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Abstract

Given a noiseless protocol π0 computing a function f(x, y) of Alice and Bob’s private inputs
x, y, the goal of interactive coding is to construct an error-resilient protocol π computing f
such that even if some fraction of the communication is adversarially corrupted, both parties
still learn f(x, y). Ideally, the resulting scheme π should be positive rate, computationally
efficient, and achieve optimal error resilience.

While interactive coding over large alphabets is well understood, the situation over the
binary alphabet has remained evasive. At the present moment, the known schemes over the
binary alphabet that achieve a higher error resilience than a trivial adaptation of large alphabet
schemes are either still suboptimally error resilient [EKS20], or optimally error resilient with
exponential communication complexity [GZ22]. In this work, we construct a scheme achieving
optimality in all three parameters: our protocol is positive rate, computationally efficient, and
resilient to the optimal 1

6 − ϵ adversarial errors.
Our protocol employs a new type of code that we call a layered code, which may be of

independent interest. Like a tree code, a layered code allows the coder to encode a message in
an online fashion, but is defined on a graph instead of a tree.

∗Email: meghal@mit.edu
†Email: rachelyz@mit.edu

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 95 (2022)



Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Interactive Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Tree codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technical Overview 4
2.1 Obtaining Communication Complexity Oϵ(|π0|2) . . . . . . . . . . . . . . . . . . . . 5
2.2 Reducing the Communication Complexity to Oϵ(|π0|) . . . . . . . . . . . . . . . . . . 6
2.3 Codes on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Boosting to Achieve Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries 9
3.1 Noise Resilient Interactive Communication . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Boosting: Obtaining Computational Efficiency 10
4.1 The Simulation Paradigm of [GH13, BK12] . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Scaling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Layered Codes 15
5.1 Layered Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Prefix Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Sensitive Layered Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Positive Rate Scheme Resilient to 1
6 Errors 20

6.1 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.1 Transcript Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.2 Transcript Operations and Instructions . . . . . . . . . . . . . . . . . . . . . . 22
6.1.3 The Error Correcting Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 The Inefficient, Positive Rate Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.1 Formal Description of Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.4.1 Unique Decoding Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Definitions for the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4.3 Calculating the Change in Potential . . . . . . . . . . . . . . . . . . . . . . . 34
6.4.4 Concluding with Azuma’s Inequality . . . . . . . . . . . . . . . . . . . . . . . 41
6.4.5 Communication and Computational Complexity . . . . . . . . . . . . . . . . 43

7 Acknowledgments 43

i



1 Introduction

Interactive coding is an interactive analogue of error correcting codes [Sha48, Ham50] that was
introduced in the seminal work of Schulman [Sch92, Sch93, Sch96] and has been an active area of
study since. While error correcting codes address the problem of sending a message in a way that
is resilient to error, interactive coding addresses the problem of converting an interactive protocol
to an error resilient one.

Suppose two parties, Alice and Bob, each with a private input, engage in a protocol π0 to jointly
compute a function f of their private inputs. Given such a protocol π0, can we design a protocol
computing f that is:

(i) positive rate, i.e. |π| = O(|π0|) where |π|, |π0| denote the communication complexity of π, π0,

(ii) computationally efficient,

(iii) resilient to the maximal possible fraction of adversarial errors?

The protocol should have a fixed number of rounds and speaking order. This parallels the notion
of an efficiently encodable/decodable error correcting code with maximal distance.

The first positive rate interactive coding scheme, presented by Schulman [Sch96], was resilient
to 1

240
1 adversarial errors (bit flips) over the binary channel but is exponentially inefficient, thus

satisfying (i) but not (ii) or (iii). Many works since then sought to improve upon this scheme in
computational efficiency and/or error resilience.

When the encoding alphabet is large constant sized, Braverman and Rao [BR11] first studied
the problem of optimal error resilience. They constructed a large alphabet protocol achieving 1

4
error resilience, which they also showed to be optimal. Unfortunately, their protocol did not achieve
computational efficiency (ii). Computationally efficient schemes were not known until the work
of [BK12], who converted the 1

4 -error resilient, inefficient protocol to an efficient one achieving only
1
16 error resilience. Finally, the work of [GH13] attained the best of both worlds: they constructed
a protocol that was simultaneously efficiently decodable and resilient to 1

4 error, thus satisfying all
three criteria.

On the other hand, over the binary alphabet, optimal interactive coding has remained less well
understood. By simply replacing every letter of a large alphabet with its binary encoding, the large
alphabet protocols give rise to efficient, positive rate interactive coding schemes achieving an error
resilience of 1

8 . By contrast, the best known upper bound on error resilience is 1
6 [EGH16]. There are

two works improving the error resilience beyond 1
8 . The first is [EKS20]. Their protocol is resilient

to 5
39 error, and is positive rate but inefficient. The second is [GZ22], which constructs a scheme

achieving the optimal 1
6 -error resilience. However, both the communication and computational

complexity can be up to exponential in the length of π0. It thus remained open whether there exists
a scheme resilient to the maximal amount of error, while also being positive rate and efficient.

In this work, we construct precisely such a scheme. Our result, along with comparison to existing
work, is given in Figure 1.

Theorem 1.1. For any ϵ > 0 and any interactive binary protocol π0 computing a function f(x, y)
of Alice and Bob’s private inputs x, y, there exists a non-adaptive interactive binary protocol π

1Whenever we say that a protocol has resilience r ∈ [0, 1] in the introduction and overview, we mean that for any
ϵ, there exists an instantiation that achieves resilience r − ϵ.
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computing f(x, y) that is resilient to 1
6 − ϵ adversarial erasures. The communication complexity is

Oϵ(|π0|) and the computational complexity is Õϵ(|π0|).

Protocol Positive Rate? Efficient? Error Resilience
[GH13] yes yes 1/8
[EKS20] yes no 5/39
[GZ22] no no 1/6 (optimal)

This work yes yes 1/6 (optimal)

Figure 1: Interactive coding schemes over the binary channel

Layered Codes. Our protocol crucially relies on a new type of code that we call a layered code,
which generalizes a tree code. Recall that tree codes [Sch93, Sch96] are error correcting codes that
can be updated in an online manner: the i’th symbol in a codeword is dependent only on the first
i characters in the message. One can view a tree code as an assignment of code symbols Σcode to
the edges of the infinite |Σmes|-ary rooted tree, where Σmes is the alphabet of the message text. To
encode a message ∈ Σ∗

mes, one simply follows the rooted path specified by the message and reads
the code symbols off the edges.

Instead of being defined on trees, layered codes are an assignment of Σcode to a certain kind of
graph called layered graphs. A layered graph is a directed graph where vertices are partitioned into
layers such that there is only one vertex (the root node) in layer 0, and each vertex in layer i has
out-edges labeled with Σmes to vertices in layer i + 1.2 As with tree codes, to encode a message
∈ Σ∗

mes, one simply follows the rooted path specified by the message and reads the code symbols
off the edges.

In the literature, tree codes with a variety of distance or decoding properties have been studied
[Sch96, GMS11, BE14]. In our protocol, however, we will need our layered codes to satisfy a certain
new special property we call sensitivity. Intuitively, sensitivity means that a corrupted layered code
can be entirely decoded correctly as long as the latest symbol was received correctly. More precisely,
we show that:

Theorem 1.2 (Informal). There exists a layered code (i.e. an assignment of labels to a layered
graph) with the following property: for any string w ∈ Σn

code and message text x ∈ Σn
mes, w[1 : i]

uniquely decodes to v(x[1 : i]) for almost every i for which w[i] = C(x)[i]. Here, v(x[1 : i]) denotes
the vertex at the end of the rooted path specified by x[1 : i].

Layered codes may be of independent interest, beyond the application to our protocol. One
might also want to generalize more of the study of tree codes to the graph setting. We leave this as
an open topic, and discuss this further in Section 5.5.

1.1 Related Work

Our work relates primarily to the fields of interactive coding and tree codes. Besides the works we
have already discussed, we mention the following related works.

2Note that tree codes are layered codes, so our notion of a layered code generalizes tree codes.

2



1.1.1 Interactive Coding

Non-adaptive interactive coding (when the protocol is fixed length and fixed speaking order) was
studied starting with the seminal works of Schulman [Sch92, Sch93, Sch96] and continuing in a
prolific sequence of followup works, including [BR11, Bra12, BK12, BN13, Hae14, BE14, DHM+15,
GHK+16, GH17, EGH16, GH13, GI18, EKS20, GZ22].

We note that there are many other works studying variations upon this original interactive
coding setup, including adaptive and multi-party schemes. We refer the reader to an excellent
survey by Gelles [Gel17] for an extensive list of related work.

Other binary schemes resilient to 1
6 error. [EGH16] studies interactive coding over the feed-

back channel. Over the feedback channel, Alice and Bob are given the extra power to know, instantly,
what the other party received at the other end of the channel when they send a message. In this
setting, [EGH16] constructs a positive rate, efficient protocol resilient to 1

6 error, which is optimal
in the feedback setting as well. By contrast, we achieve 1

6 -error resilience with positive rate in the
standard setting without feedback.

The protocol of [EGH16] relies on feedback for a “guess” of the transcript so far, and then the
party responds according to whether or not they agree with this guess. The protocol of [GZ22]
(achieving 1

6 error resilience in channels without feedback, but inefficiently) also uses this idea,
however providing (unreliable) feedback through future messages instead. One step in our protocol
uses this idea as well, following the blueprint of the construction in [GZ22].

Efficiency. We also mention the work on obtaining interactive protocols that are efficient : pro-
tocols where Alice and Bob can compute their next message and output their final answer in
polynomial time. While Braverman and Rao’s protocol [BR11] is resilient to 1

4 corruption over
a large alphabet and incurs only a constant blowup in communication complexity, the parties’
computational efficiency incurs exponential blowup.

The work of [GH13] which draws inspiration from [BK12] addresses this problem. They provide
an algorithm which takes a protocol and “boosts” it, lowering the computational complexity while
increasing the alphabet size. We use a similar method to make our protocol computationally efficient
while avoiding the alphabet blowup.

1.1.2 Tree codes.

Tree codes were first introduced by Schulman [Sch93, Sch96] and have been studied since in a variety
of works [GMS11, Bra12, MS14, FGOS15, BGMO15, Pud16, CHS18, BYCY21]. Tree codes are a key
ingredient in achieving constant rate interactive coding schemes. They also have important uses as
streaming codes for both Hamming errors [FGOS15] and synchronization errors [BGMO15, HS21].
Recently, there has been work towards finding explicit tree codes with a constant sized alphabet
that are efficiently decodable and encodable [CHS18, BYCY21].

We specifically mention the concept of list tree codes introduced in [BE14], which are the list-
decoding analogue of error correcting codes in the tree code setting. Our concept of sensitive layered
codes generalize and strengthen Braverman and Efremenko’s definition of list tree codes.
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2 Technical Overview

We begin by recalling at a high level the binary protocol of [GZ22], which achieves optimal error
resilience 1

6 − ϵ, but whose communication complexity is quadratic in the input lengths.
Suppose Alice and Bob have private inputs x, y ∈ {0, 1}n. Consider the task of message exchange,

where the goal is for Bob to learn x and for Alice to learn y. The protocol of [GZ22] is a (16−ϵ)-error
resilient protocol achieving message exchange, where the communication complexity is Oϵ(n

2).
The protocol works as follows. Alice and Bob each keep a track of a guess ŷ or x̂ for the other

party’s input, initially set to ∅, and a weight wA or wB indicating their confidence for their guess ŷ
or x̂ respectively, initially set to 0.

The idea is that Alice can ask a question by sending Bob her guess ŷ encoded in an error
correcting code. Bob can then send her an answer telling her how to update ŷ to bring it closer
to his actual input y: append 0 (0), append 1 (1), delete the last bit (←), or “bingo – you got it
right!” (∗). (This last instruction ∗ tells Alice to increase wA. If Alice receives an instruction to
modify ŷ while wA > 0, she decreases wA by 1 instead.) Since Bob’s answer is always one of four
options, his possible answers can be made to be relative distance 2

3 apart (e.g. 000, 011, 101, 110),
so that the adversary would have to corrupt ≥ 1

3 of Bob’s bits sent (or 1
6 overall) to prevent Alice

from making good updates to ŷ (i.e. updates that get ŷ closer to y).
Now, since both Alice and Bob have to learn the other’s input, Alice and Bob simultaneously

ask a question and answer the other party’s last question. In other words, Alice’s message is
always of the form ECC(ŷ, x∗, δ), where x∗ is the question she just heard from Bob and δ is the
instruction on how to update x∗ to bring it closer to x. Similarly, Bob’s message is always of the
form ECC(x̂, y∗, δ). Here, ECC is a code with certain distance properties, including that for any x′, y′

the four codewords {ECC(x′, y′, 0),ECC(x′, y′, 1),ECC(x′, y′, ←),ECC(x′, y′, ∗)} should be pairwise
relative distance 2

3 from each other.
However, there are two problems with this current algorithm:

(a) The adversary can simultaneously corrupt both the question and answer in Bob’s message
ECC(x̂, ŷ, δ) by only corrupting 1

2 of the message, so that Alice receives an incorrect answer
and thus makes a bad update for only 1

2 cost.

(b) The adversary can partially corrupt Bob’s message (so that the message Alice receives is not
any codeword), so Alice does not know what question to answer.

The algorithm of [GZ22] fixes these problems with two additional rules.

• When Alice receives a message ECC(x′, ŷ, δ′), she usually only updates with probability 0.5.
However, if x′ = x (i.e. Bob has already figured out her input), she updates with probability
1.

• When Alice receives a partially corrupted message where she cannot determine what question
to answer, she defaults to sending ECC(ŷ, x, ∗). Correspondingly, when Bob receives any
message ECC(y′, x′, ∗) where the update instruction is ∗, he updates x̂ to be closer to x′.

Both these new rules require one important fact: that Alice knows what Bob’s correct output
ought to be (her input x). For us, we will be simulating a noiseless protocol π0 where the final
transcript depends on both parties’ private inputs, so that neither Alice nor Bob knows what the
correct final transcript ought to be. This is the main barrier to making the protocol of [GZ22] run
in time Oϵ(|π0|2) as opposed to in time Oϵ(n

2).
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2.1 Obtaining Communication Complexity Oϵ(|π0|2)

The first modification we will make is to create an interactive coding scheme that can simulate
general protocols, instead of just message exchange, in quadratic time. By doing this, we will
obtain a protocol with communication complexity Oϵ(|π0|2) instead of Oϵ(n

2).
At a high level, in our protocol, in each message Alice and Bob either asks a question or answers

a received question, but not both. This is as opposed to the protocol of [GZ22], in which question
asking and answering are always done simultaneously. We remark that this removes issue (a) with
the [GZ22] protocol, since now answers no longer have a question component so that all possible
answers {ECC(r∗, 0),ECC(r∗, 1),ECC(r∗, ←),ECC(r∗, •)} to the same question r∗ are distance 2

3
apart.

More concretely, Alice and Bob each keep track of a guess for the complete noiseless transcript,
denoted TA or TB respectively, along with a weight wA or wB signaling how confident they are that
the current transcript guess is correct. We have that w = 0 unless the corresponding transcript
guess T is complete, meaning |T | = |π0|. Alice’s transcript guess TA always has odd length, i.e. she
is the last to speak, unless TA is a complete transcript or is the empty transcript. Similarly, Bob’s
transcript guess TB always has even length. Let T denote the noiseless transcript, so that the goal
is for Alice and Bob to have TA = TB = T by the end of the protocol. In what follows, we describe
the protocol from Alice’s point of view, but Bob’s behavior is equivalent.

Every round, Alice sends a message of the form ECC(T, δ ∈ {0, 1, ←, ?}), where δ =? signals
that she is asking a question and δ ∈ {0, 1, ←} signals that she is answering a question. Specifically,
when Alice asks a question, she sends ECC(TA, ?). She answers a question T ∗

B by sending ECC(T ∗
B, δ),

where δ ∈ {0, 1, ←} is

• ← if T ∗
B is not consistent with her own behavior on input x.

• her next message 0 or 1 given the consistent transcript prefix T ∗
B (if T ∗

B is a complete transcript,
then her next message is just 1).

Here, ECC is a code satisfying that for any T ∗ the four words ECC(T ∗, 0), ECC(T ∗, 1), ECC(T ∗, ←),
ECC(T ∗, ?) have relative distance 2

3 and all other pairs of codewords are relative distance 1
2 apart.

Such a code was shown to exist in [GZ22].
Alice determines whether to ask or answer based on the message she just received:

• As long as she receives an answer (not necessarily to the question she previously asked), she
asks a question.

• Whenever Alice receives a question, she answers it. There is an exception, which is when the
question received is a complete transcript consistent with Alice’s own input x. In this case,
Alice asks her own question. This mechanism allows Alice and Bob to switch who is asking
vs. answering once the asking party has made sufficient progress and now knows T .

Furthermore, every time Alice receives a message from Bob, she needs to update (TA, wA)
accordingly:

• When she receives an answer to her question ECC(TA, δ ∈ {0, 1}), she concatenates δ and
her resulting next message to the end of TA. (If TA is a complete transcript, she instead
increments wA.)

5



• If she receives ECC(TA, ←), assuming wA = 0 she deletes the last two messages (one of hers
and one of Bob’s) from TA, and otherwise if wA > 0 she simply decreases wA by 1.

• If she receives a question ECC(T ∗
B, ?) from Bob, where T ∗

B corresponds to a complete transcript
that is consistent with her input x, she updates TA to be one step closer to T ∗

B with 0.5
probability.

There is an exception to this rule, which is when T ∗
B = TA. This can only happen if T ∗

B = TA
is either ∅ or a complete transcript, as in general TA is of odd length and TB is of even. In this
case, with probability 1 instead of 0.5, Alice increases her weight wA on the transcript TA by
1. This is because when TA = TB = T , we want both Alice and Bob to make more progress
simultaneously.3 Similarly, Bob also needs to be updating with probability 1 whenever he
receives a question from Alice equal to TB.

• Otherwise, she does not update TA or wA.

So far, we have described the protocol when the parties receive full codewords. When messages
are partially corrupted so that the received message is not a codeword, a party will default to asking
a question with probability proportional to the distance from the nearest codeword, and otherwise
employ the above behavior. This addresses issue (b). We remark that the default message being a
question is the second idea that allows us to escape from needing for Alice and Bob to know what
the other party’s output ought to be, since instead of defaulting to sending the answer (x, ∗) or
(y, ∗) one now defaults to asking a question.

2.2 Reducing the Communication Complexity to Oϵ(|π0|)

Now that we have an optimally error resilient interactive coding scheme that can simulate protocols
with Oϵ(|π0|2) communication complexity, the next step is to reduce the communication complexity
to Oϵ(|π0|).

Currently, the quadratic factor in the communication complexity arises because we need Oϵ(|π0|)
rounds to simulate the protocol, and in each round the parties are sending either their transcript
guess or the transcript guess they are answering, both of which takes Oϵ(|π0|) bits. If we could
reduce the amount of communication needed to send a transcript guess to Oϵ(1), then we could
achieve our desired Oϵ(|π0|) total communication.

Consider first the task of a party sending their own transcript guess as a question such that
each message is only Oϵ(1) bits. The traditional solution for this problem in interactive coding is
to use tree codes [Sch93, Sch96], which are essentially error correcting codes that one can update
in an online way. In our setting, since a new transcript guess is a two-bit modification of the last
transcript guess, we can have Alice and Bob track a sequence of updates UA, UB ∈ {0, 1, ←, •}∗
they have made to obtain their current transcript guess, where • is a placeholder update that simply
means “do nothing.” Then, the question asker will send just the next two symbols of a tree code
encoding of UA or UB, which will take Oϵ(1) bits per round. The receiver can then decode the
entire history of received messages to determine the sequence of updates, which will allow them to
determine the transcript being asked.

3The potential function we care about is [Alice’s progress] +min{[Bob’s progress], |π0|}, so once Bob’s progress is
≥ |π0| signaling that TB = T , we need Alice to be updating with probability 1 each time she correctly receives Bob’s
message.
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In our Oϵ(|π0|2) protocol, we had the property that for Alice to successfully decode the asked
transcript, she only needed to receive the last message (which contained the entire asked transcript)
correctly. However, in a traditional tree code, even if Alice received the last message correctly, she
cannot decode the message history if she received a high fraction (specifically more than half) of the
previous messages incorrectly. In this paper, we present a new notion of sensitive tree codes that
in fact satisfy a stronger property, that for all but ϵ|w| indices i where w[i] = LTC(x)[i], it in fact
holds that decoding w[1 : i] will uniquely give x[1 : i]. This essentially means that Alice only needs
to receive the previous symbol of a sensitive tree code correctly to determine the entire message so
far.4

Our notion of sensitive tree codes follows a similar construction as list tree codes, introduced
by Braverman and Efremenko [BE14]. These are codes which guarantee that there is on average
some constant number of ways to decode a random prefix of a string w. What we show is that this
constant can actually be made 1.

Still, we need answers to have message size Oϵ(1) as well. To achieve this, we make the follow-
ing modification to the answer format. Instead of sending ECC(T ∗, δ), which has size Oϵ(|π0|), a
party who wishes to answer the transcript specified by the sequence of operations U∗ instead sends
ECC(σ, δ), where σ is the last two symbols in the list tree code encoding of (U∗|| • •).

There is still one case where the new protocol is not analogous to the one from Section 2.1. In
the protocol from Section 2.1, when Alice is asking the same transcript T ′ that she is answering, she
sends ECC(T ′, ?) as a question. Bob will notice that T ′ happens to be the same as the question he
asked, and update with probability 1. In some sense, this message gives Alice the benefits of both
asking and answering a question. However, in the new setup, in order to ask a question, Alice has
to send the last two symbols of the encoding of UA, but in order to answer U∗

B she has to send the
last two symbols of U∗

B. The issue is that these symbols may not be the same, even if UA and U∗
B

correspond to the same complete transcript T ′.
This leads us to define a new sort of online-updatable code, where if two histories correspond to

the same transcript, even if the histories themselves are different, the next tree code encoding of a
given edge is the same. This requires defining a code on a particular graph rather than on trees.

2.3 Codes on Graphs

Consider the rooted |Σin|-ary tree T. A sequence of symbols ∈ Σin can be associated with a rooted
path of T in the natural way. A sensitive tree code is then an assignment of symbols in Σout to the
edges of T. To encode a string x ∈ Σk

in, one simply traverses the corresponding rooted path and
writes down the symbols seen. This gives an encoding ∈ Σk

out.
The problem with using sensitive tree codes for our purposes is that Alice may have followed

one path to get to the correct transcript TA = T while Bob followed another to get to TB = T .
Then, the next edge for Alice is different then the next edge for Bob, which means that one cannot
hope to coincide sending the next symbol of one’s own tree code with answering the other’s.

Our key observation is that the encoding of the next symbol depends only on the transcript so
far, not the full history of symbols. So, we can actually coincide all nodes of T that lead to the
same transcript. We define the following graph.

4Sensitive tree codes can also be thought of as codes where the message can (usually) be decoded uniquely as long
as the suffix distance to the original codeword is at most 1− ϵ. Previous results only guaranteed a message could be
decoded correctly when the suffix distance was 1

2
− ϵ to the original codeword; for example Lemma 2.3 in [Gel17].
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The Graph. The graph G that we will be interested in is defined as follows:

• G is a directed graph with vertices partitioned into layers 1, 2, . . .. In the i’th layer, there is
a vertex for each possible transcripts of length ≤ i. In particular, there is one vertex in the
0’th layer, namely, the empty string.

• We set Σin = {0, 1, ←, •} to be the possible update instructions, where • means simply “do
nothing.” Each vertex in the i’th layer has 4 children in the (i+1)’th layer, corresponding to
the 4 resulting transcripts obtained by applying an instruction in Σin to the vertex’s associated
transcript.

Note that any sequence of updates ∈ (Σin)
∗ corresponds to a rooted path in G. Furthermore,

any two equal length sequences of updates that result in the same transcript end at the same node.

The Code on G. We define a layered code to be an assignment of elements of Σout to the edges
of G. Then, to encode x ∈ (Σin)

∗, one simply follows the path specified by x and records the |x|
symbols seen on the edges.

We will use a specific layered code C that exhibits the same behavior as the sensitive tree codes
we defined in Section 2.2. We call these codes sensitive layered codes. In particular, the property
we want is that for all but ϵ|w| indices i where w[i] = C(x)[i], decoding w[1 : i] gives a unique vertex
(i.e. transcript guess) equal to the vertex at the end of the rooted path specified by x[1 : i].

We will not go into depth how such to prove the existence of such a code here, but instead refer
the reader to Section 5 for a comprehensive discussion. While much of our construction and proofs
are motivated by the list tree codes of [BE14], we remark that there are several subtleties that need
to be carefully addressed.

2.4 Boosting to Achieve Computational Efficiency

Thus far, we have described how to obtain an interactive coding scheme that is resilient to 1
6−ϵ error

and has communication complexity linear in the size of the original protocol. Unfortunately, since
decoding our sensitive layered code is inefficient (in fact, takes exponential time), this means that
the computation needed by both parties is exponential in |π0|. Thus, the final needed component
is a way to make our scheme efficiently computable.

Over a large alphabet, an efficiently computable, positive rate scheme that is maximally error
resilient was constructed by [GH13]. They obtained this efficient scheme in two steps: first by
boosting a known inefficient, exponential-time scheme [BR11] to obtain an efficient protocol with a
list-decoding guarantee, and second by applying a transformation that takes a list-decoding protocol
to a unique-decoding protocol. We remark that this second transformation crucially relies on using
a large alphabet and thus will not be permittable for us.

The boosted list-protocol is obtained as follows. First, they split up their original noiseless
protocol into log4 |π0| size chunks. Then, they use their inefficient scheme to simulate the following
noiseless subprotocol Oϵ(

|π0|
log4 |π0|

) times:

• Alice and Bob first find the longest transcript they have both simulated so far. This takes
O(log4 |π0|) rounds.

• Next, they run the next chunk of log4 |π0| rounds of the noiseless protocol.
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Whenever a simulated subprotocol results in a completed transcript, that complete transcript ob-
tains a vote. At the end, they show that as long as there was not too much corruption, the correct
transcript must be one of the transcripts with the most votes (i.e. each party obtains a list of
possible transcripts containing the correct one). Note that this results in a protocol with computa-
tional complexity Oϵ(

|π0|
log4 |π0|

) · exp(log4 |π0|) = exp(polylog|π0|) time, which is considerably better
than exp(|π0|). Recursively boosting a second time gets the computational complexity down to
poly(|π0|). A third time reduces the computational complexity to Õϵ(|π0|).

[GH13]’s second step is to apply a transformation that takes a list-decoding protocol to a unique
decoding protocol, incurring a blowup in the alphabet size. Since we are working over a binary
alphabet, we cannot afford to apply this same second transformation. Instead, we notice that our
inefficient protocol has a property that we call scaling. Essentially, this means that the amount
of confidence Alice and Bob have in their final transcript guesses is directly related to the amount
of corruption the adversary put in. More specifically, if the adversary corrupted 1

6 − ρ of the
communication (ρ > 0), then Alice and Bob end up with the correct transcript and are ∝ ρ
confident in its correctness; and if the adversary corrupted 1

6 + ρ of the communication, then Alice
and Bob may end up with incorrect transcripts but they are only ∝ ρ confident. We can understand
this as saying that 1

6 − ρ corruption results in a net good confidence of ρ (where ρ can be positive
or negative: ρ < 0 means that there was ρ confidence in a bad transcript).

This allows us to consider the same boosting transformation that [GH13] did, with the following
caveat: whenever a simulated subprotocol results in a complete transcript, that transcript obtains
a vote proportional to the confidence the parties have in the simulated protocol’s correctness. Then,
if the adversary corrupts < 1

6 of the protocol, the net good votes (i.e. the number of votes for the
correct transcript minus the total number for all incorrect transcripts) must be positive, so Alice
and Bob can determine the correct transcript.

We elaborate more on our boosting transformation in Section 4.

3 Preliminaries

Notation. In this work, we use the following notations.

• The function ∆(x, y) represents the Hamming distance between x and y.

• x[i] denotes the i’th bit of a string x ∈ {0, 1}∗.

• x[i : j] denotes the i . . . j’th bits of x ∈ {0, 1}∗.

• x||y denotes the string x concatenated with the string y.

3.1 Noise Resilient Interactive Communication

We formally define a non-adaptive interactive protocol and with error resilience. Our definition is
for the binary alphabet {0, 1}.

Definition 3.1 (Non-Adaptive Interactive Coding Scheme). A two-party non-adaptive interactive
coding scheme π for a function f(x, y) : {0, 1}n × {0, 1}n → {0, 1}o is an interactive protocol
consisting of a fixed number of transmissions, denoted |π|. In each transmission, a single party fixed
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beforehand sends a single bit to the other party. At the end of the protocol, each party outputs a
guess ∈ {0, 1}o.

We say that π is resilient to α fraction of adversarial errors with probability p if the following
holds. For all x, y ∈ {0, 1}n, and for all adversarial attacks consisting of at most α · |π| errors, with
probability ≥ p Alice and Bob both output f(x, y) at the end of the protocol.

It is known that over a binary alphabet, one cannot achieve an error resilience greater than 1
6 .

Theorem 3.2 ([EGH16]). There exists a function f(x, y) of Alice and Bob’s inputs x, y ∈ {0, 1}n,
such that any non-adaptive interactive protocol over the binary bit flip channel that computes f(x, y)
succeeds with probability at most 1

2 if a 1
6 fraction of the transmissions are corrupted.

4 Boosting: Obtaining Computational Efficiency

In this section, we show how to boost the computational efficiency of a scheme. Our boosted protocol
draws inspiration from the list-decoding boosting scheme of [GH13], which drew ideas from [BK12].
We begin by recalling the necessary setup from [GH13].

4.1 The Simulation Paradigm of [GH13, BK12]

Assume that π0 is an alternating binary protocol of length n0 (any binary protocol can be made
alternating by increasing the communication by at most a factor of 2). We can view π0 as a protocol
tree T, in which the edges at odd levels correspond to Alice’s messages and the edges at even levels
correspond to Bob’s messages. For any input x, π0 defines a subset SA of edges at the odd levels
corresponding to Alice’s possible responses, and similarly, for any input y, π0 defines a subset SB of
edges at the even levels corresponding to Bob’s possible messages. Note that for any (x, y), SA∪SB
defines a unique rooted path T corresponding to the noiseless protocol π0(x, y). The goal is for
both Alice and Bob to determine T .

To do this, Alice and Bob each keep track of a set of edges EA and EB. Initially both sets are
empty. In each of many iterations, Alice (resp. Bob) will add some edges to EA (resp. EB) extending
some existing path in EA (resp. EB). We remark that any new edges Alice adds must be consistent
with her own behavior on her input x, i.e. she never adds an edge in an odd layer that does not
belong to SA. The same holds for Bob. It thus holds that at any point the unique longest rooted
path in both EA and EB is a prefix of T .

The process by which Alice and Bob add edges to their respective set in each iteration is as
follows. They first run a subprotocol to determine their longest common rooted path. Then, they
run the next log4 n0 rounds of the noiseless protocol. They perform both these steps under a single
error-resilient simulation. The idea is that every time not too many errors have happened in an
iteration, both Alice and Bob add log4 n0 edges to the correct path corresponding to T .

If the longest common rooted path is a path from the root to a leaf, then Alice and Bob instead
add some weight to that leaf. Over the course of many iterations, the hope is that the leaf with the
largest weight at the end of the protocol should correspond to T . We remark that [GH13] showed a
list-guarantee assuming not too many errors occurred: at the end of this procedure, Alice and Bob
will each have a small list of leaves each containing the true leaf corresponding to T . (They then
need to run this procedure many times in parallel with sending an error correcting code in order
for both parties to narrow down the correct transcript, resulting in an alphabet blowup.) For us,
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we will show that if our inefficient simulation has a property known as scaling (see Definition 4.2),
then at the end of this procedure Alice and Bob will each have narrowed down to a unique leaf,
precisely, the leaf corresponding to T , provided not too many errors occurred.

The Tree-Intersection Problem. The problem of finding their longest shared path is called
the tree-intersection problem. Precisely, assuming Alice and Bob have sets of edges EA and EB
respectively each forming a rooted tree under the promise that EA∩EB is a rooted path, the problem
is for Alice and Bob to recover this rooted path using as little communication and computation as
possible.

In [GH13], they give a data structure for EA and EB that optimizes the computational complexity
of a protocol solving the tree-intersection problem.

Theorem 4.1. [GH13] There is an incremental data structure that maintains a rooted subtree
of the rooted infinite binary tree under edge additions with amortized computational complexity of
Õ(1) time per edge addition. Furthermore, for any c = Ω(1) and given two trees of maximum size
n maintained by such a data structure, there is a tree-intersection protocol that uses 100c log4 n
rounds of communication over a noiseless binary channel, O(c log4 n) bits of randomness, and Õ(1)
computation steps to solve the tree intersection problem, that is, find the intersection path with
failure probability at most 2−c log4 n.

4.2 Scaling Schemes

We now define precisely what we mean by a scaling scheme. Intuitively, a scaling scheme is a scheme
in which Alice and Bob output a confidence in addition to a transcript. This confidence should give
a bound on the total error in the protocol. For instance, if there is no corruption, then Alice and
Bob should output the correct transcript with large confidence. If there is some corruption, then
Alice and Bob should output the correct transcript with smaller confidence. If there is too much
corruption, then Alice and Bob may output an incorrect transcript, but their confidence cannot
exceed a certain quantity specified by the amount of error that occurred (i.e. if the adversary
wishes Alice and Bob to be more confident in an incorrect transcript, she must corrupt more of the
protocol).

Definition 4.2 ((ρ, ϵ, µϵ)-Scaling Schemes). A scheme for simulating a noiseless protocol of length
n is (ρ, ϵ, µϵ)-scaling if, at the end of the protocol, Alice and Bob output guesses TA and TB for the
noiseless transcript T along with confidences cA, cB ∈ [0, 1], with the following guarantees:

• Consistency: All of Alice’s messages in TA are consistent with her behavior in π0 on input
x. Similarly, all of Bob’s messages in TB are consistent with his behavior in π0 on input y.

• Scaling 1: If a δ < (1− ϵ) · ρ fraction of the scheme was corrupted, then

Pr

[
TA = TB = T ∧ cA, cB ≥ 1− δ

ρ
− ϵ

]
≥ 1− µϵ(n).

• Scaling 2: If δ ≥ (1− ϵ) · ρ fraction of the scheme was corrupted, then

Pr

[(
TA ̸= T ∧ cA >

δ

ρ
− 1 + ϵ

)
∨
(
TB ̸= T ∧ cB >

δ

ρ
− 1 + ϵ

)]
≤ µϵ(n).
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4.3 Boosting

Protocol 2 : Boosting

Let P ′ be a (ρ, ϵ, µϵ)-scaling scheme that simulates noiseless protocols of length n′ by a protocol of
length rϵ(n′) that has computational complexity Tϵ(n′). Choose Cϵ ≥ 100/ϵ+ 1.
For a protocol π0 that has length n0, and on inputs (x, y), Alice and Bob run the following scheme:

1. Alice and Bob each keep track of a list EA, EB ⊆ T of edges they have simulated so far, using
the data structure from 4.1. Initially, EA, EB = ∅. They also each keep track of a dictionarya

LA,LB of leaves, i.e. full transcripts T of T, mapping to R≥0. Initially, for any full transcript
T of T, LA[T ] = LB [T ] = 0.

2. For i = 1, . . . , n0

ϵ log4 n0
=: β, they use P ′ to simulate the following n′ = Cϵ · log4 n0 round

noiseless protocol:

(a) Alice and Bob run the tree-intersection protocol given in Theorem 4.1, using (Cϵ −
1) log4 n0 rounds and Õ(1) computation steps. At the end, with probability 1 −
2−((Cϵ−1)/100)·log4 n0 ≥ 1−2− log4 n0/ϵ, the two parties have determined the common rooted
path p = EA ∩ EB .

(b) After Alice and Bob have determined a common path p, they fix p to be the transcript
prefix of π0 so far and run the next log4 n0 rounds of π0. (If there are fewer than log4 n0
rounds in π0 remaining after p, they treat the remaining rounds as sending all 0’s.)

At the end of the simulation, Alice has determined a transcript prefix pA ⊆ EA along with up
to log4 n0 subsequent edges extending pA. She also has a confidence cA ∈ [0, 1]. She adds the
≤ log4 n0 edges to EA (ignoring duplicates). Further, if pA is a complete transcript of length
n0, she adds cA to LA[pA]. Bob does the same.

3. At the end of the protocol, let TA = argmaxp LA[p] be the transcript with the highest weight
in LA, and let wA = LA[TA]. Also, let wc

A =
∑

p̸=TA
LA[p] be the total weight assigned to all

the other leaves excluding TA. Then, Alice outputs TA, along with confidence cA =
wA−wc

A

β .

Similarly, Bob outputs the transcript TB = argmaxp LB [p] and confidence cB =
wB−wc

B

β , where
wB = LB [TB ] and wc

B =
∑

p ̸=TB
LB [p] is the total weight on all the other leaves excluding TB .

aRoughly, a dictionary is implemented by a hash table.

Theorem 4.3. Let ϵ < 0.25 and Cϵ ≥ 100/ϵ+ 1. Assume a (ρ, ϵ, µϵ)-scaling scheme that simulates
noiseless protocols of length n with communication complexity rϵ(n) and computational complexity
Tϵ(n). Then, the protocol given in Protocol 2 is a (ρ, 4ϵ, e−ϵn0/10 log

4 n0)-scaling scheme for noiseless
protocols of length n0 that has communication complexity n0

ϵ log4 n0
· rϵ(Cϵ · log4 n0) and computational

complexity Õϵ(n0) · Tϵ(Cϵ log
4 n0), assuming that µϵ(Cϵ log

4 n0) <
ϵ
4 .

Proof. Clearly, the communication complexity in Protocol 2 is n0

ϵ log4 n0
· rϵ(Cϵ log

4 n0). As for the
computational complexity, note that in each iteration, Alice needs to do Tϵ(Cϵ log

4 n0) computations
to obtain a transcript T ′ and a confidence c′. She may further have to update LA[T ] with the
confidence c′, for some complete transcript T , which can be done in amortized O(logL) time since
a dictionary is roughly implemented by a hash table, where L is an upper bound on the size of LA.
Finally, at the end of the protocol, she can determine TA, wA, w

c
A by making a linear pass through

LA. Thus, the total computational complexity is β ·(Tϵ(Cϵ log
4 n0)+O(logL))+Õ(L). Since L ≤ β,
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which follows from the fact that Alice makes at most one value of LA[p] nonzero in each iteration,
the total computational complexity is Õ(β) · Tϵ(Cϵ log

4 n0) which is at most Õϵ(n0) · Tϵ(Cϵ log
4 n0).

We will now show that our scheme is (ρ, 4ϵ, e−ϵn0/10 log
4 n0)-scaling. First, the consistency prop-

erty follows because each of the protocols in the β iterations are consistent: Alice and Bob only add
edges to EA, EB that are consistent with their own input, so only transcripts consistent with their
own input can gain weight in LA,LB. The rest of this proof will show the scaling properties.

Let δ1, . . . , δβ be the fractional amount of corruption in each of the β simulations, so that
the total fractional amount of error is δ = 1

β

∑β
i=1 δi. Let T ′

A,1, . . . , T
′
A,β and c′A,1, . . . , c

′
A,β (resp.

T ′
B,1, . . . , T

′
B,β and c′B,1, . . . , c

′
B,β) be the transcripts and confidences Alice (resp. Bob) has at the

end of each of the β simulations.
Denote by Ei(T

′
i ) denote the event that in the transcript T ′

i , Alice and Bob correctly determine
their longest shared path EA∩EB and extend it by log4 n0 bits (or send 0’s once the total transcript
exceeds length n0).

Lemma 4.4. The following holds for the simulation in the i’th iteration:

• If there are at most δi < (1− ϵ) · ρ errors, then

Pr

[
Ei(T

′
A,i) ∧ Ei(T

′
B,i) ∧ c′A,i, c

′
B,i ≥ 1− δi

ρ
− ϵ

]
≥ 1− µϵ(Cϵ · log4 n0)− 2−c log4 n0 .

• If there are at least δi ≥ (1− ϵ) · ρ errors, then

Pr

[(
¬Ei(T

′
A,i) ∧ c′A >

δi
ρ
− 1 + ϵ

)
∨
(
¬Ei(T

′
B,i) ∧ c′B >

δi
ρ
− 1 + ϵ

)]
≤ µϵ(Cϵ · log4 n0) + 2−c log4 n0 .

Proof. First, suppose that δi < (1−ϵ) ·ρ. Let T ∗
i denote the noiseless protocol in the i’th simulation.

Note that with probability elog
4 n0/ϵ, T ∗

i may not correctly determine Alice and Bob’s longest shared
path. In particular,

Pr

[
¬
(
Ei(T

′
A,i) ∧ Ei(T

′
B,i) ∧ c′A,i, c

′
B,i ≥ 1− δi

ρ
− ϵ

)]
≤ Pr [¬Ei(T

∗
i )] + Pr

[
¬
(
T ′
A,i = T ′

B,i = T ∗
i ∧ c′A,i, c

′
B,i ≥ 1− δi

ρ
− ϵ

)]
≤ 2log

4 n0/ϵ + µϵ(Cϵ · log4 n0)

by Theorem 4.1 and Definition 4.2.
On the other hand, if δi ≥ (1− ϵ) · ρ, it holds that

Pr

[(
¬Ei(T

′
A,i) ∧ c′A >

δi
ρ
− 1 + ϵ

)
∨
(
¬Ei(T

′
B,i) ∧ c′B >

δi
ρ
− 1 + ϵ

)]
≤ Pr[¬Ei(T

∗
i )] + Pr

[(
T ′
A,i ̸= T ∗

i ∧ c′A >
δi
ρ
− 1 + ϵ

)
∨
(
T ′
B,i ̸= T ∗

i ∧ c′B >
δi
ρ
− 1 + ϵ

)]
≤ 2log

4 n0/ϵ + µϵ(Cϵ · log4 n0),

where the second line follows from considering the cases where ¬Ei(T
∗
i ) and Ei(T

∗
i ), and the third

line follows from Theorem 4.1 and Definition 4.2.
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Let I ⊆ [β] denote the iterations in which < (1− ϵ) · ρ of the scheme was corrupted.

Lemma 4.5. With probability 1− e−ϵ2β/10, for all except at most ϵ ·β values of i ∈ [β], it holds that
either:

(1) i ∈ I and Ei(T
′
A,i) ∧ Ei(T

′
B,i) ∧ c′A,i, c

′
B,i ≥ 1− δi

ρ − ϵ,

(2) i ∈ [β]\I and
(
Ei(T

′
A,i) ∨ c′A ≤

δi
ρ − 1 + ϵ

)
∧
(
Ei(T

′
B,i) ∨ c′B ≤

δi
ρ − 1 + ϵ

)
.

Proof. By Lemma 4.4, one of the two conditions holds for every i ∈ [β] with probability at least
1 − 2− log4 n0/ϵ − µϵ(Cϵ · log4 n0). This means that the expected number of i satisfying one of the
two conditions is ϖ ≥ (1− 2− log4 n0/ϵ − µϵ(Cϵ log

4 n0)) · β.
Let X denote the number of i ∈ [β] satisfying one of the two conditions. By Chernoff,

Pr[X < (1− ϵ) · β] ≤ Pr[X < (1− ϵ/2) ·ϖ] ≤ e−ϵ2ϖ/8 ≤ e−ϵ2β/10,

where the first and last inequalities follow from the fact that 2− log4 n0/ϵ + µϵ(Cϵ log
4 n0) ≤ 2−1/ϵ +

µϵ(Cϵ log
4 n0) <

ϵ
4 + ϵ

4 = ϵ
2 , so (1 − ϵ/2) · β < ϖ. In particular, the first inequality follows from

(1−ϵ)β < (1−ϵ/2)2β < (1−ϵ/2)ϖ, and the last inequality follows from 0.8β < (1−ϵ/2)β < ϖ.

Let Γ ⊆ I be the set of all i satisfying (1), and let Λ ⊆ [β]\I be the set of all i satisfying (2).
Note that after the first n0

log4 n0
iterations in Γ, Alice and Bob are both guaranteed to have all edges

in the correct transcript T in their edge lists EA and EB. After that point, in every iteration in
Γ, Alice and Bob both determine the correct transcript T = EA ∩ EB and add c′A,i (resp. c′B,i) to
LA[T ] (resp. LB[T ]). This means that at the end of the protocol,

LA[T ] ≥
∑
i∈Γ

c′A,i −
n0

log4 n0
≥ (1− ϵ) · |Γ| − 1

ρ
·
∑
i∈Γ

δi −
n0

log4 n0
,

and similarly

LB[T ] ≥ (1− ϵ) · |Γ| − 1

ρ
·
∑
i∈Γ

δi −
n0

log4 n0
.

Meanwhile, for each iteration in Λ, a weight of at most c′A,i (resp. c′B,i) is added to a wrong leaf.
Furthermore, a weight of at most 1 is added to a wrong leaf for each iteration in [β]\(Γ∪Λ), which
by Lemma 4.5 has size at most ϵβ with probability 1−e−ϵ2β/10. Thus, with probability 1−e−ϵ2β/10,
the total weight on all the wrong leaves in Alice’s tree is at most

≤
∑
i∈Λ

c′A,i · 1[T ′
A,i ̸= T ∗

i ] +
∑

i∈[β]\(Γ∪Λ)

1 ≤ 1

ρ
·
∑
i∈Λ

δi − (1− ϵ) · |Λ|+ ϵβ,

and simultaneously the total weight on all the wrong leaves in Bob’s tree is at most

≤
∑
i∈Λ

c′B,i · 1[T ′
B,i ̸= T ∗

i ] +
∑

i∈[β]\(Γ∪Λ)

1 ≤ 1

ρ
·
∑
i∈Λ

δi − (1− ϵ) · |Λ|+ ϵβ.
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Then, with probability 1 − e−ϵ2β/10, the difference between the weight on the correct leaf and
the combined weight on all the wrong leaves, for both Alice and Bob, is

LA[T ]−
∑
T ̸=T
LA[T ] (resp. LB[T ]−

∑
T ̸=T
LB[T ])

≥

[
(1− ϵ) · |Γ| − 1

ρ
·
∑
i∈Γ

δi −
n0

log4 n0

]
−

[
1

ρ
·
∑
i∈Λ

δi − (1− ϵ) · |Λ|+ ϵβ

]

= (1− ϵ) · (|Γ|+ |Λ|)− ϵβ − 1

ρ
·
∑

i∈Γ∪Λ
δi −

n0

log4 n0

≥ (1− ϵ) · (β − ϵβ)− ϵβ − δβ

ρ
− ϵβ

≥
(
1− δ

ρ
− 4ϵ

)
· β, (1)

where we used that β = n0

ϵ log4 n0
and that

∑
i∈Γ∪Λ δi ≤

∑
i∈[β] δi = δβ.

In particular, if δ < (1 − δ
ρ − 4ϵ) · ρ, then with probability 1 − e−ϵ2β/10, both Alice and Bob

output TA = TB = T and confidence cA, cB ≥ 1− δ
ρ − 4ϵ.

On the other hand, Equation 1 tells us that with probability 1 − e−ϵ2β/10, for both Alice and
Bob, for any incorrect leaf T0, the total weight on T0 minus the combined weight on all the other
leaves is at most

≤
(
δ

ρ
− 1 + 4ϵ

)
· β,

since LA[T0] ≤
∑

T ̸=T LA[T ], and
∑

T ̸=T0
LA[T ] ≥ LA[T ] (and same for Bob). Thus, in the case

that δ > (1 − δ
ρ − 4ϵ) · ρ of the entire protocol is corrupted, it holds with probability 1 − e−ϵ2β/10

that either TA = T , or TA ̸= T and cA ≤ δ
ρ − 1 + 4ϵ, and same for Bob.

It follows that Protocol 2 is (ρ, 4ϵ, e−ϵ2β/10) = (ρ, 4ϵ, e−ϵn0/10 log
4 n0)-scaling.

5 Layered Codes

In this section, we introduce sensitive layered codes, which are a generalization and strengthening
of list tree codes to codes on layered graphs. List tree codes were first introduced in [BE14] as an
analogue of list-decodable error correcting codes for the tree code setting. Sensitive layered codes
are instead defined on certain graphs, and have list size 1 for most locations.

We first define suffix distance.

Definition 5.1 (Suffix Distance). For two strings x, y ∈ Σn, we define the suffix distance as follows:

∆sfx(x, y) = max
0≤i≤n−1

∆(x[i+ 1 : n], y[i+ 1 : n])

n− i
.

5.1 Layered Codes

Definition 5.2 (Layered Graph Over An Alphabet). Let Σ be an alphabet. A layered graph over
Σ of depth n is a directed graph G that satisfies the following properties:
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• The vertices of G can be split up into layers 0, 1, . . . , n. There is exactly one vertex in layer 0.

• Each vertex in layer i < n has out-degree exactly |Σ|: it has |Σ| children in layer i+ 1, where
the |Σ| out-edges are associated with not necessarily distinct elements of Σ.

If G is a layered graph over Σin of depth n, note that any path p in G from the root node to a
vertex in layer i can be associated with a string ∈ Σi

in. Likewise, any string ∈ Σi
in corresponds to

a unique path in G from the root node to a vertex in layer i. We will interchangeably refer to the
path p or the associated string ∈ Σi

in. Furthermore, for any string p ∈ Σi
in, we use v(p) to denote

the vertex at the end of p.

Definition 5.3 (Layered Code). Let G be a layered graph over Σin of depth n. A layered code C
of G with the alphabet Σout is an assignment of elements of Σout to the edges of G. We refer to
such an assignment as a (G,Σout)-code.

For any subgraph H ⊆ G, we define C(H) to be the subgraph H inheriting labels from C.
Specifically, for a rooted path p ∈ Σi

in, C(p) ∈ Σi
out is the string of i labels of the edges in p.

5.2 Prefix Trees

For any (G,Σout)-code, any ϵ, and any word w ∈ Σn
in, let the list Li(C, w, ϵ) be the list of nodes in

layer i that are the endpoint of at least one path whose encoding under C is close to the prefix of
w of length i in their suffix distance. That is,

Li(C, w, ϵ) = {v(p) : p ∈ Σi
in s.t. ∆sfx(C(p), w[1 : i]) < 1− ϵ}.

We also write L(C, w, ϵ) = ∪ni=1Li(C, w, ϵ).
Consider a subset S ⊆ L(C, w, ϵ). For each v ∈ S, we pick a path p from the root to v satisfying

∆sfx(C(p), w[1 : |p|]) < 1− ϵ. If these paths form a rooted tree, we call their union a prefix tree of
S. We denote by PT (C, w, ϵ) the set of all prefix trees of all subsets of L(C, w, ϵ).

Lemma 5.4. Fix w ∈ Σn
out and ϵ > 0. For any subset S ⊆ L(C, w, ϵ), there is a prefix tree of S.

Proof. For a path q of length k, we define the deficit of q, denoted deficit(q), to be
max0≤j<k [∆(C(q)[j + 1 : k], w[j + 1 : k])− (1− ϵ) · (k − j)]. For a path p of length i, we say that
the excess of p at k ≤ i is (1− ϵ) · (i− k)−∆(C(p)[k+ 1 : i], w[k+ 1 : i]), denoted excessk(p). Note
that for any path p for which v(p) ∈ Li(C, w, ϵ), it holds that excessk(p) > 0 for any k ≤ i.

Furthermore, we claim that for any p ∈ Σi
in such that v(p) ∈ Li, letting p′ denote the path

obtained by replacing the first k edges by q ∈ Σk
in, we have that ∆sfx(C(p

′), w[1 : i]) < 1 − ϵ iff
deficit(q) < excessk(p). To see this, we can write

∆sfx(C(p
′), w[1 : i]) = max


∆sfx(C(p)[k + 1 : i], w[k + 1 : i]),

max
0≤j<k

∆(C(p)[k + 1 : i], w[k + 1 : i]) + ∆(q[j + 1 : k], w[j + 1 : k]))

i− j

 .

Note that ∆sfx(C(p)[k+ 1 : i], w[k+ 1 : i]) < 1− ϵ because v(p) ∈ Li. Thus, ∆sfx(C(p
′), w[1 : i]) <

1− ϵ iff

∆(C(p)[k + 1 : i], w[k + 1 : i]) + ∆(q[j + 1 : k], w[j + 1 : k])) < (1− ϵ) · (i− j)
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for all 0 ≤ j < k, or equivalently,
deficit(q) < excessk(p).

Now, given a selection of paths {p(v)}v∈S , where p(v) connects the root to v, for each k ∈ [n]
define Λk(p) to be the set of vertices y ∈ G in layer k such that there are two paths p(v) and p(v′),
where v ̸= v′ ∈ S, for which v(p(v)[1 : k]) = v(p(v′)[1 : k]) = y but p(v)[1 : k] ̸= p(v′)[1 : k]. We
define Ψ(p) to be (kmax, |Λkmax(p)|), with the lexicographical ordering, where kmax is the largest
layer k for which Λk(p) is nonempty.

In order to construct a prefix tree of S, we begin by choosing a path p(v) from the root to v for
each v ∈ S. Next, we perform an operation to p that decreases Ψ(p), while preserving that p satisfies
∆sfx(C(p(v)), w[1 : |p(v)|]) < 1 − ϵ for all v ∈ S. The operation we perform is as follows: Choose
ymax ∈ Λkmax(p). Furthermore, let v1, . . . , vm ∈ S be such that v(p(vι)[1 : k]) = ymax. Define
qι := p(vι)[1 : k] for each ι ∈ [m]. Let ι̂ = argminι∈[m] deficit(qι), and let q = qι̂. Then, for each
ι ∈ [m], we replace p(vι) with the path p′(vι) = q||p(vι)[k+ 1 : |p(vι)|]. Since deficit(q) ≤ deficit(qι),
it holds that ∆sfx(C(p

′(vι)), w[1 : |p′(vι)|]) < 1 − ϵ for all ι ∈ [m]. (For all other v ∈ S where p(v)
doesn’t pass through ymax, we define p′(v) = p(v).)

Note that Λk(p
′) where k > kmax must still be empty, as we have only altered edges in layers at

most kmax. Furthermore, |Λkmax(p
′)| is strictly less than |Λkmax(p)|, since we have replaced paths

going through ymax with paths going through ymax so no new intersections in layer kmax were
created, and we have removed ymax from Λkmax(p). Thus, Ψ(p′) < Ψ(p). Also note that as long as
Ψ(p) > (0, 0), we can continue this operation, so eventually Ψ(p) = (0, 0), at which point the union
of p(v), v ∈ S is a tree.

For a subgraph H of G of depth at most |w|, we denote by w(H) the graph where we write w[i]
on all edges at depth i. For a (G,Σout)-code C, recall that C(H) is the subgraph H inheriting labels
from C. For two labelings w and C of a subgraph H, we define agr(w(H),C(H)) to be the number
of edges of H for which the labels are the same.

Lemma 5.5. For any w ∈ Σn
out and ϵ > 0, and for any PT ∈ PT (C, w, ϵ),

agr(C(PT ), w(PT )) > ϵ|PT |.

Proof. First, note that by definition of L(C, w, ϵ), for any path p ending at v ∈ L(C, w, ϵ) and not
necessarily starting at the root, it holds that agr(C(p), w(p)) > ϵ|p|. We call this Property A.

We prove the lemma by induction on the number of leaves. If PT has only 1 leaf, then it is
a path from root to leaf, and by Property A, agr(C(PT ), w(PT )) > ϵ|PT |. Now, if PT has more
than one leaf, let p be a branch of PT (i.e. a path from a vertex v0 to a leaf v, where v0 has more
than one child). Then PT\p has one fewer leaf than PT , and by inductive hypothesis we have

agr(C(PT\p), w(PT\p) > ϵ(|PT | − |p|).

Furthermore, by Property A, we have that agr(C(p), w(p)) > ϵ|p|. Therefore,

agr(C(PT ), w(PT )) = agr(C(PT\p), w(PT\p) + agr(C(p), w(p)) > ϵ|PT |.
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5.3 Sensitive Layered Codes

Definition 5.6 (Sensitive Layered Code). Let G be a layered graph over Σin of depth n. A ϵ-
sensitive layered code for G and alphabet Σout is a (G,Σout)-code such that for all w ∈ Σn

out and all
PT ∈ PT (C, w, ϵ),

agr(C(PT ), w(PT )) ≤ (1 + ϵ)n. (2)

Theorem 5.7. For ϵ ∈ (0, 12) and a layered graph G over Σin with depth n ≥ 2
1−ϵ , let |Σout| >

2|Σin|)6/ϵ
2. Then, a random (G,Σout)-code is a ϵ-sensitive layered code on G with alphabet Σout

with probability at least 1− 2−n/4ϵ.

The proof of Theorem 5.7 essentially follows from the proof of Theorem 22 in [BE14]. To prove
it, we will need the following two lemmas:

Lemma 5.8. If G is a layered graph over Σin, there exist at most (|Σin| + 1)2s rooted subtrees of
G of size s.

Proof. Consider the path obtained by conducting a DFS on a rooted subtree, where each symbol
indicates which child to go to, and |Σin|+ 1 indicates to go back up the edge traversed downwards
to get to the current vertex (note that this edge is unique since we only traverse a subtree). Then,
each edge in the subtree is traversed twice. Thus, the number of rooted subtrees of G is at most
(|Σin|+ 1)2s.

Lemma 5.9. For any w ∈ Σn
out and for any collection PT of s edges of G, it holds that

Pr[agr(C(PT ), w(PT )) ≥ ϵs] ≤ |Σout|−ϵs

(
s

ϵs

)
≤ |Σout|−ϵs2s,

where randomness is taken over the random choice of layered code C on G with Σout).

Proof. The first inequality follows from the union bound over all possible locations where C(PT )
and w(PT ) agree, and the second inequality follows from

(
s
ϵs

)
≤ 2s.

Proof of Theorem 5.7. If w ∈ Σn
out violates (2), then there is a prefix tree PT of a subset S ⊆

L(C, w, ϵ) such that agr(C(PT ), w(PT )) > max{ϵ|PT |, (1 + ϵ)n}, where agr(C(PT ), w(PT )) >
ϵ|PT | is given by Lemma 5.5. To show that such w does not exist, we will show that with high
probability over the choice of a random (G,Σout)-code, agr(C(PT ), w(PT )) ≤ max{ϵ|PT |, (1+ϵ)n}
for all rooted subtrees PT and w ∈ Σn

out. It is enough to prove this claim for all |PT | ≥ (1+ 1
ϵ )n, since

if |PT | < (1+ 1
ϵ )n, then we can extend PT to a tree PT ′ of size (1+ 1

ϵ )n and for this subtree it will
hold that agr(C(PT ′), w(PT ′)) ≤ (1 + ϵ)n and thus agr(C(PT ), w(PT )) ≤ (1 + ϵ)n. We thus seek
to show that with high probability over the choice of a random layered code, agr(C(PT ), w(PT )) ≤
ϵ|PT | for all rooted subtrees PT of size ≥ (1 + 1

ϵ )n and w ∈ Σn
out.

Using Lemmas 5.8 and 5.9, we union bound over all possible trees of size ≥ (1 + 1
ϵ )n =: s

and words w to see that the probability there exists |PT | ≥ (1 + 1
ϵ )n, w ∈ Σn

out for which
agr(C(PT ), w(PT )) ≥ ϵs is upper bounded by

∞∑
s=(1+ 1

ϵ
)n

|Σout|−ϵs2s · (|Σin|+ 1)2s · |Σout|n = |Σout|n
∞∑

s=(1+ 1
ϵ
)n

(
2 · (|Σin|+ 1)2

|Σout|ϵ

)s

≤ |Σout|n
∞∑

s=(1+ 1
ϵ
)n

(
8 · |Σin|2

|Σout|ϵ

)s
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Since |Σout| > (2|Σin|)6/ϵ
2
> 8|Σin|2, this is upper bounded by

≤ |Σout|n
(
8 · |Σin|2

|Σout|ϵ

)(1+ 1
ϵ
)n−1

=
(8 · |Σin|2)(1+

1
ϵ
)n−1

|Σout|ϵn−ϵ

≤ (8 · |Σin|2)(1+
1
ϵ
)n−1

(2 · |Σin|)6(n−1)/ϵ

≤ (8 · |Σin|2)(1+
1
ϵ
)n−1

(8 · |Σin|2)2(n−1)/ϵ

≤
(
8 · |Σin|2

)−((1−ϵ)n−2)/ϵ

≤ 2−n/4ϵ,

where in the last line we use that ϵ < 1
2 and (1− ϵ)n ≥ 2.

5.4 Decoding

Sensitive (G,Σout) codes will be useful for us because they guarantee that for most locations i on
which C(x) and w agree, w[1 : i] decodes to v(x[1 : i]). First, we define decoding.

Definition 5.10 (CDec). Given an ϵ-sensitive-(G,Σout)-code C, we define CDec to be the algorithm
that takes as input a string w ∈ Σi

out and outputs v ∈ G such that there exists a path p ∈ Σi
in

satisfying ∆(C(p), w) < 1− ϵ if exactly one such v exists, and ⊥ otherwise.

The main theorem of this section is the following:

Theorem 5.11. For every ϵ, n, for any layered graph over Σin of depth n and any ϵ-sensitive-
(G,Σout)-code C : Σn

in → Σn
out, and for any x ∈ Σn

in and w ∈ Σn
out, let J be the set of indices where

C(x)[i] = w[i]. For all but at most 2ϵn values of i ∈ J , it holds that CDec(w[1 : i]) = v(x[1 : i]).

We defer the proof of Theorem 5.11 to after we state a few lemmas.

Lemma 5.12. Given an ϵ-sensitive-(G,Σout)-code C, for any w ∈ Σn
out and ϵ > 0, it holds that

|Li(C, w, ϵ)| ≤ 1 for at least (1− ϵ)n values of i ≤ n.

Proof. Given w, we construct w′ as follows. Pick a prefix tree PT of L(C, w, ϵ). For every i ≤ n,
define PTi(w) to be the set of edges in the i’th layer of PT . If for all e ∈ PTi(w) we have that
C(e) ̸= w[i], then set w′[i] to be C(e) for some arbitrary e ∈ PTi(w). Otherwise, set w′[i] = w[i].

Notice that L(C, w, ϵ) ⊆ L(C, w′, ϵ), since the only indices of w that were changed were those
that did not agree with any of the labels of PT in the corresponding layer, so for any path p(v) ⊆
PT, v ∈ Li(C, w, ϵ), it holds that ∆sfx(C(p(v)), w

′[1 : |p(v)|]) ≤ ∆sfx(C(p(v)), w[1 : |p(v)|]) <
1 − ϵ. This means that PT ∈ PT (C, w′, ϵ). But by the definition of an ϵ-sensitive-(G,Σout)-code
(Definition 5.6),

agr(C(PT ), w′(PT )) ≤ (1 + ϵ)n.

On the other hand, we constructed w′ so that in each layer i, there is at least one edge on which C
and w′ agree. Therefore, the number of layers in which there is more than 1 edge on which C and
w′ agree is ≤ ϵn. In other words, the number of layers in which there is at most 1 edge on which C
and w′ agree is at least (1− ϵ)n. Let this set of layers be I ⊆ [n].
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Finally, note that for any vertex v ∈ Li(C, w, ϵ) and associated path p(v) ⊆ PT , it must hold
that C(p(v))[i] = w[i] = w′[i] (otherwise the suffix distance of C(p(v)) to w is 1), so for each of the
≥ (1− ϵ)n layers in I, there is at most 1 vertex v ∈ Li(C, w, ϵ).

Lemma 5.13 ([Gel17]). For any r, s ∈ Σn, if ∆(r, s) = βn, then there exists a set of indices I ⊆ [n]
of size |I| ≥ (1− β/α)n such that for any i ∈ I,

∆sfx(r[1 : i], s[1 : i]) < α.

Proof of Theorem 5.11. By Lemma 5.13, there exists a set of indices I ⊆ [n] of size |I| ≥ (1 −
1−|J |/n

1−ϵ )n = |J |−ϵn
1−ϵ ≥ |J | − ϵn such that for any i ∈ I, ∆sfx(C(x)[1 : i], w[1 : i]) < 1 − ϵ. Note also

that I ⊆ J , since if C(x)[i] ̸= w[i], then ∆sfx(C(x)[1 : i], w[1 : i]) = 1.
Furthermore, by Lemma 5.12, it holds that |Li(C, w, ϵ)| > 1 on at most ϵn values. Thus, there

are at least |J | − 2ϵn values of J for which CDec(w[1 : i]) = v(x[1 : i]).

Remark 5.14. In this section, we defined sensitive layered codes on finite-depth layered graphs.
However, our proofs extend straightforwardly to give sensitive layered codes on layered graphs of
infinite depth. For an infinite graph, sensitivity means that the restriction of the code to any depth
n (above a certain threshold) should be a sensitive layered code. It is straightforward via a union
bound to see that a random layered code on an infinite layered graph will, with positive probability,
satisfy sensitivity.

5.5 Discussion

In this section, we have only defined and proven properties of layered codes that are useful in
our protocol. However, layered codes also serve as a generalization of tree codes that may be of
independent interest, and we hope to see future work further generalizing the results of tree codes
to this context. We propose a few problems to guide the future study of layered codes.

1. We have shown that sensitive layered codes exist, but have not addressed the analogue of tree
codes. Do layered codes exist on any layered graph over Σ? Specifically, for any ϵ is there an
assignment of the edges of a layered graph over Σ to a larger alphabet Σout such that for any
two words x, y ∈ Σn such that v(x) ̸= v(y), the suffix distance ∆sfx(x, y) > 1− ϵ?

2. Our protocol is one in which layered codes are necessary, and tree codes are not strong enough.
Are there other contexts where this is the case? One possible use case may be in low memory
settings, where a party cannot remember the full history of the messages they have sent, and
so needing only to remember the vertex of the graph they are on may be useful.

3. Do tree codes beyond layered graphs? For example, does the definition of suffix distance
generalize to any directed graph? Does Theorem 5.7 generalize to a more general context?
Does Question 1 generalize?

6 Positive Rate Scheme Resilient to 1
6 Errors

In this section, we will formally describe our algorithm to convert any noiseless interactive protocol
between Alice and Bob to one that is resilient to 1

6 − ϵ bit flips for any sufficiently small ϵ > 0
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(say, ϵ < 0.01), with constant multiplicative blowup in communication complexity and Õ(|π0|)
computational complexity. We note that an error resilience of 1

6 is known to be optimal (see
Theorem 3.2). We focus mainly on describing a computationally inefficient scheme, but a recursive
application of Corollary 4.3 results in a computationally efficient scheme.

Throughout this section, let be π0 the noiseless protocol of length n0 that Alice and Bob are
trying to simulate. Alice’s and Bob’s private inputs respectively are x, y ∈ {0, 1}nin for some
nin ∈ N. We assume that π0 is alternating (meaning that Alice speaks in the odd rounds and Bob
speaks in the even: any protocol can be made alternating with at most a factor of 2 blowup in
communication). We also assume that Alice’s first message is a 1. The correct noiseless transcript
for π0 is denoted T = T (x, y). We also define fx : {0, 1}s → {0, 1} to be the function taking a
partial transcript with Bob as the last speaker (only defined on even s) and outputs Alice’s next
message if she has input x, as defined by the protocol π0. Similarly, we define fy : {0, 1}s → {0, 1}
to be the function taking a partial transcript with Alice as the last speaker and outputs Bob’s next
message on input y as defined by π0. We say a transcript T is inconsistent with x if for some even
s with |s| < |T |, if fx(T [1 : s]) ̸= T [s + 1], and similarly inconsistent with y if for some odd s,
fy(T [1 : s]) ̸= T [s+ 1].

We denote a parameter ϵ > 0, where the adversary will be permitted to flip 1
6 −O(ϵ) bits.

6.1 Preliminaries and Definitions

In our protocol, Alice and Bob will each track a guess for the noiseless transcript T . Specifically,
they will track a sequence of updates denoted UA, UB ∈ {0, 1, ←, •}∗ that evaluates to their current
guess for T . Generally, Alice’s guess is odd length (meaning |t(v(UA))| is odd) since she speaks on
odd turns in π0, and Bob’s guess t(v(UB)) is even length. The exception is if Alice has a transcript
that is either length 0 or length n0. Roughly, an update of 0 or 1 adds this bit onto the transcript,
an update of ← rewinds the previous bit of the transcript, and an update of • keeps the transcript
the same. After each message, the receiving party will append some new updates to this sequence
based on the other person’s message. We begin with some necessary definitions.

6.1.1 Transcript Graph

We begin by informally describing the layered graph that the parties use to build their transcript
guesses. The vertices of G at a given layer ℓ describe the possible transcript guesses for the noiseless
protocol that a party could have after appending ℓ edges ∈ {0, 1, ←, •}∗ as updates to the transcript
guess. The depth of the graph is K = n0

ϵ .

Definition 6.1 (Transcript Graph (G)). Let G be the following particular instance of a layered
graph over the alphabet {0, 1, ←, •} (see Definition 5.2).

• At every layer ℓ ∈ [0,K], the vertices are all elements of the form {0, 1}≤ℓ
ℓ (for example, at

layer 5, a possible vertex is 015). For a vertex v denoted v = yℓ, where y ∈ {0, 1}∗ and ℓ ∈ N,
define t(v) := y ∈ {0, 1}∗ and ℓ(v) := ℓ. The set of all vertices of G is denoted Π.

• The out-edges from a given node v in some layer < K are 0, 1, ←, •. For an edge e ∈ {0, 1, ←
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, •}, the node v ⊕ e at the end of the out-edge from v labeled e is computed as follows

v ⊕ e :=


(t(v)||e)ℓ(v)+1 e ∈ {0, 1}
(t(v)[1 : |t(v)| − 1])ℓ(v)+1 e =← and y ̸= ∅
∅ℓ(v)+1 e =← and t(v) = ∅
t(v)ℓ(v)+1 e = •

.

Vertices in layer K have no out-edges.

As shorthand, for a layered code C on G, and for v ∈ Π and p ∈ Σ∗, let C(v, p) ∈ Σ|p| := C(H)
where H is the subgraph of G corresponding to the path starting at v obtained by following the
edges specified by p.

6.1.2 Transcript Operations and Instructions

Along with UA and UB, Alice and Bob track a weight (confidence) wA and wB associated with this
guess. We will have that w = 0 unless T is a complete transcript. A message received from the
other party will contain an instruction for how to update (U,w). The instruction is in {0, 1, ←, •}.

We define some functions that describe the updates that Alice and Bob make to (UA, wA)
and (UB, wB). We begin with the definition of opx(T ) and opy(T ). This function takes a partial
transcript T ∈ {0, 1}∗5 and calculates the instruction that the party with x or y gives to extend T .
The function is defined on every possible partial transcript T , but only takes on a meaningful value
when the party with the corresponding x or y is the next to speak, or if the transcript is complete
(of length n0).

Definition 6.2 (opr(T )). We define opr(T ) : {0, 1}≤n0 → {0, 1, ←}, for r ∈ {x, y}. Let the set S
denote the set of lengths of T on which fr is defined: S is all the even indices < n0 if r = x or all
the odd indices < n0 if r = y.

• If T is inconsistent with r, then opr(T ) =←.

• Else if |T | ∈ S, then opr(T ) = fr(T ).

• Else, opr(T ) = 1.

The final condition which results in a “default” response of opr(T ) = 1 occurs in one of two
cases: when the party with input r is not the next to speak, allowing 1 to serve as a meaningless
instruction, or when the transcript is complete (of length n0) and the party wants to indicate it is
consistent with their input.

Next, we define the function opT ′(T ), where T ′ is a complete transcript. The function opT ′(T )
takes a partial transcript T and returns the instruction that brings it one step closer to T ′.

Definition 6.3 (opT ′(T )). Let T ′ ∈ {0, 1}≤n0 with |T ′| = n0. We define opT ′(T ) : {0, 1}≤n0 →
{0, 1, ←} as follows.

• If T ′ = T , then opT ′(T ) = 1.
5Notice that T ∈ {0, 1}∗ while each party tracks U ∈ {0, 1, ←, •}∗. Each U evaluates to a transcript t(v(U)) ∈

{0, 1}∗ which corresponds to the input to op.

22



• Else, if T is a strict prefix of T ′, then opT ′(T ) = T ′[|T |+ 1].

• Else, opT ′(T ) =←.

Next, we define a function that Alice and Bob use to update their transcript guess UA or UB

and weight wA or wB when they receive an instruction. Every time a party receives a message,
the party adds two edges onto their guess UA or UB: namely the update δ̂ ∈ {0, 1, ←, •} that they
deduce from the other party’s message, and their own response to that addition.6 Again, recall
that Alice’s partial transcript guess t(v(UA)) is of odd or exactly 0 or n0 length, and Bob’s guess
t(v(UB)) is of even length.

Definition 6.4 ((U,w) ⊗r δ̂). Let r ∈ {x, y}. Given a sequence of updates U ∈ {0, 1, ←, •}∗, an
instruction δ̂ ∈ {0, 1, ←, •}, and weight w ∈ N, return a new pair (U ′, w′)← (U,w)⊗r δ̂ as follows.
As before, let the set S denote the set of lengths of T ∈ {0, 1}∗ on which fr is defined: S is all the
even indices < n0 if r = x and all the odd indices < n0 if r = y.

• If δ̂ = •:
Let U ′ = U || • ||• and w′ = w.

• If δ̂ =←:

If w > 0, then let U ′ = U || • ||• and w′ = w − 1.

Otherwise, if |t(v(U))| − 1 ∈ S, then let U ′ = U || ← || ← and w′ = w. Else, |t(v(U))| ∈ S,
and let U ′ = U || ← ||• and w′ = w.

• If δ̂ = 0 or δ̂ = 1:

Let T = t(v(U)). If |T | = n0, then U ′ = U || • ||• and w′ = w + 1.

Otherwise, if |T | − 1 ∈ S: if |T | < n0− 1, then U ′ = U ||δ̂||opr(t(v(U ||δ̂))), and if |T | = n0− 1,
then U ′ = U ||δ̂||•. Else if |T | ∈ S, then U ′ = U || • ||opr(T ). In any case, w′ = 0.

Notice that in every case, the path U ′ is an extension of U with two additional letters.

6.1.3 The Error Correcting Code

Finally, we define the error correcting code ECC that Alice and Bob use to encode the letters of the
large alphabet layered code.

Lemma 6.5 ([GZ22]). There exists an explicit error correcting code

ECCΣ,ϵ := Σ2 × {0, 1, ←, ?} → {0, 1}M(|Σ|,ϵ)

for some M(|Σ|, ϵ) = Oϵ(|Σ|) with the following properties:

• For any z0 ̸= z1 ∈ Σ2 and δ0, δ1 ∈ {0, 1, ←, ?},

∆
(
ECCΣ,ϵ(z0, δ0),ECCΣ,ϵ(z1, δ1)

)
≥

(
1

2
− ϵ

)
·M(|Σ|, ϵ), (3)

6They will also add two more edges, corresponding to ••, to account for parity issues, but we leave this discussion
for later. We also do not yet discuss how they deduce δ̂ from the other party’s message.
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• For any z ∈ Σ2 and δ0 ̸= δ1 ∈ {0, 1, ←, ?},

∆
(
ECCΣ,ϵ(z, δ0),ECCΣ,ϵ(z, δ1)

)
≥ 2

3
M(|Σ|, ϵ). (4)

We remark that due to the distance conditions, for any fixed z′ and any string s ∈ {0, 1}M(|Σ|,ϵ), at
most one of the following holds:

• There exists δ ∈ {0, 1, ←, ?} such that ∆(s,ECCΣ,ϵ(z
′, δ)) < 1

3 .

• There exists z ∈ Σ2, δ ∈ {0, 1, ←, ?} such that ∆(s,ECCΣ,ϵ(z, δ)) <
1
6 − ϵ.

In particular, the three cases in Protocol 3 are disjoint.

6.2 The Inefficient, Positive Rate Protocol

We are now ready to state our (inefficient) positive rate protocol that is resilient to 1
6 − ϵ errors.

Recall that π0 is an alternating protocol of length n0, such that Alice speaks first and her
first message is always a 1. Let C be a ϵ-sensitive-(G,Σ)-code for some alphabet Σ of size Oϵ(1).
Note that Alice and Bob can agree on an explicit choice of C, for example by both choosing the
lexicographically first such code (it takes up to 22

K -time to find such a code). Also let ECC = ECCΣ,ϵ

be the error correcting code from Lemma 6.5.
Before we state our protocol formally in Section 6.2.1, we give an explanation of the protocol.

While Section 2.1 and Section 2.2 give an explanation of the ideas in our protocol, this section
explains how we implement them. In this explanation, we first focus on when Eve corrupts a
message either entirely to another valid message, or not at all. We talk about the protocol from
Alice’s perspective (Bob is symmetric).

Recall that Alice tracks a guess for the sequence of updates UA ∈ {0, 1, ←, •}∗ along with a
confidence weight wA ≥ 0. The sequence of updates in UA describes Alice’s guess for the transcript:
her transcript guess ∈ {0, 1}≤n0 is simply the result of applying the updates to the empty string.

Every round, Alice sends one of two things: she either asks her own question (a message of
the form ECC(z, ?), where z lets Bob deduce UA which specifies her transcript guess), or she sends
an answer to Bob’s question (a message of the form ECC(z, δ ∈ {0, 1, ←}) where z reflects the
transcript she believes Bob has asked about). Likewise, Bob always sends a question ECC(z, ?) or
an answer ECC(z, δ ∈ {0, 1, ←}). We will discuss later what z should look like.

Whenever Alice receives a message ECC(zB, δ ∈ {0, 1, ←, ?}) from Bob, she updates wA and UA

based on the received message and history. She then chooses to send either a question or an answer.
Specifically:

• If Alice receives an answer ECC(zB, δ ∈ {0, 1, ←}) where zB matches her own transcript guess,
she updates (UA, wA) accordingly by setting (UA, wA)← (UA, wA)⊗x δ. This consists of (with
probability 1) appending two symbols to UA and possibly adjusting the weight wA so that she
has overall updated in the direction specified by δ. She then asks a question.

• If she instead receives a question ECC(zB, ?), she uses zB and the history of received messages
to make a guess for the full sequence of updates U∗

B that Bob has made. T ∗
B = t(v(U∗

B)) is
then her understanding of Bob’s current transcript guess.
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– If T ∗
B is a partial transcript or is inconsistent with x, she updates (UA, wA)← (UA,WA)⊗x

• (“do nothing”). She then sends an answer ECC(zA, δ = opx(T
∗
B) ∈ {0, 1, ←}).

– Else if T ∗
B is a complete transcript (length n0) that is also consistent with x, she updates

UA with probability 0.5 in the direction of T ∗
B, i.e. by computing (UA, wA)← (UA, wA)⊗x

opT ∗
B
(t(v(UA))). This consists of appending two symbols to UA and possibly adjusting

wA. She then asks a question.

In the special case that t(v(UB)) =: TB = TA := t(v(UA)), i.e. Bob’s current transcript guess
is the same as Alice’s (because Alice and Bob’s transcripts are usually different parity lengths,
this can only happen if TB = TA are both the same complete transcript or both the empty
transcript), Alice asks a question. Bob will interpret her question ECC(zA, ?) as both an answer
of 1 (extending his complete transcript guess or empty transcript) and a question. That is,
if Bob receives Alice’s message correctly, he will both update (UB, wB) (with probability 1)
via the operation δ̂ = 1 and send his question. Note that in both the case TB = TA = T or
TB = TA = ∅ the update δ̂ = 1 causes a good update, since we assumed Alice’s first message
is always a 1.

We emphasize that every time Alice updates (after receiving a message from Bob), she appends
two elements ∈ {0, 1, ←, •} to UA, so that the resulting transcript guess t(v(UA)) still ends on
her speaking. (The exception is when t(v(UA)) is a complete transcript of length n0 or the empty
transcript of length 0: then, Alice still appends two update instructions, but the resulting transcript
may be of even (n0 or 0) length.)

The token z. When Alice is asking a question ECC(z, ?), we need z to allow Bob to determine
Alice’s current transcript guess TA = t(v(UA)). Note that sending z = UA (or even z = TA) is too
long. Instead, Alice simply sends z ∈ Σ2 to be her most recent updates to UA, i.e. the last two
operations she appended to UA, encoded into a tree code. Then many of Alice’s messages (the ones
where she asked a question) are symbols of the tree code encoding of UA, which will be sufficient
for Bob to determine UA.

In the case where Alice answers Bob’s question, her message is of the form ECC(z, δ ∈ {0, 1, ←}),
where z must, in some way, echo Bob’s question so that Bob can tell that she is answering the right
question. As before, she cannot send z as the entire belief of Bob’s transcript guess t(vB) where
vb ∈ Π is a vertex of G, because this is too long. Instead, z will be ∈ Σ2 and will be dependent on
her current belief about Bob’s current transcript guess (as a vertex vB in the transcript graph G).
It is almost okay to let z be exactly z′, if she just received ECC(z′, ?) from Bob so that z′ ∈ Σ2 are
the last two tree code symbols in the encoding of UB; however this causes a misalignment in ℓ(vB)
and the length of UA that requires a different convention to fix.

To elaborate, when Alice asks a question, she sends the last two symbols of the tree code at
indices |UA| − 1 and |UA|. When she answers Bob’s question, she might want to send the symbols
at positions |UB| and |UB| − 1 of what she believes to be Bob’s update sequence UB. However, UB

(which has length ℓ(vB)) is shorter than UA, since it was last updated on the previous message.
This clashes with our requirement that when Alice and Bob both have the correct transcript T as
the evaluation of their guesses UA and UB, then Bob must interpret the token z in Alice’s message
as the same regardless of whether she is asking or answering a question. To resolve this, we say that
after she decodes Bob’s message to vB, she adds •• onto it; this makes it the same length as UA,
and then she responds with the last two symbols of the new encoding C(vB, ••). Additionally, every
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time she updates UA, she first updates UA with •• (as a space holder that says “do nothing”). The
result is that both UA and UB increase in length by 4 every time the corresponding party receives
a message and makes an update. For instance, after Bob has sent the k’th message (so both Alice
and Bob have sent k/2 messages), Alice updates so that UA goes from length 2(k − 1) to length
2(k+1), where the first two updates are simply •• and the next two correspond to the additions to
UA. Meanwhile, UB is of length 2k, so if she wishes to answer vB = v(UB), she would add •• to vB
to make it length 2(k + 1) as well, and then send the last two symbols in the tree code encoding.

Finally, we discuss a point glossed over so far: how Alice actually decodes Bob’s question to vB
if she only receives the encoding of the most recent two symbols z ∈ Σ2 of his transcript guess UB.
She tracks PA ∈ (Σ2)∗ as a history of all the symbols ∈ Σ2 that she and Bob have sent. That is,
every time she sends or receives a message ECC(z ∈ Σ2, δ), she appends z to PA. Note that PA

has the correct symbols of the tree code encoding of UB whenever Alice correctly receives Bob’s
question. Theorem 5.11 says that most of the time when Alice correctly receives Bob’s question
ECC(z, ?), she can decode his entire tree code encoding of UB correctly (even though many elements
of PA do not even correspond to Bob’s messages!).

To remember the rules for UA and PA, it is helpful to keep in mind the following picture.
After Alice speaks in the k’th round, i.e. a total of k messages by either Alice or Bob have been
sent so far, both UA and PA should be of length 2k. UA is of the form . . . || • •||(δBδA)k−2|| •
•||(δBδA)k. That is, entries of UA that are •• are when Bob is talking. Meanwhile, PA is of the form
. . . ||zB,k−3||zA,k−2||zB,k−1||zA,k, where zA,i corresponds to the symbols she sent in round i, and zB,i

corresponds to the symbols she received in round i.

Partial Corruptions. Lastly, we mention how we handle partial corruptions, i.e. if a received
message is not a codeword. The receiver will choose a nearby codeword (with distance < 1

3 if
the codeword is an answer to the party’s last question, or with distance 1

6 − ϵ if the codeword is a
question). With probability proportional to the distance from the codeword, they default to sending
a question. Otherwise, they will respond to that codeword as we have described above.

Summary. A brief summary of the most important details:

• Every message Alice sends is of the form ECC(z ∈ Σ2, δ ∈ {0, 1, ←, ?}). The instruction δ
is ? if Alice is asking Bob a question (potentially also responding to his question), and 0, 1 or
← if she is only responding to his question.

• After receiving a message, Alice performs four updates to both UA, appending •• and two
symbols in {0, 1, ←, •}. She similarly performs four updates to PA, appending the two symbols
z∗ ∈ Σ2 received in Bob’s message and then appending the two symbols z that she is sending
in her own next message.

• After sending message k, UA and PA are both length 2k.

• Partial corruptions are handled by performing the behavior described in this section with
probability linearly decreasing with the distance to a nearby codeword. The default message
is a question.
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Indexing: Notational Change. Thus far, we have described UA and PA as being a length 2k
sequence of symbols in {0, 1, ←, •} and Σ respectively, where Alice has just sent the k’th message.
Note however that symbols are always appended to UA and PA in pairs. Thus, we can instead regard
the alphabets of UA and PA as being pairs of updates/layered code symbols instead. Throughout
the rest of this section, we instead regard UA ∈ ({0, 1, ←, •}2)∗ and PA ∈ (Σ2)∗, so that after Alice
sends the k’th message both UA and PA are length k. Then, for instance UA[k] denotes the last two
updates Alice has made to UA, while UA[k − 1] = ••.

Similarly, the alphabet of C(UA) is Σ2, so that C(UA) is of length k = |UA|. For instance,
C(UA)[|UA|] are the last two symbols of C(UA).

6.2.1 Formal Description of Protocol

Protocol 3 : Inefficient, Positive Rate Scheme Resilient to ≈ 1
6 Errors

Recall that π0 is a an alternating, noiseless protocol of length n0, such that Alice speaks first and
her first message is a 1. Alice and Bob have inputs x and y respectively, determining their behavior
in this protocol. The noiseless protocol has transcript T = T (x, y) ∈ {0, 1}n0 . Our error-resilient
protocol consists of K = n0

ϵ messages numbered 1, . . . ,K, each consisting of M(|Σ|, ϵ) = Oϵ(1) bits.
Alice sends the odd messages and Bob sends the even.
Recall that C is an ϵ-sensitive layered code of G with the alphabet Σ. Alice and Bob first (non-
interactively) agree on an explicit choice of C by testing each labeling of G and taking the lexico-
graphically first layered code that is ϵ-sensitive.

Alice and Bob track a private sequence of updates of the transcript guess, denoted UA, UB ∈ {0, 1, ←
, •}2)∗ respectively initialized to ∅. They also track confidence weights wA, wB ∈ N, both initialized
to 0. Alice and Bob additionally track the sequence PA, PB ∈ (Σ2)∗ of pairs of symbols ∈ Σ2 that
they have sent and received throughout the protocol. PA, PB are both initialized to ∅.

In what follows, we describe Alice’s behavior. Bob’s behavior is identical, except notationally switch-
ing x and y, and A and B. At the end of the protocol, Alice and Bob output (t(v(UA)),

2wA

K ) and
(t(v(UB)),

2wA

K ) respectively.
Alice’s first turn is special; she sets UA = •1, sets PA = C(•1), and sends ECC(C(•1), ?).

Alice

Alice has just received a message m from Bob. Let asked = true if the last message she sent was of
the form ECC(z, ?) for some z ∈ Σ2 and false otherwise (we let asked = false in the first round for
Bob). Let dm(z, δ) denote 1

M(|Σ|,ϵ) ·∆(m,ECC(z, δ)).
Alice sets (UA, wA)← (UA, wA)⊗x • and zA ∈ Σ2 to be C(UA)[|UA|]. Then, she picks the first of the
following cases that holds.

Case 1: asked = true and for some δ ∈ {0, 1, ←, ?}, we have dm(zA, δ) <
1
3 .

Let p = 1− 3dm(zA, δ).

• Let the instruction δ̂ = δ unless δ =?, in which case δ̂ = 1. Alice sets (UA, wA) ←
(UA, wA) ⊗x δ̂ and otherwise (with probability 1 − p), sets (UA, wA) ← (UA, wA) ⊗x •.
She computes ζ = C(UA)[|UA|].

• Alice sets PA ← PA||zA||ζ.

• Alice sends ECC(ζ, ?).
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Case 2: For some z∗ ∈ Σ2, we have dm(z∗, ?) ≤ 1
6 − ϵ.

Alice computes v∗ = CDec(PA||z∗).

Subcase 2.1: v∗ =⊥.
• Alice sets (UA, wA)← (UA, wA)⊗x •. Alice sets ζ = C(UA)[|UA|].

• Alice sets PA ← PA||z∗||ζ.

• Alice sends ECC(ζ, ?).

In the next two subcases, v∗ ∈ Π. Let T ∗ = t(v∗).

Subcase 2.2: T ∗ is complete, i.e. |T ∗| = n0, and is consistent with x.
Let p = 0.5− 3dm(z∗, ?).

• Alice computes δ̂ = opT∗(t(v(UA))). With probability p, Alice sets (UA, wA) ←
(UA, wA)⊗x δ̂ and otherwise (with probability 1−p), sets (UA, wA)← (UA, wA)⊗x•.
She sets ζ = C(UA)[|UA|].

• Alice sets PA ← PA||z∗||ζ.

• Alice sends ECC(ζ, ?).

Subcase 2.3: |T ∗| ≠ n0 or T ∗ is inconsistent with x.
Let p = 1− 6dm(z∗, ?).

• Alice sets (UA, wA)← (UA, wA)⊗x •.

• With probability p, Alice computes δ = opx(T
∗) and sends ECC(ζ := C(v∗, ••), δ).

Else (with probability 1− p), she sends ECC(ζ := C(UA)[|UA|], ?).

• Alice sets PA ← PA||z∗||ζ.

Case 3: None of the above.
• Alice sets (UA, wA)← (UA, wA)⊗x •. She computes ζ = C(UA)[|UA|].

• Alice sets PA ← PA||z||ζ, where z ∈ Σ2 is some arbitrary pair of symbols.

• Alice sends ECC(ζ, ?).

6.3 Main Theorems

Theorem 6.6. Protocol 3 is a
(
1
6 , 1224ϵ, 2 · exp

(
− ϵn0

800

))
-scaling scheme with communication com-

plexity Oϵ(n0) and computational complexity 22
Oϵ(n0) .

We prove Theorem 6.6 in Section 6.4. Combining Theorem 6.6 with the boosting procedure in
Protocol 2, we obtain the following result.

Corollary 6.7. For any ϵ > 0 there is a scheme for noiseless protocols of length n0 that is resilient
to

(
1
6 − ϵ

)
-fraction of errors with probability 1 − e−ϵn0/40 log

4 n0. The scheme has communication
complexity Oϵ(n0) and computational complexity Õϵ(n0).

Proof. Let ϵ′ = ϵ/256, and let Cϵ be such that e−ϵ′Cϵ/10 log
4 Cϵ < ϵ′. We choose Cϵ ≥ 8·800·1224

ϵ′2 so
that Cϵ ≥ 100

ϵ′ + 1 and ϵ′

4 > 2 · exp(− 8
ϵ′ · log

4 n0) ≥ 2 · exp(− ϵ′Cϵ log
4 n0

800·1224 ).
We recursively apply Theorem 4.3 three times.
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• We begin with the (16 , ϵ
′, 2 · exp(− ϵ′n0

800·1224)-scaling scheme from Theorem 6.6, which has com-
munication complexity Oϵ(n0) and computational complexity exp(expϵ(n0)).

• Since 2 · exp(− ϵ′Cϵ log
4 n0

800·1224 ) < ϵ′

4 , we apply Theorem 4.3 to obtain a (16 , 4ϵ
′, e−ϵ′n0/10 log

4 n0)-
scaling scheme with communication complexity n0

ϵ′ log4 n0
· Oϵ′(Cϵ log

4 n0) = Oϵ(n0) and com-

putational complexity Õϵ′(n0) · exp(expϵ(Cϵ log
4 n0)) = exp(expϵ(polylogn0)). Let µ′ϵ′(n0) =

e−ϵ′n0/10 log
4 n0 .

• Next, since µ′ϵ′(Cϵ log
4 n0) = exp(− ϵ′Cϵ log

4 n0

10 log4(Cϵ log
4 n0)

) ≤ exp(− ϵ′Cϵ

10 log4 Cϵ
) < ϵ′ = 4ϵ′

4 , we can

apply Theorem 4.3 again to obtain a (16 , 16ϵ
′, e−2ϵ′n0/5 log

4 n0)-scaling scheme with communi-
cation complexity n0

4ϵ′ log4 n0
·Oϵ(Cϵ log

4 n0) = Oϵ(n0) and computational complexity Õϵ′(n0) ·
exp(expϵ(polylog(Cϵ log

4 n0))) = exp(expϵ′(poly(log log(n0)))). Let µ′′ϵ′(n0) = e−2ϵ′n0/5 log
4 n0 .

• Again, since µ′′ϵ′(Cϵ log
4 n0) = exp(− 2ϵ′Cϵ log

4 n0

5 log4(Cϵ log
4 n0)

) ≤ exp(− 2ϵ′Cϵ

5 log4 Cϵ
) < ϵ′4 < 16ϵ′

4 ,

we can apply Theorem 4.3 to get a (16 , 64ϵ
′, e−8ϵ′n0/5 log

4 n0)-scaling scheme with commu-
nication complexity n0

16ϵ′ log4 n0
· Oϵ(Cϵ log

4 n0) = Oϵ(n0) and computational complexity

Õϵ(n0) · exp(expϵ(poly(log log(Cϵ log
4 n0)))) = exp(expϵ(poly(log log log n0))) ≤ polyϵ(n0).

Let µ′′′ϵ′ (n0) = e−8ϵ′n0/5 log
4 n0 .

• Finally, to further reduce the computational complexity to Õϵ(n0), we apply Theorem 4.3
one last time. Since µ′′′ϵ′ (Cϵ log

4 n0) = exp(− 8ϵ′Cϵ log
4 n0

5 log4(Cϵ log
4 n0)

) ≤ exp(− 8ϵ′Cϵ

5 log4 Cϵ
) < ϵ′16 < 64ϵ′

4 ,

we get a (16 , 256ϵ
′, e−32ϵ′n0/5 log

4 n0)-scaling scheme with communication complexity n0

64ϵ′ log4 n0
·

Oϵ(Cϵ log
4 n0) = Oϵ(n0) and computational complexity Õϵ(n0) · polyϵ(Cϵ log

4 n0) = Õϵ(n0).

Thus, we have arrived at a (16 , ϵ, e
−ϵn0/40 log

4 n0)-scaling scheme.

6.4 Analysis

Note that Alice and Bob only ever append to UA, UB, PA, PB, and once a symbol has been appended
it is never modified. Thus, throughout the analysis, when we refer to UA, UB, PA, PB, we mean their
values at the end of the protocol, so that UA, UB ∈ ({0, 1, ←, •}2)K and PA, PB ∈ (Σ2)K .

6.4.1 Unique Decoding Lemma

Definition 6.8 (S). We define the set S to consist of all rounds k ∈ [K] where one of the following
conditions does not hold.

(i) For not necessarily distinct parties P, P ′ ∈ {A,B}, it holds that C(UP )[k] = PP ′ [k] ∈ Σ2 =⇒
CDec(PP ′ [1 : k]) = v(UP [1 : k]).

(ii) C(UA)[k] = C(UB)[k] ∈ Σ2 =⇒ v(UA[1 : k]) = v(UB[1 : k]).

Lemma 6.9. S has size at most 20ϵK.

Proof. We deal with each of the conditions individually.
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(i) Let S1 be the set of indices that violate the first condition. For each pair of parties P, P ′, by
Theorem 5.11, it holds that there are only 2ϵ · 2K values of k where C(UP )[k] = PP ′ [k] =⇒
C(UP )[k][2] = PP ′ [k][2],7 but CDec(PP ′ [1 : k]) ̸= v(UP [1 : k]). Thus, adding over all four cases
of P, P ′ ∈ {A,B}, it holds that S1 has size at most 4 · 2ϵ2K = 16ϵK.

(ii) Let S2 be the set of indices that violate the second condition. By Theorem 5.11, it holds that
there are only 2ϵ · 2K values of k where C(UA)[k] = C(UB)[k] =⇒ C(UA)[k][2] = C(UB)[k][2]
but v(UA[1 : k]) ̸= CDec(C(UB[1 : k]). The latter is always either v(UB[1 : k]) or ⊥, so there
are at most 2ϵ · 2K values of k where v(UA[1 : k]) ̸= v(UB[1 : k]). Thus, S2 is size at most
4ϵK.

The total size of S is at most |S1|+ |S2| ≤ 20ϵK.

6.4.2 Definitions for the Potential

To prove Theorem 6.6, we analyze the effects of corruption on the good and bad updates Alice/Bob
make. We begin by defining good, bad, and neutral updates. After receiving a message from Bob,
Alice updates her transcript UA and confidence wA to U ′

A and w′
A.

• Let (U ′
A,W ′

A) = (UA, wA) ⊗x opT (t(v(UA))). The update is good if t(v(U ′
A)) = t(v(U ′)) and

W ′
A = wA.

• The update is neutral if (t(v(U ′
A)), w

′
A) = (t(v(UA)), wA).

• The update is bad otherwise.

We similarly define good and bad updates for Bob. We will often refer to making a good/bad update
as simply making an update, and considering a neutral update as having done nothing.

For each t ∈ [1, . . . ,K], we define the following potential functions:

• ψA
t is defined to be the total number of good updates minus the number of bad updates Alice

has done in response to messages 1, . . . , t. Note that she only updates in response to messages
she receives (the even numbered messages).

• ψB
t is defined to be the total number of good updates minus the number of bad updates Bob

has done in response to messages 1, . . . , t. Note that he only updates in response to messages
he receives (the odd numbered messages).

Lemma 6.10. The potential ψA
t determines Alice’s final transcript guess and her confidence as

follows:

(i) If ψA
t ≥ n0/2, then t(v(UA)) = T and wA ≥ ψA

t − n0/2.

(ii) If ψA
t ≤ n0/2, then t(v(UA)) ̸= T and wA ≤ n0/2− ψA

t .

The same statements hold for Bob, replacing A with B.
7Recall that C(UP )[k], PP ′ [k] ∈ Σ2 so C(UP )[k][2], PP ′ [k][2] ∈ Σ.
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Proof. We prove this for Alice as the proof for Bob is identical. After sending message 1, since
UA = •1, in order make t(v(UA)) = T , Alice needs to perform n0/2 good updates (the first n0/2−1
updates consist of appending two bits, corresponding to Bob’s and her next messages in π0, followed
by 1 further good update consisting of simply appending Bob’s next message). Every good update
thereafter increases wA by 1 without changing t(v(UA)).

It remains to show that every good update undoes a bad update; that is, every bad update,
when followed by a good update, results back in the original value of (t(v(UA)), wA). If the bad
update appends two instructions ∈ {0, 1, •}2\{••} to UA, then the new value of t(v(UA)) must not
be a prefix of T . Then the next good instruction, which is ←, undoes this. If the bad update deletes
the last one or two bits of t(v(UA)) incorrectly, then re-appending the bit(s) undoes this. If the
bad update increases wA incorrectly, then t(v(UA)) ̸= T , so the next good update is opT (t(v(UA)))
which causes wA to decrease by 1. If the bad update decreases wA incorrectly, then t(v(UA)) = T ,
and the next good update is opT (t(v(UA))) which increases wA by 1.

From this point on, we will focus on analyzing Protocol 3 from Alice’s perspective, as the analysis
from Bob’s perspective follows analogously.

Define ρAt as follows (and similarly ρBt ): ρAt is the expected number of good updates minus the
number of bad updates that Alice will do in response to message t, given the protocol so far, if
message t is uncorrupted. (Note that ρAt = 0 for odd t since Alice sends the odd messages.)

Define valAt as follows:

valAt =


0.5 if t is odd and message t is of the form ECC(z ∈ Σ2, ?) and (ψA

t < n0/2 or ψB
t−1 ≥ n0/2).

0.5 if t is even and message t is of the form ECC(z ∈ Σ2, ?) and ψB
t < n0/2.

0 otherwise

Define the potential ΨA
t as follows:

ΨA
t = ψA

t + ρAt+1 +min(ψB
t + ρBt+1, n0/2) + valAt+1

Finally, we define Alice’s actual update: ΛA
t is the actual value of the update Alice makes in

response to message t (in particular, ΛA
t ∈ {−1, 0, 1}).

Throughout the analysis, we say Alice interprets a message m as ECC(z∗, δ∗) in Protocol 3 when
she enters Case 1 or Case 2 according to that value. Additionally, we will say she interprets the
message correctly or incorrectly, if ECC(z∗, δ∗) respectively equals or does not equal the message
Bob sent.

Lemma 6.11. The following are true for any k /∈ S:

1. ρAk ≥ 0. As a corollary, if Alice correctly interprets message k, then ΛA
k ≥ 0.

2. For any k, it holds that E[ΛA
k ]− ρAk ≥ −3αk − 3ϵ.

3. For all even k, if Alice interprets message k incorrectly, then E[ΛA
k ] ≥ 0.5−3αk−3ϵ. Similarly,

for all odd k, if Bob interprets message k incorrectly, then E[ΛB
k ] ≥ 0.5− 3αk − 3ϵ.

4. Whenever Alice sends ECC(z ∈ Σ2, ?) as message k, it holds that valAk + ρBk ≥ 0.5.

5. Whenever Bob sends ECC(z ∈ Σ2, ?) as message k, it holds that valAk + ρAk ≥ 0.5.
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Proof. We prove the statements individually.

1. We assume Alice interprets Bob’s message in the k’th round correctly. Let Bob’s intended
message be ECC(z, δ). If δ =?, then z = C(UB)[k]. We have z = C(UB)[k] = PA[k], so by
Lemma 6.9, v(UB[1 : k]) = CDec(PA[1 : k]). Then, if Alice enters Case 1, CDec(PA[1 : k]) =
v(UA[1 : k]) as well, so v(UA[1 : k]) = v(UB[1 : k]). Since they are the same, they must be
either ∅ or T . In either case, δ̂ = 1 results in a positive update. If Alice enters Case 2, then
in order to have made an update, she must enter Case 2 Subcase 2, which she only enters
if v(UB[1 : k]) is complete and consistent with her input, and therefore = T , resulting in a
positive update.

If δ ∈ {0, 1, ←}, Bob sent ECC(PB[k], δ). The only way that Alice can make an update is by
entering Case 1. This requires PB[k] = C(UA[1 : k])[k] =⇒ CDec(PB[1 : k]) = v(UA[1 : k]).
Note also that Bob must have decoded CDec(PB[1 : k − 1]) to v∗ and set PB[k] ← C(v∗, ••).
Then, CDec(PB[1 : k]) ∈ {v∗ ⊕ • ⊕ •,⊥}. Since CDec(PB[1 : k]) = v(UA[1 : k]) ̸=⊥, it holds
that CDec(PB[1 : k]) = v∗⊕•⊕• =⇒ v(UA[1 : k]) = v∗⊕•⊕•). This means that Bob sends
an instruction which causes Alice to make a positive update.

To show ΛA
k ≥ 0, Alice either makes the update corresponding to the case she is in, or no

update at all. In order for ρAk ≥ 0, this one possible update she could make must be a good
update, so ΛA

k ≥ 0 as well.

2. Clearly, if k is odd, then ΛA
k − ρAk = 0 ≥ −3αk − 3ϵ. We focus on when k is even. Let Bob’s

intended message be ECC(z ∈ Σ2, δ ∈ {0, 1, ←, •})
We split the proof into cases.

Case 1: Alice does not enter Case 1 or Case 2 Subcase 2.

Alice does not update, so ΛA
k = 0. If Bob’s message was of the form ECC(zA, δ),

then ρAk ≤ 1 and αk ≥ 1
3 (otherwise Alice should have entered Case 1). This gives

E[ΛA
k ]− ρAk

≥ 0− 1

≥ − 3αk − 3ϵ.

Otherwise if Bob’s message was of the form ECC(z∗ ̸= zA ∈ Σ2, ?), then αk ≥ 1
6 − ϵ.

He must enter Case 2 or Case 3, so his expected update is at most 0.5. Then,

E[ΛA
k ]− ρAk

≥ 0− 0.5

≥ − 3αk − 3ϵ.

Case 2: Alice interprets message k correctly and she enters Case 1 or Case 2.

We have dm ≤ αk. We only need to look at the case where her possible update
is positive; if it is 0, the result follows from the calculation above and cannot be
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negative. If she enters Case 1, her probability of updating is 1− 3dm ≥ 1− 3αk, so

E[ΛA
k ]− ρAk

≥ (1− 3αk)− 1

≥ − 3αk − 3ϵ.

If she enters Case 2 Subcase 2, her probability of updating is 0.5−3dm ≥ 0.5−3αk,
so

E[ΛA
k ]− ρAk

≥ (0.5− 3αk)− 0.5

≥ − 3αk − 3ϵ.

Case 3: Alice interprets message k incorrectly as ECC(z∗, δ∗) and enters Case 1 or Case 2
Subcase 2.

If she enters Case 1 and z = z∗, then dm ≥ 2
3 − αk so her probability of updating is

1− 3dm ≤ −1 + 3αk, so

E[ΛA
k ]− ρAk

≥ − 1(−1 + 3αk)− 1

≥ − 3αk − 3ϵ.

If she enters Case 1 and z ̸= z∗, then dm ≥ 1
2−ϵ−αk, so her probability of updating

is 1− 3dm ≤ −0.5 + 3αk + 3ϵ. Also, ρAk ≤ 0.5. This gives

E[ΛA
k ]− ρAk

≥ − 1(−0.5 + 3αk + 3ϵ)− 0.5

≥ − 3αk − 3ϵ.

If she enters Case 2 Subcase 2, then dm ≥ 1
2 − ϵ−αk, so her probability of updating

is 0.5− 3dm ≤ −1 + 3αk + 3ϵ. This gives

E[ΛA
k ]− ρAk

≥ − 1(−1 + 3αk + 3ϵ)− 1

≥ − 3αk − 3ϵ.

3. We prove this for Alice as the proof for Bob is symmetric. If ρAk ≥ 0.5, then the result follows
from the previous item. Otherwise, ρAk = 0. Alice interprets message k as (z∗, δ∗) and Bob’s
intended message was (z, δ), where (z∗, δ∗) ̸= (z, δ).

If she enters Case 1 and z = z∗, then dm ≥ 2
3 −αk so her probability of updating is 1− 3dm ≤
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−1 + 3αk, so

E[ΛA
k ]

≥ − 1(−1 + 3αk)

≥ 1− 3αk − 3ϵ.

If she enters Case 1 and z ̸= z∗, then dm ≥ 1
2 − ϵ − αk, so her probability of updating is

1− 3dm ≤ −0.5 + 3αk + 3ϵ. Also, ρAk ≤ 0.5. This gives

E[ΛA
k ]

≥ − 1(−0.5 + 3αk + 3ϵ)

≥ 0.5− 3αk − 3ϵ.

If she enters Case 2 Subcase 2, then dm ≥ 1
2 − ϵ − αk, so her probability of updating is

0.5− 3dm ≤ −1 + 3αk + 3ϵ. This gives

E[ΛA
k ]

≥ − 1(−1 + 3αk + 3ϵ)

≥ 1− 3αk − 3ϵ.

4. Alice sends the odd messages, so we are in the case where k is odd. If ψA
t < n0/2 or ψB

t−1 ≥
n0/2, then the result follows because valAk = 0.5 and ρBk ≥ 0. Otherwise ψA

k = ψA
k−1 ≥ n0/2.

Thus, Alice’s message is ECC(C(UA)[k], ?) where t(v(UA)) = T . If Bob receives this message
uncorrupted, then C(UA)[k] = PB[k], so by Definition 6.8, v(UA[1 : k]) = CDec(PB[1 : k]). If
he enters Case 1, then C(UA)[k] = C(UB)[k] =⇒ T = t(v(UA[1 : k])) = t(v(UB[1 : k])) so it
must be the case that he makes a good update. If he enters Case 2, he decodes v∗ such that
t(v∗) = T , and so also makes a good update with at least 0.5 probability.

5. The proof is very similar. Bob sends the odd messages, so we are in the case where k is
even. If ψB

t < n0/2, then the result follows because ψA
k = 0.5 and ρAk ≥ 0. Otherwise

ψB
k = ψB

k−1 ≥ n0/2. Thus, Bob’s message is ECC(C(UB)[k], ?) where t(v(UB)) = T . If Alice
receives this message uncorrupted, then C(UB)[k] = PA[k], so by Definition 6.8, v(UB[1 : k]) =
CDec(PA[1 : k]). If she enters Case 1, she makes a good update, and if she enters Case 2, she
decodes v∗ such that t(v∗) = T , and so also makes a good update with at least 0.5 probability.

6.4.3 Calculating the Change in Potential

The main objective is to prove the following lemma.

Lemma 6.12. For any k ∈ [K] such that k − 1, k, k + 1 /∈ S, if an αk fraction of message k is
corrupted, then

E[ΨA
k −ΨA

k−1] ≥ 0.5− 3ϵ− 3αk.

Proof. We split the proof into four parts depending on the parity of k and on the value of ψB
k or

ψB
k−1.
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k is even and ψB
k < n0/2. Then

E[ΨA
k −ΨA

k−1]

= E[ψA
k + ρAk+1 +min(ψB

k + ρBk+1, n0/2) + valAk+1 − ψA
k−1 − ρAk −min(ψB

k−1 + ρBk , n0/2)− valAk ]

= E[ΛA
k − ρAk + valAk+1 − valAk +min(ψB

k + ρBk+1, n0/2)−min(ψB
k , n0/2)]

= E[ΛA
k − ρAk + valAk+1 − valAk + ρBk+1].

Case 1: Message k is of the form ECC(z ∈ Σ2, ?).
Notice that z = C(UB)[k].

It holds that valAk = 0.5. If the message is uncorrupted, Alice must enter Case 2
Subcase 3 because CDec(PA[1 : k]) = v(UB[1 : k]) ̸= v(UA[1 : k]) by Definition 6.8. Alice
only enters Case 1 when CDec(PA[1 : k]) = v(UA[1 : k]). Thus, ρAk = 0 because Alice
makes a neutral update. Thus, we need to show

E[ΛA
k + valAk+1 + ρBk+1] ≥ 1− 3αk − 3ϵ.

Subcase 1.1: Alice interprets message k correctly.
Then we must be in Case 2 Subcase 3 as shown earlier. Also, ΛA

k = 0. With
probability at least 1 − 6αk, Alice sends a message of the form ECC(C(UB)[k +
1], δ) upon computing CDec(PA[1 : k]) = v(UB[1 : k]). This results in ρBk+1 = 1.
Otherwise (with probability at most 6αk), she sends ECC(C(UA)[k + 1], ?); then by
Lemma 6.11 valAk+1 + ρAk+1 ≥ 0.5. Overall, this evaluates to

E[ΛA
k + valAk+1 + ρBk+1]

= 0 + (1− 6αk)(1) + 6αk(0.5)

= 1− 6αk + 3α

≥ 1− 3αk − 3ϵ.

Subcase 1.2: Alice enters Case 3.
ΛA
k = 0 and valAk+1 + ρBk+1 ≥ 0.5 by Lemma 6.11. Also, αk ≥ 1

6 − ϵ. This gives

E[ΛA
k + valAk+1 + ρBk+1]

= 0 + 0.5

≥ 1− 3αk − 3ϵ.

Subcase 1.3: Alice interprets message k incorrectly as ECC(zA, δ ∈ {0, 1, ←, δ}).
We have E[ΛA

k ] ≥ 0.5−3αk−3ϵ by Lemma 6.11 regardless of whether zA = z. Alice
sends a message of the form ECC(z ∈ Σ2, ?) so valAk+1 + ρBk+1 ≥ 0.5 by Lemma 6.11.
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This gives

E[ΛA
k + valAk+1 + ρBk+1]

= 0.5− 3αk − 3ϵ+ 0.5

≥ 1− 3αk − 3ϵ.

Subcase 1.4: Alice interprets message k incorrectly as (z∗, δ) where z∗ ̸= zA.
Let dm be the relative distance from the received message to ECC(z∗, δ). Notice that
Alice updates with probability 0.5− 3dm ≤ 0.5− 3(0.5− ϵ− αk) = −1 + 3αk + 3ϵ
probability, so

E[ΛA
k + valAk+1 + ρBk+1]

≥ ΛA
k

≥ − 1(−1 + 3α+ 3ϵ)

≥ 1− 3αk − 3ϵ.

Case 2: Message k is of the form ECC(z, δ) for some δ ∈ {0, 1, ←}.
We have valAk = 0 because δ ̸=?. Thus, we need to show

E[ΛA
k − ρAk + valAk+1 + ρBk+1] ≥ 0.5− 3αk − 3ϵ.

Subcase 2.1: Alice enters any case except Case 2 Subcase 3.
We have E[ΛA

k ] − ρAk ≥ −3αk − 3ϵ by Lemma 6.11 and valAk+1 + ρBk+1 ≥ 0.5 by
Lemma 6.11. This gives

E[ΛA
k − ρAk + valAk+1 + ρBk+1]

≥ − 3αk − 3ϵ+ 0.5

= 0.5− 3αk − 3ϵ.

Subcase 2.2: Alice enters Case 2 Subcase 3.
ΛA
k = 0 because Alice does not update. Also ρAk ≤ 1. Alice must have interpreted

incorrectly since the received message has δ =?, so with probability of at least
1 − p ≥ 6(0.5 − ϵ − αk), Alice sends a message of the form ECC(z ∈ Σ2, ?), where
valAk+1 + ρBk+1 ≥ 0.5. This gives

E[ΛA
k − ρAk + valAk+1 + ρBk+1]

≥ 0− 1 + 6(0.5− ϵ− αk) · 0.5+ =

≥ 0.5− 3αk − 3ϵ.
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k is even and ψB
k ≥ n0/2. Then

E[ΨA
k −ΨA

k−1]

= E[ψA
k + ρAk+1 +min(ψB

k + ρBk+1, n0/2) + valAk+1 − ψA
k−1 − ρAk −min(ψB

k−1 + ρBk , n0/2)− valAk ]

= E[ΛA
k − ρAk + valAk+1 − valAk +min(ψB

k + ρBk+1, n0/2)−min(ψB
k , n0/2)]

= E[ΛA
k − ρAk + valAk+1 − valAk ].

We have that valAk = 0 because either the message is ECC(z ∈ Σ2, ?) with ψB
k ≥ n0/2, or

ECC(z ∈ Σ2, δ ∈ {0, 1, ←}). Thus, we need to show

E[ΛA
k − ρAk + valAk+1] ≥ 0.5− 3αk − 3ϵ.

Case 1: Alice does not enter Case 2 Subcase 3.
We know ΛA

k − ρAk ≥ −3αk − 3ϵ by Lemma 6.11 and valAk+1 = 0.5 because message k + 1
is of the form ECC(z ∈ Σ2, ?). Then

E[ΛA
k − ρAk + valAk+1]

≥ − 3αk − 3ϵ+ 0.5

≥ 0.5− 3αk − 3ϵ.

Case 2: Alice interprets message k enters correctly and enters Case 2 Subcase 3.
Bob must have sent ECC(C(UB)[k], ?). It holds that PA[k] = C(UB)[k] so by Definition 6.8,
unless k ∈ S, CDec(PA) = v(UB). However, since ψB

k ≥ n0/2 she must have actually
entered Case 2 Subcase 2, which is a contradiction.

Case 3: Alice interprets message k incorrectly and enters Case 2 Subcase 3.
ΛA
k = 0 because Alice does not update. Also, ρAk ≤ 1. With probability at least 1 − p ≥

6(0.5 − αk), Alice sends a message of the form ECC(z ∈ Σ2, ?), so valAk+1 + ρBk+1 ≥ 0.5.
This gives

E[ΛA
k − ρAk + valAk+1]

≥ 0− 1 + 6(0.5− αk) · 0.5
≥ 0.5− 3αk − 3ϵ.

k is odd and ψB
k−1 < n0/2. Then the expression simplifies to

E[ΨA
k −ΨA

k−1]

= E[ψA
k + ρAk+1 +min(ψB

k + ρBk+1, n0/2) + valAk+1 − ψA
k−1 − ρAk −min(ψB

k−1 + ρBk , n0/2)− valAk ]

= E[ρAk+1 + valAk+1 − valAk +min(ψB
k , n0/2)−min(ψB

k−1 + ρBk , n0/2)]

= E[ρAk+1 + valAk+1 − valAk + ψB
k − ψB

k−1 − ρBk ]
= E[ρAk+1 + ΛB

k − ρBk + valAk+1 − valAk ].
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Case 1: ψA
k ≥ n0/2 or message k is of the form ECC(z ∈ Σ2, δ ∈ {0, 1, ←}).

We know that valAk = 0. Thus, we want to show

E[ΛB
k − ρBk + ρAk+1 + valAk+1] ≥ 0.5− 3αk − 3ϵ.

Subcase 1.1: Bob does not enter Case 2 Subcase 3.
Bob’s next message is of the form ECC(z ∈ Σ2, ?) so ρAk+1 + valAk+1 ≥ 0.5 by
Lemma 6.11. By the same lemma, E[ΛB

k ]− ρBk ≥ −3αk − 3ϵ. This gives

E[ΛB
k − ρBk + ρAk+1 + valAk+1]

≥ 0.5− 3αk − 3ϵ.

Subcase 1.2: Bob interprets message k correctly and enters Case 2 Subcase 3.
If message k is of the form ECC(z ∈ Σ2, δ) for some δ ̸=?, Bob cannot have entered
Case 2. Thus, ψA

k ≥ n0/2 and Alice must have sent ECC(C(UA)[k], ?), and so
PB[k] = C(UA)[k]. Then by Definition 6.8, CDec(PB[1 : k]) = v(UA[1 : k]), and
since ψA

k ≥ n0/2, it holds that t(CDec(PA[1 : k])) = t(v(UA)) = T . Then, Bob
enters Case 2 Subcase 2, which is a contradiction.

Subcase 1.3: Bob interprets message k incorrectly and enters Case 2 Subcase 3.
ΛB
k = 0 and Bob sends ECC(z ∈ Σ2, ?) with probability 1 − p ≥ 6(0.5 − ϵ − αk)

resulting in valAk+1 + ρAk+1 ≥ 0.5, so

E[ΛB
k − ρBk + ρAk+1 + valAk+1]

≥ 0− 1 + 0.5(3− 6ϵ− 6αk)

= 0.5− 3αk − 3ϵ.

Case 2: Message k is of the form ECC(z ∈ Σ2, ?) and ψA
k < n0/2.

Note that z = C(UB)[k] and we know that valAk = 0.5 and ρBk = 0. Thus, we need to show

E[ΛB
k + ρAk+1 + valAk+1] ≥ 1− 3αk − 3ϵ.

Subcase 2.1: Bob interprets message k correctly.
Bob must enter Case 2 Subcase 3. This is because v(UB[1 : k]) ̸= v(UA[1 : k]),
so Bob cannot enter Case 1 by Definition 6.8. Upon entering Case 2, he correctly
decodes CDec(PB[1 : k]) = v(UA[1 : k]), causing him to enter Case 2 Subcase 3.
Then, with p ≥ 1−6αk, we have ρAk+1 = 1, because Bob sends ECC(C(UA)[k+1], δ),
where δ is such that Alice would make a positive update upon entering Case 1 if she
interprets the message correctly. Otherwise ρAk+1 + valAk+1 ≥ 0.5. By Lemma 6.11,
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ΛB
k ≥ 0, which gives

E[ΛB
k + ρAk+1 + valAk+1]

≥ 1(1− 6αk) + 0.5(6αk) + 0

≥ 1− 3αk − 3ϵ.

Subcase 2.2: Bob interprets message k incorrectly and does not enter Case 2 Subcase 3.
Notice ΛB

k > 0.5−3αk−3ϵ by Lemma 6.11, and ρAk+1+valAk+1 ≥ 0.5 by Lemma 6.11
since he sends ECC(z ∈ Σ2, ?) in all cases except Case 2 Subcase 3. This gives

E[ΛB
k + ρAk+1 + valAk+1]

≥ 0.5− 3αk − 3ϵ+ 0.5

≥ 1− 3αk − 3ϵ.

Subcase 2.3: Bob interprets message k incorrectly and enters Case 2 Subcase 3.
Notice ΛB

k = 0 and αk ≥ 1
3 .

E[ΛB
k + ρAk+1 + valAk+1]

≥ 0 + 0 + 0

= 1− 3αk − 3ϵ.

k is odd and ψB
k−1 ≥ n0/2. Then

E[ΨA
k −ΨA

k−1]

= E[ψA
k + ρAk+1 +min(ψB

k + ρBk+1, n0/2) + valAk+1 − ψA
k−1 − ρAk −min(ψB

k−1 + ρBk , n0/2)− valAk ]

= E[ρAk+1 + valAk+1 − valAk +min(ψB
k , n0/2)−min(ψB

k−1 + ρBk , n0/2)]

≥ E[ρAk+1 + valAk+1 − valAk +min(ΛB
k , 0)].

Case 1: Message k is of the form ECC(z ∈ Σ2, ?).
It holds that z = C(UA)[k]. Moreover, valAk = 0.5 since ψB

k−1 ≥ n0/2, so we want to show

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)] ≥ 1− 3αk − 3ϵ.

Subcase 1.1: Bob interprets message k correctly.
If Bob entered Case 1, then C(UA)[k] = C(UB)[k], which means v(UA[1 : k]) =
v(UB[1 : k]) by Definition 6.8. If Bob entered Case 2 Subcase 2, then v∗ = v(UA[1 :
k]) = v(UB[1 : k]) In either case, since t(v(UB[1 : k])) = T , Bob makes a neutral
or positive update from his current complete correct transcript, so his next mes-
sage is always ECC(C(v(UB[1 : k]), ••), ?) which has ρAk+1 = 1. Also, ΛB

k ≥ 0 by
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Lemma 6.11, so

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)]

≥ 1 + 0 + 0

≥ 1− 3αk − 3ϵ.

If he entered Case 2 Subcase 3, he correctly decodes v∗ = v(UA[1 : k]), and sends
ECC(C(UA)[k], δ ∈ {0, 1, ←, ?}) with ρAk+1 = 1 with probability at least 1−6αk and
otherwise ρAk+1 + valAk+1 ≥ 0.5. Also, ΛB

k ≥ 0 by Lemma 6.11. This gives

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)]

≥ 1(1− 6αk) + 0.5(6αk) + 0

≥ 1− 3αk − 3ϵ.

Subcase 1.2: Bob interprets message k incorrectly.
If Bob enters Case 2 Subcase 3, he never updates, in which case ΛB

k = 0. With
probability at least 1 − p ≥ 6(0.5 − αk − ϵ), Bob sends ECC(z ∈ Σ2, ?), so ρAk+1 +

valAk+1 ≥ 0.5. This gives

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)]

≥ 0.5 · 6(0.5− αk − ϵ) + 0

= 1.5− 3αk − 3ϵ.

Otherwise, his probability of updating is at most 3αk + 3ϵ − 0.5, so E[ΛB
k ] ≥

0.5 − 3αk − 3ϵ. Since he sends ECC(z ∈ Σ2, ?), we have ρAk+1 + valAk+1 ≥ 0.5 which
gives

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)]

≥ 0.5 + 0.5− 3αk − 3ϵ

= 1− 3αk − 3ϵ.

Case 2: Message k is of the form ECC(z, δ ∈ {0, 1, ←}).
The message is not a question so valAk = 0. Thus, we need to show

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)] ≥ 0.5− 3αk − ϵ.

Subcase 2.1: Bob interprets message k correctly.
He always sends a message k+1 of the form ECC(z, ?), so ρAk+1+valAk+1 ≥ 0.5. Then

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)]

≥ 0.5− 0

≥ 0.5− 3αk − ϵ.
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Subcase 2.2: Bob interprets message k incorrectly.
Notice that αk ≥ 1

6 and so min(ΛB
k , 0) > 0.5− 3αk − 3ϵ. Then

E[ρAk+1 + valAk+1 +min(ΛB
k , 0)]

≥ 0− 0.5− 3αk − ϵ
= 0.5− 3αk − ϵ.

6.4.4 Concluding with Azuma’s Inequality

Proof of Theorem 6.6. We defer the proof of communication complexity and computational com-
plexity to Lemma 6.13. Here, we simply show that Protocol 3 is

(
1
6 , 1224ϵ, 2 · exp

(−ϵn0
800

))
-scaling.

First, the consistency property is clear: Alice never appends an operation to UA such that the
resulting transcript t(v(UA)) is inconsistent with x. It suffices to show the two scaling properties.
In particular, we will show that with probability at least 1 − exp

(
− ϵn0

800

)
, both of the following

statements hold for Alice:

• If α < 1
6 − 1224ϵ, then t(v(UA)) = T and wA ≥ K

2 (1− 6α− 1224ϵ).

• If α ≥ 1
6 − 1224ϵ, then if t(v(UA)) ̸= T then wA ≤ K

2 (6α− 1 + 1224ϵ).

We call these the Alice-scaling conditions. By a similar analysis, the equivalent statements will
hold for Bob as well. Then a union bound will give that the probability the scaling conditions hold
simultaneously for both parties is at least 1− 2 · exp(− ϵn0

800).
Let α1, . . . , αK denote the fractional number of corruptions in messages 1, . . . ,K. Define

Sk = {i : i ≤ k ∧ (i− 1 ∈ S ∨ i ∈ S ∨ i+ 1 ∈ S)}.

For k ∈ {1 . . .K}, we define the random variables

ΦA
k = ΨA

k − 0.5k + 3kϵ+
k∑

i=1

3αi + 10|Sk|,

ΦB
k = ΨB

k − 0.5k + 3kϵ+
k∑

i=1

3αi + 10|Sk|.

By Lemma 6.12, for all k such that k − 1, k, k + 1 /∈ S,

E[ΦA
k ] = E

[
ΨA

k − 0.5k + 3kϵ+

k∑
i=1

3αi + 10|Sk|

]

≥ E

[
ΨA

k−1 − 0.5(k − 1) + 3(k − 1)ϵ+

k−1∑
i=1

3αi + 10|Sk|

]
= E[ΦA

k−1].
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For all k such that either k − 1 ∈ S, k ∈ S, or k + 1 ∈ S,

E[ΦA
k ] = E

[
ΨA

k − 0.5k + 3kϵ+

k∑
i=1

3αi + 10|Sk|

]

≥ E


ΨA

k−1 + ΛA
k + ρAk − ρAk−1 +min(ψB

k + ρBk+1, n0/2)−min(ψB
k−1 + ρBk , n0/2)

+ valAk+1 − valAk − 0.5k + 3kϵ+
k−1∑
i=1

3αi + 10|Sk−1|+ 10


≥ E[ΦA

k−1]−
∣∣ΛA

k

∣∣− ∣∣ΛB
k

∣∣− ∣∣ρBk ∣∣− ∣∣ρBk−1

∣∣− ∣∣ρAk ∣∣− ∣∣ρAk−1

∣∣− ∣∣valAk+1

∣∣− ∣∣valAk ∣∣− 0.5 + 3ϵ+ 3αk + 10

≥ E[ΦA
k−1].

Therefore, {ΦA
k }k≥1 is a submartingale. A similar argument shows it has bounded distance

|ΦA
k − ΦA

k−1| =
∣∣ΨA

k −ΨA
k−1 − 0.5 + 3ϵ+ 3αk + |Sk| − |Sk−1|

∣∣
≤

∣∣ΛA
k

∣∣+ ∣∣ΛB
k

∣∣+ ∣∣ρBk ∣∣+ ∣∣ρBk−1

∣∣+ ∣∣ρAk ∣∣+ ∣∣ρAk−1

∣∣+ ∣∣valAk+1

∣∣+ ∣∣valAk ∣∣+ |−0.5 + 3ϵ+ 3αk|+ 10

< 20.

Similarly, ΦB
k is a submartingale with bounded distance < 20. For convenience, define ΦA

0 = ΦB
0 =

−5, and because ΦA
1 ,Φ

B
1 ∈ [−1, 15], it still holds that ΦA and ΦB are submartingales. Moreover,

recall that |S| ≤ 20Kϵ by Lemma 6.9 which implies that |SK | ≤ 60Kϵ.
We now show that the Alice-scaling conditions hold as long as ΨA

K ≥ R := n0 +2+ K
2 (1− 6α−

1224ϵ). Note that this implies that

ψA
K = ΨA

K − ρAK+1 −min(ψB
K + ρBK+1, n0/2)− valAK+1

≥ ΨA
K − n0/2− 2

≥ n0/2 +
K

2
(1− 6α− 1224ϵ).

Then, by Lemma 6.10, if α < 1
6 − 1224ϵ, it holds that ψA

K ≥ n0/2 which means that Alice outputs
t(v(UA)) = T with weight wA ≥ K

2 (1 − 6α − 1224ϵ). On the other hand, if α ≥ 1
6 − 1224ϵ, then

either t(v(UA)) = T or ψA
K < n0/2, in which case wA ≤ n0/2− ψA

K ≤
K
2 (6α− 1 + 1224ϵ).

Finally,

Pr
[
ΨA

K ≥ R
]
= 1− Pr

[
ΦA
K − ΦA

0 < R− 0.5K + 3Kϵ+
K∑
i=0

3αi + 10|SK | − ΦA
0

]
≥ 1− Pr

[
ΦA
K − ΦA

0 < R− 0.5K + 3Kϵ+ 3αK + 600Kϵ+ 5
]

≥ 1− Pr

[
ΦA
K − ΦA

0 < n0 + 2− K

2
(1− 6α− 1224ϵ)− 0.5K + 3Kϵ+ 3αK + 600Kϵ+ 5

]
≥ 1− Pr

[
ΦA
K − ΦA

0 < −n0
]

≥ 1− exp

(
−ϵn0
800

)
.

The same calculation holds for Bob. It follows that Protocol 3 is (16 , 1224ϵ, 2·exp(−
ϵn0
800))-scaling.
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6.4.5 Communication and Computational Complexity

Lemma 6.13. The communication complexity of Protocol 3 is Oϵ(n0), and the computational com-
plexity is 22

Oϵ(n0).

Proof. The communication complexity is K ·M(|Σ|, ϵ) = Oϵ(n0).
As for the computational complexity, at the beginning, Alice and Bob agree on the code C.

Each possible code is defined by a labeling of G; there are 4 · (2K − 1) edges with |Σ| labels each,
for ≤ |Σ|4·2K possible codes. Both Alice and Bob choose the lexicographically first one that is an
ϵ-sensitive layered code: ϵ-sensitivity can be checked in time poly(|Σ|K) by checking each word
w ∈ ΣK and all possible prefix decodings. In each of the K rounds, the substantial actions that
Alice (respectively Bob) performs are some subset of the following:

• Alice appends elements in {0, 1, ←, •}2 to UA or appends elements in Σ2 to PA. These steps
take time Õϵ(1).

• Alice encodes C(UA). This step takes time Õϵ(n0).

• Alice decodes CDec(PA). She may need to test all 4K possible paths, which could take time
Õϵ(n0) · 4K .

• Alice decodes a message m to the nearest ECC(z ∈ Σ2, δ ∈ {0, 1, ←, ?} and computes the
distance between m and ECC(z ∈ Σ2, δ ∈ {0, 1, ←, ?}). Since |Σ| and therefore the length of
m is a constant independent of n0, these steps take time Oϵ(1).

In combination, the steps take total computational complexity 22
Oϵ(n0) (where recall that K =

n0/ϵ).
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