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Abstract

We give the first polynomial-time non-adaptive proper learning algorithm of Boolean sparse
multivariate polynomial under the uniform distribution. Our algorithm, for s-sparse polynomial
over n variables, makes q = (s/ϵ)γ(s,ϵ) log n queries where 2.66 ≤ γ(s, ϵ) ≤ 6.922 and runs in
Õ(n) · poly(s, 1/ϵ) time. We also show that for any ϵ = 1/sO(1) any non-adaptive learning
algorithm must make at least (s/ϵ)Ω(1) log n queries. Therefore, the query complexity of our
algorithm is also polynomial in the optimal query complexity and optimal in n.

1 Introduction

In this paper, we study the non-adaptive learnability of the class of sparse (multivariate) polyno-
mials over GF(2). A polynomial over GF(2) is the sum in GF(2) of monomials, where a monomial
is a product of variables. It is well known that every Boolean function has a unique representation
as a (multilinear) polynomial over GF(2). A Boolean function is called s-sparse polynomial if its
unique polynomial expression contains at most s monomials.

In the learning model [1, 22], the learning algorithm has access to a black-box query oracle to a
function f that is s-sparse polynomial. The goal is to run in poly(n, s, 1/ϵ) time, make poly(n, s, 1/ϵ)
black-box queries and, with probability at least 2/3, learn a Boolean function h that is ϵ-close to
f under the uniform distribution, i.e., Prx[f(x) ̸= h(x)] ≤ ϵ. The learning algorithm is called
proper learning if it outputs a s-sparse polynomial. The learning algorithm is called exact learning
algorithm if ϵ = 0.

In the adaptive learning algorithms, the queries can depend on the answers to the previous
queries, wherein in the non-adaptive learning algorithms, the queries are independent of the answers
to the previous queries.

Adaptive proper and non-proper learning algorithms of s-sparse polynomials that run in polynomial-
time and make a polynomial number of queries have been studied by many authors [2, 4, 5, 6, 9,
12, 14, 13, 16, 17, 20, 21].

Non-adaptive proper and non-proper learning algorithms of s-sparse polynomials have been
studied in [15, 18, 20]. In [18]. Hellerstein and Servedio gave a non-proper learning algorithm that
learns only from random examples under any distribution (PAC-learning without black-box queries,

[22]) that runs in time nO(n log s)1/2 . Roth and Benedek, [15], show that for any s ≥ 2 polynomial-
time proper PAC-learning without black-box queries of s-sparse polynomials implies RP=NP. They
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also gave a non-adaptive proper exact learning (ϵ = 0) algorithm that makes (n/ log s)log s black-box
queries. They also show that to exactly learn s-sparse polynomial, you need at least (n/ log s)log s

black-box queries. See also [15, 16].
To the best of our knowledge, no polynomial-time non-adaptive proper (or non-proper) learning

algorithm is known for s-sparse polynomials. In this paper, we give the first polynomial-time
non-adaptive proper learning algorithm for sparse multivariate polynomial. We prove

Theorem 1. There is a non-adaptive proper learning algorithm for s-sparse polynomial that runs
in polynomial-time and makes (s/ϵ)O(1) log n queries.

In [20], Roth and Benedek show that any deterministic non-adaptive learning algorithm with
ϵ = 1/sO(1) must make at least (s/ϵ)Ω(1) log n queries. We prove the same bound for randomized
algorithms. This shows that our query complexity in Theorem 1 is also polynomial in the optimal
query complexity and optimal in n.

Our paper is organized as follows. In Section 2, we give the technique used for our algorithm in
Theorem 1. In Section 3, we provide some definitions and preliminary results. The learning algo-
rithm is given in Section 4. In Section 5, we give another algorithm that has sublinear complexity
in 1/ϵ when ϵ is “very” small. Then, in Section 6, we give lower and upper bounds for the query
complexity of algorithms with unlimited computational power. Section 7 and the Appendix are
dedicated to two proofs of two lemmas that are needed for the main algorithm.

2 Techniques

In this section, we give a brief overview of the techniques used for the main result, Theorem 1. For
the other results, see Sections 5 and 6.

Our learning algorithm is composed of the following five reductions.
The first reduction reduces the non-adaptive learning of s-sparse polynomials to non-adaptive

exact learning s-sparse polynomials with monomials of size at most d = O(log(s/ϵ)), i.e., degree-
d s-sparse polynomials. Given a s-sparse polynomial f , we assign each variable xi to 0 with

probability1 p = 1−2−Θ(
√

log s/ log(1/ϵ)). In this partial assignment, with high probability, monomial
of size greater than d vanish. Then we learn the resulted functions. We take enough random zero
assignments (partial assignments) so that, with high probability, for each small monomial M of
f , there is an partial assignment q that M does not vanish under q. Collecting all the monomials
of degree at most d in all the resulted functions gives a hypothesis that ϵ-approximate the target
function f .

The second reduction reduces the non-adaptive exact learning of degree-d s-sparse polynomials
to non-adaptive exact learning only the monomials of degree d of the degree-d s-sparse polynomial.
This is done by running all the algorithms that learn the monomials of degree i, i ∈ [d] on the
target f (which is a degree-d s-sparse polynomial). After learning the monomials of degree d in
f , we let g be their sum and then learn the monomials of degree d − 1 in f + g (which are the
monomials of degree d− 1 in f). Then continue the same way with f + g.

The third reduction reduces the non-adaptive exact learning of the monomials of degree d in
the degree-d s-sparse polynomials to exact learning degree-d s-sparse determinant-polynomials. A

1We can also choose a constant p, but this value of p is the one that minimizes the query complexity of the tester.
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degree-d s-sparse determinant-polynomials is a polynomial over the new nd variables {yi,j}i∈[n],j∈[d]
of the form ∑

I∈S
det(Y(I))

where S is a set of d-subsets of [n], |S| = s and for I = {i1, . . . , id} ∈ S, Y(I) is the d×dmatrix where

Y(I)
k,j = yik,j . Notice that the degree-d s-sparse determinant-polynomials is a homogeneous degree-d

(d!s)-sparse polynomial over dn variables. For this reduction, we use the operator ϕd defined in [11]
that changes the degree-d s-sparse polynomial f to degree-d s-sparse determinant-polynomial. This
operator is linear, changes each monomial Πi∈Ixi of degree d in f to det(Y(I)), removes monomials
of degree less than d, and each black-box query to ϕdf can be simulated by 2d = poly(s/ϵ) queries
to f . Obviously, if we can learn S in the degree-d s-sparse determinant-polynomial ϕdf , we can
learn the monomials of degree d of the degree-d s-sparse polynomials f .

Notice that the monomials of degree-d s-sparse determinant-polynomials are of the form yi1,1yi2,2
· · · yid,d. This reduction aims to change the polynomial to a homogeneous polynomial that their
monomials are of the form yi1,1 · · · yid,d, so we can apply the following (fourth) reduction, which
can be applied only to such polynomials.

The fourth reduction uses the simulation in Lemma 1 (see also [11]), which shows that any
black-box query in GF(2t)n to a homogeneous degree-d polynomial f with monomials of the form
yi1,1 · · · yid,d can be simulated in poly(2d, t)Õ(n) = poly(s/ϵ)Õ(n) time by O(21.66dt) = poly(s/ϵ)t
black-box queries in GF(2)n. We will choose t = (d+ 1) log n, which is necessary for applying the
following (fifth) reduction and the final algorithm.

Notice that this reduces exact learning degree-d s-sparse determinant-polynomials with black-
box queries in GF(2)dn to exact learning degree-d s-sparse determinant-polynomials with black-box
queries in GF(2t)dn. There are many non-adaptive learning algorithms of sparse polynomials over
large fields. However, unfortunately, as we said before, degree-d s-sparse determinant-polynomials
are degree-d (d!s)-sparse polynomials and d!s = sΩ(log log s), which makes the time and query com-
plexity of the algorithm super-polynomial. So, we need another reduction to reduce the number of
monomials.

The fifth reduction reduces non-adaptive exact learning degree-d s-sparse determinant-polynomials
with queries in GF(2t)dn to non-adaptive exact learning degree-d s-sparse (multilinear) polynomial
over GF(2t) with queries in GF(2t)n. We simply choose, uniformly at random, dn elements αi,j in
GF(2t) and substitute yi,j = αi,jxi. This changes each det(Y(I)) to the monomial (det Γ(I))

∏
i∈I xi

where for I = {i1, i2, . . . , id}, ΓI
k,j = αik,j . We then argue that whp, det Γ(I) ̸= 0 and, therefore, we

can find all the terms of the determinant-polynomials of the target.
Combining all the above, we reduce non-adaptive learning s-sparse polynomial to non-adaptive

exact learning degree-d s-sparse polynomial with black-box that answer queries in GF(2t)n. Now
we use the algorithm of Ben-Or and Tiwari [3] with some modification to learn degree-d s-sparse
multilinear polynomial over GF(2t) with 2s queries. We show that to use Ben-Or and Tiwari
algorithm, it is enough to have t = (d+ 1) log n. This implies Theorem 1.

The following depicts the above reductions. Here, Ps is the class of s-sparse polynomials, Pd,s

is the class of degree-d s-sparse polynomials, DPd,s is the class of degree-d s-sparse determinant-
polynomials, Pd,s[2

t] is the class of degree-d s-sparse multilinear polynomials over GF(2t) and “qu.
in” is an abbreviation of “queries in”.
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DPd,s qu. in GF(2t)dn −→ Pd,s[2
t] qu. in GF(2t)n

↑
Ps −→ Pd,s −→ Pd,s d-monomials −→ DPd,s qu. in GF(2)dn

3 Definitions and Preliminary Results

We will denote by Ps the class of s-sparse polynomials over the Boolean variables (x1, . . . , xn) and
Pd,s ⊂ Ps, the class of degree-d s-sparse polynomials. For a power of two q, the classes Ps[q] is
the class of s-sparse multilinear polynomials over the field GF(q) and Pd,s[q] ⊂ Ps[q], the class of
degree-d s-sparse multilinear polynomials over GF(q).

Formally, let Sn,≤d = ∪i≤dSn,i, where Sn,i =
(
[n]
i

)
is the set of all i-subsets of [n] = {1, 2, . . . , n}.

The class Pd,s (resp. Pd,s[q]) is the class of all the polynomials of the form∑
I∈S

aI
∏
i∈I

xi

where S ⊆ Sn,≤d, |S| ≤ s and aI = 1 for all I (resp. aI ∈ GF(q)\{0} for all I). The class Ps (resp.
Ps[q]) is Pn,s (resp. Pn,s[q]).

Let {yj,i}i∈[n],j∈[d] be nd variables. A degree-d s-sparse determinant-polynomial is a polynomial
of the form ∑

I∈S
det(Y(I)) (1)

where S ⊆ Sn,d, |S| ≤ s and for I = {i1, . . . , id} ⊆ [n], Y(I) is the d× d matrix where Y(I)
j,k = yj,ik .

We denote by DPd,s the class of degree-d s-sparse determinant-polynomials.
Consider the operator ϕd : Pd,s → DPd,s defined as2

ϕdf =
∑
J⊆[d]

f

∑
j∈J

yj

 (2)

where yj = (yj,1, . . . , yj,n), j ∈ [d]. By Lemma 61 in [10], we have

ϕd

∑
I∈S

∏
i∈I

xi =
∑

I∈S,|I|=d

det(Y(I)).

That is,

1. ϕd removes all the monomials of degree less than d from f .

2. It changes each monomial
∏

i∈I xi with |I| = d to det(Y(I)).

3. Given ϕdf represented as in (1), one can find f in linear time.

4. Every black-box query to ϕdf can be simulated by 2d black-box queries to f .

2In [10] the sum contains (−1)d−|J|. This disappears here since in GF(2), −1 = 1.
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To see 3, notice that any row of Y(I) uniquely gives I and therefore uniquely gives the monomial∏
i∈I xi.
We denote by HPd the set of homogeneous polynomials F (over GF(2)) of degree d over the

variables Y = {yi,j}i∈[n],j∈[d] where each monomial of F is of the form y1,i1y2,i2 · · · yd,id where

{i1, i2, . . . , id} ∈
([n]
d

)
. Obviously, DPd,s ⊂ HPd

The following Lemma shows why we need the operator ϕd. Its proof is in Section 7.

Lemma 1. For any integer power of two t > 1 there is an algorithm that runs in time n ·poly(t, 2d)
and finds N = Õ(21.66d)t polynomial-time computable maps Mi : GF(2t)dn → GF(2)dn, i ∈ [N ],
and elements {αi}i∈[N ] in GF(2t) such that for every β ∈ GF(2t)dn and every F ∈ HPd

F (β) =
N∑
i=1

αiF (Mi(β)).

In particular, if F ∈ DPd then a black-box query in GF(2t)dn to F can be simulated in time
n · poly(N) by N black-box queries in GF(2)dn to F .

In this paper, the representation that is used for elements in the Galois field GF(2t) is GF(2)[w]/
(g(w)) for some irreducible polynomial g ∈ GF(2)[w] of degree t.

4 The Learning Algorithm

In this section, we give the learning algorithm for Ps. Recall the reductions from Section 2.

DPd,s qu. in GF(2t)dn −→ Pd,s[2
t] qu. in GF(2t)n

↑
Ps −→ Pd,s −→ Pd,s d-monomials −→ DPd,s qu. in GF(2)dn

4.1 The Reduction Algorithms

In this subsection, we give the reductions. We will prove a lemma for each reduction.
Let f(x1, . . . , xn) be any Boolean function. A p-zero projection of f is a random function, f(z) =

f(z1, . . . , zn) where each zi is equal to xi with probability p and is equal to 0 with probability 1−p.
The first reduction is Lemma 6 from [13]. The Lemma in [13] is stated for adaptive algorithm. The
same proof holds for non-adaptive algorithms.

Lemma 2 ([13]). (Ps → Pd,s). Let 0 < p < 1, w = (s/ϵ)log(1/p) ln(16s) and

D = log
s

ϵ
+

log s+ log log s+ 6

log(1/p)
.

Suppose there is a non-adaptive proper learning algorithm that exactly learns Pd,s with Q(d, δ)
queries in time T (d, δ) and probability of success at least 1 − δ. Then there is a non-adaptive
proper learning algorithm that learns Ps with O(w · Q(D, 1/(16w)) · log(1/δ)) queries, in time w ·
T (D, 1/(16w)) log(1/δ), probability of success at least 1− δ and accuracy 1− ϵ.

We now give the second reduction.
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Lemma 3. (Pd,s → Pd,s d-monomials) Suppose there is a non-adaptive algorithm that for f ∈ Pd,s

exactly learns the monomials of degree d of f with Q(d, δ) queries in time T (d, δ) and probability
of success at least 1− δ. Then there is a non-adaptive proper exact learning algorithm that learns
Pd,s with

∑d
j=0Q(j, δ/d) queries, time O(d2smaxj Q(j, δ/d)) +

∑d
j=0 T (j, δ/d) and probability of

success at least 1− δ.

Proof. Let f ∈ Pd,s. Let fi be the sum of all the monomials of f of degree i, and si the number
of monomials of fi. Let A(d, δ) be a non-adaptive algorithm that exactly learns the monomials of
degree d of f ∈ Pd,s with Q(d, δ) queries in time T (d, δ) and probability of success at least 1−δ. We
define an algorithm B as follows. First, algorithm B makes all the queries that all A(i, δ/d), i ≤ d,
make. Let Ci be the set of queries that A(i, δ/d) makes, i ≤ d. Then B continues to run A(d, δ/d)
with the answers of the queries in Cd and learns the monomials of degree d of f . Let fd be the
sum of those monomials. Then B continues to run A(d− 1, δ/d) with {(a, f(a)+ fd(a))|a ∈ Cd−1}.
That is, for each query a of A(d − 1, δ/d) we query f to find f(a) and then return the answer
f(a)+fd(a) to A(d−1, δ/d). Since f+fd is the sum of all the monomials of degree at most d−1 of
f , A(d− 1, δ/d) learns the monomials of degree d− 1 of f + fd, which are the monomials of degree
d− 1 of f . At the d− i+ 1-th stage, algorithm B continues to run A(i, δ/d) on

a, f(a) +

d∑
j=i+1

fj(a)

∣∣∣∣∣∣ a ∈ Cd−1


where fj , j ∈ {i + 1, i + 2, · · · , d} is the sum of all the monomials of f of degree j. Since g :=

f+
∑d

j=i+1 fj is of degree i, A(i, δ/d) learns the monomials of degree i of g, which are the monomials
of degree i of f . Notice that all the queries are all made for f , so the algorithm in non-adaptive.

It is clear that B exactly learns f , makes
∑d

j=0Q(j, δ/d) queries, runs in time

O

 d∑
j=0

(
j∑

i=0

si

)
d ·Q(j, δ/d)

+ T (j, δ/d) = O(d2smax
j

Q(j, δ/d)) +
d∑

j=0

T (j, δ/d),

and has probability of success at least 1− δ.

The following is the third reduction.

Lemma 4. (Pd,s d-monomials → DPd,s). Suppose there is a non-adaptive proper exact learning
algorithm that learns DPd,s (with the matrix representation as in (1)) with Q(d, δ) queries in time
T (d, δ) and probability of success at least 1−δ. Then there is a non-adaptive exact learning algorithm
that for f ∈ Pd,s learns the monomials of degree d of f with 2dQ(d, δ) queries in time T (d, δ) +
O(2dQ(d, δ)n) and probability of success at least 1− δ.

Proof. Let A(d, δ) be a non-adaptive proper exact learning algorithm that learns DPd,s with Q(d, δ)
queries in time T (d, δ) and probability of success at least 1 − δ. We define an algorithm B(d, δ)
as follows. Define F = ϕdf ∈ DPd,s and run A(d, δ) to learn F . Recall that ϕd removes all the
monomials of degree less than d from f and changes each monomial

∏
i∈I xi with |I| = d on f to

det(Y(I)). By item 4 in Section 3, every black-box query to F can be simulated by 2d black-box
queries to f . Given F in its matrix representation as in (1), we can find the degree-d monomials
of f . See item 3 in Section 3.
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The following is the fourth reduction.

Lemma 5. (DPd,s queries in GF(2)dt → DPd,s queries in GF(2t)dt). Let t be a power of two.
Suppose there is a non-adaptive proper exact learning algorithm that learns DPd,s with Q(d, δ)
black-box queries in GF(2t)dn, time T (d, δ) and probability of success at least 1− δ. Then there is a
non-adaptive proper exact learning algorithm that learns DPd,s with 21.66dtQ(d, δ) black-box queries
in GF(2)dn, time T (d, δ) + poly(t, 2d)Q(d, δ)n and probability of success at least 1− δ.

Proof. The result follows from Lemma 1.

The following is the fifth reduction.

Lemma 6. (DPd,s queries in GF(2t)dt −→ Pd,s[2
t] queries in GF(2t)n). Let ℓ = ⌈log(2s/δ)/(t −

1)⌉. Suppose there is a non-adaptive proper exact learning algorithm that learns Pd,s[2
t] with Q(d, δ)

queries in GF(2t)n in time T (d, δ) and probability of success at least 1 − δ. Then there is a non-
adaptive proper exact learning algorithm that learns DPd,s with ℓ ·Q(d, δ/(2ℓ)) queries in GF(2t)dn

in time O(ℓdnt) + ℓT (d, δ/(2ℓ)) and probability of success at least 1− δ.

Proof. Let A(d, δ) be a non-adaptive proper exact learning algorithm that learns Pd,s[2
t] with

Q(d, δ) queries in time T (d, δ) and probability of success at least 1−δ. Let F (y1, y2, . . . , yd) ∈ DPd,s

where yj = (yj,1, . . . , yj,n), j ∈ [d]. We define an algorithm B(d, δ) as follows. Algorithm B

uniformly at random chooses dnℓ elements α
(k)
j,i ∈ GF(2t), j ∈ [d], i ∈ [n], and k ∈ [ℓ]. Let

z
(k)
j = (α

(k)
j,1x1, . . . , α

(k)
j,nxn), j ∈ [d], k ∈ [ℓ] and g(k)(x1, . . . , xn) = F (z

(k)
1 , z

(k)
2 , . . . , z

(k)
d ). If F =∑

I∈S det(YI), then

g(k)(x1, . . . , xn) =
∑
I∈S

((
det Γ(k,I)

)∏
i∈I

xi

)
where for I = {i1, . . . , td},

Γ(k,I) =


α
(k)
1,i1

· · · α
(k)
1,id

...
. . .

...

α
(k)
d,i1

· · · α
(k)
d,id

 .

Therefore,
∏

i∈I xi is a monomial of g(k) if and only if

1. det(YI) is a term of F , and

2. det Γ(k,I) ̸= 0.

Now notice that each g(k) is an s-sparse polynomial. Therefore, if we learn the monomials of g(k),
k ∈ [ℓ], then we learn the terms det(YI) of F for which det Γ(k,I) ̸= 0. So, algorithm B runs
A(d, δ/(2ℓ)) to learn all g(k), and from the monomials of all g(k) finds the terms of F .

The probability that B fails to learn all the monomials of F is equal to the probability that

for some term det(YI) of F , there is no k ∈ [ℓ] such that det Γ(I,k) ̸= 0. Since α
(k)
j,i ∈ GF(2t) are

uniformly random, this probability is at most

s

(
1−

(
1− 1

2dt

)(
1− 1

2(d−1)t

)
· · ·
(
1− 1

2t

))ℓ

≤ s

(
1

2dt
+

1

2(d−1)t
+ · · ·+ 1

2t

)ℓ

≤ s

2(t−1)ℓ
≤ δ

2
.
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The probability that A(d, δ/(2ℓ)) fails to learn all g(k) is at most ℓ(δ/(2ℓ)) = δ/2. This completes
the proof.

Now we show

Lemma 7. ( Pd,s[2
t] queries in GF(2t)n). Let t = d′m be an integer where d < d′ = O(d) and

log n < m = O(log n). There is a deterministic non-adaptive proper exact learning algorithm that
learns Pd,s[2

t] with 2s queries in GF(2t)n in time poly(d, s) · Õ(n).

Proof. The result follows from the BCH decoding and the algorithm of Ben-Or and Tiwari [3], with
a small modification. See the details in the Appendix.

4.2 Query and Time Complexity

In this section, we prove,

Theorem 2. Let β > 0 be any real number. There is a non-adaptive proper learning algorithm for
s-sparse polynomial with accuracy parameters ϵ = 1/sβ and confidence parameter δ that makes

q = O

((s
ϵ

)2.66+ 1
β+1

+ 3.262√
β+1

log n log(1/δ)

)
= O

((s
ϵ

)6.922
log n log(1/δ)

)
queries and runs in time Õ(n) · poly(s, 1/ϵ) log(1/δ).

Proof. Denote by ⌈x⌉2 the smallest power-of-two integer that is greater than or equal to x. Notice
that x ≤ ⌈x⌉2 < 2x.

We choose t = ⌈D + 1⌉2⌈log n⌉2 = O(D log n), τ := log(1/p),

D = log
s

ϵ
+

log s+ log log s+ 6

τ
,

and
w =

(s
ϵ

)τ
ln(16s),

where p will be determined later. We only need to know here that for this choice of p, we will
have D = Θ(log(s/ϵ)). By Lemma 7, there is a deterministic non-adaptive proper exact learn-
ing algorithm that learns PD,s[2

t] with Q1(D, δ) = 2s queries over GF(2t) in time T1(D, δ) =
poly(D, s)Õ(n). By Lemma 6, there is a non-adaptive proper exact learning algorithm that learns
DPD,s withQ2(D, δ) = Õ(s) log(1/δ) queries over GF(2t) in time T2(D, δ) = poly(D, s)Õ(n) log(1/δ)
and probability of success at least 1−δ. By Lemma 5, there is a non-adaptive proper exact learning
algorithm that learns DPd,s with

Q3(D, δ) = 21.66DtQ2(D, δ) = Õ

(
s2.66+

1.66
τ

+os(1)

ϵ1.66
log n log(1/δ)

)

queries in time

T3(D, δ) = T2(D, δ) + poly(t, 2D)Q2(d, δ)n = Õ(n)poly(s, 1/ϵ) log(1/δ)
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and probability of success at least 1− δ. By Lemma 4 and 3, there is a non-adaptive exact learning
algorithm that learns PD,s with

Q4(D, δ) = D2DQ3(D, δ/D) = Õ

(
s3.66+

2.66
τ

+os(1)

ϵ2.66
log n log(1/δ)

)

queries in time T4(D, δ) = Õ(n) ·poly(s, 1/ϵ) log(1/δ) and probability of success at least 1−δ. Now,
by Lemma 2, there is a non-adaptive proper learning algorithm that learns Ps with

Q(D, δ) = O(w ·Q4(D, 1/(16w)) log(1/δ)) = Õ

(
s3.66+τ+ 2.66

τ
+os(1)

ϵ2.66+τ
log n log(1/δ)

)
queries in time

T (D, δ) = w · T4(D, 1/(16w)) log(1/δ) = Õ(n) · poly(s, 1/ϵ) log(1/δ),

probability of success at least 1− δ and accuracy 1− ϵ.
For ϵ = 1/sβ we choose3 τ =

√
2.66/(1 + β) and get

Q(D, δ) = O

((s
ϵ

)2.66+ 1
β+1

+ 3.262√
β+1

log n log(1/δ)

)
.

5 The Learning Algorithm for Small ϵ

In this section, we give a more query-efficient learning algorithm for s-sparse polynomials when
ϵ < 1/s0.752 log s. We prove

Theorem 3. Let β > 0 be any real number. There is a non-adaptive proper learning algorithm for
s-sparse polynomials with accuracy parameters ϵ = 1/sβ and confidence parameter δ that makes

q =

(
s log

1

ϵ

)2 log s

sO(log log s) log n log(1/δ) =
(s
ϵ

) 2 log s+2 log β+O(log log s)
β+1

log n log(1/δ)

queries and runs in time Õ(qsn).

5.1 Technique

We will use the following result from [20]. See also [15].

Lemma 8. Let Un,s be the set of all the assignments in {0, 1}n of Hamming weight at least n −
⌊log s⌋−1. There is a non-adaptive exact learning algorithm for Ps that makes the black-box queries
in Un,s and runs in time sn(en/ log s)log s+1.

In particular,

1. Let f, g ∈ Ps be two distinct s-sparse polynomials. There is a ∈ Un,s such that f(a) ̸= g(a).

3This choice of τ minimizes the query complexity of the algorthm.
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2. If f ∈ Ps depends on the variable xi then there are two assignments a, b ∈ Un,s that differ
only in the ith coordinate and f(a) ̸= f(b).

The above lemma follows from the fact that if f is of size s > 1, then there is i ∈ [n] such that
f = f1xi + f2 and f2 ̸≡ 0. Then either4 f2 = fxi←0 is of size ⌊s/2⌋, or f1 = fxi←0 + fxi←1 is of size
⌊s/2⌋. See [20].

Item 2 follows from applying item 1 to f(x) and g(x) = f(1, x2, . . . , xn).
In the first stage of our algorithm, we set each variable to 0 with probability 1− 1/O(log(s/ϵ)).

This assignment removes monomials of size D > Ω((log s)(log(s/ϵ)). By Lemma 2, to be able to
collect all the monomials of size at most log(s/ϵ) of f , it is enough to take O(log s) such assignments.
This reduced the non-adaptive learning of s-sparse polynomials to non-adaptive learning degree-d
s-sparse polynomials, where d = O((log s)(log s/ϵ)).

Now, let g be a degree-d s-sparse polynomial where d = O((log s)(log s/ϵ)). The function g(x)
depends on at most v = sd = O(s log s log(s/ϵ)) variables. We, uniformly at random, assign the
n variables of g into w = O(v2) new variables Y = {y1, y2, . . . , yw}. Let h(y) be the resulted
function. With high probability, different relevant variables in g are assigned to different variables
in Y . Now, assuming this event occurs, we run two algorithms. The first one learns h(y) by the
algorithm in Lemma 8. This takes |Uw,s| ≤ (ew/ log s)log s = (s log(1/ϵ))O(log s) queries. The second
algorithm uses item 2 in Lemma 8 to find the relevant variable in g(x) corresponding to each yi
(if any). To achieve that, for every two assignments in Uw,s that differ in one coordinate, say i,
we non-adaptively search for the relevant variable among all the variables that are assigned to yi.
Each search takes O(log n). This algorithm takes w|Uw,s| log n = (s log(1/ϵ))O(log s) log n queries.
This proves the Theorem.

5.2 The Algorithm

In this section, we give the algorithm and prove its correctness.
By Lemma 2 with log(1/p) = 1/ log(s/ϵ), we have

Lemma 9. (Ps → Pd,s). Let w = 2 ln(16s). Suppose there is a non-adaptive proper learning
algorithm that exactly learns Pd,s with Q(d, δ) queries in time T (d, δ) and probability of success
at least 1 − δ. Then there is a non-adaptive proper learning algorithm that learns Ps with O(w ·
Q(D, 1/(16w)) log(1/δ)) queries where

D =
(
log

s

ϵ

)
(log s+ log log s+ 7),

in time w · T (D, 1/(16w)) log(1/δ), probability of success at least 1− δ and accuracy 1− ϵ.

The following is trivial,

Lemma 10. There is a non-adaptive exact proper learning algorithm for C = {0, 1, x1, . . . , xn, x̄1,
. . . , x̄n} that makes log n+O(1) queries and runs in time O(n log n).

We now prove

Lemma 11. There is a proper exact learning algorithm for Pd,s with probability of success at least
1− δ that makes q = O(d(2e(ds)2/ log s)log s log n log(1/δ)) queries and runs in time O(qn).

4fxi←0 is f when we substitute 0 in xi.
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Proof. The algorithm draws uniformly at random a map ϕ : [n] → [m] where m = (2ds)2, and de-
fines F (x1, . . . , xm) = f(xϕ(1), . . . , xϕ(n)) and then exactly learns F using the algorithm in Lemma 8.
Then, for every i ∈ [m] and every a, b ∈ Um,s that differ in the ith coordinate, it learns, using the
algorithm in Lemma 10, f(π(i,a)) where

π
(i,a)
j =

{
aϕ(j) ϕ(j) ̸= i

xj ϕ(j) = i
.

Then the algorithm returns F (y1, . . . , ym) where yi = xj if there is a ∈ Um,s such that f(π(i,a)) ∈
{xj , x̄j} and yi = 0 otherwise.

We now prove the correctness of the algorithm. Let xr1 , . . . , xrℓ , ℓ ≤ ds, be the relevant variables
of f . The probability that ϕ(r1), . . . , ϕ(rℓ) are distinct is at least (1− 1/m)(1− 2/m) · · · (1− (ℓ−
1)/m) ≥ 7/8. We now assume that this event occurs. In particular, xϕ(r1), . . . , xϕ(rℓ) are the
relevant variables of F .

Let ϕ(ri) = ti. Let a, b ∈ Um,s be two assignments that differ in the ti-th coordinate and F (a) ̸=
F (b). Then f(π(ti,a)) is a non-constant function, and since ϕ(ri) = ti, we have f(π

(ti,a)) ∈ {xri , x̄ri}.
Therefore, yϕ(ri) = yti = xri and F (y1, . . . , ym) = f(yϕ(1), . . . , yϕ(n)) = f .

The query complexity of the algorithm is |Um,s| = (em/ log s)log s for learning F and d|Um,s| =
d(em/ log s)log s log n for learning all f(π(i,a)). This algorithm has a success probability of at least
7/8. Repeating the algorithm O(log(1/δ)) times gives the result.

We are now ready to prove Theorem 3.

Proof. We first run the algorithm in Lemma 9. Then for each projection runs the algorithm in
Lemma 11 with d = D. This gives the query complexity in the Theorem.

6 Upper and Lower Bounds

In this section, we prove lower and upper bounds for learning sparse polynomials with unlimited
computational power.

As we have seen in the previous sections, for constant confidence δ, the query complexity of the
learning algorithms for ϵ = 1/sβ is of the form (s/ϵ)γ

′
log n. In this section, we will study learning

algorithms with query complexity (s
ϵ

)γ(β)
log n.

We denote by Γ(β) = minA γ(β) the minimal possible value of γ(β) among all the learning algo-
rithms A of s-sparse polynomials with unlimited computational power. Formally,

Γ(β) = min
A

lim
n→∞

log(q(A)/ log n)

log(s/ϵ)
.

In particular, we may assume that s and 1/ϵ are arbitrary small compared to n.
By Theorem 2 and 3, we already know the following bounds

Γ(β) ≤


2.66 + 3.262√

β+1
+ 1

β+1 β < 0.752 log s

2 log s+2 log β+O(log log s)
β+1 β ≥ 0.752 log s

11



In this section, we prove the upper bound Γ(β) ≤ 1 + min(1, β)/(β + 1). The above bounds
gives the upper bound

Γ(β) ≤



1 + β
β+1 β < 1

1 + 1
β+1 1 ≤ β < 4.923

log β
β+1 +Θ

(
1
β

)
β ≥ 4.923

. (3)

The exact bound when β ≥ 4.923 is

Γ(β) ≤ min
0.801<η<0.847

η + 1

β + 1
+
(
1 + η−1

)
H2

(
1

(β + 1)(1 + η−1)

)
,

whereH2(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function. In particular, Γ(β) ≤ 1.5
for all β and Γ(β) → 0 as β → 0.

We then prove the lower bound,

Γ(β) ≥



1
β+1 0 < β < 0.441

0.694 0.441 ≤ β < 2.548

log β
β+1 +Θ

(
1
β

)
β ≥ 2.548

. (4)

The exact bound when β ≥ 2.548 is

Γ(β) ≥ β ·H2(1/β)

β + 1
.

Figure 1: The lower and upper bounds of Γ(β) for 0 ≤ β ≤ 9.

Notice that our first algorithm in Section 4, for ϵ = 1/sO(1), makes (s/ϵ)γ log n queries where
2.66 ≤ γ ≤ 6.922 and the lower bound for this case is (s/ϵ)1/(β+1) log n = (s/ϵ)Θ(1) log n. Therefore,
our first algorithm is polynomial in the optimal query complexity and optimal in n.

The second algorithm in Section 5, for ϵ = 1/sω(log s), makes (s/ϵ)O((log s+log β)/β) log n =
(s/ϵ)oβ(1) log n queries and the lower bound is (s/ϵ)βH2(1/β)/(β+1) log n = (s/ϵ)Θ(log β/β) log n. There-
fore, the query complexity of the second algorithm is polynomial in the optimal query complexity
when β = sΩ(1).
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6.1 Preliminary Results

In this section, we give some preliminary results.
Let Bn = {0, 1}n. The following result is well known. See, for example, [5].

Lemma 12. For any f ∈ Pd,s, we have Prx∈Bn [f(x) = 1] ≥ 2−d.

Let Wn,s be the set of all the assignments in {0, 1}n of Hamming weight at least n − ⌊log s⌋.
The following is from [20, 15]. See also Lemma 2 in [13].

Lemma 13. For any 0 ̸= f ∈ Ps over n variables, there is an assignment a ∈ Wn,s such that
f(a) = 1.

The p-product distribution Dn,p is a distribution over {0, 1}n where Dn,p(a) = pwt(a)(1−p)n−wt(a)

and wt(a) is the Hamming weight of a.
The following two Lemmas are Lemma 3 and 4 in [13].

Lemma 14. Let p ≥ 1/2. For every f ∈ Pn,d,s, f ̸= 0, we have

Prx∈Dn,p [f(x) = 1] ≥
{

pd−⌊log s⌋(1− p)⌊log s⌋ d ≥ ⌊log s⌋
(1− p)d d < ⌊log s⌋ .

In particular, if d ≥ 2⌊log s⌋, then for p′ = (d− ⌊log s⌋)/d

max
p≥1/2

Prx∈Dn,p [f(x) = 1] = Prx∈Dn,p′ [f(x) = 1] ≥ 2
−H2

(
⌊log s⌋

d

)
d

and if d < 2⌊log s⌋, then for p′ = 1/2

max
p≥1/2

Prx∈Dn,p [f(x) = 1] = Prx∈Dn,p′ [f(x) = 1] ≥ 2−d.

In particular, since f(x) ̸= g(x) is equivalent to f(x) + g(x) = 1, we have

Lemma 15. Let p ≥ 1/2. For every f, g ∈ Pn,d,s, f ̸= g, we have

Prx∈Dn,p [f(x) ̸= g(x)] ≥
{

pd−⌊log s⌋−1(1− p)⌊log s⌋+1 d ≥ ⌊log s⌋+ 1
(1− p)d d < ⌊log s⌋+ 1

.

In particular, if d ≥ 2⌊log s⌋+ 2, then for p′ = (d− ⌊log s⌋ − 1)/d

max
p≥1/2

Prx∈Dn,p [f(x) ̸= g(x)] = Prx∈Dn,p′ [f(x) ̸= g(x)] ≥ 2
−H2

(
⌊log s⌋+1

d

)
d

and if d < 2⌊log s⌋+ 2, then for p′ = 1/2

max
p≥1/2

Prx∈Dn,p [f(x) ̸= g(x)] = Prx∈Dn,p′ [f(x) ̸= g(x)] ≥ 2−d.

In particular, for p′ = max((d− ⌊log s⌋ − 1)/d, 1/2),

max
p≥1/2

Prx∈Dn,p [f(x) ̸= g(x)] = Prx∈Dn,p′ [f(x) ̸= g(x)] ≥ 2
−H2

(
min

(
1
2
,
⌊log s⌋+1

d

))
d

13



We now prove.

Lemma 16. There is a non-adaptive exact learning algorithm for Pd,s with probability of success
of at least 1− δ that runs in exponential time and makes

q = 2
H2

(
min

(
1
2
,
⌊log s⌋+1

d

))
d
ln

|Pd,s|
δ

= O

(
2
H2

(
min

(
1
2
,
⌊log s⌋+1

d

))
d
(ds log n+ log(1/δ))

)
queries.

Proof. The algorithm draws q assignments S according to the distribution Dn,p′ , where p′ =
max((d− ⌊log s⌋ − 1)/d, 1/2), and then finds h ∈ Pd,s consistent with S on f .

By Lemma 15 and since 1− x ≤ e−x, the probability that h ̸= f is

Pr[(∃h ∈ Pd,s, h ̸= f)(∀a ∈ S)h(a) = f(a)] ≤ |Pd,s|
(
1− 2

−H2

(
min

(
1
2
,
⌊log s⌋+1

d

))
d
)q

≤ δ.

The following are from [7, 8].

Lemma 17. (Occam’s lemma) Let C be a class of Boolean functions and f ∈ C. For m =
(1/ϵ) log(|C|/δ) uniformly at random assignments S = {a(1), . . . , a(m)} ⊆ {0, 1}n, with probability
at least 1− δ, any h ∈ C that is consistent with f on S satisfies Prx∈Bn [f(x) ̸= h(x)] ≤ ϵ.

The following is from [19].

Lemma 18. (Agnostic Learning) Let C be a class of Boolean functions, and f be any Boolean
function. For m = (1/2ϵ2) ln(|C|/δ) uniformly at random assignments S = {a(1), . . . , a(m)} ⊆
{0, 1}n, with probability at least 1− δ, all h ∈ C satisfies

|Prx∈Bn [f(x) ̸= h(x)]−Prx∈S [f(x) ̸= h(x)]| ≤ ϵ.

The following is an information-theoretic lower bound.

Lemma 19. Let C be a class of Boolean functions. Any exact learning algorithm for C must make
at least log |C| queries.

6.2 Upper Bounds

In this section, we prove the following three upper bounds.

Theorem 4. There is a non-adaptive learning algorithm that runs in exponential time, makes

Õ
( s

ϵ2

)
log n

queries, and learns Ps with a confidence probability of at least 2/3.
In particular,

Γ(β) ≤ 1 +
β

β + 1
.
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Proof. Let f be the target function. Consider H = Ps,log(3s/ϵ) and the following algorithm A.
The algorithm A receives m = O((1/ϵ2) log |H|) = O((s/ϵ2) log(s/ϵ) log n) uniformly at random
assignments S and finds a function h ∈ H that minimizes Prx∈S [h(x) ̸= f(x)].

By Lemma 18 with probability at least 5/6, all t ∈ H satisfies

|Prx∈Bn [f(x) ̸= t(x)]−Prx∈S [f(x) ̸= t(x)]| ≤ ϵ/3. (5)

Let g be the sum of all the monomials of f of size at most log(3s/ϵ). Then g(x) ∈ H and
Prx∈Bn [f(x) ̸= g(x)] ≤ s2− log(3s/ϵ) ≤ ϵ/3. By (5), with probability at least 5/6, Prx∈S [f(x) ̸=
g(x)] ≤ 2ϵ/3. Therefore, Prx∈S [f(x) ̸= h(x)] ≤ 2ϵ/3 and by (5), with probability at least 2/3,
Prx∈Bn [f(x) ̸= h(x)] ≤ ϵ.

Theorem 5. There is a non-adaptive learning algorithm that runs in exponential time, makes

Õ

(
s2

ϵ

)
log n

queries, and learns Ps with a confidence probability of at least 2/3.
In particular,

Γ(β) ≤ 1 +
1

β + 1
.

Proof. Let f be the target function. Let H = Pd,s where d = 8s log(2s/ϵ) log(8s). Consider
the following algorithm A. It first takes a (1/(8s log(2s/ϵ)))-zero projection f(z), takes m =
O((1/ϵ) log |H|) = O(log(s/ϵ)(log s)(s2/ϵ)) uniformly at random assignments S, and finds a function
h ∈ H that is consistent with f(z) on S.

The probability that all the monomials of size at most log(2s/ϵ) of f are also of f(z) is at least(
1− 1

8s log(2s/ϵ)

)s log(2s/ϵ)

≥ 7

8
.

The probability that f(z) ∈ H is at least

1− s

(
1− 1

8s log(2s/ϵ)

)8s log(2s/ϵ) log(8s)

≥ 1− se− log(8s) ≥ 7

8
.

Therefore, with probability at least 3/4, f(z) ∈ H and Prx∈Bn [f(x) ̸= f(z)] ≤ ϵ/2. Now by
Lemma 17, with probability at least 11/12, Prx∈Bn [h(x) ̸= f(z)] ≤ ϵ/2. Therefore, with probability
at least 2/3, Prx∈Bn [h(x) ̸= f(x)] ≤ ϵ.

Now Theorems 3, 4, and 5 give the upper bound in (3).

Theorem 6. Let ϵ = 1/sβ for β > 1. Let

γ(β) = min
0.801<η<0.847

η + 1

β + 1
+
(
1 + η−1

)
H2

(
1

(β + 1)(1 + η−1)

)
=

log β

β + 1
+O

(
1

β + 1

)
.
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There is a non-adaptive proper learning algorithm that learns Ps with probability of success at least
1− δ and accuracy 1− ϵ, runs in exponential time, and makes

q = Õ

((s
ϵ

)γ(β)+o(1)
)
(log n) log(1/δ)

queries.
In particular,

Γ(β) ≤ min
0.801<η<0.847

η + 1

β + 1
+
(
1 + η−1

)
H2

(
1

(β + 1)(1 + η−1)

)
.

Proof. We use the reduction in Lemma 2 with Lemma 16. Let λ = log(1/p) ≥ 0. The number of
queries is

q = Õ

((s
ϵ

)λ
2
H2

(
⌊log s⌋+1

D

)
D
Ds

)
(log n) log(1/δ),

where

D = log
s

ϵ
+

log s+ log log s+ 6

λ
≥ 2 log 2 + 2.

For ϵ = 1/sβ, we get

q =
(s
ϵ

)λ+ 1
β+1

+
(
1+ 1

λ(β+1)

)
H2

(
1

β+1+λ−1

)
+o(1)

(log n) log(1/δ).

For λ = η/(β + 1), where 0.801 ≤ η ≤ 0.847, we get

q =
(s
ϵ

) η+1
β+1

+(1+η−1)H2

(
1

(β+1)(1+η−1)

)
+o(1)

(log n) log(1/δ).

6.3 Lower Bounds

In this section, we give three lower bounds that prove the lower bound in (4). We remind the reader
that the parameters s and 1/ϵ are arbitrary small compared to n.

We first give the following information-theoretic lower bound.

Theorem 7. Any non-adaptive algorithm for Ps with a confidence probability of at least 2/3 must
make at least

Ω

((
log

1

ϵ

)
s log n

)
queries. In particular, when ϵ = 1/sβ, the bound is

Ω̃

((s
ϵ

) 1
β+1

)
log n and Γ(β) ≥ 1

β + 1
.
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Proof. Consider the class C = Plog(1/(2ϵ)),s. Consider a (randomized) non-adaptive learning algo-
rithm AR for Ps with a confidence probability of at least 2/3 and accuracy ϵ. Then AR is also a
(randomized) non-adaptive learning algorithm for C. Since by Lemma 12, any two distinct func-
tions in C have distance 2ϵ, AR exactly learns5 C with a confidence probability of at least 2/3. By
Yao’s minimax principle, there is a deterministic non-adaptive exact learning algorithm AD with
the same query complexity as AR that learns at least (2/3)|C| functions in |C|. By Lemma 19, the
query complexity of AD is at least log |C| − 2. Since

log |C| = log

(( n
log(1/(2ϵ))

)
s

)
= Ω

((
log

1

ϵ

)
s log n

)
,

the result follows.

We now show the following.

Theorem 8. Let ϵ = 1/sβ, β > 2. Any non-adaptive algorithm for Ps with a confidence probability
of at least 2/3 must make at least

Ω

((s
ϵ

)β·H2(1/β)
β+1

log n

)
queries.

In particular, for β > 2,

Γ(β) ≥ β ·H2(1/β)

β + 1
≥ log β

β + 1
.

Proof. Let t = log(1/ϵ) − log s − 2 ≥ log s − 2 and r = log s. Let W be the set of all pairs (I, J)
where I and J are disjoint sets, I ∪ J = [t + r], |I| ≥ t, and |J | = t + r − |I| ≤ r. For every
(I, J) ∈ W , define fI,J =

∏
i∈I xi

∏
j∈J(1+xj). For k ∈ [n]\[t+ r] define fI,J,k = xk · fI,J . Consider

the set C of all such functions. First notice that fI,J,k ∈ C ⊂ Pt+r,s ⊆ Ps and, by Lemma 12,
Pr[fI,J,k = 1] ≥ 2−(t+r+1) = 2− log(1/ϵ)+1 = 2ϵ. Furthermore, since for (I1, J1, k1) ̸= (I2, J2, k2) the
degree of fI1,J1,k1 + fI2,J2,k2 is log(1/ϵ)− 1, we also have

Pr[fI1,J1,k1 ̸= fI2,J2,k2 ] ≥ 2ϵ.

Therefore, any learning algorithm for Ps (with accuracy ϵ and confidence 2/3) is a learning algorithm
for C and thus is an exact learning algorithm for C.

Consider now a (randomized) non-adaptive exact learning algorithm AR for C with a success
probability of at least 2/3 and accuracy ϵ. By Yao’s minimax principle, there is a deterministic
non-adaptive exact learning algorithm AD that for uniformly at random f ∈ C, with a probability
at least 2/3, AD returns f . We will show that AD must make more than q = (1/20)w logN queries
where N = n− (t+ r) and

w = |W | =
r∑

i=0

(
t+ r

i

)
.

Now since, r ≤ (t+ r)/2 + 1,

w =

log s∑
i=0

(
log 1

ϵ − 2

i

)
≥ Ω̃

(
2
H2

(
log s

log(1/ϵ)

)
log(1/ϵ)

)
= Ω̃

((
1

ϵ

)H2(1/β)
)

= Ω̃

((s
ϵ

)β·H2(1/β)
β+1

)
5Just take the function in C closest to the output of AR
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we get the result.
To this end, suppose for the contrary, AD makes q queries. Let S = {a(1), . . . , a(q)} be the set

of queries that AD makes. For every (I, J) ∈ W , let SI,J = {a ∈ S|fI,J(a) = 1}. Since for any two
distinct (I1, J1), (I2, J2) ∈ W , we have fI1,J1 · fI2,J2 = 0, the sets {SI,J}(I,J)∈W are disjoint. Let
f = fI′,J ′,k′ be uniformly at random function in C. We will show that, with probability at least
4/5, AD fails to learn f , which gives a contradiction.

Since

E(I,J)∈W [|SI,J |] =
∑

(I,J)∈W |SI,J |
|W |

=
q

w
= (1/20) logN,

by Markov’s bound with probability at least 9/10, we have |SI′,J ′ | ≤ (1/2) logN . Since for (I, J) ̸=
(I ′, J ′), f(I′,J ′,k′)(SI,J) = {0}, the only queries that are relevant for learning k′ in f are the ones
in SI′,J ′ . Therefore, it is enough to show that, if |SI′,J ′ | ≤ (1/2) logN , then with probability
at least 9/10, the queries in SI′,J ′ fail to learn k′. Since the algorithm is deterministic and the
number of possible answers to the queries in SI′,J ′ is 2(1/2) logN =

√
N , the number of possible

distinct outputs of the algorithm is at most
√
N . Since k′ is drawn uniformly at random and

can take N possible values, the probability that the algorithm returns k′ is less than or equal to√
N/N = 1/

√
N ≤ 1/10. Therefore, the algorithm fails to output k′ with probability at least 9/10.

This completes the proof.

We now show

Theorem 9. Let ϵ = 1/sβ, 0.44 ≤ β ≤ 2.61. Any non-adaptive algorithm for Ps with a confidence
probability of at least 2/3 must make at least

Ω

((s
ϵ

)0.694
log n

)
queries.

Proof. Let η be such that
1 + βη

1 + β
=

5 +
√
5

10
≈ 0.7236.

Then 0.0955 ≤ η ≤ 0.618. Also

1 + βη

β(1− η)
=

1

(1 + β)/(1 + βη)− 1
=

3 +
√
5

2
≈ 2.618. (6)

Let

t = log s+ (2η − 1) log(1/ϵ) + 3 = (1 + β(2η − 1)) log s+ 3 (7)

and
r = (1− η) log(1/ϵ)− 3 = β(1− η) log s− 3.

We first show that t ≥ 3. By 6, 1 + βη > β(1− η) and therefore (1 + β(2η − 1)) > 0. Thus, by 7,
t ≥ 3.

Let
σ = 8ϵ1−ηs = 8s1−β(1−η).
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Since, by 6, β(1− η) = (1 + βη)/2.618 ≤ (1 + 2.61 · 0.618)/2.618 < 1, we have σ ≥ 8.
Let W be the set of all r-sets J ⊆ I := [t+r]. For every J ∈ W , define fJ =

∏
i∈I\J xi

∏
j∈J(1+

xj). Let U be the set of all σ-sets J = {(J1, t1), . . . , (Jσ, tσ)} where J1, . . . , Jσ ⊆ I are distinct r-sets
and tk ∈ [n]\[t+ r]. Let

fJ (x) =
σ∑

k=1

xtkfJk =
σ∑

k=1

xtk
∏

i∈I\Jk

xi
∏
i∈Jk

(1 + xi)

 .

We first show that fJ is well-defined. That is, it is possible to choose σ distinct r-sets J1, . . . , Jσ ⊂ I.
This is possible because(

t+ r

r

)
=

(
(1 + βη) log s

β(1− η) log s− 3

)
= s

(1+βη)H
(

β(1−η)
1+βη

)
−o(1)

= s0.9594(1+βη)−o(1) (8)

and

σ = 8s1−β(1−η) = 8s1−0.382(1+βη) < s0.626(1+βη) < s0.9594(1+βη)−o(1) =

(
t+ r

r

)
.

Consider the class C = {fJ |J ∈ U}. The number of monomials of fJ (x) is σ2r = s and
therefore C ⊆ Ps. Since the terms of fJ are disjoint, we have Pr[fJ = 1] = σ2−(t+r)−1 =
4ϵ1−ηs · (ϵη/s) = 4ϵ. Notice that the distance between every two functions in C can be as small as
2 · 2−(t+r) = 2ϵη/s = 2ϵη+β, which may take values less than ϵ. Therefore, the argument used in
Theorem 8 will not hold here.

Consider now a (randomized) non-adaptive learning algorithm AR for C with a success probabil-
ity of at least 2/3 and accuracy ϵ. By Yao’s minimax principle, there is a deterministic non-adaptive
learning algorithm AD that for a uniformly at random target function fJ ∈ C, with probability
at least 2/3, AD returns a hypothesis h(J ) that is ϵ-close to fJ . Consider the deterministic algo-
rithm A′D that runs AD and outputs J ′ where fJ ′ is the closest function in C to h(J ). Since h(J )

is ϵ-close to both fJ and fJ ′ , fJ and fJ ′ are 2ϵ-close. We will show in the sequel that if fJ and
fJ ′ are 2ϵ-close, then |J ∩J ′| ≥ σ/2. This shows that A′D returns a σ-set J ′ that, with probability
at least 2/3, |J ∩ J ′| ≥ σ/2 where fJ is the target function. We now show that if A′D makes less
than q = (1/100)w logN queries where w =

(
t+r
r

)
and N = n − (s + t) then, with probability at

least 2/3, algorithm A′D fails to output such J ′. Now, since, by (8),(
t+ r

r

)
= s0.9594(1+βη)−o(1) =

(s
ϵ

)0.9594 1+βη
β+1

−o(1)
=
(s
ϵ

)0.6942−o(1)
,

the result follows.
To this end, suppose A′D makes less than q queries. Let S = {a(1), . . . , a(q)} be the queries that

A′D makes. For every J ∈ W , let SJ = {a ∈ S|fJ(a) = 1}. Since for any two distinct J1, J2 ∈ W ,
we have fJ1fJ2 = 0, the sets {SJ}J∈W are disjoint. Since

EJ∈W [|SJ |] =
∑

J∈W |SJ |
|W |

=
q

w
=

logN

100
,

by Markov’s bound, at least 49/50 fraction of the r-subsets J of [t + r] satisfy |SJ | ≤ (1/2) log n.
Now, for a uniformly at random target function fJ = f{(J1,t1),...,(Jσ ,tσ)} ∈ C, let Xi be an indicator
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random variable that is equal to 1 if |SJi | > (1/2) logN . Then E[Xi] ≤ 1/50. LetX = X1+· · ·+Xσ.
Since E[X] ≤ σ/50, by Markov’s bound, with probability at least 4/5, at least 9σ/10 of the Jis in
J satisfy |SJi | < (1/2) logN . Assume, wlog, |SJi | < (1/2) logN for i ≤ 9σ/10. As in Theorem 8,
the algorithm A′D can find each ti, i ≤ 9σ/10 with probability at most 1/

√
N < 1/20. Since the

tis are drawn iid and uniformly at random, by Chernoff bound, with probability at least 4/5, the
algorithm A′D fails to find σ/2 of the tis for i ≤ 9σ/10. Therefore, with probability at least 2/3,
A′D fails to return a σ-set J ′ such that |J ∩ J ′| ≥ σ/2.

It remains to show that if fJ is 2ϵ-close to fJ ′ , then |J ∩J ′| ≥ σ/2. Suppose, for the contrary,
|J ∩ J ′| < σ/2. Suppose, wlog, J = {(J1, t1), . . . , (Jσ, tσ)} and

J ′ = {(J1, t1), . . . , (Jℓ, tℓ), (Jℓ+1, t
′
ℓ+1), . . . , (Jµ, t

′
µ), (J

′
µ+1, t

′
µ+1), . . . , (J

′
σ, t
′
σ)}

where Ji, J
′
k, i ∈ [σ], k ≥ µ+ 1 are distinct r-subsets of [r + t] and t′i ̸= ti for µ ≥ i > ℓ. Then

fJ + fJ ′ =

µ∑
k=ℓ+1

(xtk + xt′k)fJk +
σ∑

k=µ+1

xtkfJk +
σ∑

k=µ+1

xt′kfJ
′
k
.

Since fJi , fJ ′k , i ∈ [σ], k ≥ µ+ 1 are pairwise disjoint and 2σ − µ− ℓ > σ/2, we have

Pr[fJ ̸= fJ ′ ] = Pr[fJ + fJ ′ = 1] = (2σ − µ− ℓ)2−(t+r)−1

>
σ

2
4ϵ1−ηs · (ϵη/s) = 2ϵ.

A contradiction.

7 Proof of Lemma 1

Recall that HPd is the set of homogeneous polynomial F of degree d over the variables Y =
{yi,j}i∈[n],j∈[d] where each monomial of F is of the form y1,i1y2,i2 · · · yd,id where {i1, i2, . . . , id} ∈

([n]
d

)
.

Throughout this section, q will be a power of two. All the arithmetic operations in the field GF(qt)
have time complexity poly(t, log q). Therefore, each arithmetic operation will be considered as one
unit-time.

Let d > 1 be an integer. We write GF(qt)
N−→dGF(q) if there are Nd linear maps Mi,j : GF(qt) →

GF(q), i ∈ [N ], j ∈ [d] and elements {αi}i∈[N ] in GF(qt) such that for every a1, a1, . . . , ad ∈ GF(qt)

d∏
j=1

aj =
N∑
k=1

αk

d∏
j=1

Mk,j(aj)

 . (9)

We say that GF(qt)
N−→dGF(q) in time T if such maps can be found in time T .

We first prove

Lemma 20. If GF(2t)
N−→dGF(2) in time T , then we can find maps M∗k : GF(2t)dn → GF(2)dn,

k ∈ [N ] in time O(Tn) that are computable in time O(dnt) such that, for every F ∈ HPd and every
β ∈ GF(2t)dn, we have

F (β) =
N∑
i=1

αiF (M∗i (β)).
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Proof. Since GF(2t)
N−→dGF(2) in time T , we can find Nd linear maps Mi,j : GF(2t) → GF(2),

i ∈ [N ], j ∈ [d] and elements {αi}i∈[N ] in GF(2t) such that for every a1, a1, . . . , ad ∈ GF(qt), (9)
holds.

We define M∗k ((yj,i)i∈[n],j∈[d]) = (Mk,j(yj,i))i∈[n],j∈[d]. Let F be any function in HPd. Suppose

F ((yj,i)i∈[n],j∈[d]) =
∑

I={i1,i2,...,id}∈S

γI

d∏
j=1

yj,ij


where S ⊆

([n]
d

)
and γI ∈ GF(2) for all I ∈ S. Then for every β ∈ GF(2t)dn, by 9, we have

F (β) =
∑

I={i1,i2,...,id}∈S

γI

d∏
j=1

βj,ij


=

∑
I={i1,i2,...,id}∈S

γI

N∑
k=1

αk

d∏
j=1

Mk,j(βj,ij )


=

N∑
k=1

αk

∑
I={i1,i2,...,id}∈S

γI

 d∏
j=1

Mk,j(βj,ij )


=

N∑
k=1

αkF ((Mk,j(βj,i))i∈[n],j∈[d]) =
N∑
k=1

αkF (M∗k (β)).

In particular, to prove Lemma 1, it is enough to prove.

Claim 1. For any integer power of two t > 1, we have GF(2t)
Õ(21.66d)t−−−−−−→dGF(2) in time poly(t, 2d).

We now prove some Lemmas which leads to this result.
Using exhaustive search for the linear maps Mi,j and {αi}i∈N , we have

Lemma 21. If GF(qt)
N−→dGF(q) then GF(qt)

N−→dGF(q) in time qO(tdN).

The following four Lemmas are easy to prove

Lemma 22. If GF(qt)
N−→dGF(q) in time T then for every N ′ ≥ N , GF(qt)

N ′−→dGF(q) in time T .

Lemma 23. If GF(qt)
N−→dGF(q) in time T then for every d′ ≤ d, GF(qt)

N−→d′GF(q) in time O(T ).

Lemma 24. If GF(qt1t2)
N2−−→dGF(qt1) in time T1 and GF(qt1)

N1−−→dGF(q) in time T2 then

GF(qt1t2)
N1N2−−−→dGF(q)

in time O(T1 + T2 +N1N2t1t2).
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Lemma 25. If GF(qt)
N1−−→d1GF(q) in time T1 and GF(qt)

N2−−→d2GF(q) in time T2 then

GF(qt)
N1N2−−−→d1+d2GF(q)

in time O(T1 + T2 +N1N2).

In particular, by Lemmas 23 and 25, we get

Lemma 26. If GF(qt)
N−→d′GF(q) in time T then GF(qt)

N⌈d/d
′⌉

−−−−−→dGF(q) in time O(dT/d′+N ⌈d/d
′⌉).

Now we prove

Lemma 27. If q ≥ d(t− 1), then GF(qt)
d(t−1)+1−−−−−−→dGF(q) in time poly(dt).

Proof. Let f (1), . . . , f (d) ∈ GF(q)[x] be arbitrary d polynomials of degree t − 1 where f (i) =∑t−1
j=0 f

(i)
j xj . Choose an element β ∈ GF(qt) such that GF(qt) ∼= GF(q)[β]. Then a1 := f (1)(β), . . . ,

ad := f (d)(β) are arbitrary d elements in GF(qt). So it is enough to show that
∏d

i=1 f
(i)(β) can be

expressed as in (9) with N = d(t− 1) + 1.
Let f =

∏d
i=1 f

(i)(x) = f0 + f1x+ . . .+ fd(t−1)x
d(t−1). One way to express the coefficients of f

as functions of f
(i)
j , i ∈ [d], j = 0, 1, . . . , d(t−1), is the following: First, we have fd(t−1) =

∏d
i=1 f

(i)
t .

Then substitute d(t − 1) distinct elements η1, . . . , ηd(t−1) of the field GF(q) in
∏d

i=1 f
(i)(x) and

interpolate to find coefficients f0, . . . , fd(t−1)−1. This shows that for every i = 0, 1, . . . , d(t − 1),

there are ωi,0, ωi,1, . . . , ωi,d(t−1) independent of f
(i)
j , i ∈ [d], j = 0, 1, . . . , d(t− 1) such that

fi = ωi,0

d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

wi,jf(ηj) = ωi,0

d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

wi,j

d∏
k=1

f (k)(ηj).

Then

d∏
i=1

f (i)(x) =

d(t−1)∑
i=0

fix
i =

d(t−1)∑
i=0

ωi,0x
i

 d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

d(t−1)∑
i=0

wi,jx
i

 d∏
k=1

f (k)(ηj).

Let

αi =

d(t−1)∑
i=0

wi,jβ
i

for j = 0, 1, . . . , d(t− 1). Then

d∏
i=1

f (i)(β) = α0

d∏
k=1

f
(k)
t +

d(t−1)∑
j=1

αj

d∏
k=1

f (k)(ηj).

Now recall that f (i)(β), i ∈ [d] are d (arbitrary) elements in GF(qt). Since ηj ∈ GF(q) we have f
(k)
i

and f (k)(ηj) are linear functions from GF(qt) to GF(q). This implies the result.

The following lemma proves Claim 1 for a power of two t = O(log d).
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Lemma 28. Let c be a constant. Let t be a power of two such that t < c log d. We have

GF(2t)
21.66d−−−→dGF(2) in time poly(2d).

Proof. By Lemma 27, GF(22)
3−→2GF (2) in time O(1). By Lemma 26, GF(22)

N1=3⌈d/2⌉−−−−−−→dGF (2)

in time O(N1). Now for any i, by Lemma 27, GF(22
i+1

)
22

i
+1−−−→

22i
GF (22

i
) in time poly(22

i
). By

Lemma 26, GF(22
i+1

)
Ni−→dGF(22

i
) in time poly(22

i
) +O(Ni) where

Ni = (22
i
+ 1)

⌈
d/22

i
⌉
.

By Lemma 24, we have GF(2t)
N−→dGF(2) in time poly(2t, 2log

2 dN) = poly(2d) where

N = 3⌈d/2⌉5⌈d/4⌉ · · · (2t/2 + 1)⌈d/2
t/2⌉

≤ 2O(log2 d)2(
log 3
2

+ log 5
4

+··· )d

≤ 2O(log2 d) · 21.65994d ≤ 21.66d.

The following lemma will be frequently used to prove Claim 1 for larger values of d.

Lemma 29. Let t and t′ be powers of 2, where 2 log(dt) > t′ ≥ log(dt). Then GF(2t)
dt/t′−−−→dGF(2t

′
)

in time poly(dt).

Proof. We have q = 2t
′ ≥ dt ≥ d(t/t′ − 1). By Lemma 22 and 27, the result follows.

The following lemma proves Claim 1 for a power of two t = dO(1).

Lemma 30. Let c be a constant. Let t be a power of two such that t < dc. We have GF(2t)
Õ(21.66d)t−−−−−−→dGF(2)

in time poly(2d).

Proof. By Lemma 29, GF(2t)
dt/t′−−−→dGF(2t

′
) in time poly(dt) for some power of two t′, where t′ ≤

2(c+1) log d. By Lemma 28, GF(2t
′
)
21.66d−−−→dGF(2) in time poly(2d). By Lemma 24, GF(2t)

Õ(21.66d)t−−−−−−→dGF(2)
in time poly(2d).

The following lemma proves Claim 1 for a power of two t = 2d
O(1)

.

Lemma 31. Let c be a constant. Let t be a power of two such that t < 2d
c
. We have GF(2t)

Õ(21.66d)t−−−−−−→dGF(2)
in poly(t, 2d).

Proof. By Lemma 29, GF(2t)
dt/t′−−−→dGF(2t

′
) in time poly(dt) for some power of two t′, where t′ ≤

dc+2. By Lemma 30, GF(2t
′
)
Õ(21.66d)t′−−−−−−−→dGF(2) in time poly(2d). By Lemma 24, GF(2t)

Õ(21.66d)t−−−−−−→dGF(2)
in time poly(t, 2d).

The following is from [11], Corollary 17 item 7

Lemma 32. For any q ≥ d and t, we have GF(qt)
O(d4t)−−−−→dGF(q).
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By Lemma 32 and Lemma 21 we get

Lemma 33. For any q ≥ d and t, we have GF(qt)
O(d4t)−−−−→dGF(q) in time qO(t2d5).

The following lemma proves Claim 1 for a power of two t > 2d
12
.

Lemma 34. Let t ≥ 2d
12

be a power of two. We have GF(2t)
Õ(21.66d)t−−−−−−→dGF(2) in time poly(t, 2d).

Proof. Let 2d > 2ℓ ≥ d power of two. By Lemma 29, we have GF(2t)
dt/t′−−−→dGF(2t

′
) in time

poly(dt) for a power of two 2 log(dt) > t′ ≥ log(dt). Then again, by Lemma 29, we have

GF(2t
′
)
dt′/t′′−−−→dGF(2t

′′
) in time poly(dt′) for a power of two 2 log(dt′) > t′′ ≥ log(dt′). By Lemma 33,

GF(2t
′′
)
O(d4t′′/ℓ)−−−−−−→dGF(2ℓ) in time

(2ℓ)O((t′′/ℓ)2d5)) ≤ 2O(d6 log2 log t) ≤ 2O(log1/2 t log2 log t) < t.

By Lemma 30, GF(2ℓ)
Õ(21.66d)ℓ−−−−−−→dGF(2) in time poly(2d). By Lemma 24, GF(2t)

Õ(21.66d)t−−−−−−→dGF(2)
in time poly(t, 2d).

Now Claim 1 follows immediately from Lemma 30 and 34.
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Appendix: Proof of Lemma 7

In this Section, we prove
Lemma 7. Let t = d′m be an integer where d < d′ = O(d) and log n < m = O(log n). There is
a deterministic non-adaptive proper exact learning algorithm that learns Pd,s[2

t] with 2s queries in
GF(2t)n in time poly(d, s) · Õ(n).

Proof. The proof is the same as in [3].
Let w ∈ GF(2t) such that GF(2t) ≃ GF(2m)[w]. The minimal polynomial p ∈ GF(2m)[x] of w

is of degree d′ − 1 ≥ d. Each element in GF(2t) can be represented as γ0 + γ1w + · · ·+ γd′−1w
d′−1

where γi ∈ GF(2m) for all i.
Let

f(x) =
s∑

i=1

aiMi,

where Mi = xri,1xri,2 · · ·xri,di and di ≤ d for all i ∈ [s]. Here, we assume that the number of
monomials in f is exactly s. We will show later the case when the size is less than s.

We choose n distinct elements α1, α2, · · · , αn in GF(2m). This is possible because 2m ≥ n. The
queries of the algorithm are

ui = ((w − α1)
i, (w − α2)

i, . . . , (w − αn)
i), i = 0, 1, 2, . . . , 2s− 1.

Let vi = f(ui).
We now show how to find Mi, i ∈ [s], and then find the coefficients ai, i ∈ [s].
We first give some observations. Let mi = Mi(u1) and Λ(x) =

∏
i∈[s](x − mi) =

∑s
i=0 λix

i.

Notice that Mi(uj) = mj
i and Λ(mi) = 0 for every i. Now, for every ℓ = 0, 1, 2, . . . , s− 1

0 =
s∑

i=1

aim
ℓ
iΛ(mi)

=
s∑

i=1

aim
ℓ
i

s∑
j=0

λjm
j
i

=
s∑

j=0

λj

s∑
i=1

aim
ℓ+j
i

=

s∑
j=0

λj

s∑
i=1

aiMi(uℓ+j)

=

s∑
j=0

λjvℓ+j .

Since λs = 1, we get the linear equation V λ = v, where

V =


v0 v1 v2 · · · vs−1
v1 v2 v3 · · · vs
...

...
...

. . .
...

vs−1 vs vs+1 · · · v2s−1

 , λ =


λ0

λ1
...

λs−1

 and v =


−vs
−vs+1

...
−v2s−1

 .
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Ben-Or and Tiwari show in [3] that if f has s monomials, then V is a non-singular matrix. Then
we can find λ = V −1v and therefore Λ(x). By factoring Λ(x), we get mi = Mi(u1). Let mi =
mi,0 + mi,1w + · · · + mi,d′−1w

d′−1 where mi,j ∈ GF(2m) for all j. Now since mi = Mi(u1) =
(w − αri,1) · · · (w − αri,di

) and the minimal polynomial of w is of degree d′ − 1 ≥ d ≥ di, we have

mi,0 +mi,1x+ · · ·+mi,d′−1x
d′−1 = (x− αri,1) · · · (x− αri,di

).

So by factoring mi,0 +mi,1x + · · · +mi,d′−1x
d′−1, we get αri,1 , . . . , αri,di

and therefore Mi(x). To
find the coefficients ai, we solve the linear equation

f(ui) =

s∑
i=1

aiMi(ui) = vi, i = 0, 1, . . . , s− 1.

This finishes the case when the number of monomials is s. When the number of monomial is at
most s, then it is known that the number of monomials is equal to the maximum r such that the
upper left r × r sub-matrix of V is non-singular. So we find r and continue as above.
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