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Abstract. A monotone Boolean (∨, ∧) circuit F computing a Boolean function f is a read-k
circuit if the polynomial produced (purely syntactically) by the arithmetic (+, ×) version of F has
the property that for every prime implicant of f , the polynomial contains a monomial with the same
set of variables, each appearing with degree ⩽ k. Every monotone (∨, ∧) circuit is a read-k circuit for
some k.

We first show that already read-1 circuits are interesting in the context of dynamic programming:
tropical (min, +) circuits solving 0/1 optimization problems have the same power as Boolean read-1
circuits, and that monotone read-1 (∨, ∧) circuits computing homogeneous Boolean functions are
not stronger than monotone arithmetic circuits. Then we show that already read-2 circuits can be
exponentially smaller than read-1 circuits. Finally, we show that so-called (semantically) multilinear
DeMorgan (∨, ∧, ¬) circuits computing monotone Boolean functions are not stronger than monotone
read-1 circuits.
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1. Introduction. Let F be a monotone Boolean (∨, ∧) circuit F computing
a Boolean function f . If we replace every OR gate by an addition gate, and every
AND gate by a multiplication gate, then the obtained monotone arithmetic (+, ×)
circuit will produce (as a formal expression) a unique polynomial P with the following
two properties: (i) every monomial of P contains all variables of at least one prime
implicant of f , and (ii) for every prime implicant p of f , there at least one monomial
t (a “shadow” of p) in P with the same set of variables as p. We call the (Boolean)
circuit F a read-k circuit if in at least one shadow of every prime implicant, each
variable has degree ⩽ k. There are no restrictions on other monomials of the produced
polynomial P . Every monotone (∨, ∧) circuit of size is a read-k circuit for some k.

Our main interest in read-k circuits is that already read-1 circuits are related to
dynamic programming (DP) algorithms. Many classical DP algorithms for minimiza-
tion problems are “pure” in that they only use (min, +) operations in their recursion
equations. Notable examples of pure DP algorithms are the well-known Bellman–Ford–
Moore shortest s-t path algorithm [1, 4, 17], the Roy–Floyd–Warshall all-pairs shortest
paths algorithm [22, 3, 25], the Bellman–Held–Karp travelling salesman algorithm,
the Dreyfus–Levin–Wagner Steiner tree algorithm [2, 7], and many others.

Tropical (min, +) circuits constitute a rigorous mathematical model for pure DP
algorithms. Namely, such an algorithm is just a special (recursively constructed)
tropical circuit. In particular, lower bounds on the size of tropical circuit are also lower
bounds on the minimum possible number of operations used by pure DP algorithms.

We first show that tropical (min, +) circuits solving 0/1 minimization problems
have the same power as monotone Boolean read-1 circuits (Theorem 1).

Currently, strong (even exponential) lower bounds for monotone read-k circuits
for any k are known. However, proving such bounds remains a rather nontrivial task:
here, we essentially have only one tool—the celebrated Method of Approximations
invented by Razborov [19, 20, 21], and its subsequent symmetric versions (see, e.g., [10,
Chapter 9]). Not surprisingly, this task is much easer for k = 1: then we actually are
in a (much simpler) monotone arithmetic world. Namely, Jerrum and Snir [9] observed
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that the monotone arithmetic circuit complexity of lower envelopes of polynomials is
not larger than that of polynomials themselves. This observation fairly easily implies
that read-1 (∨, ∧) circuits computing homogeneous Boolean functions (those with
all minterms of the same length) are not stronger than monotone arithmetic circuits
(Theorem 2). Thus, all known exponential lower bounds on the monotone arithmetic
(+, ×) circuit complexity of homogeneous multilinear polynomials give the same lower
bounds for read-1 circuits.

Finally, we show that so-called multilinear (not necessarily monotone) DeMorgan
(∨, ∧, ¬) circuits computing monotone Boolean functions are not stronger than mono-
tone read-1 circuits as well (Theorem 3). A DeMorgan (∨, ∧, ¬) circuit is (semantically)
multilinear if the Boolean functions g and h computed at the inputs to any AND gate
depend on disjoint sets of variables. Note that this does not exclude that some paths
in the circuit from the same input literal can reach both these gates. For example,
g = x ∨ xy and h = y depend on disjoint sets of variables, because g does not depend
on y.

2. Preliminaries. We start with recalling one simple but important concept:
the set of exponent vectors “produced” (purely syntactically) by a circuit over any
semiring. A circuit F over a semiring1 (R, ⊕, ⊙) is a directed acyclic graph; parallel
edges joining the same pair of nodes are allowed. Each indegree-zero node (an input
node) holds either one of the variables x1, . . . , xn or a semiring element c ∈ R (a
circuit is constant-free if it has no semiring elements c ∈ R as inputs). Every other
node, a gate, has indegree two and performs one of the semiring operations ⊕ or ⊙ on
the values computed at the two gates entering this gate. The size of a circuit is the
total number of gates in it.

Convention: To avoid considering “pathological” situations, under a semiring
(R, ⊕, ⊙) we will understand only one of the following three semirings: the arithmetic
semiring (R+, +, ×) where R+ is the set of nonnegative real numbers, the tropical
semiring (R+, min, +), and the Boolean semiring ({0, 1}, ∨, ∧). That is, we will consider
circuits over the following three semirings2:

◦ x ⊕ y := x + y and x ⊙ y := xy (monotone arithmetic circuits);
◦ x ⊕ y := x ∨ y and x ⊙ y := x ∧ y (monotone Boolean circuits);
◦ x ⊕ y := min(x, y) and x ⊙ y := x + y (tropical circuits).

Every circuit F over a semiring (⊕, ⊙) produces (purely syntactically) a unique set of
exponent vectors BF ⊆ Nn in a natural way, where 0⃗ is the all-0 vector, and e⃗i ∈ {0, 1}n

has exactly one 1 in the ith position:
◦ if F = c ∈ R, then BF = {⃗0};
◦ if F = xi, then BF = {e⃗i};
◦ if F = G ⊕ H, then BF = BG ∪ BH ;
◦ if F = G ⊙ H, then BF = BG + BH := {x + y : x ∈ BG, y ∈ BH}.

That is, at an “addition” (⊕) gate, we take the union of the sets produced at the two
gates entering that gate, and at a “multiplication” (⊙) gate, we take the Minkowski
sum of these sets.

It is clear that the same circuit F with only “addition” (⊕) and “multiplication”
(⊙) gates can compute different functions over different semirings. Say, the circuit

1Recall that a (commutative) semiring (R, ⊕, ⊙) consists of a set R closed under two associative
and commutative binary operations “addition” x ⊕ y and “multiplication” x ⊙ y, where multiplication
distributes over addition: x ⊙ (y ⊕ z) = (x ⊙ y) ⊕ (x ⊙ z). That is, in a semiring, we can “add” and
“multiply” elements, but neither “subtraction” nor “division” are necessarily possible.

2An exception is section 4, where we also consider non-monotone DeMorgan (∨, ∧, ¬) circuits.
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F = x ⊙ y ⊕ z computes xy + z over the arithmetic (+, ×) semiring, but computes
min{x + y, z} over the tropical (min, +) semiring. It is, however, important to note
that:

1. The set of exponent vectors produced by a circuit over any semiring is always
the same—it only depends on the circuit itself, not on the underlying semiring.

2. If a circuit F over a semiring produces a set B ⊆ Nn, then the circuit computes
a polynomial (over the same semiring) whose set of exponent vectors in B.

Item 1 is trivial. Item 2 holds because there is a natural homomorphism from the
semiring of n-variate polynomials to the semiring (2Nn

, ∪, +) of finite sets of vectors that
maps every polynomial f(x) =

∑
a∈Af

ca

∏n
i=1 xai

i to the set Af ⊆ Nn of its exponent
vectors. In particular, every single variable xi is mapped to Axi

= {e⃗i}, and every
input constant c ∈ R is mapped to Ac = {⃗0}. That this is indeed a homomorphism
follows from easily verifiable equalities Af⊕h = Af ∪ Ah and Af⊙h = Af + Ah, the
latter sum being the Minkowski sum of the sets Af and Ah.

3. Monotone read-k circuits. A set of vectors A ⊆ Nn is an antichain if a ∈ A
and b ⩽ a implies a = b. A Boolean function f : {0, 1}n → {0, 1} is monotone if b ⩽ a
and f(b) = 1 imply f(a) = 1. A lower one of a monotone Boolean function f is a
vector a ∈ f−1(1) such that f(b) = 0 for all vectors b ⩽ a, b ̸= a. Let Af ⊆ f−1(1)
denote the set of all lower ones3 of f . Note that the setAf is an antichain, and it
uniquely determines the entire function f . Namely,

f(x) =
∨

a∈Af

∧
i∈sup(a)

xi ;

here and throughout, sup(x) := {i : xi ̸= 0} stands for the support of a vector x ∈ Nn,
that is, for the set of its nonzero positions. The upward closure of a set A ⊆ Nn of
vectors is the set

A↑ := {b ∈ Nn : b ⩾ a for some a ∈ A} .

Note that for every monotone Boolean function f : {0, 1}n → {0, 1}, we have f−1(1) =
A↑

f ∩ {0, 1}n. A shadow of a vector a ∈ Nn is any vector b ∈ Nn with sup(b) = sup(a).
That is, shadows of vectors are nonnegative integer vectors with the same set of
nonzero positions.

A monotone Boolean circuit is a circuit over the Boolean semiring (⊕, ⊙) with
x ⊕ y := x ∨ y and x ⊙ y := x ∧ y; the domain is {0, 1}. We will always assume
that such circuits are constant-free: constant inputs 0 and 1 can be easily eliminated
without increasing the circuit size (to avoid trivialities, we will only consider circuits
computing non-constant functions).

We start with the following almost obvious property of sets of exponent vectors
produced by monotone Boolean circuits. Let f be the monotone Boolean function, and
let Af ⊆ f−1(1) be the set of lower ones of f . Let F be a monotone Boolean (∨, ∧)
circuit F , and let B ⊆ Nn be the set of exponent vectors produced by the monotone
arithmetic (+, ×) version of F .

Claim 1. The circuit F computes f if and only if the set B has the following two
properties:

(i) B ⊆ A↑
f ;

3Note that each vector a ∈ Af is a characteristic 0-1 vector of the set of variables in some prime
implicant of f . Thus, one can think of the set Af as the set of prime implicants of f (represented as
vectors).
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(ii) every lower one a ∈ Af of f has at least one its shadow in B.

Proof. Our Boolean function f is of the form f(x) =
∨

a∈Af

∧
i∈sup(a) xi, while the

Boolean function computed by the circuit F is of the form F (x) =
∨

b∈B

∧
i∈sup(b) xi.

The “if” direction follows directly from the following simple observation: for every
input x ∈ {0, 1}n, we have f(x) = 1 iff sup(x) ⊇ sup(a) for some a ∈ Af , which
happens iff x ∈ A↑

f . Hence, (i) yields F (x) ⩽ f(x), while (ii) yields f(x) ⩽ F (x).
Now assume that the circuit F computes f . If b ̸∈ A↑ held for some vector

b ∈ B, then on the input x ∈ {0, 1}n with xi = 1 iff i ∈ sup(b), we would have
sup(a) \ sup(b) ̸= ∅ and, hence, f(x) = 0. But F (x) = 1, a contradiction. To show the
property (ii), suppose for the contradiction that there is a vector a ∈ Af such that
sup(b) ̸= sup(a) holds for all vectors b ∈ B. Since B ⊆ A↑

f and since Af is an antichain,
sup(b) ⊂ sup(a) (proper inclusion) cannot hold. So, we have sup(b) \ sup(a) ̸= ∅ for
all vectors b ∈ B. Then F (a) = 0 while f(a) = 1, a contradiction.

Remark 3.1. Item (i) of Claim 1 means that every monomial of the polynomial P
produced by the arithmetic (+, ×) version of the Boolean (∨, ∧) circuit F must contain
all variables of at least one prime implicant p of f , while (ii) means that for every
prime implicant p of f there must be a monomial in P with the same set of variables
as p. For example, the Boolean circuit F (x, y, z) = (x ∨ y)(x ∨ z) ∨ xy computes
the Boolean function f = x ∨ yz, whose set of lower ones is Af = {(1, 0, 0), (0, 1, 1)}.
The arithmetic version F ′ = (x + y)(x + z) of F produces the polynomial P =
x2 + xz + 2xy + yz. Hence, the set of exponent vectors produced by the Boolean
circuit F is B = {(2, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)} ⊆ A↑.

In general, the shadows b ∈ B of vectors a ∈ Af in property (ii) given by Claim 1
may have arbitrary large entries: we only have that sup b = sup a. In read-k circuits,
we restrict the magnitude of entries in shadows b. A vector b ∈ Nn is k-bounded if no
its entry is larger than k:

Definition 1 (Monotone read-k circuits). A monotone Boolean circuit F com-
puting a Boolean function f a read-k circuit if the set B ⊆ Nn of vectors produced by
F has the following two properties:

(i) B ⊆ A↑
f ;

(ii’) every lower one a ∈ Af of f has at least one k-bounded its shadow in B.

That is, we now require that every lower one a ∈ Af must have at least one its
shadow in B with no entry larger than k; there are no restriction on the magnitude
of the entries of other vectors of B. In particular, the circuit F is a read-once circuit
(that is, a read-1 circuit) iff the inclusions A ⊆ B ⊆ A↑ hold. For a monotone Boolean
function f , let

Bk(f) := min size of a monotone read-k (∨, ∧) circuit computing f .

In the next section, we will show that, in the context of dynamic programming,
already the monotone read-once circuits are interesting. Namely, B1(f) coincides with
the minimum size of a tropical (min, +) circuit solving the minimization problem
f(x) = mina∈Af

∑
aixi.
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3.1. From tropical (min,+) to Boolean read-once circuits. We now con-
sider tropical (min, +) circuits. There are the circuits over the semiring (R, ⊕, ⊙)
with R = R+, x ⊕ y := min(x, y) and x ⊙ y := x + y. If B ⊆ Nn is the set of
“exponent” vectors produced by such a circuit F , then the circuit computes the trop-
ical polynomial f(x) = minb∈B ⟨x, b⟩ + cb with some “coefficients” cb ∈ R+, where
⟨b, x⟩ = b1x1 + · · · + bnxn is the scalar product of vectors b and x. That is, the circuit
solves a minimization problem.

Note that if the circuit F is constant-free (has no constants as input gates), then
the computed polynomial is also constant-free in that cb = 0 for all b ∈ B. Tropical
polynomials describing combinatorial optimization problems are usually constant-free.
For example, in the famous MST problem (minimum weight spanning tree problem on a
given n-vertex graph G), the goal is to compute the constant-free (min, +) polynomial
f(x) = mina∈A⟨a, x⟩, where A is the set of characteristic 0-1 vectors of spanning trees
of G (viewed as sets of their edges). In the not less prominent assignment problem, A
is the set of characteristic 0-1 vectors of perfect matchings, etc.

We say that two tropical (min, +) polynomials f and g are equivalent, and write
f ≡ g, if f(x) = g(x) holds for all nonnegative input weightings x ∈ Rn

+. Thus, a
tropical (min, +) circuit F computes a given tropical (min, +) polynomial f iff the
tropical (min, +) polynomial g produced by F is equivalent to f .

As shown in [12, Lemma 3.2], when computing tropical constant-free polynomials,
we can safely restrict us to constant-free circuits: the minimal circuit size will not
increase. Let f(x) = mina∈A⟨a, x⟩ and g(x) = minb∈B ⟨x, b⟩ + cb be tropical (min, +)
polynomials with A, B ⊆ Nn and cb ⩾ 0, and let go(x) = minb∈B ⟨x, b⟩ be the
constant-free version of g.

Lemma 1 (Eliminating constants, [12]). If g ≡ f , then also go ≡ f .
Proof. Since the constants cb are nonnegative, we clearly have go(x) ⩽ g(x) = f(x)

for all input weightings x ∈ Rn
+. So, it remains to show that f(x) ⩽ go(x) holds for

all x ∈ Rn
+, as well. To show this, we will exploit the fact that f(λx) = λ · f(x) and

go(λx) = λ · go(x) hold for every scalar λ ∈ R. Assume for the sake of contradiction
that f(x0) > go(x0) holds for some input weighting x0 ∈ Rn

+. Then the difference
d = f(x0) − go(x0) is positive. We can assume that the constant c := maxb∈B cb

is also positive, for otherwise, there would be nothing to prove. Take the scalar
λ := 2c/d > 0. Since go(x0) = f(x0) − d, we obtain g(λx0) ⩽ go(λx0) + c =
λ · go(x0) + c = λ[f(x0) − d] + c = f(λx0) − c , which is strictly smaller than f(λx0), a
contradiction with f(x) = g(x) for all x ∈ Rn

+.
Sets B of “exponent” vectors produced by constant-free tropical (min, +) circuits

have the following properties (which are even stronger than those for monotone Boolean
circuits, as given by Claim 1).

Lemma 2. Let fA(x) = mina∈A⟨a, x⟩ and fB(x) = minb∈B⟨b, x⟩ be (min, +) poly-
nomials, where A ⊆ {0, 1}n is an antichain and B ⊆ Nn. The following assertions are
equivalent:

(i) fA(x) = fB(x) holds for all x ∈ {0, 1, n + 1}n;
(ii) A ⊆ B ⊆ A↑.
Proof. The (ii) ⇒ (i) direction is simple, and even holds for all input weightings

x ∈ Rn
+. Indeed, since the input weights x ∈ Rn

+ are nonnegative, A ⊆ B implies
fA(x) ⩾ fB(x), while B ⊆ A↑ implies fA(x) ⩽ fB(x).

To show the (i) ⇒ (ii) direction, suppose that fA(x) = fB(x) holds for all input
weightings x ∈ {0, 1, n + 1}n. To show the inclusion B ⊆ A↑, take an arbitrary vector
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b ∈ B, and consider the weighting x ∈ {0, 1}n such that xi := 0 for i ∈ sup(b), and
xi := 1 for i ̸∈ sup(b). Take a vector a ∈ A on which the minimum fA(x) = ⟨a, x⟩ is
achieved. Then ⟨a, x⟩ = fA(x) = fB(x) ⩽ ⟨b, x⟩ = 0. Thus, sup(a) ⊆ sup(b). Since
b ∈ Nn and a is a 0-1 vector, this yields b ⩾ a, as desired.

To show the inclusion A ⊆ B, take an arbitrary vector a ∈ A, and consider the
weighting x ∈ {1, n + 1}n with xi := 1 for all i ∈ sup(a) and xi := n + 1 for all
i ̸∈ sup(a). Take a vector b ∈ B for which ⟨b, x⟩ = fB(x) holds, and let us first
show that then sup(b) = sup(a) must hold as well. On the weighting x, we have
⟨b, x⟩ = fB(x) = fA(x) ⩽ ⟨a, x⟩ = ⟨a, a⟩ ⩽ n. If bi ⩾ 1 held for some i ̸∈ sup(a),
then we would have ⟨b, x⟩ ⩾ bixi = bi(n + 1) > n, a contradiction. Thus, the
inclusion sup(b) ⊆ sup(a) holds. Since B ⊆ A↑, there is a vector a′ ∈ A such that
a′ ⩽ b. Hence, sup(a′) ⊆ sup(b) ⊆ sup(a). Since both a and a′ are 0-1 vectors, this
yields a′ ⩽ a. Since the set A is an antichain, we have a′ = a a and the equality
sup(b) = sup(a) follows. On this particular weighting x, we have ⟨b, x⟩ = ⟨b, a⟩. Hence
⟨a, b⟩ = ⟨b, x⟩ = fB(x) = fA(x) ⩽ ⟨a, a⟩ which, together with sup(b) = sup(a) and
b ∈ Nn yields b = a. Thus, our vector a ∈ A belongs to the set B, as desired.

The following lemma shows that the power of tropical (min, +) circuits solving
0/1 optimization problem is the same as that of monotone read-once Boolean (∨, ∧)
circuits. For a finite set A ⊆ Nn of vectors, let

Min(A) := min size of a (min, +) circuit solving the minimization
problem g(x) = mina∈A⟨a, x⟩ on A.

Theorem 1. Let A ⊆ {0, 1}n be an antichain, and f(x) =
∨

a∈A

∧
i∈sup(A) xi be

the Boolean function defined by A. Then

Min(A) = B1(f) .

Proof. To show the inequality Min(A) ⩽ B1(f), take a monotone read-once (∨, ∧)
circuit F of size s = B1(f) computing the Boolean function f , and let B ⊆ Nn be the
set of exponent vectors produced by F . By Claim 1, we have B ⊆ A↑. Since the circuit
F is a read-k circuit, we also have: ∀a ∈ A ∃b ∈ B such that sup(b) = sup(a) and
bi ⩽ 1 for all i ∈ sup(b). Since a ∈ A are 0-1 vectors, this latter property means that
A ⊆ B. Thus, the set B satisfies the inclusions A ⊆ B ⊆ A↑. The tropical (min, +)
version F ′ of F (obtained by replacing OR gates by min gates, and AND gates by
addition gates) produces the same set B of “exponent” vectors. Since the inclusions
A ⊆ B ⊆ A↑ hold, Lemma 2 implies that the circuit F ′ solves the minimization
problem g(x) = mina∈A⟨a, x⟩ on A. Hence, Min(A) ⩽ s = B1(f) holds.

To show the inequality B1(f) ⩽ Min(A), take a tropical (min, +) circuit F of
size s = Min(A) solving the minimization problem g(x) = mina∈A⟨a, x⟩ on the set
A, and let B ⊆ Nn be the set of exponent vectors produced by the circuit F . By
Lemma 1, we can assume that the circuit F is constant-free. So, Lemma 2 gives us
the inclusions A ⊆ B ⊆ A↑. The Boolean version F ′ of F (obtained by replacing min
gates by OR gates, and addition gates by AND gates) produces the same set B of
“exponent” vectors. Together with Claim 1 and the definition of read-once circuits,
inclusions A ⊆ B ⊆ A↑ imply that F ′ is a read-once circuit and computes the Boolean
function f

3.2. From read-once Boolean to arithmetic circuits. Say that two (arith-
metic) polynomials with positive coefficients are similar if they have the same mono-
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mials (with apparently different coefficients). For a set A ⊆ Nn of vectors, let

Arith(A) := min size of a monotone arithmetic circuit computing
a polynomial similar to f(x) =

∑
a∈A

∏n
i=1 xai

i .

Let the degree of a vector b ∈ Nn be the sum b1 + · · · + bn of its entries. For
a set B ⊆ Nn of vectors, its lower envelope ⌊A⌋ ⊆ A consists of vectors of smallest
degree. The lower envelope of a polynomial P (x) =

∑
b∈B cb

∏n
i=1 xbi

i is the polynomial∑
b∈⌊B⌋ cb

∏n
i=1 xbi

i .
Jerrum and Snir [9, Theorem 2.4] observed that, by appropriately discarding some

addition gates, every monotone arithmetic circuit computing a polynomial can be
easily transformed into a monotone arithmetic circuit computing its lower envelope.

Claim 2 (Jerrum and Snir [9]). For every A ⊆ Nn, Arith(⌊A⌋) ⩽ Arith(A).
Proof. This follows from simple properties of envelopes. The degree of a sum

of two vectors is the sum of their degrees. Thus, ⌊A + B⌋ = ⌊A⌋ + ⌊B⌋ for the
Minkowski sum of sets of vectors. Second, for the union we have ⌊A ∪ B⌋ = ⌊A⌋ if the
minimum degree of a vector in A is smaller than the minimum degree of a vector in B,
⌊A ∪ B⌋ = ⌊B⌋ if the minimum degree of a vector in B is smaller than the minimum
degree of a vector in A, and ⌊A ∪ B⌋ = ⌊A⌋ ∪ ⌊B⌋ otherwise.

Thus, given an arithmetic (+, ×) circuit producing a polynomial P , we can obtain
a (+, ×) circuit producing the lower envelope of P by appropriately discarding some of
the edges entering addition (+) gates; discarding an edge (w, v) entering an addition
gate v = u + w means: delete that edge, delete the + operation labeling the gate v,
and contract the other edge (u, v).

A set A ⊆ {0, 1}n is homogeneous if all vectors of A have the same number of 1s.
A monotone Boolean function f is homogeneous if the set Af ⊆ f−1(1) of lower ones
of f is homogeneous. Note that then ⌊Af ⌋ = Af .

Theorem 2. For every monotone Boolean function f , we have

B1(f) ⩾ Arith(⌊Af ⌋) .

In particular, if f is homogeneous, then B1(f) ⩾ Arith(Af ).
Proof. Let A := Af ⊆ f−1(1) be the set of lower ones of f , and let F be a

monotone read-once Boolean (∨, ∧) circuit of size s = B1(f) computing f . Let also
P (x) =

∑
b∈B cb

∏n
i=1 xbi

i be the polynomial computed by the arithmetic (+, ×) version
of the circuit F . Since F is a read-once circuit, we know that the inclusions A ⊆ B ⊆ A↑

hold. This yields ⌊B⌋ = ⌊A⌋. Thus, the polynomial Q(x) =
∑

a∈⌊A⌋ ca

∏n
i=1 xai

i is
the lower envelope of the polynomial P . Since the polynomial P is computed the
arithmetic circuit F ′ of size s, we have Arith(B) ⩽ s, and Claim 2 yields Arith(⌊A⌋) =
Arith(⌊B⌋) ⩽ Arith(B) ⩽ s.

3.3. Some explicit lower bounds. Currently, strong (even exponential) lower
bounds on Arith(A) are known for many explicit homogeneous sets A ⊆ {0, 1}n,
starting from the classical bounds by Schnorr [23], Valiant [24], Jerrum and Snir [9],
and Gashkov [5]. Together with Theorems 1 and 2, these bounds are also lower bounds
on the size of monotone Boolean read-once (∨, ∧) circuits computing the corresponding
Boolean functions f(x) =

∨
a∈A

∧
i∈sup(a) xi, and on the size of tropical (min, +)

circuits solving the corresponding minimization problems f(x) = mina∈A

∑n
i=1 aixi.

We only mention some of known lower bounds on Arith(A).
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The Schnorr bound. A set A is cover-free if a + b ⩾ c with a, b, c ∈ A implies
c ∈ {a, b}. Schnorr [23] has proved that

(3.1) Arith(A) ⩾ |A| − 1

holds for every cover-free set A ⊆ Nn.
Example 3.2 (Cliques). The monotone Boolean function f = CLIQUEn,k accepts

a subgraph of Kn iff it contains a k-clique. Since all k-cliques have the same number(
k
2
)

of edges, this function is homogeneous. The set A = Af of lower ones of this
function consists of characteristic 0-1 vectors of all |A| =

(
n
k

)
k-cliques (viewed as sets

of their edges). Since all k-cliques have the same number
(

k
2
)

of edges, the set A is
homogeneous, and Theorems 1 and 2 yield Min(A) = B1(f) ⩾ Arith(A).

On the other hand, Schnorr’s bound (3.1) yields Arith(A) ⩾
(

n
k

)
− 1 . To show this,

it is enough to verify that the set A is cover-free. To show this, assume the opposite,
i.e., that the union of some two k-cliques contains some third k-clique. Since each
k-clique has the same number k of nodes, the latter clique must then have a node u
not in the first clique and a node v not in the second clique. If u = v then the node u
is not covered, and if u ̸= v then the edge {u, v} is not covered by the union of the
first two cliques, a contradiction. Thus, A is cover-free.

The Hyafil–Valiant–Jerrum–Snir bound. A set A ⊆ Nn is homogeneous of degree m
if a1+· · ·+an = m holds for all vectors a ∈ A. A sumset X+Y = {x+y : x ∈ X, y ∈ Y }
of two sets of vectors X, Y ⊆ Nn is r-homogeneous if the set X is homogeneous of
degree r. Let hr(A) be the maximum of |X +Y | over all sets X, Y ⊆ Nn such that X is
r-homogeneous and X +Y ⊆ A holds. By viewing polynomials as sets of their exponent
vectors, the following lower bound was implicitly proved by Hyafil [8], Valiant [24],
and Jerrum and Snir [9]: if A ⊆ Nn is homogeneous of degree m ⩾ 3, and if hr(A) ⩽ h
holds for all m/3 ⩽ r ⩽ 2m/3, then

(3.2) Arith(A) ⩾ |A|/h .

Example 3.3 (Perfect matchings). The perfect matching function is a monotone
Boolean function f = Matchn which accepts a subgraph of Kn,n iff it contains a perfect
matching. Since perfect matchings have the same number n of edges, this function
is homogeneous. The set A = Af of lower ones of this function consists of |A| = n!
characteristic 0-1 vectors of all perfect matchings (viewed as sets of their edges). Since
the set A is homogeneous, Theorems 1 and 2 yield Min(A) = B1(f) ⩾ Arith(A).

On the other hand, the bound (3.2) yields Arith(A) ⩾
(

n
n/3

)
. To show this, it is

enough to show that hr(A) ⩽ n!
(

n
r

)−1 holds for every n/3 ⩽ r ⩽ 2n/3. So, take any
r-homogeneous sumset X + Y such that X + Y ⊆ A. Every matching with r edges can
be contained in at most (n − r)! perfect matchings. Hence, for every x ∈ X, we have
|Y | = |x + Y | ⩽ (n − r)!. Similarly, every vector y ∈ Y corresponds to a matching with
n − r edges, and we have |X| = |X + y| ⩽ r!. Thus, |X + Y | ⩽ (n − r)!r! = n!

(
n
r

)−1.
Since

(
n
r

)
⩾

(
n

n/3
)

for every n/3 ⩽ r ⩽ 2n/3, this yields hr(A) ⩽ h := n!
(

n
n/3

)−1, and
(3.2) yields the claimed lower bound Arith(A) ⩾ |A|/h =

(
n

n/3
)
.

The Gashkov–Sergeev bound. A set A ⊆ Nn of vectors is (k, l)-thin if the following
holds for any two subsets X, Y ⊆ Nn of vectors: if X + Y ⊆ A then |X| ⩽ k or
|Y | ⩽ l. In other words, a set A ⊆ Nn is (k, l)-thin if for any k + 1 distinct vectors
a1, . . . , ak+1 ∈ Nn, the system of relations a1 + x ∈ A, a2 + x ∈ A, . . ., ak+1 + x ∈ A
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has at most l distinct solutions x ∈ Nn. The interpretation of thin sets A ⊆ Nn in
terms of graphs is the following. Associate with A the (infinite) bipartite graph GA

where two vertices x ∈ Nn and y ∈ Nn are adjacent iff x + y ∈ A. Then A is (k, l)-thin
iff GA contains no copy of a complete bipartite (k + 1) × (l + 1) graph as a subgraph.

Gashkov and Sergeev [6] have proved that

(3.3) Arith(A) ⩾ |A|/ max{k3, l2} − 1

holds for any (k, l)-thin set A ⊆ Nn. For k = l, this bound was proved much earlier by
Gashkov [5]. Using a fairly elementary “bottlenecks counting” argument, a lower bound
Arith(A) ⩾ |A|/2lk2 was proved in [11] for extended monotone arithmetic circuits,
where instead of single variables, any polynomials with at most k monomials can be
used as inputs.

Example 3.4 (Norm sets). Let q be a prime-power, t ⩾ 2 an integer, and
consider the field F = GF(qt) with qt elements. The norm function is a mapping
N : GF(qt) → GF(q) given by N(a) = a · aq · · · aqt−1 = a(qt−1)/(q−1). Consider
the set A = {a ∈ F : N(a) = 1} of all elements of unit norm. It is known (see,
e.g., [15]) that |A| = (qt − 1)/(q − 1). Kollár, Rónyai and Szabó [13, Theorem 3.3]
proved that, for every t distinct elements a1, . . . , at of F, the system of equations
N(a1 + x) = 1, N(a2 + x) = 1,. . ., N(at + x) = 1 has at most t! solutions x ∈ F.
Hence, the set A is (t, t!)-thin over the group (F, +). Now let q := 2r and n := rt.
By viewing elements of GF(2n) as vectors in {0, 1}n, we obtain an explicit norm
set An,t ⊆ {0, 1}n of |An,t| = (2rt − 1)/(2r − 1) ⩾ 2r(t−1) = 2n−n/t vectors which is
(t, t!)-thin over (F, +), and hence, also over the semigroup (Nn, +). Thus, (3.3) yields
the lower bound Arith(An,t) ⩾ 2n−n/t/(t!)2 ⩾ 2n−n/t−2t log t. For t =

√
n, we obtain4

Arith(An,t) ⩾ 2n−2
√

n log n .
The norm sets are not necessarily homogeneous, but sets of 0-1 vectors can

be easily made homogeneous by just doubling the length of vectors. Namely, let
n = 2m and define the homogeneous extension of a set B ⊆ {0, 1}m to be the set
A = {(b, b) : b ∈ B} ⊆ {0, 1}n, where b denotes the componentwise negation of a 0-1
vector b. For example, if b = (0, 0, 1, 0, 1), then b = (1, 1, 0, 1, 0). Note that the set
A is already homogeneous because every its vector has exactly m ones. It is easy to
verify that if B is (k, l)-thin, then also A is (k, l)-thin. Thus, if m is a square of an
integer, and A ⊆ {0, 1}n with n = 2m is the homogeneous extension of the norm-set
Am,t ⊆ {0, 1}m for t =

√
m, then Arith(A) ⩾ 2n/2−o(n).

3.4. Read-2 circuits can be exponentially stronger than read-1. Let us
consider the following monotone Boolean function whose inputs are Boolean n × n
matrices x = (xi,j):

Isoln(x) = 1 := iff every row and every column of x has at least one 1.

Lemma 3. For f = Isoln, we have B1(f) = 2Ω(n) but B2(f) ⩽ 2n2.
Proof. The set A := f−1(1) consists of all matrices a = (ai,j) with at least one 1

in each line (row or column). The smallest number of 1s in a matrix a ∈ A is n, and
the matrices in A with this number of 1s are permutation matrices. So, ⌊A⌋ = Ag is
the set of the lower ones of the perfect matching function g = Matchn, and we already
know that Arith(Ag) = 2Ω(n) (Example 3.3); actually, using a tighter argument Jerrum

4To our best knowledge, this is the highest known lower bound on the monotone arithmetic circuit
complexity of an explicit multilinear polynomial.
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and Snir [9] have proved that Arith(Ag) ⩾ n(2n−1 − 1). Together with Theorem 2, this
yields B1(f) ⩾ Arith(⌊A⌋) = Arith(Ag) = 2Ω(n).

To show B2(f) ⩽ 2n2, observe that f can be computed by a trivial monotone
Boolean circuit

F (x) =
n∧

i=1

( n∨
j=1

xi,j

) n∧
j=1

( n∨
i=1

xi,j

)
of size at most 2n2. So, it remains to verify that F is a read-2 circuit. Let B ⊆ {0, 1}n×n

be the set of exponent vectors of the polynomial

PF (x) =
n∏

i=1

( n∑
j=1

xi,j

) n∏
j=1

( n∑
i=1

xi,j

)
produced by the arithmetic version of the circuit F . Note that each matrix b ∈ B
is the sum b = x + y of a matrix x with exactly one 1 is each row and a matrix y
with exactly one 1 in each column, while each matrix a ∈ Af is the entry-wise OR
a = x ∨ y of two such matrices. Since sup(x + y) = sup(x ∨ y), and since none of the
matrices b ∈ B has any entry larger than 2, the circuit F is a read-2 circuit.

4. Multilinear DeMorgan circuits. We now turn to general, not necessarily
monotone Boolean (∨, ∧, ¬) circuits. For readers convenience, let us first recall some
standard concepts regarding (not necessarily monotone) Boolean functions and circuits.

A literal is either a variable xi = x1
i or its negation xi = x0

i . A term is an AND of
literals. A term t is a zero term if it contains a variable xi together with its negation
xi; otherwise, t is a nonzero term. or a term t, var(t) denotes the set of variables xi

such that xi or xi appears in t. For two Boolean functions f, g : {0, 1}n → {0, 1}, the
notation f ⩽ g means that f(a) ⩽ g(a) holds for all a ∈ {0, 1}n.

An implicant of a Boolean function f : {0, 1}n → {0, 1} is a nonzero term t ̸= 0
such that t ⩽ f holds, that is, for every a ∈ {0, 1}n, t(a) = 1 implies f(a) = 1. In
other words, a nonzero term t is an implicant of f if every evaluation of the literals of
t to 1 already forces the function f to take value 1, regardless of the 0/1 values given
to the remaining variables. An implicant t of f is a prime implicant of f if no proper
subterm t′ of t has this property, that is, if t ⩽ t′ ⩽ f , then t′ = t. For example, if
f(x, y, z) = xy ∨ xyz, then xy, xyz and xz are implicants of f , but xyz is not a prime
implicant.

The ith neighbor of a vector a ∈ {0, 1}n if the vector b ∈ {0, 1}n differing from a
in only the ith position. A Boolean function f : {0, 1}n → {0, 1} depends on the ith
variable xi if f(b) ̸= f(a) holds for the ith neighbor b of some vector a ∈ {0, 1}n.

Claim 3. A Boolean function f(x1, . . . , xn) depends on a variable xi iff some
prime implicant of f contains xi or xi.

Proof. The ⇐ direction follows directly from the definition of prime implicants.
For the ⇒ direction, assume that f(a) = 1 for some vector a but f(b) = 0 for its ith
neighbor b, and take a prime implicant p such that p(a) = 1. If p contained neither xi

nor xi, then we would have p(b) = 1 and, hence, f(b) = 1.
A DeMorgan (∨, ∧, ¬) circuit F (x) on a vector x = (x1, . . . , xn) of variables has

fanin-2 AND and OR gates, and inputs are the variables x1, . . . , xn and their negations
x1, . . . , xn. As before, the size of a circuit is the total number of gates in it. A
monotone Boolean circuit is a DeMorgan circuit without negated input literals as
inputs.
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A DeMorgan (∨, ∧, ¬) circuit F is syntactically multilinear if the two subcircuits
rooted at inputs to any AND gate have no input literals of the same variable xi.
Krieger [14] that syntactically multilinear (∨, ∧, ¬) circuits generalize non-deterministic
read-once branching programs. He also showed that minimal syntactically multilinear
(∨, ∧, ¬) circuits computing monotone functions are monotone. It is clear that exponent
vectors produced by arithmetic (+, ×) versions of monotone semantically multilinear
(∨, ∧) circuits F are 0-1 vectors. So, any such circuit F computing a Boolean function
f must have at least Arith(⌊Af ⌋) gates.

Ponnuswami and Venkateswaran [18] relaxed the “syntactic” multilinearity to
“semantic” multilinearity as follows.

Definition 2 (Multilinear circuits). A DeMorgan (∨, ∧, ¬) circuit F is multilinear
if the Boolean functions and computed at the inputs to any AND gate depend on
disjoint sets of variables.
Note that this does not exclude that some paths in the circuit from the same input
literal can reach both these gates. For example, g = x ∨ xy and h = y depend on
disjoint sets of variables, because g does not depend on y.

Our goal in the rest of the paper is to show that multilinear DeMorgan (∨, ∧, ¬)
circuits are not stronger than monotone read-1 (∨, ∧) circuits and, hence, also not
stronger than monotone arithmetic (+, ×) circuits. And as we will see, this happens
because the former circuits are actually syntactically multilinear “with respect to
prime implants,” as directly follows from the following direct consequence of Claim 3.

Claim 4. If g and h are the functions computed at the inputs of some AND gate
of a multilinear DeMorgan (∨, ∧, ¬) circuit, then var(p) ∩ var(q) = ∅ holds for every
prime implicant p of g and any prime implicant q of h.

4.1. Monotone multilinear circuits. Recall that a monotone Boolean circuit
is a (∨, ∧) circuit, that is a DeMorgan (∨, ∧, ¬) circuit, where negated input literals
x1, . . . , xn are not used as inputs.

Lemma 4. Every monotone multilinear Boolean circuit F is a read-once circuit.
Proof. Easy induction on the size of the circuit F . Suppose that F is a multilinear

circuit. Let G and H be the subcircuits of F whose output gates enter the output
gate of F , and let g and h be the monotone Boolean functions computed by these
subcircuits, and let B = BF , U = BG and V = BH be the sets of exponent vectors
produced by these three circuits. Suppose that the lemma holds for the circuits G and
H. Since the entire circuit F is multilinear, both subcircuits G and H are multilinear.
So, by the induction hypothesis, both G and H are read-once circuits. To show that
then the entire circuit F is a read-once circuit, take an arbitrary lower one a ∈ Af

of f . We have to show that a ∈ B. If F = G ∨ H, then B = U ∪ V and a ∈ Ag (or
a ∈ Ah). By the induction hypothesis, we have that a ∈ U ⊆ B (or a ∈ V ⊆ B), and
we are done.

Now let F = G ∧ H. Then B = U + V (a Minkowski sum), and a = x ∨ y
(a componentwise OR of x y) for some vectors x ∈ Ag and y ∈ Ah. Since the
circuit F is multilinear, Claim 4 implies that the prime implicants of the (monotone)
Boolean functions computed at the inputs to any AND gate are disjoint. Thus,
sup(x) ∩ sup(y) = ∅, that is, a = x + y. By the induction hypothesis, we have that
x ∈ U and y ∈ V . So, a = x + y belongs to B = U + V , as desired.

Remark 4.1. Note that the converse of Lemma 4 does not hold. For example, the
circuit F = xy ∨ (x ∨ z)(y ∨ z) computing f = xy ∨ xz ∨ yz is a read-once circuit: the
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polynomial P = 2xy + xz + yz produced by the arithmetic version xy + (x + z)(y + z)
of F contains all three prime implicants of f (one with coefficient 2, and two with
coefficients 1). But the circuit F is not multilinear because the functions g = x ∨ z
and h = y ∨ z depend on the same variable z.

For a monotone Boolean function f , let

B+
lin(f) := min size of a monotone multilinear (∨, ∧) circuit computing f .

Corollary 1. For every monotone Boolean function f , we have

B+
lin(f) ⩾ B1(f) ⩾ Arith(⌊Af ⌋) .

In particular, if the function f is homogeneous, then B+
lin(f) ⩾ Arith(Af ).

Proof. The first inequality B+
lin(f) ⩾ B1(f) follows directly from Lemma 4, while

the inequality B1(f) ⩾ Arith(⌊Af ⌋) is given by Theorem 2.
Remark 4.2. Using different arguments, for homogeneous functions f , Lingas [16]

proved a slightly worse lower bound B+
lin(f) ⩾ Arith(Af )/O(k2), where k is the number

of 1s in each vector of Af .

4.2. Non-monotone multilinear circuits. Our goal now is to show that for
any (not necessarily monotone) Boolean function, Arith(⌊Af ⌋) is also a lower bound
on the size of any multilinear DeMorgan (∨, ∧, ¬) circuit computing f (Theorem 3
below). In particular, we will show that if f is monotone, then minimal multilinear
DeMorgan circuits for f must, in fact, be monotone.

Every DeMorgan circuit F not only computes a particular Boolean function but
also produces (purely syntactically) a unique set T (F ) of terms in a natural way:

◦ if F = z is an input literal, then T (F ) = {z};
◦ if F = F1 ∨ F2, then T (F ) = T (F1) ∪ T (F2);
◦ if F = F1 ∧ F2, then T (F ) = {t1t2 : ti ∈ T (Fi), i = 1, 2}.

During the production of terms, we use the “shortening” axiom x ∧ x = x, but do
not use the “annihilation” axiom x ∧ x = 0. So, T (F ) can contain zero terms, that is,
terms with a variable xi and its negation xi. Easy induction on the circuit size shows
that the Boolean function computed by a circuit F is the function computed as the
OR of all produced terms. Thus, every nonzero term t ∈ T (F ) is an implicant of the
Boolean function computed by F .

A nonzero version of a zero term t is a nonzero term t′ obtained from t by removing
exactly one literal from each pair xi, xi of contradicting literals appearing in t (it t is
a nonzero term, then we let t′ = t). For example, nonzero versions of t = x1x1x2x3
are t′ = x1x2x3 and t′ = x1x2x3. Note that, in general, a circuit F may produce zero
terms whose nonzero versions are not implicants of (the function computed by) F . For
example, the circuit F = (x ∨ z)(y ∨ z) produces a zero term t = zz neither of whose
two nonzero extension t′ = z and t′ = z is an implicant of the function computed
by F .

The following lemma shows that multilinear circuits make an exception.
Lemma 5 (Zero terms lemma). Let F be a DeMorgan circuit computing a Boolean

function f . If F is multilinear, then nonzero versions of zero terms produced by F are
implicants of f .

Proof. Let F1 and F2 be the subcircuits of F rooted in the two gates entering the
last gate of the circuit F . We argue by induction on the number s of gates in F . The
basis case s = 1 is trivial, because then F1 = xα

i and F2 = xβ
j are input literals. If
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F = F1 ∧ F2 = xα
i xβ

j then, due to multilinearity of F , we have i ̸= j, implying that
xα

i xβ
j is not a zero term. If F = F1 ∨ F2 = xα

i ∨ xβ
j , then we have no produced zero

terms either.
Now suppose that the lemma holds for all DeMorgan circuits of size at most s − 1,

and let F be a circuit of size s. Since the circuit F is multilinear, both subcircuit
F1 and F2 are also multilinear. Since each of F1 and F2 has at most s − 1 gates, the
lemma holds for both these subcircuits, i.e. t′

1 ⩽ F1 and t′
2 ⩽ F2 hold for any nonzero

version t′
1 of any zero term t1 ∈ T (F1) and for any nonzero version t′

2 of any zero term
t2 ∈ T (F2). Take a zero term t ∈ T (F ) (if there is any), and let t′ be any nonzero
version of t. Our goal is to show that t′ ⩽ F holds.

The case when F = F1 ∨F2 is obvious: in this case, we have t ∈ T (F1) or t ∈ T (F2),
and t′ ⩽ F follows by the induction hypothesis.

So let F = F1 ∧ F2. In this case, our zero term t is of the form t = t1t2 for some
(not necessarily zero) terms t1 ∈ T (F1) and t2 ∈ T (F2). Take any nonzero version t′

of t = t1t2. That is, t′ is obtained by removing (replacing by constant 1) exactly one
literal z ∈ {xi, xi} from each contradicting factor xixi of t. Let Z be the set of all
removed literals when forming t′. Call a literal z ∈ Z crossing if z belongs to t1, z
belongs to t2 and zz is a factor of neither of the terms t1 and t2. Let Z ′ ⊆ Z consist
of all crossing literals.

By the induction hypothesis, for the nonzero versions t′
1 and t′

2 of terms t1 and
t2 obtained by removing all literals z ∈ Z \ Z ′ from them, we have t′

1 ⩽ F1 and
t′
2 ⩽ F2. Hence, there is a prime implicant p1 of (the function computed by) F1 such

that t′
1 ⩽ p1 ⩽ F1, and a prime implicant p2 of F2 such that t′

2 ⩽ p2 ⩽ F2. Since
the circuit F is multilinear, Claim 4 implies that var(p1) ∩ var(p2) = ∅ and, hence,
neither p1 nor p2 can contain any crossing literal z ∈ Z ′. Our nonzero version t′ of
the zero term t = t1t2 is of the form t′ = t′′

1 t′′
2 , where t′′

1 and t′′
2 are the terms resulting

after crossing literals z ∈ Z ′ are further removed from t′
1 and t′

2. Since neither p1 nor
p2 can contain any crossing literal, we still have t′′

1 ⩽ p1 and t′′
1 ⩽ p1. This yields

t′ = t′′
1 t′′

2 ⩽ p1p2 ⩽ F1 ∧ F2 = F , as desired.

4.3. From non-monotone to monotone circuits. The positive factor t+ of a
term t is obtained by replacing every its negated literal with constant 1. That positive
factors of implicants of monotone Boolean functions are also their implicants is an
almost obvious fact.

Claim 5. Let f be a monotone Boolean function, and t be a nonzero term. If
t ⩽ f then also t+ ⩽ f .

Proof. Let t ⩽ f hold (i.e., t is an implicant of f). Since the function f is
monotone, f(a) = 0 implies f(b) = 0 for all b ⩽ a. That is, if f reject a vector a, then
it reject any vector obtained from a by flipping some its 1s to 0s. Thus, if t ⩽ f , then
t(a) = 0 must imply t(b) = 0 for all b ⩽ a, meaning that t+(a) = 0 must then hold as
well.

We can view every DeMorgan circuit F (x) computing a Boolean function f(x)
of n variables as a monotone circuit H(x, y) on 2n variables with the property that
f(x) = H(x, x) holds for all x ∈ {0, 1}n, where x = (x1, . . . , xn) is the complement of
x = (x1, . . . , xn). The monotone version of the circuit F (x) is the monotone circuit
F+(x) = H(x, 1⃗) obtained by replacing every negated input literal xi with constant 1.

The upward closure of a not necessarily monotone Boolean function f(x) is the
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monotone Boolean function
f▽(x) :=

∨
z⩽x

f(z) .

A lower one of a (not necessarily monotone) Boolean function f is a vector a such
that f(a) = 1 but f(b) = 0 for all b ⩽ a, b ̸= a. Note that, if Af ⊆ f−1(1) denotes
the set of all lower ones of f , then f▽(x) = 1 iff x ⩾ a for some a ∈ Af . For example,
the set of lower ones of the parity function f(x) = x1 ⊕ · · · ⊕ xn consists of n vectors,
each with exactly one 1. So, f▽(x) = x1 ∨ · · · ∨ xn. In particular, f▽ = f holds for
every monotone Boolean function f .

Lemma 6. Let F be a DeMorgan circuit computing a Boolean function f .
(i) The circuit F+ computes f▽ if and only if the positive factor of every zero

term produced by F is an implicant of f▽.
(ii) If the circuit F is multilinear, then F+ computes f▽.
Proof. (i) Terms produced by the monotone version F+ of the circuit F are positive

factors t+ of terms t ∈ T (F ) produced by the circuit F : if t = t(x, x) then t(x, 1⃗) = t+.
On the other hand, for every term t we have t▽ = 0 if t is a zero term, and t▽ = t+
if t is a non-zero term. Since (g ∨ h)▽ = g▽ ∨ h▽ holds for any Boolean functions
g, h : {0, 1}n → {0, 1}, we obtain

(4.1) f▽ =
∨
t∈T

t▽ =
∨

t∈T ′

t+ ⩽
∨
t∈T

t+ = F+ ,

where T = T (F ) is the set of all terms produced by the circuit F , T ′ ⊆ T is the set of
all non-zero terms of T . By (4.1), the equality f▽ = F+ holds iff t+ ⩽ f▽ holds for
every term t ∈ T \ T ′, that is, iff the positive factor t+ of every zero term t ∈ T (F ) is
an implicant of f▽.

(ii) Suppose that the circuit F is multilinear. It is enough to show that then
t+ ⩽ f▽ holds in (4.1) for every zero term t ∈ T (F ) (if there is any). To show this,
take an arbitrary zero term t ∈ T (F ). Since the circuit F is multilinear, the zero
terms lemma (Lemma 5) implies that t′ ⩽ f holds for every nonzero version t′ of t. In
particular, t′ ⩽ f holds for the nonzero version t′ obtained by removing the negated
literal xi from each contradicting factor xixi of t (we replace each such literal by 1). In
the positive factor t′

+ of the term t′, we replace by 1s the remaining negated literals of
t′; hence, t′

+ = t+. Since t′ ⩽ f , we also have t′ ⩽ f▽. Since the Boolean function f▽

is monotone, Claim 5 yields t′
+ ⩽ f▽ and, hence, also the desired inequality t+ ⩽ f▽.

Remark 4.3. The converse of Lemma 6(ii) does not hold: the monotone version
F+ of a circuit F may compute f▽ even though the circuit F is not multilinear.
Consider, for example, the circuit F = yz ∨ x(y ∨ xy) computing the Boolean function
f(x, y, z) = xy ∨ yz. The upward closure of f is f▽ = x ∨ y. The monotone version
F+ = y · 1 ∨ x(1 ∨ 1 · y) = x ∨ y of the circuit F computes f▽. But the circuit F is not
multilinear, because the functions g = x and h = y ∨ xy computed at the inputs of an
AND gate depend on the same variable x: say, h(0, 1, 0) = 1 while h(1, 1, 0) = 0.

For a Boolean function f , let

B(f) := min size of a DeMorgan (∨, ∧, ¬) circuit computing f ;
Blin(f) := min size of a multilinear DeMorgan (∨, ∧, ¬) circuit computing f .

Theorem 3. For every Boolean function f , we have

Blin(f) ⩾ B1(f▽) ⩾ Arith(⌊Af ⌋) .
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If f is monotone, then Blin(f) ⩾ B1(f) ⩾ Arith(⌊Af ⌋).
Proof. Let F be a multilinear DeMorgan (∨, ∧, ¬) circuit of size s = Blin(f)

computing f . Since the circuit F is multilinear, Lemma 6 implies that its monotone
(also multilinear) version F+ computes the (monotone) upward closure g := f▽ of
f . The (monotone) circuit F+ has size at most s and, by Lemma 4, is a read-once
circuit. This shows the inequality Blin(f) ⩾ B1(g). The inequality B1(g) ⩾ Arith(⌊Ag⌋)
is given by Theorem 2. Since lower ones of a Boolean function f and of its upward
closure g = f▽ are the same, we have ⌊Ag⌋ = ⌊Af ⌋ and, hence, also Blin(f) ⩾ B1(g) ⩾
Arith(⌊Ag⌋) = Arith(⌊Af ⌋). If the function f is monotone, then g = f .

To demonstrate the weakness of (even non-monotone) multilinear (∨, ∧, ¬) circuits,
consider the permutation matrix function Pern. This is a non-monotone Boolean
function whose inputs are Boolean n × n matrices x = (xi,j), and

Pern(x) = 1 := iff every row and every column of x has exactly one 1.

That is, Pern(x) = 1 iff x is a permutation matrix.
Lemma 7. For f = Pern, we have Blin(f) = 2Ω(n) but B(f) = O(n3).
Proof. Note that the upward closure g := f▽ of the function f = Pern is the

perfect matching function g = Matchn which accepts a 0-1 matrix x = (xi,j) iff x
contains at least one permutation matrix as a submatrix. We already know that
Arith(Ag) = 2Ω(n) (Example 3.3). By Theorem 2, we have B1(g) ⩾ Arith(Ag), and
Theorem 3 gives a lower bound Blin(f) ⩾ B1(g) ⩾ Arith(Ag) = 2Ω(n) .

To show the upper bound B(f) = O(n3), consider the circuit F = F1 ∧ F2, where

F1 =
n∧

i=1

( n∨
j=1

xi,j ∧
∧
k ̸=j

xi,k

)
and F2 =

n∧
j=1

( n∨
i=1

xi,j ∧
∧
l ̸=i

xl,j

)
.

Note that F1(x) = 1 iff every row of x has exactly one 1, and F2(x) = 1 iff every
column of x has exactly one 1, meaning that the circuit F computes f = Pern. The
circuit F is actually a depth-3 formula with O(n2) unbounded fanin gates.

Acknowledgment. I am thankful to Andrzej Lingas for turning my attention to
multilinear circuits.
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