view them in Q-neighbourhoods of V10), that share at least β∆
coordinates with C1, i.e. that have at least β∆ coordinates on which C1 is equal to 1.

23

Similarly, we define Colβ1 to be the set of columns in all Q-neighbourhoods of V11 that
share at least β∆ coordinates with C0. We also define Rowβ0 to be the set of rows in all
Q-neighbourhoods of V00 that share at least β∆ coordinates with R1 and likewise Rowβ1
denotes the set rows that share at least β∆ coordinates with R0.

Our main technical lemma reads:

Lemma 11. Suppose ∣S0∣ ⩽ δ
8∆ ∣V0∣. For ∆ large enough, There is a constant κ(β),

depending only on β, such that, whenever the decoder is stalled: for i = 0,1,

∣Colβi ∣ ⩽
κ(β)
∆1−2ε

∣S0∣.

∣Rowβi ∣ ⩽
κ(β)
∆1−2ε

∣S0∣.

A word of comment may be helpful at this point. Consider a column (say) in some
local view, of a vertex of V00 (without loss of generality). Suppose this column supports
a non-zero CA-codeword that contributes to the makeup of the global C0 vector in the
current Z-decomposition of Ẑ. What prevents us from adding this codeword to Ẑ and
decrease its weight? It is naturally the presence of contributions of either R0, or R1, or
C1 (or all three) to the support of this column vector. What we want to point out here,
is that the contribution of R0 is completely described by a unique Q-neighbourhood of
a single vertex of V00, and that the contribution of R1 is similarly described by the Q-
neighbourhood of just one vertex of V10. However, the contribution of C1 stems from up
to ∆ different Q-neighbourhoods, and its nature is very much different. What Lemma 11
essentially says is that this contribution is going to be negligible and that it will suffice
for us (and the decoder) to focus on the contributions of R0 and R1.

The proof of Lemma 11 will rely upon the subgraphs, both of G◻0 and of GA, induced
by the active vertices, and rely upon expansion in both these graphs. We first need to
define S`ii to be the subset of Sii that consists of either

(a) the set of vertices v for which the local view on Q(v) of Ri + Ci is made up of at
least ` non-zero columns vectors of Ci,

(b) or the set of vertices v for which the local view on Q(v) of Ri + Ci is made up of
at least ` non-zero row vectors of Ri.

Lemma 12. For i = 0,1, if ∣S0∣ ⩽ δ
8∆ ∣V0∣, we have

∣S`ii∣ ⩽ 256
δ2`2

∣S0∣ if δ` ⩽ ∆1/2−ε

∣S`ii∣ ⩽ 256
∆1−2ε ∣S0∣ if δ` ⩾ ∆1/2−ε.

Proof. We prove the result for i = 1 and definition (a) of S`11, the other cases being
identical. We consider E(S`11, S00) in the subgraph of G◻ where the edges belong to
(R0 + C0) ∩ (R1 + C1). We argue that the degree of every vertex of S11 is at least half

24

the weight of its local view in R1 +C1, so at least half of `δ∆ when this quantity is not
more than ∆3/2−ε, by robustness of the local dual tensor code. This gives

1

2
`δ∆∣S`11∣ ⩽ ∣E(S`11, S00)∣.

We now apply the Expander mixing Lemma 3 in G◻0 . This gives

1

2
`δ∆∣S`11∣ ⩽ ∆2 ∣S`11∣∣S00∣

∣V00∣
+ 4∆

√
∣S`11∣∣S00∣

⩽ 1

4
δ∆∣S`11∣ + 4∆

√
∣S`11∣∣S00∣

since ∣S00∣/∣V00∣ ⩽ 2∣S0∣/∣V0∣ and ∣S0∣ ⩽ δ∣V0∣/8∆

`δ
√

∣S`11∣ ⩽ 16
√

∣S00∣

∣S`11∣ ⩽
256

δ2`2
∣S00∣

which gives the first statement of the lemma by writing ∣S00∣ ⩽ ∣S0∣. The second statement
follows analogously, by arguing that when δ` ⩾ ∆1/2−ε the weight of the local view is not
less than ∆3/2−ε.

Lemma 13. Let T β,`10 be the set of vertices of V10 whose Q-neighbourhoods contain at
least ` columns of Colβ0 . Under the hypothesis ∣S0∣ ⩽ δ

8∆ ∣V0∣, for ∆ large enough, we have

∣T β,`10 ∣ ⩽ 64

β2∆
∣S`β/211 ∣.

Proof. Consider a the subarray of the Q-neighbourhood of a vertex of T β,`10 consisting of
the ` columns of Colβ0 . One easily checks, by counting the number coordinates in the
subbarray on which Ĉ1 must be equal to 1, that there are at least β∆/2 rows on which
Ĉ1 has weight at least β`/2. This in turn implies that, in the graph GA, this vertex has
at least β∆/2 outgoing edges that fall into ∣S`β/211 ∣.

Let us estimate ∣E(T β,`10 , S
`β/2
11)∣ in GA. We have just proved

∣T β,`10 ∣1
2
β∆ ⩽ ∣E(T β,`10 , S

`β/2
11)∣.

We now apply the Expander mixing Lemma 3 in GA. We get

∣T β,`10 ∣1
2
β∆ ⩽ ∆

∣T β,`10 ∣∣S`β/211 ∣
∣V11∣

+ 2
√

∆

√
∣T β,`10 ∣∣S`β/211 ∣.

Writing ∣S`β/211 ∣/∣V11∣ ⩽ ∣S11∣/∣V11∣ ⩽ 2∣S0∣/∣V0∣, we get, for fixed β and ∆ large enough,

∣T β,`10 ∣1
4
β∆ ⩽ 2

√
∆

√
∣T β,`10 ∣∣S`β/211 ∣

∣T β,`10 ∣1/2 ⩽ 8

β∆1/2 ∣S
`β/2
11 ∣1/2

whence the claimed result after squaring.

25

Proof of Lemma 11. We prove the Lemma for ∣Colβ0 ∣, the other cases being essentially
identical. Write

∣Colβ0 ∣ ⩽ ∑
`<`max

`∣T β,`10 ∣ +∆∣T β,`max

10 ∣ (5)

where `max is chosen so as to have δ`maxβ/2 = ∆1/2−ε. Applying Lemmas 13 and 12 we
obtain

∣Colβ0 ∣ ⩽ ∑
`<`max

`
64

β2∆
∣S`β/211 ∣ +∆

64

β2∆
∣S`maxβ/2

11 ∣

⩽∑
`

216

δ2`β4

1

∆
∣S0∣ +

214

δ2β2∆1−2ε
∣S0∣

from which the result follows, after writing that ∑` 1/` ⩽ ln ∆ ⩽ ∆2ε.

Definition 14 (normal vertices of S00 and S11). Let us say that a vertex v of S00 is
normal if ∥rv∥+ ∥cv∥ < ∆1/2−ε/4, where rv, cv are the local components of R0,C0. Normal
vertices of S11 are defined similarly. A vertex which is not normal will be said to be
exceptional.

Below we will talk about normal columns of C0 and normal rows of R1. This will
mean that in their respective local views in V00 and V11 they belong to the local view of
a normal vertex.

The terminology “normal” and “exceptional” is justified by the following lemma.

Lemma 15. Let Se0 be the set of exceptional vertices of S0. Under the hypothesis ∣S0∣ ⩽
δ

8∆ ∣V0∣, we have
∣Se0 ∣ ⩽

κ

δ2∆1−2ε
∣S0∣

for some absolute constant κ.

Proof. Let Se00 (Se11) be the set of exceptional vertices of S00 (S11). The definition of an
exceptional (not normal) vertex v of S00 implies that R0+C0 has weight at least δ∆3/2−ε/8
on Q(v), and therefore that (R0+C0)∩(R1+C1) has weight at least δ∆3/2−ε/16 on Q(v).
The weight of (R0 +C0) ∩ (R1 +C1) on ⋃v∈Se

00
Q(v) is therefore at least

∣Se00∣δ∆3/2−ε/16

and it is also not more than the number of edges ∣E(Se00, S11)∣ in the graph G◻0 . By the
Expander mixing Lemma in G◻0 , we have

1

16
δ∆3/2−ε∣Se00∣ ⩽ ∣E(Se00, S11)∣ ⩽ ∆2 ∣Se00∣∣S11∣

∣V00∣
+ 4∆

√
∣Se00∣∣S11∣.

26

Writing ∣S11∣/∣V00∣ ⩽ 2∣S0∣/∣V0∣, for ∆ large enough, we straightforwardly obtain that

1

32
δ∆3/2−ε∣Se00∣1/2 ⩽ 4∆∣S11∣1/2

∣Se00∣ ⩽
214

δ2

1

∆1−2ε
∣S11∣.

We obtain similarly

∣Se11∣ ⩽
214

δ2

1

∆1−2ε
∣S00∣.

Hence the result, by summing the two inequalities.

Similarly to S0 = S00 ∪ S11, let us set S1 = S10 ∪ S01 where S10 and S01 are the set
of active vertices of V10 and V01 relative to Ẑ. In other words, S10 (S01) is the set of
vertices of V10 (V01) on which the local view of R1 +C0 (R0 +C1) is non-zero.

Definition 16 (agglutinating vertices of Vij , i ≠ j). Let us say that a vertex v of Sij is
agglutinating if ∥rv∥ ⩾ δ∆/3, where rv is the local component of Ri, or if ∥cv∥ ⩾ δ∆/3,
where cv is the local component of Cj.

Definition 17 (decodable agglutinating vertex). Let us say that an agglutinating vertex
v of S10 (resp. S01) is decodable, if at most ∆γ/2 columms in its local view are in
common with exceptional vertices of S00 (resp. S11), and at most ∆γ/2 rows in its local
view are in common with exceptional vertices of S11 (resp. S00).

We now show that every decodable agglutinating vertex really is decodable in the
sense of the first parallel decoding step:

Proposition 18. The tweaked decoder that is applied during the first parallel decoding
step, described in Section 6.1, identifies correctly every decodable agglutinating vertex v
of S10 or of S01, i.e. it finds the required non-zero rv + cv.

Proof. Let v be a decodable agglutinating vertex of S10, the case v ∈ S01 being essentially
identical. We set A0 to consist of all the indexes of all normal rows in Q(v) and B0 to
consist of all the indexes of normal columns. We now show that the local component rv+cv
of R1 + C0, restricted to A0 × B0 satisfies all the requirements of the tweaked decoder.
Indeed, we must have ∣(rv + cv)∣A0×B0

∣ > w, otherwise robustness (with resistance to
puncturing) would imply that rv + cv would be expressible as sum of fewer than O(∆1/2)
non-zero rows and columns of CA ⊗ FB2 and FA2 ⊗ CB, which would contradict local
minimality of ∥rv∥ + ∥cv∥, since we have supposed either ∥rv∥ ⩾ δ∆/3, or ∥cv∥ ⩾ δ∆/3, by
definition of an agglutinating vertex.

Furthermore, the contribution of R0 on any normal column is less than ∆1/2−ε/4
by definition of a normal column. Therefore, the weight of R0 on A × B0 is less than
∆ ⋅∆1/2−ε/4 = w/4. Similarly, the weight of C1 on A0 ×B is less than w/4, and therefore
the weight of R0 + C1 on A0 × B0 is < w/2. After removing rv + cv, the updated value
R′

1+C ′
0 on A0×B0 is zero, so the value of ∣Ẑ ∣ on A0×B0 is that of ∣R0+C1∣ and is < w/2.

Finally, since the weight of R0 +C1 on A0 ×B0 is < w/2 and the weight of R1 +C0 on
A0 ×B0 is > w, we have that the weight of Ẑ = R0 +C1 +R1 +C0 on A0 ×B0 is > w/2.

27

We remark that the above proof tells us in passing that the Hamming weight of Ẑ
on the local view of a decodable agglutinating vertex is at least w/2. We note this for
future reference.

Proposition 19. Whenever the sequential decoder is stalled, the Hamming weight of Ẑ
restricted to Q(v), for v a decodable agglutinating vertex of S10 or of S01, is at least equal
to ∆3/2−ε/2.

Let us denote by Kγ
10 (Kγ

01) the set of vertices of V10 (V01) whose Q-neighbourhoods
have at least ∆γ/2 columns (rows) in common with exceptional vertices of S00, or that
have at least ∆γ/2 rows (columns) in common with exceptional vertices of S11. We
then set Kγ = Kγ

10 = Kγ
01. These can be thought of as the vertices of V1 whose Q-

neighbourhoods share an exceptionally large number of rows or of columns with excep-
tional vertices of S0.

Lemma 20. Suppose ∣S0∣ ⩽ δ
8∆ ∣V0∣. Then there is an absolute constant κ such that

∣Kγ ∣ ⩽ κ

δ2

1

∆2−4ε
∣S0∣.

Proof. We give an upper bound for Kγ
10, an identical one follows for Kγ

01 by symmetry.
Consider the case when Kγ

10 has ∆γ/2 columns in common with the Q-neighbourhoods
of exceptional vertices of Se00, the other case being similar. This last fact means that all
vertices of Kγ

10 have degree at least ∆γ/2 in the subgraph of GB induced by Kγ
10 and Se00.

By the Expander mixing Lemma in GB we therefore have

∣Kγ
10∣∆

γ/2 ⩽ ∣E(Kγ , Se0)∣ ⩽ ∆
∣Kγ

10∣∣S
e
00∣

∣V00∣
+ 2

√
∆
√

∣Kγ
10∣∣Se0 ∣.

Bounding ∣Se00∣/∣V00∣ from above by 2∣S0∣/∣V0∣ we easily get

∣Kγ
10∣∆

γ/4 ⩽ 2
√

∆
√

∣Kγ
10∣∣Se0 ∣

whence

∣Kγ
10∣

1/2 ⩽ 8∆1/2−γ ∣Se0 ∣1/2

∣Kγ
10∣ ⩽ 64∆1−2γ ∣Se0 ∣

⩽ κ

δ2
∆2ε−2γ ∣S0∣

by applying Lemma 15. Hence the result, since we have supposed γ = 1 − ε.

Proposition 21. Let v be a vertex of S10 (resp. S01) that is not in Kγ and that is
decoded by the tweaked decoder. Let An and Bn be the index sets of its normal rows and
its normal columns respectively. After (tweaked) decoding, the contribution of R′

1 + C ′
0

(resp. R′
0+C ′

1) to the coordinate set indexed by An×Bn in Q(v) is supported by columns
of Colβ0 and Rowβ1 (resp. Colβ1 and Rowβ0) for some β > 1/3.

28

Proof. We treat the case v ∈ S10, the case v ∈ S01 being essentially identical. First consider
the dual-tensor codeword r′v + c′v that the decoder has identified on A0 ×B0 (which may
not be equal to An×Bn). We compare it to rv+cv, the reduced local view of R1+C0. We
recall, that by definition of the tweaked decoder, we must have that ∣Ẑ + r′v + c′v ∣ is less
than w/2 on A0×B0. So in particular it must be less than w/2 on (A0∩An)×(B0∩Bn).
Since the value of ∣Ẑ + rv + cv ∣ is less than w/2 on An ×Bn, by definition of normal rows
and columns, we must have that ∣rv + cv + r′v + c′v ∣ ⩽ w on (A0 ∩An) × (B0 ∩Bn). Now
A0∩An and B0∩Bn both have cardinality at least ∆−∆γ/2−∆γ/2 = ∆−∆γ , so that we
may apply robustness with resistance to puncturing to rv + cv + r′v + c′v and deduce that
∥rv∥+∥cv∥+∥r′v∥+∥c′v∥ is O(∆1/2+∆γ). This in turn implies that, after tweaked decoding,
every normal column (i.e. indexed by b ∈ Bn) has at most O(∆1/2 +∆γ) coordinates on
which R0 or R′

1 equals 1: therefore, if a column, indexed by b ∈ Bn say, is the support
of a non-zero column codeword c ∈ CA in C ′

0, the only way this column has not been
decoded is for the support of c on A × {b} to coincide with the support of C1 on almost
half its coordinates (minus O(∆1/2 + ∆γ)), otherwise more than half the support of c
contributes to Ẑ, and adding c would decrease ∣Ẑ ∣. Summarising, if the column under
discussion does not belong to Colβ0 , it will be decoded by the tweaked decoder. A similar
argument holds for normal rows.

Note that the choice β > 1/3 in this last proposition is somewhat arbitrary and could
in principle be chosen arbitrarily close to 1/2.

Proposition 22. Let v be a vertex of S10 (resp. S01) that is not in Kγ and that is not
identified as decodable (hence not decoded) by the tweaked decoder. Let An and Bn be the
index sets of its normal rows and its normal columns respectively. Then the contribution
of R1 +C0 (resp. R0 +C1) to the coordinate set indexed by An ×Bn in Q(v) is supported
by columns of Colβ0 and Rowβ1 (resp. Colβ1 and Rowβ0) for β = 1/6 + o∆(1).

Proof. Suppose v ∈ S10 is such a vertex. The vertex v cannot be agglutinating by Propo-
sition 18. Indeed, if it were agglutinating, then since we suppose it not in Kγ , it would be
a decodable agglutinating vertex and would be decoded by the tweaked decoder. There-
fore, we have ∥rv∥ < δ∆/3 and ∥cv∥ < δ∆/3, where rv, cv are the components of R1 and
C0 on Q(v). For every column of Q(v), the contribution of R1 to its support is therefore
< δ∆/3. For every normal column, the contribution of R0 to its support is < ∆1/2−ε/4
by definition of normality. Therefore, on every normal column on which C0 is non-zero
we must have a contribution of C1 that is at least δ∆/2 − δ∆/3 − ∆1/2−ε/4. We argue
similarly for normal rows in Q(v).

Situation after the first parallel decoding step. We now argue that this tweaked
decoding step has drastically reduced the number of active vertices of Ẑ in V0.

A remaining active vertex of V0 may be one of the exceptional vertices of Se0 ⊂ S0.
By Lemma 15 there are at most κ∣S0∣/∆1−2ε of them, for some constant κ.

To bound from above the additional number of active vertices, we simply bound from
above the number of CA-column vectors of C ′

0 and C ′
1 (and of CB-row vectors of R′

0 and

29

R′
1) that are supported by the Q-neighbourhood of a non-exceptional vertex v ∉ Se. Such

a row or column codeword may

– belong to the Q-neighbourhood of a vertex of V1 that has many columns or rows
in common with exceptional vertices of V0: the set of such vertices was defined
as Kγ , and by Lemma 20, there are not more than κ∣S0∣/∆2−4ε of them. These
vertices therefore contribute at most 2∆∣Kγ ∣ row and column vectors, so not more
than κ∣S0∣/∆1−4ε for some constant κ.

– Remaining row or column codewords (that have not been removed by the decoder
or have wrongly been introduced by the decoder) may also be present in the Q-
neighbourhoods of vertices of V1 that have been decoded by the tweaked decoder.
By Proposition 21, all these rows and columns must belong to Rowβi and Colβi , for
some fixed value β and i = 0,1. By Lemma 11 there are at most κ∣S0∣/∆1−2ε such
column and row vectors, for some constant κ.

– The remaining row or column codewords must be present in the the Q-neighbour-
hoods of vertices of V1 that are not in Kγ and have not been decoded by the
tweaked decoder. By Proposition 22, all these rows and columns must belong to
Rowβi and Colβi , for some fixed value β and i = 0,1. Again, by Lemma 11 there are
at most κ∣S0∣/∆1−2ε such column and row vectors, for some constant κ.

Summing everything, we have shown the following:

Theorem 23. We suppose ∣S0∣ ⩽ δ
8∆ ∣V0∣. Let S′0 be the set of active vertices of V0 after

the first parallel decoding step, i.e. the set of vertices of V00 on whose Q-neighbourhood
R′

0+C ′
0 is non-zero, together with the set of vertices of V11 on on whose Q-neighbourhood

R′
1 +C ′

1 is non-zero. We have ∣S′0∣ ⩽ κ∣S0∣/∆1−4ε for some constant κ.

Before analysing the second parallel decoding step, we need the following consequence
of the above analysis.

Proposition 24. When the sequential decoder is stalled, we have ∣Ẑ ∣ ⩾ κ∣S0∣∆1/2−ε for
some constant κ.

Proof. By Lemma 15, the number of exceptional vertices in Se0 is a small fraction of
the set of active vertices S0. There are therefore at least at least ∣S0∣/2 (say) normal
rows and columns. By Lemma 20 only a small fraction of the set of normal rows and
columns spanned by S0 can end up in the Q-neighbourhood of a vertex of Kγ in V1.
Furthermore, by arguing as in the proof of Proposition 22, if a normal row or a normal
column is not in the Q-neighbourhood of a decodable agglutinating vertex, it must belong
to one of the sets Rowβi or Colβj for β = 1/6+o∆(1), otherwise it would have already been
decoded by the sequential decoder. Therefore, most normal rows and columns of S0

must belong to the Q-neighbourhood of a decodable agglutinating vertex of S1 (hence
the terminology ’agglutinating’). The number of decodable agglutinating vertices of S1

is therefore at least equal to κ∣S0∣/∆ for some constant κ, and the result follows from
Proposition 19.

30

Analysis of the second parallel decoding step. This step is simpler than the first.
Recall that the second parallel decoding step is applied on vertices of V0 and uses regular
decoding (i.e. decreases ∣Ẑ ∣ as much as possible on complete, unpunctured, local views).

To avoid confusion between the different stages of the decoder, let us denote by
Ẑ, Ẑ ′, Ẑ ′′ respectively the values of the mismatch Ẑ of the stalled serial decoder before
the first parallel decoding step, just after the first parallel decoding step on V1, and finally
after the second parallel decoding step on V0. Accordingly we write Ẑ = C0+R0+C1+R1,
Ẑ ′ = C ′

0 +R′
0 + C ′

1 +R′
1, Ẑ

′′ = C ′′
0 +R′′

0 + C ′′
1 +R′′

1 , and use the notation S0 = S00 ∪ S11,
S′0 = S′00∪S′11, S

′′
0 = S′′00∪S′′11 for the set of active vertices of V0 at each stage of decoding.

We recall also that Z = (C0,R0,C1,R1) has been chosen to be a minimal represen-
tation of Ẑ. The representations Z ′ = (C ′

0,R
′
0,C

′
1,R

′
1) and Z ′′ = (C ′′

0 ,R
′′
0 ,C

′′
1 ,R

′′
1) are

however simply deduced from Z by the decoder’s increments.

Lemma 25. Let x0 ⩾ 1 (resp. x1 ⩾ 1) be such that x0δ∆ (resp. x1δ∆) is the average
weight of R′′

0 + C ′′
0 (resp. R′′

1 + C ′′
1) on the union of the Q-neighbourhoods of S′′00 (resp.

S′′11). Under the hypothesis ∣S0∣ ⩽ δ
8∆ ∣V0∣, we have

∣S′′00∣ ⩽
256

x2
0δ

2
∣S′0∣

∣S′′11∣ ⩽
256

x2
1δ

2
∣S′0∣.

Proof. Observe that xi ⩾ 1, i = 0,1, because δ∆ is the minimum distance of the dual
tensor code. Now for any vertex v of V00, we must have

∣(R′′
0 +C ′′

0)∣Q(v)∣ ⩽ 2∣(R′
1 +C ′

1)∣Q(v)∣ (6)

(otherwise the zero vector is a better choice than R′′
0 +C ′′

0 on Q(v), since it gives a lower
value of ∣Ẑ ′′∣).

From (6) we have that the average degree of vertices of S′′00 in the subgraph of G◻0
induced by S′′00 and S′11 is at least xδ∆/2. Applying the Expander mixing Lemma in G◻0
we have

1

2
∣S′′00∣xδ∆ ⩽ ∣E(S′′00, S

′
11)∣ ⩽ ∆2 ∣S′′00∣∣S′11∣

∣V00∣
+ 4∆

√
∣S′′00∣∣S′11∣.

Writing ∣S′11∣/∣V00∣ ⩽ 2∣S′0∣/∣V0∣ ⩽ 2∣S0∣/∣V0∣ by Theorem 23 and applying the hypothesis
∣S0∣ ⩽ δ

8∆ ∣V0∣, we get

1

4
∣S′′00∣x0δ∆ ⩽ 4∆

√
∣S′′00∣∣S′0∣

∣S′′00∣1/2 ⩽
16

x0δ
∣S′0∣1/2

∣S′′00∣ ⩽
256

x2
0δ

2
∣S′0∣.

The same reasoning is valid for S′′11.

31

The following theorem is the core result of the analysis of the whole parallel decod-
ing procedure, it states that together the two steps of the parallel decoding procedure
decrease the Hamming weight of Ẑ.

Theorem 26. Under the hypothesis ∣S0∣ ⩽ δ
8∆ ∣V0∣, after the second parallel decoding step

we have ∣Ẑ ′′∣ ⩽ κ∣S0∣∆4ε for some constant κ.

Proof. From Lemma 25 we obtain that

∣R′′
0 +C ′′

0 ∣ = ∑
v∈S′′00

∣(R′′
0 +C ′′

0)Q(v)∣ = ∣S′′00∣x0δ∆ ⩽ 256

x0δ
∣S′0∣∆

and applying Theorem 23 we obtain

∣R′′
0 +C ′′

0 ∣ ⩽ κ∣S0∣∆4ε

for some constant κ (remembering that x0 ⩾ 1). We have naturally the same upper bound
for ∣R′′

1 +C ′′
1 ∣ and since

∣Ẑ ′′∣ ⩽ ∣R′′
0 +C ′′

0 ∣ + ∣R′′
1 +C ′′

1 ∣

we have the claimed result.

For the proof of Theorem 2 we will also need the following Lemma. Recall that ∥Ẑ∥
denotes the minimum weight ∥Z∥ of a representation of Ẑ.

Lemma 27. Let Ẑ and Ẑ ′′ be the states of Ẑ just before a parallel decoding procedure
and just after the second step of the parallel decoding procedure. We have ∥Ẑ ′′∥ ⩽ ∥Ẑ∥/2.

Proof. Recall that we have taken Z = (C0,R0,C1,R1) such that ∥Z∥ = ∥Ẑ∥. As men-
tioned just before Lemma 25, the two representations Z ′ = (C ′

0,R
′
0,C

′
1,R

′
1) and Z ′′ =

(C ′′
0 ,R

′′
0 ,C

′′
1 ,R

′′
1) that are deduced from Z through the parallel decoder’s updates are

not necessarily minimal, but nevertheless it suffices to show that ∥Z ′′∥ ⩽ ∥Z∥/2.
Let x0, x1 be defined as in Lemma 25. We consider two cases

(i) x0 > ∆1/4. In this case Lemma 25 and Theorem 23 imply ∣S′′00∣ ⩽ κ∆4ε

δ2∆3/2 ∣S0∣ for some
constant κ. We deduce ∥R′′

0 ∥ + ∥C ′′
0 ∥ ⩽ ∣S′′00∣2∆ ⩽ ∣S0∣/4 for ∆ large enough.

(ii) x0 ⩽ ∆1/4. All vertices of S′′00 on which R′′
00 + C ′′

00 has Hamming weight less than
∆3/2−ε contribute, by applying robustness with w = ∆3/2−ε, at most 2

δ∆1/2−ε∣S′′00∣ to
∥R′′

0 ∥+∥C ′′
0 ∥. The vertices of S′′00 on which R′′

00+C ′′
00 has Hamming weight ⩾ ∆3/2−ε

number not more than δ
∆1/4−ε ∣S′′00∣, and we again easily deduce from Lemma 25 and

Theorem 23 that ∥R′′
0 ∥ + ∥C ′′

0 ∥ ⩽ ∣S0∣/4 for ∆ large enough.

We therefore always have ∥R′′
0 ∥+ ∥C ′′

0 ∥ ⩽ ∣S0∣/4. We also have the symmetrical inequality
∥R′′

1 ∥ + ∥C ′′
1 ∥ ⩽ ∣S0∣/4, and summing both we get

∥R′′
0 ∥ + ∥C ′′

0 ∥ + ∥R′′
1 ∥ + ∥C ′′

1 ∥ ⩽ ∣S0∣/2 ⩽ ∥Ẑ∥/2.

32

Proof of Theorem 2. Let e be the original error vector, with local view ev for vertices
v ∈ V . We recall that the decoder initially computes a local estimation εv of the error
on all Q-neighbourhoods of vertices v ∈ V1. We have εv = ev + rv + cv where rv + cv is a
local dual tensor codeword. Over the partition (Q(v))v∈V01 of the set Q of coordinates,
the global vector ε01 defined by the local views εv differs from the error vector e by a
vector R0 + C1, similarly the global vector ε10 defined by the local views εv for v ∈ V10

differs from e by a vector R1 +C0. The two vectors R0 +C1 and R1 +C0 do not a priori
coincide, and their sum defines the original mismatch Z. The goal of the decoder is to
find a decomposition Z = Ĉ0 + R̂0 + Ĉ1 + R̂1 and output ê = ε01 + R̂0 + Ĉ1.

We will have proved that our decoder works after ensuring two things:

– that it indeed finds a decomposition Z = Ĉ0 + R̂0 + Ĉ1 + R̂1,

– that the corresponding ê is such that ∣e+ ê∣ = ∣R0 +C1 + R̂0 + Ĉ1∣ < dmin where dmin

is the minimum distance of the quantum code.

By Proposition 24 and Theorem 26 we have that, for a sufficiently small value of
ε (namely ε < 1/10), the Hamming weight ∣Ẑ ∣ decreases during parallel decoding steps
whenever we have ∣S0∣ ⩽ δ

8∆ ∣V0∣. Furthermore, the Hamming weight ∣Ẑ ∣ decreases at every
sequential decoding step by definition. Therefore to ensure convergence to some valid
output ê we only need to ensure that the condition ∣S0∣ ⩽ δ

8∆ ∣V0∣ is satisfied throughout
the decoding process.

To estimate the number ∣S0∣ of active vertices in V0, we can simply upper bound it
by ∥Ẑ∥ and track the evolution of ∥Ẑ∥ during the course of the decoding algorithm.

At the initial stage, we have Ẑ = Z which is the original mismatch vector. We
note that we will have rv + cv ≠ 0 only if ∣ev ∣ ⩾ δ∆/2. Since Q is partitioned into Q-
neighbourhoods of vertices of V01, we have that the number of vertices of V01 for which
rv + cv ≠ 0 is at most 2∣e∣/δ∆, with the same conclusion holding for V01. Crudely upper
bounding the contribution of every such vertex to ∥Z∥ by 2∆, we have ∥Z∥ ⩽ 8∣e∣/δ.
Strictly speaking, we have upper bounded the number of terms of one possible expression
of Z as a sum of local row and column vectors, but the conclusion holds anyway since
∥Z∥ refers to the minimum number of terms of such a decomposition of Z.

Similarly, we remark that ∣rv + cv ∣ ⩽ 2∣ev ∣, from which we have the upper bound for
the Hamming weight of Z, ∣Z ∣ ⩽ 4∣e∣, and also

∣R0 +C1∣ ⩽ 2∣e∣, (7)

for (R0,C0,R1,C1) the original decomposition of Z.
For any sequential decoding step, we clearly have that the weight ∥Ẑ∥ is increased by

at most 2∆. Since the weight ∥Ẑ∥ only decreases during a parallel decoding step, we have
that ∥Ẑ∥ stays upper bounded by 8∣e∣/δ + ∣Z ∣2∆ ⩽ 8∣e∣(∆ + 1/δ) so that the requirement
∣S0∣ ⩽ δ

8∆ ∣V0∣ is always satisfied whenever

8∣e∣(∆ + 1

δ
) ⩽ δ

8∆
∣V0∣

33

i.e. whenever

∣e∣ ⩽ δ2

64∆(δ∆ + 1)
∣V0∣ =

δ2

32∆3(δ∆ + 1)
∣Q∣

since ∣Q∣ = ∣V0∣∆2/2. We have therefore proved that under the hypothesis of Theorem 2,
the decoder always finds a decomposition of Z.

Next we evaluate an upper bound on the Hamming weight ∣R̂0 + Ĉ1∣ of the output of
the decoder. To this end we upper bound the increment of ∣R̂0 + Ĉ1∣ during sequential
decoding, during all the first parallel decoding steps, and finally during all second parallel
decoding steps.

We note that during a sequential decoding step, the Q-neighbourhood of a single
vertex is modified, this vertex being in V00 or in V11. This translates either into a
modification of R̂0 or into a modification of Ĉ1, which affects at most ∆ rows or ∆
columns. Therefore a sequential decoding step translates into an augmentation of ∣R̂0+Ĉ1∣
by at most ∆2. Since the value of ∣Ẑ ∣ decreases at every step, the total contribution of
sequential decoding does not exceed ∣Z ∣∆2 ⩽ 4∣e∣∆2.

During a first parallel decoding step, the only modification to ∣R̂0 + Ĉ1∣ is induced
by the parallel decoder’s action on vertices v of V01. We note that the decoder modifies
the associated Q-neighbourhood only if it decreases ∣Ẑ ∣ on a subset of Q(v) by at least
w/2 = ∆3/2−ε/2. Since all these sub-Q-neighbourhoods are disjoint, their number is at
most 2∣Ẑ ∣/∆3/2−ε and the total increment of ∣R̂0+Ĉ1∣ during this step is at most ∆2 times
this number of vertices, namely 2∣Ẑ ∣∆1/2+ε. Now by Proposition 24 and Theorem 26, the
next time a first parallel decoding step occurs the value of ∣Ẑ ∣ will have been divided by at
least κ∆1/2−5ε for some constant κ, therefore the sum of the contributions to ∣R̂0 + Ĉ1∣ of
all parallel decoding steps is at most 4∣Z ∣∆1/2+ε ⩽ 16∣e∣∆1/2+ε by summing the converging
geometric series.

Finally, for the contribution of the second parallel decoding steps, we argue as before
that the increment of ∣R̂0 + Ĉ1∣ is at most ∆2 per vertex on which the decoder takes
action. The number of such vertices is not more than ∣S′0∣ + ∣S′′0 ∣, ∣S′0∣ being an upper
bound on the number of active vertices on which the decoder may act, and ∣S′′0 ∣ being
an upper bound on the number of inactive vertices which will become active because the
decoder decides to update them. Applying Theorem 23 and Lemma 25 (which also holds
for S′′11), we have that ∣S′0∣ ⩽ κ∣S0∣/∆1−4ε and ∣S′′0 ∣ ⩽ κ∣S0∣/∆1−4ε for some constant κ. The
increment to ∣R̂0 + Ĉ1∣ is therefore at most

κ∣S0∣∆1+4ε ⩽ κ∥Ẑ∥∆1+4ε

for some constant κ, where Ẑ refers to the value just before the parallel decoding proce-
dure is applied. As stated above, the maximum value of ∥Ẑ∥ is bounded from above by
8∣e∣(∆+1/δ). Since every parallel decoding procedure divides the current value of ∥Ẑ∥ by
at least 2 (by Lemma 27), it is an easy exercice in combinatorics to see that the sum of all
the values of ∥Ẑ∥ before each parallel decoding procedure cannot exceed 16∣e∣(∆ + 1/δ),
irrespective of the distribution of the parallel decoding steps during the whole decoding
procedure. We obtain therefore that total contribution of the second parallel decoding

34

steps is at most
κ∣e∣∆2+4ε

for some constant κ and ∆ large enough.
Summarising, the upper bound on the contribution of the second parallel decoding

steps dominates the other terms and we have that the final output of the decoder is
R̂0 + Ĉ1 of Hamming weight

∣R̂0 + Ĉ1∣ ⩽ κ∣e∣∆2+4ε

for some constant κ. From (7) we therefore obtain

∣e + ê∣ = ∣R0 +C1 + R̂0 + Ĉ1∣ ⩽ ∣R0 +C1∣ + ∣R̂0 + Ĉ1∣ ⩽ c∣e∣∆2+4ε

for some constant κ. Applying the lower bound on dmin from Theorem 1 we obtain that
∣e + ê∣ < dmin which concludes the proof.

7 Link with the Lifted Product codes

In this section, we briefly recall the construction of the lifted product codes introduced
by Panteleev and Kalachev [PK21a] and explain how quantum Tanner codes can be
obtained from lifted product codes, or more generally from hypergraph product codes.
Finally, we show that the decoder we studied in the previous sections immediately gives
an efficient decoder for lifted product codes.

7.1 Construction of the Lifted Product codes

Take a group G and two symmetric subsets A = {ai} ⊂ G, B = {bi} ⊂ G of size ∆. Let
hA and hB be two parity-check matrices on F2 ⊂ F2[G] of size m ×∆. We further define
two diagonal matrices of size ∆ over G:

DA ∶= diag(a1, . . . , a∆), DB ∶= diag(b1, . . . , b∆)

and set HA ∶= hADA and HB ∶= hBDB.
Consider the graph with two vertices and ∆ parallel edges, and define two Tanner

codes TA and TB on this graph, where the local constraints on both vertices are given
by the codes kerhA and kerhB, respectively. The corresponding Tanner graphs have
vertex sets A ∪ (C0 ∪ C1) for TA and B ∪ (D0 ∪ D1) for TB. In particular, we have
∣C0∣ = ∣C1∣ = ∣D0∣ = ∣D1∣ =m.

The lifted product codes of [PK21a] are defined on qubits indexed by (∣G∣ copies
of) A × B ∪ (C0 ∪ C1) × (D0 ∪D1), and have σX -generators indexed by (∣G∣ copies of)
A × (D0 ∪ D1), and σZ-generators by (∣G∣ copies of) (C0 ∪ C1) × B. We will use the
following identification between FG2 and the group algebra F2[G]:

(xg)g∈G ↔ ∑
g∈G

xgg

35

where xg ∈ F2. This allows us to describe a subset of A × B ×G, e.g. the support of a
stabilizer, as a matrix in F2[G]A×B.

A relatively simple way of describing the lifted product codes is via their stabilizer
elements. For instance, a general σZ-stabilizer is associated with two matrices (U0, U1)
with entries indexed by C0 × B and C1 × B, and values in F2[G]. The corresponding
operator is a product of σZ-Pauli matrices with a support given by

hTAU0 +HT
AU1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A×B

+ U0h
T
B

²
C0×D0

+U0H
T
B

´¹¹¹¹¸¹¹¹¹¹¶
C0×D1

+ U1h
T
B

²
C1×D0

+U1H
T
B

´¹¹¹¹¸¹¹¹¹¹¶
C1×D1

.

We leave the factor G implicit for ease for notation, and represent the support of a set
by its indicator vector. Similarly, a general σX -stabilizer element (V0, V1) has support

V0hB + V1HB
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A×B

+ hAV0
²
C0×D0

+HAV0
²
C1×D0

+ hAV1
²
C0×D1

+HAV1
²
C1×D1

.

A generator of the code is obtained by taking (U0, U1), or (V0, V1), of Hamming weight
equal to 1. The generators of the lifted product codes have weight at most 2∆.

7.2 Quantum Tanner codes from Lifted Product codes

Let us define matrices gA indexed by C ′ × A and gB by D′ × B to be the parity-check
matrices of (kerhA)⊥ and (kerhB)⊥. Note that ∣C ′∣ = ∣D′∣ = ∆ −m and that

gAh
T
A = 0, gBh

T
B = 0.

We further define GA ∶= gAD−1
A and GB ∶= gBD−1

B that satisfy GAHT
A = 0 and GBHT

B = 0.
The quantum Tanner code is nothing but the code with σZ-stabilizers (U ′

0, U
′
1) ∈

F2[G](C0∪C1)×D′
and σX -stabilizers (V ′

0 , V
′

1) ∈ F2[G](C′×(D0∪D1) corresponding to the
stabilizers (U0, U1) ∶= (U ′

0GB, U
′
1gb) and (V0, V1) ∶= (gTAV ′

0 ,G
T
AV

′
1) of the Lifted Product

code. They take the following form:

σZ − stabilizer (U ′
0, U

′
1) ∶ hTAU

′
0GB +HT

AU
′
1gb

´¹¹¹¸¹¹¹¶
A×B

+U ′
0GBh

T
B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D0

+U ′
0GBH

T
B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D1

+U ′
1gBh

T
B

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1×D0

+U ′
1gbH

T
B

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
C1×D1

= hTAU ′
0GB +HT

AU
′
1gb

´¹¹¹¸¹¹¹¶
A×B

+U ′
0GBh

T
B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D0

+U ′
1gbH

T
B

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
C1×D1

,

σX − stabilizer (V ′
0 , V

′
1) ∶ gTAV

′
0hB +GTAV ′

1HB
´¹¹¹¸¹¹¹¶

A×B

+hAgTAV ′
0

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D0

+HAg
T
AV

′
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1×D0

+hAGTAV ′
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D1

+HAG
T
AV

′
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1×D1

= gTAV ′
0hB +GTAV ′

1HB
´¹¹¹¸¹¹¹¶

A×B

+HAg
T
AV

′
0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1×D0

+hAGTAV ′
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D1

.

We immediately notice that the supports of the σX -stabilizers and the σZ-stabilizers only
overlap on A×B. In particular, we can simply discard all the qubits in (C0∪C1)×(D0∪D1)

36

and define a shorter stabilizer code on A×B with the stabilizers corresponding to (U ′
0, U

′
1)

and (V ′
0 , V

′
1). This is nothing but the quantum Tanner code Q = (C0,C1) with local tensor

codes CA ⊗CB and C⊥A ×C
⊥
B where we define

CA = ker gA, CB = kerhB, C⊥A = kerhA, C⊥B = ker gB.

7.3 Decoding Lifted Product codes

An error vector e = (eX ,eZ) for the lifted product code is described a σX -type error eX

and a σZ-type error eZ :

eX/Z = e
X/Z
AB + e

X/Z
00 + e

X/Z
01 + e

X/Z
10 + e

X/Z
11

with e
X/Z
AB ∈ F2[G]A×B and e

X/Z
ij ∈ F2[G]Cj×Di . This error gives rise to a syndrome

(S0, S1, T0, T1) with (S0, S1) detected by σZ-generators and (T0, T1) detected by σX -
generators, as follows:

S0 = hAeZAB + eZ00hB + eZ10HB ∈ F2[G]C0×B,

S1 =HAe
Z
AB + eZ01hB + eZ11HB ∈ F2[G]C1×B,

T0 = eXABh
T
B + hTAeX00 +HT

Ae
X
01 ∈ F2[G]A×D0 ,

T1 = eXABH
T
B + hTAeX10 +HT

Ae
X
11 ∈ F2[G]A×D1 .

One of the features of this quantum code (and also of the hypergraph product code of
two classical Tanner codes) is that one can easily remove the error from C0×D1∪C1×D0

by adding a stabilizer of weight O(∣e10 ∪ e01∣). Since the code is LDPC, it means that
this can be done without increasing the error weight too much.

Lemma 28. For any error e, there exists an equivalent error e′ such that e′01 = 0, e′10 = 0
and

∣e′∣ ⩽ ∣e∣ + 4∆2(∣e01∣ + ∣e10∣).

Proof. Consider a general error (eX ,eZ). We focus on the σZ-part (eZAB,eZ00,e
Z
10,e

Z
01,e

Z
11).

The σX -part is treated identically. Let U0, U1 be matrices such that

U0HB = eZ10, U1hB = eZ01.

We have that ∣U0∣ ⩽ ∆∣eZ10∣ and ∣U1∣ ⩽ ∆∣eZ01∣. These stabilizers induce new errors hTAU0 +
HT
AU1+U0h

T
B+U1H

T
B , which have a weight at most 2∆(∣U0∣+ ∣U1∣) ⩽ 2∆2(∣e10∣+ ∣e01∣).

Thanks to Lemma 28, we now focus on a σZ-error e such that e01 = 0 and e10 = 0.
Its syndrome reads:

T0 = eABh
T
B + hTAe00, T1 = eABH

T
B +HT

Ae11.

We can multiply these syndromes by gA and GA respectively and obtain

gAT0 = gAeABhTB, GAT1 = GAeABHT
B ,

37

which is exactly the decoding problem for quantum Tanner codes. We note that a similar
strategy was already exploited in [QC21]. The decoder presented in the previous sections
can correct this error provided its weight is small enough (Theorem 2). More precisely,
if ∣eAB ∣ ⩽ κn/∆4, then the decoder outputs an equivalent error êAB for the quantum
Tanner code. In other words, there exists a stabilizer element associated with (U0, U1)
such that

êAB = eAB + hTAU ′
0GB +HT

AU
′
1gB,

as described in the previous subsection.
Let us introduce a matrix nA indexed by C0 ×A such that nAhTA = 1C0 . We assume

here that hA is a full-rank matrix. We also denote NA ∶= nAD−1
A , which implies NAH

T
A =

1C1 .
The decoder for the lifted product code will simply return the triple (êAB, ê00, ê11)

with
ê00 ∶= nA(T0 + êABh

T
B), ê11 ∶= NA(T1 + êABH

T
B).

Straightforward manipulations show that

ê00 = nA((eABhTB + hTAe00) + (eAB + hTAU ′
0GB +HT

AU
′
1gB)hTB)

= e00 +U ′
0GBh

T
B

and

ê11 = NA((eABHT
B +HT

Ae11) + (eAB + hTAU ′
0GB +HT

AU
′
1gB)HT

B)
= e11 +U ′

1gBH
T
B

which means that the true error and the error returned by the decoder differ by

hTA(U ′
0GB) +HT

A(U ′
1gB)

´¹¹¹¸¹¹¶
A×B

+ (U ′
0GB)hTB

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C0×D0

+ (U ′
1gB)HT

B
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C1×D1

.

In other words, they differ by the stabilizer element (U0, U1) = (U ′
0GB, U

′
1gB) of the lifted

product code, meaning that they are equivalent and that the decoder succeeded.

We have therefore proved the following:

Theorem 29. There exists a constant κ, depending only on δ, a lower bound for the
minimum distances of both component codes CA and CB, such that for large enough fixed
∆, the above decoding algorithm corrects all error patterns of weight less than κn/∆6 for
the lifted product code of length n = ∣Q∣.

38

References

[BE21] Nikolas P Breuckmann and Jens N Eberhardt. Balanced product quantum
codes. IEEE Transactions on Information Theory, 67(10):6653–6674, 2021. 2

[BK22] Nouédyn Baspin and Anirudh Krishna. Connectivity constrains quantum
codes. Quantum, 6:711, May 2022. 2

[BPT10] Sergey Bravyi, David Poulin, and Barbara Terhal. Tradeoffs for Reliable Quan-
tum Information Storage in 2D Systems. Phys. Rev. Lett., 104:050503, Feb
2010. 2

[BT09] Sergey Bravyi and Barbara Terhal. A no-go theorem for a two-dimensional
self-correcting quantum memory based on stabilizer codes. New Journal of
Physics, 11(4):043029, apr 2009. 2

[CS96] Robert Calderbank and Peter W Shor. Good quantum error-correcting codes
exist. Physical Review A, 54:1098–1105, Aug 1996. 13

[Del13] Nicolas Delfosse. Tradeoffs for reliable quantum information storage in surface
codes and color codes. In 2013 IEEE International Symposium on Information
Theory, pages 917–921, 2013. 2

[DEL+21] Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Lo-
cally Testable Codes with constant rate, distance, and locality. arXiv preprint
arXiv:2111.04808, 2021. 2, 3, 4, 5, 7, 15

[DN21] Nicolas Delfosse and Naomi H. Nickerson. Almost-linear time decoding algo-
rithm for topological codes. Quantum, 5:595, December 2021. 3

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics,
17:449–467, 1965. 3

[EKZ20] Shai Evra, Tali Kaufman, and Gilles Zémor. Decodable quantum LDPC codes
beyond the square root distance barrier using high dimensional expanders.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 218–227, 2020. 2, 3

[FGL18] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. Constant overhead
quantum fault-tolerance with quantum expander codes. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 743–
754, 2018. 2

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Transactions on Infor-
mation Theory, 8(1):21–28, 1962. 1

[GL14] Larry Guth and Alexander Lubotzky. Quantum error correcting codes and
4-dimensional arithmetic hyperbolic manifolds. Journal of Mathematical
Physics, 55(8):082202, 2014. 3

39

[Got97] Daniel Gottesman. Stabilizer codes and quantum error correction. PhD thesis,
California Institute of Technology, 1997. 13

[Got14] Daniel Gottesman. Fault-tolerant quantum computation with constant over-
head. Quantum Information & Computation, 14(15-16):1338–1372, 2014. 1

[Gur10] Venkatesan Guruswami. Expander codes and their decoding. https://www.
cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes8.pdf, 2010.
12

[Has14] Matthew B Hastings. Decoding in hyperbolic spaces: quantum LDPC codes
with linear rate and efficient error correction. Quantum Information & Com-
putation, 14(13-14):1187–1202, 2014. 3

[HHO20] Matthew B Hastings, Jeongwan Haah, and Ryan O’Donnell. Fiber Bundle
Codes: Breaking the N1/2polylog(N) Barrier for Quantum LDPC Codes.
arXiv preprint arXiv:2009.03921, 2020. 2

[HL22] Max Hopkins and Ting-Chun Lin. Explicit Lower Bounds Against Ω(n)-
Rounds of Sum-of-Squares. arXiv preprint arXiv:2204.11469, 2022. 10

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–561,
2006. 12

[Kit03] Alexei Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of
Physics, 303(1):2–30, 2003. 2

[KT21] Tali Kaufman and Ran J Tessler. New cosystolic expanders from tensors imply
explicit Quantum LDPC codes with Ω(

√
n logk n) distance. In Proceedings of

the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
1317–1329, 2021. 2

[LH22] Ting-Chun Lin and Min-Hsiu Hsieh. Good quantum LDPC codes with linear
time decoder from lossless expanders. arXiv preprint arXiv:2203.03581, 2022.
3

[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. Quantum expander
codes. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 810–824. IEEE, 2015. 2, 3

[LZ22] Anthony Leverrier and Gilles Zémor. Quantum Tanner codes. arXiv preprint
arXiv:2202.13641, 2022. 1, 2, 3, 4, 5, 6, 7, 8, 11, 14, 15, 16, 17, 18

[PK20] Pavel Panteleev and Gleb Kalachev. Quantum LDPC Codes with Almost
Linear Minimum Distance. arXiv preprint arXiv:2012.04068, 2020. 2

40

https://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes8.pdf
https://www.cs.cmu.edu/~venkatg/teaching/codingtheory/notes/notes8.pdf

[PK21a] Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally
testable classical LDPC codes. arXiv preprint arXiv:2111.03654, 2021. 2, 3,
4, 7, 10, 11, 35

[PK21b] Pavel Panteleev and Gleb Kalachev. Degenerate Quantum LDPC Codes With
Good Finite Length Performance. Quantum, 5:585, November 2021. 3

[QC21] Armanda O Quintavalle and Earl T Campbell. Lifting decoders for classical
codes to decoders for quantum codes. arXiv preprint arXiv:2105.02370, 2021.
38

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions
on Information Theory, 42(6):1710–1722, 1996. 1, 5, 12

[Ste96] Andrew M. Steane. Error correcting codes in quantum theory. Physical Review
Letters, 77:793–797, Jul 1996. 13

[Tan81] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions
on Information Theory, 27(5):533–547, 1981. 1, 3, 5, 12

[TZ14] Jean-Pierre Tillich and Gilles Zémor. Quantum LDPC codes with positive
rate and minimum distance proportional to the square root of the blocklength.
IEEE Transactions on Information Theory, 60(2):1193–1202, 2014. 1, 2

41

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

