
Unstructured Hardness to Average-Case Randomness

Lijie Chen * Ron D. Rothblum † Roei Tell ‡

July 3, 2022

Abstract

The leading technical approach in uniform hardness-to-randomness in the last
two decades faced several well-known barriers that caused results to rely on overly
strong hardness assumptions, and yet still yield suboptimal conclusions.

In this work we show uniform hardness-to-randomness results that simultane-
ously break through all of the known barriers. Specifically, consider any one of the
following three assumptions:

1. For some ε > 0 there exists a function f computable by uniform circuits of
size 2O(n) and depth 2o(n) such that f is hard for probabilistic time 2ε·n.

2. For every c ∈ N there exists a function f computable by logspace-uniform
circuits of polynomial size and depth n2 such that every probabilistic algo-
rithm running in time nc fails to compute f on a (1/n)-fraction of the inputs.

3. For every c ∈N there exists a logspace-uniform family of arithmetic formu-
las of degree n2 over a field of size poly(n) such that no algorithm running
in probabilistic time nc can evaluate the family on a worst-case input.

Assuming any of these hypotheses, where the hardness is for every sufficiently
large input length n ∈N, we deduce that RP can be derandomized in polynomial
time and on all input lengths, on average. Furthermore, under the first assumption
we also show that BPP can be derandomized in polynomial time, on average and
on all input lengths, with logarithmically many advice bits.

On the way to these results we also resolve two related open problems. First,
we obtain an optimal worst-case to average-case reduction for computing problems
in linear space by uniform probabilistic algorithms; this result builds on a new
instance checker based on the doubly efficient proof system of Goldwasser, Kalai,
and Rothblum (J. ACM, 2015). Secondly, we resolve the main open problem in
the work of Carmosino, Impagliazzo and Sabin (ICALP 2018), by deducing deran-
domization from weak and general fine-grained hardness hypotheses.

*Massachusetts Institute of Technology, MA. Email: wjmzbmr@gmail.com
†Technion, Israel. Email: rothblum@cs.technion.ac.il
‡The Institute of Advanced Study at Princeton NJ and the DIMACS Center at Rutgers University, NJ.

Email: roei.tell@gmail.com

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 97 (2022)

Contents

1 Introduction 1
1.1 High-end results: Breaking the PSPACE barrier 3
1.2 Fine-grained hardness for unstructured problems 4

2 Technical overview 6
2.1 Proofs of Theorems 1.1 and 1.2 . 7
2.2 Proof of Theorem 1.3 . 10
2.3 Proof of Theorem 1.5 . 12
2.4 Why only RP? . 13

3 Preliminaries 13

4 Technical tools 19
4.1 Instance checkable problems in PSPACE and beyond 19
4.2 A reconstructive targeted somewhere-PRG 29

5 High-end hardness: Breaking the PSPACE barrier 32
5.1 High-end hardness-to-randomness tradeoff 32
5.2 Optimal worst-case to average-case reductions 36

6 Mild average-case hardness in a subclass of P 37

7 Hardness for low-degree arithmetic formulas 39
7.1 Worst-case to average-case reduction for arithmetic formulas 40
7.2 Proof of Theorem 1.5 . 45

A Preserving strong hardness using tolerant instance checkers 48

i

1 Introduction

A classical line of work in complexity theory is focused on uniform hardness vs ran-
domness results. These are results that connect lower bounds for uniform probabilistic
algorithms to average-case derandomization. For example, as proved in the classi-
cal result of Impagliazzo and Wigderson [IW98], if BPP 6= EXP , then BPP can be
simulated in sub-exponential time, on average and infinitely often.1

In contrast to works concerning non-uniform hardness vs randomness (cf., e.g., [NW94;
IW97; STV01; SU05; Uma03]), the currently known results for uniform hardness vs
randomness seem suboptimal. For comparison, recall that in the non-uniform setting
we know that E = DT IME [2O(n)] is hard for circuits of size s(n) if and only if there
exists a pseudorandom generator (PRG) for linear-sized circuits with seed length lin-
ear in s−1(poly(n)) (see [Uma03]); in particular, for the “high-end” regime, E is hard
for circuits of size 2ε·n if and only if there exists such a PRG with seed length O(log n).2

However, for uniform hardness vs randomness, the results that we know do not scale
to the “high-end” regime. In fact, even if we assume hardness for specific functions in
SPACE [O(n)] that are conductive for these results, rather than hardness for arbitrary
functions in E = DT IME [2O(n)], we still only know how to deduce average-case
derandomization in super-polynomial time npolyloglog(n) (see [CRT+20]).

As one might expect, this classical challenge attracted considerable interest over the
years. The main focus was improving the parameters of the hardness vs randomness
tradeoff, trying to deduce faster average-case derandomization from as weak a hard-
ness hypothesis as possible (see, e.g., [CNS99; Kab01; TV07; GV08; CRT+20]). Parallel
lines of work studied extensions of this paradigm to derandomization of proof sys-
tems, in which case we can obtain worst-case derandomization under uniform hard-
ness assumptions for the corresponding class of protocols (see, e.g., [Lu01; GSTS03;
SU07]); and to derandomization that relies on fine-grained hardness hypotheses for
specific functions in P , in which case we can circumvent some of the barriers above,
and obtain average-case derandomization in polynomial time and on all input lengths
(see [CIS18]). The known results have been widely applied throughout complexity
theory (for some applications see, e.g., [ABK+06; San09; KKO13; OS17; IKV18]).

The main technical challenges and obstacles. Let us explain the main challenge that
has been obstructing progress so far. All the results described above (with the excep-
tion of [CIS18]) rely on reconstructive PRGs. Loosely speaking, these are generators that
transform a “hard” truth-table f into a set of pseudorandom strings, and the proof of
correctness relies on a reduction: A distinguisher for a pseudorandom set is converted
into an efficient procedure for the hard function. Indeed, there are two parts in such a
construction, the generator and the reconstruction procedure.

When starting from a strong hardness assumption, such as hardness for non-
uniform circuits, the reconstruction procedure may use “strong” resources, such as
non-uniformity. In contrast, when only assuming hardness for uniform probabilistic
algorithms, the reconstruction procedure must also be a uniform algorithm. Alas, we
currently do not know how to construct efficient generators with uniform and efficient
reconstruction procedures when the “hard” truth-table f is an arbitrary function in

1The precise meaning of “on average” in this result is that for every L ∈ BPP and ε > 0 there
exists L′ ∈ DT IME [2nε

] such that for every polynomial-time samplable collection of distributions x =
{xn}n∈N and for infinitely many n’s it holds that Prx∼xn [L

′(x) = L(x)] ≥ 1− 1/n.
2Throughout the exposition, we always assume that the running time of a PRG is exponential in its

seed length. (This is because in the derandomization application we enumerate over the seeds of a PRG.)

1

E . This is because known ideas for reconstruction procedures rely on specific structural
properties of f , namely that it is downward self-reducible and randomly self-reducible;3

such structural properties exist only for functions in PSPACE . (For details see the
classical work [IW98], and for further “barrier” results see [GV08].)4

The situation gets even worse: Since we need f to admit the specific structural
properties mentioned above, we cannot obtain derandomization from hardness of an
arbitrary function in the relevant class. This leaves us with two choices – either assume
hardness for specific functions, which seems an overly narrow assumption; or reduce
arbitrary functions in the class to complete functions that admit the structural proper-
ties, which typically yields super-polynomial derandomization overheads. Moreover,
the known PSPACE -complete functions that admit the required structural properties
can be computed in time 2o(n), and thus are not sufficiently hard to yield derandomiza-
tion in polynomial time. And to top this off, known results yield derandomization that
succeeds only on infinitely many input lengths (two exceptions are [CIS18; CRT+20]).

Our contributions, in a gist. In this work we show how to simultaneously bypass
all of the obstacles mentioned above. Specifically, we will show uniform hardness vs
randomness results that:

1. Rely on hardness for functions that do not admit the structural properties that
were required for previous results. In particular, our results start from hardness
for functions that are not necessarily computable in PSPACE .

2. Do not need to assume hardness for a specific function: It suffices to assume
hardness for any function in the relevant class (without causing overheads in
the running time of the derandomization algorithm).

3. Can yield derandomization that works in polynomial time, assuming that a
function in the relevant class is sufficiently hard.

4. Yield derandomization algorithms that work on all input lengths, rather than
only on infinitely many inputs lengths.

The downside of our results is that we will either derandomize RP (i.e., proba-
bilistic algorithms with one-sided error), or derandomize BPP using a small number
of advice bits (e.g., logarithmically many or less).

The main idea allowing us to break through the former obstacles is to rely on
machinery constructed for non-black-box derandomization in the very recent work of two of
the authors [CT21]. This machinery was previously used in a different context: In the
previous work the hypothesized hardness was very strong, namely hardness on almost
all inputs,5 and the conclusion was a worst-case derandomization of BPP . In contrast,
in the current work we adapt this machinery to work with the weaker standard notions
of worst-case hardness, and conclude average-case derandomization of RP and BPP .

3Recall that a function f is downward self-reducible if we can compute f quickly (say, in small poly-
nomial time) at any given n-bit input when given oracle access to f at inputs of length n− 1. A function
f is randomly self-reducible if we can quickly evaluate f at any given n-bit input, with high probability,
given access to evaluations of f at random n-bit inputs.

4These obstacles were bypassed in the original work of [IW98] by a specific argument that introduced
significant time overheads. Specifically, to obtain a PRG with seed length s−1(n) their result needs hardness
for probabilistic algorithms running in time approximately s(s(n)); see [TV07, Section 1.2] for details.

5That is, the hard function had multiple output bits and every probabilistic algorithm running in time
(say) n100 failed to compute this function on each and every input of sufficiently large length.

2

1.1 High-end results: Breaking the PSPACE barrier

Our first main result is the following uniform hardness to randomness tradeoff. Con-
sider the class of logspace-uniform circuits6 of exponential size 2O(n) and near-exponential
depth 2o(n). Observe that this class contains SPACE [O(n)] and in fact seems much
broader than it: Indeed, SPACE [O(n)] can be simulated even by logspace-uniform
circuits of size 2O(n) and smaller depth poly(n) rather than 2o(n) (by the standard ap-
proach of repeated squaring). We prove that if the foregoing class contains a function
hard for probabilistic algorithms with running time 2ε·n, then RP and BPP can be
derandomized in polynomial time on average, as follows:

Theorem 1.1 (high-end hardness vs randomness beyond PSPACE). For every ε >
0 there exists δ > 0 such that the following holds. Assume that there is a function L ⊆
{0, 1}∗ computable by logspace-uniform circuits of size 2O(n) and depth 2δ·n such that L /∈
i.o.BPT IME [2ε·n]. Then, for every a ∈N it holds that

RP ⊆ heur1−1/na -P ,
BPP ⊆ heur1−1/na -P/O(log n) .

The meaning of “heur1−1/na ” above is that for every L ∈ RP and every polynomial-
time samplable distribution x there exists L′ ∈ P such that Prx∼x[L(x) = L′(x)] ≥ 1−
1/|x|a, and ditto for BPP and P/O(log(n)) (see Definition 3.4). When the depth of
the circuits for the hard function is smaller, say poly(n), the advice for derandomizing
BPP is shorter, say O(loglog(n)) (see Theorem 5.2 for precise details).

We stress that there are several novel features in Theorem 1.1. First, it relies on
hardness for functions that are (conjectured to be) outside of PSPACE ; in particular,
these functions are not necessarily downward self-reducible. Secondly, it relies on
hardness for an arbitrary function in the class, rather than only for specific functions
with useful structure. Thirdly, the tradeoff is smooth, and in particular applies to the
“high-end” regime of parameters (when hardness is 2ε·n and the derandomization is
in polynomial time); our result is indeed more general, covering the entire parameter
range (see Theorem 5.2). And as a fourth point, the derandomization algorithm works
on all input lengths, rather than only on infinitely many input lengths.

Optimal worst-case to average-case reduction. A salient feature of Theorem 1.1 is
that we assume worst-case hardness and yet deduce derandomization that succeeds on
1− o(1) of the inputs. One might suspect that the proof will go through a worst-case
to average-case reduction for probabilistic algorithms (i.e., a reduction of computing a
function in the worst-case to computing it on o(1) of the inputs). In fact, the reduction
that seems to be implicit in the result should be essentially optimal, since the con-
clusion of Theorem 1.1 does not have super-polynomial overheads in the algorithm’s
running time.

Prior to our work, optimal worst-case to average-case reductions for probabilistic
algorithms were known either for E (see [TV07]) or for small subclasses of P (see,
e.g., [GR17]). However, for classes such as the one in Theorem 1.1, the known reduc-
tions relied on hardness only for specific problems, and moreover these problems were
computable in time 2o(n) (and thus cannot have hardness 2Ω(n); see [TV07] for details).

6Recall that a circuit family of size s(n) is logspace-uniform if there is a machine that gets input 1n,
uses O(log(s(n))) space, and prints the nth circuit in the family (see Definition 3.5).

3

On the way to proving Theorem 1.1 we are indeed able to prove an optimal worst-
case to average-case reduction for computing functions in complexity classes such as
the one in Theorem 1.1. We now state what seems to us as the most interesting special
case, which is an optimal worst-case to average-case reduction for computing functions
in SPACE [O(n)] by probabilistic algorithms.

Theorem 1.2 (optimal worst-case to average-case reduction for linear space; informal,
see Theorem 5.4). For every “nice” ε(n) and T(n), if SPACE [O(n)] 6⊆ i.o.BPT IME [T],
then SPACE [O(n)] is hard to compute on more than (1/2 + ε) of the inputs in probabilistic
time T(n/c) · (ε/n)c, for a constant c > 1, on all sufficiently large input lengths n ∈N.

As a corollary of Theorem 1.2, if SPACE [O(n)] 6⊆ i.o.BPT IME [2δ·n], then
SPACE [O(n)] cannot be successfully computed on 1/2 + 2−δ′·n of the inputs in prob-
abilistic time 2δ′·n, where δ′ = Θ(δ). The main technical result underlying Theo-
rem 1.2 is a construction of a new instance-checkable problem that is complete for
SPACE [O(n)] under linear-time reductions (see Section 2 for details).

1.2 Fine-grained hardness for unstructured problems

As mentioned above, a second type of uniform hardness vs randomness results fo-
cuses on fine-grained hardness; that is, showing average-case derandomization under
assumptions that functions in P cannot be solved in some fixed polynomial time.

Results of this type that rely on hardness for non-uniform circuits have been ex-
tensively studied. Specifically, following Goldreich and Wigderson [GW02], a se-
quence of works culminated in the following result by Kinne, van Melkebeek, and
Shaltiel [KMS12] (see also [MS05; Sha11; Sha10]): If for every k there is Lk ∈ P that
is hard to compute with less than 1/n errors by non-uniform circuits of size nk (for
all n ∈ N), then BPP can be derandomized in polynomial time on average (over the
uniform distribution, with error 1/poly(n); see [KMS12, Theorem 1]).

Since the conclusion is an average-case derandomization, a natural goal is to try
and relax the hypothesis and only assume hardness for uniform probabilistic algo-
rithms (rather than for circuits). Recently, Carmosino, Impagliazzo and Sabin [CIS18]
showed the first result along these lines: They deduced average-case derandomiza-
tion from hardness of specific problems in P , namely of counting k-cliques or for k-
orthogonal-vectors. Indeed, the latter problems have a structure similar to the one
required in classical results, namely they are downward self-reducible in some sense
(see [CIS18, Section 2.1], following [BRS+17]). Nevertheless, their work managed to
bypass some of the traditional obstacles (e.g., getting derandomization in polynomial
time or on all input lengths, similarly to what we were able to obtain in Section 1.1).

In this context too, our goal is to get rid of the structural requirements and of
the dependency on hardness of specific problems, while simultaneously significantly
improving on the parameters. Our first result starts from mild average-case hardness
for any function in a large natural subclass of P : Namely, the class of problems that can be
decided by logspace-uniform circuits of polynomial size and fixed polynomial depth,
say n3. (Indeed, note that this upper bound refers to uniform circuits of polynomial
depth rather than only to logspace-uniform NC.) That is:

Theorem 1.3 (derandomization from mild average-case fine-grained hardness). Fix d ∈
N, and assume that for every c ∈ N there is a problem L ⊆ {0, 1}∗ computable by logspace-
uniform circuits of polynomial size nOc(1) and depth nd such that L /∈ i.o.-avg(1−n−d)-BPT IME [nc].

4

Then, for every a ∈N it holds that

RP ⊆ avg(1−n−a)-P ,

where the notation avg refers to average-case simulation over the uniform distribution.7

Indeed, Theorem 1.3 gets very close to achieving the goal of simply replacing the
non-uniform hardness assumption in the result of [KMS12] by a uniform hardness as-
sumption; the only remaining gaps are that we require a fixed polynomial depth upper
bound and that we derandomize RP rather than BPP . (This is indeed reminiscent of
the gaps between Theorem 1.1 and the “ideal” result mentioned there.)

The specific problems considered prior to our work (i.e., k-clique and k-orthogonal-
vectors) belong to the class in Theorem 1.3, and in fact also to a smaller subclass that
will be considered next. We stress that the hypothesis in Theorem 1.3 only assumes
that every nc-time algorithm fails on a n−a-fraction of the inputs (i.e., we assume a
mild average-case hardness), but the conclusion is that the derandomization succeeds
on the vast majority of inputs (i.e., on a 1− n−d fraction).

Derandomization from worst-case fine-grained assumptions. While the average-
case hardness assumption in Theorem 1.3 is quite mild, it is still stronger than a worst-
case hardness assumption. In the following result we strike a different tradeoff. We
define a natural subclass of P (we encourage the reader to intuitively think of it as a
subclass of the one in Theorem 1.3) that consists of functions computable by logspace-
uniform arithmetic formulas of arbitrary polynomial size and fixed polynomial degree; for
example, arithmetic formulas of size poly(n) and degree n2. That is:

Definition 1.4 (low-degree arithmetic formulas). Let d ∈ N, let p(n) be a function map-
ping integers to prime powers such that n4 ≤ p(n) ≤ poly(n), and let g = {gn} such
that gn : [p(n)] → {0, 1}∗ is computable in space O(log(n)). Let F = {Fn} be a family of
logspace-uniform arithmetic formulas of degree n2 and polynomial size over Fp(n). Consider
the problem Π = ΠF,p,g in which the input is x and the output is g(F(x)).

Assuming that this class is hard, in the worst-case, for probabilistic algorithms run-
ning in any fixed polynomial time nc, we deduce that RP = P on average:

Theorem 1.5 (derandomization from worst-case fine-grained hardness for low-degree
arithmetic formulas). Assuming that for every c ∈ N there are some g and F and p (as in
Definition 1.4) such that ΠF,p,g /∈ i.o.BPT IME [nc]. Then for every a ∈N

RP ⊆ avg(1−n−a)-P .

Intuitively, one should think of Theorem 1.5 as starting from hardness in a smaller
subclass than that of Theorem 1.3, but requiring only worst-case hardness rather than
mild average-case hardness. (The reason that we intuitively think of the class in The-
orem 1.5 as a subclass of the one in Theorem 1.3 is that formulas of fixed polynomial
degree can be evaluated in small depth; see Section 2 for details.)

7That is, the notation “C ∈ avg(1−δ)-C ′” means that for every L ∈ C there exists L ∈ C ′ such that for
every sufficiently large n ∈N it holds that Prx∈{0,1}n [L(x) = L′(x)] ≥ 1− δ.

5

A comparison of the parameters to previous work. As mentioned above, beyond
the fact that we start from hardness of arbitrary functions in natural subclasses of
P , our results also significantly improve on the parameters of previous work. To see
this, recall that [CIS18] proved that if counting k-cliques in a given n-vertex graph
requires probabilistic time n(1/2+ε)·k for some ε > 0, then BPP = P on average
over the uniform distribution. Instantiating Theorem 1.5 for the special case of this
problem (indeed, one can count k-cliques with low-degree arithmetic formulas as in
Definition 1.4), we obtain the following corollary:

Corollary 1.6 (derandomization from hardness of k-clique, for comparison). Assume
that for every c ∈ N there is k ∈ N such that counting k-cliques is hard for probabilistic time
nc on all input lengths. Then, for every a ∈N

RP ⊆ avg(1−n−a)-P .

The difference in hypotheses between Corollary 1.6 and the result of [CIS18] is
that the latter requires the hardness nh(k) of k-clique to grow as h(k) = (1/2 + ε) · k,
whereas we only require that h(k) will be an unbounded function. As a consequence of
our improved parameters, our results also immediately imply an affirmative answer to
the main open problem in [CIS18], which asked to obtain similar results for problems
such as k-SUM that can be solved in time O(ndk/2e).

As demonstrated by the special case of Corollary 1.6, the assumptions in Theo-
rems 1.3 and 1.5 are arguably among the most believable assumptions that are cur-
rently known to imply polynomial-time derandomization. Indeed, the only caveat is
that we derandomize RP rather than BPP (see Section 2.4 for an explanation why).

2 Technical overview

The technical starting-point for our work is a non-black-box derandomization algo-
rithm from [CT21], called a reconstructive targeted HSG. This algorithm H f relies on a
hard function f that is computable by logspace-uniform circuits of size T and bounded
depth d � T to solve the following task: The algorithm gets input x ∈ {0, 1}n, and
prints a set H f (x) of n-bit strings that is, hopefully, pseudorandom for every efficient
algorithm that also gets access to the same input x.

The analysis of this algorithm works via a reconstruction argument: Any efficient
algorithm that gets input x and distinguishes (the uniform distribution on) H f (x) from
uniformly random strings can be converted into an algorithm that computes f quickly
at the same input x.8 Thus, the hardness of f is converted into randomness “instance-
wise”, for every fixed input. Indeed, a caveat here is that pseudorandomness is only
guaranteed for probabilistic algorithms with one-sided error – the reconstruction relies
on the assumption that Ax(·) accepts a uniformly random string, with high probability,
but rejects all strings in H f (x). (See Theorem 4.5 for precise details.)

A recurring challenge: Worst-case to average-case reductions. At a high-level, in
this work we start with worst-case hardness assumptions (or with mild average-case
hardness assumptions); that is, we assume that every algorithm fails to compute f
at one input (or on a small fraction of inputs). However, since H f translates hardness

8Indeed, more formally, for every efficient algorithm A there exists an efficient algorithm F such that
for every fixed x, if A(x, ·) = Ax(·) is a distinguisher for H f (x) then F(x) = f (x).

6

into randomness “instance-wise”, if we want to use H f to obtain derandomization that
succeeds on 1− o(1) of inputs, we need a function that is hard on 1− o(1) of the inputs.
Thus, many of our results will include worst-case to average-case reductions, which imply
that if a function f as above is hard on the worst-case, then there is another function
f ′ with similar complexity that is hard on 1− o(1) of the inputs. (Other results will
include reductions of computing a function successfully on 1− o(1) of the inputs to
computing it on o(1) of the inputs.)

2.1 Proofs of Theorems 1.1 and 1.2

The first technical result in our work is a construction of a new instance-checkable
problem. Recall that a problem L is instance-checkable if there is a probabilistic al-
gorithm M that gets input x and oracle L̃, and with high probability, if L̃ = L then
M(x) = L(x), and for any L̃ satisfies M(x) ∈ {L(x),⊥} (see Definition 3.11). An in-
stance checker is useful for reductions of computing f in the worst-case to computing
some f̄ in the average-case: This is because such reductions usually rely on local list-
decoding of error-correcting codes to produce a list of candidate procedures for f , and an
instance checker allows us to test each candidate and only “trust” the answer of ones
who are correct (see, e.g., [TV07, Section 5] for further explanation).

The basic version of our instance checker. For every logspace-uniform circuit C of
size T(n) ≤ 2O(n) and depth d� T, we construct a problem LC ⊆ {0, 1}∗ such that:

1. Computing C reduces in linear time to computing LC.

2. LC has approximately the same complexity as C.

3. LC has an instance checker that runs in time poly(n, d, log(T)) and given x only
makes queries of length |x|.

Crucially, since the reduction runs in linear time, if C is hard for probabilistic algo-
rithms running in time T(n), then LC is also hard for probabilistic algorithms running
in similar time T(Ω(n)). And since we can construct LC for any C of complexity as
above, it means that if any such C is hard for time T(n), then there is an instance-
checkable problem LC with similar hardness T(Ω(n)).

The construction of L = LC is based on ideas from the doubly efficient interactive
proof system of Goldwasser, Kalai, and Rothblum [GKR15]. Loosely speaking, for any
logspace-uniform circuit family C of size T and depth d and any input x ∈ {0, 1}n,
they showed a way to encode the computation of C(x) as a matrix Mx whose entries
are in a field F of size poly(T) such that the following holds: Verifying a claimed
value for the (i, j)th entry in Mx reduces in probabilistic time poly(n, d, log(T)), and
via additional queries to Mx, to a predicate on the input x that is also computable in
time poly(n, log(T)).

The main idea in our construction of L is to define its inputs as (x, i, j, k), where
x is an input to C and (i, j) is an index in Mx (and k ∈ [log(|F|)] is the index of a
bit in the representation of F-elements). The instance checker simulates the verifier
of [GKR15], reducing the computation of L at any given (x, i, j, k) to verification of L
at other points corresponding to Mx, and then finally to an efficient computation on
the input x. Since the matrix Mx is of size poly(T) ≤ 2O(n), the length of an index
(i, j) is at most O(n), and thus the blow-up in input length from inputs for C to inputs

7

for L is only linear.9 And indeed, the encoding of C(x) into the matrix Mx is not
computationally expensive, which means that the complexity of LC is not much larger
than that of C;10 see Proposition 4.4 for a precise statement and a proof.

Proof of Theorem 1.1. The proof of Theorem 1.1 will use the instance checkable L
above, but it does not explicitly rely on a worst-case to average-case reduction. Assume
that some C of size 2O(n) and depth d = 2o(n) computes a function that is hard for
BPT IME [2ε·n], and let L = LC be the problem above. The main idea in the proof is
to apply the generator H f to the function f that maps any input x ∈ {0, 1}n to the truth-
table of L on ` = O(log(n)) input bits; that is, the hard function f : {0, 1}n → {0, 1}2`

prints the entire truth-table of L` (where L` denotes the restriction of L to inputs of
size `). Since L` is computable by logspace-uniform circuits with similar complexity to
that of C, we can also compute f with a circuit of approximately the same complexity
(by computing the output bits in parallel).

Now, to simulate a probabilistic linear-time algorithm A on input x ∈ {0, 1}n,
we compute H f (x) and output ∨s∈H f (x)A(x, s). 11 Why does this derandomization
work, on average, over any polynomial-time samplable distribution? Assume that an
efficient sampling algorithm S succeeds, with probability 1/n, in finding x such that
Prr[M(x, r) = 1] ≥ 1/2 but M(x, s) = 0 for every s ∈ H f (x). (For simplicity let us
assume that S runs in linear time too.) For any such x, the reconstruction algorithm R
for H f (x) asserts that in this case we can compute f (x) in time | f (x)| · nc, where nc is
much smaller than the hardness 2ε·` of L`.

We would like to use this to contradict the worst-case hardness of L`. There are
two problems, however. First, the output size of f is much larger than the hardness
of L` (i.e., | f (x)| = 2O(`) � 2ε·`), making the reconstruction R too inefficient to yield
a contradiction. To handle this problem, we observe that the reconstruction algorithm
of H f satisfies a stronger property: Not only can it print f (x) in time | f (x)| · nc, it can
actually print a circuit C f (x) of size nc whose truth-table is f (x) (see Theorem 4.5).12

Thus, we can compute L` at any input q ∈ {0, 1}` (i.e., compute the qth bit of f (x)) by
running R to obtain C f (x) and outputting C f (x)(q).

The second problem is that the procedure above succeeds only with low probability
1/n (i.e., the probability that S finds an x such that M(x, ·) is a distinguisher). We
overcome this using the instance checker: Given input z ∈ {0, 1}` we run S for k =
O(n) times obtaining x1, ..., xk, and for each i ∈ [k] we run the instance checker with
input z, while answering each of its queries q ∈ {0, 1}` with the reconstruction R(q)
and the distinguisher Dxi(r) = M(xi, r). Assuming that at least one x is “good”,
and that all invocations of the instance checker and of R were correct, the instance
checker will output L`(z) for some i ∈ [k], and will either output ⊥ or L`(z) for all
i ∈ [k], allowing us to deduce L`(z). The running time of this procedure is some

9In fact, the blow-up is additive n 7→ n + O(log(T)), where T ≤ 2O(n).
10Loosely speaking, the encoding Mx of C(x) involves arithmetizing each layer of C(x) via a low-

degree extension, and adding a small number of intermediary low-degree polynomials between each
pair of layers. Both the low-degree extensions and the intermediary low-degree polynomials can be
efficiently computed from the original layers of C(x).

11In the overview we focus on derandomizing RT IME [O(n)], for simplicity.
12This is the case because the reconstruction argument iteratively reconstructs circuits of small size (i.e.,

less than nc) for each of the 2o(n) layers of the circuit for f , starting from the bottom (input) layer and
working its way up to the top (output) layer. Thus, in the last step it obtains a circuit whose truth-table
is (a low-degree extension of) the string f (x). See the proof of Theorem 4.5 for precise details.

8

fixed polynomial, we can ensure that it is less than 2ε·` by taking ` = O(log(n)) to be
sufficiently large.

Derandomization of BPP . The foregoing argument yields derandomization of RP .
To deduce derandomization of BPP with short advice, we observe that the targeted
generator H f is not only a targeted hitting-set generator, but also a targeted somewhere-
PRG; that is, it outputs a collection of d′(`) ≈ d(`) = no(1) lists W1, ..., Wd′ of strings,
and for every efficient algorithm D there exists i ∈ [d′] such that Wi is pseudorandom
for D, where pseudorandomness here is in the usual sense of two-sided error.

We want to use this targeted somewhere-PRG to argue that for every machine M
and sampling algorithm S there exists i ∈ [d′] such that the probability that S samples
an input x for which M(x, ·) is a distinguisher for Wi is at most 1/n. Given this claim,
we can hard-wire i into the derandomization algorithm as advice of length log(d′),
and the derandomization algorithm will only use the pseudorandom strings in Wi.

To show the claim above, assume the opposite: For each i ∈ [d′], with probability
at least 1/n the sampling algorithm S outputs x such that M(x, ·) is a distinguisher
for Wi. Recall that the pseudorandomness of the generator was established by a re-
construction argument, asserting that a distinguisher D can be used to compute L` too
quickly. We show a stronger reconstruction procedure, which works not only when it is
given a distinguisher D, but also when it is given a sequence of d′ sets of functions
such that for i ∈ [d′], the ith set contains a distinguisher for Wi. (Intuitively, this re-
construction procedure implicitly performs iterative “instance-checking”: It works in
d′ iterations, and in each iteration it is able to find the “good” distinguisher among
the candidate functions in the corresponding set.) For each i ∈ [d′], we call S for
O(n · log(d′)) times to sample a set Xi of inputs, such that with high probability, for
every i ∈ [d′] there is xi ∈ Xi such that Dxi(·) = M(xi, ·) is a distinguisher for Wi. This
satisfies the hypothesis of the stronger reconstruction procedure, allowing us to con-
tradict the hardness of L`. For precise details see the proofs of Theorems 4.5 and 5.3.

Proof of Theorem 1.2. We want to prove an optimal worst-case to average-case reduc-
tion for computing SPACE [O(n)] by probabilistic algorithms, and the main challenge
will be to refine the instance checker above. At a high-level, our reduction follows a
standard plan: Given L(0) ∈ SPACE [O(n)] that is hard for probabilistic algorithms
in the worst case, we reduce L(0) to an instance-checkable L, encode the truth-table
of L by a locally list-decodable code Enc that is computable in space O(n) (see The-
orem 3.8), and the reduction applies the instance checker with each of the candidate
circuits that the local decoder outputs (we do not elaborate on this, since the general
approach is well-known; see the proof of Theorem 1.2 for details).

The challenge is that L above is “complete” for logspace-uniform circuits of size
T and depth d � T,13 whereas we want L to be complete for SPACE [O(n)] (both
notions of completeness here refer to linear-time reductions). Indeed, any function
L(0) ∈ SPACE [O(n)] has circuits of size 2O(n) and depth poly(n), using the standard
technique of repeatedly squaring the transition matrix of the linear-space machine M
for L(0), and moreover these circuits are logspace-uniform. The crucial observation is
that given an input x ∈ {0, 1}n and an index of a gate g ∈ [2O(n)] in this circuit, we can
compute in linear space the value of g(x). This is because every gate g is associated with
two instantaneous configuration γ, γ′ of M, and g(x) indicates whether or not running

13We write “complete” because the circuit for LC is somewhat larger and deeper than the circuit C.

9

M for i ≤ 2O(n) steps, starting from the configuration γ, results in the configuration γ′.
Thus, to compute g(x) we can simply simulate M starting from configuration γ, and
check whether its configuration after i steps is γ′.

Given this property, we observe that all the steps required to compute L (i.e., to
compute an entry in Mx) maintain the linear-space complexity. Intuitively, this is
because these steps mainly involve computing low-degree extensions of the layers of
the circuit for L(0) (or simple reductions between a constant number of low-degree
extensions), and these can be carried out in space O(n) with oracle access to the gates
of the original circuit. See Proposition 4.3 for further details.

2.2 Proof of Theorem 1.3

At a high-level, the plan for proving Theorem 1.3 is as follows. We assume that there is
a problem L(0) computable by logspace-uniform circuits of polynomial size and depth
n2 such that L(0) /∈ avg(1−1/n)-BPT IME [nc].14 Since L(0) is reducible in linear time to
the instance-checkable problem L described in the beginning of Section 2.1, we hope
to prove that L will also have essentially the same hardness. We then encode L via
the k-wise direct product code with k = Õ(n2) repetitions, to obtain a problem L⊗k with
essentially the same computational complexity,15 and use the instance checker as well
as the celebrated direct product theorem of Impagliazzo et al. [IJK+10] to argue that
L⊗k cannot be computed in fixed polynomial time even on (say) 1/n3 of the inputs (see
below). Finally, we use L⊗k as the hard function for the targeted HSG H f , obtaining
derandomization that runs in polynomial time and succeeds on 1− 1/n3 of the inputs.

There are two parts in the plan above that we left vague: The claim that L is mildly
hard on average (supposedly, because of the reduction from L(0), which is mildly
hard on average); and the claim that L⊗k is hard on 1− 1/n3 of inputs (supposedly,
because it is a k-wise direct product of L). The challenges that underlie the proofs
of both claims are similar, so for simplicity we focus on the claim that L⊗k cannot be
computed in time close to nc even on 1/n3 of the inputs.

For a large enough k = Õ(n3), assuming towards a contradiction that L⊗k can be
computed on at least 1/n3 of the inputs in time nc′ , we want to contradict the hardness
of L. Recall that [IJK+10] yields a list-decoder that, with probability Ω(n−3), outputs
a circuit of size poly(nc′) that computes L correctly on 1− 1/n2 of the inputs. Given
an input (x, i, j) for L,16 we can repeatedly invoke the list-decoder to obtain a list of
t = O(n3) circuits C1, ..., Ct, and run the instance checker with each Ci, hoping to be
“convinced” by the good Ci and not misled by all other Ci’s.

The gap in the foregoing argument is that Ci only computes L correctly on 1− n−2

of the inputs rather than on all inputs, and our instance checker is not guaranteed to
work with such Ci’s. The reason is that, in contrast to what one might expect when
thinking of instance checkers, the queries of our instance checker are not uniform.
(Indeed, one can design an adversarial Ci that fails this instance checker.)

Tolerant instance checkers. To bridge the foregoing gap we modify the instance
checkable problem to a problem whose instance checker is more resilient. Specifi-
cally, we introduce the notion of tolerant instance checkers, which are instance checkers

14We use convenient parameters in the current section, for simplicity.
15Recall that the k-wise direct-product of L takes input x̄ = (x1, ..., xn) ∈ ({0, 1}n)k and outputs the k

bits L(x1), ..., L(xk). In particular, we can compute the k output bits in parallel.
16In this section, for simplicity of presentation, we ignore the fourth component in inputs to L, whose

only function is to transform L into a Boolean function.

10

that, when given an oracle that agrees with the target problem L on 1− ε of the inputs,
satisfy the completeness requirement of a standard instance checker on at least 1− ε′

of the inputs, for ε′ ≈ ε (see Definition 3.12).
We then refine the instance checkable problem L above so that it indeed has a

tolerant instance checker, rather than only a standard one. Specifically, recall that the
matrix Mx in the definition of L consists of d′ = Õ(d) rows where each row is a low-
degree polynomial Fm → F (for a suitable choice of m ∈ N), and in entry (i, j) we
have the evaluation of the polynomial α̂i at the input indexed by j, denoted ~j ∈ Fm.
For every fixed x we define a polynomial px : F× Fm 7→ F that interpolates all the d′

polynomials; that is, when px gets as input (i, j) where i ∈ [d′] it outputs α̂i(~j), and
otherwise (when i /∈ [d′]) it outputs an interpolation of the d′ polynomials. Since the
number d′ of polynomials is sufficiently small, the polynomial px is of low degree.

Now, we modify the definition of L such that it gets input (x, i, j) where i ∈ F may
also be outside [d′], and we prove that this new version has logspace-uniform circuits
with essentially the same depth as the previous version and with only a polynomial
size overhead, and that also has an instance checker with the same time complexity as
the previous version. The reason that these two claims hold is that d′ is small (given
that we start from L(0) whose circuits have fixed polynomial depth but larger poly-
nomial size), and hence to compute L we just need to interpolate a small number of
polynomials (see Proposition 4.4 for details). We obtain the following two properties:

1. Given input (x, i, j), the instance checker only makes queries of the form (x, i′, j′);
that is, all queries have the same first component x as the input.17

2. For every fixed x, the function px(i, j) = L(x, i, j) is a low-degree polynomial.

To see that this problem has a tolerant instance checker, note that if an oracle agrees
with L on most inputs (x, i, j), then for most x it agrees with px with high probability
over (i, j), say 9/10. Thus, for most x the instance checker can use self-correction of the
low-degree polynomial px, and run the original instance checker while simulating access
to the actual polynomial px (again, see Proposition 4.4 for precise details).

Using the refined instance checker to bridge the gaps. Let us see how we use these
properties to bridge the gaps in our proof. Recall that in our “towards a contradic-
tion” argument (when we assumed that L⊗k was “too easy”), when repeating the
list-decoder we obtained a list of circuits C1, ..., Ct, and at least one Cw computes L on
1− n−2 of the inputs. We can thus run the tolerant instance checker with each of these
circuits Ci as oracle: The soundness condition holds on every input and with each
oracle, whereas the tolerant completeness condition guarantees that there is a set of
approximately 1− n−2 inputs such that when the instance checker uses oracle Cw it is
able to compute L correctly. This yields the contradiction that we wanted.

(The proof is actually a bit more cumbersome technically, since we want to preserve
hardness on almost all input lengths. This requires us to also use a tolerant instance
checker for L⊗k, which tolerates very high corruption; such a tolerant instance checker
can be obtained directly from the tolerant instance checker for L. For details see
Claim 3.12.1 and Lemma A.5 in Appendix A.)

17Indeed, our previous construction of the instance checker already has this property, and it is main-
tained when interpolating the polynomials into px; see the proof of Proposition 4.4. Also, for simplicity
of presentation we ignore the additional input k that converts L into a Boolean function.

11

Strongly tolerant instance checkers. A similar argument allows us to prove that L
is mildly hard on average, based on the mild average-case hardness of L(0). However,
since we are now trying to preserve very mild hardness on all input lengths under
reductions, the argument turns out to be more subtle, and requires us to introduce
a more refined notion of strongly tolerant instance checkers. The instance checker pre-
sented above is already strongly tolerant, and using it the argument carries through.
For technical details see Definition 3.13 and Lemma A.2 in Appendix A.

2.3 Proof of Theorem 1.5

Recall that we now want to prove derandomization assuming worst-case hardness of a
function computable by low-degree arithmetic formulas of polynomial size. The intu-
ition underlying the proof of Theorem 1.5 is that arithmetic formulas can be balanced
to be of logarithmic depth, by a very efficient algorithm; hence, this class of formulas
is essentially a subclass of the one from Theorem 1.3. Moreover, since the formulas
have low-degree, this class supports a worst-case to mild average-case reduction.

Thus, our goal is to start from worst-case hardness for our class of arithmetic
formulas, argue that the formulas can be balanced while maintaining their complexity,
deduce mild average-case hardness, and then invoke Theorem 1.3 as a black-box.

Balancing the formula by low-depth circuits. For any logspace-uniform arithmetic
formula Fn of degree n2, we show that the corresponding polynomial Pn can be com-
puted in logspace-uniform NC (i.e., the circuit computing Pn has depth polylog(n)).

By a standard argument (see, e.g., [SY10, Theorem 2.6]), any arithmetic formula of
polynomial size can be converted into an equivalent arithmetic circuit of polynomial
size and depth O(log(n)) . Our key observation is that this balancing algorithm is quite
simple: In particular, the bottlenecks of the procedure are finding a “center of mass” of
a binary tree,18 and computing a certain partial derivative, both of which can be done
in logspace-uniform NC. With this observation in mind, the “balancing” procedure
can be carried out in O(log(n)) stages, with each stage implementable in logspace-
uniformNC. After the balancing, we evaluate the O(log(n)) depth arithmetic circuit in
logspace-uniform NC to compute Pn (see Lemma 7.3.2 and Section 7.1.1 for details).19

Technical complications when working with prime fields. In some settings we will
need to consider the formula as a polynomial over a large prime field; this happens,
for example, when considering arithmetic formulas for counting problems (such as
counting k-cliques). A standard complication in this setting is that the average-case
complexity of the problem is sensitive to the Boolean encoding of field elements (see
the proof of Lemma 7.3 for details). An additional complication in this setting is that
in the worst-case to average-case reduction, we need to deterministically and quickly
find such a prime (e.g., find a prime of size n100 in deterministic time n2), but such an
algorithm isn’t known. Thus, in our worst-case to average-case reduction we actually
define an auxiliary problem in which the prime is incorporated into the truth-table.
(See the proof of Lemma 7.3 for a careful implementation of this idea.)

18Given a binary tree (meaning that each node has at most two children) T of n nodes, a node u is
called a “center of mass”, if the size of the sub-tree rooted at u has size between [n/3, 2n/3].

19We remind the reader that arithmetic circuits can also be balanced, albeit by a more complicated
algorithm (see [VSB+83]). We did not try to extend our results to hold for this model.

12

2.4 Why only RP?

Let us explain the technical challenge due to which we were only able to derandomize
RP in Theorems 1.3 and 1.5, rather than BPP . The same technical challenge also
existed in [CT21], and in fact it dates back at least 25 years, to the work of Impagliazzo
and Wigderson [IW98] that founded the area of uniform hardness vs randomness.

Fix a uniform probabilistic linear-time machine M whose coins we wish to replace
by pseudorandom coins on a given input x. Assume that we can produce, in time
poly(n), a sequence of n sets S1, ..., Sn ⊆ {0, 1}n, each consisting of poly(n) strings, and
we are guaranteed that for every x there exists i ∈ [n] such that Si is pseudorandom
for M with input x. Can we combine the n sets, perhaps using additional O(log(n))
random bits, into a single set S that is guaranteed to be pseudorandom for M with x?

Indeed, this challenge refers to the computational version of an object known in
extractor theory as mergers; it is thus apt to refer to it as considering computational

mergers. While we know how to construct computational mergers in other setting –
for example, when the distinguisher class is non-uniform – in our setting where M is
uniform (and does not have enough time to compute the strings in the Si’s by itself),
we do not know how to solve this. This obstacle prevented many previous works
from obtaining average-case derandomization on all input lengths (see, e.g., [IW98;
CNS99; TV07; CRT+20]), and significantly increased the running time of the worst-case
derandomization in [CT21] when it was scaled to the “low-end” parameter setting.

3 Preliminaries

For two real numbers ν and ε > 0, we use the notation ν ± ε to denote the interval
[ν − ε, ν + ε]. Throughout the paper we will denote random variables in boldface
fonts. We will denote the uniform distribution over {0, 1}n by un, and the uniform
distribution over a set [n] by u[n]. Recall the standard definition of a distinguisher for
a distribution:

Definition 3.1 (distinguisher). We say that D : {0, 1}n → {0, 1} is an ε-distinguisher for
a distribution xn over {0, 1}n if Pr[D(xn) = 1] /∈ Pr[D(un) = 1]± ε. We say that D is an
ε-distinguisher for a set S ⊆ {0, 1}n if D is an ε-distinguisher for the uniform distribution
over that set.

We will repeatedly use reductions that map an input x for problem L to an input
y of problem L̄ where y is of the form xa, for some a ∈ {0, 1}|y|−|x|. We call these
reductions input extending reductions:

Definition 3.2 (input-extending reductions). An input-extending Karp reduction of prob-
lem L to problem L̄ is a function f such that for every x ∈ {0, 1}∗:

1. x ∈ L ⇐⇒ f (x) ∈ L̄.

2. f (x)1,...,|x| = x.

All reductions in this paper will be by Karp reductions unless explicitly stated
otherwise, and thus we will usually just refer to input-extending reductions.

When a reduction of f to f̄ maps instances of length n0 to instances of length
g(n0) > n0, the function f̄ is not necessarily defined on input lengths that are not of
the form g(n0) in a non-trivial way. We will redefine f̄ such that on any input x of
length n ∈ [g(n0), g(n0 + 1)) it simply computes fg(n0) on the g(n0)-bit prefix of x.

13

Definition 3.3 (natural S-extension). Let f : {0, 1}∗ → {0, 1}∗ and g : N→N and denote
S = {g(n0) : n0 ∈N}. We define a function f̄ : {0, 1}∗ → {0, 1}∗ called the natural S-
extension of f as follows. On inputs of length that is in S, the function f̄ agrees with f ; and
for every input length n /∈ S and every x ∈ {0, 1}n it holds that f̄ (x) = f (x1, ..., xm), where
where m is the largest integer in S that is smaller than n.

3.1 Complexity classes

We will sometimes abuse notation by denoting Π /∈ i.o.BPT IME [T] for a function
Π : {0, 1}∗ → {0, 1}∗ with multiple output bits. This should be interpreted as saying
that for every probabilistic algorithm A running in time T and every sufficiently large
n ∈N there exists x ∈ {0, 1}n such that Pr[A(x) = Π(x)] < 2/3.

We recall standard definitions of average-case simulation of a problem L ⊆ {0, 1}∗.
The following definition refers to average-case simulation over an arbitrary distribu-
tion and over the uniform distribution.

Definition 3.4 (average-case simulation). Let L ⊆ {0, 1}∗, let β : N → [0, 1), let C be a
complexity class.

1. We say that L ⊆ heur1−β-C if for every polynomial-time samplable ensemble x =
{xn}n∈N of distributions, where xn is a distribution over n-bit inputs, there exists
L′ ∈ C such that for every sufficiently large n ∈ N it holds that Prx∼xn [C(x) =
L(x)] ≥ 1− β(n).

2. We say that L ∈ avg1−β-C if there exists L′ ∈ C such that for every sufficiently large
n ∈ N it holds that Prx∈{0,1}n [L′(x) = L(x)] ≥ 1 − β(n) (i.e., the choice of x is
according to the uniform distribution).

3.1.1 Uniform circuits

Unless stated otherwise, the circuits that we consider in this work are Boolean circuits
of fan-in two with gates computing the NAND function.

We define the depth of a gate g in a circuit to be the length of the shortest path from
g to the set of input gates. Throughout the paper we will always assume that circuits
are layered, meaning that all gates of depth i have incoming wires only from gates of
depth i− 1. The layer of input gates is defined to be of depth 0.

Definition 3.5 (logspace-uniform circuits). We say that a circuit family {Cn : {0, 1}n → {0, 1}}n∈N

of size T(n) is logspace-uniform if there exists a machine M that on input 1n runs in space
O(log(T(n))) and prints Cn. For two functions T(n) and d(n), we denote the class of lan-
guages computable by logspace-uniform circuits of size T(n) and depth d(n) by lu-CKT [T, d].

Note that the foregoing definition is equivalent to a definition asserting that M
recognizes the adjacency relation of Cn (i.e., receives the indices of three gates u, v, w
and decides whether or not u and v feed into w). The definition of logspace-uniformity
extends naturally to families of formulas, rather than circuits, as in Section 7.

3.2 Error-correcting codes

We first recall the well-known self-correcting properties of low-degree polynomials.

14

Theorem 3.6 (self-correction of low-degree polynomials (cf. [GS92; Sud95]). Let δ <
1/3, let d, m ∈ N, and let F be a finite field such that d < |F|/3. There exists an algorithm
RM-Dec that, given x ∈ Fm and a description of F and oracle access to a function f : Fm → F

that is δ-close to a polynomial P of total degree d, runs in time poly(d, m, log(|F|)) and
outputs P(x) with probability 2/3. Furthermore:

1. If f itself has total degree d, then RM-Dec outputs f (x) = P(x) with probability 1.

2. The algorithm RM-Dec makes d + 1 non-adaptive queries such that the marginal distri-
bution of each query is uniform in Fm.

As usual, the error probability of RM-Dec can be decreased at an exponential rate
by repeating the algorithm and taking the most common output.

We now recall the standard definition of approximately locally list-decodable codes,
and state two well-known constructions.

Definition 3.7 (locally list decodable codes). We say that Enc : ΣN → ΣM is (1 − δ)-
approximately locally list-decodable from agreement ρ in time t and with output-list size L if
there exists a randomized oracle machine Dec : [N]× [L]→ Σ running in time t that satisfies
the following. For every z ∈ ΣM such that Pri∈[M][zi = Enc(x)i] ≥ ρ for some x ∈ ΣN there
exists a ∈ [L] and a set Q ⊆ [N] of density |Q|/N ≥ 1− δ for which the following holds:
For every q ∈ Q we have that Pr[Decz(q, a) = xq] ≥ 2/3, where the probability is over the
internal randomness of Dec. When δ = 0 we simply say that Enc is locally list-decodable from

agreement ρ in time t and with output-list size L.

Theorem 3.8 (a locally list-decodable code [STV01]; see, e.g., [Vad12, Theorem 7.61]).
For every ε : N → (0, 1) such that ε(N) is computable in space O(log(N)), there exists
a systematic20 code Enc : {0, 1}N → {0, 1}N̄ , where N̄ = poly(N/ε), such that Enc is
computable in space O(log(N/ε)) and is locally list decodable from agreement 1/2 + ε(N)
in time poly(log(N), 1/ε) and with list size poly(log(N)/ε).

The upper-bound on the space complexity of the code is not explicitly stated
in [STV01; Vad12], but it follows immediately from the construction. (Recall that the
code is a concatenation of the Reed-Muller code and of the Hadamard code; both codes
are linear, and the RM code is defined over a field of size at most poly(N/ε).) The fact
that the code is systematic is also not stated there, and it follows by the fact that the
Reed-Muller and the Hadamard code are both systematic, and by the definition of the
Hadamard code.

We will use the following uniform direct product theorem, due to Impagliazzo et
al. [IJK+10], who proved that the direct product code is approximately locally list
decodable by uniform algorithms.

Definition 3.9 (direct product). For any function f : {0, 1}∗ → {0, 1}∗, we denote by f⊗k

the k-wise direct product f⊗k(x1, ..., xk) = f (x1), ..., f (xk). The k-wise direct product code

takes as input the truth-table of f , and outputs the truth-table of f⊗k. 21

Theorem 3.10 (the direct product code is approximately locally list-decodable; see [IJK+10,
Theorem 1.6]). There is a constant c such that for every k ∈ N and ε, δ ∈ (0, 1) such that
ε > e−δk/c the following holds. The k-wise direct product code is (1− δ)-approximately locally

20Recall that a code is systematic if the message always appears in the beginning of the codeword.
21The notion of “truth-table” here refers also to functions with multiple output bits, and just means the

sequence of evaluations of the function on all inputs of a certain length.

15

list-decodable from agreement ε with list size O(ε) such that the decoder satisfies the following:
Given a circuit C′ that computes the codeword correctly on ε of the entries, the decoder is a
uniform randomized NC0 algorithm (with one C′-oracle gate) that outputs with probability
Ω(ε) a circuit C that computes the original function on 1− δ of the entries such that C is an
AC0 circuit of size poly(n, k, log(1/δ), 1/ε) (with O((log(1/δ)/ε) of C′-oracle gates).

3.3 Instance checkers and tolerant instance checkers

We first recall the definition of instance checkers, and then present two variations on
this definition and prove some auxiliary results about these variations. In fact, we
generalize even the first and standard definition, from the usual case of languages to
the case of functions that might have multiple output bits, in a straightforward way.

Definition 3.11 (instance checker). A probabilistic oracle machine M is an instance checker

for a function f : {0, 1}∗ → {0, 1}∗ if for every x ∈ {0, 1}∗ the following holds:

1. Completeness: Pr[M f (x) = f (x)] = 1.

2. Soundness: For every f ′ : {0, 1}∗ → {0, 1}∗ we have that Pr[M f ′(x) ∈ { f (x),⊥}] ≥
1/2.

If on any input x the queries that M makes are of length |x|, we say that M is a same-length

instance-checker.

As mentioned in Section 2, we also introduce refined notions of instance checkers
that we will use to preserve strong notions of hardness – such as hardness on average
and on all input lengths – under reductions. We now present the definitions of the
refined instance checkers and prove a few simple auxiliary claims; we defer to Ap-
pendix A the proofs that these refined instance checkers help preserve strong notions
of hardness under reductions.

3.3.1 Tolerant instance checkers

Informally, a tolerant same-length instance checker satisfies the same soundness condi-
tion as a standard same-length instance checker, but for completeness, we only require
that when given an oracle that computes the language on 1− δ of the inputs, the tol-
erant instance checker succeeds on computing the language on 1− δ′ of the inputs (on
the δ′ fraction of bad inputs it outputs “⊥”, with high probability).

Definition 3.12 (tolerant instance checker). For δ, δ′ : N→ [0, 1], a (δ, δ′)-tolerant same-

length instance checker for f : {0, 1}∗ → {0, 1}∗ is a probabilistic oracle machine M such
that

1. Tolerant completeness: For any n ∈N and function f̃ : {0, 1}n → {0, 1}∗ such that
Prx∈{0,1}n [f̃ (x) = f (x)] ≥ 1− δ(n), the probability over x ∈ {0, 1}n that Pr[M f̃ (x) =
f (x)] ≥ 2/3] is at least 1− δ′(n).

2. Soundness: For any n ∈ N and x ∈ {0, 1}n and f ′ : {0, 1}n → {0, 1}∗ we have that
Pr[M f ′(x) ∈ { f (x),⊥}] ≥ 2/3.

In this paper we will need the following property of tolerant instance checkers:
If f has a tolerant instance checker, then its k-wise direct product f⊗k has a tolerant
instance checker that tolerates much higher levels of corruption.

16

Claim 3.12.1 (tolerant instance checkers for direct product problems). There exists a
constant c ≥ 1 such that for every δ, δ′, ε : N → [0, 1] the following holds. If f : {0, 1}∗ →
{0, 1}∗ is (δ, δ′)-tolerant instance checkable in time T(n) and k ≥ c · (log(1/ε)/δ), then f⊗k

has a (1− ε, 1− ε′)-tolerant instance checker that runs in time T ·poly(n, k, 1/ε, log(1/δ), log(1/δ′)),
for ε′ = (1− 20δ′)k. 22

Proof. By Theorem 3.10, and since k = Ω(log(1/ε)/δ), there is a probabilistic algo-
rithm B that given as oracle a function C′ that agrees with f⊗k on at least ε of the in-
puts, outputs with probability Ω(ε) a circuit C that computes L correctly on 1− δ of the
inputs. The algorithm B is a uniform randomized NC0 oracle circuit (with one oracle
gate to C′), and the produced circuit C is an AC0 circuit of size poly(n, k, log(1/δ), 1/ε)
(with O((log(1/δ)/ε) oracle gates to C′).

Let M be the (δ, δ′)-tolerant instance checker for L. Using B and M we construct
the tolerant instance checker for L⊗k. To do so, we first construct an algorithm M′

that gets as input x ∈ {0, 1}n and oracle access to A : ({0, 1}n)k → {0, 1}r for some
r = r(n, k), and satisfies the following:

1. (Tolerant completeness:) If A agrees with f⊗k on at least ε of the inputs, then for
a (1− 20δ′) fraction of x ∈ {0, 1}n it holds that M′(x) = f (x) with probability at
least 2/3.

2. (Soundness:) For any A and any x, with probability at least 2/3 it holds that
M′(x) ∈ { f (x),⊥}.

To get the desired tolerant instance checker for f⊗k we simply reduce the er-
ror probability of M′ to 1/(10k) and run the procedure separately on each of the
k inputs (see Remark 3.15). Indeed, the probability over x1, ..., xk ∈ ({0, 1}n)k that
∀i, Pr[M′(xi) = f (xi)] ≥ 2/3 is at least (1− 20δ′)k = ε′.

We therefore proceed to describe the algorithm M′. Given an input x ∈ {0, 1}n and
an oracle A : ({0, 1}n)k → {0, 1}r, the algorithm M′ operates as follows:

1. Run B with oracle access to A for t = O(log(1/δ′)/ε) times, to obtain circuits
C1, . . . , Ct.

2. For j ∈ [t]:

(a) Run M on input x with soundness error 1/(10t) and using CA
j as its oracle.

If M outputs a value b 6= ⊥ then output b and abort.

3. If the algorithm did not abort so far then output ⊥ and abort.

Note that M′ runs in time

Õ(t) · poly(n, k, log(1/δ), 1/ε) · T = T · poly(n, k, 1/ε, log(1/δ), log(1/δ′)) ,

and that reducing its error probability to 1/O(k) to obtain the final algorithm only
increases the time complexity by O(log(k)) = O(loglog(1/ε) + log(1/δ)).

Soundness. Fix an oracle A and an input x. By the soundness condition of M,
for j, the probability that MCA

j (x) /∈ { f (x),⊥} is 1/(10t). By a union bound, with
probability at least 0.9 the checker M′ output either f (x) or ⊥.

22This statement slightly abuses notation, since even when referring to the instance checker for f⊗k,
we still think of the functions ε and δ and δ′ as functions of n (rather than of the actual input length k · n).

17

Tolerant completeness. Fix an oracle A : ({0, 1}n)k → {0, 1}r such that Prx1,...,xk [A(x1, . . . , xk) =
f⊗k(x1, . . . , xk)] ≥ ε. Consider a random choice of x ∈ {0, 1}n and (independently) of
coins for B in the first step of M′.

By Theorem 3.10 and our setting of t, with probability at least 1− δ′ over random
coins of B there exists at least one j∗ ∈ [t] such that CA

j∗ agrees with f on at least (1− δ)

of the inputs. In this case, by the tolerant completeness of M, for a (1− δ′) fraction of

x ∈ {0, 1}n it holds that Pr[MCA
j∗ (x) = f (x)] ≥ 1− 1/(10t). By a union bound, with

probability at least 1− 2δ′ over random coins for B and over x ∈ {0, 1}n it holds that
Pr[MCj∗ (x) = f (x)] ≥ 1− 1/(10t).

Thus, by Markov’s inequality, there exists a set X ⊆ {0, 1}n of density at least
1− 20δ′ such that for every x ∈ X, with probability 0.9 over the random coins for B
it holds that Pr[MCj∗ (x) = f (x)] ≥ 1− 1/(10t). Overall we get that for x ∈ X the
probability of the procedure succeeding is greater than 2/3 as required.

3.3.2 Strongly tolerant instance checkers

We also consider a finer variant of tolerant same-length instance checkers that satisfies
a stronger requirement: Namely, there is a equipartition of the domain such that the
tolerant completeness condition holds within each set in the partition.

Definition 3.13 (strongly tolerant instance checker). For δ : N→ [0, 1] and `(n) ≤ n, a
`-strongly δ-tolerant same-length instance checker for f : {0, 1}∗ → {0, 1}∗ is a probabilistic
oracle machine M such that:

1. Strongly tolerant completeness: For any x ∈ {0, 1}n, which we parse as x =
(y, z) ∈ {0, 1}`(n) × {0, 1}n−`(n), and any function f̃ : {0, 1}n → {0, 1}∗ that satisfies
Prz′∈{0,1}n−`(n) [f̃ (yz′) = f (yz′)] ≥ 1− δ(n), it holds that Pr[M f̃ (x) = f (x)] ≥ 2/3.

2. Soundness: For any n ∈ N and x ∈ {0, 1}n and f ′ : {0, 1}n → {0, 1}∗ we have that
Pr[M f ′(x) ∈ { f (x),⊥}] ≥ 2/3.

A strongly tolerant instance checker is in particular a tolerant instance checker,
using a simple averaging argument to claim that the strongly tolerant condition holds
in many sets in the equipartition.

Fact 3.14 (strongly tolerant instance checker⇒ instance checker). Let M be an `-strongly
µ-tolerant same length instance checker for f . Then, for any δ ∈ (0, 1) it holds that M is a
(δ, δ/µ)-tolerant same length instance checker for f .

Proof. Let f̃ such that Prx∈{0,1}n [f̃ (x) 6= f (x)] ≤ δ(n). Let

BAD =

{
y ∈ {0, 1}`(n) : Pr

z∈{0,1}n−`(n)
[f̃ (yz) 6= f (yz)] ≥ µ

}
,

and note that Pry[y ∈ BAD] ≤ δ/µ, by Markov’s inequality. Then,

Pr
x

[
Pr[M f̃ (x) 6= f (x)] > 1/3

]
= Ey

[
Pr
z

[
Pr[M f̃ (yz) 6= f (yz)] > 1/3

]]
≤ Pr

y
[y ∈ BAD] + Pr

y,z

[
Pr[M f̃ (yz) 6= f (yz)] > 1/3|y /∈ BAD

]
,

18

which is at most δ/µ, relying on the fact that M is a `-strongly µ-tolerant same-length
instance checker (to deduce that the rightmost term is zero).

Remark 3.15. As usual, the completeness and soundness errors in all definitions of instance
checkers in this section can be reduced at an exponential rate. That is, to get error 2−` we repeat
the procedure for Θ(`) times and output σ ∈ {0, 1} if and only if a majority of the invocations
returned σ, otherwise we output ⊥.

4 Technical tools

In this section we construct some of the technical tools that will be used throughout the
paper. In Section 4.1 we construct two instance-checkable problems, one that is com-
plete for linear space and one that is (essentially) complete for the class of logspace-
uniform circuits. Then, in Section 4.2 we extend the targeted HSG from [CT21] by
observing that it has two additional properties that are useful for us.

4.1 Instance checkable problems in PSPACE and beyond

We first construct an instance-checkable problem that is complete for linear space.
To do so we recall a definition that abstracts the encoding of circuits as polynomials
from [GKR15] (this definition appeared in [CT21]). Recall (from Section 3.1.1) that we
refer to the layer of input gates as being of depth 0, to the layer of gates above it as
being of depth 1, and so on.

Definition 4.1 (polynomial decomposition of a circuit; see [CT21, Definition 4.6]). Let
C be a circuit that has n input bits, fan-in two, size T ≥ n, and depth d. For every x ∈ {0, 1}n,
we call a collection of polynomials a polynomial decomposition of C(x) if it meets the following
specification:

1. (Arithmetic setting.) For some prime p ≤ T, the polynomials are defined over the
prime field F = Fp. For some integer h ≤ p, let H = [h] ⊆ F, let m be the minimal
integer such that hm ≥ T, and let m′ ≤ m be the minimal integer such that hm′ ≥ n.

2. (Circuit-structure polynomial.) For each i ∈ [d], let Φi : H3m → {0, 1} be the
function such that Φi(~w,~u,~v) = 1 if and only if the gate in layer i indexed by ~w is fed
by the gates in layer i − 1 indexed by ~u and ~v. (If one of the elements ~w,~u,~v does not
index a valid gate in the corresponding layer, then Φi outputs zero.) The polynomial
Φ̂i : F3m → F can be any extension23 of Φi.

3. (Input polynomial.) Let α0 : Hm → {0, 1} represent the string x0hm−n ∈ {0, 1}hm
,

where we identify Hm with [h]m (e.g., by lexicographic order). Let α̂0 : Fm → F be the
unique extension of individual degree h− 1 of α0 defined by

α̂0(~w) = ∑
~z∈Hm′×{0}m−m′

δ~z(~w) · α0(~z) ,

where δ~z is Kronecker’s delta function (i.e., δ~z(~w) = ∏j∈[m] ∏a∈H\{~zj}
wj−a
~zj−a).

23An extension of a function f : Hm → F is any function f̂ : Fm → F that agrees with f on Hm ⊆ Fm.

19

4. (Layer polynomials.) For each i ∈ [d], let αi : Hm → {0, 1} represent the values of
the gates at the ith layer24 of C in the computation of C(x) (with zeroes in locations that
do not index valid gates), and let α̂i : Fm → F be defined by

α̂i(~w) = ∑
~u,~v∈Hm

Φ̂i(~w,~u,~v) · (1− α̂i−1(~u) · α̂i−1(~v)) .

5. (Sumcheck polynomials.) For each i ∈ [d] and for j ∈ [2m], we define a polynomial
α̂i,j : Fm+j → F as follows:

α̂i,0(~w) = α̂i(~w) =

∑
σ1,...,σ2m∈H

Φ̂i(~w, σ1,...,m, σm+1,...,2m) ·
(
1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)

)

α̂i,j(~w, σ1, ..., σj) =

∑
σj+1,...,σ2m∈H

Φ̂i(~w, σ1,...,m, σm+1,...,2m) ·
(
1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)

)
where σk...,k+r = σk, σk+1, ..., σk+r. 25

We stress that for any arithmetic setting Fp and H ⊆ F and m′, m that meets the specifica-

tion above, any collection
{{

Φ̂i
}

i∈[d] , {α̂i}d
i=0 ,

{
α̂i,j
}

i∈[d],j∈[2m]

}
that meets the specification

above is a polynomial decomposition of C(x).

Proposition 4.2 (polynomial decomposition of logspace-uniform circuits using univer-
sal circuits; see [CT21, Proposition 4.7]). There exist two universal constants c, c′ ∈ N

such that the following holds. Let {Cn}n∈N be a logspace-uniform family of circuits of size
T(n) and depth d(n), and let γ : N → (0, 1) be a logspace-computable function such that
T(n)γ(n) ≥ log(T(n)). Then, there exists a logspace-uniform family of circuits {C′n}n∈N

of size T′(n) = O(T(n)c) and depth d′(n) = O(d(n) · log(T(n))) that computes the same
Boolean function as {Cn} such that for every x ∈ {0, 1}n there exists a polynomial decompo-
sition of C′n(x) satisfying:

1. (Arithmetic setting.) The polynomials are defined over Fp, where p is the smallest
prime in the interval [Tγ·c, 2Tγ·c]. Let H = [h] ⊆ F, where h is the smallest power of
two of magnitude at least Tγ/6, and let m be the minimal integer such that hm ≥ 2Tc.

2. (Faithful representation.) For every i ∈ [d′(n)] and ~w ∈ Hm representing a gate in
the ith layer of C′ it holds that α̂i(~w) is the value of the gate ~w in C′n(x).

3. (Base layer.) There is a logspace-uniform oracle circuit of size max {n, h} · hc′ and depth
O(log2(T)) that, when given oracle access to x ∈ {0, 1}n, computes the function α̂0.

4. (Downward self-reducibility.) There is a logspace-uniform oracle circuit of size hc′

and depth O(log2(T)) that computes α̂i,2m while querying α̂i−1 twice on inputs in Hm.
There is another logspace-uniform oracle circuit of size hc′ and depth O(log T) that for
j ∈ [2m] computes α̂i,j−1 while making h queries to α̂i,j. 26 Lastly, α̂i,0 ≡ α̂i.

24That is, the function αi represents the string that consists of the values of the gates at the ith layer
(padded with zeroes to be of length hm), where we identify Hm with [h]m (say, by lexicographic order).

25Note that αi,2m(~w, σ1, ..., σ2m) = Φ̂i(~w, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · αi−1(σm+1,...,2m)), without
any summation.

26More formally, this logspace-uniform oracle circuit gets as input ~w ∈ Fm and (σ1, ..., σ2m) ∈ F2m and
j ∈ [2m], and gets oracle access to α̂i,j, and it outputs α̂i,j−1(~w, σ1, ..., σj−1).

20

5. (Sample-aided worst-case to rare-case reducibility.) 27 For each i ∈ [d′(n)] and
j ∈ [2m], the total degree of α̂i,j is at most ∆ = h · polylog(T). In particular, the
Boolean function representing α̂i,j is sample-aided worst-case to ρ-rare-case reducible
with error 2−h by logspace-uniform circuits of size hc′ and depth polylog(T), where
ρ = h−c · polylog(T). (The same claims holds for α̂0.)

Furthermore, if the mapping of (x, i) ∈ {0, 1}n × [T(n)] to the value of the ith gate in
Cn(x) is computable in space O(log(T)), then we can evaluate each of the polynomials α̂i,j (for
i ∈ [d′] and j ∈ [2m]), as well as α̂0, in space O(log(T)).

Proof. The only part of Proposition 4.2 that is not proved in [CT21] is the “further-
more” part, and thus we will prove it now. Recall that Cn is a logspace-uniform
circuit, and let A be the O(log(T))-space machine that prints Cn. Let M = MA be the
poly(T)× poly(T) transition matrix of A.

The circuit C′n first computes M, then raises it to the power poly(T) by repeated
squaring; this yields the description of Cn. Then the circuit C′n computes the Eval
function on that description and with the input x. In more detail, the Eval function is
computed in d iterative steps; in each step the input is the evaluations of the previous
layer of Cn(x) (starting from the bottom layer, which is the input x, and working up
to the top layer) and the description of Cn, and each gate g in the current layer is
computed as

g(x) =
∨

u,v∈[T]

(
1(u,v)∼g ∧NAND(u(x), v(x))

)
, (4.1)

where u, v are (indices of) gates in Cn, and 1(u,v)∼g is the bit in the description of Cn
indicating whether or not u and v feed into g.

Computing each basic summand in logspace. Our first goal is to prove that we can
compute the “basic summand” Φi(~w) · (1− α̂i−1(~u) · α̂i−1(~v)) that appears in the defi-
nition of the α̂i,j’s in space O(log(T)). That is,

Claim 4.2.1. Given x, i and any ~w ∈ Fm and ~u,~v ∈ Hm, we can compute the value

Φ̂i(~w,~u,~v) · (1− α̂i−1(~u) · α̂i−1(~v))

in space O(log(T)).

Proof. The proof proceeds in three steps. We first argue that we can compute the value
of any gate in C′n(x) (rather than only Cn(x)) in space O(log(T)); specifically:

Claim 4.2.1.1. The mapping of (x, i) ∈ {0, 1}n × {0, 1}T′(n) to the value of the ith gate in
C′n(x) is also computable in space O(log(T)).

Proof. The O(log(T))-space machine gets input (x, i) and behaves as follows:

1. If i is an index of a gate that is an entry in M, it outputs the relevant entry, by
applying the transition function of A to the two relevant states. Note that this
can indeed be computed in space O(log(T)).

27The notion of sample-aided worst-case to rare-case reducibility was introduced by Goldreich and
Rothblum [GR17]. The terminology in the current text uses the formulation from [CT21, Definition 3.8].

21

2. If i is an index of a gate that is an entry in Mt for some power t ≤ O(log(T)), then
this gate is associated with two potential configurations γ, γ′ ∈ {0, 1}O(log(T))

(i.e., the corresponding row and the column), and its value is 1 iff A reaches the
configuration γ′ when starting from configuration γ and running for 2t steps.
We simulate A for 2t steps in space O(log(T)) and output the corresponding
value.

3. If i is an index of a gate g in the part that computes the Eval function on (Cn, x),
by Eq. (4.1) we can compute it in space O(log(T)) if we get oracle access to the
evaluations of all gates u, v in the previous layer on x. By our hypothesis, the
latter evaluations are computable in space O(log(T)).

4. The last case is that i is an index of a gate performing an intermediary compu-
tation: This intermediary computation can be part of computing an entry in a
multiplication of two matrices, or part of computing the value of a gate g when
simulating the Eval function, as in Eq. (4.1). In both cases, the computation is the
OR of at most poly(T) gates, and the intermediary computation performed by
gate i is an OR of a subset of these gates.28 We can enumerate the gates in this
subset from the index i and compute their disjunction in space O(log(T)).

�

Next, we argue that the low-degree extension Φ̂ of the circuit-structure function Φ
can also be computed in space O(log(T)), as follows:

Claim 4.2.2. The mapping of (x, i, ~w,~u,~v) ∈ {0, 1}n × [d′] × (Fm)3 to Φ̂i(~w,~u,~v) can be
computed in space O(log(T(n))).

Proof. Recall that the purpose of constructing C′n from Cn as above was to have a circuit
whose circuit-structure function Φ is very simple. While in [Gol18], where the con-
struction was first presented, it is only asserted that Φ is a formula of size polylog(T)
that can be constructed in time polylog(T), the actual construction in [Gol18, Section
3.4.2] is significantly more efficient than that, and in particular can be decided by an
NC1 circuit constructed in time polylog(T) and space O(log(T)).

To see this, note that Φ on gates in the first part of C′n is a trivial function, since
this part has no wiring and just computes a fixed string (i.e., the transition matrix M
of A). An explicit AC0 formula for evaluating Φ on gates in the second part (i.e., in
the part performing repeated squaring) was presented in [Gol18, Section 3.4.2]. And
as for the third part, to establish whether gates (u′, v′) feed into a gate w′, we just need
to determine whether the indices of u′ and v′ are the children of the index w′ in the
binary tree that computes the OR tree in Eq. (4.1).

Now, identically to the proof of [CT21, Claim 4.7.2], the arithmetization Φ̂i : F3m →
F is computed by first computing the projection polynomials π̂j : F→ {0, 1} on each of

the 3m field elements, and then evaluating Φ as an arithmetic formula F
3m·log(|H|)
2 → F2

on the resulting sequence of bits. Since each of these two steps can be done in space
O(log(T)), their composition can also be done in such space complexity.29 �

28Recall that the circuit computes the OR function by a binary tree. Also, recall that in the matrices
that we are multiplying, each row and each column have Hamming weight one.

29Each projection polynomial π̂j : F → {0, 1} is defined as the (|H| − 1)-degree extension of the func-
tion πj that maps each element in H ⊆ F to the jth bit of its binary representation. Indeed, πj can be
computed in space O(log(T)), and thus (using Lagrange’s interpolation formula) so does π̂j.

22

Based on the two foregoing claims, we now show how to compute the summand
in space O(log(T)). Observe that we are evaluating α̂i−1 at inputs in Hm, and thus
these inputs correspond to indices of gates. In particular, α̂i−1(~u) and α̂i−1(~v) are in
{0, 1} and represent the values of gates in C′n(x). By Claim 4.2.2, we can compute the
values of these gates in space O(log(T)), and by Claim 4.2.1.1, we can also compute
Φ̂i in space O(log(T(n))). �

Using downward self-reductions. Observe that for every i ∈ [d′], computing the poly-
nomial α̂i = α̂i,0 requires summing over HO(m) ≤ poly(T) “basic summands” of the
form Φ̂i(~w,~u,~v) · (1− α̂i−1(~u) · α̂i−1(~v)), where ~u and ~v are in Hm. Thus, relying on
Claim 4.2.1, we can compute any such polynomial in space O(log(T)). Also, α̂0 is
computable in space O(log(T)), immediately by its definition in Definition 4.1.

Now, for i ∈ [d′] and j ∈ [2m], the value of the polynomial α̂i,j at point (~w, σ1, ..., σj)

is the summation of HO(m) ≤ poly(T) summands of the form

Φ̂i(~w, σ1...m, σm+1,...,2m) · (1− α̂i−1(σ1...m) · α̂i−1(σm+1,...,2m)) .

By Claim 4.2.2 we can compute Φ̂i in space O(log(T)), and by the discussion above
we can compute α̂i−1 in space O(log(T)). Thus, any summand can be computed in
such space, and so does α̂i,j.

Relying on Proposition 4.2, we now present the construction of the same-length
instance-checkable language.

Proposition 4.3 (a linear-space complete instance-checkable problem). There exists a
problem L ⊆ {0, 1}∗ that is complete for SPACE [O(n)] under linear-time reductions, and is
same-length instance checkable in polynomial time.

Proof. Let L(0) ⊆ {0, 1}∗ be a language that is complete for linear space under linear-
time reductions.30 Let {Cn : {0, 1}n → {0, 1}} be a logspace-uniform family of circuits
that decides L(0), where Cn is of size T(n) = 2Θ(n) and depth d(n) = O(n2); re-
call that such a circuit family is obtained by the standard construction of repeatedly
squaring the transition matrix of the linear-time machine that computes L(0). For a
sufficiently small γ(n) > 0 that will be specified later, let {C′n} be the circuit family
from Proposition 4.2 corresponding to {Cn}, where C′n is of size T′(n) = poly(T(n))
and depth d′ = O(n3), and consider the polynomial decompositions of C′n(x) (for any
fixed x ∈ {0, 1}n).

For convenience, we think of all the polynomials α̂i,j in the decomposition as having
the same domain F3m. (Originally, the domain of α̂i,j was Fm+j, but we can define α̂i,j
so that it ignores the last 2m − j elements in its input, without affecting any of the
properties asserted in Proposition 4.2.)

The definition of L and its SPACE [O(n)]-completeness. We define L ⊆ {0, 1}∗ by
the following procedure:

1. The inputs to L are of the form (x, (i, j), ~w, k) where x ∈ {0, 1}n and (i, j) ∈
{0, ..., d′} × {0, ..., 2m} and ~w ∈ F3m and k ∈ [dlog(|F|)e].

2. The output of L is the kth bit of the binary representation of α̂i,j(~w). (When i = 0,
the output is the kth bit of α̂0(~w), disregarding j.)

30For example, the language {(1n, x, M) : M accepts x using space n}.

23

Note that for each input length n ∈ N to L(0), we defined L on a corresponding
input length

n +
⌈
log(d′ + 1)

⌉
+ dlog(2m + 1)e+ 3m · dlog(|F|)e+ dlog log(|F|)e = O(n) . (4.2)

Also note that L(0) is reducible in linear time to L, since the polynomial α̂d′,0 is an
extension of the function whose truth-table is the string L(0)(x) ◦ 0T′−1 ∈ {0, 1}T′ . (To
be specific, the reduction maps an input x ∈ {0, 1}n to L(0) into an input (x, (d′, 0),~0, 0)
for L.)

Finally, the claim that L is computable in space O(n) follows from the “further-
more” part of Proposition 4.2. Specifically, to invoke the “furthermore” part we just
need to show that we can compute the mapping of (x, i) to the value of the ith gate of
Cn(x) in space O(log(T)). This holds because of the specific construction of Cn as a
“repeated squaring” matrix; specifically, each gate g in Cn is the result of repeatedly
squaring the transition matrix of the machine M(0) for L(0), applied to input x, for
t ≤ O(log(T)) times. The gate g is associated with two potential configuration γ, γ′ of
the machine M(0), and evaluates to 1 if and only if running M(0) for 2t steps starting
from configuration γ yields the configuration γ′. Thus, to decide the value of g(x) we
can simply run M(0) for 2t steps with configuration γ. 31

Same-length instance-checkability. Let us first describe the instance checker A and
then analyze it. Recall that the algorithm gets input (x, (i, j), ~w, k). The instance
checker will only make queries with x as the first input, and for every fixed (i′, j′)
and ~w′ it will iterate over all values of k to obtain the corresponding field element.
Thus, without loss of generality, we think of the oracle as receiving queries of the form
(i′, j′, ~w′) and answering with a field element; the instance checker expects this field
element to be α̂i′,j′(~w′).

We define the following randomized procedure, which we call query veri�cation.
Given input (i′, j′, ~w′) where either i′ ≥ 2 or j′ < 2m, we want to reduce the verification
of the oracle’s answer on this query to verifying the oracle’s answer on another query.
We invoke the downward self-reducibility algorithm for α̂i′,j′ , which yields a set of at
most h queries either to α̂i′,j′+1 or to α̂i′−1. Without loss of generality, we assume that
the number of queries is exactly h, denote them by q1, ..., qh ∈ Fm, and denote the
function to which the queries are made by α̂i′′,j′′ .

Recall that the total degree of every α̂i,j is at most ∆ = h · polylog(T) (for every
i, j). Consider the curve p : F→ Fm of degree h− 1 such that p(u) = qu for all u ∈ [h],
and for u ∈ {h + 1, ..., ∆ · h} let qu = p(u); this yields a set {qu = p(u) : u ∈ [∆ · h]} of
points on the curve p, where the first h points correspond to the queries of the down-
ward self-reducibility algorithm. We query the oracle on {(i′′, j′′, qu) : u ∈ [∆ · h]},
yielding answers a1, ..., a∆·h ∈ F, and verify that the output of the downward self-
reducibility algorithm (when given answers a1, ..., ah) is consistent with the oracle’s
answer on query (i′, j′, ~w′) (in case of inconsistency, we output ⊥). Now, let q be the
unique polynomial of degree h · ∆− 1 such that q(p(u)) = au for all u ∈ [h · ∆] (see
Eq. (4.3) below); we choose a random σ ∈ F, and verify that the value q(σ) agrees with

31To be more precise, some gates in Cn are associated with potential configurations, whereas other gates
are intermediary values in computing the squaring of a matrix M′ (where M′ is the initial transition
matrix raised to some power t′ ≤ t). The value of the latter type of gates can be computed in space
O(log(T)), relying on the fact that we can compute each entry in M′ itself in O(log(T)), and that values
of intermediary gates when squaring M′ can be computed in space O(log(T)).

24

the oracle on query (i′′, j′′, p(σ)). Specifically, we compute q as follows

q(σ) = ∑
u∈[h·∆]

au · δ(h·∆)p(u) (σ) ,
(

where δ
(h·∆)
p(u) (σ) = ∏

σ′∈[h·∆]\{p(u)}

σ− σ′

p(u)− σ′

)
(4.3)

and the target of the reduction is (i′′, j′′, p(σ)).
The instance checker recursively calls the query verification procedure, starting

from input (i, j, ~w) and ending in the base case when i′ = 1 and j′ = 2m. In the base
case the instance checker runs the downward self-reducibility algorithm, answers its
queries to α̂0 by computing α̂0 by itself, and verifies that the answer of the downward
self-reducibility algorithm matches the oracle’s answer on (1, 2m, ~w). If all verifications
passed, the instance checker outputs the oracle’s answer on the input (i, j, ~w).

Time complexity of the instance-checker. Note that there are at most 2m · d′ recursive
steps, and that each step can be computed in time at most

log(|F|)O(1) ·
(

max {n, h} · h2c′ + hO(c′) + (h · ∆)2
)
≤ (n · h)O(c′) ,

where the hO(c′) term accounts for the time for computing the curve p, and the O-
notations hide universal constants. Thus, the running time of the instance checker is
at most

m · d′ · (n · h)c′′

for some universal constant c′′ > 1.

Completeness and soundness. We first argue that if all answers given by the oracle are
correct (i.e., the oracle answers by deciding L on the given query), then the instance
checker outputs the correct value with probability 1. This amounts to showing that
all the verifications of the instance checker pass. Since the answers of the downward
self-reducibility algorithm will always match the oracle’s answers, the only thing that
we need to show is that Eq. (4.3) matches the oracle’s answer, which is α̂i′′,j′′(p(σ)). To
see this, note that au = α̂i′′,j′′(p(u)), and plugging this into Eq. (4.3) we get

q(σ) = ∑
u∈[h]

α̂i′′,j′′(p(u)) · δ(h·∆)p(u) (σ) .

Note that q is a polynomial F → F of degree h · ∆ − 1, that the polynomial α̂i′′,j′′ ◦
p : F → F is of degree (h− 1) · ∆ < h · ∆− 1, and that both polynomials agree on the
inputs [h · ∆] ⊂ F. It follows that q ≡ α̂i′′,j′′ ◦ p, and hence on input σ its output equals
the value α̂i′′,j′′(p(σ)).

We now turn to the case where the oracle answered at least one query incorrectly
(i.e., gave an answer that is different from L on the given query). Our goal is to
show that in this case, with high probability the instance checker either outputs ⊥ or
outputs the correct answer. We say that an input (i′, j′, ~w′) is good if the oracle’s answer
on (i′, j′, ~w′) is α̂i′,j′(~w′). Without loss of generality, we assume the following:

1. The input (i, j, ~w) to the instance checker is not good. (Otherwise, the instance
checker may only output the right answer or ⊥.)

2. In each query verification step starting with input (i′, j′, ~w′), the answers a1, ..., ah
cause the downwards self-reducibility algorithm to output the oracle’s answer
on (i′, j′, ~w′). (Otherwise, the instance checker outputs ⊥.)

25

3. In each query verification step, the oracle’s answer on query (i′′, j′′, p(σ)) equals
q(σ). (Otherwise the instance checker outputs ⊥.)

The main claim in the analysis is the following:

Claim 4.3.1. For any query verification step starting with an input (i′, j′, ~w′) that is not good,
with probability at least 1− T−(c/2)·γ the target (i′′, j′′, p(σ)) of the reduction is also not good.

Proof. We first claim that there exists u ∈ [h] such that (i′′, j′′, p(u)) is not good. To
see this, note that if a1, ..., ah are good, then the downward self-reducibility outputs
α̂i′,j′(~w′), which is different than the oracle’s answer on (i′, j′, ~w′) (because the latter
input is not good).

Consequently, the polynomial q in Eq. (4.3) disagrees with the polynomial α̂i′′,j′′ ◦ p
(on u). Since both polynomials are of degree ∆ · h− 1 = Õ(Tγ/3), and the field is of
size at least Tγ·c, with probability at least 1− T−(c/2)·γ over choice of σ we have that
q(σ) 6= α̂i′′,j′′ ◦ p(σ). Now, recall that we assumed (wlog) that q(σ) equals the oracle’s
answer on (i′′, j′′, p(σ)). Thus, whenever the choice of σ satisfies the event above, it
follows that (i′′, j′′, p(σ)) is not good. �

By a union-bound, with probability at least 1− 2m · d′ · T−(c/2)·γ it holds that the
query (1, 2m, ~w) in the base case is not good. Whenever this happens, the answer of
the downward self-reducibility in this case (which equals α̂1,2m(~w)) does not match the
oracle’s answer on (1, 2m, ~w), and the instance checker outputs ⊥.

Specifying the parameters. We have yet to specify the value of γ(n). The argument
above establishes the following bounds (we use the facts that h = O(Tγ/6) and that
m = O(1/γ), and for simplicity we hide a multiplicative constant in each bound):

Running time of the instance checker: (d′/γ) · (n · Tγ/6)c′′

Probability that the instance checker errs: (d′/γ) · T−(c/2)·γ

Recall that T = T(n) = 2Θ(n). We choose γ = γ(n) = O(log(n)/n) such that T(c/2)·γ >
n6. This makes the error bound at most 1/n, bounds the running time by a universal
polynomial in n, and satisfies the hypotheses of Proposition 4.2 that Tγ ≥ log(T) and
that γ is a logspace-computable function.

The following result extends Proposition 4.3 by asserting that there is an instance-
checkable problem that is complete for the class of logspace-uniform circuits of bounded
depth, and proving several new properties of the problem that will be useful for us.

Proposition 4.4 (an instance-checkable problem that is complete for logspace-uniform
circuits). For T, d : N → N such that n ≤ T(n) ≤ 2O(n), let L(0) ∈ lu-CKT [T, d]. Then,
L(0) is reducible in linear time to a problem L ∈ lu-CKT [poly(T), O(d · log(T)4)] such that L
is same-length instance checkable in time poly(d, log(T), n). The reduction is input-extending
and maps inputs of length n to inputs of length n + c · log(T), where c > 1 is a universal
constant.

Furthermore, for a constant c′ ≤ 1 + c0 · log(T)/n, where c0 > 1 is universal, there is a
function F : {0, 1}∗ → {0, 1}∗ such that:

1. F is computable by logspace-uniform circuits of size poly(T) and depth O(d · log(T)4).

2. There is an input-extending reduction of deciding L(0) to computing F that maps inputs
of length n to inputs of length c′ · n.

26

3. F has an (n/c′)-strongly (1/10)-tolerant same-length instance checker running in time
poly(d, log(T), n).

Proof. We follow the proof of Proposition 4.3, while explaining the necessary changes,
and we defer showing the “furthermore” part to the end of the current proof.

In the original proof we started from a problem L(0) computable in linear space,
constructed a logspace-uniform circuit family {Cn} of size 2O(n) and depth O(n2) that
decides L(0) and that has a specific useful structure (i.e., it comes from applying re-
peated squaring to the linear-space machine that decides L(0)), and carried out the
proof from the starting point of having the circuit family {Cn}.

In the current proof, we start from a problem L(0) having a circuit family {Cn}
with more general size and depth bounds, and in addition {Cn} does not necessarily
have the specific useful structure (of repeated squaring). However, we are not trying
to prove that the related instance-checkable language L is decidable in linear space,
but rather only that it is decidable by logspace-uniform circuits of size poly(T) and
depth d · polylog(T).

We will use Proposition 4.2 with the circuit family that decides L(0) and with the pa-
rameter value γ(n) = O(log(d′ · n)/ log(T)) (recall that d′(n) = O(d(n) · log(T(n))));
this parameter choice guarantees that the probability of error is at most 1/n, and that
the running time is at most poly(d′, n). Note that for this parameter value we have
that m = O(1/γ) = O(log(T)/ log(d′ · n)) < O(log(T)).

Recall that the language L, resulting from the application of Proposition 4.2, has
inputs of the form (x, (i, j), ~w, k) where x ∈ {0, 1}n, (i, j) ∈ {0, ..., d′} × {0, ..., 2m}, and
~w ∈ F3m and k ∈ [log(|F|)]. We have (x, (i, j), ~w, k) ∈ L if and only if the kth bit of the
binary representation of α̂i,j(~w) is 1.

First observe that Eq. (4.2) still holds, due to our hypothesis that T(n) ≤ 2O(n) (and
using the trivial bound d(n) ≤ T(n) and the fact that |F|m = poly(T)). Thus, L(0)

is reducible to L in linear time, where n-bit inputs are mapped to inputs of length
n + O(m · log(|F|)) = n + O(log(T)) and the O-notation hides a universal constant;
this implies the claimed bound on c′.

To upper-bound the complexity of L, note that by Definition 4.1, we can compute
α̂0 by a circuit of size poly(T) and depth O(log(T)); and by Proposition 4.2, we can
compute each α̂i,j on all values in Fm given access to α̂i,j−1 or to α̂i−1 by a circuit of size
poly(T) and depth O(log(T)2). Thus, we can compute each α̂i,j iteratively in at most
2m · d′ steps, each step computable by a circuit of size poly(T) and depth O(log(T)2).
This yields the sought upper-bound on the complexity of L.

Finally, the proof of correctness for the instance-checker of L is identical to corre-
sponding part in the proof of Proposition 4.3.

The “furthermore” part. We construct a function F based on L that satisfies the same
properties asserted for L but also has a strongly tolerant instance checker. Loosely
speaking, the function is defined by “bundling” the polynomials α̂i,j into one polyno-
mial, for every fixed x, and outputting a field element rather than a single bit in the
representation of a field element.

In more detail, we first assume that the prime size p of the field used above is larger
than (d · log(T) · n)c̄ for a sufficiently large universal constant c̄ > 1 that will be speci-
fied next. (Recall that p ≥ Tc·γ and that we choose γ = Θ(log(d · log(T) · n)/ log(T))
and can take the constant hidden inside the Θ-notation to be large enough.) For any

27

x ∈ {0, 1}n, let Px : F2+3m → F be defined as:

Px(i, j, ~w) = ∑
i′∈{0,...,d′},j′∈[2m]

δi′(i) · δj′(j) · α̂i,j(~w), (4.4)

where δi′(i) = ∏a∈{0,...,d′}\{i′}
i−a
i′−a and δj′(j) = ∏a∈[2m]\{j′}

j−a
j′−a . Observe that for i ∈

{0, . . . , d′} and j ∈ [2m] it holds that Px(i, j, ~w) = α̂i,j(x), but we emphasize that Px
is defined also for i > d′ and j > 2m. Since each α̂i,j has total degree h · polylog(T),
the total degree of Px is at most ∆ = d′ + 2m + h · polylog(T) ≤ h · d · polylog(T) <
2p1/6 · d · polylog(T), where the second inequality relies on the fact that h ≤ 2Tγ/6

whereas p ≥ Tγ·c (as specified in Proposition 4.2). Thus, a sufficiently large choice of
c̄ yields that ∆ <

√
p.

We use the polynomials Px to define F as follows. The input to F is interpreted as
(x,~z) ∈ {0, 1}n×F2+3m and we define F(x,~z) = Px(~z). Observe that F still satisfies the
properties that were asserted for L:

1. The reduction of L(0) to F maps input x to input (x, (d′, 0,~0), 0), and is thus a
linear-time input-extending reduction. Indeed we have that L(0)(x) = α̂d′,0(~0)0 =

F(x, (d′, 0,~0))0.

2. The function F is computable by logspace-uniform circuits of size poly(T) and
depth O(d · log(T)4). This follows since, by Eq. (4.4),

F(x, (i, j, ~w)) = Px(i, j, ~w) = ∑
i′∈{0,...,d′},j′∈[2m]

δi′(i) · δj′(j) · α̂i,j(~w) , (4.5)

and the element α̂i,j(~w) can be computed by log(|F|) parallel calls to L (i.e.,
on inputs L(x, (i, j), ~w, k) for k = 1, ..., log(|F|)), and we already showed that
L is computable by a logspace-uniform circuit of size poly(T) and depth O(d ·
log(T)4).32

It is thus left to establish that F has a strongly tolerant same-length instance
checker, as asserted in the following claim:

Claim 4.4.1. For ` : N → N such that `(|(x,~z)|) = |x| 33 it holds that F has an `-strongly
(1/10)-tolerant same-length instance checker running in time poly(d, n, log(T)).

Proof. We use the reduction of F to L (described after Eq. (4.5)) and the instance checker
ML for L in order to construct a strongly tolerant instance checker MF for F.

The algorithm MF is given as input (x,~z) ∈ {0, 1}n ×Fm′ , where m′ = 2 + 3m, and
also has oracle access to some A : {0, 1}n ×Fm′ → F. For any x ∈ {0, 1}n, the oracle A
determines a function fx : Fm′ → F such that fx(~z) = A(x,~z).

The algorithm MF interprets ~z as (i, j, ~w), and for k = 1, ..., log(|F|) it runs ML on
input (x, (i, j), ~w, k), while answering its oracle queries as follows. Observe that every
oracle query of ML is of the form (x, (i′, j′), ~w′, k′), for the same x as in the input to MF.
Given such a query, the algorithm MF runs the decoder of Theorem 3.6 on the point
~z′ = (i′, j′, ~w′), with soundness error 2−poly(n), relative to degree ∆, and using fx as the
alleged polynomial. The decoder returns an element α ∈ F and MF answers the query
with the (k′)-th bit of α. Assuming that ML did not output ⊥ in any of its invocations,

32We also rely on the fact that δi′ and δj′ can be computed by logspace-uniform circuits of size

polylog(T) and depth less than O(d · log(T))4, using the standard formula δi(σ
′) = ∏σ∈{0,...,d′}\{i}

σ−σ′

i−σ′ .
33That is, `(n + (2 + 3m) · log(|F|)) = n.

28

the sequence of log(|F|) output bits of the invocations of ML defines a field element,
which we denote by α̃i,j(~w), and the instance checker outputs

∑
i′∈{0,...,d′},j′∈[2m]

δi′(i) · δj′(j) · α̃i,j(~w) .

mimicking Eq. (4.5).
The running time of MF is the running time of ML multiplied by the running time

poly(∆, m′, log(|F|)) of the decoder from Theorem 3.6, and is thus still bounded by
poly(d, log(T), n). The soundness of MF follows immediately from the soundness of
ML. Thus we focus on establishing strongly tolerant completeness.

Fix x ∈ {0, 1}n and A : {0, 1}n × Fm → F such that Pr~z∈Fm [A(x,~z) 6= F(x,~z)] ≤
1/10. By the definitions of fx and of F, we have that Pr~z[fx(~z) 6= Px(~z)] ≤ 1/10. By
Theorem 3.6 and relying on the fact that ∆ ≤ √p and that p is prime, for each query
~z′, the decoder outputs the value Px(~z′) with probability at least 1− 2−poly(n). Since
the k′-th bit of Px(~z′) is equal to L(x,~z′, k′), with high probability all queries by ML are
answered according to L, in which case α̃i,j(~w) = α̂i,j(~w) and MF outputs F(x,~z). �

This concludes the proof of Proposition 4.4.

4.2 A reconstructive targeted somewhere-PRG

In this section we revisit the reconstructive targeted HSG from [CT21] and observe
that the construction actually yields a targeted somewhere PRG; that is, the targeted
generator outputs a collection of lists W1, ..., Wd′ , where d′ is relatively small, and for
every efficient algorithm D there exists i ∈ [L] such that Wi is pseudorandom for D.
We also show that the reconstruction R does not only compute the hard function at the
given input x, but actually prints a small circuit whose truth-table is the value f (x).

We will in fact prove something stronger. Instead of considering only a single al-
gorithm D, we consider the more general setting in which there are d′ sets of functions
F1, ..., Fd′ , where each set Fi is associated with the corresponding list Wi. We show that
for some i ∈ [L], the generator is pseudorandom for all functions in the set Fi.

Theorem 4.5 (a reconstructive targeted somewhere PRG). There exists a universal con-
stant c > 1 such that the following holds. Let f : {0, 1}∗ → {0, 1}∗ be computable by logspace-
uniform circuits of size T(n) and depth d(n), let δ : N → (0, 1), and let M : N → N such
that

c · log(T(n)) ≤ M(n) ≤ T(n)δ(n)/c ,

δ(n) ≥ c · loglog(T)
log(T)

.

Then, there exist a deterministic algorithm G f and a probabilistic algorithm R that for every
x ∈ {0, 1}n satisfy the following:

1. Generator. The generator G f gets input x, runs in time TO(1/δ), and outputs a collec-
tion of d′ = O(d · log(T)/δ) lists of M-bit strings, denoted W1, ..., Wd′ . (We stress that
the algorithm prints all of the strings in all of the lists “in a batch” in the stated time
bound TO(1/δ).)

29

2. Reconstruction. The reconstruction R gets input x and oracle access to a collection of
d′ sets of functions {0, 1}M → {0, 1}, denoted F1, ..., Fd′ , where each set Fi has at most
L functions, and R runs in time (d + n) · L · Tδ. Assume that for each i ∈ [d′], the
set Fi contains a (1/M)-distinguisher for Wi. Then, with probability at least 1−O(L ·
log(T)2/T) the reconstruction R prints an oracle circuit C f such that the truth-table of

CDd′
f is the string f (x), where Dd′ is a function in Fd′ .

Proof. We follow the proof of [CT21, Theorem 5.1]. The proof first uses [CT21, Propo-
sition 4.3] to argue that any f as in our hypothesis has suitable bootstrapping systems,
and then uses [CT21, Proposition 4.4] to argue that any function f with such boot-
strapping systems can be used to obtain a corresponding targeted HSG. Our goal is to
prove two parts that were not included in the original statement:

1. We claim that R works when given d′ sets of functions where for each i ∈ [d′]
the set Fi contains a distinguisher for Wi (rather a single function that is a distin-
guisher for all the Wi’s).

2. We claim that R prints (with high probability) an oracle circuit whose truth-table
is f (x) (rather than just printing f (x)).

To prove these statements, observe that the bootstrapping system obtained us-
ing [CT21, Proposition 4.3] with parameter µ = δ/C (for a sufficiently large univer-
sal constant C > 1) has dimensions d′ × T′, where T′ = poly(T) and d′ = O(d ·
log(T)/δ). 34 Now, in the proof of [CT21, Proposition 4.4], the generator enumer-
ates over the d′ layers of the bootstrapping system, encodes each layer Pi via the
Hadamard code to P̄i, and uses the Nisan-Wigderson generator with P̄i as the hard
function (see [CT21, Theorem 4.8]) with parameters (1log(|P̄i |), 1M, Θ(δ)) to output a
corresponding list of TO(1/δ) strings of length M. We denote the set corresponding to
the layer P̄i by Wi, and note that the number of sets is d′ as in our claim.

Let γ = δ/C′ for a sufficiently large universal constant C′ > 1. We now follow
the proof of [CT21, Proposition 4.4], using precisely the same parameter values, the
only change being that we change the reconstruction algorithm R as follows. The
reconstruction R starts by constructing a circuit C0 that computes the function whose
truth-table is P0 (i.e., the values of the input layer when padded to length T′), in time
Õ(max {n, Tµ} · Tµ). We will then rely on the following lemma:

Lemma 4.5.1 (a strengthening of [CT21, Lemma 4.10]). There is a universal constant c0
and an algorithm Astep that gets as input an oracle circuit Ci−1 and oracle access to Di−1 such
that the truth-table of CDi−1

i−1 is Pi−1, and also gets oracle access to a function Di : {0, 1}M →
{0, 1}, runs in time T2(γ+µ) · (M · |Ci−1|)c0 , and with probability at least 1− 1/T2− 4 · 2−M

satisfies the following:

1. If Di is a (1/M)-distinguisher for Wi, then Astep prints an oracle circuit Ci of size
Mc0 · T2(γ+µ) such that the truth-table of CDi

i is Pi.

2. For every Di, the algorithm Astep either prints an oracle circuit Ci as in Item (1), or
outputs ⊥

Proof. In the original statement of [CT21, Lemma 4.10], both oracles Di−1 and Di are
the same function D, and this single function is a distinguisher for all the lists that the

34The original statement asserts that d′ = O(d · log(T)), but the proof yields the value d′ = O(d ·
log(T)/µ) = O(d · log(T)/δ)).

30

generator outputs. However, the proof itself only relies on the hypotheses that CDi−1
i−1

computes the function whose truth-table is Pi−1, and that Di is a (1/M)- distinguisher
for Si. This establishes Item (1).

To see what happens when Di is not a (1/M)-distinguisher for Wi, recall that the
first step of the original algorithm A is to run the Nisan-Wigderson reconstruction,
hoping to obtain a circuit Ci,1 such that CDi

i,1 computes Pi correctly on 1/2+ M−3 of the
inputs (see [CT21, Claim 4.10.1 and Theorem 4.8]). Our modified algorithm does the
same thing, but after this step it also tests that CDi

i,1 computes Pi correctly on 1/2+ M−3

of the inputs. That is, it samples O(M11) random inputs in [T′], evaluates CDi
i,1 and CDi−1

i−1
on these inputs, and proceeds if and only if the two latter functions agree on at least
1/2 + M−3 −M−5 of the sample (otherwise it outputs ⊥). Then it proceeds as in the
original proof, replacing the guarantee that Prz∈[T′][C

Di−1
i−1 (z) = Pi(z)] ≥ 1/2 + M−3 by

a guarantee that Prz∈[T′][C
Di−1
i−1 (z) = Pi(z)] ≥ 1/2 + M−4; the original proof is already

insensitive to the difference between M−3 and M−4.
The original success probability was 1− 1/T2− 3 · 2−M, and the new success prob-

ability is lower by an additive factor of 2−M (due to the probability that the sam-
pling above is incorrect). The original running time was T2(γ+µ) · poly(M, |Ci−1|), and
it increases by an additive factor of M11 · Õ(|Ci−1| + |Ci,1|) < poly(M, |Ci−1|) · T2γ,
where the inequality is since M ≥ log(T) and the size of Ci,1 is at most T2γ · poly(M)
(see [CT21, Claim 4.10.1] for the bound on |Ci,1|). �

The reconstruction algorithm R works in d′ iterations. In each iteration i ∈ [d′] it
starts with a circuit Ci−1 such that CDi−1

i−1 computes Pi−1, where Di−1 is one of the oracles
in Fi−1 (when i = 1 no oracle is needed, so we think of D0 as a trivial function). Then,
for each j = 1, ..., L, the reconstruction runs the algorithm Astep from Lemma 4.5.1 with
oracle D(i)

j . If Astep outputs an oracle circuit Ci , the algorithm proceeds to iteration

i + 1, with circuit Ci and oracle Di = D(i)
j ; otherwise (i.e., if Astep outputs ⊥), the

reconstruction continues in iteration i with oracle D(i)
j+1. If Astep outputs ⊥ for all

j ∈ [L], the reconstruction aborts and outputs ⊥.
By a union-bound, the probability that all ≤ d′ · L invocations of Lemma 4.5.1 are

successful is at least

1− d′ · L · (T−2 + 4 · 2−M) ≥ 1− L · 2d · log(T)
δ

· T−2 (M > c · log(T))

≥ 1−O(L · log(T)2/T) . (d ≤ T)

In this case, by our hypothesis that for each i ∈ [d′] the set Fi contains a distinguisher
for Wi, after iteration d′ we obtained Dd′ ∈ Fd′ and Cd′ such that the truth-table of
CDd′

d′ is the string P̄d′ . The latter string is the Hadamard encoding of Pd′ , and by the
construction of Pd′ in [CT21, Proof of Proposition 4.3], the prefix of length | f (x)| in Pd′

is the string f (x). Thus, the reconstruction algorithm can output an oracle circuit that
gets y ∈ [| f (x)|], computes the index z in the Hadamard encoding P̄d′ of Pd′ such that
P̄d′(z) = Pd′(y), and outputs CDd′

d′ (z) = P̄i(z) = Pi(y) = f (x)y.

31

The running time of the reconstruction algorithm is

Õ(max {n, Tµ} · Tµ) + d′ · L · T2(γ+µ) · (M · |Ci−1|)c0

< n · T2µ + d′ · L · T2(γ+µ) · (Mc0 · T2(γ+µ))c0 (|Ci−1| ≤ Mc0 · T2(γ+µ))

< (d + n) · Tδ/2 · L ·Mc2
0 (µ = δ/C, γ = δ/C′)

< (d + n) · Tδ · L , (M < Tδ/2c2
0)

for a sufficiently large universal constant c > 2c2
0 in the hypothesis M ≤ Tδ/c.

5 High-end hardness: Breaking the PSPACE barrier

In this section we prove the results from Section 1.1. Specifically, in Section 5.1 we
prove the general version of Theorem 1.1, and in Section 5.2 we prove Theorem 1.2.

5.1 High-end hardness-to-randomness tradeoff

We now prove Theorem 1.1, which asserts a hardness vs randomness tradeoff that is
based on hardness in a class that is (probably) larger than PSPACE , and that can
yield polynomial time derandomization on all input lengths. In fact, we prove the
results for general time bounds that satisfy some natural conditions.

Definition 5.1 (nice time bounds). We say that T : N → N is a nice time bound if T is
non-decreasing and time-computable and satisfies:

1. For every sufficiently large n ∈N it holds that T(n + 1) ≤ 2T(n) ≤ 2n.

2. For every two constants α, µ ∈ (0, 1) such that α ≥ µ and every sufficiently large n ∈N

it holds that T(α · n) ≥ T(n)µ.

3. For any constant α ∈ (0, 1) there exists c > 1 such that given any integer n ∈ N, we
can compute an integer ` such that T(α · `) ∈ [n, c · n] in space O(`).

The time bounds typically considered in complexity theory are nice; for example,
T(n) ∈

{
nk, 2(log n)k

, 2nε
, 2ε·n

}
for constants k ≥ 1 and ε ∈ (0, 1) are all nice.

We first prove the derandomization of RP , and then prove the derandomization
of BPP with small advice. The first proof uses the targeted somewhere-PRG from
Theorem 4.5 along with the instance checker from Proposition 4.4.

Theorem 5.2 (the general version of Theorem 1.1 for RP). For any nice time bound
T : N→ N that is larger than a sufficiently large polynomial, and any d(n) ≤ T(n)δ, where
δ > 0 is a universal constant, the following holds. Assume that lu-CKT [2O(n), d(n)] 6⊆
i.o.BPT IME [T]. Then, for every constant a ∈N we have that

RP ⊆
⋃

c∈N

heur1−1/na -DT IME [2tc(n)] ,

where tc(n) = (T−1(nc))2/ log(n). 35

35The notation T−1(nc) means the largest integer ` such that T(`) ≤ nc.

32

To see that the first part of the conclusion of Theorem 1.1 follows from Theo-
rem 5.2, instantiate the latter with T(n) = 2ε·n and d(n) = 2ε·δ·n, in which case
tc(n) = Oc(log(n)).

Proof of Theorem 5.2. Let L(0) ∈ lu-CKT [2O(n), d(n)] \i.o.BPT IME [T] and let L(1) ∈
lu-CKT [2O(n), O(d · n4)] be the corresponding instance-checkable problem from Propo-
sition 4.4, and recall that the reduction maps inputs of length n to inputs of length at
most c′ · n, where c′ > 1 is a universal constant and we relied on the bound T(n) ≤ 2n.
By Lemma A.1 there exists L′ ∈ lu-CKT [2O(n), O(d · n4)] \ i.o.BPT IME [T′] that is
also same-length instance-checkable in time poly(d, log(T), n), where

T′(n) =
√

T(α · n) ≤ T(n/2c′)
poly(d, n, log(T))

,

and α = 1/2c′ and the inequality relies on our assumptions that d ≤ Tδ for a universal
δ� α/2 and that T is nice and is larger than a sufficiently large polynomial.

Let L ∈ RT IME [nk], let a ∈ N, let A be a probabilistic algorithm solving L in
time nk, and let S be a probabilistic algorithm sampling x in time nk. Fix a sufficiently
large constant c that depends on a and on k and on L(0).

The derandomization algorithm. Since T is nice, for any integer of the form n2c, we
can compute an integer ` = `(n) such that T(α · `) ∈ [n2c, O(n2c)] in space O(`). By
the definition of T′(`) =

√
T(α · `), we have that

nc ≤ T′(`) ≤ O(nc) ,

and since we defined T−1(N) = max {`′ : T(`′) ≤ N}, we have

` ≤ T−1(O(n2c)) . (5.1)

Consider the function f : {0, 1}n → {0, 1}2` that maps any n-bit input to the truth-
table of L′` = L′ ∩ {0, 1}`. Note that f is computable by logspace-uniform circuits of
size S = 2O(`) and depth d′ = d(`) · `4, relying on our hypothesis about L′ (and relying
on the fact that ` can be computed in space O(`) = O(log(S))).

Now, let G f be the targeted somewhere-PRG from Theorem 4.5, instantiated with
the function f and with parameters δ = Θ(log(T′(`)/`)) and M = nk. 36 Note that G f
runs in time

2O(`/δ) = 2O(`2/ log(T′(`)))

= 2O(`2/ log(n)) (T′(`) = Θ(nc))

≤ 2O(t3c(n)) ,

where the last inequality relied on the fact that t3c(n) = T−1(n3c)2/ log(n) ≥ `2/ log(n)
(by Eq. (5.1). The output of G f is K lists of M-bit strings, denoted W1, ..., WK, where

K = O(d′ · log(S)/δ) = O(d(`) · `6/ log(T′(`))) .

36Theorem 4.5 relies on the hypotheses δ ≥ c0 · loglog(S)/ log(S) and c0 · log(S) ≤ M ≤ Sδ/c0 ⇐⇒
Θ(`) ≤ nk ≤ 2Θ(log(nc)), for a universal constant c0. These hypotheses are satisfied by the assumption
that T is larger than a sufficiently large polynomial and by a sufficiently large choice of c.

33

Given input x ∈ {0, 1}n, we invoke G f as above to obtain the lists, run A(x, w)

for each w ∈ ⋃i∈[K] Wi ⊆ {0, 1}M, and output 1 if and only if there exists w such that
A(x, w) = 1. Note that the running time of this algorithm is

2O(t3c(n)) + O(K · nk) < 2O(t3c(n)) · nk < 2O(t3c(n)) ,

where the last inequality is since T(`) ≤ 2`.

The reconstruction argument. Assume towards a contradiction that for infinitely
many n ∈ N, when running S on input 1n, with probability at least 1/na over its
random coins it outputs x ∈ {0, 1}n such that Prr∈{0,1}nc [A(x, r) = 1] ≥ 1/2 but
A(x, w) = 0 for every w ∈ ⋃i∈[K] Wi.

In this case, we can compute L′` as follows. Given z ∈ {0, 1}`, run S(1n) for h =
O(na) times to obtain a list of strings x1, ..., xh ∈ {0, 1}n. For each i ∈ [h],

1. We run the instance checker for L′ with input z, and whenever the instance
checker queries a location q ∈ {0, 1}` we answer as follows.

2. We run the reconstruction algorithm R from Theorem 4.5 on input q, while pro-
viding it oracle access to the function Dxi(r) = A(xi, r). (In Theorem 4.5, the
reconstruction R is allowed oracle access to several sets of functions. In the cur-
rent instantiation, all sets are identical and consist of the single function Dxi .) If
the algorithm returns a circuit C we answer the query by CDxi (q), and otherwise
we halt the entire procedure and output ⊥.

3. We denote the value that the instance checker returns by vi ∈ {0, 1,⊥}.

If there exists σ ∈ {0, 1} such that for some i ∈ [h] it holds that vi = σ and for all
i ∈ [h] it holds that vi ∈ {σ,⊥}, we return σ; otherwise we return zero.

Now, by our assumption about S, with high probability over the random coins of
S there exists i ∈ [h] such that Prr[A(xi, r) = 1] ≥ 1/2 but A(x, w) = 0 for every
w ∈ ⋃

i∈[K] Wi, and we condition on this event. Also, we can assume that the error
probability of the instance checker and of R is at most 2−n2a

(by using naive error-
reduction with O(n2a) repetitions37). Thus, with high probability, all the invocations
of R and of the instance checker are successful, and we condition on this event too. In
this case we have that vi = L`′(z) whereas for all j 6= i it holds that vj ∈

{
L′`(z),⊥

}
,

and therefore the algorithm correctly outputs L′`(z).
Finally, the running time of the algorithm is

O(na+k)︸ ︷︷ ︸
sampler S

· n2a · poly(d′, `)︸ ︷︷ ︸
instance checker

· (d′ + `c4.5) · Tδ · nc4.5+k+2a︸ ︷︷ ︸
reconstruction R

≤ poly(d′) · Tδ · nc/2 < T′(`) ,

where c4.5 is the universal constant from Theorem 4.5, and the first inequality is by the
assumption that c is sufficiently large, and the second inequality is by the assumption
that δ > 0 is sufficiently small. This contradicts the hypothesized hardness of L.

We now prove the derandomization of BPP with small advice. In the following
statement, the hypothesis is identical to that of Theorem 5.2, and only the conclusion

37To reduce the error of R, given query q we run R for O(n2a) times, and whenever R outputs a circuit
C we record the answer C(q). We output the majority vote among the recorded answers.

34

is different. In the proof, instead of using instance checkers, we will use the more
refined guarantee in Theorem 4.5 that allows the reconstruction algorithm to get access
to several sets of potential distinguishers.

Theorem 5.3 (the general version of Theorem 1.1 for BPP). Under the same hypothesis
of Theorem 5.2, for every constant a ∈N we have that

BPP ⊆
⋃

c∈N

heur1−1/na -DT IME [2tc(n)]/αc(n) ,

where tc(n) = (T−1(nc))2/ log(n) and αc(n) = log(d(T−1(nc))) + O(log(T−1(n))).

To see that the second part of the conclusion of Theorem 1.1 follows from Theo-
rem 5.3, observe that when T(n) = 2ε·n and d(n) = 2ε·δ·n we have tc(n) = Oc(log(n))
and αc = Oc(log(n)).

Proof of Theorem 5.3. We instantiate the targeted somewhere-PRG from Theorem 4.5
with the exact same function and paramters as in the proof of Theorem 5.2, but now
the generator also receives advice i ∈ [K], and prints only the strings in the ith output
list Wi. On input x we output MAJw∈Wi {A(x, w)}.

To prove correctness, assume towards a contradiction that for every advice string
i ∈ [K], the probability over x ← S(1n) (i.e., over an n-bit input chosen by the sampler
S) that Prr∈{0,1}nk [A(x, r) = 1] /∈ Prw∈Wi [A(x, w)] ± 1/10 is at least 1/na. We show
below a reconstruction procedure whose complexity can be bounded in a way that
is identical to the one in the proof of Theorem 5.2, but that works with the current
relaxed assumption. It follows that there exists a fixed i ∈ [K] (that may depend on L
and on S) such that the probability that S samples x for which Prr∈{0,1}nk [A(x, r) = 1] /∈
Prw∈Wi [A(x, w)]± 1/10 is at most 1/na. The advice length is

dlog(K)e = log(d′) + 2 log(`)− loglog(n) + O(1) = log(d(`)) + O(log(`)) ,

and by Eq. (5.1) this is at most α3c(n).
Turning to the reconstruction argument, given input z ∈ {0, 1}` for L′`, we sample

h′ = O(na · log(K) · K) strings in {0, 1}n and partition them into K sets X1, ..., XK of
h′/K strings each. We then run the reconstruction algorithm R from Theorem 4.5
with input z, giving it access to the K sets of functions defined for each i ∈ [K] by
Fi = {Dxi}xi∈Xi

where Dxi(r) = M(x, r). If R prints a circuit C we output C(z), and
otherwise we output some default value, say 0. By our assumption, and using a union-
bound over i ∈ [K], with probability at least 0.99, for every i ∈ [K] there exists xi ∈ Xi
such that Dxi is a (1/10)-distinguisher for Wi. In this case, with probability 1− o(1)
we have that C(z) = L′`(z). The running time of this procedure is at most

h′ · nk + (d′ + n) ·O(na · log(K)) · Tδ

≤ na+k · poly(d′, `) · Tδ (K ≤ poly(d′, `))

≤ poly(d′) · Tδ · nc/2 ,

which is at most T′(`), contradicting the hardness of L′.

35

5.2 Optimal worst-case to average-case reductions

In this section we prove Theorem 1.2, which asserts an optimal worst-case to average-
case reduction for computing problems in SPACE [O(n)] by probabilistic algorithms.
Its proof uses the instance checker from Proposition 4.2.

Theorem 5.4 (optimal worst-case to average-case reduction for linear space; Theo-
rem 1.2, restated). For every non-increasing function ε : N → (0, 1) such that ε(n) ≥ 2−n

is computable in space O(log(n)) there is a language L̂ that is complete for SPACE [O(n)]
under linear-time reductions such that

SPACE [O(n)] 6⊂ i.o.BPT IME [T] =⇒ L̂ /∈ i.o.-avg1/2+δ-BPT IME [T′] ,

where T′(n) = T(n/c)/(n/ε(bn/c′c))c and δ(n) = ε(bn/c′c), for a constant c > 1 that
depends on the hypothesized lower bound and a universal constant c′ > 1.

Proof. Let L be the linear-space complete problem from Proposition 4.3 that is same-
length instance checkable in polynomial time. Let L̂ be the problem obtained by en-
coding, for every n ∈N, the truth-table of L∩ {0, 1}n via the error-correcting code Enc
from Theorem 3.8, instantiated with the function ε(n). Since the code is computable
in space that is logarithmic in its output length, the problem L̂ is in linear space; and
since L̂ is systematic, it holds that L is reducible to L̂ in linear time.

Note that L̂ was so far defined only on input lengths in S = {c0 · n0}n0∈N, where c0

is the constant from the linear-time reduction of L to L̂. 38 For every n /∈ S, we define L̂n
such that L̂n(x) = 1 if and only if L̂m(x1, ..., xm) = 1, where m = c0 · bn/c0c. (Using the
terminology from Definition 3.3, the problem L̂ is the natural S-extension of the naive
target problem of the reduction.) This problem is still complete for SPACE [O(n)].

Now, assume that there exists

L(0) ∈ SPACE [O(n)] \ i.o.BPT IME [T] .

By Lemma A.1, we have that

L̄ /∈ i.o.BPT IME [T′] ,

where L̄ is the natural extension of L as in Definition 3.3 and T′(n) = T(n/c′)/nc′ and
c′ > 1 depends on L(0) (specifically, on the precise linear time complexity of reducing
L(0) to L). Then, by Lemma A.4, we have that

L̂ /∈ i.o.-avg1/2+δ-BPT IME [T′′] ,

where δ(n) ≥ ε(bn/2c0c) and

T′′(n) ≥ T′(n/2c0)

(n/ε(bn/2c0c))c′′ =
T(n/(2c0 · c′))

(n/ε(bn/2c0c))c′·c′′

and c′′ > 1 is universal.

38The reduction maps inputs of length n0 to inputs of length c · (n0 + log(1/ε(n0))) ≤ 2c · n0, where
the inequality is since ε(n0) ≥ 2−n0 and c is the constant hidden in the definition of N̄ in Theorem 3.8.

36

6 Mild average-case hardness in a subclass of P
In this section we prove Theorem 1.3. Recall that in this result we start from mild
average-case hardness in a large subclass of P , and deduce polynomial-time average-
case derandomization of RP . Indeed, the assumption refers to hardness with very
little “structure” (in the sense that an arbitrary function in a large subclass of P will
do), but requires mild average-case hardness rather than worst-case hardness.

Theorem 6.1 (derandomization from mild average-case hardness in a subclass of P).
For every four constants a, b, c1, c2 ∈ N there exists a constant c3 > 1 such that following
holds. Assume that there exists a language

L(0) ∈ lu-CKT [poly(n), nc1] \ i.o.avg(1−n−c2)-BPT IME [nc3] .

Then, RT IME [nb] ⊆ avg(1−n−a)-P .

Proof. Let a, b, c1, c2 ∈ N be constants and let c3 be a sufficiently large constant to be
determined below. Let

L(0) ∈ lu-CKT [poly(n), nc1] \ i.o.-avg(1−n−c2)-BPT IME [nc3] ,

and let F be the corresponding function from the “furthermore” part of Proposition 4.4.

Reduction to an instance-checkable problem. Recall that F has an `-strongly (1/10)-
tolerant same-length instance checker running in time nc·c1 , for some universal con-
stant c > 1, and that L(0) is reducible to F via an input-extending reduction that maps
inputs of length n to inputs of length `−1(n) = O(n). We rely on the following lemma:

Lemma 6.2 (preserving mild average-case hardness on all input lengths under reduc-
tions using a strongly tolerant instance checker). Let L(0) /∈ i.o.-avg(1−n−c2)-BPT IME [nc3],
and let F : {0, 1}∗ → {0, 1}∗ such that for some constant c′ > 1:

1. Deciding L(0) is reducible in linear time to computing F via an input-extending reduction
that maps inputs of length n to inputs of length c′ · n.

2. The function F has an `-strongly (1/10)-tolerant same-length instance checker with
running time nc·c1 , where `(n) = n/c′.

Then, the natural S-extension of F is not in i.o.-avg(1−n−c2 /100)-BPT IME [nc3−c·c1−1],
where S = {c′ · n0 : n0 ∈N}.

We defer the proof of the lemma to Appendix A (see Lemma A.2). Relying on
the lemma, it follows that for S = {O(n0) : n0 ∈N}, the natural S-extension of F,
denoted F̄, is not in i.o.-avg(1−n−c2 /100)-BPT IME [nc5−c·c1−1]. Using the upper-bound
on F from Proposition 4.4, we have that

F̄ ∈ lu-CKT [poly(n), nc1+1] \ i.o.-avg(1−n−(c2+1))-BPT IME [n
c′3] , (6.1)

where c′3 = c3 − c · c1 − 1.

37

Hardness amplification via direct-product. Now, for k(n) = Θ(log(na·c2) · n3c2), let
G = F̄⊗k be the k-wise direct-product function of F̄, and let Ḡ be the natural Sk-
extension of G, where Sk = {k · n}n∈N. By Fact 3.14, for every δ = δ(n) > 0 it holds
that F̄ has a (δ, 10δ)-tolerant instance checker running in time nc·c1 . We rely on the
following lemma:

Lemma 6.3 (amplifying average-case hardness on all input lengths using a direct prod-
uct and an instance checker). Let F̄ /∈ i.o.-avg(1−n−(c2+1))-BPT IME [n

c′3] that has a

(n−3(c2+1), 10n−(c2+1))-tolerant same-length instance checker with running time nc·c1 , and
let G = F̄⊗k be the k-wise direct product of F̄, for k = Θ(log(na·c2) · n3c2). Then, for
Sk = {k · n0 : n0 ∈ N}, the natural Sk-extension of G is not in i.o.-avgn−a -BPT IME [nc′′3],
where c′′3 = α · c′3

c·c1·(c2+1)·a for a universal constant α > 0.

We defer the proof of the lemma to Appendix A (see Lemma A.5). Relying on
the lemma and on the naive upper-bound for computing Ḡ (by computing F̄ indepen-
dently on each of the k instances in parallel), we have that

Ḡ ∈ lu-CKT [poly(n), nc1+1] \ i.o.-avgn−a -BPT IME [nc′′3] , (6.2)

where c′′3 = α · c3−c·c1−1
c·c1·(c2+1)·a . (Note that the upper bound in Eq. (6.2) is wasteful, since

the depth is actually mc1+1 where m = n/k, rather than nc1+1. This does not affect our
analysis, so we do not optimize it.)

The derandomization. Let L ∈ RT IME [nb], and let A be a probabilistic algorithm
that solves L with one-sided error in time nb. We instantiate Theorem 4.5 using Ḡ as
the hard function with parameters M(n) = nb and T = poly(n) and d = nc1+1 and
sufficiently small constant δ > 0. 39 Given input x ∈ {0, 1}n, we simulate A using the
pseudorandom strings that the generator from Theorem 4.5 prints, and accept if and
only if A accepts with at least one pseudorandom string. The running time of this
algorithm is poly(n).

Denote the deterministic algorithm above by D, and assume towards a contra-
diction that for infinitely many n ∈ N it holds that Prx∈{0,1}n [D(x) 6= L(x)] ≥ n−a.
Consider the algorithm R from Theorem 4.5 when given D as an oracle (i.e., all the
sets of oracle functions for R are the singleton {D}). In this case, the algorithm RD

runs in time at most

(d + n) · Tδ ≤ n2c1·b ,

where the last inequality is by a sufficiently small choice of δ, and RD decides L
correctly on a n−c3 fraction of the inputs. We reach a contradiction by setting c3 to be
sufficiently large such that c′′3 > 2c1 · b. 40

Since a large part of the proof above will be reused in Section 7, let us now state
this part as a stand-alone. The proof above started with a language L(0) that is mildly
hard on average, obtained an instance-checkable function F̄ that is mildly hard on
average, and used F̄ (coupled with hardness amplification) for derandomization. The
following claim abstracts the second step of using F̄ for derandomization:

39We ensure that the hypothesis M ≤ Tδ/c is met by assuming (wlog) that T is a sufficiently large
polynomial and taking δ > 0 to be sufficiently small.

40That is, we set c3 > (2c/α) · (c1)
2 · (c2 + 1) · a · b + c · c1 + 1.

38

Proposition 6.4 (from an instance-checkable function that is mildly hard on average
to derandomization). For every five constants a, b, c1, c2, c3 ∈ N there exists a sufficiently
large constant c4 > 1 such that the following holds. Assume that there exists a function

F̄ ∈ lu-CKT [poly(n), nc1] \ i.o.-avg1−n−c2 -BPT IME [nc4] ,

such that F̄ has an `-strongly tolerant same-length instance checker running in time nc3 , for
some `(n). Then, RT IME [nb] ⊆ avg1−n−a -P .

The proof of Proposition 6.4 is identical to the part of the proof of Theorem 6.1 that
starts from Eq. (6.1).

7 Hardness for low-degree arithmetic formulas

In this section we prove Theorem 1.5, which asserts that worst-case hardness of a
function computable by low-degree arithmetic formulas of polynomial size implies
polynomial-time derandomization of RP , on average. Since the proof refers to the
precise details of this computational model, let us begin by defining arithmetic formu-
las and establishing some conventions.

Definition 7.1 (arithmetic formulas). An arithmetic formula φ on n variables x1, . . . , xn
of size SIZE(φ) and degree deg(φ) is a syntactic model defined recursively by one of the
following operations:

1. φ = xi for i ∈ [n], or φ = σ for a constant σ ∈ {0, 1}, in which case SIZE(φ) = 1

and deg(φ) =

{
1 φ = xi

0 φ ∈ {0, 1}
.

2. φ = −ψ, where ψ is an arithmetic formula over x1, . . . , xn, in which case SIZE(φ) =
SIZE(ψ) + 1 and deg(φ) = deg(ψ).

3. φ = ψ1 +ψ2, where both of ψ1, ψ2 are arithmetic formulas over x1, . . . , xn, in which case
SIZE(φ) = SIZE(ψ1)+SIZE(ψ2)+ 1 and deg(φ) = max {deg(ψ1), deg(ψ2)}.

4. φ = ψ1 · ψ2, where both of ψ1, ψ2 are arithmetic formulas over x1, . . . , xn, in which case
SIZE(φ) = SIZE(ψ1) + SIZE(ψ2) + 1 and deg(φ) = deg(ψ1) + deg(ψ2).

We remark that in Definition 7.1 we did not specify an underlying field F. A
formula φ can be evaluated as a polynomial over any field F of our choice.

Representation of formulas. We now fix a canonical way of presenting formulas as
Boolean strings. Note that a formula φ from Definition 7.1 can be organized as a
tree, such that each node v is either (1) A leaf that corresponds to a variable xi or to
a constant σ ∈ {0, 1}; or (2) An intermediate node corresponding to a sub-formula
−ψ0, and has one child w such that w corresponds to the sub-formula ψ0; or (3) An
intermediate node corresponding to a sub-formula ψ1 op ψ2, where op ∈ {+, ·}, and
has two children w1 and w2 such that wi corresponds to the sub-formula ψi for each
i ∈ [2]. In the second case, we say the node has operator type −, and the third case,
we say the node has operator type op.

In a formula φ with m nodes, we will represent each node by an unique identifier
i ∈ [m], and the node 1 is the root. Then φ can be described as a list of m descriptions,
one for each node: In the description for node v, we first specify whether its a leaf
or an intermediate node. If it is a leaf, we then specify its corresponding variable or
constant; if it is an intermediate node, we specify its operator and indices of children.

39

Families of arithmetic formulas of low degree. A formula is a syntactic model over
a fixed number of variables, and we will be interested in formula families evaluated
over a sequence of finite fields (i.e., one formula and one field for each input length).
Throughout the section, we denote formula families by F = {Fn}n∈N and use the
convention that Fn is over n variables. We also consider a “post-processing” operation,
which maps the output of the formula to a Boolean string. In more detail:

Definition 7.2 (defining triplets). Let p : N→ N be a function mapping integers to prime
powers, and let g = {gn} be such that gn : Fp(n) → {0, 1}∗. Let F = {Fn} be a family
of arithmetic formulas. We define Π = ΠF,p,g = {Πn} such that Πn maps x ∈ Fn

p(n) to
gn(Fn(x)). We say (F, p, g) is a Π-de�ning triplet with degree d(n) and size s(n) if:

1. (Arithmetic setting.) The field size satisfies d(n)2 ≤ p(n) ≤ poly(n), and either p(n)
is a prime for all n ∈N, or there exists a constant prime p0 such that p(n) is a power of
p0 for all n ∈ N. Also, there is a logspace-uniform family of circuits of polynomial size
and polylog(n) depth that maps 1n to the integer p(n).

2. (Formula family.) For every n ∈ N it holds that Fn has degree at most d(n) and size
at most s(n), and the family F is logspace-uniform.

3. (Post-processing.) The function gn : Fp(n) → {0, 1}∗ is computable in space O(log n),
given a representation of Fp(n).

7.1 Worst-case to average-case reduction for arithmetic formulas

The main lemma that we will need for the proof of Theorem 1.5, which we now
state, asserts that there is a worst-case to mild average-case reduction for any problem
Π = ΠF,p,g defined by low-degree arithmetic formulas. We first state and prove this
lemma, and then deduce Theorem 1.5 from this lemma, relying on Theorem 6.1.

Lemma 7.3 (worst-case to mild average-case reduction for low-degree arithmetic for-
mulas). There is a universal constant γ ∈ N such that the following holds. Let c, k ∈ N be
constants such that c is sufficiently large. Suppose there is a Π-defining triplet (F, p, g) with
degree nk and size poly(n) such that Π = ΠF,p,g /∈ i.o.BPT IME [nc]. Then, there exists a
function F̄ : {0, 1}∗ → {0, 1}∗ such that

F̄ ∈ lu-CKT [poly(n), polylog(n)] \ i.o.-avg(1−n−2k)-BPT IME [nc−γ·k] ,

and F̄ has an `-strongly (1/10)-tolerant instance checker running in time nb, for some `(n) =
Ω(n) and a universal constant b.

Proof. Our first step is to argue that a representation of the field F = Fp(n) can be
constructed efficiently. Specifically, let πF

n be a Boolean string that describes F = Fp(n),
which consists of the prime p0 such that p(n) = (p0)m (it is possible that p0 = p(n)
and m = 1) and an irreducible polynomial over Fp0 of degree m. The string πF

n is of
length O(log n), and we pad πF

n to be of length 2`π where `π = log log(n) + O(1).

Claim 7.3.1. There is a logspace-uniform circuit family of polynomial size and polylog(n)
depth that gets input 1n and prints πF

n .

Proof. By our assumption, a logspace-uniform circuit family of polynomial size and
depth polylog(n) can print p(n). Recall that either p(n) is a prime for all n ∈ N, or
p(n) is a power of a fixed constant prime p0 for all n ∈ N. In the first case, we are

40

done. In the second case, we need to find an irreducible polynomial of degree m; the
algorithm of Shoup [Sho90] runs in time poly(p0, log n) = polylog(n), and can thus be
(naively) implemented by logspace-uniform circuits of size and depth polylog(n). �

Next, consider the polynomial Pn : Fn → F that is obtained by evaluating the
formula Fn over the field F in the obvious way, and note that its degree is at most
nk. We argue that the polynomial family {Pn} can be computed by logspace-uniform
circuits of polynomial size and depth polylog(n):

Lemma 7.3.2. The polynomial family {Pn}n∈N can be computed by logspace-uniform circuits
of polylog(n) depth and polynomial size.

The proof of Lemma 7.3.2 amounts to balancing the formula Fn by uniform circuits
of polylogarithmic depth and polynomial size, in order to evaluate Pn by such circuits.
We defer the proof to Section 7.1.1.

An auxiliary hard problem. To construct our hard problem we convert Pn into a
Boolean function whose truth table contains πF

n as a substring; this will allow our
worst-case to average-case reduction to quickly obtain a description of F.

Specifically, for `n =
⌈

log2(n)
⌉

, we define the following mapping πn : {0, 1}`n → F:

Given x ∈ {0, 1}`n , interpret it as an integer x ∈ [2`n], let i = x mod p(n), and output
the ith element in F. 41 For m = n · `n + 1 and `F = dlog(|F|)e, we define a function
Hn : {0, 1}m × [`F] 7→ {0, 1}, as follows:

1. Given an input (λ, x, i) ∈ {0, 1} × {0, 1}n·`n × [`F], partition x into n consecutive
blocks x(1), . . . , x(n) ∈ {0, 1}`n .

2. If λ = 0, output the ith bit in the binary representation of Pn(πn(x(1)), . . . , πn(x(n))).

3. If λ = 1, let j be the integer represented by the first `π bits of x and output (πF
n)j.

Let H ⊆ {0, 1}∗ be the language defined by the Hn’s (i.e., H is non-trivially defined
only on input lengths of the form n = m + dlog(`F)e) We argue that H is hard, relying
on the hardness of Π. The idea is that if a fast algorithm can compute Hn correctly
on a 1− n−(k+1) fraction of the inputs, then we can use it to quickly compute a rep-
resentation of F, then apply a worst-case to average-case reduction for the low-degree
polynomial Pn (i.e., Theorem 3.6) to inputs for Hn of the form (1, x, i), and finally
compute gn quickly.

Lemma 7.3.3. There exists a universal constant c′ > 1 such that for every probabilistic al-
gorithm running in time nc−c′·k and every sufficiently large n ∈ N, for at least an n−(k+1)

fraction of inputs z ∈ {0, 1}m × [`F] it holds that Pr[A(z) = H(z)] < 2/3.

We defer the full proof of Lemma 7.3.3 to Section 7.1.2. Observe that

H ∈ lu-CKT [poly(n), polylog(n)] ,

relying on Claim 7.3.1 and Lemma 7.3.2.

41We assume that elements in F are ordered lexicographically.

41

A problem that is hard on all input lengths. The only missing piece is that H is de-
fined only on some input lengths, whereas we are interested in a function that is hard
on all input lengths. We thus reduce H to the corresponding function F from the “fur-
thermore” part of Proposition 4.4, which is also computable in lu-CKT [poly(n), polylog(n)].
We will rely on the following lemma:

Lemma 7.4 (preserving mild average-case hardness on all input lengths under re-
ductions using a strongly tolerant instance checker). Let H ⊆ {0, 1}∗ and `(n) ≤
polylog(n) such that for every probabilistic algorithm A that runs in time nc−c′·k on in-
puts of length n · `(n) and every sufficiently large n ∈N, the probability over x ∈ {0, 1}n·`(n)

that Pr[A(x) = L(0)(x)] ≥ 2/3 is less than 1− n−(k+1). Let F : {0, 1}∗ → {0, 1}∗ such that
for two constants a, b > 1:

1. Deciding H is reducible in linear time to computing F via an input-extending reduction
that maps inputs of length n to inputs of length a · n.

2. The function F has an (n/a)-strongly (1/10)-tolerant same-length instance checker
with running time nb.

Then, the natural S-extension of F is not in i.o.-avg(1−n−(k+1)/100)-BPT IME [nc−a·k−b−2],
where S = {a · n0 : n0 ∈N}.

We defer the proof of the lemma above to Appendix A (see the “furthermore”
part of Lemma A.2). Now, recall that H is reducible to F via an input-extending
reduction mapping inputs of length n to inputs of length a · n, and that F has a (n/a)-
strongly (1/10)-tolerant same length instance checker running in time nb, for universal
constants a, b > 1. Thus, denoting the S-extension of F by F̄, we have that

F̄ ∈ lu-CKT [poly(n), polylog(n)] \ i.o.-avg(1−n−(k+2))-BPT IME [n
c−γ·k] ,

for a universal constant γ > 1.

7.1.1 Proof of Lemma 7.3.2

By Claim 7.3.1, we can assume that we have a representation of F. We will follow
the standard algorithm that balances a polynomial-size arithmetic formula into depth
O(log n) (see, e.g., [SY10, Theorem 2.6]), and explain how it can be implemented by
logspace-uniform circuits of polylogarithmic depth and polynomial size.

Recall that the partial derivative of a formal polynomial f (x1, ..., xn) with respect
to variable xi, denoted ∂xi(f) is a polynomial defined recursively as follows: When f
does not contain xi we have ∂xi(f) = 0; when f is the monomial xi we have ∂xi(f) = 1;
and we have ∂xi(f + g) = ∂xi(f) + ∂xi(g) and ∂xi(f · g) = ∂xi(f) · g + f · ∂xi(g).

For a formula Φ and node w, we denote by Φw the subformula rooted at w; and
for a field element y, we denote by Φ�w=y the formula obtained by fixing Φw in Φ to
be the constant y. When we write ∂w(Φ), we think of the formula Φ′ over variables
x1, ..., xn and y that outputs Φ�w=y(x1, ..., xn) and derive it in y (i.e., ∂w(Φ) = ∂y(Φ′).
Consider the following procedure Simplify, which we will use as a recursive step:

1. Input: A description of a size-s formula Φ over x1, ..., xn as a bit-string.

2. Execution steps:

(a) Find a node w in Φ such that SIZE(Φw) ∈ [s/3, 2s/3].

42

(b) Compute a description of Φw, of Φ�w=0, and of ∂w(Φ).

3. Output: The expression ∂w(Φ) ·Φw + Φ�w=0.

A standard analysis (again see, e.g., [SY10, Theorem 2.6]) shows that Φ = ∂w(Φ) ·
Φw + Φ�w=0, and thus the output expression computes the same function as the input
formula; and that each of the three formulas ∂w(Φ) and Φw and Φ�w=0 is of size at
most 2s/3. We argue that Simplify can be performed in parallel:

Claim 7.4.1. There is a logspace-uniform family of circuits of size poly(n, s) and depth
polylog(n, s) that computes Simplify.

Proof. As a first step we write down the adjacency matrix of the directed graph in-
duced by Φ, where the direction points from parent to children, and iteratively square
this matrix for O(log(n · s)) times. This can be done by logspace-uniform circuits of
depth O(log(n · s)2) and size poly(n, s). (Recall that in the description of Φ, the de-
scription of each internal node contains the indices of the two children.) The resulting
matrix allows us to quickly decide, for each pair (w, v), whether v ∈ Φw.

Now, for Item (2a), we enumerate over all nodes in parallel and count the number
of descendants of each node (by enumerating again over all nodes in parallel and
using the matrix above), then take the lexicographically first node w (i.e., the node w
whose index is smallest) with between s/3 and 2s/3 descendants.

As for Item (2b), to compute a description of Φw (resp., of Φ�w=0) from the de-
scription of Φ we just need to eliminate all the nodes that are not children of w (resp.,
that are children of w), which we do again by enumerating all nodes in parallel and
checking each node. To compute a description ∂w(Φ), note that the following iterative
procedure (which we do not execute as-is) would yield this description:

1. Iterate from w upwards in Φ, maintaining a formula that is initiated to f0 = 1.

2. In a given iteration i, let fi−1 be the formula after the previous iteration, let ui be
the parent node encountered when traversing up, let vi,1 be the node from which
we arrived, and let vi,2 be the sibling of vi,1 if ui has two children.

• If ui is labeled with +, let fi = fi−1.

• If ui is labeled with −, let fi = − fi−1.

• If ui is labeled with ×, let fi = fi−1 ·Φvi,2 .

3. After the final iteration i ≤ s (such that ui is the root) we output fi.

To see that this procedure yields ∂w(Φ), apply the recursive definition of ∂ to ui at
each iteration, and note that we always have ∂w(vi,2) = 0 (because Φ is a formula).

The point is that to compute ∂w(Φ) we do not need to iteratively execute the pro-
cedure above. Specifically, unravelling the recursion in this procedure, we have that

∂w(Φ) = (−1)|{ui∈Sw :Label(ui)=−}| · ∏
ui∈Sw :Label(ui)=×

vi,2 , (7.1)

where Sw is the set of ancestors of w and Label(u) is the operator labelling the node
u. Thus, to compute ∂w(Φ) we can enumerate over all nodes u in parallel, check
whether w ∈ Φu, and compute the expression in Eq. (7.1) (by either multiplying or
increasing the counter for the power of −1), all by logspace-uniform circuits of depth
polylog(n, s) and size poly(n, s). �

43

Now, our algorithm maintains an arithmetic expression f that adds and multiplies
formulas such that f computes Φ. In the beginning we have that f = Φ, and then the
algorithm iteratively calls Simplify, for t = Θ(log(s))/loglog(s)) times, in each iteration
applying Simplify to each of the elements in the current expression f .

Recall that each application of Simplify to a formula of size s′ yields an expres-
sion with three formulas, each of them of size at most 2s′/3. Thus, after t steps the
final expression contains poly(n) formulas, each of them of size polylog(s). The al-
gorithm evaluates each of the formulas, and then computes the arithmetic expression
of the outcomes. This procedure can be done by logspace-uniform circuits of depth
polylog(n, s) and size poly(n, s).

7.1.2 Proof of Lemma 7.3.3

For convenience, we denote the domain of Hn by Dn = {0, 1}m × [`K], and denote
D0

n = {0} × {0, 1}n·`n × [`K] and D1
n = {1} × {0, 1}n·`n × [`K].

Assume towards a contradiction that there is a probabilistic algorithm A running
in time TA such that for infinitely many n ∈ N, for more than 1− ε fraction of inputs
z ∈ Dn it holds that Pr[A(z) = Hn(z)] ≥ 2/3, where ε = n−(k+1). By naive error
reduction, we can assume that for every such z it holds that Pr[A(z) = Hn(z)] ≥
1− 2−n, and we denote the set of z’s for which this holds by Z ⊆ Dn.

We construct an algorithm B for Πn as follows. The input to the problem is x ∈
Fn

p(n), represented as a binary string. The algorithm B first computes a description

of F = Fp(n) by using A to obtain the string πF
n . Specifically, it randomly chooses

j ∈ {0, 1}n·`n−`π and u ∈ [`F] and queries A on the 2`π inputs {(1, i ◦ j, u)}i∈[2`π]. By
our assumption it holds that Prz∈D1

n
[z ∈ Z] ≥ 1− 2ε, and therefore

Pr
j,u

[∃i : (1, i ◦ j, u) /∈ Z] ≤ 2`π · (2ε) ≤ 1/n ,

relying on the fact that 2`π = O(log(n)) and on our choice of ε. Thus, with high
probability at this point B obtained the string πF

n and thus a description of F.
At this point B runs the decoder RM-Dec from Theorem 3.6 with input x and

degree parameter d = nk, while answering its queries as follows. Given query q =
(q1, ..., qn) ∈ Fn,

1. For each i ∈ [n], let j ∈ [p(n)] such that qi is the jth element in F. Choose a

random shift ri ∈
{

0, 1, ...,
⌊

2`n−p(n)
p(n)

⌋}
, and let q̃i = ri · p(n) + qi ∈ [2`n].

2. For each u ∈ [`F], run A on input (0, (q̃1, ..., q̃n), u), and return the element rep-
resented by the `F bits.

Now, recall that RM-Dec makes d + 1 non-adaptive queries, and that each query q
is (marginally) uniformly distributed in Fn. Therefore, each q̃i is uniformly distributed
in a set of density at least (1− p(n)/2`n) in [2`n],42 and hence each query q̃ of RM-Dec
is uniformly distributed in a set of density (1− p(n)/2`n)n ≥ 1− n− log(n)/2. Thus,
the algorithm A answers each query (0, q̃, k) correctly, with probabilty at least 1− 3ε,
where the probability is over the random coins of RM-Dec, of the random choice of
shifts ri’s for each query, and of the random coins of A.

42If p(n)|2`n then q̃i is uniformly distributed in [2`n], but otherwise q̃i is uniformly distributed in a set

of size at least p(n) ·
(

2`n−p(n)
p(n) − 1

)
+ p(n) = 2`n − p(n).

44

It follows that with probability at least 1− 3ε · (d+ 1) · `F > 1− 1/100 all queries of
RM-Dec are answered correctly, where the inequality relied on our choice of ε. Hence,
with probability at least 9/10 over choice of random coins for A and of shifts vector
r̄ ∈ (

{
0, ...,

⌊
2`n−p(n)p(n)

⌋}
)n·(d+1), the probability over coins of RM-Dec that all of

its queries are answered correctly is at least 9/10. In this case, with high probability
RM-Dec outputs P(x). Finally, B outputs gn(P(x)). The running time of B is at most

Õ
(

2`π · TA + poly(d, n, log(|F|)) · TA · log(|F|) + d
)
< TA · nc′·k ,

where c′ > 1 is a universal constant. This contradicts the hypothesized hardness of Π
(for time nc) if TA < nc−c′·k.

7.2 Proof of Theorem 1.5

We now state and prove Theorem 1.5. The following statement is more refined than
the original one, since it allows any fixed polynomial degree (rather than only n2), and
refers to derandomization of RT IME [nb] for any specific constant b > 1, relying on
hardness for probabilistic time nc where c is sufficiently large. (The original statement
follows since it assumes hardness for all values of c ∈N.)

Theorem 7.5 (derandomization from worst-case fine-grained hardness for low-degree
arithmetic formulas). For every a, b, k ∈ N, there exists a constant c ≥ 1 such that the
following holds. Suppose there is a Π-defining triple (F, p, g) with degree nk and size poly(n)
such that Π = ΠF,p,g /∈ i.o.BPT IME [nc]. Then, RT IME [nb] ⊆ avg(1−n−a)-P .

Proof. Let c ≥ 1 be a sufficiently large constant to be determined later. By Lemma 7.3,
there exists

F̄ ∈ lu-CKT [poly(n), polylog(n)] \ i.o.-avg(1−n−2k)-BPT IME [nc−γ·k] ,

such that F̄ has an `-strongly (1/10)-tolerant instance checker running in time nc′ ,
for some `(n) = Ω(n) and a universal constant c′. Using Proposition 6.4 with pa-
rameters c1 = 1 and c2 = 2k and c3 = c′ and a and b, we deduce that RT IME [nb] ⊆
avg1−n−a -P , assuming that c−γ · k is sufficiently large (i.e., larger than f (a, b, c1, c2, c3) =
f (a, b, c2) for some universal function f). We ensure the latter condition by choosing
c = c(a, b, k) to be sufficiently large.

To see how the general hardness hypotheses in Theorem 7.5 can be instantiated for
specific natural functions, let us state a corresponding corollary for k-CLIQUE, or k-OV,
or k-SUM (for definitions see, e.g., [Wil18]).

Corollary 7.6 (derandomization from hardness of k-clique and k-OV and k-SUM). As-
sume that for every constant c ∈ N there exists k ∈ N such that counting k-cliques, or
counting k-OV, or counting k-SUM cannot be done in probabilistic time nc, even infinitely
often. Then, RP ⊆ avg(1−1/nκ)-P for every constant κ ∈N.

Acknowledgements

Lijie Chen is supported by NSF CCF-2127597 and an IBM Fellowship. Ron Rothblum
was funded by the European Union. Views and opinions expressed are however those

45

of the author(s) only and do not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union nor the granting authority
can be held responsible for them. Part of this work was conducted while Roei Tell was
supported by the National Science Foundation under grant number CCF-1445755 and
under grant number CCF-1900460.

References

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek,
and Detlef Ronneburger. “Power from random strings”. In: SIAM Journal
of Computing 35.6 (2006), pp. 1467–1493.

[BRS+17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
“Average-case fine-grained hardness”. In: Proc. 49th Annual ACM Sympo-
sium on Theory of Computing (STOC). 2017, pp. 483–496.

[CIS18] Marco L. Carmosino, Russell Impagliazzo, and Manuel Sabin. “Fine-grained
derandomization: from problem-centric to resource-centric complexity”.
In: Proc. 45th International Colloquium on Automata, Languages and Program-
ming (ICALP). 2018, Art. No. 27, 16.

[CNS99] Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. “Hardness and hierarchy
theorems for probabilistic quasi-polynomial time”. In: Proc. 31st Annual
ACM Symposium on Theory of Computing (STOC). 1999, pp. 726–735.

[CRT+20] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. “On Exponential-
Time Hypotheses, Derandomization, and Circuit Lower Bounds”. In: Proc.
61st Annual IEEE Symposium on Foundations of Computer Science (FOCS).
2020, pp. 13–23.

[CT21] Lijie Chen and Roei Tell. “Hardness vs Randomness, Revised: Uniform,
Non-Black-Box, and Instance-Wise”. In: Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS). 2021.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating
computation: interactive proofs for muggles”. In: Journal of the ACM 62.4
(2015), Art. 27, 64.

[Gol18] Oded Goldreich. “On doubly-efficient interactive proof systems”. In: Foun-
dations and Trendsr in Theoretical Computer Science 13.3 (2018), front matter,
1–89.

[GR17] Oded Goldreich and Guy N. Rothblum. “Worst-case to Average-case re-
ductions for subclasses of P”. In: Electronic Colloquium on Computational
Complexity: ECCC 26 (2017), p. 130.

[GS92] Peter Gemmell and Madhu Sudan. “Highly Resilient Correctors for Poly-
nomials”. In: Inf. Process. Lett. 43.4 (1992), pp. 169–174.

[GSTS03] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. “Uniform hardness
versus randomness tradeoffs for Arthur-Merlin games”. In: Computational
Complexity 12.3-4 (2003), pp. 85–130.

[GV08] Dan Gutfreund and Salil Vadhan. “Limitations of hardness vs. random-
ness under uniform reductions”. In: Proc. 12th International Workshop on
Randomization and Approximation Techniques in Computer Science (RANDOM).
2008, pp. 469–482.

46

[GW02] Oded Goldreich and Avi Wigderson. “Derandomization that is rarely wrong
from short advice that is typically good”. In: Proc. 6th International Work-
shop on Randomization and Approximation Techniques in Computer Science
(RANDOM). 2002, pp. 209–223.

[IJK+10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigder-
son. “Uniform direct product theorems: simplified, optimized, and deran-
domized”. In: SIAM Journal of Computing 39.4 (2010), pp. 1637–1665.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. “The power
of natural properties as oracles”. In: Proc. 33rd Annual IEEE Conference on
Computational Complexity (CCC). 2018, Art. No. 7, 20.

[IW97] Russell Impagliazzo and Avi Wigderson. “P = BPP if E requires exponen-
tial circuits: derandomizing the XOR lemma”. In: Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC). 1997, pp. 220–229.

[IW98] R. Impagliazzo and A. Wigderson. “Randomness vs. Time: De-Randomization
Under a Uniform Assumption”. In: Proc. 39th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 1998, pp. 734–.

[Kab01] Valentine Kabanets. “Easiness assumptions and hardness tests: trading
time for zero error”. In: vol. 63. 2. 2001, pp. 236–252.

[KKO13] Adam Klivans, Pravesh Kothari, and Igor Oliveira. “Constructing Hard
Functions Using Learning Algorithms”. In: Proc. 28th Annual IEEE Confer-
ence on Computational Complexity (CCC). 2013, pp. 86–97.

[KMS12] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. “Pseudorandom
generators, typically-correct derandomization, and circuit lower bounds”.
In: Computational Complexity 21.1 (2012), pp. 3–61.

[Lu01] Chi-Jen Lu. “Derandomizing Arthur-Merlin games under uniform assump-
tions”. In: Computational Complexity 10.3 (2001), pp. 247–259.

[MS05] Dieter van Melkebeek and Rahul Santhanam. “Holographic proofs and
derandomization”. In: SIAM Journal of Computing 35.1 (2005), pp. 59–90.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. randomness”. In: Journal
of Computer and System Sciences 49.2 (1994), pp. 149–167.

[OS17] Igor C. Oliveira and Rahul Santhanam. “Pseudodeterministic construc-
tions in subexponential time”. In: Proc. 49th Annual ACM Symposium on
Theory of Computing (STOC). 2017, pp. 665–677.

[San09] Rahul Santhanam. “Circuit lower bounds for Merlin-Arthur classes”. In:
SIAM Journal of Computing 39.3 (2009), pp. 1038–1061.

[Sha10] Ronen Shaltiel. “Typically-Correct Derandomization”. In: SIGACT News
41.2 (2010), 57–72.

[Sha11] Ronen Shaltiel. “Weak derandomization of weak algorithms: explicit ver-
sions of Yao’s lemma”. In: Computational Complexity 20.1 (2011), pp. 87–
143.

[Sho90] Victor Shoup. “New algorithms for finding irreducible polynomials over
finite fields”. In: Mathematics of Computation 54.189 (1990), pp. 435–447.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

47

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudorandom generator”. In: Journal of the ACM
52.2 (2005), pp. 172–216.

[SU07] Ronen Shaltiel and Christopher Umans. “Low-end uniform hardness vs.
randomness tradeoffs for AM”. In: Proc. 39th Annual ACM Symposium on
Theory of Computing (STOC). 2007, pp. 430–439.

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness
of Approximation Problems. Vol. 1001. Lecture Notes in Computer Science.
Springer, 1995. isbn: 3-540-60615-7.

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of
recent results and open questions”. In: Found. Trends Theor. Comput. Sci.
5.3-4 (2010), pp. 207–388.

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case
Complexity Via Uniform Reductions”. In: Computational Complexity 16.4
(2007), pp. 331–364.

[Uma03] Christopher Umans. “Pseudo-random generators for all hardnesses”. In:
Journal of Computer and System Sciences 67.2 (2003), pp. 419–440.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[VSB+83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. “Fast parallel com-
putation of polynomials using few processors”. In: SIAM Journal of Com-
puting 12.4 (1983), pp. 641–644.

[Wil18] Virginia Vassilevska Williams. “On some fine-grained questions in algo-
rithms and complexity”. In: Proc. of the International Congress of Mathematicians—
Rio de Janeiro 2018. Vol. IV. Invited lectures. 2018, pp. 3447–3487.

A Preserving strong hardness using tolerant instance checkers

In this appendix we prove several technical results asserting that if a function f is
hard, and is reducible to another function f̄ , then f̄ is also hard. Of course, such a
statement is trivial, but our goal is to preserve strong notions of hardness, such as
hardness on almost all input lengths and hardness on average-case inputs. Moreover, we
will sometimes define f̄ using error-correcting codes, and claim stronger average-case
hardness for f̄ , compared to f . We prove claims of this form for several different
settings, and in all settings we rely on the existence of instance checkers or of tolerant
instance checkers either for f or for f̄ .

The proofs in this appendix follow standard technical ideas. However, in some
cases we will apply these ideas to new notions, such as strongly tolerant instance
checkers, and in all cases fleshing out the technical details is a bit tedious.

A.1 Reducing to an instance-checkable problem

In our first setting we start from a hard problem L(0), reduce it to an instance-checkable
problem L, and argue that L is hard on almost all input lengths. That is:

Lemma A.1 (preserving hardness on all input lengths under reductions using an
instance checker). Fix time-computable increasing functions T, t : N → N. Let L(0) /∈

48

i.o.BPT IME [T], and let L such that L(0) is reducible in linear time to L via a reduc-
tion that maps inputs of length n to inputs of length c · n, where c > 1 is a constant.
Further assume that L has a same-length instance-checker whose running time is t. Then,
for S = {c · n0 : n0 ∈N}, the natural S-extension of L is not in i.o.BPT IME [T′], for
T′(n) = T(n/2c)/Õ(t(n)).

Proof. Let L̄ be the natural S-extension of L. Assuming towards a contradiction that
L̄ ∈ i.o.BPT IME [T′], we show that L(0) ∈ i.o.BPT IME [T]. Let M′ be a proba-
bilistic T′-time machine and let S′ ⊆N be an infinite set of input lengths on which M′

solves L̄. For every n ∈ S, denote In = [n, n + c), and observe that for every n′ ∈ S′

there exists n ∈ S such that n′ ∈ In. Therefore, there are infinitely many n ∈ S such
that In ∩ S′ 6= ∅.

We define M that solves L(0) infinitely often as follows. The machine gets input
x0 ∈ {0, 1}n0 , and we assume that n0 is such that In ∩ S′ 6= ∅, where n = c · n0 (we
do not attempt to prove correctness of M on inputs not of such lengths). The machine
applies the linear-time reduction of deciding L(0) at x0 to deciding L at x ∈ {0, 1}n,
and for i = 0, ..., c− 1 it runs the instance checker on input x. In iteration i, it answers
each query qj ∈ {0, 1}n of the instance checker by running M′ on input qj0i. Moreover,
whenever the machine simulates each of the two algorithms (i.e., M′ and the instance
checker), it repeat the algorithm for O(log(t)) times to reduce the error to 1/O(t(n)).43

It returns an answer σ ∈ {0, 1} if the answers of the instance checker on all inputs are
in the set {σ,⊥}, and otherwise we return ⊥.

With high probability, for every i ∈ {0, ..., c− 1} it holds that the answer of the
instance checker is in {L(x),⊥}; and for i such that n + i ∈ (In ∩ S′), all queries of
the instance checker to M′ were answered by L, in which case the instance checker
outputs L(x) = L(0)(x0). The running time of the algorithm for L(0) on input length
n0 is

polylog(t(n)) · (t(n + c) · T′(n + c) ≤ Õ(t(2c · n0)) · T′(2c · n0) ,

which is at most T(n0), yielding a contradiction.

The foregoing claim referred to worst-case hardness, and we now prove a similar
claim that refers to mild average-case hardness. That is, we assume that every efficient
algorithm for L(0) errs on at least (say) 1% of the inputs, and deduce that efficient
every algorithm for L also errs on 1% of inputs. To obtain this conclusion we rely on
the stronger assumption that L has a tolerant instance checker, and in fact a strongly
tolerant instance checker (see Definitions 3.12 and 3.13).

For our application in Section 6 it will be more convenient to prove this claim refer-
ring to the particular parameter setting of polynomial-time algorithms and polynomial-
time reductions, and replace languages with functions that have multiple output bits.

Lemma A.2 (preserving mild average-case hardness on all input lengths under reduc-
tions using a strongly tolerant instance checker). For every three constants c1, c2, c3 ≥ 1
and non-increasing δ, µ : N→ (0, 1) the following holds. Let L(0) /∈ i.o.-avg(1−δ)-BPT IME [nc1],
and let f : {0, 1}∗ → {0, 1}∗ such that:

1. Deciding L(0) is reducible in linear time to computing f via an input-extending reduction
that maps inputs of length n to inputs of length c3 · n.

43To be more accurate, we run the instance checker for O(log t) times and output a value σ ∈ {0, 1}
only if all runs yielded the value σ; and we run M′ for O(log t) times and output the majority value.

49

2. The function f has an `-strongly µ-tolerant same-length instance checker with running
time nc2 , where `(n) = n/c3.

Then, for S = {c3 · n0 : n0 ∈N}, the natural S-extension of f is not in i.o.-avg(1−δ′)-BPT IME [nc],
where δ′ = (µ/10) · δ and c = c1 − c2 − 1.

Furthermore, the conclusion holds with c = c1− c2− 2 if we replace the hypothesis “L(0) /∈
i.o.-avg(1−δ)-BPT IME [nc1]” by the following assumption: For some `(n) ≤ polylog(n)
such that `(n + 1) ≤ `(n) + 1, for every probabilistic algorithm A that runs in time nc1

on inputs of length n · `(n) and every sufficiently large n ∈ N, the probability over x ∈
{0, 1}n·`(n) that Pr[A(x) = L(0)(x)] ≥ 2/3 is less than 1− δ(n).

Proof. We first prove the main part of the claim and then explain how to extend the
proof to demonstrate the “furthermore” part. Let f̄ be the natural S-extension of f , let
M′ be a probabilistic nc-time machine and let S′ ⊆ N be an infinite set such that for
every n ∈ S′ it holds that M′ computes f̄ on 1− δ′(n) of the n-bit inputs. Also, for
every n ∈ S denote In = [n, n+ c3]. We will use the fact that every integer (in particular,
every integer in S′) is contained in In for some n ∈ S (since c3 · (n0 + 1)− c3 · n = c3).

We use M′ to construct a machine M for L0 as follows. For n0 and n = c3 · n0
such that In ∩ S′ 6= ∅, the machine M for L(0) gets input x0 ∈ {0, 1}n0 , reduces the
problem to computing f on x ∈ {0, 1}n, and for i = 0, ..., c3 − 1 it runs the tolerant
instance checker for f on input x, while answering its queries as follows. It first
chooses uniformly at random a string ui ∈ {0, 1}i; then, given any query qj ∈ {0, 1}n,
it simulates machine M′ on input qjui. (Note that the same string ui is reused for
all queries qj in iteration i.) Again the machine uses naive error reduction for all
algorithms, with O(log n) repetitions, to yield error 1/poly(n). If for some i the output
of the instance checker was σ ∈ {0, 1}∗ then M outputs the decision for x0 that is
obtained when f (x) = σ; otherwise, it outputs some default value (say, 0).

The running time of M is less than

Oc3((n + c3)
c2 · (n + c3)

c · polylog(n)) < (n0)
c2+c+1 = (n0)

c1 ,

relying on our choice of c = c1 − c2 − 1. Also, with high probability all the outputs
of the instance checker will be in the set { f (x),⊥} (this is just as in the proof of
Lemma A.1, relying on the soundness of the instance checker).

Now, let i such that n′ = n + i ∈ (In ∩ S′). On inputs of length n′ = n + i, the
machine M′ computes f̄ correctly on 1 − δ′(n′) of the inputs. For any fixed x0 ∈
{0, 1}n0 , let

p(x0) = Pr
y∈{0,1}n−n0 ,ui∈{0,1}i

[
M′(x0yui) 6= f̄ (x0yui)

]
= Pr

y∈{0,1}n−n0 ,ui∈{0,1}i

[
M′(x0yui) 6= f (x0y)

]
= Pr

y∈{0,1}n−n0 ,ui∈{0,1}i

[
Red(M′(x0yui)) 6= L(0)(x0)

]
,

where Red is the function implicit in the reduction of L(0) to f (i.e., Red(f (x0y)) =
L(0)(x0)).

Since Ex0∈{0,1}n0 [p(x0)] ≤ δ′(n′), the probability over x0 that p(x0) ≥ 1/10µ(n)
is at most (10/µ) · δ′(n′). For any x0 in the set X0 = {x0 : p(x0) < 1/10µ(n)}, the
probability over ui ∈ {0, 1}i that Pry∈{0,1}n−n0 [M′(x0yui) 6= f (x0y)] > µ(n) is at most
1/10.

50

Thus, for any x0 ∈ X0, when machine M′ gets input x0, with probability at
least 9/10 over ui ∈ {0, 1}i, the strongly tolerant instance checker gets access to a
function A(q) = M′(qui) that agrees with f on 1 − µ(n) of the inputs of the form
q = x0y ∈ {0, 1}n0 × {0, 1}n−n0 . Whenever this happens, with high probability the in-
stance checker outputs f (x0y), in which case Red(M′(x0yui)) = L(0)(x0). Thus, there
is a set X0 of density

1− (10/µ(n)) · δ′(n′) = 1− (10/µ(n)) · (δ(n′) · µ(n′)/10) > 1− δ(n0)

such that for every x0 ∈ X0, with high probability M′ computes L(0)(x0) in time nc1 , a
contradiction.

The “furthermore” part. We explain the necessary changes in the proof above. First,
for every n ∈N we define In = {n, n + 1, ..., 2n}, and observe that:

Fact A.2.1. For any sufficiently large n′ ∈ N there exists m ∈ N such that n′ ∈ In, where
n = c3 ·m · `(m).

Proof. We argue that the interval-set {In : n = c3 ·m · `(m)}m∈N covers all but finitely
many integers. To see this, let n = c3 ·m · `(m) and let n′ = c3 · (m + 1) · `(m + 1), for
a large enough m ∈N. Then,

n′ = c3 · (m + 1) · `(m + 1)
= c3 ·m · `(m + 1) + c3 · `(m + 1)
< c3 ·m · (`(m) + 1) + c3 · (`(m) + 1)
< 2c3 ·m · `(m) ,

which equals 2n. �

It follows that if there is an infinite set S′ ⊆ N such that for every n ∈ S′ it holds
that M computes f̄ on 1− δ′(n) of the n-bit inputs, then there exist infinitely many
m ∈N such that In ∩ S′ 6= ∅, where n = c3 ·m · `(m).

The construction of the machine M is essentially identical to the one above, except
that it tries all integers i ∈ {0, ..., n− 1} rather than i ∈ {0, ..., c3 − 1}. For every
n0 = m · `(m) such that In ∩ S′ 6= ∅ it succeeds in computing L(0) on more than
1− δ(n0) > 1− δ(m) of the n0-bit inputs, and its running time is at most

n · (2n)c2 · (2n)c · polylog(n) < Õ(nc2+c+1) < mc1 ,

relying on the choice of c = c1 − c2 − 2.

A.2 Reducing from an instance-checkable problem to an encoded problem

In our second setting we start from a hard problem L(1) that is instance checkable,
encode its truth-tables by a locally list-decodable code Enc to obtain a problem L, and
argue that L is hard on average on almost all input lengths. In more detail:

Definition A.3 (encoded language). Let L ⊆ {0, 1}∗ and let Enc : {0, 1}∗ → {0, 1}∗ be a
function such that for some polynomial p it holds that |Enc(f)| = 2p(log(| f |)). We define the
function Enc(L) as follows:

51

1. For every n ∈ N let fn be the truth-table of L on n-bit inputs, and let f̄n = Enc(fn).
Then, the truth-table of Enc(L) on inputs of length p(n) is f̄n.

2. For every m /∈ {p(n) : n ∈N} the function Enc(L) maps all m-bit strings to 0.

Lemma A.4 (amplifying hardness on all input lengths using codes and an instance
checker). Fix time-computable increasing functions T, t, d : N→N and ρ : N→ (0, 1). Let
L(1) /∈ i.o.BPT IME [T] be a problem that is same-length instance-checkable in time t, let
Enc be a systematic code that maps strings of length 2n to strings of length 2c·n for some con-
stant c, and that is locally list-decodable from agreement ρ(n) in time d and with output-list
size `, where ` is an increasing function. Let L = Enc(L(1)) and S = {c · n : n ∈N}. Then,
the natural S-extension of L is not in i.o.-avgρ′-BPT IME [T′], where T′ = T(n/2c)/Õ(t(n) ·
d(n/2c) · `(n/2c)) and ρ′(n) = ρ(bn/cc).

Proof. Let L̄ be the natural S-extension of L, and assume towards a contradiction
that L̄ ∈ i.o.-avgρ′-BPT IME [T′]. Let M′ be a probabilistic T′-time machine and let
S′ ⊆ N be an infinite set of input lengths on which M′ solves L̄ with average-case
success ρ′. As in the proof of Lemma A.1, there are infinitely many n ∈ S such that
In ∩ S′ 6= ∅, where In = [n, n + c).

We define M that solves L(1) infinitely often as follows. The machine M gets input
x0 ∈ {0, 1}n0 , and we assume that n0 is such that Ic·n0 ∩ S′ 6= ∅. Let Red be the
linear-time reduction of deciding L(1) at inputs of length n0 to deciding L at inputs
of length n = c · n0 (such a reduction exists because the code is systematic). We
run the instance checker for Oc(`) times with input x0, and in iteration (i, a, r) ∈
{0, ..., c− 1} × [`]× {0, 1}i we give it access to an oracle that is simulated as follows.

The oracle is given query q ∈ {0, 1}n0 , and it computes q′ = Red(q). It then runs
the local list-decoder Dec with input q′, with index a ∈ [`], and with oracle access to
the following function: Whenever Dec queries z ∈ {0, 1}n, the oracle answers M′(zr).

The machine M returns answer σ ∈ {0, 1} if and only if for some (i, a, r) the
instance checker outputs σ, and for all (i′, a′, r′) 6= (i, a, r) the instance checker outputs
a value in {⊥, σ}. Otherwise, the machine M outputs ⊥.

Analysis. Without loss of generality (using naive error reduction) we assume that
the errors of the instance checker and of Dec and of M are less than 1

O(t(n0)·d(2n)·`) , and
let us condition on the high-probability event in which all executions of these three
algorithms are correct.

By our assumption, for some i ∈ {0, ..., c− 1} it holds that M′ computes L̄ on at
least ρ = ρ(n0) of the inputs of length n + i. Thus, for some r ∈ {0, 1}i it holds that
Prz[M′(zr) = L(z)] ≥ ρ. It follows that there exists a such that when Dec gets index a
and oracle access to the function z 7→ M′(zr) it computes L̄ on inputs of length n + i;
that is, on query q′ = Red(q) it returns L(1)(q). For the corresponding invocation of
the instance checker, it will output the correct answer. Also, for all other invocations,
it will output either the correct answer or ⊥.

The running time of M is:

polylog(d(2n), t(n0), `(2n)) · t(n0) · d(c · n0 + c) · T′(c · n0 + c)

≤ Õ(t(n0) · d(2c · n0) · `(2c · n0)) · T′(2c · n0)

which is at most T(n0), a contradiction.

52

The next claim is of the same spirit as Lemma A.4, but refers to an inherently
different parameter setting. Specifically, we start from a function f that is mildly hard
on average on almost all input lengths, and argue that a direct-product encoding f⊗k

of f is very hard on average on almost all input length. The assumption that we will
use is that f has a tolerant instance checker, which implies that f⊗k has a tolerant
instance checker tolerating more corruption (see Claim 3.12.1).

Lemma A.5 (amplifying average-case hardness on all input lengths using a direct prod-
uct and an instance checker). For every c1, c2, c3, c4 ≥ 1 there exists a function k(n) =
Θ(log(nc3·c4) · n3c3) such that following holds. Let f /∈ i.o.-avg(1−n−c3)-BPT IME [nc1] that
has a (n−3c3 , 10n−3c3)-tolerant same-length instance checker with running time nc2 , and let
f⊗k be the k-wise direct product of f . Then, for S = {k · n0 : n0 ∈ N}, the natural S-extension
of f⊗k is not in i.o.-avgn−c4 -BPT IME [nc], where c = α · c1

c2·c3·c4
for a universal constant

α > 0.

Proof. Let f̄ be the natural S-extension of f⊗k, and assume that there exists an algo-
rithm A running in time Nc on inputs of length N and an infinite set S ⊆N such that
for every N ∈ S it holds that Prz∈{0,1}N [A(z) = f̄ (z)] ≥ N−c4 .

The proof is based on two main claims. The first claim is that we can use the
success of A on infinitely many input lengths of arbitrary form to obtain an algorithm
that succeeds on infinitely many input lengths of the form k · n; this relies on the
existence of a tolerant instance checker for f , which yields a tolerant instance checker
for f⊗. In more detail:

Claim A.5.1. There exists a universal constant C′ > 1 and a probabilistic algorithm A′ that
runs in time nC′·c2·c3·c4·c on inputs of length k · n and an infinite set S′ ⊆N such that for every
n ∈ S′, the probability over x1, ..., xk ∈ ({0, 1}n)k that Pr[A′(x1, ..., xk) = f⊗k(x1, ..., xk)] ≥
2/3 is at least n−C′·c3·c4 .

Proof. By Claim 3.12.1 with parameter values ε = n−(3c3+2)·(c4+1) and δ = n−3c3 and
δ′ = 10n−3c3 , and relying on a sufficiently large choice of k = Ω(log(1/ε)/δ), the
problem f⊗k has a (1− ε, 1− ε′)-tolerant instance checker that runs in time at most
nC·c2·c3·c4 , where

ε′ = (1− 200n−3c3)k = (1− 200n−3c3)Θ(log(nc3 ·c4)·n3c3) = n−C·c3·c4 ,

and C > 1 is a sufficiently large universal constant.
Let M′ be the tolerant instance checker for f⊗k above, and for every n ∈ N let

In = {k · n, k · n + 1, ..., k · n + k− 1}. The algorithm A′ gets input z ∈ {0, 1}k·n, and we
assume that n is such that In ∩ S′ 6= ∅. Then, it repeats the following procedure for
t = O(Nc4+2/ε′) times:

Interval Attempt: For i = 0, ..., k− 1, simulate M′ with input z while answer-
ing the queries of M′ as follows. First choose a random string ui ∈ {0, 1}i

(which will be used for all queries in simulation i), and given any query
q ∈ {0, 1}k·n, run the algorithm A on input qui and return its output as
answer to M′. If for some i the instance checker outputs σ ∈ {0, 1}∗ (rather
than ⊥), abort and output σ; otherwise, continue.

If in all t repetitions of the Interval Attempt procedure above, the algorithm did not
abort (i.e., in each interval attempt and for each i ∈ [k] the instance checker returned
⊥), the algorithm A′ returns some default value (say, 0).

53

We assume that the error of M′ is reduced to 2−n (by naive error reduction for O(n)
times). Thus, with high probability all the outputs of M′ will be in the set

{
f⊗k(z),⊥

}
.

Now, let i ∈ {0, ..., k− 1} such that N = k · n + i ∈ S. By our assumption it holds that
Prz′∈{0,1}N [A(z′) = f̄ (z′)] ≥ N−c4 . We think of z′ ∈ {0, 1}N as z′ = (q, ui) where
|q| = |z| = k · n and |ui| = i, and note that with probability at least N−c4−1 over
choice of ui ∈ {0, 1}i it holds that Prq[A(qui) = f̄ (qui)] ≥ N−c4−1. In this case, the
function Oui(q) = A(qui) agrees with f⊗k on more than ε of the inputs,44 and hence
there exists a set Sui ⊆ {0, 1}k·n of density ε′ such that for every z ∈ Sui we have that
Pr[(M′)Oui (z) = f⊗k(z)] ≥ 2/3. We call such choice of ui good.

Now, consider a random choice of z ∈ {0, 1}k·n and of ui ∈ {0, 1}i and of coins for
M′. Then, we have that

Ez

[
Pr

ui , coins for M′

[
(M′)Oui (z) = f⊗k(z)

]]
= Pr

z,ui , coins for M′

[
(M′)Oui (z) = f⊗k(z)

]
≥ Pr

z,ui
[ui good∧ z ∈ Sii] · Pr

z,ui , coins for M′

[
(M′)Oui (z) = f⊗k(z)|ui good∧ z ∈ Sii

]
≥ N−c4−1 · ε′ ,

and hence there exists a set Z ⊆ {0, 1}k·n of density N−c4−2 · ε′ such that for each
z ∈ Z it holds that Prui , coins for M′

[
(M′)Oui (z) = f⊗k(z)

]
≥ N−c4−2 · ε′. By our choice

of t = O(Nc4+2 · ε′), given any such z, with high probability A′ outputs f⊗k.
The running time of A′ is at most

t · k · nc2+1 · Nc ≤ O
(
(k · n)c4+2 · nC·c3·c4 · k · nc2+1 · (k · n)c

)
≤ Õ

(
n(c3+1)·(c4+2) · nC·c3·c4 · nc3 · nc2+1 · nc·(c3+1)

)
< nC′·c2·c3·c4·c

where C′ > C is a sufficiently large universal constant. �

The second main claim is that we can use an algorithm that computes f⊗k on
infinitely many input lengths of the form k · n to obtain an algorithm that computes f
on infinitely many input lengths. The proof combines the instance checker for f with
the approximate local decoder from Theorem 3.10.

Claim A.5.2. There exists a universal constant C′′ > 1 and a probabilistic algorithm A′′

that runs in time nC′′·c2·c3·c4·c and an infinite set S′′ ⊆ N such that for every n ∈ S′′, with
probability at least 1− n−c3 over x ∈ {0, 1}n it holds that Pr[A′′(x) = f (x)] ≥ 2/3.

Proof. Let δ = n−3c3 and ε = n−2C′·c3·c4 , and let M be the (δ, 10δ)-tolerant instance
checker for f . Given input x ∈ {0, 1}n, the algorithm A′′ repeats the following proce-
dure for t = Θ(log(1/δ)/ε2) times:

1. Choose a random string ui of length nC′·c2·c3·c4·c, and let Oui : {0, 1}k·n → {0, 1}∗
such that Oui(z) is the output of A′ on z when the random coins of A′ are fixed
to be ui.

44Since ε = n−(3c3+2)·(c4+1) whereas N < (n + 1) · k < n3c3+2, which implies that ε < N−c4−1.

54

2. Consider Theorem 3.10, instantiated with parameter values k, ε, δ (note that our
choice of k is indeed sufficiently large). Run the NC0 decoder with oracle access
to Oui to obtain a circuit Cui of size poly(n, k, log(1/δ), ε) with oracle gates to
Oui , and hard-wire Oui in place of these oracle gates.

3. Run M on input x, its error reduced to 2−n, while answering its queries according
using Cui . If M outputs a value σ ∈ {0, 1}∗ different than ⊥, output σ and abort.

If M outputs ⊥ in all t attempts M, the algorithm A′′ outputs the default value 0.
Turning to the analysis, observe that with high probability, the instance checker M

will only output values in the set { f (x),⊥}; thus, we only need to prove that with
high probability, in some iteration M will output f (x).

By the properties of A′ we have that Prx1,...,xk , coins for A′ [A′(x1, ..., xk) = f⊗k] ≥
(2/3) · n−C′·c3·c4 = (2/3) ·

√
ε > 2ε. Hence, with probability at least ε over choice

of random coins ui for A′ it holds that Pr[Oui(z) = f⊗z] ≥ ε. Whenever this hap-
pens, by Theorem 3.10, with probability Ω(ε) over random coins ri for the NC0 de-
coder it holds that Prq∈{0,1}n [Cui(x) = f (x)] ≥ 1 − δ. Denote by Ei the event that
Prq∈{0,1}n [Cui(x) = f (x)] ≥ 1− δ (this event depends on ri and ui); whenever Ei hap-
pens, by the properties of M, there exists a set Xui ⊆ {0, 1}n of density at least 1− 10δ
such that for every x ∈ Xui it holds that Pr[MCui (x) = f (x)] ≥ 2/3.

Since t = Θ(log(1/δ)/ε2), the probability that Ei happens for some i ∈ [t] is at least
1− δ. Thus, the probability over x ∈ {0, 1}n and (ui, ri)i∈[t] that Pr[MCui (x) = f (x)] ≥
2/3 for some i is at least 1− 2δ. It follows that there exists a set X0 ⊆ {0, 1}n of density
1−
√

2δ such that for every x ∈ X0, with probability at least 1−
√

2δ > 1− n−c3 over
(ui, ri)i∈[t] it holds that Pr[MCui (x) = f (x)] ≥ 2/3 for some i.

For every x ∈ X0, with probability at least 0.6 the algorithm A′′ outputs f (x)
(where the difference between 2/3 and 0.6 accounts for conditioning on the fact that
M outputs values in {⊥, f (x)} in all iterations, and on the probability 1−

√
2δ over

(ui, ri)i∈[t]). We can increase the probability of success to 2/3 by naive error-reduction.
The running time of A′′ is

t · poly(n, k, log(1/δ)) · nC′·c2·c3·c4·c · nc2 < nC′′·c2·c3·c4·c ,

for a sufficiently large universal constant C′′ > 1. �

Setting α = 1/C′′ we have that C′′ · c2 · c3 · c4 · c < c1, and hence the algorithm A′′

above contradicts the hypothesis that f /∈ i.o.-avg(1−n−c3)-BPT IME [nc1].

55
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

