
A separation of PLS from PPP

Ilario Bonacina∗ Neil Thapen†

June 16, 2022

Abstract

Recently it was shown that PLS ∕⊆ PPADS [GHJ+22]. We show that
this separation already implies that PLS ∕⊆ PPP. These separations are
shown for the decision tree model of TFNP and imply similar separations
in the type-2, relativized model.

Important note. This manuscript is based on an early preprint of [GHJ+22]
published on ECCC, which did not contain the result that PLS ∕⊆ PPP. Our
work is superseded by the revised version of [GHJ+22] of 10 June 2022 which,
independently, contains this result. The manuscript has not been edited to
reflect this, and in particular references to [GHJ+22] are to the early version.
It can be seen as an alternative, slightly more direct, presentation of the result.

1 Introduction
Total NP search problems (TFNP) are total relations of polynomial growth rate,
with polynomial-time graphs. They were introduced in [MP91] and since then
several classes of TFNP problems have been studied. Such classes in most cases
correspond to combinatorial problems. In particular, the class PLS is the class of
TFNP relations corresponding to finding an input of a Boolean circuit providing
a locally minimal output [JPY88]. The class PPP consists of the relations total
by virtue of the pigeonhole principle, and the class PPADS consists of the rela-
tions whose totality relies on the combinatorial principle saying that a directed
graph with a source must have a sink [Pap94].

The different TFNP classes cannot be separated without solving the P = NP
problem, but separations are known with respect to oracles. Oracle separations
are one of the motivations for Beame et al [BCE+98] to introduce the relativized,
type-2 model of TFNP. Separations of classical TFNP classes in this model were
shown for instance in [BCE+98, BOM04] and very recently in [GHJ+22]. These

∗Universitat Politecnica de Catalunya bonacina@cs.upc.edu. Partially supported
by the grants PID2019-109137GB-C22 and IJC2018-035334-I funded by MCIN/AEI/
10.13039/501100011033

†Institute of Mathematics of the Czech Academy of Sciences, thapen@math.cas.cz. Par-
tially supported by GA ČR project 19-05497S and by RVO:67985840.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 89 (2022)

tend to work with a decision tree model of TFNP and to derive separations from
proof complexity lower bounds. We denote TFNP classes in the decision tree
model with a superscript dt. Separations in the decision tree model immediately
imply similar separation between the corresponding classes in the type-2 model
of TFNP in which separations are usually stated, which is essentially the uniform,
machine model of which decision tree TFNP is the nonuniform version.

We show that the non-reducibility of PLS to PPP, the remaining open re-
lation between these classical classes, follows from the non-reducibility of PLS
to PPADS shown in [GHJ+22] together with a standard construction on PPP
given by trees, which was used in [BCE+98] to show that PPA is not reducible
to PPP, and in [BOM04] to show that PLS is not reducible to PPP by a limited
kind of reduction. The separation from [GHJ+22] is the following.

Proposition 1.1 ([GHJ+22, Corollary 1]). PLSdt ∕⊆ PPADSdt.

This paper should be read as an extension of [GHJ+22]. However it is also
intended to be somewhat self-contained, so we will repeat some definitions and
only really use a proof complexity lower bound from [GHJ+22]. Our main result
is the following separation.

Theorem 1.2. PLSdt ∕⊆ PPPdt.

Organization of the paper. In Section 2 we provide the necessary definitions
of the TFNP classes we use, and of the notion of reduction between search
problems. Section 3 contains the main technical contribution of this paper and
how it implies PLSdt ∕⊆ PPPdt. In Section 4 we give a more self-contained
argument for the separation proven in Section 3, introducing the Sherali-Adams
proof system and showing how the Sherali-Adams lower bound in [GHJ+22]
implies PLSdt ∕⊆ PPPdt. Appendix A contains some folklore reductions between
total search problems.

Notation. In general we try to use similar notation to [GHJ+22]. For n ∈ N
we let [n] := {1, 2, . . . , n}. When writing log n we always mean ⌈log n⌉. We
write polylog(n) for the set of functions f : N → N of polylogarithmic growth
rate in n, that is, such that f(n) ∈ O(logc n) for some c ∈ N. Similarly we write
write qpoly(n) for the functions of quasipolynomial growth rate in n, that is,
such that log f(n) ∈ polylog(n). We will sometimes identify a tree T with its
set of branches, and will write T [h] for the set of branches in T labelled with h,
and T [¬h] for the set of branches not labelled with h.

2 The decision tree model of TFNP

2.1 Search problems
Most of the definitions in this section are taken from, or modelled after, those
in [GHJ+22], with some minor changes to the notation.

2

Definition 2.1. A total search problem is a sequence R = (Rn)n∈N of relations
Rn ⊆ {0, 1}mn × On, where mn ∈ N, each On is a finite set, and for all
x ∈ {0, 1}mn there is some y ∈ On such that (x, y) ∈ Rn.

We will also call a single relation Rn in such a sequence a total search
problem. In this context the string x is an instance of the problem and any y with
(x, y) ∈ Rn is a solution of the instance. Typically x codes some combinatorial
structure for which n is a natural size parameter, such as a function [n] → [n].

Definition 2.2 (TFNPdt). A total search problem is in TFNPdt if mn is at most
quasipolynomial in n and, for each y ∈ On, there is a decision tree Ty of depth
polylog(n), querying x and deciding whether (x, y) ∈ Rn.

We introduce the five total search problems we will use in this note. The
first is Pigeon, which defines the class PPPdt (see page 5 for what this means).

Pigeonn. An instance x ∈ {0, 1}(n+1) logn encodes a function F : [n+ 1] → [n].
A solution is a pair (i, j) ∈ [n+ 1]× [n+ 1] with i ∕= j and F (i) = F (j).

The next two problems Sink-of-Linen and LeftPigeon are equivalent to
each other, as we will show, and both define the class PPADSdt (see page 5).

Sink-of-Linen. An instance x ∈ {0, 1}2n logn encodes functions S : [n] → [n]
and P : [n] → [n], together describing a directed graph on [n] which has an edge
(u, v) if S(u) = v and P (v) = u. The out-degree of u is 1 if P (S(u)) = u
and otherwise 0. The in-degree of v is 1 if S(P (v)) = v and otherwise 0. The
solutions are

• 1 if it is not a source, that is, if it has out-degree 0 or in-degree 1

• Any u ∈ [2, n] if it is a sink, that is, has in-degree 1 and out degree 0.

LeftPigeonn. An instance x ∈ {0, 1}(2n+1) log(n+1) encodes two functions
F : [n + 1] → [n] and G : [n] → [n + 1]. A solution is any u ∈ [n + 1] with
G(F (u)) ∕= u.

LeftPigeon was introduced in [BJ12]. The reason for the name is that G
is a kind of left-inverse of F . It is total because if F (u) = F (u′) for distinct
u, u′, then either u or u′ is a solution to LeftPigeonn.

The last two problems Sink-of-DAG and Iter are equivalent to each other,
as we will show, and both define the class PLSdt (see page 5).

Sink-of-DAGn. An instance x ∈ {0, 1}n2 log(n+1) encodes a function
S : [n]× [n] → ([n] ∪ {null}), which describes a directed graph on a grid with
edges from (i, j) to (i+ 1, S(i, j)) (unless S(i, j) = null). A solution is a pair in
[n]× [n] of one of the forms

• (1, 1) if S(1, 1) = null

• (n, j) if S(n, j) ∕= null

3

• (i, j) with i < n if S(i, j) ∕= null and S(i+ 1, S(i, j)) = null.

Itern. An instance x ∈ {0, 1}n logn encodes a function S : [n] → [n] such that
S(u) ≥ u for every u ∈ [n]. A solution is

• 0 if S(1) = 1

• u ∈ [n] if S(u) > u and S(S(u)) = S(u).

Iter was used to characterize PLS in [BOM04]. It was introduced as the
iteration principle in [BK94], in the context of bounded arithmetic.

2.2 Reductions
Definition 2.3. Let Rm ⊆ {0, 1}r × OR and Sn ⊆ {0, 1}s × OS be two total
search problems. We say that Rm is reducible to Sn if there exists a pair of
functions f : {0, 1}r → {0, 1}s and g : {0, 1}r ×OS → OR satisfying

(f(x), y′) ∈ Sn −→ (x, g(x, y′)) ∈ Rm

for all x ∈ {0, 1}r and all y′ ∈ OS. The reduction has depth d if

• Each bit of f(x) is computable by a depth-d decision tree

• For every y′ ∈ OS, the function x +→ g(x, y′) is computable by a depth-d
decision tree.

If Rm is reducible to Sn by a depth-d reduction we write Rm ≤d Sn.
If we omit the subscript and write simply e.g. Rn2 ≤ Sn, this means that the

depth of the reduction is polylogarithmic in n, or in some other size parameter
which will be clear from the context.

Proposition 2.4. If Rm ≤d Sn and Sn ≤e Tℓ, then Rn ≤d(e+1) Tℓ.

Definition 2.5. Let R and S be total search problems in TFNPdt. We say R
is reducible to S if for each n there is m ∈ qpoly(n) such that Rn is reducible
to Sm by a polylog(n)-depth reduction. We write this as R ≤ S. If also S ≤ R
we say R and S are equivalent.

Note that R ≤ S is equivalent to the condition Sdt(R) = polylog(n) of [GHJ+22],
which expresses that for all n there are reductions Rn ≤d Sm for some m, d sat-
isfying logm+ d ≤ polylog(n).

The next proposition recalls some reductions between search problems. The
proofs of these are essentially folklore and are postponed to Appendix A.

Proposition 2.6. LeftPigeon is equivalent to Sink-of-Line. Iter is equiv-
alent to Sink-of-DAG. In particular, Sink-of-DAGn ≤ Itern2 .

We can now define the three subclasses of TFNPdt that we focus on.

4

• PPPdt := {R ∈ TFNPdt : R ≤ Pigeon}

• PPADSdt := {R ∈ TFNPdt : R ≤ Sink-of-Line}

• PLSdt := {R ∈ TFNPdt : R ≤ Sink-of-DAG}

We say that Pigeon is complete for PPPdt, and so on. By Propositions 2.6
and 2.4, these classes do not change if we replace Sink-of-Line with LeftPigeon
or replace Sink-of-DAG with Iter.

3 From Pigeon to LeftPigeon

The main technical contribution of this paper is the following lemma.

Lemma 3.1. If Iterm ≤d Pigeonn then Iterm ≤e LeftPigeonn, where
e ∈ poly(d, logm, log n).

Before proving the lemma we show how it implies our main result.

Lemma 3.2. If PLSdt ⊆ PPPdt then PLSdt ⊆ PPADSdt.

Proof. Suppose that PLSdt ⊆ PPPdt, that is, for all n there exist m ∈ qpoly(n)
with the property that Itern ≤ Pigeonm. By Lemma 3.1 it follows that
Itern ≤ LeftPigeonm. Since Iter is complete for PLSdt and LeftPigeon
is complete for PPADSdt this means that PLSdt ⊆ PPADSdt.

An immediate corollary of this and Proposition 1.1 is that PLSdt ∕⊆ PPPdt.
However we will give a more self-contained proof of this separation in the next
section, deriving it from a proof-complexity lower bound in [GHJ+22].

The proof of Lemma 3.1 takes up the rest of this section. Fix n,m, d. We
will need to talk a lot about partial instances of Iterm of a certain kind, so we
introduce a special word for them:

Definition 3.3. A structure α is a partial function S : [m] → [m] satisfying
S(v) ≥ v wherever S(v) is defined. If S(v) = v we say there is a loop at v.
If S(v) > v we say there is a jump at v. The set of solutions of α is defined by:

• 0 is a solution, if there is a loop at 1

• v ∈ [m] is a solution if it is a jump leading to a loop, that is, if S(v) > v
and S(S(v)) = S(v).

A total structure is then the same as an instance of Iterm, modulo issues of
coding. We could have used simply S as the name for a structure, rather than
distinguishing S and α, but we find it useful to have the symbol S as a common
language when talking about different structures.

Given two structures α and β, we say α extends β if β ⊆ α. We say that α,β
are consistent if they agree on the value of S(v) wherever they both define it.
Note that the presence or absence of a solution does not appear in the definition
of consistency.

5

Suppose (f, g) is the depth-d reduction of Iterm to Pigeonn. That is,
for any instance x ∈ {0, 1}m log(m) of Iterm, the string f(x) is an instance of
Pigeonn and defines a map F : [n+1] → [n], such that from any collision in F
we can use g to recover a solution to our instance x of Iterm.

For each pigeon p ∈ [n + 1] the value of F (p) is coded by at most log n
bits of f(x), and each bit of f(x) can be computed by a depth-d tree querying
the bits of x. So from log n of these we can construct a single tree Tp which
computes F (p). However, we construct Tp so that it does not query individual
bits of x, but rather makes queries of the form “S(v) = ?” for v ∈ [m], and is
guaranteed an answer u ∈ [m] with u ≥ v. This tree has depth at most d log n,
that is, along every branch at most d log n queries of this form are made. Each
branch is labelled with a hole h ∈ [n], and each branch can be identified with
the structure given by the queries and replies along it.

Definition 3.4 (i-safe). For i ≥ 0, a structure α is i-safe if

1. α does not contain a solution, and

2. S(w) is undefined in α at at least i many points w > v, where v is rightmost
end of a jump. That is, v is the maximum S(u) such that u is a jump, or
v is 1 if α contains no jumps.

Lemma 3.5. Let α be a structure. The following are equivalent:

1. α is i-safe

2. for any adaptive sequence of queries to S of length i or less, there are
replies by which we can extend α such that at the end α still contains no
solution.

Proof. To show that 1. implies 2. it is enough to show that, if α is i-safe for
i ≥ 1, then we can extend α with a reply to any query, such that the result is
(i− 1)-safe. Suppose “S(u) = ?” is queried. If u is the end of a jump, or u = 1,
reply with the smallest w > u such that S(w) is not defined; otherwise reply
with u, forming a loop at u.

To show that 2. implies 1., consider the sequence of queries that starts at
the rightmost end v of a jump and make i queries S(v), S(S(v)), . . . , Si(v).
The replies must be an increasing sequence of i points in [m]. None of these
points is a jump in α, since we start at v, and none of them is a loop in α, as
otherwise extending α with these replies would add a solution. Hence we have
found i undefined points above v.

Recall that we use the notation T [h] to mean the set of branches in T la-
belled h, and T [¬h] to mean the set of branches not labelled h.

Lemma 3.6. Suppose β ∈ Tp[h] and β′ ∈ Tp′ [h], for a hole h and distinct
pigeons p ∕= p′. Then no (d+ 2)-safe structure extends both β and β′.

6

Proof. Suppose for a contradiction that there is a (d+2)-safe structure α extend-
ing both β and β′. Then, by the construction of the trees Tp, in any instance x
of Iterm extending α, the pigeons p and p′ both go to hole h in the corre-
sponding instance f(x) of Pigeonn. Thus g(x, (p, p′)) is a solution of x, which
can be computed by making at most d queries to bits of x. However since α
is (d + 2)-safe we can construct such an x in which the output of g is not a
solution, by using Lemma 3.5 to extend α with d queries to compute g, then
two more queries to check whether the output of g is a solution (that is, a jump
followed by a loop), and finally extending the resulting structure arbitrarily to
an instance x of Iterm.

We now extend each tree Tp to a tree T ∗
p by carrying out the following steps

for each branch β in Tp.

1. Let v1 < v2 < · · · < vℓ be the elements of the set {S(u) : u a jump in β}.

2. At the end of β, first query S(vi) for i = 1, . . . , ℓ− 1.

3. Then, for the largest element vℓ query in turn S(vℓ), S(S(vℓ)), . . . , Sd+3(vℓ).
If β had no jumps, start these queries at 1 instead of vℓ.

4. If the resulting branch is not (d+2)-safe, label it with a symbol UNSAFE.
Otherwise label it with the same hole h as β was labelled with.

We call the trees T ∗
p extended pigeon trees. They have depth at most t :=

2d log n+ d+ 3.

Lemma 3.7. Suppose β∗
1 ∈ T ∗

p [h] and β∗
2 ∈ T ∗

p′ [h], for a hole h and distinct
pigeons p ∕= p′. Then β∗

1 and β∗
2 , considered as structures, are inconsistent.

Proof. Let β1 and β2 be the branches in the original trees Tp1
and Tp2

which
β∗
1 and β∗

2 are extensions of. Since β∗
1 and β∗

2 are labelled with a hole h rather
than with UNSAFE, all four structures β1, β2, β∗

1 and β∗
2 are (d+ 2)-safe.

Suppose for a contradiction that β∗
1 and β∗

2 are consistent. Then so are β1

and β2. But, by Lemma 3.6, the structure β1 ∪ β2 is not (d+ 2)-safe. We now
consider two cases, based on which part of Definition 3.4 of “(d + 2)-safe” fails
for β1 ∪ β2.

Part 1 fails. There is a solution in β1 ∪ β2. The solution cannot be a loop
at 1, since this would be present in either β1 or β2, which are both (d + 2)-
safe. Therefore it is some u ∈ [m] such that S(u) = v > u and S(v) = v in
β1 ∪ β2. Neither β1 nor β2 contains both parts of this solution so, without loss
of generality, in β1 there is a jump S(u) = v and S is undefined at v, while in β2

there is a loop S(v) = v and S is undefined at u. Thus in β∗
1 , by construction,

we queried S(v), since v is the end of a jump. We cannot have S(v) = v in β∗
1 ,

since this would make u a solution and β∗
1 is (d+ 2)-safe. Therefore β∗

1 and β2

disagree about S(v) and are inconsistent.
Part 2 fails. Let v be the rightmost end of a jump in β1 ∪ β2, or 1 if there is

no jump. Without loss of generality, the same is true of v in β1. By the failure

7

of part 2., the instance β1 ∪ β2 is undefined at at most d + 1 points w in the
interval [v + 1,m], and by choice of v is a loop everywhere it is defined in this
interval. On the other hand β∗

1 by construction contains a sequence of d + 3
jumps, starting at v; we know these are jumps, and never hit a loop, because
β∗
1 contains no solution. Thus there must be some point in the interval, the end

of one of the first d + 2 jumps, which is a jump in β∗
1 but is a loop in β1 ∪ β2.

Thus β∗
1 and β2 are inconsistent.

From now on we closely follow the construction in the proof of [BCE+98,
Lemma 4]. For each hole h we define a hole tree Uh, which is intended to find
out which pigeon, if any, goes to h.

Let Bh be the set of all branches labelled h from among all extended pigeon
trees T ∗

p . These branches all have length at most t and are pairwise inconsistent,
automatically if they are from the same tree and by Lemma 3.7 if they are from
different trees. We will define Uh by describing the queries made while processing
Bh in several steps, at each step removing some elements and shrinking others.
After the ith step, Bh will consist of pairwise inconsistent structures, each of
size at most t− i.

Take the first branch β in Bh and query S(v) on every v in its domain. Let
ρ1 be the structure formed by the replies. For each branch γ in Bh, if γ is
inconsistent with ρ1 we remove γ from Bh. If γ is consistent with ρ1, we let V
be the set of points on which γ and β were both defined. V is non-empty, as γ
and β are inconsistent (or identical). Furthermore ρ1 is defined on all v ∈ V ,
since it has the same domain as β. Therefore ρ1 agrees with γ on all v ∈ V ,
since they are consistent. We shrink γ by removing all points in V from its
domain.

After this first step Bh contains a set of (shrunken) branches, all consistent
with ρ1 and all of length at most t− 1. Furthermore they are still inconsistent
with each other, since we only removed edges consistent with ρ1. Thus we may
repeat this step, taking the first nonempty branch β in the new Bh, querying
S(v) for each v in its domain, getting some replies ρ2, and again for every branch
remaining in Bh either removing or shrinking it; and so on.

After at most t steps, and thus at most t2 queries, we will have exhausted Bh

and built a structure ρ1ρ2 . . . ρt which, for every branch in the original Bh, either
extends it or it is inconsistent with it. If it is inconsistent with all branches in Bh

we output the symbol NONE. If it extends a branch then it extends at most one
(since all branches in Bh are inconsistent with each other), and we output the
pigeon whose tree that one branch came from. This completes the construction
of Uh, and implies the following proposition.

Proposition 3.8. For a pigeon p ∈ [n+ 1] and a hole h ∈ [n], suppose β ∈ T ∗
p

and ρ ∈ Uh are consistent with each other, and β is labelled h. Then ρ is
labelled p.

We can now define a reduction of Iterm to LeftPigeonn, that is, a pair
of functions (f ′, g′), computed suitably by trees, such that

(f ′(x), y) ∈ LeftPigeonn −→ (x, g′(x, y)) ∈ Iterm.

8

To define the instance f ′(x) of LeftPigeonn we need to specify functions
F : [n+ 1] → [n] and G : [n] → [n+ 1].

We define F (p) to be the hole computed by T ∗
p , or to be an arbitrary value,

say 1, if we get a branch in T ∗
p labelled UNSAFE. We define G(h) to be the

pigeon computed by Uh, or to be an arbitrary value, say 1, if we get a branch
in Uh labelled NONE. Note that to compute F (p) takes at most t queries to S,
so to compute a bit of f ′(x) that corresponds to a bit of F (p) takes at most
t logm queries to the bits of x. The calculation for G is similar.

For the function g′ translating solutions to solutions, suppose p is a solution
to this instance of LeftPigeonn, that is, F (p) = h for some h such that
G(h) = p′ with p′ ∕= p. Let β and ρ be the branches computed in T ∗

p and Uh.
The branch ρ is labelled with p′, or possibly with NONE, but is not labelled
with p. It follows that β cannot be labelled with h, or this would contradict
Proposition 3.8. Therefore β is labelled with UNSAFE and thus is not (d+ 2)-
safe. It follows by Lemma 3.5 that we can find a solution to the instance x ⊇ β
of Iterm by making d+ 2 more queries to S.

This completes the proof of Lemma 3.1.

4 Bounds on Sherali-Adams derivations

4.1 Sherali-Adams
Sherali-Adams is a semi-algebraic proof system in which proofs are polynomial
identities of a specific form. It is based on the linear programming hierarchy of
Sherali-Adams [SA90] and it can be used to prove the unsatisfiability of a system
of polynomial equations and inequalities. The definition of the proof system is
modelled upon the definition of the Nullstellensatz proof system introduced
in [BIK+94]. In this paper we only need Sherali-Adams to refute systems of
equations and hence we give the definition only for this restricted case.

Let Z = z1, . . . , zm, z̄1, . . . , z̄m be formal variables, which we call literals,
where the intended meaning of z̄i is 1− zi. Let p and p1, . . . , pℓ be polynomials
in Q[Z]. A Sherali-Adams derivation, or SA derivation, of p from p1, . . . , pℓ
is a particular way to certify that p(α) ≥ 0 for every assignment α ∈ {0, 1}m
satisfying the equations p1 = 0, . . . , pℓ = 0 (and satisfying α(z̄i) = 1− α(zi) for
every i). This is done via writing an algebraic identity of the form

p = q +
!

j∈[ℓ]

rjpj +
!

i∈[m]

si(z
2
i − zi) +

!

i∈[m]

s′i(zi + z̄i − 1), (1)

where all polynomials q, ri, si, and s′i are in Q[Z] and moreover all the coeffi-
cients of the polynomial q are non-negative. The polynomials z2i − zi, zi+ z̄i−1
are called Boolean axioms1.

1Notice that we do not need the polynomials z̄2i − z̄i among the Boolean axioms since

z̄2i − z̄i = (z2i − zi) + (zi + z̄i − 1)(z̄i − zi).

9

Formally, the derivation is the right-hand side of equation (1) considered
as a formal sum, and it is a derivation of p if this sum simplifies to p after
cancellation and rearrangement of terms. The degree of the derivation is the
degree of the right-hand side before cancellation, that is, the maximum of deg(q),
deg(rj) + deg(pj), deg(si) + 2 and deg(s′i) + 1. The size of the derivation is
the combined size of all polynomials q, ri, si, s′i and pj , where the size of a
polynomial is the number of monomials in it. The magnitude of a proof is the
maximum of the magnitudes of these polynomials, where the magnitude of a
polynomial is the absolute value of its largest coefficient. Note that this is well-
behaved as long as we assume that a polynomial cannot have the same monomial
appearing twice (even with different coefficients) and that we do not care here
about how, for example, a coefficient is presented as a rational number.

We may also call (1) a derivation of the inequality p ≥ 0, and think of the
system of polynomials pi we start with as equations pi = 0 rather than simply as
polynomials. An SA refutation is a derivation of −1 ≥ 0, which is in particular
a certificate that this system of equations is unsatisfiable over the assignments
α we consider.

An algebraic identity like the one in (1), after applying the substitution
replacing every variable x̄i with 1− xi, is called an SA-derivation without twin
variables (here we also no longer need the rightmost sum).

SA can be used as a system for refuting unsatifisfiable systems of polynomial
equations. It is a small step from this to using it to refute unsatisfiable propo-
sitional CNF formulas, via the natural encoding of a clause

"
i∈I zi ∨

"
j∈J ¬zj

as the polynomial equation
#

i∈I z̄i
#

j∈J zj = 0. As a system for refuting CNFs
SA is sound, in that no satisfiable CNF has a refutation, and complete, in that
every unsatisfiable CNF has a refutation (but the refutation may be very big).

4.2 The left pigeonhole principle
We show that the left pigeonhole principle, or LPHP, a formula associated with
LeftPigeon, can be refuted efficiently in Sherali-Adams. We will use this in
the next section to show essentially that any problem in PPADSdt can be proved
total efficiently in Sherali-Adams.

Let &T be a sequence T1, . . . , Tn+1 of binary decision trees, one for each pigeon
p ∈ [n + 1], querying Boolean variables from z1, . . . , zm and outputting holes
in [n]. Let &U be a similar sequence U1, . . . , Un of trees, one for each hole h ∈ [n],
outputting pigeons in [n+ 1]. In these trees, outgoing edges from a query to zi
are labelled with literals zi or z̄i rather than zi = 1 or zi = 0. We identify a
branch b in a tree T with the set of literals occurring along the branch, or with
the monomial formed by this set.

We could introduce LPHPn as a CNF, but it is more convenient to treat it
from the beginning as a set of monomials.

Definition 4.1. The formula LPHPn(&T , &U) consists of, for each pigeon p and
hole h, for each b ∈ Tp[h] and c ∈ Uh[¬p] such that b and c are consistent, the
monomial bc.

10

We will call these monomials bc the axioms of LPHPn. Recall that each
should be semantically understood as the equation bc = 0, expressing that some
literal in b or c is 0. The formula expresses that if F : [n + 1] → [n] and
G : [n] → [n+ 1] are the functions specified by &T and &U , then G(F (p)) = p for
all p ∈ [n+1]. To confirm that it expresses what it is supposed to, let p be any
pigeon and suppose we have an assignment x to Z in which p goes to h, that is,
some branch b in Tp[h] evaluates to 1. Then the axioms of LPHPn guarantee
that every branch c in Uh[¬p] evaluates to 0, so the (unique) branch of Uh which
evaluates to 1 in x must be labelled p. Note that LPHPn is not symmetrical
between pigeons and holes.

A useful fact about any tree T querying Boolean variables is that its branches
sum to 1 modulo the Boolean axioms. Precisely, if T has depth d, then by
induction on d we get that

$
b∈T b = 1+qT where qT is a “remainder” polynomial

of the form
$

i∈[m] si(zi + z̄i − 1), of degree d and of magnitude and size at
most O(2d). In particular, we always have

!

b∈T [h]

b+
!

b∈T [¬h]

b = 1 + qT . (2)

Another useful fact is that given inconsistent monomials b and c, then bc is 0
modulo the Boolean axioms. Precisely, bc = mziz̄i for some monomial m and
variable zi and thus

bc = mzi(zi + z̄i − 1)−m(z2i − zi) . (3)

Lemma 4.2. LPHPn(&T , &U) has an SA refutation of degree 2d and magnitude
and size poly(n, 2d), where d is a bound on the depth of all trees in &T , &U .

Proof. Let us introduce the notation
$

S for the sum of a set S of branches.
We define degree-d polynomials

F (p, h) :=
!

Tp[h] and G(h, p) :=
!

Uh[p].

Then F (p, h) evaluates to 1 precisely if F (p) = h, and G(h, p) evaluates to 1 pre-
cisely if G(h) = p. Thus the LPHPn axioms semantically imply that F (p, h) ≤
G(h, p). We show that this inequality has a small SA derivation.

Shortening F (p, h) to F and G(h, p) to G, we have

F − FG = F (1−
!

Uh[p]) = F (
!

Uh[¬p]− qUh
)

= (
!

Tp[h])(
!

Uh[¬p])− FqUh

where we used (2) for the second equality. We similarly have

G− FG = G(1−
!

Tp[h]) = (
!

Uh[p])(
!

Tp[¬h])−GqTp .

Thus

G− F = (
!

Uh[p])(
!

Tp[¬h])− (
!

Tp[h])(
!

Uh[¬p]) + FqUh
−GqTp .

11

This has the form of an SA derivation of G(h, p)− F (p, h) ≥ 0, as follows. The
first product expands out to a sum of monomials with positive coefficients. Any
term in the second product has the form bc for b ∈ Tp[h] and c ∈ Uh[¬p], where
either b and c are consistent, in which case bc is an axiom of LPHPn, or they are
inconsistent, in which case bc is a combination of Boolean axioms by (3). Finally
FqUh

and GqTp are combinations of Boolean axioms. The whole expression on
the right has degree at most 2d. Let us call it J(p, h).

Now consider the expression
!

h∈[n]

!

p∈[n+1]

G(h, p)−
!

p∈[n+1]

!

h∈[n]

F (p, h).

On the one hand, this is equal to
$

p∈[n+1]

$
h∈[n] J(p, h). On the other hand,$

p∈[n+1] G(h, p) is now the sum
$

Uh of all branches of Uh, and thus equals
1+ qUh

by (2), and similarly
$

h∈[n] F (p, h) = 1+ qTp . Combining all the above
and observing that

$
h∈[n] 1−

$
p∈[n+1] 1 = −1, we get

−1 =
!

p∈[n+1]

!

h∈[n]

J(p, h)−
!

h∈[n]

qUh
+

!

p∈[n+1]

qTp

which is the desired SA refutation.

4.3 PLSdt ∕⊆ PPPdt

In Section 3 we showed how PLSdt ∕⊆ PPPdt follows from the result PLSdt ∕⊆
PPADSdt of [GHJ+22] together with our main technical Lemma 3.1. In this
section we give a more self-contained argument, deriving PLSdt ∕⊆ PPPdt directly
from the proof-complexity lower-bound shown in [GHJ+22] on SA refutations
of a CNF formula associated with Sink-of-DAG. Our proof is similar to that
in [GHJ+22], except that we use LPHP where they use a formula associated with
Sink-of-Line. Similar TFNP separations based on proof-complexity bounds are
shown in [BCE+98, BOM04].

Definition 4.3. Suppose (Rn)n∈N is a search problem in TFNPdt, where for
each n we have Rn ⊆ {0, 1}mn ×On, with (x, y) ∈ Rn decided by a decision tree
Ty of depth polylog(n), querying bits of x. The associated CNF is

CNF(Rn) :=
%

y∈On

%

b∈Ty [1]

¬b ,

where ¬b is the clause saying that “some edge in b is false”. Precisely, CNF(Rn)
uses literals from Z (as x is reserved as a name for a binary string). We let B be
the conjunction of {zi : xi = 1 is an edge in b} and {z̄i : xi = 0 is an edge in b}
and take ¬b to be the negation of B.

By the bounds in the definition of a TFNPdt problem, CNF(Rn) has qpoly(n)
many variables and width polylog(n). It expresses that the instance x ∈

12

{0, 1}mn given by the variables Z is such that Ty(x) = 0 for all y ∈ On; in
other words, that it has no solution. Since Rn is total, it is unsatisfiable.

As before, we will also treat this CNF as a system of polynomial equa-
tions. Let CNF∗(Rn) be this system of equations after making the substi-
tution z̄i +→ (1− zi) for each literal zi. Now we can state the lower bound
from [GHJ+22] that we will use.

Proposition 4.4 ([GHJ+22, Lemma 3]). Any refutation of CNF∗(Sink-of-DAGn2)
in SA without twin variables in degree no(1) must have magnitude 2Ω(n).

Corollary 4.5. Any refutation of CNF(Sink-of-DAGn2) in SA (with twin
variables) in degree polylog(n) must have magnitude 2Ω(n).

Proof. For each polynomial r in such a refutation, let r∗ be r after applying all
substitutions z̄i +→ (1− zi) and simplifying the result so that the polynomial is
again written as a sum of monomials, none of which occurs twice, even with dif-
ferent coefficients. This operation does not increase degree, but it may increase
magnitude; for example if r is zi − z̄i then r∗ is 2zi − 1. However it increases
the magnitude by at most 2deg(r), since this is the number of monomials in r
that can contribute to a single monomial in r∗.

We introduce one more search problem, that of finding a falsified clause in
an unsatisfiable CNF, given an assignment. This is essentially the inverse of the
operation CNF(Rn) above that turns a search problem into a CNF.

Definition 4.6 (Search(ϕn)). Let ϕn be an unsatisfiable CNF C1 ∧ · · · ∧ Cℓ,
over mn variables. The falsified clause search problem for ϕ is the relation
Search(ϕn) ⊆ {0, 1}mn × [ℓ] where an instance x ∈ {0, 1}mn encodes a Boolean
assignment to the variables of ϕ, and (x, i) ∈ Search(ϕn) if and only if the clause
Ci is falsified by x.

Proposition 4.7. Suppose (Rn)n∈N is a search problem in TFNPdt. Then
Search(CNF(Rn)) ≤ Rn for each n.

Proof. For x an instance of Search(CNF(Rn)), suppose (x, y) ∈ Rn. We run the
tree Ty verifying (x, y) ∈ Rn to find which branch is true in x, and this tells us
which clause of CNF(Rn) is false.

The next result is an alternative way to prove the result in [GHJ+22, Lemma 7].
That is, if a problem is in PPADSdt then its CNF has small SA refutations.

Lemma 4.8. Suppose ϕ is a r-CNF and Search(ϕ) ≤d LeftPigeonm, where
r, d ∈ polylog(m). Then ϕ has a SA refutation of degree polylog(m) and mag-
nitude qpoly(m).

Before proving the lemma we derive our main result.

Restated Theorem 1.2. PLSdt ∕⊆ PPPdt.

13

Proof. Suppose that PLSdt ⊆ PPPdt. Then in particular Iter ≤ Pigeon.
Thus for all n there exists m ∈ qpoly(n) such that Itern4 ≤ Pigeonm. By
Lemma 3.1, in fact Itern4 ≤ LeftPigeonm.

Proposition 2.6 tells us that Sink-of-DAGn2 ≤ Itern4 , which implies that
Sink-of-DAGn2 ≤ LeftPigeonm. Thus by Proposition 4.7 we conclude

Search(CNF(Sink-of-DAGn2)) ≤ LeftPigeonm.

We can now apply Lemma 4.8, which tells us that CNF(Sink-of-DAGn2) has
polylog(n)-degree, qpoly(n)-magnitude SA refutations. This contradicts Corol-
lary 4.5.

We now prove Lemma 4.8.

Proof of Lemma 4.8. Suppose ϕ is an r-CNF such that Search(ϕ) is reducible
to LeftPigeonm by some depth-d reduction (f, g). We will use this reduction,
together with the SA refutation of LPHPm in Lemma 4.2, to construct an
efficient SA refutation of ϕ.

For any assignment x to the variables of ϕ, the reduction gives us f(x)
defining an instance F , G of LeftPigeonm. To find F (p) we need to read log n
bits of f(x), each computed by a tree of depth d querying x. Therefore we can
compute F (p) by such a tree of depth d logm. Let Tp be this tree, and let Uh

be a similar tree computing G(h).
We extend Tp (but not Uh) as follows. At the end of each branch in Tp we

run the tree for g(x, p), getting some output i naming a clause Ci of ϕ. Then we
query x at the location of every variable in Ci. At the end we output whichever
hole labelled the original branch in Tp, so the tree still computes F (p). Its depth
is now at most e := d logm+ d+ r ∈ polylog(m).

We make a final change to each Tp and Uh, which is to replace the labels
xi = 1 or xi = 0 on the edges with literals zi or z̄i. By Lemma 4.2 the formula
LPHPm(&T , &U) has an SA refutation of degree 2e and magnitude poly(m, 2e).
We will show that every axiom of LPHPm(&T , &U) is a weakening of some clause
of ϕ. The lemma follows immediately.

Consider any such axiom. It has the form bc = 0, for b ∈ Tp[h] and
c ∈ Uh[¬p], where b and c are consistent. Let x be any total assignment setting
bc = 1. Since Tp computes F (p) and Uh computes G(h) it follows that, in the
corresponding instance f(x) of LeftPigeonm, we have F (p) = h but G(h) ∕= p.
Thus p is a solution of f(x), so g(p, x) is the index of a clause Ci in ϕ which
is false in x. Suppose we are evaluating the tree Tp on x. We go along the
branch b. By construction as we go we query every literal in Ci, and since Ci is
false in x, all these literals are recorded as false along b. Thus b is a weakening
of the monomial corresponding to the clause Ci.

14

References
[BCE+98] Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and

Toniann Pitassi. The relative complexity of NP search problems.
Journal of Computer and System Sciences, 57(1):3 – 19, 1998.

[BIK+94] P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, and P. Pudlak.
Lower bounds on Hilbert’s Nullstellensatz and propositional proofs.
In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 794–806, 1994.

[BJ12] Samuel R. Buss and Alan S. Johnson. Propositional proofs and re-
ductions between NP search problems. Annals of Pure and Applied
Logic, 163(9):1163–1182, 2012.

[BK94] Samuel R. Buss and Jan Krajíček. An application of Boolean com-
plexity to separation problems in bounded arithmetic. Proceedings
of the London Mathematical Society, 3(1):1–21, 1994.

[BOM04] J. Buresh-Oppenheim and T. Morioka. Relativized NP search prob-
lems and propositional proof systems. In Proceedings. 19th IEEE
Annual Conference on Computational Complexity, pages 54–67, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[GHJ+22] Mika Göös, Alexandros Hollender, Siddhartha Jain, Gilbert Maystre,
William Pires, Robert Robere, and Ran Tao. Separations in proof
complexity and TFNP. CoRR, abs/2205.02168, 2022.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yan-
nakakis. How easy is local search? Journal of Computer and System
Sciences, 37(1):79–100, 1988.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total func-
tions, existence theorems and computational complexity. Theoretical
Computer Science, 81(2):317–324, 1991.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument
and other inefficient proofs of existence. Journal of Computer and
System Sciences, 48(3):498–532, 1994.

[SA90] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations
between the continuous and convex hull representations for zero-one
programming problems. SIAM Journal on Discrete Mathematics,
3(3):411–430, 1990.

A Postponed reductions
Proposition A.1. Itern ≤ Sink-of-DAGn ≤ Itern2 .

15

Proof. Given an instance x of Itern, that is, a function S : [n] → [n] with
S(i) ≥ i, we define an instance for Sink-of-DAGn as the following function
S′ : [n]× [n] → ([n] ∪ {null}):

S′(i, j) =

&
S(j) if j ≥ i and S(j) > j

null otherwise .

The function f maps x to an encoding of S′. To describe the function g mapping
solutions of f(x) to solutions of x, we consider the three kinds of solutions to
Sink-of-DAGn. If (1, 1) is a solution with S′(1, 1) = null, then S(1) = 1 and 0 is
a solution of the Itern instance. If (n, j) is a solution with S′(n, j) ∕= null, then
j = n and S(n) > n, which is impossible. Lastly if (i, j) is a solution with i < n,
S′(i, j) ∕= null and S′(i + 1, S′(i, j)) = null, then j ≥ i and S′(i, j) = S(j) > j,
but either S(j) < i+ 1, which is impossible, or S(S(j)) = S(j), in which case j
is a solution of the Itern instance.

For the other direction, given an instance of Sink-of-DAGn, that is, a
function S : [n]× [n] → ([n] ∪ {null}), we use the mapping (i, j) +→ n(i− 1) + j
that maps the rows of grid [n]× [n] into successive blocks along a single row [n2].
We define an instance of Itern2 as the following function S′ : [n2] → [n2]:

S′(u) =

&
S(i, j) if u = n(i− 1) + j and S(i, j) ∕= null

u otherwise .

If u is a solution of the Itern2 instance then the corresponding (i, j) is a solution
of the Sink-of-DAGn instance.

Proposition A.2. LeftPigeonn ≤ Sink-of-Linen+1 ≤ LeftPigeonn.

Proof. For the purpose of these reductions we will make a cosmetic change to
LeftPigeonn, defining the set of holes to be {2, . . . , n + 1} rather than [n].
The set of pigeons remains as [n+ 1].

The reduction of LeftPigeonn to Sink-of-Linen+1 is trivial. Given an in-
stance F , G of LeftPigeonn, we define an instance S, P of Sink-of-Linen+1

by S(u) = F (u) and P (u) = G(u) (and P (1) = 1). Suppose u is a solu-
tion to this new instance. If G(F (u)) ∕= u then u is already a solution to the
LeftPigeonn instance. Otherwise, u has out-degree 1. Since u is a solution to
Sink-of-Linen+1, it must be that u = 1 and 1 has in-degree 1, and in particular
F (w) = 1 for some w. But this is impossible.

For the other direction, given an instance S, P of Sink-of-Linen+1, we put

F (u) =

&
S(u) if P (S(u)) = u

u otherwise
G(v) =

&
P (v) if S(P (v)) = v

v otherwise.

Formally F should only take values in the interval {2, . . . , n+ 1}, to match our
definition of LeftPigeonn. Note that if F (u) = 1 then either S(u) = 1 and
P (1) = u, so 1 has in-degree 1, or u = 1 and P (S(1)) ∕= 1, so 1 has out-degree 0.

16

In either case, 1 is a solution to the Sink-of-Linen+1 instance. To meet the
formal requirement replace F with F ′, defined to be 2 wherever F is 1.

Suppose we have a solution to this instance of LeftPigeonn. That is,
u, v, u′ with u′ ∕= u and F ′(u) = v, G(v) = u′. Then either 1 is a solution
to the Sink-of-Linen+1 instance, or we can forget about F ′ and assume we
have F (u) = v.

We must have P (S(u)) ∕= u, since otherwise we are in the first case of
the definition of F (u), with v = S(u) and thus P (v) = u. This implies that
S(P (v)) = v, so we are in the first case of the definition of G(v), with G(v) =
P (v) = u, contradicting that G(v) = u′ ∕= u.

It follows from P (S(u)) ∕= u that u has out-degree 0 and that v = u, so
G(u) = G(v) = u′ ∕= u. Thus we must be in the first case of the definition
of G(u), which means that u has in-degree 1. Therefore we have found a sink.

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

