
More Verifier Efficient Interactive Protocols for Bounded

Space

Joshua Cook*

October 25, 2022

Abstract

Let TISP[T, S], BPTISP[T, S], NTISP[T, S] and coNTISP[T, S] be the set of
languages recognized by deterministic, randomized, nondeterministic, and co-nondeter-
ministic algorithms, respectively, running in time T and space S. Let ITIME[TV , TP]
be the set of languages recognized by an interactive protocol where the verifier runs in
time TV and the prover runs in time TP .

For S = Ω(log(n)) and T constructible in time log(T)S + n, we prove:

TISP[T, S] ⊆ITIME[Õ(log(T)S + n), 2O(S)] (1)

BPTISP[T, S] ⊆ITIME[Õ(log(T)S + n), 2O(S)] (2)

NTISP[T, S] ⊆ITIME[Õ(log(T)2S + n), 2O(S)] (3)

coNTISP[T, S] ⊆ITIME[Õ(log(T)2S + n), 2O(S)]. (4)

The best prior verifier time is from Shamir [Sha92; Lun+90]:

TISP[T, S] ⊆ITIME[Õ(log(T)(S + n)), 2O(log(T)(S+n))].

Our prover is faster, and our verifier is faster when S = o(n).
The best prior prover time uses ideas from Goldwasser, Kalai, and Rothblum

[GKR15]:

NTISP[T, S] ⊆ ITIME[Õ(log(T)S2 + n), 2O(S)].

Our verifier is faster when log(T) = o(S), and for deterministic algorithms.
To our knowledge, no previous interactive protocol for TISP simultaneously has

the same verifier time and prover time as ours. In our opinion, our protocol is also
simpler than previous protocols.

*jac22855@utexas.edu. Department of Computer Science, UT Austin. This material is based upon work
supported by the National Science Foundation under grant numbers 1705028 and 2200956.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 93 (2022)

Contents

1 Introduction 3
1.1 Results . 3
1.2 Related Work . 4

2 Proof Idea 6
2.1 Computation Graphs . 8
2.2 Arithmetization and Low Degree Extensions 8
2.3 Sum Check . 9
2.4 Product Reduction . 10
2.5 Protocol For Deterministic Algorithms . 10
2.6 Number Of Paths Mod Prime . 10
2.7 Randomized and Non Deterministic Algorithms 11

3 Preliminaries 11
3.1 Complexity Classes . 11
3.2 Prime Testing and PRG . 13
3.3 Sum Check . 14
3.4 Multilinear Extensions . 15

4 Efficient IP for TISP 16
4.1 Product Reduction . 17
4.2 Matrix Squared To Matrix Reduction . 18
4.3 Arithmetization . 20
4.4 Number of Paths Mod a Prime . 24
4.5 Protocol for TISP . 26

5 Efficient IP for BPTISP 26

6 Efficient IP for NTISP 27

7 Open Problems 30

2

1 Introduction

One of the most celebrated results of computer science is the proof that IP = PSPACE
[Sha92; Lun+90]. Any language computable in polynomial space can be verified in poly-
nomial time by a verifier with access to randomness and an untrusted, computationally
unbounded prover.

Interactive proofs have many applications, for example proving circuit lower bounds for
MA/1 [San07], and forNQP [MW18]. More verifier time efficient PCPs [MC22] improve the
results of [San07]. Even pseudo random generators [CT22] use interactive proofs [GKR15].

The previous best verifier time in an interactive protocol for an algorithm running in
time T and space S was by Shamir [Sha92], whose verifier runs in time Õ(log(T)S) for
S = Ω(n). We improve this result to apply to any log(T)S = Ω(n). Our prover is also more
efficient. For instance, if S =

√
n and T = 2

√
n, then we show that

TISP[2
√
n,
√
n] ⊆ ITIME[Õ(n), 2O(

√
n)],

while Shamir only gives

TISP[2
√
n,
√
n] ⊆ ITIME[Õ(n1.5), 2O(n1.5)].

That is, our verifier only requires time Õ(n), but Shamir’s requires time Õ(n1.5). Our prover

only requires time 2O(
√
n), but Shamir’s requires time 2O(n1.5).

The previous best prover time in an interactive protocol for an algorithm running in time
T and space S was by Goldwasser, Kalai and Rothblum [GKR15], whose prover runs in a
similar time to ours, but whose verifier requires time log(T)S2. We improve the verifier time
by making the quadratic dependence on S linear. If T = poly(S), our protocol improves
the verifier time from Õ(S2) to Õ(S). If T = 2O(S), our protocol improves the verifier time
from Õ(S3) to Õ(S2).

Our results prove a more direct, more efficient, and (in our opinion) simpler protocol
than that given in [Sha92] using sum check [Lun+90]. We use a reduction to matrix ex-
ponentiation instead of quantified Boolean formulas, and a direct arithmetization of the
algorithm instead of a Boolean formula. We then apply this protocol to the special cases of
deterministic, randomized, and nondeterministic algorithms.

1.1 Results

Let ITIME[TV , TP] be the class of languages computed by an interactive protocol where the
verifier runs in time TV and the prover runs in time TP . Similarly, let ITIME1[TV , TP] be
the same with perfect completeness. Let TISP[T, S] be the class of languages computable
in simultaneous time T and space S. Our first result is:

Theorem 1 (Efficient Interactive Protocol For TISP). Let S and T be computable in time
Õ(log(T)S + n) with S = Ω(log(n)). Then

TISP[T, S] ⊆ ITIME1[Õ(log(T)S + n), 2O(S)].

Our protocol has several other desirable properties. The verifier only needs space Õ(S).
This protocol is also public coin, non adaptive, and unambiguous (as described in [RRR16]).
This protocol can also verify an O(log(T)S + n) bit output, not just membership in a
language.

3

We note that L ∈ ITIME1[TV , TP] implies that L ∈ SPACE[O(TV)], since a prover
can find an optimal prover strategy in a space efficient way. Thus our dependence on S is
essentially optimal. It is open whether one can remove the log(T) factor.

Using Nisan’s PRG for bounded space [Nis90], we extend Theorem 1 to get a similar re-
sult for randomized bounded space algorithms. Let BPTISP[T, S] be the class of languages
computable in simultaneous randomized time T and space S.

Theorem 2 (Efficient Interactive Protocol For BPTISP). Let S and T be computable in
time Õ(log(T)S + n) with S = Ω(log(n)). Then

BPTISP[T, S] ⊆ ITIME[Õ(log(T)S + n), 2O(S)].

If one tries to use Nisan’s PRG with Shamir’s protocol, you increase the input size to
log(T)S, which gives a time Õ(log(T)2S + log(T)n) verifier. One can also use Saks and
Zhou [SZ99] to reduce BPSPACE[S] to SPACE[S1.5], then apply an IP, but this also
only gives a time S3 verifier.

The protocol used for Theorem 1 internally counts the number of accepting paths in a
nondeterministic algorithm, modulo a prime. By appropriately sampling a prime, we can
get an efficient interactive protocol for NTISP.

Theorem 3 (Efficient Interactive Protocol For NTISP). Let S and T be computable in
time Õ(log(T)2S + n) with S = Ω(log(n)). Then

NTISP[T, S] ∪ coNTISP[T, S] ⊆ ITIME1[Õ(log(T)2S + n), 2O(S)].

While NSPACE[O(S)] = coNSPACE[O(S)] [Imm88; Sze88], the same result is not
known for time bounded computation. So the case for NTISP and coNTISP are both
interesting and potentially different.

1.2 Related Work

This work builds on techniques used by Lund, Fortnow, Karloff and Nisan [Lun+90] to prove
that #P ∈ IP and extended by Shamir [Sha92] to show that PSPACE = IP. Shamir used
Savitch’s theorem [Sav70] to reduce space bounded computation to a quantified Boolean
formula, and then gave a sum check similar to [Lun+90] to verify it.

Although it was not shown, the bounded space variation of Shamir’s protocol (given at
the end of [Sha92]) can be implemented time efficiently for the verifier. 1

Theorem 4 (Shamir’s Protocol). Let S and T be time Õ(log(T)(S + n)) computable with
S = Ω(log(n)). Then

TISP[T, S] ⊆ ITIME1[Õ(log(T)(S + n)), 2O(log(T)(S+n))].

One can extend Shamir’s protocol to nondeterministic algorithms using other ideas in
the same paper to get

Theorem 5 (Shamir’s Protocol for Nondeterministic Algorithms). Let S and T be time
Õ(log(T)2(S + n)) computable with S = Ω(log(n)). Then

NTISP[T, S] ⊆ ITIME1[Õ(log(T)2(S + n)), 2O(log(T)(S+n))].
1Shamir’s reduction from general quantified Boolean formulas is not this efficient. The low space or time

for the verifier uses the specific form given by the reduction from bounded space to a quantified Boolean
formula.

4

It is not clear from Shamir’s work how to get an efficient prover, or how to handle the
case where S = o(n).

Shen [She92] gave a highly influential variation of Shamir’s proof that is frequently taught
(for instance [AB09]). Shen’s result gives a less efficient verifier. Meir gave a proof that
IP = PSPACE [Mei13] which uses a different kind of sum check with a different kind of
code. Or Meir’s approach also does not improve the verifier time, but introduces useful
techniques [RZR22].

Sum check was also used by Babai, Fortnow and Lund [BFL90] to prove that MIP =
NEXP. This line of work is foundational to many PCPs [AS98; Aro+98].

In a very influential paper, Goldwasser, Kalai and Rothblum gave doubly efficient inter-
active proofs for depth bounded computation [GKR15]. Doubly efficient proofs are proofs
where the prover runs in time polynomial in the algorithm it wishes to prove. GKR is very
efficient for uniform, low depth algorithms, like those in NC, both for the verifier and the
prover.

Theorem 6 (GKR For Depth). Let L be a language computed by a family of O(log(w))-
space uniform Boolean circuits of width w and depth d where w and d are computable in
time (n+ d)polylog(w). Then

L ∈ ITIME1[(n+ d)polylog(w),poly(wd)].

A space S and a time T nondeterministic algorithm, A, can be converted to a width
2O(S) and depth O(log(T)S) circuit, C, using repeated squaring on the adjacency matrix of
A’s computation graph. Using Theorem 6 with this circuit we get a protocol for bounded
space. The circuit is very simple, so we believe2 the polylog(w) = poly(S) term can be
made Õ(S). This gives:

Theorem 7 (GKR for NSPACE). Let S and T be time Õ(log(T)S2+n) computable with
S = Ω(log(n)). Then

NTISP[T, S] ∪ coNTISP[T, S] ⊆ ITIME1[Õ(log(T)S2 + n), 2O(S)].

The GKR protocol, as well as ours, only have polynomial time provers when T = 2Ω(S).
Reingold, Rothblum and Rothblum [RRR16] gave a doubly efficient protocol for any time
T with constantly many rounds of communication, but is only efficient for the verifier when
T is polynomial.

Theorem 8 (RRR Protocol). For any constant δ > 0, and integers S and T computable in
time TO(δ)S2, and T = Ω(n) we have

TISP[T, S] ⊆ ITIME1[O(npolylog(T) + TO(δ)S2), T 1+O(δ)poly(S)].

Further the prover only sends
(
1
δ

)O(1/δ)
messages to the verifier.

The specific, S2 power in the verifier time comes from a note by Goldreich [Gol18],
confirmed by the authors of [RRR16]. Our result gives a more efficient verifier (log(T)S vs
T δS2), but a less efficient prover (2O(S) vs poly(T)). We note the result in the [RRR16] pa-
per allows sub constant δ, but is complex and can not give a verifier with time poly(log(T)S).

There has been work on other notions of verifier efficiency in interactive protocols. Gold-
wasser, Gutfreund, Healy, Kaufman and Rothblum [Gol+07] studied the computation depth

2Achieving this claimed performance with GKR is not trivial, but we believe it can be done.

5

required by verifiers. They showed that for any k round interactive proof, there is a k+O(1)
round interactive proof where the computation of the verifier during each round is in NC0.
But the total time to evaluate the new verifier (or the total verifier circuit size) is greater
than the verifier time of the original protocol.

Here is a table that compares different protocols.

TISP BPTISP NTISP Prover

Shamir log(T)(S + n) log(T)2S + log(T)n log(T)2(S + n) 2O(log(T)(S+n))

GKR log(T)S2 + n log(T)S2 + n log(T)S2 + n 2O(S)

RRR TO(δ)S2 + n TO(δ)S2 + n - T 1+O(δ)SO(1)

Ours log(T)S + n log(T)S + n log(T)2S + n 2O(S)

Table 1: Comparison of different protocol times, with polylogarithmic factors ommited.
The first three columns are verifier times for three special cases and the last column is
prover time, which is the same for all three cases. RRR does not work for nondeterministic
algorithms.

Thaler [Tha13] gave a sum check for matrices that is very similar to the one we use. For
matrices A, B and C, he gave a protocol for proving AB = C. In fact, he briefly describes the
same interactive protocol as Lemma 28 with the suggestion to use it on repeated squaring.
But Thaler never applied this result to space bounded computations.

2 Proof Idea

Our protocol uses sum check [Lun+90], but unlike Shamir, Shen, and Meir [Sha92; She92;
Mei13], we do not reduce to a quantified Boolean formula first. Instead, we reduce to matrix
exponentiation. This gives us IP = PSPACE from sum check with fewer steps.

Our protocol improves over Shamir’s in two important ways. One, it gives better results
when S = o(n). This is due to a better arithmetization of RAM algorithms directly, allowing
us to leave the input out of the algorithm’s state. This more efficient arithmetization is the
primary reason we use the RAM model.

The other is a more efficient prover. This comes from a different reduction to matrix
exponentiation instead of quantified formulas. Our reductions gives a more efficient prover
algorithm. We will now describe our protocol.

For an algorithm A running on input x in time T and space S, we want to know whether
A(x) = 1, or if A(x) = 0. In an interactive proof, there is a computationally bounded
verifier, V , who wants to know A(x), and an unbounded, untrusted prover, P , who wants
to convince V of a value for A(x), but may lie. Verifier V can ask many questions to prover
P and P answers instantly. If V was deterministic, this would just be NP , so V has access
to randomness that P cannot predict.

Our proof is based on low degree polynomials over some field F of size poly(S). For
simplicity, we explain the proof for deterministic algorithms first. We separate our main
proof into several ideas:

1. Computation Graph and Matrix Exponentiation.

Let M be the adjacency matrix of the computation graph of algorithm A on input
x. That is, Ma,b = 1 if and only if when A on input x is in state a, it transitions to

6

state b in one step. See that (MT)a,b = 1 (where MT is M to the T th power, not the
transpose of M) if and only if A(x) is in state b after T steps when starting in state a.

2. Arithmetization.

For any field F, a verifier can efficiently compute the multilinear extension ofM , which
we denote M̂ : FS ×FS → F. That is, M̂ is multilinear and for a, b ∈ {0, 1}S , we have

M̂(a, b) =Ma,b. See Definition 25.

The goal is to give a protocol for reducing a claim that α = M̂2(a, b), to a claim that

α′ = M̂(a′, b′). If we can construct such a protocol, applying it log(T) times reduces

our claim that MT ends in an accept state to a claim about M̂ , which the verifier can
compute itself.

3. Sum check.

We can write M̂2, the multilinear extension of M2, in terms of M̂ as:

M̂2(a, b) =
∑

c∈{0,1}S

M̂(a, c)M̂(c, b).

Using the sum check protocol from [Lun+90], we can reduce a claim that

α = M̂2(a, b)

for some α ∈ F and a, b ∈ FS to the claim that

β = M̂(a, c)M̂(c, b)

for some β ∈ F and a random c ∈ FS .

4. Product reduction.

There is a trick used in [GKR15] that reduces the claim that

β = M̂(a, c)M̂(c, b)

to the claim that
α′ = M̂(a′, b′)

for some α′ ∈ F and a′, b′ ∈ FS .

5. Repeated square rooting.

Applying the above protocols log(T) times, we reduce a claim that MT has a one in
the transition from the start state to the end state, to a claim that

α′ = M̂(a′, b′)

which the verifier can calculate and check itself.

Now we explain each of these ideas in a little more detail, before showing how to use
this protocol for randomized or nondeterministic algorithms.

7

2.1 Computation Graphs

For an algorithm A running in space S on input x, its computation graph G has as vertices
S bit states and as edges the state transitions for A on input x. That is, there is an edge
from state a to b if and only if when A on input x is in state a, after one step, A is in state
b. Let M be the adjacency matrix of G.

If A runs in T steps starting in state a, and b is the accept state, then A accepts if and
only if (MT)a,b is non zero. Since we consider nondeterministic algorithms, (MT)a,b will
contain the number of computation paths ending in b. Since we work in a finite field with
characteristic p, entry (MT)a,b will contain the number of computation paths mod p.

2.2 Arithmetization and Low Degree Extensions

For this strategy to work, the verifier needs to be able to compute some error correcting code
of the computation, to compare against the claim of the prover. This will be a multilinear
extension of M .

A key difference between our arithmetization and Shamir’s is that our model of com-
putation is the RAM model, and Shamir’s is a single tape Turing machine. So inherent
to Shamir’s protocol, the state must include the input, but ours does not. This is why we
get better results for S = o(n). Further, by arithemtizing the transition function directly
instead of reducing to a formula first, we are able to get the stronger multilinear extension
instead of just a low degree extension.

We say that ϕ̂ : FS × FS → F is the multilinear extension of ϕ : {0, 1} × {0, 1} → F if ϕ̂
has degree at most 1 in each variable and for all a, b ∈ {0, 1}S ,

ϕ(a, b) = ϕ̂(a, b).

Note multilinear extensions are unique (see Lemma 24). If M is a 2S × 2S matrix with

Ma,b = ϕ(a, b), then we define the multilinear extension of M , denoted M̂ : FS × FS → F,
by M̂(a, b) = ϕ̂(a, b). See Definition 25.

In general, it may be hard to compute low degree extensions. For general functions,
it requires reading the whole size 22S truth table! But many classes of functions have low
degree extensions that are easy to compute. Specifically, it is easy to compute the low degree
extension of the state transition function of RAM algorithms.

Lemma 9 (Algorithm Arithmetization). Let A be a nondeterministic RAM algorithm run-
ning in space S and time T on length n inputs, and x be an input with |x| = n. Define M to
be the 2S × 2S matrix such that for any two states a, b ∈ {0, 1}S, we have Ma,b = 1 if when
A is running on input x is in state a, then b as a valid transition, and Ma,b = 0 otherwise.

Then we can compute the multilinear extension of M (M̂ in Definition 25) in time
Õ(log(|F|)(n+ S)).

The idea is to sum over all instructions the multilinear polynomial identifying that in-
struction being the current instruction, times the multilinear polynomial of that instruction
being performed. Since algorithm A is constant, there are only constantly many instructions
we could be on. It is easy to compute multilinear extensions of register operations, and easy
to compute multilinear extensions of loading or storing from main memory. See Section 4.3
for details on how to perform the arithmetization.

8

2.3 Sum Check

The key part of our protocol is the sum check from LFKN [Lun+90]. Suppose we have
a degree d polynomial over S variables: q : FS → F. Then sum check allows an efficient
verifier with access to randomness to verify the sum of q on all Boolean inputs with the help
of an untrusted prover.

Lemma 10 (Sum Check Protocol). Let S be an integer, d be an integer, p be a prime, and
F be a field with characteristic p where |F| ≥ d + 1. Suppose q : FS → F be a polynomial
with degree at most d in each variable individually. For a multi-linear polynomial, d = 1.

Then there is a interactive protocol with verifier V and prover P such that on input
α ∈ F behaves in the following way:

Completeness: If

α =
∑

a∈{0,1}S

q(a),

then when V interacts with P , verifier V outputs some a′ ∈ FS and α′ ∈ F such that

α′ = q(a′).

Soundness: If

α ̸=
∑

a∈{0,1}S

q(a),

then for any prover P ′, when V interacts with P ′, with probability at most dS
|F| will V

output some a′ ∈ FS and α′ ∈ F such that

α′ = q(a′).

Verifier Time: V runs in time Õ(log(|F|))O(Sd).

Verifier Space: V runs in space O(log(|F|)(S + d)).

Prover Time: P runs in time Õ(log(|F|))poly(d)2S using O(d2S) oracle queries to q.

The idea of sum check is to choose the elements of a′ one at a time, and ask about
univariate polynomials that are partial sums: filled in with the chosen parts of a′, leaving
one variable unfixed, and summed over the rest of the variables. These are error correcting
codes, and one is calculated from the next, which can be checked. Due to Schwartz–Zippel,
with high probability, if the claimed equality is wrong, each of these low degree polynomials
from the proof must be wrong to not be caught by the verifier. See Section 3.3 for a proof.

Now our protocol wants to reduce a claim that α = M̂2(a, b) to a claim that α′ =

M̂2(a′, b′). When we inspect M̂2(a, b), we see that

M̂2(a, b) =
∑

c∈{0,1}S

M̂(a, c)M̂(c, a).

Then considering the degree 2 in each variable polynomial q(c) = M̂(a, c)M̂(c, a), sum check

reduces the claim that α = M̂2(a, b) to the claim that

β = M̂(a, c)M̂(c, a)

for some c. This is very nearly what we want.

9

2.4 Product Reduction

Now that we have a claim that β = M̂(a, c)M̂(c, a), our verifier needs to check this. One

obvious idea is to ask the prover for both α1 = M̂(a, c), and α2 = M̂(c, a). Then the
prover could prove both of these statements separately. But this would double the number

of claims the verifier must check every time we reduce M̂2 to M̂ . Since we have to do this
log(T) times, the verifier would need to check T claims! So this cannot be done.

Instead, the verifier needs to reduce to a claim about M̂ at a single point to avoid this.
The idea is to take a line, ψ : F → (FS ×FS), that passes through both (a, c) and (c, b), and

ask the prover for M̂ ◦ ψ. The function M̂ ◦ ψ will have degree 2S, since M̂ is multilinear.
[GKR15] uses a similar trick.

Now M̂ ◦ ψ(0) = M̂(a, c) and M̂ ◦ ψ(1) = M̂(c, a). If the β ̸= M̂(a, c)M̂(c, a), then the

prover cannot be honest about M̂ ◦ ψ, or the verifier will reject. Now the verifier chooses a
d ∈ F, and wants to know α′ = M̂(ψ(d)). If the prover was honest, then this will give us that

at (a′, b′) = ψ(d), we have α′ = M̂(a′, b′). But if the prover lied, then by Schwartz–Zippel,

with high probability, α′ ̸= M̂(a′, b′). See Lemma 26 for more details.
This is the only step the prover is asked to provide a polynomial with degree more than

2. This step is somewhat analogous to what the for-all quantifiers do in Shamir’s proof,
except that our degree doesn’t increase in the way Shamir’s does. So we don’t need degree
reduction or require some simplified form.

2.5 Protocol For Deterministic Algorithms

Using sum check and product reduction, there is a protocol that takes a claim that α =

M̂2(a, b) to the claim that α′ = M̂(a′, b′). Note that this protocol works with ANY matrix
M , not just the M from the adjacency matrix of the computation graph.

In particular, our prover can start by claiming that for start state a, and end state b,

that M̂T (a, b) = 1. The verifier itself can confirm that a is the start state, and b is an

accept, or reject state. If A is deterministic, then A accepts x if and only M̂T (a, b) = 1.
Using the matrix squared to matrix protocol, there is a protocol to reduce the claim that

M̂T (a, b) = 1 to the claim that M̂T/2(a1, b1) = α1. Then to the claim that M̂T/4(a2, b2) =

α2. After repeating this t = log(T) times, we reduce to the claim that M̂(at, bt) = αt. But
this can be directly checked by the verifier.

2.6 Number Of Paths Mod Prime

Now consider if A is not a deterministic algorithm, but a nondeterministic algorithm. What
does this change? Before, for every state in a, there was exactly one state b so thatMa,b = 1.
In a nondeterministic algorithm, there may be many such b. Thus MT

a,b is actually the
number of computation paths of length T from state a to state b. Or if b is the unique
accept state and a the start state, the number of proofs of A(x).

But we are not working with M over the integers, we are working with M over a finite
field, F. So if F has characteristic p, the entries in MT only contain the number of paths
of length T , mod p. The protocol works for ANY matrix M , and any original claim that

α = M̂T (a, b), regardless of whether α is 0, 1, or anything else in F. As long as we can

calculate M̂ efficiently, this protocol works. The arithmetization of RAM algorithms works
just as well for nondeterministic RAM algorithms.

10

2.7 Randomized and Non Deterministic Algorithms

To handle randomized algorithms, we use Nisan’s pseudo random generator (PRG) for
bounded space computation. This PRG has seed length O(log(T)S) and can be calculated
in time poly(S) and space O(S). After choosing a seed, this PRG gives us a length n +
O(log(T)S) input for a deterministic algorithm running in space O(S) and time poly(T)
which agrees with the randomized algorithm with high probability. Now we can run our
deterministic protocol on this input.

To handle nondeterministic algorithms, we choose a random prime p. The protocol works
if p does not divide the number of accepting computation paths. Let Q be the set of primes
between m = 100T and 2m = 200T . If w ≤ 2T is the number of accepting paths, then the
number of prime factors of w in Q is at most T

log(m) . By the prime number theorem, for

large enough T , set Q should contain at least 0.5m
ln(m) elements. If we can randomly sample

one p from Q and w ̸= 0, the probability w mod p = 0 is at most 1
10 .

3 Preliminaries

We use RAM algorithms with registers and a program as our model of computation. This is
used for our efficient arithmetization. But the verifier is very simple and can be implemented
efficiently in other common models of computation, like multi-tape Turing machines. We
may assume that on accepting or rejecting, our machines instantly clear their states to
some canonical accept or reject state. We also assume that S = Ω(log(n)), otherwise our
algorithm can’t read its entire input.

We think of our algorithms as defining invalid and valid state transitions. For determin-
istic algorithms, every state has exactly one valid transition. Then a deterministic algorithm
accepts if and only if there is some sequence of memory states such that every transition is
valid, the first is the start state, and the final is the accept state.

3.1 Complexity Classes

We use Õ to suppress poly logarithmic factors.

Definition 11 (Õ). For f, g : N → N, we say f(n) = Õ(g(n)) if and only if for some
constant k, f(n) = O(g(n) log(g(n))k).

We focus on languages with simultaneous time and space constraints.

Definition 12 (TISP). For functions T, S : N → N, we say language L is in TISP[T, S]
if there is an algorithm, A, running in time T and space S that recognizes L.

Since we are working with space bounded computation, we define access to randomness
through a read once input.

Definition 13 (Read Once Input). We say algorithm A uses read once input W if there is
a special instruction in A that, for all i, on the ith time being called loads the ith symbol of
W into a register.

If A uses an input x and a read once input W , we define A(x,W) as the output of A
when run with input x and read once input W .

Note if A runs in time T , we can upper bound the size of W as |W | ≤ T .
Now we define BPTISP.

11

Definition 14 (BPTISP). Let L be a language and A be an algorithm with read once
input. If for all x we have Pr[A(x, U) = 1x∈L] ≥ 2

3 , where U is the uniform distribution,
then we say A is a randomized algorithm for L.

If for T, S : N → N algorithm A runs in time T and space S, then L ∈ BPTISP[T, S].

We also define NTISP and coNTISP using a similar instruction as Definition 13. This
allows nondeterministic algorithms to have multiple valid transitions. We must be careful
though as the number of witnesses using a witness definition may be different from the
number of accepting paths. For instance, if the entire witness is not always read.

Definition 15 (Nondeterministic Algorithms). We say algorithm A uses nondeterminism if
there is a special instruction in A such that when it is called, there is a valid state transitions
to 2 program states. Such an A is called a nondeterministic algorithm.

We call a sequence of memory states such that every pair of adjacent states is a valid
state transition for algorithm A on input x a path in the computation graph of A on x, or
a computation path.

We call a path in the computation graph of A on input x an “accepting path” if it starts
at the start state and ends at the accept state. Then we say A accepts x if and only if there
is an accepting path.

Now we can define NTISP and coNTISP in an analogues way to TISP but for non-
deterministic algorithms.

Definition 16 (NTISP and coNTISP). Let L be a language, and A be a nondeterministic
algorithm running such that x ∈ L if and only if A accepts x.

If for some T, S : N → N nondeterministic algorithm A runs in time T and space S, then
L ∈ NTISP[T, S]. We say L ∈ coNTISP[T, S] if the complement of L is in NTISP[T, S].

In an interactive protocol for some function f , we want our verifier to output f(x) with
high probability if the prover is honest, and outputs the wrong answer with low probability
regardless of the prover. Our verifier can either reject or output some value. We use double
sided completeness, since that is what we prove.

Let us formally define the interaction of a protocol.

Definition 17 (Interaction Between Verifier and Prover (Int)). Let Σ be a alphabet and ⊥
be a symbol not in Σ. Let V be a RAM machine with access to randomness, that can make
oracle queries, and V outputs one of Σ ∪ {⊥}. Let P ′ be any function, and x be an input.

Now we define the interaction of V and P ′ on input x. For all i, define yi to be V ’s
ith oracle query given its first i − 1 queries were answered with z1, . . . , zi−1 and define
zi = P (x, y1, . . . , yi).

Define the output of V when interacting with P ′, Int(V, P, x), as the output of V on
input x when its oracle queries are answered by z1, z2,

Now we define interactive time.

Definition 18 (Interactive Time (ITIME)). Let Σ be an alphabet. If for function f :
{0, 1}∗ → Σ, soundness s ∈ [0, 1], completeness c ∈ [0, 1], verifier V and prover P we have

Completeness: Pr[Int(V, P, x) = f(x)] ≥ c, and

Soundness: for any function P ′ we have Pr[Int(V, P ′, x) /∈ {f(x),⊥}] ≤ s,

12

then we say V and P are an interactive protocol for f with soundness s and completeness
c.

If in addition L is a language with f(x) = 1x∈L, verifier V runs in time TV , soundness
s < 1

3 , and completeness c > 2
3 , then

L ∈ ITIME[TV].

If P is also computable by an algorithm running in time TP , we say

L ∈ ITIME[TV , TP].

Finally, if completeness c = 1, then we say the protocol has perfect completeness and

L ∈ ITIME1[TV , TP].

3.2 Prime Testing and PRG

For primality, we use the Rabin-Miller [Mil75; Rab80] primality test. It is well known using
fast algorithms for multiplication that we can get the following result:

Theorem 19 (Miller-Rabin Primality Test). There is a randomized algorithm, A, that given
an n bit number a and ϵ > 0 runs in time Õ(log(1ϵ)n

2) such that if a is prime, A outputs 1,
and if a is not prime, A outputs 1 with probability at most ϵ.

Then by choosing n = O(log(m)) random numbers between m and 2m, by the prime
number theorem, we select a prime number with high probability.

Theorem 20 (Miller-Rabin Probably Prime Generation). There is a randomized algorithm,
A, that when given a number m (with n = log(m)) and ϵ > 0, algorithm A runs in time
Õ(polylog(1ϵ)n

3) and with probability 1− ϵ outputs a uniform prime between m and 2m.

We use Nisan’s PRG for space bounded computation [Nis90]. First, we define a PRG.

Definition 21 (Pseudo Random Generator (PRG)). For integers n and s, we say that a
function G : {0, 1}s → {0, 1}n, is a Pseudo Random Generator (PRG) with seed length s
that ϵ fools function F : {0, 1}n → {0.1} if

|E[F (G(Us))− F (Un)]| ≤ ϵ

where Us and Un are the uniform distribution over s and n bits respectively.
Specifically, we say G fools randomized algorithm A if for all x we have

|E[A(x,G(Us))−A(x, Un)]| ≤ ϵ.

Then Nisan gives an efficient PRG which fools algorithms that use small space.

Theorem 22 (Nisan’s PRG). For any space S, time T and error ϵ > 0, there exists a
PRG with seed length O(S log(T/ϵ)) computed by an algorithm running in time poly(S)
and space O(S) that ϵ fools randomized algorithms running in time T and space S.

13

3.3 Sum Check

Sum check [Lun+90] takes a claim that for some α ∈ F,

α =
∑

s∈{0,1}S

q(s),

and reduces it to the claim that for some β ∈ F and for some random r ∈ FS

β = q(r).

Lemma 10 (Sum Check Protocol). Let S be an integer, d be an integer, p be a prime, and
F be a field with characteristic p where |F| ≥ d + 1. Suppose q : FS → F be a polynomial
with degree at most d in each variable individually. For a multi-linear polynomial, d = 1.

Then there is a interactive protocol with verifier V and prover P such that on input
α ∈ F behaves in the following way:

Completeness: If

α =
∑

a∈{0,1}S

q(a),

then when V interacts with P , verifier V outputs some a′ ∈ FS and α′ ∈ F such that

α′ = q(a′).

Soundness: If

α ̸=
∑

a∈{0,1}S

q(a),

then for any prover P ′, when V interacts with P ′, with probability at most dS
|F| will V

output some a′ ∈ FS and α′ ∈ F such that

α′ = q(a′).

Verifier Time: V runs in time Õ(log(|F|))O(Sd).

Verifier Space: V runs in space O(log(|F|)(S + d)).

Prover Time: P runs in time Õ(log(|F|))poly(d)2S using O(d2S) oracle queries to q.

Sketch. The idea is to choose the random field elements for a′ one at a time and consider
the partial sums. Let α0 = α. For every i, we want to reduce a claim that

αi =
∑

a∈{0,1}S−i

p(a′1, . . . , a
′
i, a),

to a claim that
αi+1 =

∑
a∈{0,1}S−(i+1)

p(a′1, . . . , a
′
i, a

′
i+1, a).

The observation is that if we define gi : F → F by

gi(x) =
∑

a∈{0,1}S−(i+1)

p(a′1, . . . , a
′
i, x, a)

14

then gi is a low degree polynomial. The verifier asks for gi, and checks if gi(0)+ gi(1) = αi.
If it doesn’t, the verifier knows the prover lied and rejects. Otherwise, it chooses ri+1 and
sets αi+1 = gi(ri+1).

If gi is correct, then

αi+1 =
∑

s′∈{0,1}S−(i+1)

p(r1, . . . , ri, ri+1, s
′).

Thus for an honest prover, this equality will hold for every i, and the completeness holds.
Now if at any step

αi ̸=
∑

s∈{0,1}S−i

p(r1, . . . , ri, s),

the prover cannot provide the correct gi, or the verifier will see that gi(0) + gi(1) ̸= αi and
reject. But if gi is incorrect, by Schwartz-Zippel, the probability the provided gi agrees with
the true gi is

d
|F| . If they disagree at ri+1, then

αi+1 ̸=
∑

s′∈{0,1}S−(i+1)

p(r1, . . . , ri, ri+1, s
′).

So by a union bound, the probability the verifier ever has a correct αi is at most Sd
|F| .

This is a commonly taught protocol, and can be found in “Computational Complexity:
A Modern Approach” [AB09].

3.4 Multilinear Extensions

Sum check is generally used on Boolean functions. So first the Boolean function must be
converted to a low degree polynomial, a technique broadly called arithmetization. Arithme-
tization is an important part of sum check [Lun+90]. Shamir [Sha92] arithmetized Boolean
formulas formulas. Boolean formulas of size C have a low degree extension of total degree
C. The idea is to rewrite every α ∧ β into α · β, every α ∨ β as α+ β − α · β and every ¬α
as 1− α.

This indeed gives a low degree polynomial for formulas, but we use a very strong type
of low degree polynomial: multilinear extensions.

Definition 23 (Multilinear Extension). For a field F, integer S and a function ϕ : {0, 1}S →
F, we define the multilinear extension of ϕ as the polynomial ϕ̂ : FS → F that is degree 1 in
any individual variable such that for all a ∈ {0, 1}S we have ϕ(a) = ϕ̂(a).

One useful property of multilinear extensions is that unlike low degree extensions, mul-
tilinear extensions are unique.

Lemma 24 (Multilinear Extension Exist and are Unique). For a field F, integer S and a

function ϕ : {0, 1}S → F, there exists ϕ̂ that is a multilinear extension of ϕ. Further, ϕ̂ is
unique.

Proof. We can define ϕ̂ with the following formula:

ϕ̂(a) =
∑

c∈{0,1}S

 ∏
i∈[S]

aici + (1− ai)(1− ci)

ϕ(c).

15

First, I show ϕ̂ is degree 1 in any given variable. Consider variable ai. For any c, variable
ai only appears in one term in the product, so these products are linear in variable ai. And
since ϕ̂ is the sum of linear functions in ai, ϕ̂ is a linear function of ai. So ϕ̂ is multilinear.

Now for any a ∈ {0, 1}S , for any c ∈ {0, 1}S , if c ̸= a, then for some i ∈ [S], we have

aici + (1 − ai)(1 − ci) = 0. So
(∏

i∈[S] aici + (1− ai)(1− ci)
)
= 0. If c = a, then for each

i ∈ [S] we have aici + (1− ai)(1− ci) = 1. Thus the only term in the sum that is non zero

is when a = c, which is equal to ϕ(c). Thus ϕ̂(a) = ϕ(a).

Therefore, ϕ̂ is a multilinear extension of ϕ.
We show ϕ̂ is unique with a counting argument. See that by the construction above each

ϕ : {0, 1}S → F has at least one multilinear extension, and every multilinear function is the
extension of at most one ϕ, namely the one it agrees with on binary inputs. Further, there

are |F|2S different such ϕ. So if any ϕ had multiple multilinear extensions, there would be

more than |F|2S multilinear functions.

Now I show there are only |F|2S multilinear functions. Any multilinear function can
be expanded to a sum of monomials. Each monomial has any of the S variables at most
once, since our function is linear in each variable. So for each monomial, for each variable,
either that variable is in that monomial, or not. So there are at most 2S monomials. The
coefficient on each of these monomials can be set to any element of F independently. So

there are at most |F|2S multilinear functions.
Thus no function ϕ can have more than one multilinear extension, or there would be

more than |F|2S multilinear functions.

For notation, we will also define the multilinear extension of matrices as the multilinear
extension of the function which indexes into that matrix.

Definition 25 (Matrix Multilinear Extension). Let S be an integer, F a field, and M be a
2S × 2S matrix containing elements in F. Identify an element x ∈ {0, 1}S with an element
of [2S] by interpreting x as a binary number.

Then define the multilinear extension of M to be the function M̂ : FS → FS → F such
that M̂ is multilinear and for a, b ∈ {0, 1}S we have M̂(a, b) =Ma,b. See that M̂ exists and
is unique by Lemma 24.

4 Efficient IP for TISP

We first give a protocol that outputs the number of accepting paths in a non deterministic
algorithm, mod a prime. This directly implies a protocol for UTISP (nondeterministic
algorithms with a unique proof), which contains TISP.

The main building block is a protocol to reduce a statement about a matrix squared to
a statement about the matrix itself. Then I show how to combine this with arithmetization
to give a protocol for bounded space.

The first step in the matrix squared to matrix reduction is the sum check protocol
Lemma 10. See Section 3.3 for details about the sum check protocol. This reduces a

statement about M̂2 to a statement about a product of M̂ .

16

4.1 Product Reduction

After the sum check, we need to reduce a statement about a product of M̂ evaluated at two
points to a statement about M̂ evaluated at one point.

Lemma 26 (Product Reduction). Let S be an integer, d be an integer, p be a prime, and F
be a field with characteristic p where |F| ≥ d+ 1. Suppose q : FS → F is a polynomial with
total degree at most d. For a multi-linear polynomial, d = S.

Then there is a interactive protocol with verifier V and prover P such that on input
α ∈ F, a, b ∈ FS behaves in the following way:

Completeness: If
α = q(a)q(b),

then when V interacts with P , verifier V outputs some a′ ∈ FS and α′ ∈ F such that

α′ = q(a′).

Soundness: If
α ̸= q(a)q(b),

then for any prover P ′, when V interacts with P ′, with probability at most d
|F| will V

output some a′ ∈ FS and α′ ∈ F such that

α′ = q(a′).

Verifier Time: V runs in time Õ(log(|F|))O(S + d).

Verifier Space: V runs in space O(log(|F|)(S + d)).

Prover Time: P runs in time Õ(log(|F|))Spoly(d) using d+ 1 oracle calls to q.

Proof. The idea is to choose a line, ψ : F → FS , such that ψ(0) = a and ψ(1) = b. That is,

ψ(c) = (1− c)a+ cb.

Then the verifier asks the prover for the degree d polynomial g : F → F defined by

g(c) = q(ψ(c)).

For such a g, see that
q(a)q(b) = g(0)g(1).

Let g′ be the degree d polynomial returned by the prover. If α ̸= g′(0)g′(1), the verifier
rejects. Otherwise, the verifier chooses a random c ∈ F, sets a′ = ψ(c) and sets α′ = g′(c).

Now I show this protocol has the desired properties.

Completeness: If
α = q(a)q(b),

an honest prover responds with g′ = g, so

α = q(a)q(b) = q(ψ(0))q(ψ(1)) = g(0)g(1) = g′(0)g′(1).

Then the verifier chooses c and

α′ = g′(c) = g(c) = q(ψ(c)) = q(a′).

17

Soundness: If
α ̸= q(a)q(b),

then if g′ = g, we have
g′(0)g′(1) = q(a)q(b) ̸= α,

so the verifier rejects. Otherwise, g ̸= g′, so with probability at most d
|F| does g(c) =

g′(c). If g(c) ̸= g′(c), then

α′ = g′(c) ̸= g(c) = q(ψ(c)) = q(a′).

Thus with probability at most d
|F| does q(a

′) = α′.

Verifier Time: V computes g′ three times, and each time this only takes O(d) field opera-
tions. V computes ψ(c) once, which takes O(S) field operations. Every field operation
takes Õ(log(|F|)) time.

Verifier Space: V only needs space for O(S) field elements which store a and a′, O(d) field
elements to store g′, and one field element to store c. This takes O(log(|F|)(S + d))
space to store.

Prover Time: P queries q at d+ 1 points to calculate q. These d+ 1 query locations can
be calculated in O(dS) field operations by evaluating ψ. Then the coefficients for g
can be calculated in time polynomial time in d using Gaussian elimination.

4.2 Matrix Squared To Matrix Reduction

Now for the main lemma used in our proof. First, we need a lemma that shows M̂2 can be
written as a simple function of M̂ .

Lemma 27 (M̂2 is a sum of products of M̂). Let S be an integer and F be a field. Suppose
M is a 2S × 2S matrix containing values in Fp. Then for any a, b ∈ FS,

M̂2(a, b) =
∑

c∈{0,1}S

M̂(a, c)M̂(c, b),

where M̂ and M̂2 is as defined in Definition 25.

Proof. For notation, define ψ by ψ(a, b) =
∑

c∈{0,1}S M̂(a, c)M̂(c, b) so that we are trying

to prove that M̂2 = ψ. By Lemma 24, M̂2 = ψ if and only if ψ is multilinear and they
agree on all binary inputs.

To see that ψ is multilinear, we show that for any c ∈ {0, 1}S we have M̂(a, c)M̂(c, b) is

multilinear as a function of a and b. But they are since M̂ is multilinear and the two calls
to M̂ don’t share any variables. Thus ψ is the sum of multilinear polynomials, and is thus
multilinear itself.

18

To see that ψ agrees with M̂2 on binary elements, take any a, b ∈ {0, 1}S . Then we have

M̂2(a, b) =(M2)a,b

=
∑

c∈{0,1}S

Ma,cMc,b

=
∑

c∈{0,1}S

M̂(a, c)M̂(c, b)

=ψ(a, b).

So ψ must be the unique multilinear polynomial agreeing with M̂2 on all binary inputs,

which is M̂2 itself.

Lemma 28 (Matrix Squared to Matrix Protocol). Let S be an integer, p be a prime, and F
be a field with characteristic p and |F| > 2S+1. Suppose M is a 2S × 2S matrix containing

values in Fp. Define M̂ as in Definition 25.
Then there is a interactive protocol with verifier V and prover P such that on input

a, b ∈ FS and α ∈ F behaves in the following way:

Completeness: If α = M̂2(a, b), then when V interacts with P , verifier V outputs some

a′, b′ ∈ FS and α′ ∈ F such that α′ = M̂(a′, b′).

Soundness: If α ̸= M̂2(a, b), then for any prover P ′, when V interacts with P ′, with

probability at most 4S
|F| will V output a′, b′ ∈ FS and α′ ∈ F such that α′ = M̂(a′, b′).

Verifier Time: V runs in time Õ(log(|F|))O(S).

Verifier Space: V runs in space O(log(|F|)S).

Prover Time: P runs in time Õ(log(|F|))2S when given oracle access to M̂ .

Proof. The protocol is a sum check Lemma 10 followed by a product reduction Lemma 26.
From Lemma 27, see that

α = M̂2(a, b) =
∑

c∈{0,1}S

M̂(a, c)M̂(c, b).

Then the first sum check either fails, or gives the claim that for some c ∈ FS , and β ∈ F
that

β = M̂(a, c)M̂(c, b).

Then the product reduction fails, or gives the claim that for some a′, b′ ∈ FS and α′ ∈ F
that

α′ = M̂(a′, b′).

Now we can check that this protocol gives the desired results.

Completeness: Suppose α = M̂2(a, b). Then by completeness of the sum check, β =

M̂(a, c)M̂(c, b). Then by completeness of the product reduction, α′ = M̂(a′, b′).

19

Soundness: Suppose α ̸= M̂2(a, b).

Let q : FS → FS be defined by q(c) = M̂(a, c)M̂(c, a). That is, q is the function sum
check is performed on. For any variable y, we know q is degree at most 2 in y as the
product of two degree one polynomials in y.

Then by soundness of sum check, with probability at most 2S
|F| will the verifier output

β and c such that β = M̂(a, c)M̂(c, b).

See that since M̂ is multilinear, M̂ has total degree at most 2S. If β ̸= M̂(a, c)M̂(c, b),
then by the soundness of the product reduction, with probability at most 2S

|F| does

α′ = M̂(a′, b′).

Thus by a union bound, with probability at most 4S
|F| does α

′ = M̂(a′, b′).

Verifier Time: V takes the time of the sum check, plus the time of product reduction,
which is Õ(log(|F|))O(S).

Verifier Space: V runs in space which is the max of the sum check and the product
reduction, which is O(log(|F|)S).

Prover Time: P runs in the max of the time for the sum check and the time for the
product reduction, which is Õ(log(|F|))2S when given oracle access to M̂ .

4.3 Arithmetization

To use this matrix square reduction, we need to actually compute the multilinear extension
of the adjacency matrix of the computation graph. The multilinear extensions of many
simple functions are efficient to calculate, for instance, the equality function.

Lemma 29 (Equality has Efficient Multilinear Extension). Let ϕ : {0, 1}S×{0, 1}S → {0, 1}
be the Boolean function such that ϕ(a, b) = 1 if and only if a = b.

Then for any field F, the multilinear extension of ϕ, denoted ϕ̂, can be calculated in time
Õ(log(|F|))O(S).

Proof. One can write the formula for ϕ̂ as

ϕ̂(a, b) =
∏
i∈[S]

(aibi + (1− ai)(1− bi)) .

To see the above equality, see that when a and b are restricted to binary variables, the right
hand side is one if and only if for every i we have ai = bi. Further, the right hand side is
degree one any individual ai or bi.

Further, it can be calculated in time Õ(log(|F|))O(S) since each field operation only
takes time Õ(log(|F|)), and as written, the function only needs O(S) field operations.

Remark 1. One can easily extend this to check equality of 3, 4, or any arbitrary number
of variables. Extra equality checks are often easy to add. To assert d = e in most formulas,
just replace every occurrence of d with de and (1 − d) with (1 − d)(1 − e). This works as
long as the formula can be rewritten as a sum of products where every product has either d
or 1− d exactly once.

This is true for equality, cyclic bit shifting, and even addition.

20

Similarly, inequality, or any constant bit shift can also be computed efficiently. For
a more complex example, we can efficiently compute the multilinear extension of binary
addition.

Lemma 30 (Binary Addition has Efficient Multilinear Extension). Let ϕS : {0, 1}S ×
{0, 1}S × {0, 1}S → {0, 1} be the Boolean function such that ϕ(a, b, c) = 1 if and only if
a+ b = c where addition is binary and we ignore the final carry.

Then for any field F, the multilinear extension of ϕS, ϕ̂S can be calculated in time
Õ(log(|F|))O(S).

Proof. We prove this recursively. Define ψS : {0, 1}S × {0, 1}S × {0, 1}S → {0, 1} as the
Boolean function such that ψ(a, b, c) = 1 if and only if a+ b+1 = c where addition is binary

and we ignore the final carry. Let ψ̂S be the multilinear extension of ψS . The idea is to
implement a ripple carry adder.

Now we will compute ψ̂S and ϕ̂S by induction. See that

ϕ̂1(a, b, c) =(a(1− b) + b(1− a))c+ (ab+ (1− a)(1− b))(1− c)

ψ̂1(a, b, c) =(a(1− b) + b(1− a))(1− c) + (ab+ (1− a)(1− b))c.

These are multilinear as written, and correctly compute ψ1 and ϕ1 when given binary inputs.
Each of these only require a constant number of field operations.

Assume for a′, b′, c′ ∈ FS−1, we have computed ϕ̂S−1(a
′, b′, c′) and ψ̂S−1(a

′, b′, c′). We

show how to calculate ψ̂S and ϕ̂S . For a, b, c ∈ F, I claim that

ϕ̂S((a, a
′), (b, b′), (c, c′)) =ϕ̂S−1(a

′, b′, c′)(1− a)(1− b)(1− c)

+ ϕ̂S−1(a
′, b′, c′)(a(1− b) + (1− a)b)c

+ ψ̂S−1(a
′, b′, c′)ab(1− c)

ψ̂S((a, a
′), (b, b′), (c, c′)) =ϕ̂S−1(a

′, b′, c′)(1− a)(1− b)c

+ ψ̂S−1(a
′, b′, c′)(a(1− b) + (1− a)b)(1− c)

+ ψ̂S−1(a
′, b′, c′)abc.

These are multilinear by induction. For binary inputs, this implements a ripple carry adder.
For instance, if a = b = 0, then ϕ̂((a, a′), (b, b′), (c, c′)) is one if and only if c = 0 and, by
induction, a′ + b′ = c′. If a and b are zero, than c should be 0 and there is no carry. The
rest of the cases can be checked similarly

Given that ψ̂S−1 and ϕ̂S−1 were already calculated, it only requires constantly many

more field operations to calculate ψ̂S and ϕ̂S . Thus, ψ̂S and ϕ̂S only require O(S) field

operations. Thus ψ̂S only takes time Õ(log(|F|))S to calculate.

Note, we could modify this to give a multilinear extension of the function ϕ′ : {0, 1}5S →
{0, 1} that not only checks if a + b = c, but also whether a = d and b = e, as described in
Remark 1.

One can compute the multilinear extensions of other register, register operations in
a simple register RAM model computer. Now we show how to calculate the multilinear
extension of a RAM computer’s state transition function.

21

Lemma 9 (Algorithm Arithmetization). Let A be a nondeterministic RAM algorithm run-
ning in space S and time T on length n inputs, and x be an input with |x| = n. Define M to
be the 2S × 2S matrix such that for any two states a, b ∈ {0, 1}S, we have Ma,b = 1 if when
A is running on input x is in state a, then b as a valid transition, and Ma,b = 0 otherwise.

Then we can compute the multilinear extension of M (M̂ in Definition 25) in time
Õ(log(|F|)(n+ S)).

Proof. The state of any RAM algorithm has 3 parts:

� The instruction pointer into some fixed program.

� Constant number of registers of O(log(n+ S)) length for performing register register
operations. We assume these operations are simple operations like move, bit shift,
bit-wise or, bit-wise and, addition, and conditional jumps in the program counter.

� S bits of memory that can be changed by the load and store commands.

Then we decompose any state, a ∈ {0, 1}S into three parts a = (p, r,m) where p are
constantly many bits for the instruction pointer, r is O(log(n + S)) many bits for the
registers, and m is O(S) many bits for main memory.

Suppose there are I instructions. For i ∈ [I], let Pi be the multilinear function that
identifies if the program is at instruction i. Let Qi be the multilinear function of whether
the current state on instruction i yields the next state. Then a formula for M̂ is given by

M̂((p0, r0,m0), (p1, r1,m1)) =
∑
i∈[I]

Pi(p0)Qi(r0,m0, p1, r1,m1).

Thus if we can calculate each Qi, we can calculate M̂ . The exact possible instructions
depend on our choice of instruction set, but we cover the main ones here.

� Register to Register Arithmetic.

As outlined before, most register register operations (like bit shifts, additions, etc) can
be computed very efficiently. So Qi just is the product of: the appropriate registers
being updated correctly, the instruction pointer being incremented by one, all other
registers being equal in r0 and r1, and m0 and m1 being equal.

Note the multilinear extension of equality only takes O(S) field operations.

� Conditionals and Nondeterminism.

For conditional jumps, first compute equality of the state before and after, besides
the program counter and the condition bit. Then multiply that by the sum over
the multilinear extension of the condition bit leading to the correct location of the
program counter. Nondeterminism is similar, except that we don’t need to include the
condition bit.

� Load Input into a Register.

A load from input instruction operates on two registers, one to store the input, and a
pointer to the location in the input. The rest of the state is just an equality.

Suppose the location you want to retrieve is indicated by a1, . . . , alog(n), and you want
to store it in variable b1. Then the extension of this part is∑

i∈{0,1}log(n)

∏
j∈[log(n)]

(ajij + (1− aj)(1− ij))(xib1 + (1− xi)(1− b1)).

22

Where we interpret xi as indexing into x using i as a binary number. We can rewrite
this as ∑

i1∈{0,1}

(a1i1 + (1− a1)(1− i1))

∑
i2∈{0,1}

(a2i2 + (1− a2)(1− i2))

... ∑
ilog(n)∈{0,1}

(alog(n)ilog(n) + (1− alog(n))(1− ilog(n)))

(xib1 + (1− xi)(1− b1)).

Following the straightforward reading of this second equation, you only use the first
sum once, the second sum twice, etc. So on average, you only need to do a constant
number of field operations per xi. Thus this only takes O(n) field operations.

If we also want to assert that the a register is unchanged, we just replace every instance
of ai with (a0)i(a1)i and 1 − ai with (1 − (a0)i)(1 − (a1)i). This works since we can
expand this sum into products where for every i, either ai or 1− ai appears in every
product.

� Load Memory into a Register.

Basically uses the same formula as above, but uses a log(S) bit address and uses
memory instead of the input. That is, replace x with m0. One slight technicality is
that we must also assert that m0 = m1. That is, main memory doesn’t change.

Specifically, one needs to calculate

∑
i∈{0,1}log(S)

 ∏
j∈[log(S)]

(ajij + (1− aj)(1− ij))

((m0)i(m1)ib1 + (1− (m0)i)(1− (m1)i)(1− b1))∏
k∈{0,1}log(S)\{i}

((m0)k(m1)k + (1− (m0)k)(1− (m1)k)).

First see that we can calculate∏
k∈{0,1}log(S)\{i}

((m0)k(m1)k + (1− (m0)k)(1− (m1)k))

for every i efficiently by calculating each∏
k<i

((m0)k(m1)k + (1− (m0)k)(1− (m1)k))

and each ∏
k>i

((m0)k(m1)k + (1− (m0)k)(1− (m1)k))

23

which only take O(S) field operations.

Then we can rewrite the sum in the same way we did for the read input case to
efficiently calculate this sum.

� Store Register into Memory.

This is essentially the same as loading, except instead of saying the future register
should be equal to the current memory, we instead say the future memory is equal to
the current register.

Thus each Qi can be efficiently calculated in O(S + n) field operations, so M̂ can be
calculated in time Õ(log(|F|))O(S).

While this arithmetization may seem complex, and indeed, it is, we note that in the
reduction of PSPACE to quantified Boolean formulas, the function that needs to be arith-
metized is the same (in a different model of computation), plus several extra equality checks,
expressed as a Boolean formula. We directly arithmetizeM without reducing it to a Boolean
formula first. And we get a multilinear function specifically as a result.

We also note that we don’t actually need to start with a multilinear extension ofM , a low
degree extension would be fine. Using ideas from [She92], we can spend time Õ(log(|F|))O(S)

to reduce a statement about M̂ to any low degree polynomial consistent with it.

4.4 Number of Paths Mod a Prime

Now we give our protocol for counting the number of accepting paths in a computation.

Theorem 31 (Number of Accepting Paths Mod P). Suppose A is a nondeterministic
algorithm running in space S, and time T where S and T are time O(log(T)S) computable
with S = Ω(log(n)). Then there is an interactive protocol with verifier V and prover P such
that, when given input x, state b, error bound ϵ > 0 and prime p behaves the following:

Completeness: When V interacts with prover P on input x, V outputs the number of
computation paths of A on input x ending at b, mod p.

Soundness: Given any prover P ′, when V interacts with prover P ′, V outputs an incorrect
number of computation paths of A on input x ending in state b, mod p, with probability
at most ϵ.

That is, V will reject with probability 1 − ϵ if P ′ does not give the correct number of
computation paths of A on input x ending in state b, mod p.

Verifier Time: V runs in time Õ (log(pS/ϵ))O(log(T)S + n).

Verifier Space: V runs in space O (log(pS/ϵ)S).

Prover Time: P runs in time polylog(pS/ϵ)2O(S).

Proof. We start by outlining how to convert this number of computation paths to a matrix
problem, then we show how to apply Lemma 28 to solve that. Let a be the canonical starting
state of algorithm A.

Take T to be a power of two so that T = 2t. If T is not a power of 2, we can just
take T to be the smallest power of two greater than the original T . Let k be the smallest

24

integer so that pk > 4 log(T)S
ϵ . Let q = pk and F be the field with q elements. Note that

|F| ≤ p 4 log(T)S
ϵ .

Let M be the adjacency matrix for the computation graph of A on input x so that for
any two states, a′ and b′, we have Ma′,b′ = 1 if A on input x starting in state a′ can be

b′ after one step, and Ma′,b′ = 0 otherwise. For any matrix M ′, let M̂ ′ be the multilinear

extension of M ′ so that for all binary inputs a′ and b′ we have M̂ ′(a′, b′) = M ′
a′,b′ , as in

Definition 25.
Observe that M2i

a′,b′ is just the number of computation paths of length 2i from a′ to
b′, mod p, since M is an adjacency matrix with entries in Fp. Thus our verifier wants to
output MT (a, b). Or since a and b are states (thus, expressed in binary), the verifier wants

to output M̂2t(a, b).
In the full protocol, the prover first provides the verifier with a candidate α ∈ F with

the claim that α = M̂2t(a, b). Now we use Lemma 28 t times to get the claim that for some

α′ ∈ F and some a′, b′ ∈ FS we have α′ = M̂(a′, b′). Finally, the verifier uses Lemma 9 to

calculate M̂(a′, b′) and compare it with α′.

Completeness: For an honest prover, indeed α = M̂2t(a, b). Let α0 = α, a0 = a and
b0 = b. By induction and completeness of Lemma 28, for every i ∈ [0, t − 1] we

have αi = M2t−i

(ai, bi), and our protocol gives an αi+1, ai+1, and bi+1 such that

αi+1 = M2t−(i+1)

(ai+1, bi+1). Thus αt = M̂(at, bt). Thus the verifier check whether

αt = M̂(at, bt) succeeds, and the verifier outputs α.

Soundness: If α = M̂2t(a, b), the verifier either outputs α or rejects, either satisfies our

assumption. So suppose α ̸= M̂2t(a, b). Let α0 = α, a0 = a and b0 = b. By
induction and soundness of Lemma 28, for every i ∈ [0, t − 1] if the verifier hasn’t

rejected and αi ̸= M̂2t−i(ai, bi), the probability the verifier does not reject and αi+1 =
̂M2t−(i+1)(ai+1, bi+1) is at most 4S

|F| . By a union bound, the probability that the verifier

does not reject and for any i we have αi = M̂2t−i(ai, bi) is at most

4S log(T)

|F|
≤ ϵ.

In particular, the probability the verifier does not reject and αt = M̂(at, bt) is at most

ϵ. See that if αt ̸= M̂(at, bt), then the verifier rejects. So the probability the verifier
does not reject is at most ϵ.

Verifier Time: This verifier takes time Õ(log(|F|))S log(T) to run Lemma 28 t times plus

Õ(log(|F|))O(S + n) to calculate M̂(at, bt) (using Lemma 9), so in total takes time

Õ(log(|F|))(S log(T) + n) = Õ(log(pS/ϵ))O(log(T)S + n).

Verifier Space: Between subsequent applications of Lemma 28, the verifier only needs to
store some i, ai, bi, and αi, which only takes space O(log(|F|)S). Each call to Lemma 28
also only needs space O(log(|F|)S). Finally, the verifier only needs space O(log(|F|)S)
to calculate M̂(at, bt). So the overall verifier only requires space

O(log(|F|)S) = O(log(pS/ϵ) log(T)S).

25

Prover Time: First, the prover calculates M2i in time Õ(log(|F|))S23S for every i ∈ [t].

Then we can query the multilinear extension of these matrices, which is M̂2i , at any
location in time Õ(log(|F|))22S with the formula given in Lemma 24.

Finally, given oracle access to each M̂2i , the prover in Lemma 28 only takes time
Õ(log(|F|))2S . Thus of any call to Lemma 28 only takes time

poly(log(|F|))23S .

Thus the prover runs in time poly (log(pS/ϵ)) 2O(S).

4.5 Protocol for TISP

As an immediate corollary of Theorem 31, since deterministic algorithms always have either
one accepting computation path or zero, by using p = 2, and setting b to be some canonical
end state, we have Theorem 1.

We can extend this result into multi bit outputs by storing the output in the final end
state and asking the prover for the end state first. Or to be more efficient when outputs are
larger than S, we can first ask for the output. Then include the output in the input and
change the algorithm to instead verify the output is correct. Then run the protocol on this
new verification algorithm instead. This allows us to verify program outputs larger than S
more efficiently.

5 Efficient IP for BPTISP

Our protocol for randomized algorithms first uses a PRG for bounded space to convert
our randomized algorithm into a deterministic algorithm, then applies our deterministic
protocol. Note our PRG uses O(log(T)S) random bits, so these can’t be stored in the
algorithms state without incurring an extra log(T) factor in the verifier run time. This is
fine since our PRG only uses O(S) bits of working space and our protocol works for small
space.

Theorem 2 (Efficient Interactive Protocol For BPTISP). Let S and T be computable in
time Õ(log(T)S + n) with S = Ω(log(n)). Then

BPTISP[T, S] ⊆ ITIME[Õ(log(T)S + n), 2O(S)].

Proof. Suppose L ∈ BPTISP[T, S] is computed by randomized algorithm A running in
space S and time T . For x of length n, we want to verify if x ∈ L or not. We will construct
a new input, x′, of length n + O(S log(T)) decided by deterministic algorithm A′ running
in time poly(T) and space O(S) such that if x ∈ L, then with high probability A′(x′) = 1,
and if x /∈ L, then with high probability A′(x′) = 0. Then we use Theorem 1 on A′ and x′

to verify whether A′(x′) = 1, which with high probability is equivalent to whether x ∈ L.
As a technical detail, to maintain soundness and completeness, we will first need to

amplify A to get a new protocol, A∗, by repeating it a constant number of times and taking
the majority output. Similarly, we repeat the interactive protocol.

26

Since A is a randomized algorithm, Pr[A(x, U) = 1x∈L] ≥ 2
3 . Let A∗ be the algorithm

which runs A three times and outputs the majority. Algorithm A∗ runs in time O(T), uses
space S +O(1), and Pr[A∗(x, U) = 1x∈L] ≥ 20

27 .
Nisan’s PRG (Theorem 22) gives a function G with seed length l = O(log(T)S) com-

putable in space O(S) and time poly(S) that 1
27 fools A∗. That is,

|E[A∗(x,G(U))−A∗(x, U)]| < 1

27

where U is uniform random bits.
Let A′(x, s) = A∗(x,G(s)) and L′ be the language accepted by A′. Then by a triangle

inequality,

Pr
s
[A′(x, s) ̸= 1x∈L] =

∣∣∣E
s
[A′(x, s)−A∗(x, U) +A∗(x, U)− 1x∈L]

∣∣∣
<

1

27
+

7

27

<
8

27
.

See that A′ runs in time T ′ = poly(T) and space S′ = O(S).
In our interactive protocol, the verifier first chooses l = O(log(T)S) bits, s, for our PRG

and sends them to the prover. Let x′ = (x, s), so our new input length is m = n + l =
O(log(T)S + n). By Theorem 1, there is an interactive protocol for whether x′ ∈ L′ with
perfect completeness and soundness 1

3 where the verifier, V ′, runs in time Õ(log(T)S + n)

and the prover, P ′, runs in time 2O(S).
Our final protocol repeats the above protocol three times, and outputs that x ∈ L if the

prover proves x′ ∈ L′ three times, or outputs that x /∈ L if the prover proves x′ /∈ L′ three
times, and rejects otherwise.

Completeness If x ∈ L, with probability 19
27 > 2

3 we have x′ ∈ L′. If x′ ∈ L′, by
completeness of our deterministic IP, our prover will convince our verifier x′ ∈ L′.
Thus the verifier outputs x ∈ L with probability at least 2

3 . Similarly for x /∈ L.

Soundness If x ∈ L, then with probability at most 8
27 will we have x′ /∈ L′. If x′ ∈ L′,

by soundness of our deterministic IP, the probability any prover convinces V ′ that
x′ /∈ L′ is at most 1

3 . So the probability it convinces V ′ that x′ /∈ L′ three times,
and thus convincing V to output x /∈ L, is at most 1

27 . So by a union bound, the
probability V outputs that x /∈ L is at most 1

3 . Similarly for x /∈ L.

Time The final verifier spends O(log(T)S) time choosing s, then runs V ′ three times, which
takes time Õ(log(T)S + n). The final prover is just P ′, which takes time 2O(S).

6 Efficient IP for NTISP

The non deterministic algorithm uses Theorem 31, but some care must be taken to choose p
so that the number of accepting paths is not 0 mod p. In general, the number of accepting
paths may be an adversarial number, so we choose p randomly. For instance, it could be
the product of every number less than T

log(T) . Thus this strategy may need p = Ω(T
log(T)).

First we show such a prime p can be found with high probability.

27

Lemma 32 (Find Non-Divisor With High Probability). There is an algorithm A taking
integer W , and constant ϵ > 0 running in time Õ(polylog(1ϵ) log(W)3) such that for any
w ≤ 2W with probability at least 1 − ϵ, algorithm A outputs prime p = O(W/ϵ) and w
mod p ̸= 0.

Proof. First, for any integer m, let km be the number of prime numbers dividing w greater
than m. Then we have

mkm ≤w
≤2W

km ≤ W

log(m)

≤ W

ln(m)
.

By the prime number theorem, for large enough W , for any m ≥W , the number of primes
less than m are at most 1.25m

ln(m) , and the number of primes less than 2m are at least 1.75m
ln(m) .

Thus there are at least 0.5m
ln(m) primes between m and 2m. If W is too small, just hard code

some large, constant prime.
Otherwise, letm = 4W

ϵ . Then the number of primes betweenm and 2m is at least 2W
ln(m)ϵ .

Recall the total number of primes larger than m dividing w is at most W
ln(m) . Therefore, at

most ϵ
2 fraction of the primes between m and 2m divide w.

Then using Miller Rabin tests on randomly chosen numbers (see Theorem 20), there is
an algorithm running in time

Õ(polylog(
2

ϵ
) log(m)3) = Õ(polylog(

1

ϵ
) log(W)3)

outputting a uniform prime p between m and 2m with probability at least ϵ
2 . Then by a

union bound the probability it fails to output a uniform prime p or that p divides w is at
most ϵ.

A corollary is that any w has some prime number not dividing it with size O(log(w)).

Corollary 33 (Log Size Non Divisors Exist). For any integer w, there exists a prime number
p = O(log(w)) such that p does not divide w.

Then using this procedure, we can with high probability find an appropriate prime, p,
so that if the number of accepting paths, w, is non zero, then w mod p ̸= 0.

Theorem 34 (Verifier Efficient Interactive Protocol For NTISP). Let S, T and W be
computable in time Õ(log(W) log(T)S + n). Suppose L is recognized by a nondeterministic
algorithm, A, running in time T and space S where the total number of accepting witnesses
are at most 2W . Then

L ∪ Lc ⊆ ITIME1[Õ(log(W) log(T)S + n), 2O(S)]

where Lc is the complement of L.

Proof. We begin by describing with verifier V and honest prover P . We describe the protocol
for L, the protocol for Lc is similar. Let w = O(2W) be the number of accepting paths of A
on x. First P outputs whether w = 0 or w ̸= 0. The protocol splits into two cases depending
on what the prover claimed about w:

28

w ̸= 0: Then P chooses a prime number p = O(W) such that w mod p ̸= 0. Such a prime
is guaranteed to exist by Corollary 33. Prover P gives p to the verifier V .

Then V tests if p is prime with the Miller Rabin primality test (Theorem 19) with
soundness 1

3 and rejects if it fails. If p passes the primality test, V performs the
interactive protocol of Theorem 31 with verifier V ′ and honest prover P ′ to confirm
that w mod p ̸= 0 with soundness 1

3 . Verifier V outputs x ∈ L if V ′ outputs that w
mod p ̸= 0 and rejects otherwise.

w = 0: Then V uses Lemma 32 to choose a prime p = O(W/ϵ) that does not divide w with
probability at least 5

6 . If the selected p is not prime, then P proves it by sending a
factorization of p. If the factorization is correct, V gives up and says x /∈ L.

Otherwise, V performs the interactive protocol from Theorem 31 with verifier V ′ and
honest prover P ′ to verify w mod p is 0 with soundness 1

6 . The verifier V outputs
x /∈ L if V ′ outputs that w mod p = 0 and rejects otherwise.

Now we prove completeness, soundness, verifier time and prover time.

Completeness First, P truthfully outputs whether w = 0.

w ̸= 0: Suppose x ∈ L. Then for number accepting paths w, there exists a p = O(W)
such that w mod p ̸= 0 by Corollary 33, which P provides. By completeness
of the Miller Rabin primality test Theorem 19, V confirms p is prime. By the
completeness of Theorem 31, P ′ convinces V ′ that w mod p ̸= 0. Thus V outputs
x ∈ L.

w = 0: Suppose x /∈ L. If V does not find a prime p, prover P proves the candidate
is not prime. Thus V outputs x /∈ L.

If V does find prime p, by the completeness of the protocol in Theorem 31, P ′

convinces V ′ that w mod p = 0. Thus V outputs x /∈ L.

Soundness: Consider any prover P̃ . We use two cases, depending on whether w is actually
0, or not.

w ̸= 0: Suppose x ∈ L. Then if P̃ claims w ̸= 0, then V either confirms x ∈ L, or
rejects. So suppose P̃ claims w = 0.

Since w ̸= 0, by soundness of Lemma 32, the probability V chooses a p so
that w mod p ̸= 0 is at least 5

6 . If w mod p ̸= 0, then from the soundness of
Theorem 31, the probability V ′ accepts that w mod p = 0 is at most 1

6 . Thus
by a union bound, V rejects with probability at least 2

3 .

w = 0: Suppose x /∈ L. If P̃ claims w = 0, then V either confirms x /∈ L, or rejects.
So suppose P̃ claims w ̸= 0.

Then for any number p provided by P̃ , if p is not prime, by soundness of The-
orem 19, V rejects with probability 2

3 . If p is prime, then w mod p = 0, so

by soundness of Theorem 31, P̃ can only convince V ′ that w mod p ̸= 0 with
probability 1

3 . So V rejects with probability at least 2
3 .

Verifier Time: Since prime generation and testing run in time Õ(log(W)3), and the verifier
in Theorem 31 runs in time

Õ (log(pS))O(log(T)S + n) = Õ(log(W) log(T)S + n),

the total verifier time is Õ(log(W) log(T)S + n).

29

Prover Time: The number of accepting paths, w, can be calculated in time 2O(S) by
repeated squaring of the computation graph of A on input x. Given w ̸= 0, the prover
can find p such that w mod p ̸= 0 through exhaustive search in time poly(W) =
2O(S). Similarly, factorizing a composite p by exhaustive search takes time poly(p) =
poly(W) = 2O(S). Finally, the prover in Theorem 31 runs in time Õ(log(W))2O(S) =
2O(S). So the prover runs in time 2O(S).

One can trivially upper bound the total number of accepting paths with W = O(T).
This is because at each time step, only the number of computation paths can only double.
So there are only at most 2T possible computation paths. This gives us the immediate
corollary of Theorem 3.

7 Open Problems

Here are some related open problems.

1. Could one remove the dependence on log(T)? Is it true that, for S = ω(n),

SPACE[S] ⊆ ITIME[Õ(S)]?

This would prove an equivalence, up to polylogarithmic factors, between SPACE[S]
and ITIME[S]. Our recent work, [MC22], showed a similar equivalence between
NTIME[T] and languages verified by PCPs with log(T) time verifiers, for log(T) =
Ω(n).

2. Is there a strong hierarchy theorem for interactive time? Can we show that for any T
we have

ITIME[Õ(T)] ̸⊂ ITIME[T]?

Here ITIME[T] is the class of languages with an interactive protocol who’s verifiers
run in time T .

Using Theorem 1 gives

ITIME1[T] ⊆ SPACE[O(T)] ⊆ ITIME1[Õ(T 2)].

This gives a hierarchy theorem,

ITIME1[Õ(T 2)] ̸⊂ ITIME1[O(T)],

by using the space hierarchy theorem. Improving the interactive protocols for bounded
space is one way to give a stronger hierarchy.

3. Can interactive protocols for NTISP be as efficient as those for TISP?

For S = Ω(n), we get SPACE[S] ⊆ ITIME[Õ(S2)], but only show NSPACE[S] ⊆
ITIME[Õ(S3)]. Does nondeterministic space require more verifier time than deter-
ministic space?

30

4. Can we get double efficiency with a similar verifier time? Is it true that

TISP[T, S] ⊆ ITIME[polylog(T)S,poly(T)]?

This would make the verification of polynomial time algorithms only take as long (up
to polylogarithmic factors) as the space of those algorithms, with a proof that still
only takes polynomial time. This would make directly using interactive proofs for
delegating computation more practical.

Acknowledgments

Thanks to Dana Moshkovitz for feedback on this paper, and Tayvin Otti for proof reading.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
1st. USA: Cambridge University Press, 2009. isbn: 0521424267.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic Checking of Proofs: A New
Characterization of NP”. In: J. ACM 45.1 (Jan. 1998), 70–122. issn: 0004-5411.
doi: 10.1145/273865.273901. url: https://doi.org/10.1145/273865.
273901.

[Aro+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
“Proof Verification and the Hardness of Approximation Problems”. In: J. ACM
45.3 (1998), 501–555. issn: 0004-5411. doi: 10.1145/278298.278306. url:
https://doi.org/10.1145/278298.278306.

[BFL90] L. Babai, L. Fortnow, and C. Lund. “Nondeterministic exponential time has two-
prover interactive protocols”. In: Proceedings [1990] 31st Annual Symposium on
Foundations of Computer Science. 1990, 16–25 vol.1. doi: 10.1109/FSCS.1990.
89520.

[CT22] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform, Non-
Black-Box, and Instance-Wise”. In: 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS). 2022, pp. 125–136. doi: 10.1109/
FOCS52979.2021.00021.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating Com-
putation: Interactive Proofs for Muggles”. In: J. ACM 62.4 (Sept. 2015). issn:
0004-5411. doi: 10.1145/2699436. url: https://doi.org/10.1145/2699436.

[Gol+07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy
N. Rothblum. “Verifying and Decoding in Constant Depth”. In: Proceedings
of the Thirty-Ninth Annual ACM Symposium on Theory of Computing. STOC
’07. San Diego, California, USA: Association for Computing Machinery, 2007,
440–449. isbn: 9781595936318. doi: 10.1145/1250790.1250855. url: https:
//doi.org/10.1145/1250790.1250855.

[Gol18] Oded Goldreich.On Doubly-Efficient Interactive Proof Systems. 2018. url: https:
//www.wisdom.weizmann.ac.il/~oded/de-ip.html.

31

https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/273865.273901
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1109/FSCS.1990.89520
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1109/FOCS52979.2021.00021
https://doi.org/10.1145/2699436
https://doi.org/10.1145/2699436
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1145/1250790.1250855
https://www.wisdom.weizmann.ac.il/~oded/de-ip.html
https://www.wisdom.weizmann.ac.il/~oded/de-ip.html

[Imm88] Neil Immerman. “Nondeterministic Space is Closed under Complementation”.
In: SIAM Journal on Computing 17.5 (1988), pp. 935–938. doi: 10 . 1137 /

0217058. eprint: https://doi.org/10.1137/0217058. url: https://doi.
org/10.1137/0217058.

[Lun+90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. “Algebraic methods for interac-
tive proof systems”. In: Proceedings [1990] 31st Annual Symposium on Founda-
tions of Computer Science. 1990, 2–10 vol.1. doi: 10.1109/FSCS.1990.89518.

[MC22] Dana Moshkovitz and Joshua Cook. Tighter MA/1 Circuit Lower Bounds From
Verifier Efficient PCPs for PSPACE. 2022. url: https://eccc.weizmann.ac.
il/report/2022/014/.

[MW18] Cody Murray and Ryan Williams. “Circuit Lower Bounds for Nondeterminis-
tic Quasi-Polytime: An Easy Witness Lemma for NP and NQP”. In: Proceed-
ings of the 50th Annual ACM SIGACT Symposium on Theory of Computing.
STOC 2018. Los Angeles, CA, USA: Association for Computing Machinery,
2018, 890–901. isbn: 9781450355599. doi: 10.1145/3188745.3188910. url:
https://doi.org/10.1145/3188745.3188910.

[Mei13] Or Meir. “IP = PSPACE Using Error-Correcting Codes”. In: SIAM Journal on
Computing 42.1 (2013), pp. 380–403. doi: 10.1137/110829660. eprint: https:
//doi.org/10.1137/110829660. url: https://doi.org/10.1137/110829660.

[Mil75] Gary L. Miller. “Riemann’s Hypothesis and Tests for Primality”. In: Proceedings
of the Seventh Annual ACM Symposium on Theory of Computing. STOC ’75.
Albuquerque, New Mexico, USA: Association for Computing Machinery, 1975,
234–239. isbn: 9781450374194. doi: 10.1145/800116.803773. url: https:
//doi.org/10.1145/800116.803773.

[Nis90] Noam Nisan. “Pseudorandom Generators for Space-Bounded Computations”.
In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing. STOC ’90. Baltimore, Maryland, USA: Association for Computing
Machinery, 1990, 204–212. isbn: 0897913612. doi: 10.1145/100216.100242.
url: https://doi.org/10.1145/100216.100242.

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. “Constant-Round
Interactive Proofs for Delegating Computation”. In: Proceedings of the Forty-
Eighth Annual ACM Symposium on Theory of Computing. STOC ’16. Cam-
bridge, MA, USA: Association for Computing Machinery, 2016, 49–62. isbn:
9781450341325. doi: 10.1145/2897518.2897652. url: https://doi.org/10.
1145/2897518.2897652.

[RZR22] Noga Ron-Zewi and Ron D. Rothblum. “Proving as Fast as Computing: Succinct
Arguments with Constant Prover Overhead”. In: Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing. STOC 2022. Rome, Italy:
Association for Computing Machinery, 2022, 1353–1363. isbn: 9781450392648.
doi: 10.1145/3519935.3519956. url: https://doi.org/10.1145/3519935.
3519956.

[Rab80] Michael O Rabin. “Probabilistic algorithm for testing primality”. In: Journal of
Number Theory 12.1 (1980), pp. 128–138. issn: 0022-314X. doi: https://doi.
org/10.1016/0022-314X(80)90084-0. url: https://www.sciencedirect.
com/science/article/pii/0022314X80900840.

32

https://doi.org/10.1137/0217058
https://doi.org/10.1137/0217058
https://doi.org/10.1137/0217058
https://doi.org/10.1137/0217058
https://doi.org/10.1137/0217058
https://doi.org/10.1109/FSCS.1990.89518
https://eccc.weizmann.ac.il/report/2022/014/
https://eccc.weizmann.ac.il/report/2022/014/
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1145/3188745.3188910
https://doi.org/10.1137/110829660
https://doi.org/10.1137/110829660
https://doi.org/10.1137/110829660
https://doi.org/10.1137/110829660
https://doi.org/10.1145/800116.803773
https://doi.org/10.1145/800116.803773
https://doi.org/10.1145/800116.803773
https://doi.org/10.1145/100216.100242
https://doi.org/10.1145/100216.100242
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1145/3519935.3519956
https://doi.org/10.1145/3519935.3519956
https://doi.org/10.1145/3519935.3519956
https://doi.org/https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/https://doi.org/10.1016/0022-314X(80)90084-0
https://www.sciencedirect.com/science/article/pii/0022314X80900840
https://www.sciencedirect.com/science/article/pii/0022314X80900840

[SZ99] Michael Saks and Shiyu Zhou. “BPHSPACE(S)⊆DSPACE(S3/2)”. In: J. Com-
put. Syst. Sci. 58.2 (Apr. 1999), 376–403. issn: 0022-0000. doi: 10.1006/jcss.
1998.1616. url: https://doi.org/10.1006/jcss.1998.1616.

[San07] Rahul Santhanam. “Circuit Lower Bounds for Merlin-Arthur Classes”. In: Pro-
ceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing.
STOC ’07. San Diego, California, USA: Association for Computing Machinery,
2007, 275–283. isbn: 9781595936318. doi: 10.1145/1250790.1250832. url:
https://doi.org/10.1145/1250790.1250832.

[Sav70] Walter J. Savitch. “Relationships between Nondeterministic and Deterministic
Tape Complexities”. In: J. Comput. Syst. Sci. 4.2 (Apr. 1970), 177–192. issn:
0022-0000. doi: 10.1016/S0022-0000(70)80006-X. url: https://doi.org/
10.1016/S0022-0000(70)80006-X.

[Sha92] Adi Shamir. “IP = PSPACE”. In: J. ACM 39.4 (Oct. 1992), 869–877. issn:
0004-5411. doi: 10.1145/146585.146609. url: https://doi.org/10.1145/
146585.146609.

[She92] A. Shen. “IP = SPACE: Simplified Proof”. In: J. ACM 39.4 (1992), 878–880.
issn: 0004-5411. doi: 10.1145/146585.146613. url: https://doi.org/10.
1145/146585.146613.

[Sze88] Róbert Szelepcsényi. “The method of forced enumeration for nondeterministic
automata”. In: Acta Informatica 26 (1988), 279–284. doi: 10.1007/BF00299636.
url: https://doi.org/10.1007/BF00299636.

[Tha13] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In:
Advances in Cryptology – CRYPTO 2013. Ed. by Ran Canetti and Juan A.
Garay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 71–89.

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1145/1250790.1250832
https://doi.org/10.1145/1250790.1250832
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146613
https://doi.org/10.1145/146585.146613
https://doi.org/10.1145/146585.146613
https://doi.org/10.1007/BF00299636
https://doi.org/10.1007/BF00299636

