
Equivalence Test for Read-Once Arithmetic Formulas

Nikhil Gupta
Indian Institute of Science

nikhilg@iisc.ac.in

Chandan Saha*

Indian Institute of Science
chandan@iisc.ac.in

Bhargav Thankey†

Indian Institute of Science
thankeyd@iisc.ac.in

Abstract

We study the polynomial equivalence problem for orbits of read-once arithmetic formu-
las (ROFs). Read-once formulas have received considerable attention in both algebraic and
Boolean complexity and have served as a testbed for developing effective tools and techniques
for analyzing circuits. Two n-variate polynomials f , g ∈ F[x] are equivalent, denoted as f ∼ g,
if there is an A ∈ GL(n, F) such that f = g(Ax). The orbit of f is the set of all polynomials
equivalent to f . We investigate the complexity of the following two natural problems on ROFs:

• Equivalence test for ROFs: Given black-box access to f , check if it is in the orbit of an ROF.
If yes, output an ROF C and an A ∈ GL(n, F) such that f = C(Ax).

• Polynomial equivalence for orbits of ROFs: Given black-box access to f and g in the orbits of
two unknown ROFs, check if f ∼ g. If yes, output an A ∈ GL(n, F) such that f = g(Ax).

These problems are significant generalizations of two well-studied problems in algebraic com-
plexity, namely reconstruction of ROFs and quadratic form equivalence. In this work, we give
the first randomized polynomial-time algorithms (with oracle access to quadratic form equiv-
alence) to solve the two problems. The equivalence test works for general ROFs; it also implies
an efficient learning algorithm for random arithmetic formulas of unbounded depth and fan-in
(in the high number of variables setting). The algorithm for the second problem, which invokes
the equivalence test, works for mildly restricted ROFs, namely additive-constant-free ROFs.

The equivalence test is based on a novel interplay between the factors and the essential
variables of the Hessian determinant of an ROF, the essential variables of the ROF, and certain
special structures in the ROF that we call “skewed paths”. To our knowledge, the Hessian of
a general ROF (or even a depth-4 ROF) has not been analyzed before. Analyzing the Hessian
and combining the knowledge gained from it with the skewed paths to recursively discover
formulas in the orbits of sub-ROFs of lower depth (without incurring an exponential blow-up
due to unbounded depth) constitute the main technical contributions of this work.

*Partially supported by a MATRICS grant of the Science and Engineering Research Board, DST, India.
†Supported by the Prime Minister’s Research Fellowship, India.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 99 (2022)

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Main results . 3
1.3 Proof ideas . 5
1.4 Related work . 12

2 Preliminaries 14
2.1 Structural preliminaries . 14
2.2 Algorithmic preliminaries . 17

3 The Hessian of an ROF 18

4 Equivalence test for ROFs 19
4.1 An overview of the algorithm . 20
4.2 The algorithm . 25
4.3 Analysis of the algorithm . 27

5 Polynomial equivalence for orbits of ROFs 41
5.1 The algorithm . 41
5.2 Analysis of the algorithm . 41

6 Conclusion 42

A Some useful algorithmic facts 49

B Missing proofs from Section 2 50

C Missing proofs from Section 3 58

D Missing proofs from Section 4 64

E PE for orbits of product-depth 2 ROFs 74

F ROF reconstruction 78

G A pictorial overview of Algorithm 1 84

1 Introduction

The study of isomorphism or equivalence of two mathematical objects, such as graphs, groups,
rings, algebras, tensors, polynomials, and formulas, under natural bijective transformations has
a rich history. The corresponding computational problems of determining isomorphism between
two such entities are not only interesting from a theoretical standpoint but also important for their
potential applications in other areas – most notably, in cryptography [Pat96, IQ19, JQSY19].

Our focus, in this work, is on the isomorphism or equivalence of polynomials. Two n-variate
polynomials f (x) and g(x) over a field F are said to be equivalent (denoted as f ∼ g) if they are
equal under the action of an invertible linear transformation on the variables, i.e., if f = g(Ax) for
an A ∈ GL(n, F). The orbit of f (denoted as orb(f)) consists of all polynomials that are equiva-
lent to f . Equivalent polynomials share many common algebraic and geometric properties. The
computational task of checking if two polynomials – given as lists of coefficients – are equivalent
is known as the polynomial equivalence or isomorphism problem (PE). PE is one of the most important
problems in algebraic complexity and is also widely studied in cryptography.

The exact computational complexity of PE remains an enigma despite decades of research.
Over finite fields, PE is in NP ∩ coAM [Thi98, Sax06], and so, it is not NP-complete unless the
polynomial hierarchy collapses. But, no subexponential-time algorithm is known for PE over Fq.
The best-known complexity of PE over other fields, such as C and R, is the same as that of checking
solvability of a system of polynomial equations, which is a potentially harder problem. Research
on PE has therefore focused on understanding the complexity of the problem for restricted (yet
interesting) classes of polynomials; see Section 1.4 for a brief account of known results on PE.

1.1 Motivations

1.1.1 Generalizing quadratic form equivalence

One of the very few natural classes of polynomials for which PE is known to be efficiently solvable
is the class of quadratic forms or homogeneous polynomials of degree 2 (see Section A.2 for the
complexity of quadratic form equivalence over various fields). Are there bigger classes of poly-
nomials for which PE is easy? An obvious way to generalize quadratic form equivalence is to
solve PE for higher degree forms. Unfortunately, even cubic form equivalence is at least as hard
as graph isomorphism and possibly harder (see Section 1.4 for a discussion on this). But there
is another natural way to generalize quadratic form equivalence: Over C, an n-variate quadratic
form with no redundant variables1 is in the orbit of x1x2 + x3x4 + . . . + xn−1xn, if n is even2. The
expression x1x2 + x3x4 + . . . + xn−1xn is a read-once arithmetic formula (ROF)3. An ROF is an
arithmetic formula in which every leaf node is labelled by a distinct variable or a constant (see

1i.e., the number of variables cannot be reduced by applying an invertible linear map on the variables.
2If n is odd, the quadratic form is in the orbit of x1x2 + . . . + xn−2xn−1 + x2

n. The “odd n” case can be reduced to the
“even n” case of the quadratic form equivalence problem over C by simply adding x2

n+1 to both the input forms. The
correctness of this reduction follows from Witt’s cancellation theorem [Wit37]; see [CMM17] for a self-contained proof.

3That F = C is not very crucial here. Over an arbitrary F of characteristic 6= 2, a quadratic form is in the orbit of
some a1x2

1 + . . . + anx2
n, where ai ∈ F. Observe that a1x2

1 + . . . + anx2
n is an ROF with every xi replaced by x2

i . We call a
formula a power-substituted ROF if it is derived from an ROF by replacing every xi by xei

i for some ei ∈N. Although we
work with conventional ROFs in this work, our results and analysis are likely to generalize (after some modifications)
to power-substituted ROFs. See Section 6 for an evidence supporting this belief.

1

Section 2.1.4). The quadratic form equivalence problem (QFE) over C can thus be viewed as PE
for orbits of quadratic ROFs. Is PE for orbits of higher degree ROFs easy? More generally, we ask:

Can we solve PE for orbits of general ROFs efficiently?

In other words, is there an efficient algorithm which, when given black-box access to f and g in
the orbits of two unknown ROFs of unbounded degree and depth, decides if f ∼ g? Theorem 2
answers this question (almost entirely) positively, thereby implying a vast and rare generalization
of efficient quadratic form equivalence.

1.1.2 Learning orbits of well-studied circuit classes

Learning or reconstructing arithmetic circuits is one of the three most fundamental problems in
arithmetic circuit complexity alongside proving circuit size lower bounds and polynomial identity
testing (or constructing hitting-sets). While learning general circuits or formulas is believed to be
a hard problem, significant progress has been made in designing efficient learning algorithms for
various interesting special classes of circuits. Sparse polynomials (or depth-2 circuits)4, ROFs,
and read-once algebraic branching programs (ROABPs)5 are notable instances of such classes (see
Section 1.5 in [GKS20] for a brief account of known results on circuit reconstruction).

As two equivalent polynomials are essentially the same function (up to a choice of the coor-
dinate system), it is natural to wonder if the known learning algorithms for the above-mentioned
circuit classes can be generalized to work for their orbits6. Unfortunately, the techniques used to
learn these classes do not extend in a straightforward manner to learning their orbits. So, study-
ing these orbits may lead to strengthening of existing techniques and discovery of new ones in the
process. But there is also a deeper reason to investigate orbits of simple-looking circuit classes that
originates from a connection between affine projections7 and orbits.

Affine projections of apparently weak circuit classes can be extremely powerful. For instance,
affine projections of sparse polynomials constitute depth-3 circuits – a surprisingly powerful class
[GKKS16, Tav15]. Likewise, affine projections of ROFs and ROABPs capture general formulas
and ABPs, respectively. It turns out that the affine projections of a polynomial f are contained in
the closure8 of orb(f). In this sense, orb(f) is a dense subset of affine projections of f . Therefore,
it is necessary to analyze orbits of the above-mentioned classes to better understand their affine
projections. Spurred by these reasons, [MS21], [ST21], and [BG21] have recently given hitting-
set constructions for orbits of sparse polynomials, ROFs, and bounded width ROABPs. Can we
design learning algorithms for the same orbits? In this work, we answer the question for ROFs. To
our knowledge, learning orbits of sparse polynomials and, more generally, ROABPs remain open.

Formally, the learning problem for orbits of ROFs is as follows: Given black-box access to a
polynomial f , check if it is in the orbit of an ROF. If yes, then output an invertible A such that
f (Ax) has an ROF. We call this problem equivalence test (ET) for ROFs.

Can we solve equivalence test for ROFs efficiently?

4A polynomial is s-sparse if it has at most s monomials with non-zero coefficients.
5An ROABP is an expression 1T ·M1(x1) · · ·Mn(xn) · 1, where 1 is the all-one column vector and each Mi(xi) is a

matrix whose entries are univariate polynomials in xi. ROABPs generalize sparse polynomials and ROFs significantly.
6Orbit of a circuit class C, denoted as orb(C), is the union of the orbits of circuits in C. Learning orb(C) amounts to

outputting a circuit C ∈ C and an invertible A from black-box access to a f (x) ∈ orb(C) such that C computes f (Ax).
7The set of affine projections of an n-variate polynomial f (x) is the set { f (Ax + b) : A ∈ Fn×n and b ∈ Fn}.
8The closure of orb(f) is the Zariski closure of the set of coefficient vectors of polynomials in orb(f).

2

Theorem 1 answers the question completely in the affirmative. ET for ROFs is a substantial gener-
alization of the well-studied problem of learning or reconstructing ROFs [HH91, BHH95a, SV14,
Vol16, MV18]. Indeed, the proof of the theorem requires significantly new ideas on top of those
used for ROF reconstruction (see Section 1.3).

The above question is closely related to the question posed in Section 1.1.1. A typical algo-
rithm to solve the search version9 of QFE over C finds invertible linear transformations that map
the two input quadratic forms to the canonical ROF x1x2 + x3x4 + . . . + xn−1xn. In other words,
such an algorithm solves the ET problem for quadratic ROFs. Similarly, our algorithm in Theorem
2 invokes the ET given by Theorem 1 to map the input polynomials to certain canonical ROFs and
then solve the PE problem for canonical ROFs.

1.1.3 Learning random or non-degenerate formulas

As mentioned before, a formula is an affine projection of an ROF. Learning formulas in the worst-
case is a potentially hard problem (see Section 1.2 in [KS19] and Section 1.4 in [GKS20] for discus-
sions on this). However, it may be possible to formulate natural distributions (or non-degeneracy
conditions) under which formulas are learnable.10 A natural distribution on formulas is defined
as follows: pick a tree of size s arbitrarily, label the internal nodes by + and × operations to form
alternating layers of + and× gates, and label the leaves by random linear forms in n variables. The
corresponding learning problem asks to reconstruct a random formula – picked according to this
distribution – from black-box access to the formula. This problem was studied in [GKQ14] by fix-
ing the underlying tree to be a complete binary tree; the formulas we thus get are called formulas
in alternating normal form (ANF). [GKQ14] gave an efficient learning algorithm for random ANFs.
On the other hand, an ET for ROFs gives a learning algorithm for random formulas, irrespective
of the underlying tree, provided n ≥ s. This is because a random formula is in the orbit of an ROF
with high probability if n ≥ s and |F| is sufficiently large. Thus, ET for ROFs provides supporting
evidence for efficient learnability of random formulas (that are not necessarily ANFs).

1.2 Main results

Our results hold over any field F of characteristic 0 or of sufficiently large characteristic and size.
As for the computation model, we assume that it allows basic field operations in unit time and
univariate polynomial factoring in randomized polynomial time. We say an algorithm is efficient
if it runs in randomized polynomial time. Also, we will work with a slightly general definition of
the orbit of a polynomial that allows translation (see Definition 2.4).

For the ease of stating the theorems, we consider ROFs in canonical form (see Definition 2.6).
The orbit of every ROF contains a canonical ROF (Observation 2.6). So, by removing redundant
variables from the input polynomial (see Observation 2.7 and Claim 2.2), we can assume without
any loss of generality that the underlying ROF is canonical. x1x2 + x3x4 + . . . + xn−1xn is a canonical
ROF. Other natural examples of canonical ROFs are read-once formulas in alternating normal form
(ROANF) (see Definition 2.7) and the sum-product polynomial SP := ∑i∈[s] ∏j∈[d] xi,j

11.

9The search version of PE asks to find an A ∈ GL(n, F) s.t. f = g(Ax), if such an A exists. For the search version of
QFE over C, we work with a computation model that allows basic complex arithmetic and square root finding.

10Several prior works have given efficient non-degenerate case learning algorithms for various subclasses of formulas
for which worst-case learning are likely hard (see [GKS20, KS19, KNS19, GKQ14, GKL11, BGKS21]).

11The Boolean analogue of the SP polynomial is a read-once DNF which is also known as the tribes function.

3

Our first result gives an efficient algorithm to solve ET for general ROFs. The algorithm is
randomized and has oracle access to the search version of QFE. In subsequent discussions, we
will mention “QFE” to mean “the search version of QFE”. We will also identify an ROF with the
polynomial it computes and denote the set of n× n matrices with entries in F by M(n, F).

Theorem 1 (ET for ROFs). Let n ∈ N, char (F) = 0 or ≥ n2, and |F| ≥ n13. There is a poly(n)
time randomized algorithm (with oracle access to QFE over F) that takes input black-box access to an n-
variate polynomial f ∈ F[x], which is in the orbit of an unknown canonical ROF C, and outputs (with high
probability) an A ∈ GL (n, F) such that f (Ax) = C(PSx + b), where P ∈ M(n, F) and S ∈ M(n, F)
are permutation and scaling (i.e., diagonal) matrices respectively, and b ∈ Fn.

Remarks. 1. As C(PSx + b) is an ROF, we can apply any of the known polynomial-time ROF re-
construction algorithms [HH91,BHH95a,SV14,MV18] to first get an ROF for C(PSx + b),
and then obtain a formula for f by applying A−1 on the variables of the reconstructed
ROF. We present a randomized polynomial-time ROF reconstruction algorithm in Ap-
pendix F as we need to use some of its properties in the proof of Theorem 2.

2. QFE can be solved efficiently over C, R, Fq and also over Q with oracle access to integer
factoring (see Fact A.3). Hence, ET for ROFs can be solved efficiently over these fields.

3. Although ET has been studied for polynomial families like the determinant and IMM
(see Section 1.4), to our knowledge no ET was known for any natural circuit class of
unbounded depth, degree and fan-in (or even depth-4 ROFs) before this work.

4. Recently, [MS21] showed that ET for ROANFs and sum-product polynomials can be
solved efficiently. As ROANFs are special fan-in 2 ROFs and sum-product polynomi-
als are depth-2 ROFs, the theorem generalizes these two results considerably. Also, our
proof approach is entirely different from the ones in [MS21] (see Sections 1.3.1 and 1.3.4).

5. The constraints on char(F) and |F| originate primarily (but not solely) from the use of the
black-box multivariate polynomial factorization algorithm [KT90] in the equivalence test.
We have not made an attempt to optimize these constraints.

The second result gives an efficient algorithm to solve PE for orbits of ROFs that are additive-
constant-free. An ROF is additive-constant-free if no F-constant appears as a child of a +-gate. For
e.g., the canonical ROF x1x2 + x3x4 + . . . + xn−1xn is additive-constant-free. ROANFs and sum-
product polynomials are also examples of additive-constant-free canonical ROFs. An additive-
constant-free ROF is in the orbit of an additive-constant-free canonical ROF (see Observation 2.6).

Theorem 2 (PE for orbits of additive-constant-free ROFs). Let n ∈ N, char (F) = 0 or ≥ n2, and
|F| ≥ n13. There is a poly(n) time randomized algorithm (with oracle access to QFE over F) that takes
input black-box access to two n-variate polynomials f1, f2 ∈ F[x], which are in the orbits of two unknown
additive-constant-free canonical ROFs, and checks if f1 ∈ orb (f2). Furthermore, if f1 ∈ orb (f2), then the
algorithm outputs (with high probability) an A ∈ GL (n, F) and a b ∈ Fn such that f1 = f2 (Ax + b).

Remarks. 1. As mentioned before, the above result is a broad generalization of efficient QFE.

2. We strongly believe that the additive-constant-free restriction is mild and can be dis-
pensed with entirely with some more technical effort. To support this belief, we show
in Section E that this indeed possible for depth-4 ROFs.

4

1.3 Proof ideas

First, an example. The algorithm in Theorem 1 is based on a few crucial properties of the Hessian
determinant of an ROF (see Definition 2.9). The effectiveness of the Hessian, in this context, is
best demonstrated by an equivalence test for the sum-product polynomial SP := ∑i∈[s] ∏j∈[d] xi,j,
which is an ROF of product-depth 1. Assume that d ≥ 3. The algorithm takes input an f = SP(Bx),
where B ∈ GL(sd, F) is unknown. It computes the Hessian determinant of f , which is denoted as
det(H f). By Fact 2.8, det(H f) is a non-zero F-multiple of det(HSP)(Bx) – the Hessian determinant
of SP evaluated at Bx. Now, it can be shown that det(HSP) factorizes as follows:

det(HSP) = (−1)s(d−1) · (d− 1)s · ∏
i∈[s],j∈[d]

xd−2
i,j .

So, the algorithm factorizes det(H f) into irreducible factors and figures out12 B from the factors.
The test can be implemented in the black-box setting by observing that black-box access to the
second-order partials of f can be computed efficiently (see Fact A.1) and by invoking a black-box
polynomial factorization algorithm (see Fact A.2). The running time is polynomial in s and d.

1.3.1 A basic approach

Can the Hessian determinant be exploited to devise an equivalence test for ROFs of arbitrary
product-depth and fan-in? A rudimentary approach is outlined in [Kay11]: Let g = g1(x1, . . . , xi)+
g2(xi+1, . . . , xn), where g1 and g2 are variable disjoint polynomials. Given black-box access to
f = g(Bx), where g and B ∈ GL(n, F) are unknown, can we find an A ∈ GL(n, F) such that f (Ax)
can be expressed as a sum of two variable disjoint polynomials?13 [Kay11] gave an algorithm that
finds such an A provided the number of essential variables14 of det(Hg) is exactly n.

The algorithm uses the fact that det(Hg) = det(Hg1)(x1, . . . , xi) · det(Hg2)(xi+1, . . . , xn), and
so, det(H f) is a non-zero F-multiple of det(Hg1)(Bx) · det(Hg2)(Bx). It turns out that an A ∈
GL(n, F) can be found efficiently from black-box access to det(H f) such that det(Hg1)(BAx) and
det(Hg2)(BAx) are variable disjoint; this step involves black-box factorization of det(H f) [KT90]
and elimination of redundant variables from the irreducible factors of det(H f) in a careful way
(see Claim 2.4). Now, it can also be shown that if the number of essential variables of det(Hg) is
exactly n, then g1(BAx) and g2(BAx) are variable disjoint (see Observation 2.2).

The correctness of the algorithm depends critically on the condition that the number of es-
sential variables of det(Hg) is exactly n. If this condition does not hold, then the algorithm fails
completely. The approach can be viewed as a generalization of the algorithm given in the above
example for the SP polynomial. Indeed, the number of essential variables of det(HSP) is n = sd.

Can the basic approach be used to learn orbits of ROFs? At a high level, the basic approach is
encouraging as a +-rooted ROF is a sum of variable disjoint polynomials. Let C = T1 + . . . + Ts
be a +-rooted canonical ROF, where T1, . . . , Ts are the terms of C, i.e., the polynomials computed

12The algorithm finds an A = PSB, where P is a permutation matrix and S is a diagonal matrix, from the factors of
det(H f). It then interpolates f (A−1x) (using the sparse polynomial interpolation algorithm in [KS01]) to learn P and S
(up to the symmetries of the polynomial SP).

13This problem was referred to as the polynomial decomposition problem in [Kay11]. It should not be confused with
the functional decomposition of polynomials which is also known as the polynomial decomposition problem.

14See Definition 2.1.

5

by the second (from the top) layer of gates in C. Given black-box access to f = C(Bx) = T1(Bx) +
. . . + Ts(Bx), where C and B ∈ GL(n, F) are unknown, we hope to apply the approach in [Kay11]
to find an A ∈ GL(n, F) such that T1(BAx), . . . , Ts(BAx) are variable disjoint. If we succeed in
finding A, then we wish to obtain efficient black-box access to T1(BAx), . . . , Ts(BAx) by exploit-
ing their variable disjointness. From black-box access to Ti(BAx), we get black-box access to
Qi,1(BAx), . . . , Qi,mi(BAx), where Qi,1, . . . , Qi,mi are the irreducible factors of Ti. Claim 2.3 then
lets us find a C ∈ GL(n, F) such that Qi,1(BACx), . . . , Qi,mi(BACx), for all i ∈ [s], are variable
disjoint. At this point, we plan to recurse on Qi,1(BACx), . . . , Qi,mi(BACx) that are in the orbits of
variable disjoint +-rooted ROFs of smaller size and depth.

Although the method looks promising, there are a few significant hurdles that render the
basic approach almost useless. First, we shall see (in the next section) that the number of essen-
tial variables of the Hessian determinant of a canonical ROF can be dramatically smaller than n,
although the ROF itself has no redundant variable. This is indeed a serious problem for the ap-
proach as the step of making T1(BAx), . . . , Ts(BAx) variable disjoint may break down completely.
Second, even if we manage to make T1(BAx), . . . , Ts(BAx) variable disjoint, the complexity of the
recursive algorithm may grow exponentially with the product depth of the ROF unless we gener-
ate super-efficient black-box access to T1(BAx), . . . , Ts(BAx). In the next section, we elaborate on
these (and more) hurdles and explain how we overcome them and salvage the basic approach.

1.3.2 Outline of the ROF equivalence test: Salvaging the basic approach

Without loss of generality, assume that the root node of an ROF C is a +-gate; if not, use black-box
polynomial factorization to reduce to the +-rooted case. We need to answer two questions:

(A) How do we efficiently find a transformation that makes the terms variable disjoint?

(B) How do we get efficient black-box access to the terms once they are variable disjoint?

We now elaborate on the technical hurdles that we encounter and deal with while answering these.

A. Making the terms variable disjoint

We know that the terms can be made variable disjoint if the number of essential variables in
det(HC) is exactly n. But this need not be the case. In fact, we face an even more basic hurdle.

• Hurdle 1: The Hessian determinant of a non-zero canonical ROF can be identically zero.

For instance, the Hessian determinant of (x1x2 + x3x4)(x5x6 + x7x8)+ (y1y2 + y3y4)(y5y6 + y7y8) is
identically zero over F3; the Hessian determinant of x1x2x3 + x4 is zero over any F. None of these
ROFs have redundant variables (see Observation 2.7), and yet their Hessian determinants are zero.

When is the Hessian determinant non-zero? We show in Lemma 3.1 that the Hessian determinant of
a non-zero n-variate canonical ROF C is non-zero provided char(F) = 0 or ≥ n and none of the
children of the top +-gate of C is a variable15. Henceforth, we assume that char(F) = 0 or ≥ n.
We call a variable that is directly connected to a +-gate a dangling variable, and a variable that
is directly connected to the top +-gate the top dangling variable. Since C is in canonical form (see
Definition 2.6), it can have at most one top dangling variable.

15Observe that if the top +-gate has a variable child, then the Hessian determinant is identically zero over any F.

6

Few words on the proof of Lemma 3.1: We show that the coefficient of a certain high degree
monomial in det(HC) is a product of “small”, non-zero numbers. Depending on the structure
of C, we first carefully pick a variable x in it and treat det(HC) as a univariate polynomial over
F[x \ {x}]. We then show that the coefficient of the highest degree term in x is a product of the
Hessian determinants of “smaller”, ×-rooted ROFs. We repeat this process inductively on these
smaller ROFs to show that their Hessian determinants are non-zero. The inductive process con-
structs a high degree monomial implicitly. The base case of the induction deals with Hessians
of monomials of degree at least 2. The Hessian determinant of a degree d monomial is itself a
monomial with a non-zero coefficient. Thus, the coefficient of the special monomial constructed
by the inductive process is a product of the coefficients of the Hessian determinants of monomials.

The presence of a top dangling variable makes det(HC) zero. We will see shortly how to
prevent det(HC) from vanishing. At first, let us assume that C has no top dangling variable. Now,
even if the Hessian determinant of C is non-zero, there is no guarantee that the number of essential
variables of det(HC) is the maximum possible. This poses the second and the main hurdle.

• Hurdle 2: The number of essential variables of det(HC) 6= 0 can be much smaller than n.

For example, the Hessian determinant of x1(x2x3 + x4) + y1(y2y3 + y4) has merely two essential
variables; the Hessian determinant of x1x2x3 + x4x5 has only three essential variables. For ease of
explanation, we split the above hurdle into two questions. The first one is,

• Hurdle 2a: Which variables of a canonical ROF C are essential for its Hessian determinant?

The notion of “skewed paths” turns out to be quite useful in answering this question.

Skewed paths, truly essential variables, and good and bad terms: A skewed path in C is a special structure
that can be identified with a unique “marker” monomial (see Definition 3.1). In Claim 3.2, we
show that every variable other than the dangling variables along skewed paths, the variables in
quadratic forms along skewed paths, and the variables in the (top) quadratic form of C, are truly
essential for det(HC) (see Definition 2.2)16. This knowledge enables us to categorize the terms of C
into three types – good, bad, and the quadratic form of C. A bad term looks like x · Q, where x ∈ x
and Q is a +-rooted ROF. In the example, both x1(x2x3 + x4) and y1(y2y3 + y4) are bad terms. In
x1(x2x3 + x4), the “marker” monomial x1 (which is a variable in this simple case) defines a skewed
path, x2 and x3 are the variables of the quadratic form along this skewed path, and x4 is the dan-
gling variable along this skewed path. Terms that are not bad and have degree ≥ 3 are good.

Making good terms variable disjoint. If T is a good (similarly, bad) term of C, then we say T(Bx)
is a good (respectively, bad) term of the input f = C(Bx). It follows from Definition 3.1 that the
skewed paths in C occur only in the bad terms of C, and so, from Claim 3.2, all the variables of the
good terms of C are truly essential for det(HC). This fact along with Claim 2.4 and Observation
2.2 help us infer that a slight variant of the basic strategy given in Section 1.3.1 succeeds in finding
an A0 ∈ GL(n, F) such that the good terms of f become variable disjoint under the action of A0.
See Step 1 in Section 4.1 and Appendix G for a more detailed and pictorial overview of this step.

16See the paragraph before Claim 3.2 for relevant terminologies. Partitioning a set of essential variables into truly
essential variables and ordinary essential variables helps us crucially in the arguments.

7

Making the good terms of f variable disjoint is the first step towards overcoming Hurdle 2.
But it is far from sufficient even if C is devoid of bad terms, the top quadratic form, and the top
dangling variable. This is because the algorithm may encounter bad terms, quadratic forms and
dangling variables at deeper levels of the recursion, whence the basic strategy will fail. Therefore,
we must answer the following (second) question to tackle the acute loss of essential variables in
the Hessian determinant due to the presence of skewed paths in bad terms.

• Hurdle 2b: How do we handle the bad terms and the quadratic form of C?

We call the dangling variables along skewed paths, the variables in quadratic forms along skewed
paths, and the variables of the top quadratic form of C the bad variables of C. The remaining vari-
ables are the good variables. Note that a good term of C has only good variables, whereas a bad term
has both good and bad variables. For example, x1 is a good variable of the bad term x1(x2x3 + x4),
and x2, x3, x4 are its bad variables. By Claim 3.2, the good variables are truly essential for det(HC),
but they need not be the only essential variables. Some bad variables can be truly or ordinarily
essential for det(HC) or totally absent from det(HC); this complicates the matter a bit.

Making the bad terms and the top quadratic form variable disjoint. It turns out that Claim 3.2,
Claim 2.4 and Observation 2.2 together imply that the transformation A0 is such that BA0 maps
every good variable of a (good or bad) term Tk to a linear form in zk ⊆ x, where the variable sets zk
(as Tk runs over all good and bad terms) are disjoint. Let z be the disjoint union of these sets zk, and
y := x \ z. Let `x := BA0 ◦ x for x ∈ x. Observe that the y-variables appear only in the linear forms
`x where x is a bad variable. Let [`x]y be `x restricted to the y-variables. Loosely speaking, we make
the bad terms and the top quadratic form of f variable disjoint in three (implicit) steps: “access”
the linear forms [`x]y, map them to distinct y-variables, and then remove “external variables” from
each of the terms. Let us elaborate on these steps by focusing on the bad terms.

Mapping “garbled” skewed paths back to monomials to access [`x]y: How do we access [`x]y, where
x is a variable in a quadratic form along a skewed path or a dangling variable along a skewed path?
The answer lies in the fact that a skewed path is identified with a unique “marker” monomial µ.
This monomial can potentially help us access [`x]y, where x a quadratic form or a dangling vari-
able along the skewed path µ. But the problem is that the transformation BA0 may have “garbled"
the variables of µ. If for every variable z of µ, we find `z ∈ F[z], then we can map `z to a distinct
z-variable and get back a marker monomial – this works as z is a good variable. By Claim 3.1,
such an `z is a factor of det(H f)(A0x). We can factorize det(H f)(A0x) and try to find `z, but there
is a problem: det(H f)(A0x) might have other spurious linear factors that are not `z for any z ∈ x.
Fortunately, we can distinguish `z from spurious linear factors of det(H f)(A0x) by examining the
number of essential variables of f (A0x) modulo affine forms; this crucial result is proved in Claim
2.1. So, we can safely assume without any loss of generality that `z = z for every variable z in µ.

Processing quadratic forms along skewed paths and the top quadratic form: We focus on a quadratic
form q = y1y2 + . . . + yl−1yl along a skewed path µ, and let q̃ = [`y1]y[`y2]y + . . . + [`yl−1]y[`yl]y.
We can access q̃ as follows: Treat f (BA0x) as a polynomial in y over F[z] and extract out black-box
access to the homogeneous degree-2 component in y; call it q̂. As the degree-2 monomials in y are
contributed only by the quadratic forms on skewed paths and the quadratic form of C, and there
are at most n different skewed paths, q̂ is n3-sparse as a polynomial in F[y, z]. We find the dense
representation of q̂ using the sparse polynomial interpolation algorithm of [KS01]. Observe that
the coefficient of µ in q̂ (as a polynomial in z over F[y]) is q̃. Once we collect all the q̃ for quadratic

8

forms along skewed paths, we map them simultaneously to quadratic SP polynomials in distinct
y-variables using Claim 2.3 and the QFE oracle. The existence of such a map A1 is ensured by
Claim 3.3 which shows that the variables of a quadratic form are either all truly essential for
det(HC) or they are absent from det(HC). We then argue (in Claim 4.5) that q(BA0A1x) can be
expressed as (y1 + h1)(y2 + h2) + · · ·+ (yl−1 + hl−1)(yl + hl) for some (hitherto unknown) linear
forms h1, . . . , hl ∈ F[z]. A similar process for µ = 1 takes care of the top quadratic form of C. See
Step 2.1 in Section 4.1 and Appendix G for a more detailed and pictorial overview of this step.

Handling dangling variables on skewed paths: Now let `x := BA0A1 ◦ x and u be the y-variables
that have not been ‘used up’ by the QFE oracle in the previous step. Consider a dangling variable
x along a skewed path µ. We can access [`x]u using µ, just as we accessed q̃ before, by treating
f (BA0 A1x) as a polynomial in u over F[x \ u] and extracting out the homogeneous degree-1 com-
ponent in u. However, unlike the variables of a quadratic form along a skewed path, a dangling
variable x might not enjoy the property that it is either truly essential for det(HC) or it is absent
from det(HC). So it may not be possible to map all the linear forms [`x]u for dangling variables
along skewed paths to distinct u-variables. This makes the argument here a bit subtle: We show,
using Observation 4.2, Claim 4.7 and Observation 4.4, that it is sufficient to work with any basis
B of the vector space spanned by the linear forms [`x]u as x varies over dangling variables along
skewed paths. Mapping the elements of B to distinct u-variables, using a transformation A2, au-
tomatically ‘takes care of’ the linear forms outside B. At a high level, this strategy works because
the elements of B essentially corresponds to a set of redundant variables of det(HC). See Step 2.2
in Section 4.1 and Appendix G for a more detailed and pictorial overview of this step.

Removing external variables from the terms: Let `x := BA0A1A2 ◦ x for x ∈ x. For a bad term Tk,
let yk be the union of the y-variables appearing in all `x, where x is a variable of a quadratic form
along a skewed path in Tk, and the u-variables present in all `x, where x is a dangling variable
along a skewed path in Tk. The variables not in zk] yk are the external variables of Tk. Observe that
the external variables appear in `x only if x is a dangling variable along a skewed path in Tk or a
variable of a quadratic form along a skewed path in Tk. In this step, we intend to remove these
external variables and complete the process of making the bad terms and the top quadratic form
of f variable disjoint. At a high level, this is done by examining some carefully chosen first-order
partials of f (BA0A1A2x) and engaging the skewed paths again to access the external variables.
The proof of correctness of this step involves a few “disambiguation arguments" (see Observa-
tions 4.5, 4.6 and 4.7) which ensure that relevant monomials are generated “uniquely”. See Step
2.3 in Section 4.1 and Appendix G for a more detailed and pictorial overview of this step.

Handling the top dangling variable. If det(HC) = 0 (which, by Lemma 3.1, happens if and only
if C has a top dangling variable) then we can reduce to the non-zero Hessian determinant case
as follows: Apply a random transformation on the variable set x = {x1, . . . , xn} and consider the
Hessian of the resulting f with respect to only x1, . . . , xn−1. Intuitively, the random transformation
lets us assume two facts – one, the top dangling variable of C is xn, i.e., C = C1(x1, . . . , xn−1) + xn,
where C1 is a canonical ROF with no top dangling variable; two, f = C1(Bx) + `(x) for some
B ∈ GL(n, F) such that B ◦ xn = xn and ` is an affine form. Now observe that the determinant
of the Hessian of f with respect to x1, . . . , xn−1 is an F-multiple of det(HC1

)(Bx), which is non-
zero as C1 has no top dangling variable. We can then remove the redundant variable xn from
det(HC1

)(Bx) and hope to find a D ∈ GL(n, F) such that T1(BDx), . . . , Ts−1(BDx) are variable
disjoint, where T1, . . . , Ts−1 are the terms of C1. Once D is obtained, we are left with finding `(Dx)

9

from black-box access to f (Dx) = C1(BDx) + `(Dx). Indeed, the knowledge of D and `(Dx) is
sufficient to construct an A ∈ GL(n, F) such that T1(BAx), . . . , Ts(BAx) are variable disjoint (here,
Ts = xn). See Step 3 in Section 4.1 for a more detailed overview on how to find `(Dx) by exploit-
ing the Hessian determinant again! A special case of this problem when ` is a constant also arises
in the resolution of the final hurdle (stated below). We give the proof idea for this special case next.

B. Obtaining efficient black-box access to the terms

The above process finds an A ∈ GL(n, F) such that the terms T1(BAx), . . . , Ts(BAx) are variable
disjoint. Let ri(xi) := Ti(BAx).

• Hurdle 3: How do we get efficient black-box access to r1(x1), . . . , rs(xs)?

In other words, how do we simulate a black-box query to ri(xi) using only one query to the black-
box for the input polynomial f . It is important to use only one query to f , as otherwise the time
complexity of the recursive algorithm will become exponential in the product-depth of the ROF.
The product depth of an n-variate ROF can be as high as Ω(n). We address this issue as follows.

At first, we examine the second-order derivatives of f to learn the variable sets x1, . . . , xs (see
Claim 4.13). Then, we set the variables in x1, . . . , xi−1, xi+1, . . . , xs to arbitrary field constants to
reduce the problem to securing black-box access to ri(xi) from black-box access to gi := ri(xi) + c,
where c ∈ F is unknown. If ri is quadratic or linear, then we simply interpolate gi and know ri.
Otherwise, we can still hope to learn c as it is the unique constant such that gi − c is reducible 17.
The uniqueness of c follows from the irreducibility of a +-rooted ROF (see Fact 2.5). But how do
we learn c efficiently? The Hessian determinant comes in handy again.

Finding c. Suppose ri(xi) = ri,1(xi) · . . . · ri,mi(xi), where ri,1, . . . , ri,mi are the irreducible factors
of ri, and deg(ri) ≥ 3. It follows from Corollary 3.1 that det(Hri), which equals det(Hgi), has
as one of its irreducible factors an F-multiple of ri,j for some j ∈ [mi]. The efficient black-box
polynomial factorization algorithm [KT90] gives us black-box access to all the irreducible factors
of det(Hgi). Now suppose we pick the irreducible factor α · ri,j, where α ∈ F×, from among the
irreducible factors of det(Hgi). Define a random substitution map π on the variables of xi as
follows: π(x) := cxt, where cx ∈r F and t is a fresh variable, for every x ∈ xi. Interpolate the
univariate polynomials π(gi)(t) and π(α · ri,j)(t) that are non-constant with high probability, if
|F| is sufficiently large. The degrees of π(gi) and π(α · ri,j) are upper bounded by n. To find c, we
set up and solve a linear system via the equation π(gi) = (an−1tn−1 + . . . + a0) · π(α · ri,j) + c0, 18

by pretending that an−1, . . . , a0 and c0 are variables. The system has a solution that is obtained by
choosing an−1tn−1 + . . . + a0 = π(α−1 ·∏l∈[mi]\{j} ri,l) and c0 = c. This solution is unique. To see
this, suppose an−1,1, . . . , a0,1, c0,1 and an−1,2, . . . , a0,2, c0,2 are two different solutions. Then,

((an−1,1 − an−1,2)tn−1 + . . . + (a0,1 − a0,2)) · π(α · ri,j) + (c0,1 − c0,2) = 0,

indicating that π(α · ri,j) divides (c0,1 − c0,2). But this is not possible as π(α · ri,j) is not a constant.
So, we solve the above system and declare the solution for c0 as c. This procedure works if we
pick an irreducible factor of det(Hgi) that is an F-multiple of ri,j for some j ∈ [mi]. But what if we

17More generally, this is true if ri is a multilinear polynomial having at least two non-trivial factors. But, c need not
be unique if ri is not multilinear. For example, if ri = x2, then gi − c is reducible for both c = 0 and c = 1.

18As deg(α · ri,j) ≥ 1, the degree of α−1 ·∏l∈[mi]\{j} ri,l is at most n− 1.

10

pick a “wrong” factor? Indeed, the Hessian determinant can have other “spurious” factors. The
point is that irrespective of what factor we choose, we can run the above procedure and find some
c0. If no c0 is found, then we know immediately that a wrong factor is chosen. Otherwise, we
check if gi − c0 is reducible, and if so, then take c0 as c. The uniqueness of c implies that we always
find the right c. Once we know c, we can simulate a black-box query to ri using only one query to f .

Preparing for recursion. From efficient black-box access to ri, we need to gain efficient black-box
access to the irreducible factors of ri as the algorithm essentially recurses on these factors. This
is done as follows: Use the efficient black-box polynomial factorization algorithm [KT90] to get
(not necessarily efficient) black-box access to αj · ri,j for every j ∈ [mi], where αj ∈ F× and α1 · α2 ·
. . . · αmi = 1. Claim 2.3 then allows us to find a Ci ∈ GL(|xi|, F) such that α1 · ri,1(Cixi), . . . , αmi ·
ri,mi(Cixi) are variable disjoint. Notice that we can easily get efficient black-box access to ri(Cixi)
from the efficient black-box for ri. It is now sufficient to create an efficient black-box for αj · ri,j(Cixi)
from the black-box for ri(Cixi). Substitute the variables in αl · ri,l(Cixi) by random field constants
for every l ∈ [mi]\{j}; denote this substitution map by ρ. Let βl = ρ(αl · ri,l(Cixi)). Observe
that we know βl from the already acquired (possibly inefficient) black-box for αl · ri,l(Cixi). Also,
βl 6= 0 with high probability. Then, the relation αj · ri,j(Cixi) = ρ(ri(Cixi)) ·∏l∈[mi]\{j} β−1

l produces
an efficient black-box for αj · ri,j(Cixi). The algorithm recurses on αj · ri,j(Cixi) with this black-box.

To summarize, irrespective of the level of the recursion, a required black-box can be obtained
as an expression α f (Cx + c) + β, where C ∈ M(n, F), c ∈ Fn, and α, β ∈ F are known. Thus, the
black-box query time is independent of the recursion depth. Moreover, the time taken to prepare
a black-box for a subsequent level of the recursion (i.e., to make ready the knowledge of a relevant
affine projection C, c and appropriate constants α, β) is independent of the recursion depth.

1.3.3 The approach for PE for orbits of ROFs

Let f1, f2 ∈ F[x] be polynomials in the orbits of additive-constant-free ROFs. We can assume that
they are equivalent. If not, then we run the algorithm on input f1 and f2, obtain an A ∈ GL(n, F)
and b ∈ Fn and check if f1 = f2(Ax + b) using the Schwartz-Zippel lemma [Sch80, Zip79]. This
check will fail with high probability and we will conclude that f1 and f2 are not equivalent.

If f1 ∼ f2, there exists a additive-constant-free ROF C such that f1, f2 ∈ orb(C). Using Theo-
rem 1, we find A1, A2 ∈ GL(n, F) such that there exist permutation matrices P1, P2 ∈ M(n, F),
scaling matrices S1, S2 ∈ M(n, F), and translation vectors d1, d2 ∈ Fn satisfying f1(A1x) =
C(P1S1x+d1) and f2(A2x) = C(P2S2x+d2). We reconstruct the ROFs f1(A1x) and f2(A2x) that are
in the PS orbit (see Definition 2.5) of C. It turns out that an ROF in the PS orbit of a canonical ROF
can be reconstructed uniquely up to scaling of the leaves (see Section F). As C is additive-constant-
free, all leaves of f1(A1x) and f2(A2x) are either variables, or constants that act as translation or
scaling of the variables. Let C1 and C2 be the ROFs obtained by reconstructing f1(A1x) and f2(A2x)
respectively. Once we recover the scaling and the translation of all the variables in C1 and C2 (see
Section F.3), we can transform C1 and C2 in such a way that they resemble C and differ by only a
permutation of the variables. We find this permutation using the tree isomorphism algorithm in
[AHU83] (see Fact A.4). Then, an A ∈ GL(n, F) and b ∈ Fn such that f1 = f2(Ax + b) can be
found using this isomorphism, the recovered scaling and translation, and A1, A2.

We believe that the additive-constant-free restriction can be completely removed with some
more technical effort. As an evidence supporting this belief, we show in Section E that the additive-
constant-free restriction can be dispensed with for depth-4 ROFs.

11

1.3.4 Brief comparison with other approaches

The Lie algebra associated with a polynomial19 has been used extensively to design equivalence
tests for a number of important polynomial families [Kay12,Gro12,KNST19,GS19,GGKS19,MNS20].
Can Lie algebras be used for ROF equivalence tests? It turns out that the Lie algebra of the sum-
product polynomial SP is sufficiently rich and one can indeed devise an equivalence test for SP
based on it (provided deg(SP) ≥ 3). But this is not the case for an arbitrary ROF. For example,
the Lie algebra of the ROF (x1 + 1)(x2 + 2)(x3 + 3) + (x4 + 4)(x5 + 5)(x6 + 6) is trivial; it gives
practically no information about the ROF.

It was observed in [MS21] that the average-case ANF reconstruction algorithm from [GKQ14]
already gives an equivalence test for ROANFs. But the time complexity of the algorithm in
[GKQ14] degrades rapidly with increasing fan-in of the +-gates. An arbitrary ROF has no fan-
in restriction. So, it is unclear if the algorithm in [GKQ14] can be easily adapted to give an ROF
equivalence test while preserving its efficiency.

[MS21] also observed that the average-case homogeneous depth-3 circuit reconstruction al-
gorithm in [KS19] gives an equivalence test for the sum-product polynomial20. The approach in
[KS19, GKS20] is based on a scheme for obtaining an average-case learning algorithm for a cir-
cuit class from lower bounds for the same class. The scheme is potentially useful in developing
an average-case formula reconstruction algorithm from formula lower bounds. Average-case for-
mula reconstruction being a (possibly) stronger objective, it is likely to imply an equivalence test
for ROFs. But currently, no super-polynomial lower bound is known for formulas. So the ap-
proach in [KS19, GKS20] does not yet provide an equivalence test for general ROFs.

1.4 Related work

Cubic form equivalence and associated problems. It has long been known that the polynomial
equivalence problem can be solved efficiently for quadratic forms (see Section A.2). But the diffi-
culty of the problem increases sharply for cubic forms. Cubic form equivalence is at least as hard as
the graph isomorphism problem and possibly harder [AS05]. Several other important problems–
algebra isomorphism, matrix space isometry, matrix space conjugacy, group isomorphism for cer-
tain p-groups, 3-tensor isomorphism, and trilinear form equivalence–are polynomial-time equiv-
alent to cubic form equivalence [GQ21, FGS18, BW15, AS06, AS05]. The best-known worst-case
complexity of cubic form equivalence is not significantly better than that of polynomial solvability.
However, a moderately exponential-time algorithm is known for a natural average-case version
of the cubic form equivalence problem over finite fields [GQT21].

The supposed hardness of constant-degree form equivalence (even in the average case) led
to the development of a cryptographic authentication scheme [Pat96]. The main problem studied
in this context is known as isomorphism of polynomials with one secret (IP1S). In the IP1S problem,
we are given two tuples of polynomials (f1, . . . , fm) and (g1, . . . , gm) and we wish to check if there
is an invertible A such that fi = gi(Ax) for all i ∈ [m]. Efficient algorithms are known only for the
quadratic IP1S problem [IQ19, BFP15], i.e., when f1, . . . , fm and g1, . . . , gm are quadratic forms21.

19The Lie algebra associated with (the group of symmetries of) an n-variate polynomial f is the space of matrices
(ai,j)i,j∈[n] satisfying the equation ∑i,j∈[n] ai,j · xj

∂ f
∂xi

= 0.
20The SP polynomial is thus a unique example for which three different equivalence testing algorithms are known.
21Even the quadratic case is quite non-trivial for IP1S as we are dealing with tuples of polynomials.

12

Special polynomial families. Spurred by applications in algebraic and geometric complexity
theory, [Kay11] studied an interesting variant of the polynomial equivalence problem for well-
known polynomial families. In this setting, we fix a polynomial family (say, the determinant),
take input black-box access to a polynomial f , and check if f is in the orbit of a polynomial in
the family. Starting with the algorithms in [Kay11], efficient equivalence tests were given for a
number of polynomial families, namely the power symmetric polynomials, the elementary sym-
metric polynomials, the sum-product polynomials, the determinant, the permanent, the iterated
matrix multiplication (IMM) polynomials, the design polynomials, and the continuant polynomi-
als [Kay11,Kay12,Gro12,KNST19,GS19,GGKS19,MNS20,MS21]. Some of these equivalence tests
have interesting applications in circuit reconstruction [KNS19,BGKS21]. [GKP18] gave an efficient
equivalence test for the family of sums of univariates, which is a generalization of the family of
power symmetric polynomials. Recently, [KS21b, KS21a] gave a randomized polynomial-time al-
gorithm (in the Turing machine model) to solve the decision version of equivalence testing for the
power symmetric polynomials over C, where the input polynomial has rational coefficients.

Results on ROFs. Reconstruction algorithms and hitting-sets have been intensely studied for
ROFs [HH91, BHH95a, BC98, BB98, SV14, Vol16, MV18]. Deterministic polynomial-time recon-
struction and hitting-sets are known for ROFs [MV18, SV14]. Recently, [MS21, ST21] gave quasi-
polynomial time hitting-sets for orbits of ROFs. It is worth noting that despite its apparent weak-
ness, the ROF model has served as a testbed for developing effective tools and techniques for
analyzing circuits. For example, a construction of k-independent polynomial maps that played a
vital role in hitting-set constructions for several important circuit classes originated from a study of
ROFs [SV14]. [RS11] studied a special case of ET for ROFs; they gave a polynomial-time algorithm
to check if two constant-free ROFs are permutation equivalent22. They also observed that permu-
tation equivalence for read-2 formulas and PE for read-4 formulas are graph isomorphism hard.
Efficient learning algorithms are also known for Boolean read-once formulas [AHK93, BHH95b].
Read-once formulas have been used as “hard functions” in finer lower bounds and separation
results for low-depth Boolean circuits [Sip83, HRST17, HHTT22]. [Gur77, KLN+93] gave a char-
acterization of functions computable by Boolean ROFs, and [Vol16] gave a characterization of
polynomials computable by arithmetic ROFs.

Other results on PE. Two natural special cases of the polynomial equivalence problem are trans-
lation equivalence and scaling equivalence. In the translation equivalence problem, we are given
black-box access to two n-variate polynomials f and g and we wish to determine if there is a
b ∈ Fn such that f = g(x + b). In the scaling equivalence problem, we wish to find out if there
a diagonal matrix S ∈ GL(n, F) such that f = g(Sx). Efficient algorithms are known for both
translation and scaling equivalence tests [DdOS14, Kay12, BRS17].

[Kay11] gave an efficient algorithm to check if a given n-variate polynomial f is equivalent
to a multilinear polynomial, provided the dimension of the space spanned by the second-order
partials of f is (n

2). This result implies that equivalence test is easy for random multilinear poly-
nomials. But notice that the dimension of the second-order partials of a typical ROF (for e.g., the
sum-product polynomial) is substantially smaller than (n

2).

22Two polynomials f , g ∈ F[x] are permutation equivalent if there is a permutation matrix P such that f = g(Px).

13

2 Preliminaries

Notations. For n ∈ N, [n] = {1, . . . , n} and x = {x1, . . . , xn}. For g ∈ F[x], var(g) is the set of
variables appearing in g. The space of polynomials having degree at most d will be denoted as
F[x]≤d. For S ⊆ F[x], 〈S〉 is the F-linear space spanned by S. GL(n, F) is the set of n× n invertible
matrices over F. For A ∈ GL(n, F), Ax is the column vector obtained by multiplying A with
(x1 · · · xn)T. A detailed list of other notations is given in Table 1 of the appendix.

2.1 Structural preliminaries

2.1.1 Essential and redundant variables

Definition 2.1 (Essential and redundant variables). The number of essential variables of an n-variate
g ∈ F[x] is s := minA∈GL(n,F) |var(g(Ax))|. The number of redundant variables of g is (n− s).

Following [Car06], we denote the number of essential variables of g by Ness(g). [Car06] gave
a polynomial-time algorithm that takes input the coefficient vector of g and finds an A ∈ GL(n, F)
such that |var(g(Ax))| = Ness(g). [Kay11] gave a randomized polynomial-time algorithm that
does the same given black-box access to g. These algorithms use a neat relation between Ness(g)
and dim

〈
∂g
∂x : x ∈ x

〉
. See Claim 2.3 in [KNST19] for a proof of the following fact.

Fact 2.1 (Essential variables and partials). Let d ∈ N and char(F) = 0 or > d. If g ∈ F[x]≤d, then
Ness(g) = dim

〈
∂g
∂x : x ∈ x

〉
. For z ⊆ x,

{
∂g
∂z : z ∈ z

}
is a basis of

〈
∂g
∂x : x ∈ x

〉
if and only if there is

an A ∈ GL(|x|, F) that maps every variable in x \ z to itself, var(g(Ax)) = z, and Ness(g(Ax)) = |z|.

We say a set z ⊆ x is a set of essential variables of g if
{

∂g
∂z : z ∈ z

}
is a basis of

〈
∂g
∂x : x ∈ x

〉
;

variables in x \ z are redundant for g. We categorize the essential variables further as follows.

Definition 2.2 (Truly and ordinary essential variables). An x ∈ x is a truly essential variable of
g ∈ F[x] if for every A ∈ GL(|x|, F) that maps x to itself, x ∈ var(g(Ax)). If z is a set of essential
variables of g, then a z ∈ z that is not truly essential is an ordinary essential variable of g in z.

Observation 2.1 (Characterizing truly essential variables using partials). Let d ∈N and char(F) =
0 or > d. If g ∈ F[x]≤d, then x ∈ x is a truly essential variable of g if and only if ∑x′∈x αx′

∂g
∂x′ = 0 for

αx′ ∈ F implies αx = 0, i.e., no F-linear dependence of
{

∂g
∂x′ : x′ ∈ x

}
involves ∂g

∂x .

It follows that every set of essential variables of g contains all the truly essential variables.
The proof of the observation is in Section B.1. The next fact follows from the proof of Fact 2.1.

Fact 2.2 (Structure of a matrix for removing redundant variables). Let d ∈ N, char(F) = 0 or
> d, and g ∈ F[x]≤d. Let z be a set of essential variables of g, z1 the set of truly essential variables of g,
z2 = z \ z1, and y = x \ z. Then, there is an A ∈ GL(|x|, F) that maps every variable in z1] y to itself,
maps every z ∈ z2 to a linear form in y] {z}, and var(g(Ax)) = z.

The proofs of the following observations are given in Sections B.2, B.3, and B.4.

Observation 2.2 (Truly essential variables map to linear forms in essential variables). Let d ∈
N, char(F) = 0 or > d, x and y be disjoint sets of variables, and h ∈ F[x]≤d. Let z ⊆ x] y and
A ∈ GL(|x|+ |y|, F) such that |z| = Ness(h) and h(A · (x, y)T) ∈ F[z] (where we pretend that h is a
polynomial in x] y). Then, A maps every truly essential variable of h to a linear form in z.

14

Observation 2.3 (Truly essential variables from factors). Let d ∈ N, char(F) = 0 or > d, and x and
y be disjoint sets of variables. Let h(x, y) = g(x)e · p(x, y) ∈ F[x, y], where g(x), p(x, y) are coprime,
deg(h) ≤ d, and e ≥ 1. If Ness(g) = |x|, then every x-variable is truly essential for h.

Observation 2.4 (Truly essential pairs of variables). Let d ∈ N, char(F) = 0 or > d, and {x1, x2}
and y be disjoint sets of variables. Let h(x1, x2, y) = ∑i≥0 pi(y) · (x1x2)i be a polynomial of degree at most
d such that pi(y) 6= 0 for some i ≥ 1. Then, x1 and x2 are truly essential for h.

2.1.2 Essential variables modulo affine forms

Let g ∈ F[x] and ` = ∑i∈[n] αixi + β, a non-constant affine form in F[x]. Let I = {i ∈ [n] : αi 6= 0},
and ≺ a monomial ordering on F[x]. Suppose, xj has the highest precedence among {xi : i ∈ I}
according to ≺. There is a natural ring isomorphism between the quotient ring F[x]/〈`〉 and
F[x \ {xj}], where 〈`〉 is the ideal generated by `. We define g modulo ` (denoted g`) as:

g` := g

x1, . . . , xj−1,−αj
−1

 ∑
i∈[n]\{j}

αixi + β

 , xj+1, . . . , xn

 .

Definition 2.3. The number of essential variables of g modulo ` is defined as Ness(g`).

Notice that the ordering ≺ is implicit in the above definition. But, the following observation
shows that the exact choice of ≺ is unimportant here. Its proof is given in Section B.5.

Observation 2.5 (Soundness of Definition 2.3). For j ∈ I, let Wj =
〈

∂ϕj(g)
∂x : x ∈ x

〉
, where ϕj(g) is

obtained by substituting xj in g by−αj
−1
(

∑i∈[n]\{j} αixi + β
)

. Then, for j1, j2 ∈ I, dim Wj1 = dim Wj2 .

2.1.3 Orbit of a polynomial

Definition 2.4 (Orbit of a polynomial). The orbit of g ∈ F[x], denoted orb(g), is defined as orb(g) :=
{g(Ax + b) : A ∈ GL(|x|, F), b ∈ F|x|}.

Remark. Our results, especially Theorem 1, hold even if we consider a more general definition of
the orbit of a polynomial: Let x, y be sets of n and m variables, where n ≥ m, and h ∈ F[x], g ∈ F[y].
Then, h ∈ orb(g) if there is exist a A ∈ Fm×n of rank m and b ∈ Fm such that h = g(Ax + b).

Definition 2.5 (PS orbit of a polynomial). Let g, h ∈ F[x]. We say that h is in the PS orbit of g,
denoted PS-orb(g), if there exist a |x| × |x| permutation matrix P, a |x| × |x| invertible diagonal
(scaling) matrix S, and a b ∈ F|x| such that h = g(PSx + b).

The following facts are easy to prove.

Fact 2.3. If h ∈ orb(g), then Ness(g) = Ness(h).

Fact 2.4. Let d ∈ N, char(F) = 0 or > d, g ∈ F[x]≤d, ` ∈ F[x] a non-constant affine form, A ∈
GL(|x|, F), b ∈ F|x|, g′ = g(Ax + b), and `′ = `(Ax + b). Then, Ness(g′`′) = Ness(g`).

15

2.1.4 Read-once formulas

An arithmetic formula C over F is a tree whose leaves are labelled by variables and F-constants,
other nodes (gates) are labelled by + and × operations, and edges by F-constants. A node v
computes a polynomial naturally: if v is a leaf, it computes its label; if v is a + gate (similarly, a ×
gate) having v1, . . . , vm as children such that for every i ∈ [m], vi computes gi ∈ F[x] and the edge
connecting v and vi is labelled by αi ∈ F, then v computes ∑i∈[m] αigi (respectively, ∏i∈[m] αigi). We
will identify a node with the polynomial it computes and C with the polynomial computed by its
root node. Without loss of generality, C has alternate layers of + and × gates, every non-leaf gate
has fan-in at least two, and every child of a × gate computes a non-constant polynomial.

An arithmetic formula C over F is a read-once formula (ROF) if every leaf in C is labelled by
either a distinct variable or an F-constant. The product-depth of C, denoted ∆, is the number of
× gates in a longest path in C from the root to a leaf. We call C a +-rooted (similarly, a ×-rooted)
ROF if the root of C is a + gate (respectively, a × gate). The following fact is easy to verify.

Fact 2.5 (Irreducibility of an ROF). The polynomial computed by a +-rooted ROF is irreducible over F.

Definition 2.6 (Canonical ROF). An ROF C is canonical if it satisfies the following properties:

1. C has alternate layers of + and × gates.

2. Every non-leaf gate in C has fan-in at least 2.

3. Every child of a × gate computes a non-constant polynomial.

4. There are no labels on the edges of C.

5. A + gate has at most one constant and at most one variable among its children, but not both.

6. Suppose there is a + gate that has among its children a variable and a × gate v such that v
has two children – a variable and a + gate v′. Then, v′ has no constant among its children.

Let C be a +-rooted canonical ROF over F. The equation C = T1 + · · ·+ Ts + γ means that
T1, . . . , Ts are the non-constant children and γ ∈ F is the constant child of the root + gate. Note
that a constant in a canonical ROF C only appears as a child of a + gate. Thus, all constants present
in C are additive-constants. An example of a canonical ROF is an ROANF.

Definition 2.7 (ROANF). A canonical ROF C is in the read-once alternating normal form (ROANF) if
it is a complete binary tree, the root of C is a + gate, the bottom-most layer of C contains × gates,
and all the leaves are labelled with distinct variables.

Definition 2.8. An ROF is additive-constant-free if it has no additive-constants.

The following observations are proved in Section B.6 and B.7 respectively.

Observation 2.6 (Orbit of a canonical ROF). Let C be an ROF over F. Then, there is a canonical ROF
C′ over F such that C′ ∈ orb(C). If C is additive-constant-free, then so is C′.

Observation 2.7 (Essential variables of a canonical ROF). The set of variables labelling the non-
constant leaves of a canonical ROF C is the set of essential variables of C, i.e., C has no redundant variable.

16

If C is not canonical, then all the variables of C need not be essential. For e.g., x1 + · · ·+ xn is
an ROF with only one essential variable. The above observations imply the following:

Observation 2.8. Let C be an ROF, C′ a canonical ROF, and C′ ∈ orb(C). Then, Ness(C) = |var(C′)|.

We now state an important property of a canonical ROF which will be used in the equivalence
test in Section 4. A proof of this is given in Section B.8.

Claim 2.1 (Canonical ROF modulo an affine form). Let n ∈ N, char(F) 6= 2, |F| > n, C be a +-
rooted n-variate canonical ROF, and ` an affine form which is not a constant multiple of some variable.
Then, Ness(C`) ≥ n− 2.

2.1.5 Hessian of a polynomial

Definition 2.9 (Hessian of a polynomial). The Hessian of g ∈ F[x], denoted as Hg, is the n × n

matrix whose (i, j)-th entry is ∂2g
∂xi∂xj

. The determinant of Hg is called the Hessian determinant of g.

The Hessian matrix appears naturally in the Taylor expansion of a polynomial and has im-
portant applications in optimization, second derivative tests, etc. In algebraic complexity, the rank
of the Hessian plays a crucial role in the best known lower bound on the determinantal complexity
of the permanent [MR04, CCL10]. As mentioned in Section 1, the Hessian determinant is an effec-
tive tool for designing equivalence tests for the sum-product polynomial, the power symmetric
polynomial [Kay11], and the sum of univariates model [GKP18]. A suitable 4-th order general-
ization of the Hessian has been used in [GKP18] to study the Waring decomposition problem in
the average case. In this work, we focus on understanding the essential variables of the Hessian
determinant of a general ROF (see Section 3) to devise an equivalence test for ROFs.

A few basic properties of the Hessian are given below.

Observation 2.9. Let C = T1 + · · ·+ Ts + γ be an ROF over F, where for every l ∈ [s], Tl is a ×-rooted
sub-ROF of C and γ ∈ F. Suppose the rows and columns of HC are labelled by var(T1), . . . , var(Ts) in
order. Then, HC is a block diagonal matrix, where for l ∈ [s], the l-th block on the diagonal is HTl .

Fact 2.6 (Chain rule). Let g ∈ F[x] and h = g(Ax) for A ∈ M(|x|, F). Then, Hh = AT · Hg(Ax) · A.

Fact 2.7. Let g ∈ F[x] and b ∈ F|x|. Then, Hg(x+b) = Hg(x + b).

Fact 2.8. Let g ∈ F[x], A ∈ GL(|x|, F), b ∈ F|x| and h = g(Ax + b). Then, det(Hh) = α2 ·
det(Hg)(Ax + b), where α = det(A).

2.2 Algorithmic preliminaries

Algorithms to remove redundant variables from a polynomial are known [Car06, Kay11]. In the
claim below, we mention a slightly general version of such an algorithm. Its proof follows from
Fact 2.1 (see also the proof of Claim 2.3 in [KNST19]).

Claim 2.2 (Elimination of redundant variables). Let d ∈ N, char(F) = 0 or > d, and |F| ≥ 2|x|d.
There is a randomized poly(|x|, d) time algorithm Remove-Redundant-Vars that takes input black-box
access to a g ∈ F[x]≤d and a set y ⊆ x s.t. x \ y contains a set of essential variables of g, and outputs an
A ∈ GL(|x|, F) s.t. A maps every y-variable to itself and g(Ax) is y-free and has no redundant variables.

17

If g1, . . . , gm are pairwise variable disjoint, then it can be shown that Ness(g1 · · · gm) = Ness(g1)+
. . .+ Ness(gm) over any field. The following claim proves the converse and, more importantly, pro-
vides an algorithm to find a transformation that makes g1, . . . , gm pairwise variable disjoint.

Claim 2.3 (Making polynomials variable disjoint). Let d ∈N, char(F) = 0 or > d, and |F| ≥ 2|x|d.
There is a randomized poly(|x|, d) time algorithm that takes input black-box access to g1, . . . , gm ∈ F[x],
where g1 · · · gm ∈ F[x]≤d and Ness(g1 · · · gm) = ∑i∈[m] Ness(gi), and outputs an A ∈ GL(|x|, F) such
that g1(Ax), . . . , gm(Ax) are pairwise variable disjoint and individually free of redundant variables.

The claim is proved in Section B.9. The next claim, which generalizes the above claim, is used
crucially in the equivalence test presented in Section 4. It is proved in Section B.10.

Claim 2.4 (Making factors variable disjoint). Let d ∈N, char(F) = 0 or > d, and |F| ≥ max
{

2|x|d, d6}.
There is a randomized poly(|x|, d) time algorithm that takes input black-box access to an f = g(Bx + d),
where B ∈ GL(|x|, F), d ∈ F|x|, and g ∈ F[x]≤d such that g = g1 · · · gm for pairwise variable disjoint
g1, . . . , gm ∈ F[x]≤d, and does the following: (Here, B, d, g, and g1, . . . , gm are unknown to the algorithm.)

1. It computes an A ∈ GL(|x|, F) such that g1(BAx + d), . . . , gm(BAx + d) are pairwise variable
disjoint and individually free of redundant variables. (g1, . . . , gm need not be irreducible.)

2. It computes a set V of pairwise disjoint subsets of x such that for every i ∈ [m], there exist hi,1, . . . , hi,mi ∈
F[x] satisfying ∏l∈[mi] hi,l = gi(Bx + d), and V = {var(hi,l(Ax)) : i ∈ [m], l ∈ [mi]}.

3 The Hessian of an ROF

In this section, we state some important properties of the Hessian determinant of a canonical ROF.
These properties play a crucial role in the equivalence test given in Section 4 and allow us to
use the Hessian determinant to learn valuable information about the matrix mapping the input
polynomial to a canonical ROF. We shall denote the Hessian of a polynomial g by Hg.

Lemma 3.1 (det(HC) 6= 0). Let n ∈ N and char(F) = 0 or ≥ n. Let C = T1 + · · · + Ts + γ be a
canonical ROF over F, where for every k ∈ [s], Tk is a ×-rooted canonical ROF, |var(Tk)| ≤ n and γ ∈ F.
If for every k ∈ [s], Tk computes a polynomial of degree at least 2, then det(HC) 6= 0.

The above lemma is proved in Section C.1. For our equivalence test, the mere non-zeroness
of the Hessian determinant is not enough; we also need some knowledge about its factors. The
following claim, proved in Section C.2, gives us some of these factors.

Claim 3.1 (Factors of det(HC)). Let F be an arbitrary field and C a canonical ROF over F. Let Q be a
+-rooted sub-ROF of C or a variable connected to a × gate in C. Let Q1, . . . , Qm be the siblings of Q, i.e.,
for every l ∈ [m], Ql is either a variable or a +-rooted sub-ROF of C and has the same parent as Q. If
|var(Q1)|+ · · ·+ |var(Qm)| = e, then the multiplicity of Q as a factor of det(HC) is at least (e− 1).

The following corollary is an immediate consequence of the above claim.

Corollary 3.1. Let F be an arbitrary field and C = T1 + · · ·+ Ts + γ a canonical ROF over F, where for
every k ∈ [s], Tk is a ×-rooted canonical ROF and γ ∈ F. If k ∈ [s] is such that Tk computes a polynomial
of degree at least 3, then there is a +-rooted or a variable child Q of Tk such that Q is a factor of det(HC).

18

In the remainder of this section, we describe the variables that are essential for det(HC) and
the variables that do not appear in it. We first define the notion of “skewed paths" which helps us
in characterizing these variables.

Definition 3.1 (Skewed path). Let Q be a +-rooted sub-ROF of C and T1, . . . , Tm be the product
gates on the path from the root of C to Q. If for all i ∈ [m], Ti has just two children – a +-rooted
ROF containing Q and a variable xi – then we say that the path to Q is skewed and identify this
path with the “marker” monomial µ = ∏i∈[m] xi. We say x1, . . . , xm are in the skewed path.

Few other terminologies. We call a variable x a dangling variable if its parent in C is a + gate. For
a +-rooted sub-ROF Q = T1 + · · ·+ Ts + γ, where at most one of T1, . . . , Ts is a variable and the
rest are ×-rooted ROFs, we call the sum of all Ti computing a degree two monomial the quadratic
form of Q. Also, a variable x is said to be in the quadratic form of Q if it is in var(Ti) for some Ti
computing a degree two monomial. Suppose that the path to a +-rooted sub-ROF Q is skewed,
and the skewed path to Q is identified by the monomial µ. Then, if x is a dangling variable
connected to the top-most + gate in Q, we say that x is the dangling variable along the skewed path
µ. Similarly, we call the quadratic form of Q the quadratic form along the skewed path µ. We now
describe the essential variables of det(HC) using these terminologies.

Claim 3.2 (Essential variables of det(HC)). Let n ∈ N, char(F) = 0 or ≥ n, and C = T1 + · · · +
Ts + γ be a canonical ROF computing an n-variate polynomial such that for all k ∈ [s], deg(Tk) ≥ 2 and
γ ∈ F. Then, every variable in var(C) other than the variables in the quadratic form of the top-most + gate
of C, the dangling variables along skewed paths and the variables appearing in the quadratic forms along
skewed paths is truly essential for det(HC).

The above claim is proved in Section C.3. The following two claims proved in Sections C.4
and C.5 describe some (but not all) variables that are not present in det(HC).

Claim 3.3 (Variables of quadratic forms). Let Q be a +-rooted sub-ROF of C and y be the set of all
variables in the quadratic form of Q. Then, either all y-variables are present in det(HC) or all are absent.
Further if all y-variables are present in det(HC), then they are also truly essential for det(HC).

Claim 3.4 (Missing dangling variables). Let C = T1 + · · · + Ts + γ, where T1, . . . , Ts are ×-rooted
sub-ROFs and γ ∈ F. If for any k ∈ [m], Tk = xQ for a +-rooted sub-ROF Q, and y is a dangling variable
connected to the top-most + gate of Q, then y is not present in det(HC).

4 Equivalence test for ROFs

In this section, we prove Theorem 1. Suppose that we are given black-box access to an f ∈ F[x] in
the orbit of an unknown canonical ROF C. We can assume that C is +-rooted: Suppose the root of C
is a× gate and C = g1 · · · gm, where for every i ∈ [m], gi is either a variable or a +-rooted canonical
ROF. We obtain black-box access to the irreducible factors f1, . . . , fm′ of f using the algorithm
in [KT90]. Fact 2.5 implies m = m′. We can assume that for every i ∈ [m], fi ∈ orb(gi)

23.
Then, we apply the algorithm given in Claim 2.3 on f1, . . . , fm to compute an A0 ∈ GL(n, F) such
that f1(A0x), . . . , fm(A0x) are pairwise variable disjoint. For i ∈ [m], let xi = var(fi(A0x)) and
f ′i (xi) = fi(A0x). Suppose, for every i ∈ [m], we could compute an Ai ∈ GL(|xi|, F) such that

23Here we are using a slightly general definition of orbit; see the remark after Definition 2.4.

19

f ′i (Aixi) ∈ PS-orb(gi). Let A := diag(A1, . . . , Am), which is block-diagonal. Then, f (A0Ax) ∈
PS-orb(C). Thus, the problem reduces to performing equivalence tests for +-rooted canonical
ROFs. Before giving the equivalence test, we first give a high-level description of it.

4.1 An overview of the algorithm

We are given black-box access to an f ∈ F[x] such that there exist a B ∈ GL(n, F), a d ∈ Fn, and a
canonical ROF C satisfying f = C(Bx+d). Let C = T1 + · · ·+Ts +γ, where at most one of the terms
T1, . . . , Ts is a variable and the rest are ×-rooted ROFs, and γ ∈ F. Also, f = T̂1 + · · ·+ T̂s + γ,
where for all k ∈ [s], T̂k = Tk(Bx + d). The equivalence test can be divided into two phases. In the
first phase, we compute an A0 ∈ GL(n, F) such that T̂1(A0x), . . . , T̂s(A0x) are variable disjoint. In
the second phase, we recursively perform equivalence test on the factors of T̂1(A0x), . . . , T̂s(A0x).
A pictorial overview of the algorithm is given in Appendix G.

Phase 1: Making terms variable disjoint

We rearrange and divide the terms of C and of f into four groups: Terms T1, . . . , Ts1 are called the
“good” terms of C if none of them is a dangling variable, nor a degree 2 monomial, nor does
it look like x · Q for some x ∈ x and a +-rooted ROF Q. Similarly, T̂1, . . . , T̂s1 are the good
terms of f . Terms Ts1+1, . . . , Ts2 are called the “bad” terms of C if each of them looks like x · Q
for some x ∈ x and a +-rooted ROF Q; similarly T̂s1+1, . . . , T̂s2 are the bad terms of f . Observe
that the skewed paths in C occur only in the bad terms of C. If C has a top dangling variable,
then without loss of generality Ts = xn, and Ts2+1 + · · · + Ts′ is the top quadratic form where
s′ = s− 1. If C does not have a top dangling variable, then Ts2+1 + · · ·+ Ts′ is the top quadratic
form where s′ = s. If C has a top dangling variable, then let ` := T̂s. This phase can be divided
into three steps. In the first step, we make all the good terms variable disjoint. In the second

step, we make all the bad and quadratic terms variable disjoint and ensure that ∑s′
k=s2+1 T̂k maps

to (y1 + c1)(y2 + c2) + · · · (yl−1 + cl−1)(yl + cl) for some y1, . . . , yl ∈ x and c1, . . . , cl ∈ F. If C has
a top dangling variable, then in the third step, we map ` to an affine form in a single variable.

Step 1: Making the good terms variable disjoint. To make the terms variable disjoint, we make
extensive use of the Hessian determinant. If C does not have a top dangling variable, then h =
det(H f) 6= 0 (see Lemma 3.1 and Fact 2.8). Otherwise, we apply a random transformation R ∈
Fn×n to f and compute h = det(H1); here H1 is the Hessian of f (Rx) with respect to {x1, . . . , xn−1}.
In this case, we refer to xn as u0. If C does not have a top dangling variable, then let R = In×n and
H1 = H f . Let H2 be the Hessian of ∑k∈[s′] Tk.24 Note that H1 and H2 are n× n matrices if C has
no top dangling variable and (n− 1)× (n− 1) matrices otherwise. We show in Claim 4.2 that in
both cases, h is a non-zero constant multiple of det(H2)(BRx + d). We then invoke Make-Factors-
Variable-Disjoint() (see Claim 2.4) on h to compute an A0 ∈ GL(n, F) that makes the factors of h,
i.e., h1 = det (HT1) (BRx + d), . . . , hs2 = det(HTs2

)(BRx + d) variable disjoint.25

For all k ∈ [s2], let var(hk(A0x)) = zk; as hk(A0x) has no redundant variables, all variables in
zk are essential for it. Let z′k ⊆ zk be the set of truly essential variables and z′′k := zk \ z′k the set of
ordinary essential variables in zk. Let z =]k∈[s2]zk and y = x \ z. From Claim 3.2, all variables

24We stress that the Hessian of a polynomial g is with respect to var(g) (unless mentioned otherwise).
25We need not mention det

(
HTs2+1

)
, . . . , det

(
HTs′

)
as these are nonzero constants.

20

in C other than the top dangling variable, the variables appearing in the top quadratic form, the
dangling variables along skewed paths (see Definition 3.1) and the variables appearing in the
quadratic forms along skewed paths are truly essential for det(H2). In particular, for all good
terms Tk, |var(Tk)| =

∣∣z′k∣∣ = |zk|; by applying a permutation on the variables in C if necessary, we
can assume that var(Tk) = z′k = zk. We then argue (using Observation 2.2) that for all k ∈ [s1] and
all z ∈ zk, BRA0 ◦ z ∈ F[zk]. Hence, the good terms T̂1(RA0x), . . . , T̂s1(RA0x) are variable disjoint.

We also use Claim 2.1 to compute an affine transformation26 Cx + b that maps all the “good”
linear factors of h(A0x) to constant multiples of distinct variables (while preserving the variable
disjointness of T̂1(RA0x), . . . , T̂s1(RA0x)). A linear factor of h(A0x) is good, if there exists an x ∈ x
connected to a × gate (of C) computing a polynomial of degree at least 3 such that BRA0x + d
maps x to a constant multiple of that factor. Finally, we update A0 to RA0C and b to RA0b.

Step 2: Making the bad and quadratic terms variable disjoint. The only variables in a bad term
Tk that need not be truly essential for det (H2) are the dangling variables along skewed paths and
the variables appearing in the quadratic forms along skewed paths – call these the “bad” variables.
We show (using Observation 2.2) that all other variables are already mapped to affine forms in zk
by BA0x + Bb + d. Thus, we only need to handle the linear forms that these bad variables map
to. Here skewed paths help us. If z ∈ z′k is a variable in a skewed path in Tk and its sibling in
Tk is Q, then by “absorbing” an appropriate constant in Q(BA0x + Bb + d), we can assume that
BA0x + Bb + d maps z to a variable z′.27 In fact, by permuting the variables in C if necessary, we
can assume that z′ = z. Hence, each skewed path in f (A0x + b) is a “marker” monomial in z.

Step 2.1 (Processing quadratic forms along skewed paths). At first, we treat f (A0x+b) as a polynomial
in y = x \ z over F[z] and obtain black-box access to the homogeneous degree-2 component q̂
in y of f (A0x + b). The coefficients of the y-monomials of q̂ are n-sparse polynomials in F[z];
the monomials of these coefficients correspond to skewed paths and the constant terms of these
coefficients originate from the top quadratic form of C. As q̂ is an n3-sparse polynomial in F[z, y],
we can interpolate it using the sparse polynomial interpolation algorithm in [KS01]. Now, by
treating q̂ as a polynomial in z over F[y], we see that the coefficients of the z-monomials of q̂ are
related to the “unprocessed” quadratic forms along skewed paths as follows.

Let q0 be the top quadratic form of C, q1, . . . , qm the quadratic forms along skewed paths
whose variables do not appear in det(H2) (see Claim 3.3), and µ1, . . . , µm the corresponding skewed
paths. If qi = y1y2 + · · ·+ yl−1yl , then we show that the coefficient of µi in q̂ (if i = 0, then the F[y]-
constant term in q̂) is q̃i :=

[
`y1

]
y

[
`y2

]
y + · · ·+

[
`yl−1

]
y

[
`yl

]
y. Here, for any x ∈ x, `x = BA0 ◦ x

and [`x]y is `x restricted to the y-variables. So, we can use Claim 2.3 and QFE (see Fact A.3) to
map the coefficients of all the z-monomials of q̂ to variable disjoint, canonical quadratic forms
(i.e., quadratic forms that look like y1y2 + · · · + yl−1yl). We then argue (in Claim 4.5) that if A′1
is the matrix obtained by combining the matrices output by QFE on q̃1, . . . , q̃m and A1 = A0A′1,
then for q̂i := qi(Bx + d), q̂i(A1x + b) = (y1 + h1)(y2 + h2) + · · ·+ (yl−1 + hl−1)(yl + hl) for some
(hitherto unknown) affine forms h1, . . . , hl ∈ F[z].28 We can assume that the y-variables in qi and

26Although Phase 1 computes an affine transformation A0x + b, it only outputs A0. Indeed, the terms of f (A0x + b)
are variable disjoint if and only if the terms of f (A0x) are variable disjoint.

27Absorbing an appropriate constant into Q (i.e., rescaling Q) essentially means that we are starting with a different
(but equally valid) B and d. But this is fine as the algorithm is oblivious to the choice of B and d.

28The affine form hi in Step 2.1 should not be confused with the Hessian determinant hi in Step 1.

21

q̂i(A1x + b) are the same by applying a permutation on the variables of C if necessary.

Step 2.2 (Handling dangling variables along skewed paths). Call the y-variables not appearing in q̂0(A1x+
b), . . . , q̂m(A1x + b) the u-variables. The u-variables appear only in the linear forms correspond-
ing to the dangling variables along skewed paths (that are not truly essential for det(H2)) and the
top dangling variable. We treat f (A1x + b) as a polynomial in u over F[x \ u] and obtain black-
box access to the homogeneous degree-1 component ̂̀ in u of f (A1x + b). The coefficients of the
u-variables of ̂̀ are n-sparse polynomials in F[z]; the monomials of these coefficients correspond
to skewed paths and the constant terms of these coefficients originate from the top dangling vari-
able. As ̂̀ is an n2-sparse polynomial in F[z, u], we interpolate it using [KS01]. Now, by treating ̂̀
as a polynomial in z over F[u], we see that the coefficients of the z-monomials of ̂̀ are related to
the “unprocessed” dangling variables along skewed paths as follows.

Let u0 be the top dangling variable of C, x1, . . . , xm′ the dangling variables along skewed paths
in C that are not truly essential for det(H2), and µ1, . . . , µm′ the corresponding skewed paths. Then,
[`xi]u (where `xi is the linear form that BA1x maps xi to) is the coefficient of µi in ̂̀ and the F[u]-
constant term in ̂̀ is [`u0]u. We then find a basis B of the coefficients of z-monomials (which are
linear forms in u) and compute an A′2 that maps these basis elements to distinct u-variables. Now
there is a subtle point to address here: The size of B can possibly be strictly less than m′ + 1, which
is the number of “unprocessed” dangling variables. And yet we wish to show that A′2 takes care
of all the m′ + 1 dangling variables. Let us see (at a high level) how this works.

We argue that the elements of B are of two kinds. First, we show (in Observation 4.2) that
for x ∈ {u0, x1, . . . , xm′}, [`x]u is always in B if x does not appear in det(H2); this part of B is
independent of the choice of the basis B. Second, we show in Claim 4.7 that the remaining ele-
ments of B correspond to a set of redundant variables of det(H2) among the variables appearing
in det(H2); this part varies with the choice of B. This structure of B helps us prove the follow-
ing: For k ∈ {s1 + 1, . . . , s2}, let x′k be the set of all x ∈ var(Tk) such that [`x]u is in B. Let yk be
the union of the y-variables present in the quadratic forms along skewed paths in T̂k(A1A′2x + b)
and the u-variables in `x(A′2x) for x ∈ x′k. Then, we show in Observation 4.4 that as long as we
map `x(A′2x) to a linear form in F[zk] yk] for all x ∈ x′k, we would have mapped all `x′ , where
x′ ∈ var(Tk) is a dangling variable along a skewed path, to linear forms in F[zk] yk].

It follows that [`u0]u is in B (as u0 /∈ var(det(H2))) and A′2 maps it to u0 (without loss of gen-
erality by applying a permutation on var(C) if required). Apart from [`u0]u, let [`x1]u , . . . , [`xm]u be
the other B-elements. Then, `u0(A′2x) looks like u0 + h0,1(y \ u) + h0,2(z) and `xi(A′2x) looks like
ui + hi,1(y \ u) + hi,2(z), where hi,1(y \ u) is an affine form in y \ u and hi,2(z) is an affine form in
z for all 0 ≤ i ≤ m. In fact, by renaming the variables of C if required, we can assume xi = ui
for all i ∈ [m]. So, we will refer to x′k as uk. We save V := {(1, u0), (µ1, u1), . . . , (µm, um)} for Step
2.3. Let A2 = A1A′2 and `x be the linear form that BA2 maps x to. Our goal in the next step is
to compute a linear transformation that for all k ∈ {s1 + 1, . . . , s2} removes “external” variables,
i.e., variables not in zk] yk, from all `y and `u for y ∈ yk \ uk and u ∈ uk. Also, we want to map
the top quadratic form to an expression (y1 + c1)(y2 + c2)+ · · · (yl−1 + cl−1)(yl + cl), where ci ∈ F.

Step 2.3 (Removing external variables from terms). We first remove external z-variables from `y for
y ∈ y \ u; such an `y does not have external y-variables. We also remove external (y \ u)-variables
from `u for u ∈ u; such an `u does not have external u-variables. This is done as follows: For all

22

y ∈ y \ u, compute g = ∂ f (A2x+b)
∂y ; it will contain only one y-variable, say y′. The sparsity of g

is at most 2n, so we can interpolate it. If y′ is multiplied by the z-monomial µ in g (µ can be 1),
then we express g as µ(y′ + `′) + r(z), where `′ is an affine form in z, and r(z) ∈ F[z]. Suppose
y ∈ yk \ uk (k can be figured out from µ). We show in Observation 4.5 that for every z /∈ zk in `′,
the coefficient β of z in `′ can be assumed to be the same as its coefficient in `y′ . So, by translating
y′ by −βz we can remove z from `y′ . Then, we show in Observation 4.6 that for all monomials
µi in r(z) (µi can be 1) such that (µi, ui) ∈ V and ui /∈ uk, the coefficient β of µi in r(z) can be
assumed to be the same as the coefficient of y in `ui . So, to remove y from the latter, we just
need to translate ui by −βy. The transformation A′3 computed thus removes external z-variables
from `y for y ∈ y \ u and external (y \ u)-variables from `u for u ∈ u. It also follows from the
disambiguation argument in Observations 4.5 and 4.6 that A′3 maps the top quadratic form to
(y1 + c1)(y2 + c2) + · · · (yl−1 + cl−1)(yl + cl) for ci ∈ F.

Let A3 = A2A′3 and `x be the linear form that BA3 maps x to. Then, we only need to remove
the external z-variables from `u for all u ∈ uk and k ∈ {s1 + 1, . . . , s2}. Let ui ∈ uk. To remove
z /∈ zk from `ui , we obtain g from f (A3x + b) by setting all variables other than var(µi) and z to
0. Then, using the disambiguation argument in Observation 4.7, we show that the coefficient β of
z in `ui can be readily derived from the coefficient of µi in ∂g

∂z . Thus, by translating ui by −βz, we
can remove z from the `ui . If A′4 is the transformation computed this way and A4 = A3A′4, then in
f (A4x + b) all non-linear terms are variable disjoint.

Step 3: Learning the top linear form. Let `x be the linear form that BA4 maps x to. If C has
a top dangling variable, then Steps 1 and 2 ensure that u0 is only present in the linear form `u0 .
Moreover, Step 2.3 implies that `u0 is free of y \ {u0} variables. In particular, none of the variables
in the quadratic term ∑s′

k=s2+1 T̂k(A4x + b) is in `u0 . So, we only need to remove the variables in
T̂1(A4x + b), . . . , T̂s2(A4x + b) from `u0 . Towards this, we first use second derivatives (in Claim
4.13) to learn var(T̂1(A4x+b)), . . . , var(T̂s2(A4x+b)); let these variable sets be z1, . . . , zs2 .29 Then,
we iteratively learn `u0 in s2 iterations. In the k-th iteration, we learn [`u0]zk

. To do this, we first
obtain T̂ := T̂k(A4x + b) + [`u0]zk

+ γ′, where γ′ ∈ F, by setting all but zk-variables to zero. The
argument to learn [`u0]zk

from T̂ is a generalization of the argument used for ‘Finding c’ under
Hurdle 3 in Section 1.3.2. However, it is more involved as (unlike the constant c in Section 1.3.2)
[`u0]zk

is not uniquely determined. This leads to a couple of complications: One, the circuit that we
derive by “learning” [`u0]zk

is strictly speaking not canonical. Two, it is now unclear how to test
if a chosen factor of the Hessian determinant of T̂ is “good”. We elaborate on these next to show
how the non-uniqueness of [`u0]zk

is handled.
We use the factors of h′, the Hessian determinant of T̂ with respect to the zk-variables, to learn

an affine form `k such that T̂ − `k is reducible. Observe that h′ is the Hessian determinant of Tk
evaluated at BA4x + Bb + d. Corollary 3.1 implies that at least one of the factors of T̂k(A4x + b) is
a factor of h′. We will refer to the factors of h′ that are also factors of T̂k(A4x + b) as “good” fac-
tors of h′. Let Q̂ be a constant multiple of a good factor of h′. We now show how to learn `k using Q̂.

Q̂ is not linear. Let a1, . . . , a|zk | be random F-vectors of size |zk| and t be a fresh variable. For all

29Here, we are overloading the notation a bit. In Steps 1 and 2, zk was the variables of the Hessian determinant of Tk
evaluated at BRA0x + d. In other words, the new set of zk variables is the disjoint union of the old zk and yk.

23

i ∈ [|zk|], interpolate Q̂(tai) and T̂(tai). Discover Q̂′i(t) of degree at most n and βi,0, βi,1 ∈ F such
that Q̂(tai) · Q̂′i(t) + βi,1 · t + βi,0 = T̂(tai) by solving a system of linear equations in the coeffi-

cients of Q̂′i(t) and βi,0, βi,1. One solution is Q̂′i =
(

T̂k(A4x + b)/Q̂
)
(tai), βi,1 = [`u0]zk

(ai), and
βi,0 = γ′. We show in the proof of Claim 4.15 that this solution is unique with high probability
over the randomness of a1, . . . , a|zk |. Then, we set `k to be the affine form obtained by interpolation
using β1,1, . . . , β|zk |,1 and βi,0 = γ′. Hence, `k = [`u0]zk

+ γ′, and T̂− `k = T̂k(A4x + b) is reducible.

Q̂ is linear. Suppose that Q̂ = z (recall that in Step 1, we would have mapped Q̂ to a single variable).
Let a1, . . . , a|zk |−1 be random F-vectors of size |zk| − 1 and t a fresh variable. For all i ∈ [|zk| − 1],
interpolate the bivariate polynomial T̂(z, zk \ {z} = tai). Find Q̂′i(z, t) of degree at most n and
βi,0, βi,1, βi,2 ∈ F such that zQ̂′i(z, t) + βi,2 · z + βi,1 · t + βi,0 = T̂(z, zk \ {z} = tai) by solving a
system of linear equations in the coefficients of Q̂′i(z, t) and βi,0, βi,1, βi,2. One such solution is

Q̂′i =
(

T̂k(A4x + b)/Q̂
)
(z, tai), βi,2 = cz, the coefficient of z in [`u0]zk

, βi,1 = [`u0]zk\{z} (ai) and
βi,0 = γ′. We show in the proof of Claim 4.16 that βi,1 and βi,0 are unique with high probability
over the randomness of a1, . . . , a|zk |−1. So, after using β1,1, . . . , β|zk |−1,1 and βi,0 = γ′ to interpolate
an affine form `k, we get `k = [`u0]zk\{z} + γ′. Hence, T̂− `k = z(T̂k(A4x + b)/z + cz) is reducible.

What if Q̂ is not good? As at least one factor Q̂ of h′ is good, by iterating over all its factors, we
ultimately find an `k such that T̂ − `k is reducible. If Q̂ is good, then either `k = [`u0]zk

+ γ′ and
T̂ − `k = T̂k(A4x + b) or `k = [`u0]zk\{z} + γ′ and T̂ − `k = z(T̂k(A4x + b)/z + cz) (where Q̂ = z).

But, what if Q̂ is not good? It turns out that the algorithm only needs to care about finding an `k
such that T̂ − `k is reducible; such an `k is always the desired one. This is because, it is implied
by the proof of Claim 4.17 that if T̂ − `k is reducible, then the following holds: If T̂k(A4x + b)
has no linear factors, then `k = [`u0]zk

+ γ′. On the other hand, if T̂k(A4x + b) = Q̂k,1 · · · Q̂k,mk

and Q̂k,1 = z, then `k and [`u0]zk
must agree on the coefficients of all variables in zk except per-

haps that of z. In both the cases, T̂ − `k = Q̂k,1

(
Q̂k,2 · · · Q̂k,mk + c

)
for some c ∈ F. Thus, if we

redefine T̂k(A4x + b) as Q̂k,1

(
Q̂k,2 · · · Q̂k,mk + c

)
, then T̂k(A4x + b) = T′k(BA4x + Bb + d), where

if Tk = Qk,1 · · ·Qk,mk then T′k := Qk,1(Qk,2 · · ·Qk,mk + c). Let C′ be obtained from C by replac-
ing Tk with T′k whenever necessary. If A5 is obtained from A4 by translating u0 by the linear
part of ∑k∈s2

`k, then f (A5x + b) = T̂1(A5x + b) + · · · + T̂s′(A5x + b) + u0 + γ for γ ∈ F, and
f (A5x + b) = C′(BA5x + Bb + d). Notice that all the terms of f (A5x + b) are variable disjoint.

Re-canonizing the ROF. Circuit C′ need not be a canonical ROF as Property 6 of Definition 2.6 may
fail. However, for all k ∈ [s2], all the factors of T′k are canonical. As we recursively perform ET on
only the factors of T̂k(A5x), C′ not being canonical is not a problem during recursion. However, at
the end of the recursion, we are left with reconstructing a canonical ROF where Property 6 may
not hold. But this is not an issue as the ROF reconstruction algorithm (Algorithm 13) in Section
F works for canonical ROFs that may not satisfy Property 6. Once an ROF is constructed using
Algorithm 13, we go over the ROF in linear time to ensure that Property 6 is satisfied.

24

Phase 2: Recursively performing equivalence test on the factors of variable disjoint terms

To perform equivalence test on the factors Q̂k,1(A5x), . . . , Q̂k,mk(A5x) of T̂k(A5x) we need to obtain
black-box access to each of the factors using only one query to the black-box of f . It is important that
a single query to f is used, or else, the running time of the algorithm will blow up exponentially
with the product depth of the ROF. A detailed overview of this phase is already provided in the
discussion following Hurdle 3 in Section 1.3.2. Other details are given in Sections 4.3.4 and 4.3.6.

4.2 The algorithm

Having given a high level overview of the algorithm, we now describe it formally.

Algorithm 1 Find-Equivalence(f (x))
Input: Black-box access to an n-variate polynomial f in the orbit of an unknown +-rooted canon-
ical ROF C such that every x ∈ x is essential for f .
Output: An A ∈ GL (n, F) such that f (Ax) ∈ PS-orb(C).

/* The base case. */
1. If deg(f) = 1, return In×n.

/* Making the non-linear terms of f variable disjoint. */
2. A0, b, z, {u0} , {ẑ1, . . . , ẑm} ←Make-Good-Terms-Var-Disjoint(f) (Procedure 2).
3. A←Make-Bad-And-Quadratic-Terms-Var-Disjoint(f (x), A0, b, z, u0) (Procedure 3) .

/* Learning var
(

T̂1(Ax + b)
)

, . . . , var
(

T̂s2(Ax + b)
)

. */
4. y← x \ z. E← ∅, G ← ({ẑ1, . . . , ẑm}] y, E), a graph.
5. for i, j ∈ [m] do
6. If for any z1 ∈ ẑi and z2 ∈ ẑj,

∂2 f (Ax+b)
∂z1∂z2

6= 0, add edge
{

ẑi, ẑj
}

to E.
7. end for
8. for i ∈ [m] and y ∈ y do
9. If for any z ∈ ẑi and y ∈ y, ∂2 f (Ax+b)

∂z∂y 6= 0, add edge {ẑi, y} to E.
10. end for
11. z1, . . . , zs2 ← the variable sets of size more than 1 corresponding to the different connected

components of G. z←]s2
k=1zk, y← x \ z.

/* Learning the top linear form if it exits. */
12. if {u0} 6= ∅ then
13. `′ ← Find-Top-Linear-Form(f (Ax + b)) (Procedure 5). Update A to map u0 to u0 − `′.
14. end if

15. for k ∈ [s2] do
16. T̂ ← Compute-Term-Black-Box(f (A (zk, x \ zk = 0))) (Procedure 6).

/* Making the factors of T̂k(Ax) variable disjoint. */
17. Q̂1, . . . , Q̂mk ← black-boxes of the factors of T̂ obtained using the algorithm in [KT90].

25

18. Compute an Ak,0 ∈ GL(|zk|, F) s.t. Q̂1(Ak,0zk), . . . , Q̂mk(Ak,0zk) are variable disjoint using

Make-Polys-Var-Disjoint() (see Claim 2.3). ∀l ∈ [mk], Q̂l ← Q̂l (Ak,0zk) , zk,l ← var
(

Q̂l

)
.

/* Performing equivalence test on Q̂1, . . . , Q̂mk . */
19. F ← a subset of F of size n5.30 a← a vector of size zk containing random elements from F.
20. for l ∈ [mk] do
21. a′ ← a restricted to entries corresponding to z \ zk,l .
22. βl ← ∏l′∈[mk]\{l} Q̂l′ (zk,l , zk \ zk,l = a′). Q̂l′ ← β−1

l · T̂ (Ak,0 (zk,l , zk \ zk,l = a′)). Ak,l ←
Find-Equivalence

(
Q̂l

)
.

23. end for
24. Construct an A′k,0 ∈ GL(|zk|, F) that maps every z ∈ zk,l to Ak,l ◦ z, ∀l ∈ [mk]. Ak ← Ak,0 A′k,0.
25. end for
26. Construct an A′ ∈ GL(n, F) that maps all z ∈ zk to Ak ◦ z , ∀k ∈ [s2] and all y ∈ y to y.

A← AA′.
27. if {u0} 6= ∅ then
28. f ′ ← Reconstruct-ROF(f (Ax)) (see Appendix F, Algorithm 13).
29. For every term of f ′ that looks like (α1x + α0)Q and Q has a constant β attached to the top

+ gate but not a dangling variable, modify A to map u0 to u0 − α1 · β · x.

30. end if
31. Return A.

Recall that the algorithm is given black-box access to an f ∈ F[x] such that there exist a
B ∈ GL(n, F), a d ∈ Fn, and a canonical ROF C satisfying f = C(Bx + d). Also, there are no
redundant variables in f . Further C = T1 + · · ·+ Ts + γ, where T1, · · · , Ts are ×-rooted canonical
ROFs and γ ∈ F. Also, f = T̂1 + · · ·+ T̂s + γ, where for all k ∈ [s], Tk(Bx + d) = T̂k. T1, . . . , Ts1

are the “good” terms of C, i.e. none of them is a dangling variable, nor a degree 2 monomial, nor
does it look like x · Q for some x ∈ x and a +-rooted ROF Q. Similarly, T̂1, . . . , T̂s1 are the good
terms of f . Ts1+1, . . . , Ts2 are the “bad” terms of C, i.e. they look like x · Q, while T̂s1+1, . . . , T̂s2 are
the bad terms of f . If C has a top dangling variable, Ts = xn, s′ := s− 1, and Ts2+1 + · · ·+ Ts−1 is
the top quadratic form. If C does not have a top dangling variable, then Ts2+1 + · · ·+ Ts is the top
quadratic form and s′ := s. If C has a top dangling variable, then ` := T̂s.

We shall give a formal description of the procedures Make-Good-Terms-Var-Disjoint(), Make-
Bad-And-Quadratic-Terms-Var-Disjoint(), Find-Top-Linear-Form(), and Compute-Term-Black-Box()
while analysing the algorithm. Make-Good-Terms-Var-Disjoint() outputs an A0 ∈ GL(n, F) and
a b ∈ Fn such that T̂1(A0x), . . . , T̂s1(A0x) are variable disjoint. Make-Bad-And-Quadratic-Terms-
Var-Disjoint() outputs an A ∈ GL(n, F) and b ∈ Fn such that T̂1(Ax + b), . . . , T̂s′(Ax + b) are
variable disjoint and ∑s′

k=s2+1 T̂k(Ax + b) = ∑s′
k=s2+1 (yk,1 + ck,1) (yk,2 + ck,2), where ck,1, ck,2 ∈ F.

Find-Top-Linear-Form() maps `(Ax) to a single variable u0. Compute-Term-Black-Box() helps ob-
tain black-box access to T̂1(Ax), . . . , T̂s2(Ax) using just one query to the black-box of f . Finally
Steps 15-25 recursively perform equivalence test on the factors of T̂1(Ax), . . . , T̂s2(Ax).

30Here n5 is somewhat arbitrary. We simply want to ensure that after we apply union bound to the error probabilities
in different steps of the algorithm, the total error probability is still small.

26

4.3 Analysis of the algorithm

In this section, we prove the following lemma. This lemma along with the analysis of the running
time in Section 4.3.6 proves Theorem 1.

Lemma 4.1 (Correctness of Algorithm 1). Let F be a field of char(F) = 0 or≥ n2 and |F| ≥ n13. Given
black-box access to an n-variate polynomial f in the orbit of an unknown +-rooted canonical ROF C such
that every x ∈ x is essential for f , Algorithm 1 outputs an A ∈ GL(n, F) such that f (Ax) ∈ PS-orb(C).

Towards proving this lemma, we first formally describe the Make-Good-Terms-Var-Disjoint(),
Make-Bad-And-Quadratic-Terms-Var-Disjoint(), Find-Top-Linear-Form(), and Compute-Term-Black-
Box() procedures in the following sections.

4.3.1 Making the good terms variable disjoint

The following procedure is used to make all the good terms variable disjoint.

Procedure 2 Make-Good-Terms-Var-Disjoint(f (x))
Input. f (x), a polynomial in the orbit of a +-rooted canonical ROF C.
Output.

1. A0 ∈ GL(n, F), b ∈ Fn such that for k 6= k′ ∈ [s1], var(T̂k(A0x+b))∩var(T̂k′(A0x+b)) = ∅.

2. For all x ∈ x connected to a×-gate in C computing a polynomial of degree≥ 3, BA0x+ Bb+
d maps x to constant multiple of a variable. If C has a top dangling variable, then u0 = xn.

3. {ẑ1, . . . , ẑm} such that there exists a partition I1, . . . , Is2 of [m] such that for all k ∈ [s2],
]i∈Ik ẑi = var (det(HTk)(BA0x + Bb + d)). z =]i∈[m]ẑi.

/* Computing the Hessian determinant of f . */
1. if det(H f) = 0 then
2. F ← a subset of F of size at least n5. R ← an n × n random matrix with entries picked

independently and uniformly from F. u0 ← xn.
3. h← the Hessian determinant of f (Rx) with respect to x \ {u0} variables.
4. A0 ← Remove-Redundant-Vars(h, u0) (see Claim 2.2).
5. else
6. {u0} ← ∅, h← det(H f), R← In×n, A0 ← In×n.
7. end if
8. A′0, ẑ1, . . . , ẑm ← Make-Factors-Var-Disjoint(h(A0x)) (see Claim 2.4). A0 ← A0A′0. z ←

var (h(A0x)).
/* Mapping the good linear factors of h(A0x) to distinct variables. */

9. V ← the set of all linear factors of h(A0x). C ← In×n, b′ ← 0.
10. for `′ ∈ V do
11. If Ness (f (RA0x) mod `′) < n− 2, pick a z ∈ var(`′) and update C and b′ such that `(Cx +

b′) = z (see Claim 2.1).
12. end for
13. b← RA0b′, A0 ← RA0C. Return A0, b, z, {u0} , {ẑ1, . . . , ẑm}.

We now prove the following lemma which establishes the correctness of the above procedure.

27

Lemma 4.2 (Correctness of Procedure 2). Make-Good-Terms-Variable-Disjoint(f (x)) outputs an A0 ∈
GL(n, F) and a b ∈ Fn such that T̂1(A0x + b), . . . , T̂s1(A0x + b) are pairwise variable disjoint. Further
for all x ∈ x connected to a ×-gate in C computing a polynomial of degree at least 3, BA0x + Bb + d maps
x to constant multiple of a variable. Moreover, there exists a partition I1, . . . , Is2 of [m] such that for all
k ∈ [s2],]i∈Ik ẑi = var (det(HTk)(BA0x + Bb + d)) and z =]i∈[m]ẑi.

Proof. If C has no dangling variable, then we know from Lemma 3.1 that det(HC) 6= 0; from
Observation 2.8 this implies det(H f) 6= 0. Otherwise, we apply a random transformation R to
x in f and compute the Hessian determinant of f (Rx) with respect to x \ {u0} = {x1, . . . , xn−1}
variables. Notice that f (Rx) = C(BRx + d). The following two claims show that this Hessian
determinant is non-zero with high probability. Their proofs are given in Sections D.1 and D.2.

Claim 4.1. The sub-matrix [BR]x\{u0},x\{u0} of BR, whose rows and columns are labelled by x \ {u0}-
variables is invertible with high probability.

Claim 4.2. Let H1, H2 be the Hessians of f (Rx) and C with respect to x \ {u0}-variables, respectively.
Then, h = det(H1) = β2 det(H2)(BRx + d), where β = det

(
[BR]x\{u0},x\{u0}

)
and h 6= 0 with high

probability. Also, u0 is redundant for h with high probability.

It is easy to see that H2 is the Hessian of ∑k∈[s′] Tk + γ. Since H2 is a block-diagonal matrix
with HTk , k ∈ [s′] as the diagonal blocks, Claim 4.2 implies that h = β2 ·∏k∈[s′] det(HTk)(BRx + d).
Observe that for every k ∈ [s2], det(HTk) is non-constant. So for every k ∈ [s2], det (HTk) (BRA0x+
d) is a non-constant factor of h(A0x). Thus, after we compute A′0 by invoking Make-Factors-Var-
Disjoint() on h(A0x) and update A0 to be A0A′0 in Step 8, Claim 2.4 implies that for k1 6= k2 ∈
[s2], det

(
HTk1

)
(BRA0x + d) and det

(
HTk2

)
(BRA0x + d) are variable disjoint.

For all k ∈ [s], let xk = var(Tk), hk = det (HTk) (BRx + d), and gk = hk(A0x), where A0
is as after Step 8. Then from Claim 2.4, gk has no redundant variables. Let zk = var(gk). Fix a
k ∈ [s′]. By permuting the variables of C if necessary, we can assume that zk is also a set of essential
variables for h′k := det(HTk). Let Ck ∈ GL(n, F) be a matrix that removes redundant variables from
h′k and g′k = h′k(Ckx). Then, var(g′k) = var(gk) = zk. Let z′k be the set of truly essential variables,
z′′k = zk \ z′k be a set of ordinary essential variables, and yk = xk \ zk be a set of redundant variables
for h′k. Let y =]k∈[s′]yk] {u0}. Note that z = var (h(A0x)) =]k∈[s′]zk, and define z′ =]k∈[s′]z′k,

z′′ =]k∈[s′]z′′k . Notice that x = z′] z′′] y. For all x ∈ x let `(0)x be the linear form that x is mapped
to by BRA0. The following claim about the structure of BRA0 is proved in Section D.3.

Claim 4.3 (Structure of BRA0). For every k ∈ [s′],

1. For all z ∈ z′k, `(0)z ∈ F[zk].

2. For all z ∈ z′′k , `(0)z = `′z + ∑
y∈yk∩

var(h′k)

αy`
(0)
y , where `′z ∈ F[zk] and for all y ∈ yk ∩ var

(
h′k
)
, αy ∈ F.

Claim 3.2 implies that zk = z′k = xk. Hence, the above claim immediately implies that T̂1(A0x), . . . ,
T̂s1(A0x) are pairwise variable disjoint.

Now consider the for loop of lines 10-12. Claim 3.2 implies that for all x ∈ x connected
to a × gate in C computing a polynomial of degree at least three, a constant multiple of the
affine form `

(0)
x + dx that BA0x + d maps x to is in V. Also, as Ness (C mod x) < n − 2, Fact

28

2.4 implies that Ness

(
f (RA0x) mod

(
`
(0)
x + dx

))
< n − 2. Conversely, if `′ ∈ V is such that

Ness (f (RA0x) mod `′) < n− 2, then it follows and from Claim 2.1 and Fact 2.4 that there exists
an x ∈ x such that `′ is a constant multiple of `(0)x + dx. Observe that if x is not connected to a
product gate computing a polynomial of degree at least three, then Ness(C mod αx) ≥ n− 2 for
any α ∈ F×. Hence from Fact 2.4, we have that x is connected to a product gate computing a poly-
nomial of degree at least three. Thus the affine forms `′ ∈ V such that Ness (f (RA0x) mod `′) <

n− 2 are exactly the constant multiples of `(0)x + dx, where x is connected to a × gate computing
a polynomial of degree at least three. Because

{
`
(0)
x : x ∈ x

}
is linearly independent, it is possible

to map all such `′ to distinct variables.
Observation 2.3 implies that every x connected to a× gate computing a polynomial of degree

at least three is in z′. Also, Claim 4.3 implies that if x ∈ z′k, then `′ ∈ F[zk]. Thus after the loop has
been executed and A0 updated to be RA0C, the affine transformation BA0x + Bb + d maps every
x ∈ xk connected to a× gate computing a polynomial of degree at least three to a constant multiple
of a zk-variable. Also this means that T̂1(A0x + b), . . . , T̂s1(A0x + b) are still variable disjoint.

Immediately before Step 8 is executed, det(HT1)(BRA0x + d), . . . , det(HTs2
)(BRA0x + d) are

non-constant factors of h(A0x). So from Point 2 of Claim 2.4 there exists a partition I1, . . . , Is2 of [m]
such that after A0 has been updated to be A0A′0, for all k ∈ [s2],]i∈Ik ẑi = var (det(HTk)(BRA0x + d))
and z =]i∈[m]ẑi. As for all k ∈ [s2], C only maps some variables in z′k to linear forms in F[z′k],
we have that var (det(HTk)(BRA0x + d)) = var (det(HTk)(BRA0(Cx + b′) + d)). Because A0 is
updated to be RA0C and b := RA0b′ in Step 13, the moreover part of the lemma follows.

Remark. After A0 has been updated to be RA0A′0 in Step 13, for all x ∈ x, we redefine `
(0)
x to be the

linear form that x is mapped to by BA0. Notice that Claim 4.3 continues to hold.

4.3.2 Making bad and quadratic terms variable disjoint

The following procedure is used to make all the bad and quadratic terms variable disjoint as well.
After this procedure is executed, all the non-linear terms will be variable disjoint.

Procedure 3 Make-Bad-And-Quadratic-Terms-Var-Disjoint(f (x), A0, b, z, u0)

Input. f (x). A0, b, z, and u0 are as returned by Make-Good-Terms-Var-Disjoint(f (x)).
Output. A ∈ GL(n, F) such that all the non-linear terms of f (Ax + b) are variable disjoint.

1. y← x \ z.
/* Discovering the y parts of quadratic forms. */

2. q̂← the degree-2 homogeneous component in y of f (A0x + b) when it is viewed as a polyno-
mial over F[z].

3. Use sparse polynomial interpolation to interpolate q̂. {q̃1, . . . , q̃m} ← the coefficients of non-
constant z-monomials when q̂ is treated as a polynomial in F[y]. q̃0 ← coefficient of 1.

4. A′1 ←Make-Polys-Var-Disjoint(q̃0, . . . , q̃m) (see Claim 2.3). u← y.
5. for i = 0, . . . , m do
6. p← the canonical quadratic form in var (q̃i(A′1x)). Ci ←QFE(q̃i(A′1x), p). Extend Ci to map

every variable in x \ var (q̃i(A′1x)) to itself. u← u \ var (q̃i(A′1x)).
7. end for
8. A′1 ← A′1 ∏m

i=0 Ci. A1 ← A0A′1.

29

/* Discovering the u parts of dangling linear forms. */
9. ̂̀← the degree-1 homogeneous component in u of f (A1x + b) when it is viewed as a polyno-

mial over F[z].
10. Use sparse polynomial interpolation to interpolate ̂̀. Let µ′1, . . . , µ′m′ be the non-constant z-

monomials of ̂̀, and ̂̀1 . . . , ̂̀m′ be their coefficients. ̂̀0 ← the coefficient of 1.
11. ̂̀i1 , . . . , ̂̀im ← a basis of

〈̂̀1, . . . , ̂̀m′
〉

. Construct a matrix A′2 that maps ̂̀i1 , . . . , ̂̀im to distinct u

variables, say ui1 , . . . , uim , such that if ̂̀0 maps to u0. Also, A′2 acts as identity on x \ u.

12. V ←
{
(µ′i1 , ui1), . . . , (µ′im

, uim)
}

. A2 ← A1A′2.
13. C ← Remove-External-Vars(f (x), A2, b, z, y, u, u0, V) (Procedure 4).
14. A← A2C. Return A.

For now, we postpone describing the Remove-External-Vars() procedure and start the proof
of correctness of the Make-Bad-And-Quadratic-Terms-Var-Disjoint() procedure. In particular, we
prove the following lemma.

Lemma 4.3 (Correctness of Procedure 3). Make-Bad-And-Quadratic-Terms-Var-Disjoint(f (x), A0, b, z,
u0), where A0, b, z, and u0 are as returned by Make-Good-Terms-Var-Disjoint(f (x)) outputs an A ∈
GL(n, F) such that T̂1(Ax + b), . . . , T̂s′(Ax + b) are pairwise variable disjoint. Also, ∑s′

k=s2+1 T̂k(Ax +

b) = ∑s′
k=s2+1(yk,1 + ck,1)(yk,2 + ck,2), where for all k ∈ {s2 + 1, . . . , s′}, ck,1, ck,2 ∈ F. Further, for all

x ∈ x connected to a ×-gate in C computing a polynomial of degree at least 3, BAx + Bb + d maps x to
constant multiple of a variable. Also, if C has a top dangling variable, then u0 only appears in `(Ax + b).

Proof. We begin by stating the following useful claim whose proof can be found in Section D.4.
For a linear form `′, we denote its projection to variables in a variable set x′′ by [`′]x′′ . Recall that
for an x ∈ x, `(0)x is the linear form that x is mapped to by BA0.

Claim 4.4.
{[

`
(0)
y

]
y

: y ∈ y
}

is linearly independent.

From Claim 3.2, only the top dangling variable, the variables in the top quadratic form, the
dangling variables along skewed paths, and variables appearing in the quadratic forms along the
skewed paths in C need not be truly essential for det(H2). Hence, from Claim 4.3, if for some
k ∈ [s′], x ∈ xk is such that `(0)x /∈ F[zk], then k ∈ {s1 + 1, . . . , s2} and x is either a dangling variable
along a skewed path or a variable appearing in some quadratic form along a skewed path in Tk
which is not truly essential for det(H2), or k ∈ {s2 + 1, . . . , s′} and x is a variable appearing in
the top quadratic form of C. Also, if x is a variable appearing in a skewed path in Tk, then from
Lemma 4.2, `(0)x + bx = αz for some z ∈ zk and α ∈ F×. Suppose that the other gate connected to
the parent of x is Q. Then by ‘absorbing’ β inside Q(BA0x + Bb + d), we can assume without loss
of generality that β = 1.31 Thus each skewed path is a monomial in F[z]. Also, we can assume
without loss of generality that every variable appearing in a skewed path in C is mapped to itself
by the affine transformation BA0x + Bb + d, i.e. the skewed paths in C and f (A0x + b) are the

31As mentioned in Section 4.1, absorbing β in Q means that we are starting with a different but equally valid B. This
‘new’ B is obtained from the ‘old’ B by scaling rows labelled by appropriate variables in z′. Hence, Claim 4.3 continues
to hold.

30

same. This is so because if a variable x appearing in a skewed path in C is mapped to z 6= x, then
we can permute the variables in C so that the leaf labelled by x is now labelled by z.32

Let q0 be the top quadratic form of C and µ1, . . . , µm be all the skewed paths in f (A0x + b)
such that no variable of the quadratic forms q1, . . . , qm corresponding to these skewed paths in C
appears in det(H2) (see Claim 3.3). Also, let the corresponding quadratic forms in f (A0x + b) be
q̂0, . . . , q̂m. Then for all i ∈ {0, . . . , m}, q̂i = qi(BA0x + Bb + d). Suppose that q̂i = `

(0)
yi,1,1`

(0)
yi,1,2 +

· · · + `
(0)
yi,mi ,1`

(0)
yi,mi ,2 . It follows from the discussion in the above paragraph that q̂ = q̃0 + µ1q̃1 +

· · ·+ µmq̃m, where q̃i =
[
`
(0)
yi,1,1

]
y

[
`
(0)
yi,1,2

]
y
+ · · ·+

[
`
(0)
yi,mi ,1

]
y

[
`
(0)
yi,mi ,2

]
y
. Observe that each q̃i is an n2-

sparse polynomial. As there are at most n skewed paths in C, this means that q̂ is an n3-sparse
polynomial and can be interpolated efficiently. Claim 2.3 ensures that after Step 4 is executed,
q̃0(A′1x), . . . , q̃m(A′1x) are variable disjoint and have no redundant variables. The proof of the
following claim can be found in Section D.5.

Claim 4.5. After the for loop of lines 5-7 has been executed and A′1 updated to be A′1 ∏m
i=0 Ci, for all

i ∈ {0, . . . , m}, q̂i (A′1x) =
(

y′i,1,1 + hi,1,1

) (
y′i,1,2 + hi,1,2

)
+ · · ·+

(
y′i,mi ,1

+ hi,mi ,1

) (
y′i,mi ,2

+ hi,mi ,2

)
,

for some y′i,1,1, y′i,1,2, . . . , y′i,mi ,1
, y′i,mi ,2

∈ y and affine forms hi,1,1, hi,1,2, . . . , hi,mi ,1, hi,mi ,2 ∈ F[z].

The following observation is easy to see.

Observation 4.1. All the y-variables appearing in q̂1(A′1x), . . . , q̂m(A′1x) are distinct. Also, A′1 ∈ GL(n, F)
and acts as identity on variables not in var(q̃1(A1x))] · · ·] var(q̃m(A1x)) i.e. on z] u.

In Step 8, A1 := A0A′1. For every k ∈ {s1 + 1, . . . , s′} let uk be an arbitrary subset of u \ {u0}
of size equal to the number of dangling variables in Tk which are redundant for det(H2). While
defining uks we ensure that for k 6= k′, uk and uk′ are disjoint. Redefine yk to be the union of the
set of y variables appearing in the quadratic forms in T̂k(A1x + b) and uk. Then, by permuting
the variables in C if necessary, we can assume that yk \ uk are the y variables appearing in the
quadratic forms in Tk that are redundant for det(H2) and uk are the dangling variables in Tk that
are redundant for det(H2). For all x ∈ x, let `(1)x be the linear part of the affine form that replaces x
in f (A1x + b). That is, for all x ∈ z] u, `(1)x = `

(0)
x (A′1x) is the linear form that x is mapped to by

BA1, while for all y ∈ y \ u, if y = yi,j,l , then `
(1)
y = y′i,j,l + hi,j,l .33 Also by permuting the variables

in C if required, we can assume that y = y′i,j,l .

Claim 4.6.
{[

`
(1)
u

]
u

: u ∈ u
}

is linearly independent.

A proof of the above claim can be found in Section D.6. Recall that in f (A0x+ b), y-variables
are only present in `

(0)
x if x the top dangling variable, a variable in the top quadratic form, a

32If the permutation matrix that we need to apply to C is P, then the new ROF is C(Px) and the matrix transforming
it to f (A0x + b) is P−1BA0. While we proved Claim 4.3 for C and BA0, it continues to hold for C(Px) and P−1BA0.
This is so, because if the leaf in C labelled by x is labelled by x′ in C(Px), then the linear form that P−1BA0 maps x′ to,

i.e., the ‘new’ `(0)x′ , is the ‘old’ `(0)x . In other words, permuting the variables in C just results in the leafs of C and the
rows of BA0 being relabelled consistently. Through out the analysis, we shall permute the variables of C many times,
however each time we do this, everything that we have proved up to that point for C and the matrix transforming it to
f (A0x + b) would continue to hold for the new C and the new matrix.

33y′i,j,l + hi,j,l need not necessarily be `
(0)
y (A′1x). This is so, because for any i ∈ {0, . . . , m}, an invertible matrix

mapping qi to q̃i need not be unique.

31

dangling variable along a skewed path or a variable in some quadratic form along a skewed
path which is not truly essential for det(H2). Also, A′1 acts as identity on z, and

[
`
(1)
y

]
y

is a

single variable in y \ u for all y ∈ y \ u. Hence, a u-variable is only present in `
(1)
x if x is

the top dangling variable (i.e. u0) or a dangling variable along a skewed path which is not
truly essential for det(H2). So, if u1, . . . , um′ are dangling variables that are not truly essential
for det(H2) and µ′1, . . . , µ′m are the corresponding skewed paths, then ̂̀ in Step 10 looks like[
`
(1)
u0

]
u
+ µ′1

[
`
(1)
u1

]
u
+ · · ·+ µ′m′

[
`
(1)
um′

]
u
. Because m′ ≤ n, ̂̀ is n2-sparse and can be interpolated ef-

ficiently. If B =
{̂̀i1 , . . . , ̂̀im

}
is a basis of

〈̂̀1, . . . , ̂̀m′
〉
=
〈[

`
(1)
u0

]
u

, . . . ,
[
`
(1)
um′

]
u

〉
, then it is clearly

possible to map the linear forms ̂̀i1 , . . . , ̂̀im to distinct u-variables. Claims 4.3 and 3.3 imply that〈[
`
(1)
x

]
u

: x ∈ z′′k] (uk ∩ var(h′k))
〉

=
〈[

`
(1)
u

]
u

: u ∈ uk ∩ var(h′k)
〉

for every k ∈ {s1 + 1, . . . , s2}.
Thus, Claim 4.6 implies the following observation.

Observation 4.2. For any u /∈ var(det(H2)),
[
`
(1)
u

]
u
∈ B. Also, for any k ∈ {s1 + 1, . . . , s2}, B

contains |uk ∩ var(h′k)| many linear forms from
{[

`
(1)
u

]
u

: u ∈ uk ∩ var(h′k)
}

.

In particular, if C has a top dangling variable, then ̂̀0 =
[
`
(1)
u0

]
u
∈ B and it is mapped to u0

in Step 11. So, after A2 is set to A1A′2, `(A2x + b), i.e. the top linear form in f (A2x + b) contains
u0. Also, because A′1 acts as identity on z] u and A′2 act as identity on z] y, A′1A′2 is identity on

z. For every k ∈ {s1 + 1, . . . , s2}, let x′k ⊆ z′′k] uk, |x′k| = |uk| be such that
{[

`
(1)
x

]
u

: x ∈ x′k
}
⊆ B.

Let x′ =]s1+1≤k≤s2x′k] {u0}. Then the following observation is easy to see.

Observation 4.3. For all x ∈ x′, `(1)x (A′2x) looks like u + h′u, for some u ∈ u and h′u ∈ F[z, y \ u]. Also,
if the skewed path corresponding to x is µ, then (µ, u) ∈ V.

We now show that x′ is in a set of redundant variables for det(H2).

Claim 4.7. x′] (y \ u) is a set of redundant variables for det(H2).

The above claim is proved in Section D.7. Using an argument similar to the one used to prove
Claim 4.3, we can prove the following observation.

Observation 4.4. For all k ∈ {s1 + 1, . . . , s2} and all x ∈ z′′k] (uk ∩var(h′k)), `
(1)
x = `′′x + ∑

x′∈x′∩
var(h′k)

α′x′`
(1)
x′ ,

where `′′x ∈ F[zk] and α′x′ ∈ F for all x′ ∈ x′k ∩ var(h′k).

For all x ∈ x, let `
(2)
x = `

(1)
x (A′2x) be the linear part of the affine from that replaces x in

f (A2x + b). Because A′1A′2 acts as identity on zk, Observations 4.2 and 4.4 imply that if for all k ∈
{s1 + 1, . . . , s2} and x ∈ x′k, we can remove variables not in zk] yk - i.e. “external” variables - from

`
(2)
x , then all linear forms corresponding to dangling variables along skewed paths in Tk would

just be in zk] yk variables. Similarly, because A′2 acts as identity on y, Claim 4.5 implies that if we
can remove variables not in zk from `

(2)
y for all y ∈ yk \ uk, then all linear forms corresponding to

variables appearing in quadratic forms along skewed paths in Tk would just be in zk]yk variables.
Then all the non-linear terms of f (A2x + b) would become variable disjoint. We now describe the
Remove-External-Vars() procedure and show that it does just this.

32

Procedure 4 Remove-External-Vars(f (x), A2, b, z, y, u, u0, V).
Input. f (x), A2, b, z, y, u, u0, and V are as in Step 12 of Procedure 3.
Output. A ∈ GL(n, F) such that all the non-linear terms of f (Ax + b) are variable disjoint.

/* Removing external z-variables from quadratic forms and external y-variables from linear
forms. */

1. A′3 ← In×n.
2. for y ∈ y \ u do
3. Interpolate g ← ∂ f (A2x+b)

∂y . If µ is the z-monomial multiplied to the only y-variable, say y′,
in g, then write g = µ(y′ + `′y′ + αy′) + r(z), where `′y′ ∈ F[z] is a linear form, αy′ ∈ F, and
r(z) ∈ F[z].

4. Update A′3 so that it maps y′ to y′ − `′y′ .
5. for every monomial µ′ in r(z) do
6. If there exists a u′ such that (µ′, u′) ∈ V, update A′3 to map u′ to u′ − βy, where β is the

coefficient of µ′ in r(z).
7. end for
8. end for
9. A3 ← A2A′3.

/* Removing external z variables from linear forms. */
10. A′4 ← In×n. F ← a subset of F of size n5.
11. for (µ, u) ∈ V such that deg(µ) ≥ 2 do
12. for z ∈ z do
13. g← f (A3(var(µ), z, x \ (var(µ)] {z}) = 0) + b).
14. Interpolate ∂g

∂z . Let α be the coefficient of µ in ∂g
∂z . Update A′4 to map u to u− αz.

15. end for
16. end for
17. for (µ, u) ∈ V such that deg(µ) = 1 do
18. for z ∈ z do
19. Set all variables in f (A3A′4x + b) other then var(µ) and z to random elements from F.

g← the resulting polynomial.
20. Interpolate ∂g

∂z . Let α be the coefficient of µ in ∂g
∂z . Update A′4 to map u to u− αz.

21. end for
22. end for
23. A← A3A′4. Return A.

We first consider the for loop of lines 2-8 and show that the matrix A′3 computed by this loop
is such that it removes all variables not in zk] yk from `

(2)
y for all y ∈ yk and k ∈ {s1 + 1, . . . , s′},

and removes all variables in y \ yk from `
(2)
x for all x ∈ x′k and k ∈ {s1 + 1, . . . , s2}. Before arguing

this, we remark that in any iteration of this loop, g is a 2n-sparse polynomial. This is so, because
any y ∈ y is only present in `

(2)
y and in `

(2)
x for x ∈ x′. Thus, every monomial in r(z) is a skewed

33

path and there are at most n skewed paths. The following claim is proved in Section D.8.

Claim 4.8. The matrix A′3 computed after the execution of the for loop of lines 2-8 is such that for every
k ∈ {s1 + 1, . . . , s2} and every y′ ∈ yk \ uk, `(2)y′ (A′3x) ∈ F[zk] yk].

To show that BA2A′3 maps the top quadratic form to ∑s′
k=s2+1(yk,1 + ck,1)(yk,2 + ck,2) and A′3

removes external y variables from `
(2)
u0 , we shall use the following two observations.

Observation 4.5. For any y ∈]s′
k′=s2+1yk′ and any k ∈ {s1 + 1, . . . , s2}, if Tk = zQ and the top dangling

variable of Q is x, then it can be assumed without loss of generality that y is not present in `
(2)
x .

Proof. Suppose that yy′ is a term in ∑s′
k′=s2+1 Tk′ and that the coefficient of y in `

(2)
x is β. Then we

‘absorb’ βz in `
(2)
y′ and subtract β

(
`
(2)
y + c− y

)
from `

(2)
x ; here c is the constant term of the affine

form that replaces y in f (A2x + b). This does not change f (A2x + b).

Observation 4.6. If C has a top dangling variable, then for any y ∈]s′
k=s2+1yk, it can be assumed without

loss of generality that the affine form replacing y in f (A2x + b) has no constant.

Proof. Suppose that Tk = y1y2 for some k ∈ {s2 + 1, . . . , s′} and that T̂k(A2x + b) = (`
(2)
y1 +

c1)(`
(2)
y2 + c2), where c1, c2 ∈ F. Then we add c2`

(2)
y1 + c1`

(2)
y2 to `

(2)
u0 and add c1c2 to the constant

of the affine form replacing u0 in f (A2x + b). This does not change f (A2x + b).

We call every x ∈ x′ such that some Tk = zQ and x is the top dangling variable of Q, a bad
dangling variable. For every y ∈]s′

k′=s2+1yk′ , every bad dangling variable x, and u0 we redefine

`
(2)
y , `(2)x and `

(2)
u0 as mentioned in the proofs of the above observations.

Claim 4.9. The matrix A′3 computed after the execution of the for loop of lines 2-8 is such that for every
y′ ∈]s2+1≤k≤s′yk, `(2)y′ (A′3x) = y′ + c for some c ∈ F.

A proof of the above claim can be found in Section D.9. Claims 4.8 and 4.9 ensure that external
variables are removed from the linear forms corresponding to variables appearing in quadratic
forms along skewed paths and the top quadratic form. The following claim proves that external y
variables are removed from linear forms corresponding to dangling variables along skewed paths
and the top dangling variable. It is proved in Section D.10.

Claim 4.10. The matrix A′3 computed after the execution of the for loop of lines 2-8 is such that for every
k ∈ {s1 + 1, . . . , s2} and x ∈ x′k, `(2)x (A′3x) does not contain any variable from y \ yk. Also if C has a top
dangling variable, then `

(2)
u0 (A′3x) does not contain any y variable other than u0.

After A3 has been defined as A2A′3, let `(3)x be the linear part of the affine form replacing x
in f (A3x + b). Note that for all x other than those in]s2+1≤k≤s′yk, bad dangling variables, and
u0, `(3)x = `

(2)
x (A′3x). Now from Claim 4.8, for all k ∈ {s1 + 1, . . . , s2}, the only x ∈ xk for which

`
(3)
x contains variables not in zk] yk are dangling variables along skewed paths. Also, for all

x ∈ x′k, Claim 4.10 implies that `(3)x ∈ F[z] yk]. Now A′2A′3 acts as identity on z and Claim 3.4
implies that no bad dangling variable is in var(det(H2)). Thus Observation 4.4 implies that for all
k ∈ {s1 + 1, . . . , s2}, x ∈ z′′k] uk, `(3)x ∈ F[z] yk]. The following claim is proved in Section D.11

34

Claim 4.11. The matrix A′4 computed after the execution of the for loop of lines 11-16 is such that for every
k ∈ {s1 + 1, . . . , s2}, x ∈ x′k is not a bad dangling variable, `(3)x (A′4x) ∈ F[zk] yk].

The above claim immediately implies that for all k ∈ {s1 + 1, . . . , s2}, `(3)x (A′4x) ∈ F[zk] yk]
for all x ∈ z′′k] uk which is not a bad dangling variable. To prove an analogous statement for the
bad dangling variables we need the following observation. Note that Claim 3.4 and Observation
4.2 imply that every bad dangling variable is in x′.

Observation 4.7. Suppose that x1, . . . , xm are all the bad dangling variables, the corresponding skewed
paths are µ1, . . . , µm, the sole u variables in `

(3)
x1 , . . . , `(3)xm are u1, . . . , um, and the for loop of lines 17-22

processes (µ1, u1), . . . , (µm, um) in that order. Then, it can be assumed without loss of generality that for
all i ∈ [m] and all j < i, `(3)xi does not contain zj.

Proof. For all i ∈ [m] and all j < i, let the coefficient of zj in `
(3)
xi be βi,j. For all j ∈ [m], we ‘absorb’

∑m
i=j+1 βi,jzi in `

(3)
xj and remove βi,jzj from `

(3)
xi for all i > j. This does not change f (A3x + b).

For every bad dangling variable x, we redefine `
(3)
x as mentioned in the proof of the above

observation. The following claim shows that variables in z \ zk are removed from `
(3)
x for every

bad dangling variable x ∈ x′k as well. It is proved in Section D.12.

Claim 4.12. The matrix A′4 computed after the execution of the for loop of lines 17-22 is such that for every
k ∈ {s1 + 1, . . . , s2}, and every bad dangling variable x ∈ x′k, `(3)x (A′4) ∈ F[zk] yk].

Let `(4)x be the linear part of the affine form replacing x in f (Ax + b). For all k ∈ [s′] and
x ∈ xk, `

(4)
x is now a linear form in zk] yk = xk. Also, Claim 4.9 and the fact that A′4 acts as

identity on y implies that
s′

∑
k∈s2+1

T̂k(Ax + b) =
s′

∑
k∈s2+1

(yk,1 + ck,1) (yk,2 + ck,2). Now, as seen in the

proof of Lemma 4.2, for every x ∈ x connected to a × gate computing a polynomial of degree at
least three, `(1)x is a constant multiple of a z-variable. As A′1 · · · A′4 acts as identity on z, so is `

(4)
x .

Moreover, if C has a top dangling variable u0 = xn, then from Claim 4.10, the only u variable in
`
(2)
u0 was u0. As A′3 merely translates u0 by constant multiples of y-variables and A′4 acts as identity

on u0, the only u variable in `
(4)
u0 is u0. Also, u0 /∈ var

(
`
(4)
x

)
for any x 6= u0.

4.3.3 Discovering the top linear form

We begin by stating the following useful claim whose proof can be found in Section D.13.

Claim 4.13 (Learning variable sets). After Step 11 of Algorithm 1 is executed, zk = var
(

T̂k(Ax + b)
)

for all k ∈ [s2].34

34Here we are overloading the notation. Now zk = var
(

T̂k(Ax + b)
)

. but in Sections 4.3.1 and 4.3.2 it was a set of

essential variables of det(HTk) evaluated at BRAx + d. The new zk is the union of the old zk and zy.

35

Because of Step 12 of Algorithm 1, the following procedure will only be called if C has a top
dangling variable. It finds an affine form `′ such that when we map u0 to u0 − `′ in f (Ax + b), all
its terms become variable disjoint and `(Ax+b) becomes u0 + c for some c ∈ F (recall that ` is the
affine form that the top dangling variable is mapped to by Bx+ d). This is done in s2 iterations. In
the k-th iteration it finds `′ restricted to zk variables, denoted by `k.

Procedure 5 Find-Top-Linear-Form(f ′)
Input: f ′ = f (Ax + b), where A and b as after Step 3 of Algorithm 1.
Output: An affine form `′ such that all terms in f ′ (x \ {u0} , u0 = u0 − `′) are variable disjoint.

1. for k ∈ [s2] do
2. T̂ ← f ′(zk, x \ zk = 0). h′ ← the Hessian determinant of T̂ with respect to zk-variables. N ←

the set of irreducible factors of h′. F ← a subset of F of size at least n5.
3. for Q̂ ∈ N do
4. if Q̂ is not linear then

/* Q̂ is non-linear. */
5. a1, . . . , a|zk | ← vectors of size |zk| containing random elements from F. t ← a fresh

variable.
6. ∀i ∈ [|zk|], interpolate Q̂(tai) and T̂(tai). Discover Q̂′i(t) and βi,0, βi,1 ∈ F such that

Q̂(tai) · Q̂′i(t) + βi,1 · t + βi,0 = T̂(tai) by solving a system of linear equations in the
coefficients of Q̂′i(t) and βi,0, βi,1.

7. Interpolate ∑z∈zk
αzz using βi,1, . . . , β|zk |,1. If T̂ − ∑z∈zk

αzz − β1,0 is reducible, `k ←
∑z∈zk

αzz− β1,0 and T̂ ← T̂ − `k. Break.

8. else
/* Q̂ is linear. */

9. Suppose Q̂ = z; if not, move to the next iteration. ai, . . . , a|zk |−1 ← vectors of size |zk| − 1
containing random elements from F. t← a fresh variable.

10. ∀i ∈ [|zk| − 1], interpolate T̂(z, zk \ {z} = tai). Find Q̂′i(z, t) and βi,0, βi,1, βi,2 ∈ F such
that z · Q̂′i(z, t) + βi,2 · z + βi,1 · t + βi,0 = T̂(z, zk \ {z} = tai) by solving a system of
linear equations in the coefficients of Q̂′i(z, t) and βi,0, βi,1, βi,2.

11. Interpolate ∑z′∈zk\{z} αz′z′ using βi,1, . . . , β|zk |−1,1. If T̂ − ∑z′∈zk\{z} αz′z′ − β1,0 is re-
ducible, `k ← ∑z′∈zk\{z} αz′z′ − β1,0 and T̂ ← T̂ − `k. Break.

12. end if
13. end for
14. end for
15. `′ ← ∑k∈[s2] `k. Return `′.

We now prove the following lemma.

Lemma 4.4 (Correctness of Procedure 5). Find-Top-Linear-Form(f (Ax + b)), where A and b are as
after Step 3 of Algorithm 1, finds an affine form `′ such that when u0 is mapped to u0 − `′ in f (Ax + b),
all its terms become variable disjoint and `(Ax + b) becomes u0 + α for some α ∈ F.

36

Proof. Because of Step 12 of Algorithm 1, this procedure will only be called if C has a top dangling
variable. Recall that the variable sets of T̂1(Ax + b), . . . , T̂s2(Ax + b), and ∑s′

k=s2+1 T̂k(Ax + b) are
z1, . . . , zs2 , and y \ {u0} respectively. From Observation 4.3 the coefficient of u0 in `(Ax + b) is 1,
and from Claim 4.10 no y ∈ y \ {u0} appears in `(Ax + b). Let `(Ax + b) = u0 + ∑z∈z cz · z + c0;
recall that z = z1] · · ·] zs2 . Fix a k ∈ [s2]. We now show that in k-th iteration of the loop of lines
1-14 (the outer loop), the procedure finds `k which is `′ restricted to zk variables. Towards this, we
first show that in the k-th iteration of the outer loop, T̂ is reducible after the execution of the for
loop of lines 3-13 (the inner loop).

Claim 4.14. For any k ∈ [s2], after the execution of the inner loop during the k-th iteration of the outer
loop, T̂ is reducible.

Proof. At the beginning of the k-th iteration, T̂ = T̂k(Ax+b)+ [`(Ax + b)]zk
+γ′, for some γ′ ∈ F.

In the procedure N is the set of irreducible factors of h′ which is the Hessian determinant of T̂ with
respect to the zk-variables. Let T̂k = Q̂k,1 · · · Q̂k,mk . It follows from Corollary 3.1 and Fact 2.8, that at
least one of the Q̂k,1(Ax + b), . . . , Q̂k,mk(Ax + b) is in an irreducible factor of h′. Hence, a constant
multiple of at least one of the Q̂k,1(Ax + b), . . . , Q̂k,mk(Ax + b) is present in N along with some
other ‘bad’ factors. Fix a Q̂ ∈ N. Then it is either a ‘good’ non-linear factor, ‘good’ linear factor, or
a bad factor. In the following two claims we show that in the first two cases, T̂ is made reducible.

Claim 4.15. If Q̂ is a constant multiple of one of the Q̂k,1(Ax + b), . . . , Q̂k,mk(Ax + b) and is non-linear,
then after the execution of the first inner loop, T̂ is reducible.

Claim 4.16. If Q̂ is a constant multiple of one of the Q̂k,1(Ax + b), . . . , Q̂k,mk(Ax + b) and is linear, after
the execution of the first inner loop, T̂ is reducible.

The above claims are proved in Sections D.14 and D.15, respectively. Consider an iteration
of the inner loop for a bad Q̂. If in this iteration T̂ is made reducible, then there is nothing to
prove. Otherwise it follows from the above two observations that for all previous iterations of
the inner loop, Q̂ must have been a bad factor. It follows from Corollary 3.1, that at least one of
Q̂k,1(Ax + b), . . . , Q̂k,mk(Ax + b) is an irreducible factor of h′. This means that the next iteration of
this loop will be executed and this will continue to happen until for an iteration Q̂ is a constant
multiple of Q̂k,1(Ax + b), . . . , Q̂k,mk(Ax + b). The claim follows from Claims 4.15 and 4.16.

The proof of the following structural result can be found in Section D.16.

Claim 4.17. Suppose that Q1 · · ·Qm + u is a canonical ROF. Let T = Q1 · · ·Qm + `(z), where ` is a
non-zero affine form and Q1 · · ·Qm is not a quadratic polynomial. Then T is reducible if and only if for
some l ∈ [m], Ql is an affine form in a single variable and ` is a constant multiple of Ql .

We complete the proof of the lemma by combining Claims 4.14 and 4.17. As the k-th iteration
of the outer loop only works with zk, we can analyse each iteration in isolation. Claim 4.14 implies
that after the execution of the inner loop, T̂ is reducible. Initially, T̂ = T̂k(Ax+b)+ [`(Ax + b)]zk

+

γ′ for some γ′ ∈ F. The inner loop only subtracts an affine form from T̂. So after the execution
of the inner loop, T̂ = T̂k(Ax + b) + ˜̀ for some affine form ˜̀. Notice that T̂ ∈ orb(Tk + ˜̀′) for˜̀′ := ˜̀(A−1B−1(x− Bb− d)). Let Tk = Qk,1 . . . Qk,mk , T̂k = Q̂k,1 . . . Q̂k,mk , and Q̂k,l = Qk,l(Bx + d)
for all l ∈ [mk]. Claim 4.14 implies that T̂ is reducible. Then, if none of the factors Q̂k,1, . . . , Q̂k,mk

are linear, Claim 4.17 implies that ˜̀= 0. On the other hand, if one of the factors, say Q̂k,1 is linear,

37

then Claim 4.17 implies that ˜̀= c′k · Q̂k,1 for some c′k ∈ F and T̂ = Q̂k,1

(
Q̂k,2 . . . Q̂k,mk + c′k

)
. In the

first case, `k must be [`(Ax)]zk
+ γ′. Because Qk,1 is a variable connected to a × gate computing

a polynomial of degree at least 3, Lemma 4.3 implies that Q̂k,1(Ax + b) is a constant multiple
of a variable, say z. Thus, in this case, `k and [`]zk

must agree on the coefficients of all z′ ∈ zk

except perhaps that of z. For every k ∈ {s2 + 1, . . . , s′}, every k ∈ [s2] such that Tk is in the first
case, and every k ∈ [s2] in the second case that looks like xQ, where Q has a top-dangling y, let
T′k = Tk. For every other k, let T′k = Qk,1

(
Qk,2 . . . Qk,mk + c′k

)
. We also redefine d as follows: For

every k ∈ [s2] such that Tk is in the second case, it looks like zQ, and the top dangling variable
of Q is y, we add c′k to the y-th entry of d; all other entries remain unchanged. If we redefine
T̂(Ax+b) = T′k(BAx+ Bb+d), and C′ = T′1 + · · ·+ T′s + γ, then f (Ax+b) = T̂1 + · · ·+ T̂s + γ =
C′ (BAx + Bb + d). Now, when we map u0 to u0− `′ in f (Ax+b), all its terms are variable disjoint
and `(Ax + b) becomes u0 + α for some α ∈ F.

Remark. Notice that C′ need not be a canonical ROF. However, for all k ∈ [s2], all the factors of T′k
are still canonical. As we only recursively perform equivalence test on the factors of T̂k(Ax), C′
not being canonical is not a problem.

4.3.4 Obtaining efficient black-box access to a term

The next procedure is used to obtain black-box access to a term T̂k(Ax) using a single query to f .

Procedure 6 Compute-Term-Black-Box(g)
Input: Black-box access to a term of f (Ax) plus an unknown constant.
Output: Black-box access to the term using just one query to the black-box of f .

1. F ← a subset of F of size at least n5.
2. Obtain black-box access to det(Hg) with respect to var(g) and factorize it using the algo-

rithm in [KT90]. N ← set of black-boxes of the irreducible factors.
3. for r ∈ N do
4. a ← a vector of size |var(g)| containing random elements from F. For a fresh variable t,

interpolate r(ta) and g(ta).
5. Discover r′(t) and β ∈ F such that r(ta)r′(t) + β = g(ta) by solving a system of linear

equations in the coefficients of r′ and β.
6. If g− β is reducible, then return black-box access to g− β.
7. end for

The following claim proved in Section D.17 establishes the correctness of the above procedure.

Lemma 4.5 (Correctness of Procedure 6). Compute-Term-Black-Box(f (A (zk, x \ zk = 0))) gives black-
box access to T̂k(Ax) with high probability. Also, one query to T̂k(Ax) needs just one query to f .

4.3.5 Proof of Lemma 4.1

By induction on the product-depth ∆ of C. If ∆ = 0, as C is a canonical ROF, C = x1 and f is an
affine form. Since all variables in f are essential, n = 1 and f = α1x1 + α0 for some α0, α1 ∈ F,
α1 6= 0. Then, f (In×nx) ∈ PS-orb(C) and the algorithm works correctly for product-depth 0 ROFs.

38

Assume that the algorithm works correctly for all polynomials in the orbit of a canonical
ROF of product-depth ∆ ≥ 0 and let C be a canonical ROF of product-depth ∆ + 1. Recall that
the algorithm is given black-box access to an f ∈ F[x] such that there exist a B ∈ GL(n, F) and a
d ∈ Fn satisfying f = C(Bx + d). Also, there are no redundant variables in f . Further C = T1 +
· · ·+ Ts +γ, where T1, · · · , Ts are×-rooted canonical ROFs and γ ∈ F. Also, f = T̂1 + · · ·+ T̂s +γ,
where for all k ∈ [s], T̂k = Tk(Bx + d). T1, . . . , Ts1 are the good terms of C, while, T̂1, . . . , T̂s1 are the
good terms of f . Similarly, Ts1+1, . . . , Ts2 are the bad terms of C, while T̂s1+1, . . . , T̂s2 are the bad
terms of f . If C has a top dangling variable, it is Ts = xn, s′ := s− 1, and Ts2+1 + · · ·+ Ts−1 is the
top quadratic form. Otherwise, Ts2+1 + · · ·+ Ts is the top quadratic form and s′ := s. If C has a
top dangling variable, then ` := B ◦ xn + dn, where dn is the n-th coordinate of d.

It follows from Lemma 4.3 that after Step 3 is executed, T̂1(Ax + b), . . . , T̂s′(Ax + b), and
hence T̂1(Ax), . . . , T̂s′(Ax) are variable disjoint while ∑s′

k=s2+1 T̂k(Ax) = (y1 + c1) (y2 + c2) + · · ·+
(y2m−1 + c2m−1) (y2m + c2m), where c1, . . . , c2m ∈ F. Then, Claim 4.13 implies that after Step 11,
z1, . . . , zs2 are variable sets of T̂1(Ax), . . . , T̂s2(Ax), respectively. Further, if there is a dangling vari-
able, then Lemma 4.4 implies that `(Ax) = u0 + c for some c ∈ F. However, now f ∈ orb(C′),
where C′ is as defined in the proof of Lemma 4.4. If C does not have a top-dangling variable, then
let C′ = C. We first show that after Step 26 is executed, f (Ax) ∈ PS-orb(C′). As there are no redun-
dant variables in T̂1(Ax), . . . , T̂s′(Ax), for all k ∈ [s2], |zk| =

∣∣var
(
T′k
)∣∣ and |y| =

∣∣var
(
∑s

k=s2+1 T′k
)∣∣.

So there exists a permutation matrix P0 ∈ M(n, F) (that maps u0 to u0) such that for all k ∈ [s2],
var(T′k(P0x)) = zk and var

(
∑s

k=s2+1 T′k(P0x)
)
= y. There exists a B′ ∈ GL(n, F) and d′ ∈ Fn such

that f (Ax) = C′(P0(B′x + d′)). Notice that it suffices to prove that f (Ax) ∈ PS-orb(C′(P0x)). We
now analyse the for loop of lines 15-25. For any k ∈ [s2], as the k-th iteration of the loop only
works on T̂k(Ax) and zk, we can look at it in isolation.

Claim 4.18. For any k ∈ [s2], after the execution of the k-th iteration of the for loop of lines 15-25 there
exists a permutation matrix Pk ∈ M(|zk|, F), an invertible scaling matrix Sk ∈ M(|zk|, F), and a bk ∈
F|zk | such that T̂k (A (Akzk, x \ zk)) = T′k(P0 (PkSkzk + bk, x \ zk)).

The proof of this claim is given in Section D.18; here we finish the proof of the lemma assuming
the claim. After Step 14, there already exists a permutation matrix Ps2+1 ∈ M(|y|, F), an invertible
scaling matrix Ss2+1 ∈ M(|y|, F) (such that Ps2+1Ss2+1 ◦ u0 = u0) and a bs2+1 ∈ F|y| such that

s

∑
k=s2+1

T̂k (Ax) =
s

∑
k=s2+1

T′k(P0 (Ps2+1Ss2+1y + bs2+1, z)).

Let P ∈ M(|z|, F) be a permutation matrix that maps every z ∈ zk to Pk ◦ z for all k ∈ [s2] and
every y ∈ y to Ps2+1 ◦ y. Similarly, let S ∈ M(|z|, F) be a scaling matrix that maps every z ∈ zk to
Sk ◦ z for all k ∈ [s2] and and every y ∈ y to Ss2+1 ◦ y. Also, let b ∈ Fn be such that for all k ∈ [s2],
its coordinates corresponding to zk are bk and those corresponding to y are bs2+1. As A′0 maps
every z ∈ zk to Ak ◦ z , ∀k ∈ [s2] and maps every y ∈ y to itself, after A is set to AA′ we have that
T̂k(Ax) = T′(P0(PSx + b)) yielding f (Ax) = C′(P0 (PSx + b)) ∈ PS-orb (C′).

If C′ = C, then we are done. Otherwise, in Step 29 f (Ax) is reconstructed. From Lemma F.1,
we have that the terms of the reconstructed ROF f ′ are constant multiples of T′1(P0 (PSx + b)), . . . ,
T′s(P0 (PSx + b)). In fact, as T′1(P0 (PSx + b)), . . . , T′s(P0 (PSx + b)) are variable disjoint and hence
linearly independent, the terms are exactly T′1(P0 (PSx + b)), . . . , T′s(P0 (PSx + b)). Fix any k such
that Tk 6= T′k. Recall that in this case, Tk = zQk,2 · · ·Qk,mk and T′k = z

(
Qk,2 · · ·Qk,mk + ck

)
. From

Lemma F.1, the corresponding term of f ′ is (cα′1x+ cα′0)
(
c−1 (Qk,2 · · ·Qk,mk

)
(P0 (PSx + b)) + c−1ck

)
,

39

where α′1x = P0PS ◦ z, α′0 is the z-th entry of P0b, and c 6= 0. Hence in Step 29, α1 = cα′1
and β = c−1ck. Notice that P0PS ◦ u0 = u0. So after A is updated to map u0 to u0 − α1βx,
T̂k(Ax) = Tk(P0(PSx + b)) yielding f (Ax) ∈ PS-orb (C).

4.3.6 Running time of Algorithm 1

Notice that whenever a recursive call is made to Find-Equivalence(), it is for a polynomial in the
orbit of a distinct +-rooted sub-ROF or variable of the original ROF C. As there are at most n
many +-rooted sub-ROFs and n variables, there are at most 2n many recursive calls. Thus to
prove that Find-Equivalence() runs poly(n) time we only need to argue that the time required by
each recursive call (not counting the time spent in any sub-calls) is poly(n). We divide this time
into three parts: the time required to query the black-box of the input polynomial, time required to
prepare black-boxes for sub-calls, and the time required to do everything else. The last of these is
poly(n) because the Procedures 2, 3, 6, 5, and Algorithm 13 run in time poly(n). This is so as all the
operations that they perform like sparse polynomial interpolation, computing partial derivatives
of order at most two, computing determinants of symbolic matrices, and factoring polynomials
can be done efficiently in black-box fashion.

We now analyze how much time is required to query the black-box of the input polynomial
and prepare black-boxes for sub-calls. To do this, let us understand how the black-boxes for the
factors of the terms T̂1(Ax), . . . , T̂s2(Ax) are prepared in the for loop of lines 15-25 in first call to
Find-Equivalence(), i.e., the call for f . Observe that for any k ∈ [s2], Compute-Term-Black-Box()
obtains black-box access to T̂k(Ax) by setting all variables other than those in zk to 0 in f (Ax) and
subtracting a known constant β from the resulting polynomial. Thus black-box access to T̂k(Ax)
is obtained by evaluating f at known affine forms `1, . . . , `n (obtained from A by setting variables
not in zk to 0) and subtracting a known constant β from f (`1, . . . , `n).

For any l ∈ [mk], to obtain black-box access to the factors of T̂k(Ax), we first compute a matrix
Ak,0 ∈ GL(|zk|, F) such that the factors Q̂1, . . . , Q̂mk of T̂k(A(Ak,0zk, x \ zk)) are variable disjoint. To
obtain black-box access to Q̂l for some l ∈ [mk], we first set the variables in zk \ zk,l to random field
elements a′ and compute the constant βl from the (possibly inefficient) black-boxes of Q̂1, . . . , Q̂mk

obtained from T̂k(A(Ak,0z, x \ z)) using the black-box factorisation algorithm in [KT90]. We then
compute β−1

l · T̂ (Ak,0 (zk,l , zk \ zk,l = a′)). Notice that this is the same as evaluating f at known
affine forms `′1, . . . , `′n (obtained from `1, . . . , `n by setting zk \ zk,l = a′), multiplying it by a known
constant β−1

l and subtracting a known constant β−1
l β from it.

In any recursive call to Find-Equivalence(), the black-boxes for sub-calls are prepared in the
same way. Thus the discussion in the above paragraph implies that no matter the recursive depth
for a recursive call for a polynomial f ′, the black-box for f ′ would look like α f (`1, . . . , `n) − β,
where α, β are known constants and `1, . . . , `n known affine forms in var(f ′). Thus the time to
query the black-box of f ′ is poly(n); not poly(|var(f ′)|), but still independent of the recursive
depth. Similarly the time required to prepare black-boxes for sub-calls is also poly(n) and inde-
pendent of the recursion depth as all that needs to be done is to compute appropriate affine forms
`′1, . . . , `′n and constants α′ and β′. Thus the algorithm runs in time poly(n).

40

5 Polynomial equivalence for orbits of ROFs

In this section, we shall prove Theorem 2. Let ROF0 be the class of all additive-constant-free
canonical ROFs.

5.1 The algorithm

The following algorithm decides whether f1(x), f2(x) ∈ orb (ROF0) are equivalent or not.

Algorithm 7 Equivalence-Test(f1(x), f2(x))
Input: Black-box access to f1(x), f2(x) ∈ orb(ROF0).
Output: Whether or not f1 and f2 are equivalent. If they are equivalent, then A ∈ GL(n, F) and
b ∈ Fn such that f1(x) = f2(Ax + b).

/* Reconstructing canonical ROFs equivalent to f1 and f2. */
1. for i ∈ [2] do
2. Ai ← Find-Equivalence(fi(x)) (Algorithm 1).
3. C′i ← Reconstruct-ROF(fi(Aix)) (Algorithm 13).
4. Si, bi ← Canonize(C′i) (Procedure 14), where Si ∈ GL(n, F) is a scaling matrix, bi ∈ Fn.
5. Ci ← C′i(Six + bi), Gi ← the underlying tree of Ci wherein all internal nodes are unla-

belled and the leaves are labelled by variables.
6. end for

/* Checking if C1 and C2 are equivalent */
7. if G1 and G2 are isomorphic as rooted trees then
8. If σ is the permutation such that σ(G2) = G1, construct a permutation matrix P that maps xi

to σ(xi) ∀i ∈ [n] using Fact A.4. A← A2S2PS−1
1 A−1

1 , b← A2b2 − A2S2PS−1
1 b1.

9. Use the Schwartz-Zippel Lemma to check if f1(x) = f2(Ax+ b). If yes, return EQUIVALENT,
A and b. Else, return NOT EQUIVALENT.

10. else
11. Return NOT EQUIVALENT.
12. end if

5.2 Analysis of the algorithm

We establish the correctness of the above algorithm by proving the following lemma.

Lemma 5.1 (Correctness of Algorithm 7). Given black-box access to two n-variate polynomials f1(x),
f2(x) ∈ orb(ROF0), Algorithm 7 correctly determines with high probability whether they are equivalent
or not provided that char(F) = 0 or ≥ n2 and |F| ≥ n13. Moreover, if they are equivalent, it returns an
A ∈ GL(n, F) and a b ∈ Fn such that f1(x) = f2(Ax + b).

Proof. If f1 /∈ orb(f2), then Step 9 ensures that the algorithm returns NOT EQUIVALENT with
high probability. So suppose that f1 ∈ orb(f2). In this case, there exists a C ∈ ROF0 such that
f1, f2 ∈ orb (C). Then, f1 (A1x) , f2 (A2x) ∈ PS-orb(C) (from Lemma 4.1), and so the only non-zero

41

additive-constants in them are translations, i.e. constants attached to + gates which have a vari-
able as a child. As, from Lemma F.1, C′1 and f1 (A1x), C′2 and f2 (A2x) are equal up to scaling of the
leaves, the only non-zero additive-constants in C′1 and C′2 are also translations. We now use this
fact to show that C1 and C2 are the same as C up to a permutation of variables.

As mentioned above, f1(A1x), f2(A2x) ∈ PS-orb(C) and C′1, C′2 are same as f1(A1x), f2(A2x)
up to scaling of leaves. This means that C′1, C′2 can be obtained from C by permuting, scaling,
and translating the variables and scaling the additive-constants (as they are also leaves of C′1, C′2).
However as the only non-zero additive constants in C′1 and C′2 are translations, these two ROFs
differ from C by just permutation, scaling and translation of the variables. From Observation F.1,
C1 and C2 are constant-free regular ROFs obtained from C′1 and C′2 by recovering the scaling and
translation of variables. Hence, they must be equal to C up to a permutation of variables.

As C1 and C2 are the same up to a permutation of variables, their underlying trees G1 and G2
are isomorphic as rooted trees. So, a permutation σ such that σ(G2) = G1 exists. As σ is completely
determined by its restriction to the leaves of G2, if P is as defined in Step 8, then C1(x) = C2(Px).
A simple calculation shows that this implies f1(x) = f2(Ax+ b) for A and b defined in Step 8.

Running time of the algorithm. Find-Equivalence(), Reconstruct-ROF(), and Canonize() run in
time polynomial in n. Also as mentioned in Fact A.4, a polynomial time algorithm exists for the
rooted tree isomorphism problem. Moreover, the Schwartz-Zippel lemma also yields a polynomial
time algorithm for checking if f1(x) = f2(Ax + b) in Step 9. Thus, Algorithm 7 runs in time
poly(n). This along with Lemma 5.1 proves Theorem 2.

6 Conclusion

In this work, we give the first randomized polynomial-time equivalence test for ROFs (Theorem
1) and use this result to solve PE for orbits of (slightly restricted) ROFs (Theorem 2). These re-
sults are substantial generalizations of two well-studied problems in algebraic complexity, namely
quadratic form equivalence and reconstruction of ROFs. As PE is graph isomorphism hard for
even cubic forms, it is indeed satisfying to know that PE can be solved efficiently for an unbounded-
depth, unbounded-degree, and unbounded-fanin circuit class such as orbits of ROFs. Theorem 1
also implies efficient learning of random arithmetic formulas (without any restriction on the un-
derlying tree structure) in the high number of variables setting.

The algorithms are based on a novel interplay between a few crucial properties of the fac-
tors and the essential variables of the Hessian determinant of an ROF, the essential variables of
the ROF, and certain structures in the ROF called “skewed paths”. Proving these properties of
the Hessian and combining them effectively with the skewed paths to make up for the dearth of
essential variables and to recursively discover formulas in the orbits of sub-ROFs of lower depth
(without blowing up the complexity exponentially due to unbounded depth) constitute the main
technical contributions of this work. The approach developed in this work and the insights ob-
tained thus may turn out to be independently useful for learning other related circuit models.

We end this section by noting a few future directions that can be pursued:

1. Generalizing our results. We believe that the mild “additive-constant-free" restriction on
the ROFs in Theorems 2 can be removed completely by building on the techniques of this
work. Indeed, we show in Section E that this relaxation is possible for depth-4 ROFs. It

42

is worth showing the same for general ROFs. Another interesting generalization of Theo-
rem 1 would be an equivalence test for power-substituted ROFs and, more generally, for
univariate-substituted ROFs 35. An equivalence test for univariate-substituted ROFs would
greatly generalize the equivalence test for the sums of univariates model studied in [GKP18]
and the reconstruction algorithm for preprocessed ROFs in [SV14]. We believe that our
equivalence test and its analysis can be extended to work for univariate-substituted ROFs. To
support this belief, let us consider the power-substituted sum-product polynomial SPP :=
∑i∈[s] ∏j∈[d] x

ei,j
i,j , where ei,j ∈N. It turns out that det(HSPP) factorizes as:

det(HSPP) = (−1)s(d−1) · ∏
i∈[s],j∈[d]

ei,j ·∏
i∈[s]

(ei,1 + . . . + ei,d − 1) · ∏
i∈[s],j∈[d]

x
ei,j·d−2
i,j .

So the equivalence test for SP, described in Section 1.3.1, works (almost as it is) for SPP.

2. Learning orbits of sparse polynomials and ROABPs. As mentioned in Section 1.1.2, study-
ing the orbit of a circuit class is a natural first step towards understanding affine projections
of the class. Efficient proper learning algorithms are long known for sparse polynomials
[KS01] and ROABPs [BBB+00, KS06]. Recall that affine projections of these classes capture
immensely powerful circuit classes such as depth-3 circuits and ABPs. Like ROFs, can we
design efficient learning algorithms for orbits of sparse polynomials and ROABPs?

3. Learning random formulas. Theorem 1 solves the learning problem for random formulas
when the number of variables n is larger than the size s of the underlying tree of the formula.
A more interesting setting of parameters is s = poly(n). Can we design an efficient learning
algorithm for random formulas (of even constant depth) if s� n?

References

[AHK93] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning Read-Once Formulas
with Queries. J. ACM, 40(1):185–210, 1993. 13

[AHU83] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Addison-Wesley, 1983. 11, 50

[Ara11] Manuel Araújo. Classification of quadratic forms. https://www.math.tecnico.
ulisboa.pt/~ggranja/manuel.pdf, 2011. 50

[AS05] Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications
to complexity of problems. In 23rd Annual Symposium on Theoretical Aspects of Computer
Science, STACS 2005, pages 1–17, 2005. 12

[AS06] Manindra Agrawal and Nitin Saxena. Equivalence of f-algebras and cubic forms. In
23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2006, pages
115–126, 2006. 12

35A univariate-substituted ROF is obtained from an ROF by substituting every variable xi by an arbitrary (and un-
known) univariate polynomial gi(xi). Such ROFs were called preprocessed ROFs in [SV14].

43

https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf
https://www.math.tecnico.ulisboa.pt/~ggranja/manuel.pdf

[BB98] Daoud Bshouty and Nader H. Bshouty. On Interpolating Arithmetic Read-Once For-
mulas with Exponentiation. J. Comput. Syst. Sci., 56(1):112–124, 1998. Conference ver-
sion appeared in the proceedings of COLT 1994. 13

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Ste-
fano Varricchio. Learning functions represented as multiplicity automata. J. ACM,
47(3):506–530, 2000. Conference version appeared in the proceedings of FOCS 1996. 43

[BC98] Nader H. Bshouty and Richard Cleve. Interpolating Arithmetic Read-Once Formulas
in Parallel. SIAM J. Comput., 27(2):401–413, 1998. Conference version appeared in the
proceedings of FOCS 1992. 13

[Ber70] Elwyn R Berlekamp. Factoring polynomials over large finite fields. Mathematics of
Computation, 24:713–735, 1970. 49

[BFP15] Jérémy Berthomieu, Jean-Charles Faugère, and Ludovic Perret. Polynomial-time al-
gorithms for quadratic isomorphism of polynomials: The regular case. J. Complex.,
31(4):590–616, 2015. 12

[BG21] Vishwas Bhargava and Sumanta Ghosh. Improved Hitting Set for Orbit of ROABPs.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle,
Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 30:1–30:23, 2021. 2

[BGKS21] Vishwas Bhargava, Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning general-
ized depth-three arithmetic circuits in the non-degenerate case. Electron. Colloquium
Comput. Complex., page 155, 2021. 13

[BHH95a] Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning arithmetic
read-once formulas. SIAM J. Comput., 24(4):706–735, 1995. Conference version ap-
peared in the proceedings of STOC 1992. 3, 4, 13, 79

[BHH95b] Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning Boolean Read-
Once Formulas over Generalized Bases. J. Comput. Syst. Sci., 50(3):521–542, 1995. Con-
ference version appeared in the proceedings of COLT 1992. 13

[BRS17] Markus Bläser, B. V. Raghavendra Rao, and Jayalal Sarma. Testing Polynomial Equiv-
alence by Scaling Matrices. In Proceedings of 21st International Symposium on Fundamen-
tals of Computation Theory (FCT), France, volume 10472, pages 111–122, 2017. 13

[BW15] Peter A Brooksbank and James B Wilson. The module isomorphism problem reconsid-
ered. Journal of Algebra, 421:541–559, 2015. 12

[Car06] Enrico Carlini. Reducing the number of variables of a polynomial. In Algebraic Geome-
try and Geometric Modeling, pages 237–247, 2006. 14, 17

[CCL10] Jin-yi Cai, Xi Chen, and Dong Li. Quadratic Lower Bound for Permanent Vs. Deter-
minant in any Characteristic. Comput. Complex., 19(1):37–56, 2010. Conference version
appeared in the proceedings of STOC 2008. 17

44

[CMM17] Sunil K. Chebolu, Dan McQuillan, and Ján Mináč. Witt’s cancellation theorem seen as
a cancellation. Expositiones Mathematicae, 35(3):300–314, 2017. 1

[DdOS14] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing Equivalence of Poly-
nomials under Shifts. In Automata, Languages, and Programming - 41st International Col-
loquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume
8572 of Lecture Notes in Computer Science, pages 417–428. Springer, 2014. 13

[FGS18] Vyacheslav Futorny, Joshua Grochow, and Vladimir Sergeichuk. Wildness for tensors.
Linear Algebra and its Applications, 566, 12 2018. 12

[GGKS19] Ankit Garg, Nikhil Gupta, Neeraj Kayal, and Chandan Saha. Determinant equiva-
lence test over finite fields and over Q. In 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Greece, volume 132 of LIPIcs,
pages 62:1–62:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 12, 13

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
Circuits: A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference
version appeared in the proceedings of FOCS 2013. 2

[GKL11] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient reconstruction
of random multilinear formulas. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 778–
787. IEEE Computer Society, 2011. 3

[GKP18] Ignacio García-Marco, Pascal Koiran, and Timothée Pecatte. Polynomial Equivalence
Problems for Sum of Affine Powers. In Proceedings of the 2018 ACM on International
Symposium on Symbolic and Algebraic Computation, ISSAC 2018, New York, NY, USA, July
16-19, 2018, pages 303–310. ACM, 2018. 13, 17, 43

[GKQ14] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random arithmetic formulas can be
reconstructed efficiently. Comput. Complex., 23(2):207–303, 2014. Conference version
appeared in the proceedings of CCC 2013. 3, 12

[GKS20] Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 889–
899. IEEE, 2020. 2, 3, 12

[GQ21] Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems
for tensors, groups, and polynomials I: tensor isomorphism-completeness. In 12th In-
novations in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual
Conference, volume 185 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. 12

[GQT21] Joshua A. Grochow, Youming Qiao, and Gang Tang. Average-case algorithms for test-
ing isomorphism of polynomials, algebras, and multilinear forms. In 38th Interna-
tional Symposium on Theoretical Aspects of Computer Science, STACS 2021, March 16-19,
2021, Saarbrücken, Germany (Virtual Conference), volume 187 of LIPIcs, pages 38:1–38:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 12

45

[Gro12] Joshua Abraham Grochow. Symmetry and equivalence relations in classical and geometric
complexity theory. PhD thesis, Department of Computer Science, The University of
Chicago, Chicago, Illinois, 2012. 12, 13

[GS19] Nikhil Gupta and Chandan Saha. On the symmetries of and equivalence test for design
polynomials. In 44th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages
53:1–53:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 12, 13

[Gur77] V. A. Gurvich. On repetition-free boolean functions. Uspekhi Matematicheskikh Nauk,
32(1):183–184, 1977. (in Russian). 13

[HH91] Thomas R. Hancock and Lisa Hellerstein. Learning read-once formulas over fields and
extended bases. In Manfred K. Warmuth and Leslie G. Valiant, editors, Proceedings of
the Fourth Annual Workshop on Computational Learning Theory, COLT 1991, Santa Cruz,
California, USA, August 5-7, 1991, pages 326–336. Morgan Kaufmann, 1991. 3, 4, 13, 79

[HHTT22] Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. Depth-d Threshold Cir-
cuits vs. Depth-(d+1) AND-OR Trees. Electronic Colloquium on Computational Complexity
(ECCC), page 87, 2022. 13

[HRST17] Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An Average-
Case Depth Hierarchy Theorem for Boolean Circuits. J. ACM, 64(5):35:1–35:27, 2017.
13

[IQ19] Gábor Ivanyos and Youming Qiao. Algorithms Based on *-Algebras, and Their Ap-
plications to Isomorphism of Polynomials with One Secret, Group Isomorphism, and
Polynomial Identity Testing. SIAM J. Comput., 48(3):926–963, 2019. Conference version
appeared in the proceedings of SODA 2018. 1, 12

[JQSY19] Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group ac-
tion on tensors: A candidate for post-quantum cryptography. In Theory of Cryptogra-
phy - 17th International Conference, TCC 2019, Nuremberg, Germany, December 1-5, 2019,
Proceedings, Part I, volume 11891 of Lecture Notes in Computer Science, pages 251–281.
Springer, 2019. 1

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equiva-
lence problem. In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 1409–1421. SIAM, 2011. 5, 6, 13, 14, 17

[Kay12] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012, pages 643–662, 2012. 12, 13

[KLN+93] Mauricio Karchmer, Nathan Linial, Ilan Newman, Michael E. Saks, and Avi Wigder-
son. Combinatorial characterization of read-once formulae. Discret. Math., 114(1-
3):275–282, 1993. 13

46

[KNS19] Neeraj Kayal, Vineet Nair, and Chandan Saha. Average-case linear matrix factorization
and reconstruction of low width algebraic branching programs. Comput. Complex.,
28(4):749–828, 2019. 3, 13, 64

[KNST19] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of
full rank algebraic branching programs. ACM Trans. Comput. Theory, 11(1):2:1–2:56,
2019. Conference version appeared in the proceedings of CCC 2017. 12, 13, 14, 17, 49

[KS01] Adam R. Klivans and Daniel A. Spielman. Randomness efficient identity testing of
multivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 216–223, 2001. 5, 8, 21, 22, 43

[KS06] Adam R. Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits.
Theory of Computing, 2(10):185–206, 2006. Conference version appeared in the proceed-
ings of COLT 2003. 43

[KS19] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. In Proceedings of the 51st Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 413–424. ACM,
2019. 3, 12

[KS21a] Pascal Koiran and Subhayan Saha. Black Box Absolute Reconstruction for Sums of
Powers of Linear Forms. CoRR, abs/2110.05305, 2021. 13

[KS21b] Pascal Koiran and Mateusz Skomra. Derandomization and absolute reconstruction for
sums of powers of linear forms. Theor. Comput. Sci., 887:63–84, 2021. 13

[KT90] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black
Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation of
Numerators and Denominators. J. Symb. Comput., 9(3):301–320, 1990. Conference ver-
sion appeared in the proceedings of FOCS 1988. 4, 5, 10, 11, 19, 25, 38, 40, 49, 82

[Lam04] T. Y. Lam. Introduction To Quadratic Forms Over Fields. American Mathematical Society,
2004. 50

[LLL82] Arjen K Lenstra, Hendrik W Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. 49

[MNS20] Janaky Murthy, Vineet Nair, and Chandan Saha. Randomized Polynomial-Time Equiv-
alence Between Determinant and Trace-IMM Equivalence Tests. In 45th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August 24-28,
2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 72:1–72:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. 12, 13

[MR04] Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and
permanent problem. International Mathematics Research Notes, 2004(79):4241–4253, 2004.
17

47

[MS21] Dori Medini and Amir Shpilka. Hitting sets and reconstruction for dense orbits in VPe
and ΣΠΣ circuits. In 36th Computational Complexity Conference, CCC 2021, July 20-23,
2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 19:1–
19:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 2, 4, 12, 13

[MV18] Daniel Minahan and Ilya Volkovich. Complete derandomization of identity testing
and reconstruction of read-once formulas. ACM Trans. Comput. Theory, 10(3):10:1–
10:11, 2018. Conference version appeared in the proceedings of CCC 2017. 3, 4, 13,
79

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
two new families of asymmetric algorithms. In Advances in Cryptology - EUROCRYPT
’96, International Conference on the Theory and Application of Cryptographic Techniques,
Saragossa, Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996. 1, 12

[RS11] B. V. Raghavendra Rao and Jayalal Sarma. Isomorphism testing of read-once functions
and polynomials. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2011, December 12-14, 2011, India, volume 13 of
LIPIcs, pages 115–126. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011. 13

[Sax06] Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian
Institute of Technology, Kanpur, 2006. 1

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identi-
ties. J. ACM, 27(4):701–717, 1980. 11

[Ser73] Jean-Pierre Serre. A course in arithmetic. Springer, 1973. 50

[Sip83] Michael Sipser. Borel Sets and Circuit Complexity. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston, Massachusetts, USA,
pages 61–69. ACM, 1983. 13

[ST21] Chandan Saha and Bhargav Thankey. Hitting Sets for Orbits of Circuit Classes and
Polynomial Families. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of
Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages
50:1–50:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 2, 13

[SV14] Amir Shpilka and Ilya Volkovich. On Reconstruction and Testing of Read-Once For-
mulas. Theory of Computing, 10(18):465–514, 2014. Conference version appeared in the
proceedings of STOC 2008. 3, 4, 13, 43, 79

[Tav15] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Com-
put., 240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013.
2

[Thi98] Thomas Thierauf. The isomorphism problem for read-once branching programs and
arithmetic circuits. Chicago J. Theor. Comput. Sci., 1998, 1998. 1

48

[Vol16] Ilya Volkovich. Characterizing arithmetic read-once formulae. ACM Trans. Comput.
Theory, 8(1):2:1–2:19, 2016. 3, 13

[Wal13] Lars Ambrosius Wallenborn. Computing the hilbert symbol, quadratic form equiv-
alence and integer factoring. Diploma thesis, Rheinischen Friedrich-Wilhelms-
Universität Bonn, 2013. 50

[Wit37] Ernst Witt. Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew.
Math., 176:31–44, 1937. 1

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Alge-
braic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic
Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979. 11

Notations Usage
C, ∆ An ROF and its product depth, respectively
T, Q (with or without subscripts) ×-rooted and +-rooted sub-ROFs, respectively
A, B, C, P, R, S Matrices over F

U, W Spaces spanned by the first order partials of polynomials
E, F, I, J, N, V Sets
f , g, h, p, q, `, r Polynomials
t, u, x, y, z Variables
x, y, z, u Sets of variables
α, β, γ, c Elements of F

d, e, i, j, k, l, m, n, s Natural numbers
a, b, d, α Vectors over F

Table 1: Notations

A Some useful algorithmic facts

A.1 Black-box polynomial factorization

Fact A.1 (Black-box for partials). Let d ∈ N, char(F) = 0 or char(F) > d, and g ∈ F[x] be a degree d
polynomial given as a black-box. Then, for x ∈ x, a black-box for ∂g

∂x can be computed in poly(|x|, d) time.

The above fact is well-known; a proof of it can be found in Section 2.2 of [KNST19].

Fact A.2 (Black-box polynomial factorization [KT90]). Let d ∈N, char(F) = 0 or char(F) > d, and
|F| ≥ d6. There is a randomized algorithm, with oracle access to univariate polynomial factorization over
F, that takes input black-box access to a polynomial g ∈ F[x] of degree d and outputs black-boxes for the
irreducible factors of g in poly(|x|, d) time.

Remark. Since our model of computation allows univariate polynomial factorization, we will as-
sume that black-box polynomial factorization can be done in randomized polynomial-time. This
assumption is justified particularly for finite fields and Q [Ber70, LLL82].

49

A.2 Quadratic form equivalence

Known algorithms for quadratic form equivalence (QFE) over C, R, Q, and finite fields are based
on well-known classification of quadratic forms. Refer to [Ser73, Lam04, Ara11] for a comprehen-
sive discussion on this. We record the complexity of QFE over these fields in the fact below. Over
R and C, the model of computation is an arithmetic circuit with oracle access to a square root find-
ing algorithm; every operation in the circuit takes a unit time. Whereas, over Q and finite fields,
the model of computation is a Turing machine, i.e., the running time is measured as bit operations.

Fact A.3 (Complexity of QFE). Let n be the number of variables in each of the two input quadratic forms.

1. (Over C and R). There is a deterministic poly(n) time QFE algorithm.

2. (Over finite fields). Let char(F) 6= 2. There is a randomized poly(n, log |F|) time QFE algorithm.

3. (Over Q) [Wal13]. There is a deterministic poly(n, b) time QFE algorithm with oracle access to
integer factoring, where b is the bit length of the coefficients of the input quadratic forms.

A.3 Rooted tree isomorphism

Definition A.1 (Tree isomorphism). Two rooted trees G1 = (V1, E1, v1) and G2 = (V2, E2, v2) are
isomorphic, if there is a bijection π : V1 → V2 s.t. (v, v′) ∈ E1 ⇔ (π(v), π(v′)) ∈ E2 and π(v1) = v2.

Fact A.4 (Efficient tree isomorphism [AHU83]). There is an algorithm that takes input two rooted trees
G1 = (V1, E1, v1) and G2 = (V2, E2, v2) and decides if G1 and G2 are isomorphic. If the answer is yes, it
also outputs an isomorphism. The running time of the algorithm is poly(|V1|, |V2|).

The following observation is easy to show.

Observation A.1. Let G1 = (V1, E1, v1) and G2 = (V2, E2, v2) be rooted trees and π an isomorphism
from G1 to G2 s.t. π(v1) = v2. Then, π is completely determined by its restriction to the leaves of G1.

B Missing proofs from Section 2

B.1 Proof of Observation 2.1

Let x be a truly essential variable of g. Suppose there exists αx′ ∈ F, for every x′ ∈ x, such that
∑x′∈x\{x} αx′

∂g
∂x′ = αx

∂g
∂x , where αx 6= 0. Then, it follows from Fact 2.1 that there is an A ∈ GL(|x|, F)

which maps x to itself and g(Ax) is x-free. Hence, by Definition 2.2, x is not truly essential.
Suppose x is not a truly essential variable of g. Then, there exists an A ∈ GL(|x|, F) that

maps x to itself and g(Ax) is x-free. Suppose the column of A labelled by x is (αy,x)T
y∈x. Then,

it follows from the chain rule of derivatives that 0 = ∂g(Ax)
∂x = ∑y∈x αy,x

∂g
∂y (Ax), which implies

∑y∈x αx,y
∂g
∂y = 0. As A maps x to itself, αx,x = 1 6= 0. This completes the proof.

50

B.2 Proof of Observation 2.2

Assume that z = x and all x-variables are essential for h. Suppose, A =

[
Ax A1
A2 Ay

]
, where the rows

and columns of Ax, Ay are labelled by x and y, respectively. It is sufficient to show that A1 = 0.
Let g = h(A(x, y)T) ∈ F[x]. Pretend that g, h are polynomials in x] y. Let ∇g = ([∇g]x, [∇g]y)T,

where [∇g]x =
(

∂g
∂x

)
x∈x

and [∇g]y =
(

∂g
∂y

)
y∈y

= 0. Similarly, let ∇h = ([∇h]x, [∇h]y)T, where

[∇h]y = 0. By the chain rule,
∇g = AT · [∇h](A(x, y)T). (1)

Since x is the set of essential variables of h, the entries in [∇h]x are F-linearly independent, and
thus, the entries in [∇h]x(A(x, y)T) are also F-linearly independent. Now, it is easy to see from
Equation (1) and the structure of A that AT

1 = 0. Otherwise, we get a non-zero linear combination
of ∂h

∂x (A(x, y)T), x ∈ x, which is equal to 0 (as [∇g]y = [∇h]y = 0), and this leads to a contradiction.
Now, suppose x 6= z. Let P ∈ GL(|x|+ |y|, F) be a permutation matrix that maps x to z, z to

x and every other variable to itself. We know h(A(x, y)T) ∈ F[z]. Then, note that h(AP(x, y)T) ∈
F[x]. It follows from the above argument that AP maps every x-variable to a linear form in x. This
implies A maps every x-variable to a linear form in z.

Now, suppose that not all x-variables are necessarily essential for h. Let C ∈ GL(|x|+ |y|, F)
be such that h(C(x, y)T) has no redundant variables. Then, Fact 2.2 implies that every truly essen-
tial variable of h is in var(h(C(x, y)T)). The argument in the above paragraph implies that C−1A
maps all variables in var(h(C(x, y)T)) to linear forms in z. Because C maps every truly essential
variable of h to itself, A maps every truly essential variable to a linear form in z.

B.3 Proof of Observation 2.3

Suppose, ∑x∈x αx
∂h
∂x + ∑y∈y βy

∂h
∂y = 0. Since h = g(x)e · p(x, y) and e ≥ 1, we get

∑
x∈x

αx

(
ge ∂p

∂x
+ e · ge−1 · p ∂g

∂x

)
+ ∑

y∈y
βyge ∂p

∂y
= 0.

On dividing the above equation by ge−1 and rearranging the terms we get

g

(
∑
x∈x

αx
∂p
∂x

+ ∑
y∈y

βy
∂p
∂y

)
+ e · p

(
∑
x∈x

αx
∂g
∂x

)
= 0.

As g and p are coprime, and deg
(

∑x∈x αx
∂g
∂x

)
< deg(g), we get ∑

x∈x
αx

∂g
∂x = 0. But, this implies

αx = 0 for every x ∈ x, since Ness(g) = |x|. Hence, every x-variable is truly essential for h.

B.4 Proof of Observation 2.4

Let α1
∂h
∂x1

+ α2
∂h
∂x2

+ ∑y∈y βy
∂h
∂y = 0, where α1, α2, βy ∈ F for y ∈ y. Since h = ∑i≥0 pi(y)(x1x2)i,

α1

(
∑
i≥1

i · pi · xi−1
1 xi

2

)
+ α2

(
∑
i≥1

i · pi · xi
1xi−1

2

)
+ ∑

y∈y
βy

(
∑
i≥0

(x1x2)
i ∂pi

∂y

)
= 0.

51

Notice that α1

(
∑i≥1 i · pi · xi−1

1 xi
2

)
, α2

(
∑i≥1 i · pi · xi

1xi−1
2

)
, and ∑y∈y βy

(
∑

i≥0
(x1x2)i ∂pi

∂y

)
are mono-

mial disjoint. Thus, each of these three polynomials is zero. Suppose α1 6= 0. Then, ∑
i≥1

i · pi ·

xi−1
1 xi

2 = 0. As char(F) = 0 or > d, we get pi = 0 for every i ≥ 1, which is a contradiction. Thus,
α1 = 0. Similarly, α2 = 0. Hence, x1 and x2 are truly essential for h.

B.5 Proof of Observation 2.5

For j ∈ I, let ϕj be the substitution map defined as: ϕj(xj) = −αj
−1
(

∑i∈[n]\{j} αixi + β
)

, and
ϕ(x) = x for every x ∈ x \ {xj}. For j1, j2 ∈ I, let gj1 := ϕj1(g) and gj2 := ϕj2(g). Observe that
gj1 − gj2 ∈ 〈`〉, which implies gj1 = ϕj1(gj2), as ϕj1(`) = 0 and gj1 is xj1-free. Hence, by chain rule,
∂gj1
∂xi

= ϕj1

(
∂gj2
∂xi

)
− α−1

j1
αi · ϕj1

(
∂gj2
∂xj1

)
. As gj2 is xj2-free,

∂gj1

∂xj2
= −α−1

j1
αj2 · ϕj1

(
∂gj2

∂xj1

)
=⇒

∂gj1

∂xi
− α−1

j2 αi ·
∂gj1

∂xj2
= ϕj1

(
∂gj2

∂xi

)
.

Notice that the space spanned by
{

∂gj1
∂xi
− α−1

j2
αi ·

∂gj1
∂xj2

: xi ∈ x
}

is Wj1 , which (by the above equa-

tions) is U :=
〈

ϕj1

(
∂gj2
∂xi

)
: xi ∈ x

〉
. As ϕj1 is linear, dim U ≤ dim Wj2 , implying dim Wj1 ≤

dim Wj2 . Similarly, we can show that dim Wj2 ≤ dim Wj1 . Therefore, dim Wj1 = dim Wj2 .

B.6 Proof of Observation 2.6

From the definition of a formula, the first three properties of Definition 2.6 are satisfied by C.
We now “push" the labels on the edges of C down to the leaves so that the variables labelling
the leaves are scaled. Then, we apply an invertible diagonal transformation S to x to rescale the
variables appropriately. This ensures that property 4 is satisfied. To satisfy property 5, observe
that if a + gate has variable children xi1 , . . . , xim and constant children γ1, . . . , γk, then we can
replace all the constants by γ = γ1 + . . . + γk, and apply an invertible affine transformation that
maps xi1 to xi1 − (xi2 + · · ·+ xim + γ) and every other variable to itself.

Suppose u is a + gate that has among its children a variable x and a × gate v such that v has
two children – a variable y and a + gate v′. Suppose v′ has a constant child γ. The polynomial
computed at v is of the form x + y(T + γ) + other terms = (x + γy) + yT + other terms, where
T is x and y free. Now, if we apply an invertible linear transformation that maps x to x− γy and
every other variable to itself, then property 6 is satisfied with respect to nodes u and v. Finally, it
is easy to see that this canonization process does not introduce any extra additive-constant.

B.7 Proof of Observation 2.7

Let var(C) = x. Over any field, Ness(C) ≥ dim
〈

∂C
∂x : x ∈ x

〉
. So it is sufficient to show that

dim
〈

∂C
∂x : x ∈ x

〉
= |x|. We will prove this by induction on the product depth ∆ of C. In the base

case, ∆ = 0, and C computes a polynomial x + γ, for γ ∈ F; so, dim
〈

∂C
∂x : x ∈ x

〉
= |x| = 1.

Suppose that the induction hypothesis holds for canonical ROFs of product depth ∆− 1 or less.

52

Let C = T1 + . . . + Ts + γ be a canonical ROF of product depth ∆, where each Ti is a ×-rooted
ROF having at least two non-constant, variable disjoint factors. Consider an F-linear dependence
∑x∈x αx

∂C
∂x = 0, where αx ∈ F. Then, ∑x∈var(Ti) αx

∂Ti
∂x ∈ F for every i ∈ [s]. This is because Ti and

Tj are variable disjoint for i 6= j. But ∑x∈var(Ti) αx
∂Ti
∂x ∈ F implies ∑x∈var(Ti) αx

∂Ti
∂x = 0, as Ti is a

product of at least two non-constant factors and a common root of these variable disjoint factors
is also a root of ∑x∈var(Ti) αx

∂Ti
∂x . Now suppose αx 6= 0 for some x ∈ var(Ti) and i ∈ [s]. Let

Ti = Q1 · · ·Qm, where Q1, . . . , Qm are variable disjoint +-rooted canonical ROFs of product depth
at most ∆ − 1. Suppose that the x mentioned above is in var(Ql). By the induction hypothesis,
∑y∈var(Ql)

αy
∂Ql
∂y 6= 0 unless every αy = 0. So the dependence ∑x∈var(Ti) αx

∂Ti
∂x = 0 implies Ql

divides ∑y∈var(Ql)
αy

∂Ql
∂y 6= 0, which is not possible as the latter has a smaller degree. Therefore,

αx = 0 for every x ∈ x, and so, dim
〈

∂C
∂x : x ∈ x

〉
= |x|.

B.8 Proof of Claim 2.1

Let x = {x1, . . . , xn} be var(C), where C = T1 + · · ·+ Ts + γ is a canonical ROF. Let ` = ∑x∈x αxx +
α, where either |var(`)| ≥ 2, α ∈ F and for every x ∈ x, αx ∈ F or |var(`)| = 1 and α ∈ F×.
Let x′ = x \ {y1}, `1 = ∑x∈x′ −α′xx − α′, where for every x ∈ x′, α′x = αxα−1

y1
and α′ = αα−1

y1
.

Notice that `1 6= 0. Then, we know that C` = C(y1 = `1, x′). As C is canonical, there exists at
most one l ∈ [s], such that Tl is a variable. If such an l exists and var(Tl) ∩ var(`) 6= ∅ then
we assume without loss of generality that l = 1. We also assume that y1 ∈ var(T1). Then, note
that C` = T′1 + T2 + · · · + Ts + γ, where T′1 := T1(y1 = `1, var(T1) \ {y1}). For l ∈ [2, s]36, let
x′l = var(Tl) and x′1 = var(T1) \ {y1}. We first prove the following two useful observations.

Observation B.1. U :=
〈

∂C
∂x : x ∈ var(Tl), l ∈ [s], |var(Tl)| ≥ 2

〉
does not contain a non-zero constant.

Proof. Suppose there exists an α ∈ U ∩F \ {0}. Let C′ = ∑l∈[s],|var(Tl)|≥2 Tl + αy, where y is a fresh
variable. Then, C′ is in the orbit of the canonical ROF ∑l∈[s],|var(Tl)|≥2 Tl + y and it follows from Fact

2.4 and Observation 2.7 that Ness(C′) = |var(C′)|. Thus, W :=
{

∂C′
∂x : x ∈ var(C′)

}
is F-linearly

independent. Note that U = 〈W〉 but dim U < |W|; a contradiction. So U ∩F \ {0} = ∅.

Observation B.2. If |var(T1)| ≤ 2, then Ness (C`) ≥ n− 2.

Proof. There are two cases, T1 = y1 and T1 = y1y for some y ∈ x′. For both cases, it follows
from Observation 2.7 that

{
∂Tl
∂x : l ∈ [2, s], x ∈ var(Tl)

}
]
{

∂T1
∂y1

}
is F-linearly independent. Now,

for any l ∈ [2, s] and x ∈ var(Tl),
∂C`
∂x = ∂Tl

∂x − α′x
∂T1
∂y1

. Thus,
{

∂C`
∂x : x ∈ var(Tl), l ∈ [2, s]

}
is F-

linearly independent. Hence, from Fact 2.1, when T1 = y1, Ness (C`) ≥ n− 1, and when T1 = y1y,
Ness (C`) ≥ n− 2.

As C is multilinear, for every x ∈ x, the individual degree of x in C is at most 2. Since
char(F) 6= 2, for every l ∈ [s], x ∈ x′l ,

∂C`
∂x 6= 0. For l ∈ [s], x ∈ x′l , let βl,x ∈ F, such that

36For m < n ∈N, [m, n] := {m, . . . , n}

53

∑l∈[s] ∑x∈x′l
βl,x

∂C`
∂x = 0, which implies

∑
l∈[2,s]

∑
x∈x′l

βl,x

(
∂Tl

∂x
+

∂T′1
∂x

)
+ ∑

x∈x′1

β1,x
∂T′1
∂x

= 0. (2)

Let I = {l ∈ [s] : |var(Tl)| = 1} and J = [2, s] \ I. As C is canonical, |I| ≤ 1. If l ∈ I, we call Tl as z.
Now, we prove the claim by induction on the product-depth ∆ of C.

Base case: ∆ = 1. Then, C` = `1T′′1 + T2 + · · ·+ Ts + γ, where for every l ∈ [2, s], Tl is a multilinear
monomial and T′′1 = ∏x∈x′1

x. Because of Observation B.2, we can assume that z /∈ var(`1). Thus
Equation (2) becomes

∑
l∈J

∑
x∈x′l

βl,x

(
−α′xT′′1 +

Tl

x

)
+ ∑

l∈I
βl,z + ∑

x∈x′1

β1,x

(
−α′xT′′1 + `1

T′′1
x

)
= 0. (3)

If |x′1| ≤ 1, we immediately have from Observation B.2 that Ness(C`) ≥ n − 2. So suppose that
|x′1| ≥ 2. Then for every l ∈ J, x ∈ x′l , the coefficient of Tl

x in the above equation is βl,x, which

implies βl,x = 0. Also, as T′′1 and T′′1
x are non-constant monomials for every x ∈ x′1 and as

|I| ≤ 1, βl,z = 0. If var(`1) ∩ var(T′1) = ∅, then Equation (3) becomes ∑x∈x′1
β1,x · `1

T′′1
x = 0 which

implies ∑x∈x′1
β1,x ·

T′′1
x = 0. Then from Observation 2.7, β1,x = 0 for all x ∈ x′1 and Ness(C`) = n− 1.

Otherwise pick any y ∈ var(`1) ∩ var(T′′1) arbitrarily. Observe that the polynomial multiplied by
y2 in Equation (3) is −α′y ∑x∈x′1\{y} β1,x

T′′1
y·x . As T′′1

y is a canonical ROF, it follows from Observation

2.7 that β1,x = 0 for all x ∈ x \ y. Then, from Equation (3) we have β1,y

(
−α′yT′′1 + `1

T′′1
y

)
= 0.

As the coefficient of T′′ in this polynomial is −2α′yβ1,y, and char(F) 6= 2, β1,y = 0. Hence, again
Ness(C`) = n− 1. This proves the base case.

Induction step: Suppose ∆ > 1 and the claim holds for all canonical ROFs of product-depth at
most ∆− 1. Let T1 = Q1 · · ·Qm, where for every i ∈ [m], Qi is either a variable or a +-rooted ROF.
As in the base case, if |x′1| ≤ 1 or z ∈ var(`1), then there is nothing to prove. So, suppose that
|x′1| ≥ 2 and z /∈ var(`1). We assume without loss of generality that y1 ∈ var(Q1). It follows
from the definition of C` that T′1 = Q′1Q2 · · ·Qm, where Q′1 = Q1(y1 = `1, var(Q1) \ {y1}). For
i ∈ [2, m], let Q̃i = Q′1 ∏j∈[2,m]\{i} Qj and Q̃1 = Q2 · · ·Qm. Let x′1,1 = var(Q1) \ {y1} and for

i ∈ [2, m], x′1,i = var(Qi). For i ∈ [m], x ∈ x′1,i, rename the coefficient of ∂T′1
∂x in Equation (2) as ci,x.

Then, Equation (2) becomes

∑
l∈J,x∈x′l

βl,x
∂Tl

∂x
+∑

l∈I
βl,z + Q̃1

 ∑
l∈J,x∈x′l

βl,x
∂Q′1
∂x

+ ∑
i∈[m],x∈x′1,i

ci,x
∂Q′1
∂x

+ ∑
i∈[2,m]

Q̃i

 ∑
x∈x′1,i

ci,x
∂Qi

∂x

 = 0.

(4)

Observation B.3. If T1 6= y1Q2, then for every l ∈ J, x ∈ x′l , βl,x = 0.

Proof. If m ≥ 3 then we substitute roots of Q2 and Q3 in Equation (4). As |F| > n and Q2 and Q3
are variable disjoint multilinear polynomials, roots of Q2 and Q3 exist over F. Then, Observation
2.7 implies for l ∈ J, x ∈ x′l , βl,x = 0 and as |I| ≤ 1, βl,z = 0.

54

Now, suppose m = 2. Let the polynomial multiplied with Q̃2 = Q′1 in Equation (4) be q1.
We plug in a root a of Q2 in Equation (4). Let h′ = ∑l∈J,x∈x′l

βl,x
∂Tl
∂x and h = h′ + ∑l∈I βl,z. Then

h = h(x′1,2 = a, x′ \ x′1,2), and Equation (4) implies that h = −q1(a)Q′1(x
′
1,2 = a, x′ \ x′1,2). Note that

q1(a) ∈ F. If either q1(a) = 0 or var(`1) ∩
(
]l∈Jx′l

)
= ∅, then Observation B.1 implies that h′ = 0.

Otherwise, deg(Q′1(x
′
1,2 = a, x′ \ x′1,2)) = deg(Q′1). Also, in this case, deg(Q′1) = deg(Q1). As

Q1 6= y1, deg(Q1) ≥ 2. Hence, deg(Q′1(x
′
1,2 = a, x′ \ x′1,2)) ≥ 2. Then there exists a monomial p in

Q′1(x
′
1,2 = a, x′ \ x′1,2), such that deg(p) ≥ 2 and var(p) ∩ var(Q1) 6= ∅. Clearly, p is not in h, and

as h = −q1(a)Q′1(x
′
1,2 = a, x′ \ x′1,2), we get h = 0. This along with Observation B.1 implies h′ = 0.

Thus from Observation 2.7, βl,x = 0 for every l ∈ J, x ∈ x′l .

It follows from the above observation that when T1 6= y1Q2, Equation (4) becomes

∑
l∈I

βl,z + Q̃1

 ∑
i∈[m],x∈x′1,i

ci,x
∂Q′1
∂x

+ ∑
i∈[2,m]

Q̃i

 ∑
x∈x′1,i

ci,x
∂Qi

∂x

 = 0. (5)

Now, we consider all the possible cases of T′1. Recall |x′1| ≥ 2, which implies that if m = 2 and Q′1
is a linear polynomial then deg(Q2) ≥ 2.

Case 1: m = 2, deg(Q1) ≥ 2, and Q2 = y for some y ∈ x′. Then, Equation (5) looks like

∑
l∈I

βl,z + y

 ∑
x∈x′1,1

c1,x
∂Q′1
∂x

+ c2,y
∂Q′1
∂y

+ Q′1c2,y = 0. (6)

If y /∈ var(`1), we put y = 0 in Equation (6). As Q′1(y = 0, x′ \ {y}) = Q′1, c2,y = 0. As |I| ≤ 1,

βl,z = 0. Thus we are left with ∑x∈x′1,1
c1,x

∂Q′1
∂x = 0. Let a ∈ F|x

′\x′1,1| be a point such that `1(x′ \ x′1,1 =

a, x′1,1) 6= 0; such a point exists. Notice that Ness(Q′1(x
′ \ x′1,1 = a, x′1,1)) ≤ Ness(Q′1). Because Q1 is

a product-depth ∆− 1 ROF and `1(x′ \ x′1,1 = a, x′1,1) 6= 0, it follows from the induction hypothesis
that Ness(Q′1(x

′ \ x′1,1 = a, x′1,1)) ≥ |var(Q1)| − 2. This means that at least |var(Q1)| − 2 many

elements in
{

∂Q′1
∂x : x ∈ x′1,1

}
are F-linearly independent. Hence, at least n− 2 many elements in{

∂C`
∂x : x ∈ x′

}
are F-linearly independent, and Ness(C`) ≥ n− 2.

If y ∈ var(`1), Q′1 = yQ + q for some Q ∈ F[x′1,1] and q ∈ F[x′ \ {y}]. If q is not a constant,
just as before, we set y = 0 in Equation (6). This gives us c2,y = βl,z = 0. If q ∈ F, note that x′1,1 ⊆
var(Q), and hence y2 divides y · ∂Q′1

∂x for all x ∈ x′1,1. This means that ∑l∈I βl,z + c2,y

(
y ∂Q′1

∂y + Q′1
)
=

0. Now y ∂Q′1
∂y = yQ. Thus, y ∂Q′1

∂y + Q′1 = 2c2,yyQ + q. As char(F) ≥ 2, c2,y = 0, and thus βl,z = 0.
Then, using the induction hypothesis as before, we get Ness(C`) ≥ n− 2.

Case 2: m = 2, Q1 = y1, and deg(Q2) ≥ 2. If y2 ∈ var(`1) ∩ x′1,2 then we redo this entire analysis
by considering C` = C(y2 = `2, x \ {y2}), where `2 := −α−1

y2
(`− αy2 y2). Definition 2.3 and Obser-

vation 2.5 ensure that Ness(C`) is not affected by making this change to the definition of C`. Then,
this case is same as Case 1 and we get the desired result. Otherwise, Equation (4) looks like

∑
l∈J,x∈x′l

βl,x
∂Tl

∂x
+ ∑

l∈I
βl,z + Q2

 ∑
l∈J,x∈x′l

−βl,xα′x

+ `1

 ∑
x∈x′1,2

c2,x
∂Q2

∂x

 = 0.

55

If Q2 has a dangling variable connected to its top + gate, let it be y2. We shall consider the
above equation without c2,y

∂Q2
∂y2

. Observe that any monomial of the highest degree in Q2 is not
present in any other summand in the above equation. Hence ∑l∈J,x∈x′l

−βl,xα′x = 0. Also, for every

x ∈ x′1,2 \ {y2}, ∂Q2
∂x ∈ F[x′1,2]. Hence, ∑x∈x′1,2\{y2} c2,x

∂Q2
∂x = c for a c ∈ F. It follows from Observa-

tion B.1 that c = 0, and hence from Observation 2.7 that c2,x = 0 for all x ∈ x′1,2 \ {y2}. Observation
B.1 and the fact that |I| ≤ 1 imply that βl,z = 0. Then, from Observation 2.7 βl,x = 0 for all l ∈ J
and x ∈ x′l . Hence,

{
∂C`
∂x : x ∈ x′ \ {y2}

}
is F-linearly independent and Ness(C`) ≥ n− 2.

Case 3: m = 2, deg(Q1) ≥ 2, and deg(Q2) ≥ 2. In this case, Equation (5) becomes

∑
l∈I

βl,z + Q2

 ∑
i∈[2],x∈x′1,i

ci,x
∂Q′1
∂x

+ Q′1

 ∑
x∈x′1,2

c2,x
∂Q2

∂x

 = 0.

Let the polynomials multiplied by Q′1 and Q2 in the above equation be q1 and q2, respectively. Let
v be the parent of y1 in C and path(v) be the path from the root of C to v. If v is the top-most + gate
then substitute a root a of Q2 in the above equation; q1(a) ∈ F. As deg(Q′1) ≥ 2 and |I| ≤ 1, we
get βl,z = 0. Otherwise, there exists a × gate v′ on path(v), such that Qv′,1 and Qv′,2 are children
of v′, where Qv′,1 lies on path(v) and Qv′,2 does not. Clearly, `1 is present in Qv′,1, and Qv′,2 is a
+-rooted sub-ROF or a variable of Q1. We first substitute a root a of Qv′,2 in the above equation
and then plug in a root of Q′1(x

′
1,2 = a, x′ \ x′1,2). In this process, note that x′1,2 ∪ var(`1) \ x′1,1 is

untouched. As |I| ≤ 1, βl,z = 0. Further, since Q2 is irreducible (Fact 2.5), we get that Q2 either
divides Q′1 or q1. As deg(Q2) ≥ 2, Q2 contains a monomial not present in Q′1 and Q2 does not
divide Q′1. As deg(Q2) > deg(q1), Q2 dividing q1 implies that q1 = 0. Thus, using Observation
2.7 we get that c2,x = 0 for all x ∈ x′2,x. Then, using the induction hypothesis like in Case 1, we get
Ness(C`) ≥ n− 2.

Case 4: m ≥ 3. By putting the roots of Q2 and Q3 in Equation (5), we get βl,z = 0. For i ∈ [2, m],
let qi be the polynomial multiplied with Q̃i in Equation (5). Then for every i ∈ [2, m], Qi divides
Q̃iqi. As Qi is irreducible (Fact 2.5), Qi must divide qi or Q̃i. Suppose there exists an i such that
Qi divides Q̃i. This happens if and only if Qi = x and Q′1 = `1 = −α′xx, where x ∈ x′. Note that
such an i is unique, say i = 2. Now, for every j ∈ [3, m], Qj must divide qj. As deg(Qj) > deg(qj),
qj = 0. Then, Equation (5) becomes c2,x(−αxQ̃1 + Q̃2) = −2c2,xαx ·∏j∈[3,m] Qj = 0. As char(F) 6= 2
and α′x 6= 0, ci,x = 0. If such an i does not exist, then qj = 0 for all j ∈ [2, m]. In either case,
using Observation 2.7 we get, cj,x = 0 for every j ∈ [2, m], x ∈ x′1,j. Then, Equation (5) becomes

∑x∈x′1,1
c1,x

∂Q′1
∂x = 0. Using the induction hypothesis like in Case 1, we get Ness(C`) ≥ n− 2.

B.9 Proof of Claim 2.3

Algorithm 8 Make-Polys-Var-Disjoint(g1, . . . , gm)
Input: Black-box access to g1, . . . gm ∈ F[x] such that Ness(g1 · · · gm) = Ness(g1) + · · ·+ Ness(gm).
Output: An A ∈ GL(|x|, F) such that g1(Ax), . . . , gm(Ax) are pairwise variable disjoint and indi-
vidually free of redundant variables.

1. A← I|x|×|x|, y← ∅.

56

2. for i = 1, . . . , m do
3. Ai ← Remove-Redundant-Vars(gi(Ax), y) (see Claim 2.2); yi ← var(gi(AAix)).
4. A← AAi, y← y∪ yi.
5. end for
6. Return A.

The correctness of the algorithm follows from the observations below.

Observation B.4. For every i ∈ [m], Ness(g1 · · · gi) = Ness(g1) + · · ·+ Ness(gi).

Proof. Follows from the fact that over any F, Ness(h1h2) ≤ Ness(h1)+ Ness(h2), for h1, h2 ∈ F[x].

Observation B.5. Suppose x = y] z and h1(y), h2(z, y) ∈ F[x] such that Ness(h1) = |y| and Ness(h1h2) =
Ness(h1) + Ness(h2). Then, z contains a set of essential variables of h2.

Proof. Observe that dim
〈

∂h1h2
∂z : z ∈ z

〉
= dim

〈
∂h2
∂z : z ∈ z

〉
; let this dimension be l. Then, by

Fact 2.1, Ness(h1h2) ≤ l + |y|, which implies Ness(h2) ≤ l (as Ness(h1) = |y| and Ness(h1h2) =

Ness(h1) + Ness(h2)). On the other hand, dim
〈

∂h2
∂z : z ∈ z

〉
= l implies Ness(h2) ≥ l. Hence,

Ness(h2) = l, and so by Fact 2.1, z contains a set of essential variables of h2.

B.10 Proof of Claim 2.4

Algorithm 9 Make-Factors-Var-Disjoint(g(Bx + d))
Input: Black-box access to a g(Bx+d) ∈ F[x]≤d, where g = g1 · · · gm for pairwise variable disjoint
g1, . . . , gm. (B ∈ GL(|x|, F), d ∈ F|x|, and g, g1, . . . , gm are unknown to the algorithm.)
Output: An A ∈ GL(n, F) and a set V as stated in Claim 2.4.

1. Factorize g(Bx + d) using Fact A.2. Let F ← {h1, . . . , he} be the set of (black-boxes for the)
irreducible factors of g(Bx + d).

2. while Ness(∏h∈F h) 6= ∑h∈F Ness(h) do ,
3. For the first l ∈ [|F|] s.t. Ness(h1 · · · hl) 6= ∑j∈[l] Ness(hj), find a k ∈ [l− 1] s.t. Ness(h1 · · · hk−1 ·

hl) = ∑j∈[k−1] Ness(hj) + Ness(hl) but Ness(h1 · · · hk · hl) 6= ∑j∈[k] Ness(hj) + Ness(hl).
4. F ← F ∪ {hk · hl}, F ← F \ {hk, hl}. Rename the elements of F as {h1, . . . , hs}.
5. end while
6. Let F = {h1, · · · , hs}. A← Make-Polys-Var-Disjoint(h1, . . . , hs) (see Algorithm 8).
7. V ← {var(h1(Ax)), . . . , var(hs(Ax))}.
8. Return A and V.

The correctness of the algorithm follows from the following observation. Note that the num-
ber of essential variables of a polynomial can be computed efficiently using Claim 2.2. As we are
merging factors in Step 4, it is clear that the running time of the algorithm is poly(|x|, d).

Observation B.6. At Step 4, hk and hl are factors of gi(Bx + d) for some i ∈ [m].

Proof. For contradiction, suppose hk is a factor of gi(Bx + d) and hl is a factor of gj(Bx + d) for
i 6= j. Let p be the product of all h ∈ {h1, . . . , hk−1} such that h is a factor of gi(Bx + d), q

57

the product of all h ∈ {h1, . . . , hk−1} such that h is a factor of gj(Bx + d), and r the product of
all h ∈ {h1, . . . , hk−1} such that h is neither a factor of gi(Bx + d) nor a factor of gj(Bx + d).
Then, h1 · · · hk−1 = pqr. Observe that Ness(pqrhl) = Ness(p) + Ness(r) + Ness(qhl), as g1, . . . , gm
are pairwise variable disjoint. On the other hand, from the condition Ness(h1 · · · hk−1 · hl) =
Ness(h1) + . . . Ness(hk−1) + Ness(hl) in Step 3, Ness(pqrhl) = Ness(p) + Ness(q) + Ness(r) + Ness(hl).
Hence, Ness(qhl) = Ness(q) + Ness(hl). For a similar reason, Ness(phk) = Ness(p) + Ness(hk).
Now, Ness(pqrhkhl) = Ness(phk) + Ness(qhl) + Ness(r), as g1, . . . , gm are variable disjoint. This im-
plies, Ness(pqrhkhl) = Ness(p) + Ness(hk) + Ness(q) + Ness(hl) + Ness(r) = ∑j∈[k] Ness(hj) + Ness(hl),
which contradicts the condition Ness(h1 · · · hk · hl) 6= Ness(h1)+ . . . Ness(hk)+ Ness(hl) in Step 3.

C Missing proofs from Section 3

C.1 Proof of Lemma 3.1

Structure of det(HC). Notice that ∂2C
∂x∂y = 0 if x ∈ var(Tk) and y ∈ var(Tk′) for k 6= k′ ∈ [s]. Thus

HC is a block diagonal matrix with the diagonal blocks being HT1 , . . . , HTs . Hence, det(HC) =

∏k∈[s] det (HTk). So to prove that det(HC) 6= 0, it suffices to show that det (HTk) 6= 0 for all k ∈ [s].

Lemma C.1. Let n ∈ N, F be a field with char(F) = 0 or ≥ n, and x be a variable set with |x| ≤ n. If T
is a ×-rooted canonical ROF computing a polynomial in F[x] of degree at least 2, then det(HT) 6= 0.

Proof. We begin by developing an understanding of the entries of HT. To do this, we first under-
stand the derivatives of T. Let path(x) denote the path from the root of T to the leaf labelled by
x. For an x ∈ x, we define the product-depth of x, denoted by ∆x, to be the number of × gates on
path(x). We say that x is a dangling variable if x is directly connected to a + gate. For an x ∈ x,
we expand T along path(x) as follows: let T = Qx,1,1 · · ·Qx,1,m1 , and x ∈ var (Qx,1,1). Let Qx,1,1 =
Tx,1,1 + · · ·+ Tx,1,s1 + γ1, and x ∈ var(Tx,1,1). Let l be any number less than ∆x − 1. After induc-
tively defining Qx,i,j and Tx,i,j′ for all i ∈ [l], j ∈ [mi], and j′ ∈ [si], let Tx,l,1 = Qx,l+1,1 · · ·Qx,l+1,ml+1 ,
with x ∈ var(Qx,l+1,1), and Qx,l+1,1 = Tx,l+1,1 + · · ·+ Tx,l+1,sl+1 + γl+1, with x ∈ var(Tx,l+1,1). If x
is not a dangling variable, let Tx,∆x−1,1 = xQx,∆x ,2 · · ·Qx,∆x ,m∆x

(here Qx,∆x ,1 = x). If x is a dangling
variable, let Tx,∆x−1,1 = Qx,∆x ,1 · · ·Qx,∆x ,m∆x

and Qx,∆x ,1 = x + Tx,∆x ,2 + · · · + Tx,∆x ,s∆x
+ γ∆x (here

Tx,∆x ,1 = x). Then, ∂T
∂x = ∏

i∈[∆x]
∏

2≤j≤mi

Qx,i,j.

The entries of HT. For x, y ∈ x, let [HT]x,y denote the (x, y)-th enrty of HT. Because T is multilinear,
[HT]x,x = 0 for all x ∈ x. For x 6= y ∈ x, we define the first common ancestor of x and y, denoted by
fca(x, y), to be the first gate that appears on both the path from the leaf labelled by x to the root of
T as well as on the path from the leaf labelled by y to the root of T. There are two cases: fca(x, y)
is a + gate and fca(x, y) is a × gate. We now describe ∂2T

∂x∂y in both these cases.

Observation C.1. For all x 6= y ∈ x such that fca(x, y) is a + gate, [HT]x,y = [HT]y,x = 0.

Proof. Suppose that fca(x, y) = Qx,l,1 for some 1 ≤ l ≤ min
{

∆x, ∆y
}

, and y ∈ var(Tx,l,2). ∂2T
∂x∂y =

∂2Qx,l,1
∂x∂y · ∏

i∈[l]
∏

2≤j≤mi

Qx,i,j =
(

∂2Tx,l,1
∂x∂y +

∂2Tx,l,2
∂x∂y

)
· ∏

i∈[l]
∏

2≤j≤mi

Qx,i,j = 0. So, [HT]x,y = [HT]y,x = 0.

The second case is when fca(x, y) is a × gate. Suppose that fca(x, y) = T or fca(x, y) = Tx,l,1
for some 1 ≤ l < min

{
∆x, ∆y

}
. As we expanded T along path(x), we also expand it along

58

path(y) by defining Qy,i,1, . . . , Qy,i,m′i
for all i ∈ [∆y] and Ty,i,1, . . . , Ty,i,s′i

for all i ∈ [∆y] if y is a
dangling variable, and for all i ∈ [∆y − 1] otherwise. Notice that for all i ∈ [l], every Qx,i,j = Qy,i,j
and every Tx,i,j′ = Ty,i,j′ . Also, we can assume without loss of generality that Qy,l+1,1 = Qx,l+1,2,
Qx,l+1,1 = Qy,l+1,2, and Qx,l+1,j = Qy,l+1,j for all 3 ≤ j ≤ ml+1 = m′l+1. Let Q̃x,y = ∏

i∈[l]
∏

2≤j≤mi

Qx,i,j ·

∏
3≤j≤ml+1

Qx,l+1,j. Notice that Q̃x,y = ∏
i∈[l]

∏
2≤j≤m′i

Qy,i,j · ∏
3≤j≤m′l+1

Qy,l+1,j. Then,

Observation C.2. For all x 6= y ∈ x such that fca(x, y) is a × gate,

[HT]x,y = [HT]y,x = Q̃x,y ∏
l+1<i≤∆x

∏
2≤j≤mi

Qx,i,j · ∏
l+1<i≤∆y

∏
2≤j≤m′i

Qy,i,j.

Proof.

∂2T
∂x∂y

= ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j ·
∂2Qx,l,1

∂x∂y

= ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j ·
∂2Tx,l,1

∂x∂y

= ∏
i∈[l]

∏
2≤j≤mi

Qx,i,j · ∏
3≤j≤ml+1

Qx,l+1,j ·
∂Qx,l+1,1

∂x
·

∂Qy,l+1,1

∂y

= Q̃x,y ∏
l+1<i≤∆x

∏
2≤j≤mi

Qx,i,j · ∏
l+1<i≤∆y

∏
2≤j≤m′i

Qy,i,j.

Having gained an understanding of the entries of HT, we proceed with the proof of the
lemma. We shall call a ×-rooted canonical ROF a (∆, m) ROF if it has product-depth ∆ and has
exactly m many product-depth ∆− 1 ROFs connected to the top-most× gate. Let H′T be the matrix
obtained from HT by taking x−1 common from the x-th row and the x-th column of HT. Observe
that for all x, y ∈ x, [H′T]x,y = xy · [HT]x,y. Also, notice that it suffices to show that det(H′T) 6= 0.
We show this by induction on tuples of the form (∆, m).

Base case. T is a (1, m) ROF, where 2 ≤ m ≤ |x|. Then, T is a multilinear monomial, say x1 · · · xm,
and det(H′T) = (−1)m−1(m− 1)∏i∈[m] xm

i 6= 0, as char(F) = 0 or ≥ n ≥ |x|.

Induction step. T is a (∆, m) ROF, for some ∆ ≥ 2. Assume, by the way of induction, that
det(H′T′) 6= 0 for all (∆′, m′) ROFs T′, where:

1. ∆′ = 1 and m′ ∈ {2, . . . , |x|}, or

2. 1 < ∆′ < ∆ and m′ ∈ [|x|], or

3. ∆ = ∆′ and m′ < m.

Pick a variable x ∈ var(T) as follows: arbitrarily pick a factor of T with product-depth ex-
actly ∆ − 1. If there is no dangling variable inside this factor, then let x be any variable in it.

59

Otherwise let x be a dangling variable with the smallest product-depth in it. As before, we ex-
pand T along path(x) by defining Qx,i,j for all i ∈ [∆x] and Tx,i,j′ for all i ∈ [∆x] if x is a dangling
variable, and for all i ∈ [∆x − 1] otherwise. Also, we assume without loss of generality that
Qx,1,1, . . . , Qx,1,m are the only sub-ROFs of T with product-depth ∆− 1. If x is not a dangling vari-
able, let χ = ∆x − 1; otherwise let χ = ∆x. Let U = {y ∈ var(T) : fca(x, y) is a × gate}] {x} and
U = var(T) \ U = {y ∈ var(T) : fca(x, y) is a + gate}. The following, easy to see observation
gives a characterisation of U and U.

Observation C.3. U =]
i∈[∆x]

]
2≤j≤mi

var(Qx,i,j)] {x} and U =]
i∈[χ]

]
2≤j≤si

var(Tx,i,j).

We now upper bound the degree of x in det(H′T), denoted by degx(det(H′T)), in terms of |U|.

Observation C.4. degx(det(H′T)) ≤ |U|.

Proof. det(H′T) = ∑σ∈Sx
(−1)sgn(σ) ∏y∈x[H′T]y,σ(y), where Sx is the group of permutations of x. It

follows from Observations C.1 and C.2 that the only rows of H′T containing x are the rows labelled
by variables in U. Thus, for any σ ∈ Sx, [H′T]y,σ(y) contains x only if y ∈ U. Hence, at most |U|
many entries in

{
[H′T]y,σ(y) : y ∈ x

}
contain x. Also, the degree of x in each of those entries is at

most 1. The observation follows.

Let N ⊂ Sx be the set of all σ ∈ Sx such that the image of U under σ is U, and let N = Sx \ N.

Observation C.5. For any σ ∈ N, degx

(
∏y∈x[H′T]y,σ(y)

)
< |U|.

Proof. As σ ∈ N, there exists a y′ ∈ U such that σ(y′) ∈ U. It follows from Observations C.1
and C.2 that the only columns of H′T containing x are the columns labelled by variables in U.

Hence, x /∈ var
(
[H′T]y′,σ(y′)

)
. Then, even if all entries in

{
[H′T]y,σ(y) : y 6= y′ ∈ U

}
contain x,

degx

(
∏y∈x[H′T]y,σ(y)

)
< |U|.

Now,

det(H′T) = ∑
σ∈N

(−1)sgn(σ) ∏
y∈x

[H′T]y,σ(y) + ∑
σ∈N

(−1)sgn(σ) ∏
y∈x

[H′T]y,σ(y).

Let the first summand in the above expression be h. It follows from Observations C.4 and C.5 that
to prove det(H′T) 6= 0, it suffices to show that degx(h) = |U|.

Claim C.1. h =

(
∑

σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)

)
·
(

∑
σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)

)
.

Proof. For any σ ∈ Sx, let σ1 be σ restricted to U and σ2 be σ restricted to U. For any σ ∈ N, notice
that σ1 ∈ SU and σ2 ∈ SU . Thus,

h = ∑
σ∈N

(−1)sgn(σ) ∏
y∈x

[H′T]y,σ(y)

= ∑
σ1∈SU ,
σ2∈SU

(−1)sgn(σ1)+sgn(σ2) ∏
y1∈U

[H′T]y1,σ1(y1) · ∏
y2∈U

[H′T]y2,σ2(y2)

60

= ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)

 ∑
σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)


=

 ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1)

 ·
 ∑

σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)

 .

Observation C.6. degx

(
∑

σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2)

)
= 0.

Proof. It follows from from Observations C.1 and C.2 that for no y2 ∈ U, does the row of H′T
labelled by y2 contain x.

Claim C.2. ∑
σ2∈SU

(−1)sgn(σ2) ∏
y2∈U

[H′T]y2,σ2(y2) 6= 0.

Proof. Notice that the given polynomial is the determinant of [H′T]U,U , the sub-matrix of [H′T]
whose rows and columns are labelled by variables in U. We show that [H′T]U,U is a block diagonal
matrix and all the diagonal blocks have non-zero determinant.

From Observation C.3, the rows and columns of [H′T]U,U are labelled by variables in]
i∈[χ]

]
2≤j≤si

var(Tx,i,j). We claim that ∂2T
∂x1∂x2

= 0 for all x1 ∈ var(Tx,i,j) and x2 ∈ var(Tx,i′,j′), where i 6= i′ or
j 6= j′. If i = i′, then both Tx,i,j and Tx,i′,j′ are children of the gate Qx,i,1, and fca(x1, x2) = Qx,i,j. As
Qx,i,j is a + gate, from Observation C.1, ∂2T

∂x1∂x2
= 0. On the other hand, if i 6= i′, assume without

loss of generality that i < i′. Then, observe that Tx,i′,j′ is a sub-ROF of Tx,i,1. Thus fca(x1, x2) is
again Qx,i,j, and just as before ∂2T

∂x1∂x2
= 0. This implies that [H′T]U,U is a block diagonal matrix with

diagonal blocks [H′T]var(Tx,i,j),var(Tx,i,j) for i ∈ [χ] and 2 ≤ j ≤ si.
We now show that for all i ∈ [χ] and 2 ≤ j ≤ si, the determinant of [H′T]var(Tx,i,j),var(Tx,i,j) is non-

zero; this would prove the claim. Fix an i ∈ [χ] and a j ∈ {2, . . . , si}. Observe that for any x1, x2 ∈
var(Tx,i,j), ∂2T

∂x1∂x2
=

∂2Tx,i,j
∂x1∂x2

· ∏
i′∈[i]

∏
2≤j′≤mi′

Qx,i′,j′ . So, [H′T]var(Tx,i,j),var(Tx,i,j) = ∏
i′∈[i]

∏
2≤j′≤mi′

Qx,i′,j′ · [H′Tx,i,j
],

and it is sufficient to prove that det([H′Tx,i,j
]) 6= 0.37 We claim that Tx,i,j is not a single variable. The

only way it can be a single variable is if it is a dangling variable. If x is not a dangling variable,
then because of the way we picked x, there is no dangling variable inside Qx,1,1. As Tx,i,j is a sub-
ROF of Qx,1,1, it is not a dangling variable. Otherwise, as x is a dangling variable in Qx,1,1 with the
smallest product-depth, for all i′ ≤ ∆x − 1, and 2 ≤ j′ ≤ si′ , Tx,i′,j′ can not be a dangling variable.
Also, x and Tx,∆x ,2, . . . , Tx,∆x ,s∆x

are children of the same gate, viz. Qx,∆x ,1. Because T is a canonical
ROF, Tx,∆x ,2, . . . , Tx,∆x ,s∆x

can not be dangling variables. Thus, Tx,i,j is not a dangling variable, and
is a (∆′, m′) ROF for some ∆′ < ∆ such that if ∆′ = 1, then m′ ≥ 2. Then it follows from the
induction hypothesis that det([H′Tx,i,j

]) 6= 0, proving the claim.

37Since Tx,i,j is a ×-rooted sub-ROF of T, we can define [H′Tx,i,j
] in the same way as [H′T].

61

Because of Claim C.1, Observation C.6, and Claim C.2, to prove that degx(h) = |U|, we
only need to show that for g := ∑

σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1), degx(g) = |U|. Let T′ be the

ROF obtained from T by replacing Tx,i,2 + · · · + Tx,i,si + γi by 0 for all i ∈ [χ]. Notice that T′ =
x ∏

i∈[∆x]
∏

2≤j≤mi

Qx,i,j = x · ∂T
∂x . Hence, ∂T

∂x = ∂T′
∂x . Also, from Observation C.3, var(T′) = U.

Claim C.3. When g and det(H′T′) are viewed as polynomials over F[x \ {x}], the coefficient of x|U| is same
in both the polynomials.

Proof. g = ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T]y1,σ1(y1), det(H′T′) = ∑
σ1∈SU

(−1)sgn(σ1) ∏
y1∈U

[H′T′]y1,σ1(y1) and for

all y1, y2 ∈ U, [H′T]y1,y2 and [H′T′]y1,y2 are multilinear. Thus, it is sufficient to show that the coef-
ficient of x is same in [H′T]y1,y2 and [H′T′]y1,y2 for all y1, y2 ∈ U. This is the same as showing that
∂[H′T]y1,y2

∂x =
∂[H′T′]y1,y2

∂x for all y1, y2 ∈ U. There are three cases.

Case 1: Neither y1 nor y2 is x. Then,

∂[H′T]y1,y2

∂x
=

∂

∂x

(
y1y2

∂2T
∂y1∂y2

)
= y1y2

∂2

∂y1∂y2

(
∂T
∂x

)
= y1y2

∂2

∂y1∂y2

(
∂T′

∂x

)
=

∂[H′T]y1,y2

∂x
.

Case 2: Exactly one of y1 and y2 is x; say y1 = x. Then,

∂[H′T]y1,y2

∂x
=

∂

∂x

(
xy2

∂2T
∂x∂y2

)
= y2

∂

∂y2

(
∂T
∂x

)
= y2

∂

∂y2

(
∂T′

∂x

)
=

∂

∂x

(
xy2

∂2T′

∂x∂y2

)
=

∂[H′T′]y1,y2

∂x
.

Case 3: y1 = y2 = x. In this case, both [H′T]y1,y2 and [H′T′]y1,y2 are 0. So,
∂[H′T]y1,y2

∂x =
∂[H′T′]y1,y2

∂x = 0.

Now, every non-zero entry of H′T′ contains x and the rows of H′T′ are labelled by variables in
U. Because we can take x common from all the rows of H′T′ , if det(H′T′) 6= 0, then degx(det(H′T′)) =
|U|. Thus Claim C.3 implies that, degx(g) = |U| if and only if det(H′T′) 6= 0. Recall that T is a
(∆, m) ROF. If m ≥ 2, then it follows from the definition of T′ that it is a (∆, m− 1) ROF. Otherwise,
if m = 1, i.e., if Qx,i,1 is the only sub-ROF of T of product-depth ∆, then T′ is a (∆′, m′) ROF for
some ∆′ < ∆ and m′ ≤ |x|. Also as T is a ×-rooted ROF, its fan-in, m1 ≥ 2. Thus, if ∆′ = 1, then
m′ ≥ 2. So from the induction hypothesis, we have that det(H′T′) 6= 0. This proves the lemma.

C.2 Proof of Claim 3.1

Let T = Q ·Q1 · · ·Qm be a ×-rooted sub-ROF of C. Let C = T1 + · · ·+ Ts + γ. We saw in the proof
of Lemma 3.1 that det(HC) = ∏k∈[s] det(HTk). Thus, if T is a sub-ROF of Tk, then it is sufficient
to show that Qe−1 is a factor of det(HTk). Let x ∈]

l∈[m]
var(Ql) and consider the x-th row of HTk .

Like in the proof of Lemma 3.1, we expand Tk along the path(x). Then for any y ∈ var(Tk),

[HTk]x,y = ∂
∂y

(
∏

i∈[∆x]
∏

2≤j≤mi

Qx,i,j

)
. Notice that for some λx ∈ [∆x] and j ∈ [mλx], say for j = 2,

Q = Qx,λx ,2. Thus, Q is not a factor of [HTk]x,y only if y ∈ var(Q). For such a y,

[HTk]x,y =
∂Q
∂y
· ∏

i∈[λx−1]
∏

2≤j≤mi

Qx,i,j · ∏
3≤j≤mλx

Qx,λx ,j. (7)

62

We take Q common from every row of HTk labelled by variables in]
l∈[m]

var(Ql) to obtain a

matrix H′′Tk
. Now, det(HTk) = Qe det(H′′Tk

). So it suffices to show that det(H′′Tk
) is either a polyno-

mial, or if it has a denominator, the denominator is just Q. Notice that the only entries of H′′Tk
which

are not polynomials but rational functions are [H′′Tk
]x,y, where x ∈]

l∈[m]
var(Ql) and y ∈ var(Q).

Let σ ∈ Svar(Tk) be any permutation that maps x1 6= x2 ∈]
l∈[m]

var(Ql) to y1 6= y2 ∈ var(Q). Define

σ′ ∈ Svar(Tk) such that it maps x1 to y2, x2 to y1, and for all other x ∈ var(Tk), σ′(x) = σ(x). Then,

(−1)sgn(σ) ∏
x∈var(Tk)

[H′′Tk
]x,σ(x) − (−1)sgn(σ′) ∏

x∈var(Tk)

[H′′Tk
]x,σ′(x)

= (−1)sgn(σ) ∏
x∈var(Tk)\{x1,x2}

[H′′Tk
]x,σ(x)

(
[H′′Tk

]x1,y1 [H
′′
Tk
]x2,y2 − [H′′Tk

]x1,y2 [H
′′
Tk
]x2,y1

)
.

Now, expanding T along path(x1) as well as path(x2) we get,

Q2 ([H′′Tk
]x1,y1 [H

′′
Tk
]x2,y2 − [H′′Tk

]x1,y2 [H
′′
Tk
]x2,y1

)
=

 ∂Q
∂y1
· ∏

i∈[λx1−1]
∏

2≤j≤mi

Qx,i,j · ∏
3≤j≤mλx1

Qx1,λx1 ,j

 ∂Q
∂y2
· ∏

i∈[λx2−1]
∏

2≤j≤m′i

Qx,i,j · ∏
3≤j≤m′λx2

Qx2,λx2 ,j


−

 ∂Q
∂y2
· ∏

i∈[λx1−1]
∏

2≤j≤mi

Qx,i,j · ∏
3≤j≤mλx1

Qx1,λx1 ,j

 ∂Q
∂y1
· ∏

i∈[λx2−1]
∏

2≤j≤m′i

Qx,i,j · ∏
3≤j≤m′λx2

Qx2,λx2 ,j


(from Equation (7))

= 0.

Let U be the set of all permutations σ such that σ maps at most one variable in]
l∈[m]

var(Ql)

to a variable in var(Q). Then,

det[H′′Tk
] = ∑

σ∈U
(−1)sgn(σ) ∏

x∈var(Tk)

[H′′Tk
]x,σ(x).

As at most one of the
{
[H′′Tk

]x,σ(x) : x ∈ var(Tk)
}

has a denominator and this denominator is Q,

either det[H′′Tk
] is a polynomial, or if it has a denominator, the denominator is just Q. Thus, Qe−1

is a factor of det(HTk).

C.3 Proof of Claim 3.2

From Lemma 3.1, det(HC) 6= 0. Suppose that x ∈ var(C) is not a variable in the quadratic form
of the top-most + gate of C, nor a dangling variable along some skewed path, nor a variable
appearing in a quadratic form along some skewed path. There there exists a ×-gate T on the path
from the root of C to the leaf labelled by x such that if T = Q1 · · ·Qm′ , then x ∈ var(Q1) and
|var(Q2)|+ · · ·+ |var(Qm′)| ≥ 2. Then, Claim 3.1 implies that Q1 is a factor of det(HC). Now Q1
is either a variable or a +-rooted sub-ROF, and therefore is irreducible (Fact 2.5). Then, the claim
immediately follows from Observation 2.3.

63

C.4 Proof of Claim 3.3

Suppose that y1 ∈ y is present in det(HC). Let the quadratic form of Q be y1y2 + . . .+ yl−1yl . Let P
be a permutation matrix acting on x := var(C) such that P maps y1 to y2, y2 to y1, and every other
variable to itself. As, C = C(Px), det

(
HC
)
= det

(
HC(Px)

)
. Also, from Fact 2.8, det

(
HC(Px)

)
=

det
(

HC
)
(Px). As y1 is present in det

(
HC
)
, y2 is present in det

(
HC
)
(Px) = det

(
HC
)
. For any

odd i ≤ l− 1, let P be a permutation matrix mapping y1 to yi, y2 to yi+1, yi to y1, yi+1 to y2, and all
other variables to themselves. Again det

(
HC
)
= det

(
HC(Px)

)
and det

(
HC(Px)

)
= det

(
HC
)
(Px).

As y1 and y2 appear in det
(

HC
)
, yi and yi+1 also appear in det

(
HC
)
(Px) = det

(
HC
)
.

For any odd i ≤ l − 1, let S be a scaling matrix mapping yi to 2yi, yi+1 to yi+1
2 and every

other variable to itself. C = C(Sx), and hence det
(

HC
)
= det

(
HC(Sx)

)
. Also, from Fact 2.8,

det
(

HC(Sx)

)
= det(HC)(Sx). Consider a monomial µ of det

(
HC
)

in which the degree of yi is di,

that of yi+1 is di+1, and whose coefficient is β. In det
(

HC
)
(Sx), the coefficient of µ is β · 2di−di+1 .

Thus, di = di+1. Then from Observation 2.4 yi and yi+1 are truly essential for det
(

HC
)
.

C.5 Proof of Claim 3.4

As argued in Section C.1, det(HC) = ∏k∈[s] det (HTk). It is sufficient to show that y is not present
in det (HTk). It follows from Observations C.1 and C.2, that y does not appear in any entry of HTk

because the only x′ ∈ x for which ∂2Tk
∂x′∂y 6= 0 is x. But ∂2Tk

∂x′∂y = 1. Hence, y /∈ var (det (HTk)).

D Missing proofs from Section 4

D.1 Proof of Claim 4.1

[BR]x\{u0},x\{u0} = [B]x\{u0},x [R]x,x\{u0}, where [B]x\{u0},x is the sub-matrix of B whose rows and
columns are labelled by variables in x \ {u0} and x, respectively, while [R]x,x\{u0} is the sub-
matrix of R whose rows and columns are labelled by variables in x and x \ {u0}, respectively.
For x ∈ x \ {u0}, let `x be the linear form that x is mapped to by B. Let R = (rx,x′)x,x′∈x. Then
the (x, x′)-the entry of [BR]x\{u0},x\{u0} is `x(rx′), where rx′ = {rx,x′ : x ∈ x}. As B is invertible,
{`x(x) : x ∈ x \ {u0}} is linearly independent. Thus, the columns of [BR]x\{u0},x\{u0} are evalua-
tions of linearly independent, degree 1 polynomials at independently chosen random points from
Fn, where |F| ≥ n5. It is well known (see for instance Claim 2.2 of [KNS19]) that any such matrix
is invertible with probability at least 1− 1

n4 .

D.2 Proof of Claim 4.2

Observe that H2 is the Hessian of ∑k∈[s′] Tk +γ. Then HC =

[
H2 0
0 0

]
. Fact 2.6 implies that H f (Rx) =

(BR)T ·HC(BRx+d) · (BR). It is easy to that H1 = [BR]Tx\{u0},x\{u0} ·H2(BRx+d) · [BR]x\{u0},x\{u0},
which implies h = det(H1) = β2 det(H2)(BRx+d), where β is the determinant of [BR]x\{u0},x\{u0}.
From Lemma 3.1, det(H2) 6= 0 and from Claim 4.1 β 6= 0 with high probability. Hence, h is also
non-zero with high probability. Also, u0 /∈ var(det(H2)) and hence Ness(det(H2)) ≤ n− 1. Now,

64

[∇h]x\{u0} = [BR]Tx\{u0},x\{u0} · [∇det(H2)]x\{u0} (BRx+d), where [∇h]x\{u0} and [∇det(H2)]x\{u0}
are the gradient vectors of h and det(H2) restricted to the entries corresponding to variables
in x \ {u0}. From Claim 4.1, [BR]Tx\{u0},x\{u0} is invertible with high probability. So the spaces〈

∂h
∂x : x ∈ x \ {u0}

〉
and

〈
∂

∂x det(H2) : x ∈ x \ {u0}
〉

have the same dimension with high probabil-
ity. Then Facts 2.3 and 2.1 imply that a subset of x \ {u0} contains a set of essential variables of h
with high probability. Thus, u0 is redundant for h with high probability.

D.3 Proof of Claim 4.3

T̂k(Rx) = Tk(BRx + d) implies that gk(x) = g′k(C
−1
k BRA0x + C−1

k d). As var(gk) = var(g′k) = zk
and none of them have any redundant variables, zk are the truly essential variables of g and g′.
Thus Observation 2.2 implies that C−1

k BRA0 maps every z ∈ zk to a linear form in zk. Also, from
Fact 2.2 we have that Ck maps every z ∈ z′k and every y ∈ yk to itself, and every z ∈ z′′k to a linear
form that looks like z + ∑y∈yk∩var(h′k)

αyy. Multiplying Ck to C−1
k BRA0 yields the claim.

D.4 Proof of Claim 4.4

BA0 is invertible and from Claim 4.3, for every z ∈ z′,
[
`
(0)
z

]
y

= 0. Hence, the sub-matrix

[BA0]z′′]y,y of BA0 containing rows corresponding to variables in z′′] y and columns correspond-
ing to variables in y is full rank. From Claim 4.3, we have that all rows of [BA0]z′′,y are in the
F-span of the rows of [BA0]y,y. Thus [BA0]y,y is full rank. The claim follows by noticing that the

entries of [BA0]y,y y are exactly the linear forms
[
`
(0)
y

]
y

for all y ∈ y.

D.5 Proof of Claim 4.5

Observe that for every i ∈ [m], the i-th iteration of the loop only works with q̃i(A′1x) (where A′1
is as in Step 4) and computes a Ci which only acts non-trivially on var (q̃i(A′1x)). Thus, we can
analyse every iteration of the loop in isolation, and it sufficient to prove that after the i-th iteration,

q̂i(A′1Cix) =
(
y′i,1,1 + hi,1,1

) (
y′i,1,2 + hi,1,2

)
+ · · ·+

(
y′i,mi ,1 + hi,mi ,1

) (
y′i,mi ,2 + hi,mi ,2

)
.

Fix an i ∈ {0, . . . , m} and let var (q̃i(A′1x)) =
{

y′i,1,1, y′i,1,2, . . . , y′i,mi ,1
, y′i,mi ,2

}
. As mentioned before,

q̃i(A′1x) has no redundant variables. Thus, Ci ∈ GL(2mi, F) output by the QFE algorithm is such
that after it has been extended to map every variable in x \ var (q̃i(A′1x)) to itself, q̃i(A′1Cix) =
y′i,1,1y′i,1,2 + · · ·+ y′i,mi ,1

y′i,mi ,2
.

For all j ∈ [mi] and l ∈ [2], let αl,j be the yi,j,l-th entry of Bb+ d and pj,l =
[
`
(0)
yi,j,l

]
z
+ αl,j. Then,

∑
j∈[mi]

([
`
(0)
yi,j,1

]
y
+ pj,1

)([
`
(0)
yi,j,2

]
y
+ pj,2

)
(A′1Cix) = ∑

j∈[mi]

(
`j,1 + pj,1

) (
`j,2 + pj,2

)
,

where for j ∈ [mi], l ∈ [2], `j,l :=
[
`
(0)
yi,j,1

]
y
(A′1Cix). Since A′1Ci ∈ GL(n, F), Claim 4.4 implies that{

`j,l : j ∈ [mi], l ∈ [2]
}

is linearly independent. Now q̃i(A′1Ci) = ∑j∈[mi] `j,1`j,2 and q̃ ∈ orb(qi).

65

Also neither qi nor q̃i have any redundant variables. Hence from Observation 2.2, for all j ∈ [mi]

and l ∈ [2], `j,l is a linear form solely in
{

y′i,1,1, y′i,1,2, . . . , y′i,mi ,1
, y′i,mi ,2

}
. Expanding the right hand

side of the above equation,

∑
j∈[mi]

(`j,1 + pj,1)(`j,2 + pj,2) = ∑
j∈[mi]

`j,1`j,2 + ∑
j∈[mi]

(`j,1 pj,2 + `j,2 pj,1) + ∑
j∈[mi]

pj,1 pj,2. (8)

For j ∈ [mi], let hi,j,1 and hi,j,2 be the coefficients of yi,j,2 and yi,j,1 in ∑j∈[mi](`j,1 pj,2 + `j,2 pj,1) respec-
tively. Then, hi,j,1, hi,j,2 ∈ F[z] are linear polynomials and ∑j∈[mi](`j,1 pj,2 + `j,2 pj,1) = ∑j∈[mi](yi,j,1hi,j,2 +
yi,j,2hi,j,1). Now, ∑j∈[mi] `j,1`j,2 = ∑j∈[mi] yi,j,1yi,j,2. Putting these in equation (8),

∑
j∈[mi]

(`j,1 + pj,1)(`j,2 + pj,2) = ∑
j∈[mi]

(yi,j,1 + hi,j,1)(yi,j,2 + hi,j,2) + ∑
j∈[mi]

(pj,1 pj,2 − hi,j,1hi,j,2) (9)

Substitute yi,j,l = yi,j,l − hi,j,l for every j ∈ [mi], l ∈ [2] in the above equation. Then we get

∑
j∈[mi]

(`j,1 + p′j,1)(`j,2 + p′j,2) = ∑
j∈[mi]

yi,j,1yi,j,2 + ∑
j∈[mi]

(pj,1 pj,2 − hi,j,1hi,j,2),

where for every j ∈ [mi], l ∈ [2], p′j,l ∈ F[z] is a linear polynomial. Note that the right hand side
of the above equation does not have a monomial containing variables from both y and z. Thus we
get ∑j∈[mi](`j,1 p′j,2 + `j,2 p′j,1) = 0. Since

{
`j,l : j ∈ [mi], l ∈ [2]

}
is linearly independent, it is easy to

see that for every j ∈ [mi], p′j,1 = p′j,2 = 0, which implies ∑j∈[mi](pj,1 pj,2 − hi,j,1hi,j,2) = 0. Hence,

q̂i(A′1Cix) = ∑
j∈[mi]

([
`
(0)
yi,j,1

]
y
+ pj,1

)([
`
(0)
yi,j,2

]
y
+ pj,2

)
(A′1Cix)

= ∑
j∈[mi]

(`j,1 + pj,1)(`j,2 + pj,2)

= ∑
j∈[mi]

(yi,j,1 + hi,j,1)(yi,j,2 + hi,j,2) (from Equation (9)).

D.6 Proof of Claim 4.6{
`
(1)
x : x ∈ x

}
is linearly independent. As A′1 acts as identity on z] u (Observation 4.1), from

Claim 4.3, we get that `(1)z ∈ F[z] for all z ∈ z′. Hence, dim
〈[

`
(1)
x

]
y

: x ∈ z′′] y
〉

= |y|. From

Claim 3.3, no y ∈ y \ u is in var(det(H2)). Thus, by applying A′1 on both sides of the equation in
the second point of Claim 4.3, we get that for all z ∈ z′′, `(1)z = `′z + ∑u∈u αu`

(1)
u , where `′z ∈ F[z].

Hence,
{[

`
(1)
z

]
y

: z ∈ z′′
}
∈ F-span

{[
`
(1)
y

]
y

: y ∈ y
}

; so
{[

`
(1)
y

]
y

: y ∈ y
}

is linearly indepen-

dent. Now,
{[

`
(1)
y

]
y

: y ∈ y \ u
}

= y \ u. Thus,
{[

`
(1)
u

]
u

: u ∈ u
}

is linearly independent.

66

D.7 Proof of Claim 4.7

Immediately after Step 8 of Procedure 2 is executed, det(H2)(BRA0x + d) = h(A0x) ∈ F[z]. Be-
cause C computed in the for loop of lines 10-12 only maps some variables in z′ to linear forms in
F[z], after this loop is executed, det(H2)(BRA0(Cx + b) + d) ∈ F[z]. Thus, after A0 is updated to
be RA0C and b := RA0b′ in Step 13 of Procedure 2, det(H2)(BA0x+ Bb+d) ∈ F[z]. Since A′1 acts
as identity on z and A1 = A0A′1, h′ := det(H2)(BA1x + Bb + d) ∈ F[z]. Now, from the chain rule
of derivatives we have that

∇h′ = (BA1)
T [∇det(H2)] (BA1x + Bb + d),

where ∇h′ and ∇det(H2) are gradients of h′ and det(H2) with respect to x, respectively. As h′

does not contain any u-variable,

0 =
[
∇h′

]
u = [(BA1)

T]u [∇det(H2)] (BA1x + Bb + d),

where [∇h′]u is ∇h′ restricted to entries corresponding to u and [(BA1)
T]u is (BA1)

T restricted to
rows corresponding to u. Thus,

[(BA1)
T]u,x′ [∇det(H2)]x′ = −[(BA1)

T]u,x\x′ [∇det(H2)]x\x′ ,

where [(BA1)
T]u,x′ and [(BA1)

T]u,x\x′ are the sub-matrices of (BA1)
T whose rows and columns are

labelled by variables in u, x′ and u, x \ x′ variables respectively. As B = [BA1]x′,uu, [(BA1)
T]u,x′

is invertible. By right multiplying its inverse on both sides of the above equation, we get that for
all x′ ∈ x′, ∂

∂x′ det(H2) ∈ F-span
{

∂
∂x det(H2) : x ∈ var(det(H2)) \ x′

}
. Hence, x′ is redundant for

det(H2). Then, as no variable y \ u is present in det(H2), the claim follows.

D.8 Proof of Claim 4.8

Pick any arbitrary k ∈ {s1 + 1, . . . , s2} and y′ ∈ yk. If `(2)y′ contains a variable not in zk] yk, because
of Claim 4.5 and the fact that A′2 acts as identity on z] (y \ u), it must be in z \ zk. Suppose that

yy′ is a term in the quadratic form along a skewed µ in Tk. Fix any z ∈ z \ zk; if z ∈ var
(
`
(2)
y′

)
,

then during the y-th iteration of the for loop of lines 2-8, g contains the monomial µz. We now
argue that the only place in f (A2x + b) which can contribute µz to g is µ`

(2)
y′ . This implies that the

coefficient of µz in g, i.e., the coefficient of z in `′y′ after Step 3 is equal to its coefficient in `
(2)
y′ .

For µz to be present in g, µzy must be present in f (A2x+ b). We claim that µzy is not present
in T̂k′(A2x+b) for any k′ 6= k. If k′ ∈ [s1], then this directly follows from Claim 4.3 and the fact that
A′1 A′2 act as identity on zk. For a k′ ∈ {s1 + 1, . . . , s}, note that as k ∈ {s1 + 1, . . . , s2}, deg(µ) ≥ 1.
Because y and variables in var(µ) are not in zk′] yk′ , y can only be present in `

(2)
x for some x ∈ xk′ if

x is a dangling variable along some skewed path. Hence any monomial of T̂k′(A2x+b) containing
y can not contain any other variable in zk] yk. So, µyz is not present in T̂k′(A2x + b).

Now, apart from `
(2)
y , y can only appear in `

(2)
x for some x ∈ xk, if x is a dangling variable

along some skewed path, say µ′. However, since z /∈ zk, z /∈ var(µ′). So, µzy can not be present
in µ′`

(2)
x . This only leaves µ`

(2)
y′ as the place that can contribute µz. Hence the coefficient of z in `′y′

is equal to its coefficient in `
(2)
y1 . Now, notice that y′ is not present in g in any iteration of the for

67

loop other than the y-th iteration. Hence, through out the execution of the loop, A′3 only acts on y′

during the y-th iteration. In this iteration, after Step 4 is executed, `(2)y′ (A′3x + b′) does not contain
z as A′3 is updated to map y′ to y′ − `′y′ . Since this is true for any z ∈ z \ zk, the claim follows.

D.9 Proof of Claim 4.9

Pick any arbitrary k ∈ {s2 + 1, . . . , s′} and y′ ∈ yk. If `(2)y′ contains a variable not in yk (as zk = ∅),
because of Claim 4.5 and the fact that A′2 acts as identity on z] (y \ u), it must be in z. Suppose

that Tk = yy′. Fix any z ∈ z; if z ∈ var
(
`
(2)
y′

)
, then during the y-th iteration of the for loop of

lines 2-8, g contains z. We now show that the only place in f (A2x + b) that can contribute z to g
is `

(2)
y′ . Observe that for z to be present in g, yz must be present in f (A2x + b). Apart from `

(2)
y ,

y is only present in `
(2)
x if x is a dangling variable along a skewed path in some bad term Tk′ or

x = u0. However, Observation 4.5 implies that we can assume without loss of generality that the
only place in f (A2x + b) that contains zy is `(2)y `

(2)
y′ . Thus, after Step 4 is executed, y′ is mapped to

an affine form in y′ in f (A2A′3x + b).

D.10 Proof of Claim 4.10

Fix a k ∈ {s1 + 1, . . . , s2} and an x ∈ x′k. Suppose that y ∈ y \ yk is present in `
(2)
x . Then, in the y-th

iteration of the for loop of lines 2-8, the monomial µ′ representing the skewed path corresponding
to x is in r(z). Observe that deg(µ′) ≥ 1. Note that the only time A′3 translates the sole u-variable
u′ in `

(2)
x by a multiple of y is in the y-th iteration of the loop. So it suffices to prove that in this

iteration, β in Step 6 is the coefficient of y in `
(2)
x . We do this by showing that the only place in

f (A2x + b) from which µ′ can appear in g is from µ′`
(2)
x .

For µ′ to be present in g, µ′y must be present in f (A2x + b). We claim that µ′y can not be
present in T̂k′(A2x + b) for any k′ 6= k. Because of Claims 4.8 and 4.9, variables in var(µ′) can only
be present in `

(2)
x′ for some x′ ∈ xk′ if x′ is a dangling variable along some skewed path in Tk′ or

x′ = u0. Hence any monomial of T̂k′(A2x+ b) containing a variable in var(µ′) can not contain any
other variable in zk] yk. So, µ′y is not present in T̂k′(A2x + b).

Now, in T̂k(A2x+b), y is only present in `
(2)
x′ for some x′ ∈ xk if x′ is a dangling variable along

some skewed path. However, if that skewed path is µ′′, then the monomial present in T̂k(A2x+b)
is µ′′y. Hence µ′′`

(2)
x′ can contain the monomial µ′y only if µ′′ = µ′ and x′ = x. Thus only µ′`

(2)
x

contributes µ′ to g, and β is precisely the coefficient of y in `
(2)
x . Hence, after A′3 has been updated

to map u′ to u′ − βy in Step 6, `(2)x (A′3x) does not contain y.
For any y ∈ `

(2)
u0 , in the y-th iteration of the loop, r(z) contains a constant, say β. Because u0 is

only translated by a constant multiple of y in the y-th iteration of the loop, it is sufficient to show
that β is the coefficient of y in `

(2)
u0 . If y ∈ yk for some k ∈ {s1 + 1, . . . , s2}, then every monomial in

f (A2x + b) containing y must also contain a skewed path. Observation 4.6 implies that A′3 maps
the top quadratic from to ∑s′

k=s2+1 yk,1yk,2. Thus βy is also not present in the top quadratic form.

Hence β is exactly the coefficient of y in `
(2)
u0 . Also, in this case when Step 6 is executed, u′ = u0.

So after A′3 has been updated to map u′ to u′ − βy, `(2)u0 (A′3x) does not contain y.

68

D.11 Proof of Claim 4.11

Fix any k ∈ {s1 + 1, . . . , s2} and x ∈ x′k which is not a bad dangling variable. If the corresponding

skewed path is µ, then deg(µ) ≥ 2. Also, from Observation 4.3, if the sole u variable in `
(3)
u is u,

then (µ, u) ∈ V. We analyse the iteration of the for loop of lines 11-16 corresponding to (µ, u). Fix
any z ∈ z \ zk. We show that in the z-th iteration of the for loop of lines 12-15 the coefficient of µz
in g is exactly the coefficient of z in `

(3)
x .

As deg(µ) ≥ 2, µz is not present in T̂k′(A3x + b) for any k′ 6= k. Also, in T̂k(A3x + b), z is
only present in `

(3)
x for some x ∈ xk, if x is a dangling variable along a skewed path. However, if

the skewed path corresponding to x is µ′, then we get the monomial µ′z form µ′`
(3)
x . This means

that µ′ = µ and hence in T̂k(A3x + b), µz is only obtained from µ`
(3)
x . This means that in Step 14,

α is precisely the coefficient of z in `
(3)
x . Hence, after that step is executed and A′4 updated to map

u to u− αz, `(3)x (A′4x) does not contain z. Also, observe that the only monomials containing z in
T̂k′(A3(var(µ′), z, x \ (var(µ′)] {z}) = 0) + b), for k′ 6= k can be of degree at most 2. Further
any monomial containing z in T̂k(A3(var(µ′), z, x \ (var(µ′)] {z}) = 0) + b) must look like µ′z,
where µ′ is a sub-monomial of µ. Hence, ∂g

∂z is sparse and can be interpolated efficiently.

D.12 Proof of Claim 4.12

We prove the claim by showing that the following loop invariant holds: The matrix A′4 computed
after the i-th iteration of the loop is such that for all j ≤ i, if xj ∈ x′k, then ̂̀(3)xj (A′4x) ∈ F[zk] yk].
Suppose that the invariant is true before the execution of the i-th iteration of the loop; it is trivially
true before the first iteration. Suppose that xi ∈ x′k. First we consider the z-th iteration of the
for loop of lines 18-21 for a z /∈ zk ∪ {z1, . . . , zm}. Since for any k ∈ [s], the only x ∈ xk such
that `(3)x (A′4x) contains variables not in zk are x ∈ {u0, x1, . . . , xm}, the only place in f (A3A′4x + b)
that can contribute ziz to g is zi · `(3)xi (A′4x). Hence, in Step 20 α is exactly the coefficient of z in
`
(3)
ui (A′4x). Thus after that step is executed and A′4 is updated to map the sole u variable ui in
`
(3)
xi (A′4x) to ui − αz, `(3)xi (A′4x) does not contain z. For a z ∈ {z1, . . . , zi−i}, the assumption that the

loop invariant is true before the i-th iteration and Observation 4.7 imply that ziz is not a monomial
in g and hence z is not present in ∂g

∂z . On the other hand, for all z ∈ {zi+1, . . . , zm}, Observation

4.7 implies that in Step 20 α is exactly the coefficient of z in `
(3)
xi (A′4x). Hence, after that step is

executed and A′4 updated to map the sole u variable ui in `
(3)
xi (A′4x) to ui − αz, `(3)xi (A′4x) does not

contain z. Notice that this also implies that the monomial ziz is no longer present in f (A′4x + b).
Also, in the i-th iteration, A′4 does not act on any variable other than ui. Hence, the invariant is
also true after the execution of this iteration.

D.13 Proof of Claim 4.13

There are two cases.

Case 1: k ∈ [s1], say Tk = Qk,1 · · ·Qk,mk , mk ≥ 2 or neither Qk,1 nor Qk,2 is linear, T̂k = Q̂k,1 · · · Q̂k,mk ,
and Q̂k,l = Qk,l(Bx + d) for all l ∈ [mk]. Then from Claim 3.1, Q̂k,1(RA0x), . . . , Q̂k,mk(RA0x) are ir-
reducible factors of h(A0x) where R, A0, and h are as just before Step 8 of Procedure 2 is executed.

69

Because ẑ1, . . . , ẑm are returned by Make-Factors-Var-Disjoint(h(A0x)), from Claim 2.4, for every
l ∈ [mk], there exists an i ∈ [m] such that var

(
Q̂k,l(RA0x)

)
⊆ ẑi, where A0 is as after Step 8 of

Procedure 2 has been executed. It follows from Observation 2.2 that every variable in var(Qk,l)
is mapped to a linear from in ẑi by BRA0. As C only maps some of these linear forms to con-
stant multiples of variables in ẑi, even after A0 is updated to be RA0C in Step 13 of Procedure 2,
var

(
Q̂k,l(A0x + b)

)
= var

(
Q̂k,l(A0x)

)
⊆ ẑi. Because in Procedures 3 and 4, A′1, . . . , A′4 act as

identity on z, var
(

Q̂k,l(Ax + b)
)
⊆ ẑi where A and b are as after Step 3 of Algorithm 1.

If var
(

Q̂k,1(Ax + b)
)
∪ · · · ∪var

(
Q̂k,mk(Ax + b)

)
⊆ ẑi, then var

(
T̂k(Ax + b)

)
is clearly con-

tained in a single connected component of G. So suppose that there exist disjoint sets I1, I2 ⊆ [mk]

and i 6= j ∈ [m] such that ∪l∈I1var
(

Q̂k,l(Ax + b)
)
⊆ ẑi, ∪l∈I2var

(
Q̂k,l(Ax + b)

)
⊆ ẑj, and

∪l /∈I1]I2var
(

Q̂k,l(Ax + b)
)
∩ (ẑi] ẑj) = ∅. Then, for any z1 ∈ ẑi and z2 ∈ ẑj,

∂2 f (Ax+b)
∂z1∂z2

=

∂2T̂k(Ax+b)
∂z1∂z2

= ∂
∂z1

(
∏l∈I1

Q̂k,l(Ax + b)
)
· ∂

∂z2

(
∏l∈I2

Q̂k,l(Ax + b)
)
·
(

∏l /∈I1]I2
Q̂k,l(Ax + b)

)
6= 0. So

the edge
{

ẑi, ẑj
}

is added to G, and var
(

T̂k(Ax + b)
)

is in a single connected component of G.

Case 2: k ∈ {s1 + 1, . . . , s2}, say T̂k = Q̂k,1Q̂k,2, where Q̂k,1 is in the orbit of a variable. If there

exists an i such that var
(

Q̂k,1(Ax + b)
)
∪ var

(
Q̂k,2(Ax + b)

)
⊆ ẑi, then var

(
T̂k(Ax + b)

)
is

clearly contained in a single connected component of G. Otherwise, it follows from Lemma
4.3 that Q̂k,1(Ax + b) is a constant multiple of a variable, say z1 ∈ ẑi. Let x be any variable in

Q̂k,2(Ax + b). First suppose that x ∈ ẑj for some j 6= i and x = z2. Then ∂2 f (Ax+b)
∂z1∂z2

= ∂2T̂k(Ax+b)
∂z1∂z2

=

∂
∂z1

(
Q̂k,1(Ax + b) · ∂Q̂k,2(Ax+b)

∂z2

)
. As, ∂Q̂k,2(Ax+b)

∂z2
6= 0, z1 ∈ var

(
Q̂k,1(Ax + b) · ∂Q̂k,2(Ax+b)

∂z2

)
. Thus,

∂2 f (Ax+b)
∂z1∂z2

6= 0 and the edge
{

ẑi, ẑj
}

is added to G. Now, if x ∈ y and x = y, even then using the

same argument as above, ∂2 f (Ax+b)
∂z1∂y 6= 0 and the edge {ẑ, y} is added to G. Thus var

(
T̂k(Ax + b)

)
is contained in a single connected component of G.

So for all k ∈ [s2], var
(

T̂k(Ax + b)
)

is contained in a single connected component of G. Also,

for k 6= k′ ∈ [s′] and any z1 ∈ T̂k(Ax+b), z2 ∈ T̂k′(Ax+b), ∂2 f (Ax+b)
∂z1∂z2

= 0. Thus, var
(

T̂k(Ax + b)
)

corresponds to a connected component in G. Further for any y1, y2 ∈ var
(

T̂s2+1(Ax + b)
)
]

. . .] var
(

T̂s′(Ax + b)
)

observe that ∂2 f (Ax)
∂y1∂y2

is never computed, hence they are in distinct con-
nected components of G of size 1 each. u0 is also in a connected component containing just
itself. Hence the only connected components of G with more then 1 variable correspond to
var

(
T̂1(Ax + b)

)
, . . . , var

(
T̂s2(Ax + b)

)
.

D.14 Proof of Claim 4.15

Fix an i ∈ [|zk|]. As ai is chosen randomly, deg(Q̂(tai)) ≥ 2 with high probability. Notice that there
exist Q̂′i, βi,0, βi,1 such that Q̂(tai) · Q̂′i(t) + βi,1 · t + βi,0 = T̂(tai) is satisfied; one solution is Q̂′i =(

T̂k(Ax + b)/Q̂
)
(tai), βi,1 = (∑z∈zk

cz · z)(ai), and βi,0 = γ′. We claim that this solution is unique

70

with high probability. Suppose that there existed two solutions Q̂′i, βi,0, βi,1 and Q̂′′i , β′i,0, β′i,1. Then
Q̂(tai) · (Q̂′i(t)− Q̂′′i (t)) = (β′i,1 − βi,1) · t + β′i,0 − βi,0. As deg(Q̂(tai)) ≥ 2 with high probability,
this is only possible if Q̂′i(t) = Q̂′′i (t), βi,1 = β′i,1 and βi,0 = β′i,1. In particular βi,1 = (∑z∈zk

cz · z)(ai)
and βi,0 = γ′. Thus, after we interpolate ∑z∈zk

αzz using βi,1, . . . , β|zk |,1 and set `k = ∑z∈zk
αzz +

β1,0, T̂ = T̂k(Ax + b) + [`(Ax + b)]zk + γ′ − `k = T̂k(Ax + b) is reducible.

D.15 Proof of Claim 4.16

Fix an i ∈ [|zk| − 1]. Because deg(Tk) ≥ 3, Lemma 4.3 implies that Q̂ is a variable. Notice that there
exist Q̂′i(z, t), βi,2, βi,1, βi,0 satisfying z · Q̂′i(z, t) + βi,2 · z + βi,1 · t + βi,0 = T̂(z, zk \ {z} = ai · t); one

such solution is Q̂′i =
(

T̂k(Ax + b)/Q̂
)
(z, tai), βi,2 = cz, βi,1 = (∑z′∈zk\{z} cz′ · z′)(ai) and βi,0 = γ′.

We now show that βi,1, and βi,0 are unique with high probability. Suppose there are two solutions
Q̂′i(z, t), βi,2, βi,1, βi,0 and Q̂′′i (z, t), β′i,2, β′i,1, β′i,0. Then, z · (Q̂′i(z, t) − Q̂′′i (z, t)) + (βi,2 − β′i,2) · z =
(β′i,1− βi,1) · t + (β′i,0− βi,0). By putting z = 0 it can be seen that βi,1 = β′i,1 = (∑z′∈zk\{z} cz′ · z′)(ai)
and βi,0 = β′i,0 = γ′. Thus, after we interpolate ∑z′∈zk\{z} αz′z′ using βi,1, . . . , β|zk |,1 and set `k =

∑z′∈zk\{z} αz′z′ + β1,0, T̂ = T̂k(Ax + b) + [`(Ax + b)]zk + γ′ − `k = T̂k(Ax + b) is reducible.

D.16 Proof of Claim 4.17

One direction is simple. If ` = c · Q̂l for some l ∈ [m], then it is clear that T is reducible.
For the other direction, pick a z ∈ var(`) and let its coefficient be c. Note that there must exist

an l ∈ [m] such that z ∈ var(Ql), for otherwise T is in the orbit of the +-rooted ROF Q1 · · ·Qm + z
and therefore irreducible. So assume without loss of generality that z ∈ var(Q1). Let T = r1 · r2
where r1 is an irreducible factor of T containing z and r2 is not necessarily irreducible. Note that
as T is multilinear r1 and r2 are variable disjoint. Now,

r1r2 = Q1Q + c · z + `′

where Q = Q2 · · ·Qm and ` = c · z + `′. Let Q1 = g1 · z + g2 and r1 = w1 · z + w2 where g1, g2, w1,
and w2 are z-free polynomials. Then,

(w1 · z + w2) · r2 = (g1 · z + g2) ·Q + c · z + `′. (10)

Observation D.1. w1 ∈ F×.

Proof. Taking derivatives with respect to z on both sides of Equation (10), we see that w1 · r2 =
g1 ·Q + c. If g1 is a non-constant polynomial, then the latter is a + rooted ROF and therefore from
Fact 2.5, irreducible. Hence, r2 is irreducible and g1 ∈ F.

If g1 is a constant and g2 is also a constant, then as Q1Q + u is a canonical ROF, either Q must
be a product of at least two + rooted ROFs or if it is just a single + rooted ROF, then it can not
have a constant attached to its top-most + gate. In either of these cases g1 · Q + c is irreducible
and hence we again get that r2 is irreducible and g1 ∈ F.

Suppose that g1 is a constant, but g2 is not. As Q is non-constant (since m ≥ 2), there exists
a z2 ∈ var(Q). Then, for any z1 ∈ var(g2), as zz1 does not appear on the right side of Equation
(10), z1 /∈ var(w1) or var(r2). Also, for any z′2 ∈ var(Q), z′2 /∈ var(w1). This is so because, for any
z′1 ∈ var(g2), z′1z′2 appears on the right side of Equation (10). If z′1 were to be in var(w1), then z′1z′2

71

can not appear on the left side of (10) since z′1 /∈ var(w1) or var(r2). Thus, no variable in var(g2)
or var(Q) can be present in var(w1) forcing w1 to be a constant.

Assume without loss of generality that w1 = 1. Thus,

(z + w2) · r2 = (g1 · z + g2) ·Q + c · z + `′,

which implies that r2 = g1 ·Q + c. Hence,

(z + w2) · (g1 ·Q + c) = (g1 · z + g2) ·Q + c · z + `′.

Observation D.2. g1 ∈ F \ {0}.

Proof. By contradiction. Suppose that g1 is a non-constant polynomial. Then we have

(z + w2) · (g1 ·Q + c) = (g1 · z + g2) ·Q + c · z + `′

=⇒ (w2 · g1 − g2)Q = −c · w2 + `′.

Suppose that w2 · g1 − g2 6= 0. Then Q and w2 must be variable disjoint, we get

1. Q is linear and so as it is a canonical ROF is an affine form in a single variable,

2. w2 · g1 − g2 ∈ F×, say it is c′, and

3. w2 is an affine form.

Hence, Q1 = g1 · z + g2 = g1 · z + g1 · w2 − c′. We claim that c′ must be 0. It given that Q1Q + u
is a canonical ROF and Q is an affine form in a single variable. Thus it follows from property 6
of the definition of a canonical ROF that Q1 can not have a constant attached to its top-most +
gate; hence c′ = 0. However this contradicts our assumption that c′ = w2 · g1 − g2 6= 0. Hence,
w2 · g1 − g2 = 0. So, g2 = w2 · w1. This implies that Q1 = g1(z + w2), which implies that g1 ∈ F×

because Q1 being a +-rooted ROF is irreducible.

Assume without loss of generality that g1 = 1; if it is not, then replace Q by g1 · Q and g2 by
g−1

1 · g2. Then,

(z + w2)(Q + c) = (z + g2) ·Q + c · z + `′

=⇒ (w2 − g2)Q = −c · w2 + `′.

Then, just as before, Q and w2 are variable disjoint. Thus,

1. Q is linear and so as it is a canonical ROF is an affine form in a single variable,

2. w2 − g2 ∈ F×, say it is c′′, and

3. w2 is an affine form.

Suppose w2− g2 6= 0. Hence, Q1 = z + w2− c′′ and as Q1 is canonical, w2 has to be a constant. But
then, Q1 and Q are both affine which contradicts the hypothesis that Q1 · · ·Qm is not a quadratic
polynomial. Thus, w2 = g2. Then,

(z + w2)(Q + c) = (z + w2) ·Q + `

=⇒ (z + w2) · c = `.

Now, as Q1 = (z + w2) is a canonical ROF, w2 ∈ F. Hence, ` = c ·Q1.

72

D.17 Proof of Lemma 4.5

As f (Ax) = T̂1(Ax) + · · · + T̂s(Ax) + γ, T̂1(Ax), . . . , T̂s(Ax) are variable disjoint, and for all
k ∈ [s2] zk = var

(
T̂k(Ax)

)
, f (A (zk, x \ zk = 0)) = T̂k(Ax) + γ′ for some γ′ ∈ F. So all that

needs to be done to obtain black-box access to T̂k(Ax) is to find γ′ and subtract it from g =
f (A (zk, x \ zk = 0)). We show that this is exactly what the procedure does.

In the procedure, N is the set of irreducible factors of det
(

Hg
)
. Suppose that T̂k = Q̂k,1 · · · Q̂k,mk .

It follows from Claim 3.1 and Fact 2.8, that a non-zero constant multiple of at least one of the fac-
tors Q̂k,1(Ax), . . . , Q̂k,mk(Ax) is in N along with some other ‘bad’ factors. First let us analyse the be-
haviour of the for loop of lines 3-7 when r is a constant multiple of one of the Q̂k,1(Ax), . . . , Q̂k,mk(Ax).
In this case, there exist r′(t) and β ∈ F such that r(ta)r′(t) + β = g(ta); one solution is r′(t) =(

T̂k(Ax)/r
)
(A(ta)) and β = γ′. r′(t) and β can be discovered as follows: first interpolate r(ta)

and g(ta) which are univariate polynomials in t. Treat the coefficients of r′(t) and β as unknowns.
Then, by equating the coefficients of monomials on both sides of r(ta)r′(t) + β = g(ta), we get a
system of linear equations in these unknowns which the procedure solves. As mentioned before,
this system has a solution, we now show it is unique.

Suppose that there existed two solutions r′1(t), β1 and r′2(t), β2. Then, r(ta) (r′1(t)− r′2(t))
= β2− β1. Because a is chosen randomly, with high probability r(ta) is a non-constant polynomial
in t. Thus, this is only possible when r′1(t) = r′2(t) and β1 = β2 = γ′. Hence, if r is a constant
multiple of one of the Q̂k,1(Ax), . . . , Q̂k,mk(Ax), then β = γ′ and g − β is reducible. Thus, the
procedure returns a black-box of g− β = T̂k(Ax).

On the other hand, when r is one of the bad factors, there are two cases: β = γ′ and β 6= γ′. In
the first case there is noting to prove. On the other hand, if β 6= γ′, then notice that g + γ′ − β is in
the orbit of Tk +γ′− β. As the latter is a +-rooted ROF, Fact 2.5 implies that it is irreducible. Hence
g− β is also irreducible. Now, the fact that the for loop was executed for this bad factor implies
that in all of the previous iterations, r must have been a bad factor, for otherwise as seen above,
the loop would have terminated. This along with the fact that N contains a constant multiple of at
least one of the Q̂k,1(Ax), . . . , Q̂k,mk(Ax) implies that in this case, the next iteration of the loop will
be executed. This will continue to happen until the loop is executed for an r which is a non-zero
constant multiple of one of the Q̂k,1(Ax), . . . , Q̂k,mk(Ax) and γ′ is discovered.

Notice that T̂k(Ax) = f (A (zk, x \ zk = 0))− β. Hence, to query T̂k(Ax) at zk = a, for some
a ∈ F|zk |, f (Ax) just needs to be queried at the point (zk = a, x \ zk = 0) and then β, which is a
fixed, known constant, subtracted from the result. Now as A is known to us, to query f (Ax) at
any point, we just need to query f at one point.

D.18 Proof of Claim 4.18

Fix a k ∈ [s2]. The hypothesis of Claim 4.5 is satisfied. Hence after Step 16 is executed, T̂ is
the black-box of T̂k(Ax). Suppose that T̂k(Ax) = Q̂k,1(Ax) · · · Q̂k,mk(Ax), the corresponding term
T′k(P0x) of C′(P0x) is a product of +-rooted canonical sub-ROFs Qk,1, . . . , Qk,mk and for all l ∈ [mk],
Q̂k,l(Ax) = Qk,l(B′x + d′). The factors Q̂1, . . . , Q̂mk of T̂ computed in Step 17 are non-zero con-
stant multiples of Q̂k,1(Ax), . . . , Q̂k,mk(Ax), respectively, say they are c1Q̂k,1(Ax), . . . , cmk Q̂k,mk(Ax);
here ∏l∈[mk]

cl = 1. Now, as Qk,1, . . . , Qk,mk are variable disjoint ROFs, Ness
(
Qk,1 · · ·Qk,mk

)
=

Ness (Qk,1) + · · · + Ness (Qmk). Also, for all l ∈ [mk] Ness

(
Q̂l

)
= Ness

(
Q̂k,l(Ax)

)
= Ness (Qk,l)

73

and similarly Ness

(
Q̂1 · · · Q̂mk

)
= Ness

(
Qk,1 · · ·Qk,mk

)
. This means that Ness

(
Q̂1 · · · Q̂mk

)
=

Ness

(
Q̂1

)
+ · · · + Ness

(
Q̂mk

)
. So from Claim 2.3, there exists an Ak,0 ∈ GL(|zk|, F) such that

Q̂1(Ak,0zk), . . . , Q̂mk(Ak,0zk) are variable disjoint. It also implies that Q̂1(Ak,0zk), . . . , Q̂mk(Ak,0zk)

do not contain any redundant variables. In Step 18, Q̂l has been updated to be Q̂l(Ak,0zk) for

all l ∈ [mk]. Now Q̂l(Ak,0zk), |var (Qk,l) | = |zk,l |, where zk,l = var
(

Q̂l(zk)
)

. So, there exists a
permutation matrix Pk,0 ∈ M(|zk|, F) such that for all l ∈ [mk], var (Qk,l(Pk,0zk)) = zk,l .

Much like the outer loop, the l-th iteration of the inner loop of lines 20-23, also only works
with Q̂l(zk) and zk,l ; so we can also look at an iteration of this loop in isolation. We now analyse the
l-th iteration of this loop for some l ∈ [mk]. a is a random vector of size |zk| and a′ is a restricted to
entries corresponding to zk \ zk,l . Also βl = ∏l′∈[mk]\{l} Q̂l′(zk,l , zk \ zk,l = a′). Because a is random,
βl 6= 0 with high probability. Thus Q̂l = β−1

l T̂ (Ak,0 (zk,l , zk \ zk,l = a′)) = clQ̂k,l(A(Ak,0zk, x \ zk)).
Now consider a product-depth ∆ canonical ROF Ql obtained by multiplying Qk,l(Pk,0zk) by cl ,
pushing it down to the leaves, and removing it from any non-constant leaf. Let B′′ = P′k,0

−1B′A′k,0,
where P′k,0 ∈ M(n, F) maps every z ∈ zk to Pk,0 ◦ z and every other variable to itself, while A′k,0 ∈
GL(n, F) maps every z ∈ zk to Ak,0 ◦ z and every other variable to itself. Also, let d′′ = P′k,0

−1d′.
It can be verified that Q̂l = Ql (B′′x + d′′). To recursively perform equivalence test on Q̂l we shall
show that there exists a Bl ∈ GL(|zk,l |, F) and a dl ∈ F|zk,l | such that Q̂l(zk,l) = Ql (Blzk,l + dl).

Because var (Ql) = zk,l , Q̂l(zk,l) = Ql

(
[B′′]zk,l

x + [d′′]zk,l

)
, where [B′′]zk,l and [d′′]zk,l are

B′′ and d′′ restricted to the rows corresponding to zk,l . Also, since var
(

Q̂l

)
= zk,l , Q̂l(zk,l) =

Ql

(
[B′′]zk,l×zk,l

zk,l + [d′′]zk,l

)
, where [B′′]zk,l×zk,l

is B′′ restricted to the rows and columns corre-
sponding to zk,l . It follows from Observation 2.2 that [B′′]zk,l×zk,l

is invertible. So we can set
Bl = [B′′]zk,l×zk,l

and dl = [d′′]zk,l
.

Thus, by the induction hypothesis, Ak,l computed in Step 22, is such that there exist a per-
mutation matrix Pk,l ∈ M(|zk,l |, F), a scaling matrix Sk,l ∈ M(|zk,l |, F) and a bk,l ∈ F|zk,l | satisfying
Q̂l(Ak,lzk,l) = Ql(Pk,lSk,lzk,l + bk,l). Since this is true for all l ∈ [mk], after the execution of the
for loop of lines 20-23 and Step 24, for all l ∈ [mk], clQ̂k,l(A(Akzk, x \ zk)) = clQk,l(PkSkzk + bk),
where for all l ∈ [mk] and z ∈ zk,l , Pk maps z to Pk,l ◦ zk,l , Sk maps z to Sk,l ◦ zk,l and the z-th co-
ordinate of dk is the same as that of [Pk,0]zk,l×zk,l

dk,l . Because ∏l∈[mk]
cl = 1, T̂k(A(Akzk, x \ zk)) =

T′k(P0(PkSkzk + bk, x \ zk)), proving the claim.

E PE for orbits of product-depth 2 ROFs

In Section 5, we gave an algorithm for PE for orbits of additive-constant-free canonical ROFs. Here
we show how to solve PE for product-depth 2 canonical ROFs with additive-constants.

The issue with additive-constants. Let f1 and f2 be two n-variate polynomials in the orbits
of ROFs and suppose that they are equivalent. Then there exists a canonical ROF C such that
f1, f2 ∈ orb(C). If A1, A2 ∈ GL(n, F) are matrices obtained by invoking the Find-Equivalence()
algorithm (Algorithm 1) on f1 and f2, respectively, then f1(A1x), f2(A2x) ∈ PS-orb(C). In particu-
lar, the additive-constants other than translations in f1(A1x) and f2(A2x) are the same. However,

74

when we reconstruct f1(A1x) and f2(A2x) using the Reconstruct-ROF() algorithm (Algorithm 13)
and recover the translation of variables using the Canonize() procedure (Procedure 14), the out-
puts C′1 and C′2 are equal to f1(A1x) and f2(A2x) up to scaling of the leaves. This means that the
additive-constants in C′1 and C′2 might not be the same. Thus if we were to construct a permuta-
tion matrix P from the isomorphism that maps the underlying tree of C′1 to that of C′2, C′1 need not
be equal to C′2(Px). So the strategy used in Section 5 does not work in a straightforward manner.
In this section, we show how to overcome this issue for the case of orbits of product-depth 2 ROFs.

The idea. Suppose f1 ∈ orb(f2); then C1 = C2 = C, where C is a product-depth 2 canonical ROF
and thus, from Theorem 1 f1(A1x) ∈ PS-orb(f2(A2x)). We reconstruct f1(A1x) and f2(A2x) to ob-
tain C′1 and C′2, recover, and remove the translations of variables in both C′1 and C′2. We then show
that there is a way to transform C′1 and C′2 such that all the non-zero additive-constants in them
are 1 and that as ROFs, they only differ by permutation and scaling of variables; we exploit this to
give an equivalence test. We then recover the scaling of variables in C′1 and C′2. After that we check
if for every term T1 in C′1 there exists a term T2 in C′2 such that the number of factors of both having
1 as additive-constant and having 0 as additive-constant is the same. Furthermore, we check that
for every factor of T1 having 1 (respectively, 0) as additive-constant, there exists a factor of T2 also
having 1 (respectively, 0) as additive-constant such that their underlying trees are isomorphic. If
f1 ∈ orb(f2), this must be true for all terms of C′1 and C′2 and we are thus able to check for equiv-
alence. Note that here we do not need to worry about their additive-constants as they are the same.

Transforming C′1 and C′2. Let f (x) = f1(x), A = A1, C′(x) = C′1(x) (or f (x) = f2(x), A =
A2, C′(x) = C′2(x)). Suppose that f (Ax) = T1 + · · · + Ts + γ. Then from Lemma F.1 as C′ and
f (Ax) are equal up to scaling of leaves and each gate in C′ computes a non-zero constant multiple
of the corresponding gate in f (Ax), if C′(x) = T′1 + · · ·+ T′s + γ′, then T′i = ciTi for all i ∈ [s] and
γ′ = c0γ, where c0, . . . , cs are non-zero constants.

Observation E.1. c0, . . . , cs = 1.

The proof of the above observation can be found in Section E.1. Let b be the translation
vector output by Canonize(C′). Then, from Claim F.3, b is also the translation vector of f (Ax). So,
f (Ax + b) is free of translations and is the same as C′(x + b) up to scaling of the leaves. We shall
transform the terms of C′(x + b). Let T = Q1 · · ·Qm be a term of f (Ax + b). Then, from Lemma
F.1 the corresponding term of C′, T′ = Q′1 · · ·Q′m will be such that Q′i = βi · Qi, βi 6= 0 for all
i ∈ [m]. There are two kinds of T′:

• Kind 1: The additive-constant of at least one of the factors Q′1, . . . , Q′m is 0.

• Kind 2: The additive-constant of all the factors Q′1, . . . , Q′m are non-zero.

In the following claims we see how to transform each of the above two kinds of terms. Their
proofs can be found in Sections E.2 and E.3.

Claim E.1. Let T′ be a term of kind 1 such that for some k < m, the additive-constants of Q′k+1, . . . , Q′m are
zero, while the additive-constants α′1, . . . , α′k of Q′1, . . . , Q′k are non-zero. Also, let α1, . . . , αm be the additive-
constants in T. Then, if we transform T′ by bringing out α′1, . . . , α′k and absorb the product α′ = ∏i∈[k] α′i
in Q′m, we recover T′ as Q1

α1
· · · Qk

αk
· (βk+1Qk+1) · · · (βm−1Qm−1) · (β · α · βmQm), where β = ∏i∈[k] βi

and α = ∏i∈[k] αi. Also, the only non-zero additive-constants in T′ are all 1.

75

Claim E.2. Let T′ be a term of kind 2 and the additive-constants of Q′1, . . . , Q′m be α′1, . . . , α′m. Also, let
α1, . . . , αm be the additive-constants of T. Then, if we transform T′ by bringing out α′1, . . . , α′m, we recover
T′ as α · Q1

α1
· · · Qm

αm
, where α = ∏i∈[m] αi. Also, all additive-constants in T′ are 1.

Now, suppose that f1 ∈ orb(f2) and b1, b2 are translation vectors of C′1 and C′2 recovered
using the Canonise procedure. Then from Claim F.3, as they are also translation vectors of f1(A1x)
and f2(A2x), f1(A1x + b1) and f2(A2x + b2) are free of translations. Moreover, as ROFs they only
differ by permutation and scaling of variables. Notice that, in this case, the above two claims
imply that the same relationship also holds between C′1(x + b1) and C′2(x + b2). As we exploit this
property to give an equivalence test for f1 and f2, we record it as an observation.

Observation E.2. If f1 ∈ orb(f2), then after modifying C′1(x + b1) and C′2(x + b2) according to Claims
E.1 and E.2, C′1(x + b1) and C′2(x + b2) as ROFs only differ by permutation and scaling of variables.

The Algorithm

Algorithm 10 Product-Depth-2-Equivalence-Test(f1(x), f2(x))
Input: Black-box access to f1(x), f2(x) in the orbits of product-depth 2 canonical ROFs.
Output: Whether or not f1 and f2 are equivalent. If they are equivalent, then A ∈ GL(n, F) and
b ∈ Fn such that f1(x) = f2(Ax + b).

/* Reconstructing canonical ROFs equivalent to f1 and f2 and transforming their terms. */
1. for i ∈ [2] do
2. Ai ← Find-Equivalence(fi(x)) (Algorithm 1).
3. C′i ← Reconstruct-ROF(fi(Aix)) (Algorithm 13).
4. bi ← translation vector returned by Canonize(C′i) (Procedure 14). C′i ← C′i(x + bi).
5. Transform all terms in C′i according to Claims E.1 and E.2. C′i ← the ROF obtained after the

transformation and recovering scaling of variables, Si ← the scaling matrix.

6. end for

/* Checking if C′1 and C′2 are equivalent. */
7. if the additive-constants of C′1 and C′2 attached to the top + gate are not equal then
8. Return NOT EQUIVALENT.
9. end if

10. N1 ← set of terms of C′1, N2 ← set of terms of C′2, P ← In×n, the permutation matrix mapping
the variables of C′1 to the variables of C′2.

11. for T′1 ∈ N1 do
12. If T′1 is a term of kind 1 and ∃ T′2 ∈ N2 also of kind 1 such that Check-Kind-1(T′1, T′2) returns

SUCCESS, then N2 ← N2 \ {T′2}. Update P so that it maps var(T′1) to var(T′2) appropriately.

13. If T′1 is a term of kind 2 and ∃ T′2 ∈ N2 also of kind 2 such that Check-Kind-2(T′1, T′2) returns
SUCCESS, then N2 ← N2 \ {T′2}. Update P so that it maps var(T′1) to var(T′2) appropriately.

14. end for
15. if N2 = ∅ then
16. A← A2S2PS−1

1 A−1
1 , b← A2b2 − A2S2PS−1

1 b1.
17. Use the Schwartz-Zippel Lemma to check if f1(x) = f2(Ax+ b). If yes, return EQUIVALENT,

A and b. Else, return NOT EQUIVALENT.

76

18. else
19. Return NOT EQUIVALENT.
20. end if

The checks on lines 12 and 13 are performed using the following procedures.

Procedure 11 Check-Kind-1(T′1, T′2)
Input: Terms T′1 of C′1 and T′2 of C′2 of Kind 1.
Output: SUCCESS if they are equivalent, FAILURE otherwise.

1. Suppose T′1 = Q′1,1 · · ·Q′1,k1
· Q′1,k1+1 · · ·Q′1,m1

and T′2 = Q′2,1 · · ·Q′2,k2
· Q′2,k2+1 · · ·Q′2,m2

, where
Q′1,1, · · · , Q′1,k1

and Q′2,1, · · · , Q′2,k2
are the only factors with additive-constants.

2. if k1 6= k2 or m1 6= m2 then
3. Return FAILURE

4. end if
5. if there exists a bijection σ : [m1] → [m1] such that σ ([k1]) = [k1] and ∀i ∈ [m1], the rooted

trees of Q′1,i and Q′2,σ(i) are isomorphic then
6. Return SUCCESS.
7. else
8. Return FAILURE.
9. end if

Procedure 12 Check-Kind-2(T′1, T′2)
Input: Terms T′1 of C′1 and T′2 of C′2 of kind 2.
Output: SUCCESS if they are equivalent, FAILURE otherwise.

1. Suppose T′1 = α′1 ·Q′1,1 · · ·Q′1,m1
and T′2 = α′2 ·Q′2,1 · · ·Q′2,m2

.
2. if α′1 6= α′2 or m1 6= m2 then
3. Return FAILURE

4. end if
5. if there exists a bijection σ : [m1]→ [m1] such that ∀i ∈ [m1], the rooted trees of Q′1,i and Q′2,σ(i)

are isomorphic then
6. Return SUCCESS.
7. else
8. Return FAILURE.
9. end if

Analysis of the algorithm

We establish the correctness of the above algorithm by proving the following lemma.

Lemma E.1 (Correctness of Algorithm 10). Given black-box access to two n-variate polynomials f1(x),
f2(x) in the orbits of two unknown product-depth 2 canonical ROFs, Algorithm 10 correctly determines
whether they are equivalent or not provided that char(F) = 0 or ≥ n2 and |F| ≥ n13. Moreover, if they
are equivalent, it returns an A ∈ GL(n, F) and a b ∈ Fn such that f1(x) = f2(Ax + b).

77

Proof. If f1 /∈ orb(f2), then Step 17 ensures that the algorithm returns NOT EQUIVALENT with high
probability. So suppose that f1 ∈ orb(f2). Then, from Observation E.2, we have that after Step 5
of the algorithm, C′1 and C′2 as ROFs only differ by permutation of variables (because the scaling
of variables has already been recovered). Thus, if the additive-constants attached to the top-most
gates in C′1 and C′2 are not equal, f1 /∈ orb(f2) and so Step 8 is correct.

Now for every term T1 of f1, there must exist a term T2 of f2 such that T1 ∈ PS-orb(T2). Then,
Observation E.2 also implies that the corresponding terms T′1 and T′2 of f ′1 and f ′2 as ROFs must be
same up to permutation of variables. It is easy to see that this is true if and only if, depending on
the kind of these terms, either Check-Kind-1(T′1, T′2) or Check-Kind-2(T′1, T′2) succeeds. Hence the
algorithm correctly determines whether f1 and f2 are equivalent or not. A simple calculation then
shows that f1(x) = f2(Ax + b) for A and b as defined in Step 17.

Running time of the algorithm. Find-Equivalence(), Reconstruct-ROF(), and Canonize() run in
time polynomial in n. Also as mentioned in Fact A.4, a polynomial time algorithm exists for the
rooted tree isomorphism problem. This implies that Check-Kind-1() and Check-Kind-2() run in
time poly(n). As |N1|, |N2| ≤ n, this means that the for loop of lines 11-14 also runs in poly(n)
time. Moreover, the Schwartz-Zippel lemma also yields a polynomial time algorithm for checking
if f1(x) = f2(Ax + b) in Step 17. Thus, Algorithm 10 runs in time poly(n).

E.1 Proof of Observation E.1

Since f (Ax) and C′(x) are the same polynomials, we get 0 = C′(x)− f (Ax) = (c1 − 1)T1 + · · ·+
(cs − 1)Ts + (c0 − 1)γ. Now each of the terms T1, . . . , Ts contains a variable not contained in any
other term or in γ. This means T1, . . . , Ts, γ are linearly independent forcing c0 = · · · = cs = 1.

E.2 Proof of Claim E.1

As Q′i = βiQi, α′i = βiαi for all i ∈ [m]. Thus, when we bring out α′1, . . . , α′k from Q′1, . . . , Q′k
we recover T′ as T′ = (β1α1) · · · (βkαk) · β1Q1

β1α1
· · · βkQk

βkαk
· (βk+1Qk+1) · · · (βmQm), which implies T′ =

(β1α1) · · · (βkαk) · Q1
α1
· · · Qk

αk
· (βk+1Qk+1) · · · (βmQm). So, after absorbing α′1 · · · α′k = (β1α1) · · · (βkαk)

in Qm, we get T′ in the desired form. Also, the only non-zero additive-constants are those in
Q1
α1

, . . . , Qk
αk

and they are 1 by the definition of α1, . . . , αk.

E.3 Proof of Claim E.2

As Q′i = βiQi, α′i = βiαi for all i ∈ [m]. Thus, when we bring out α′1, . . . , α′m from Q′1, . . . , Q′m we
recover T′ as T′ = (β1α1) · · · (βmαm) · β1Q1

β1α1
· · · βmQm

βmαm
. Observation E.1 implies β1 · · · βm = 1 and we

get T′ = α · Q1
α1
· · · Qm

αm
. By the definition of α1, . . . , αm all additive-constants in T′ are 1.

F ROF reconstruction

We present an algorithm that reconstructs an ROF in the PS-orb of a canonical ROF.38 In this sec-
tion, we slightly abuse the terminology and call an ROF that satisfies Properties 1-5 of Definition

38The algorithm can be easily adapted to work for a general ROF. However, since we only need to reconstruct ROFs
in the PS-orb of a canonical ROF, we present the algorithm and its analysis just for ROFs in this form.

78

2.6, but does not necessarily satisfy Property 6, a canonical ROF. We also give an accompany-
ing procedure to recover a translation vector and a scaling matrix that convert the reconstructed
ROF to a canonical ROF. While randomized [HH91, BHH95a] and deterministic [SV14, MV18]
polynomial-time ROF reconstruction algorithms are known, we provide a randomized algorithm
here as we need some special properties of this algorithm in Section 5 and Appendix E.

F.1 The algorithm

Before formally describing the algorithm, let us see a high-level description of it.

The idea. Suppose that we have black-box access to an ROF C = T1 + · · ·+ Ts + γ in the PS-orb
of a canonical ROF, where Tk = Qk,1 · · ·Qk,sk for all k ∈ [s], Qk,l is either a variable or a +-rooted
sub-ROF of C for every l ∈ [sk], and γ ∈ F. We first use the second-order derivatives of C to learn
var(T1), . . . , var(Ts). Then, we obtain black-box access to T1, . . . , Ts as follows: As C is in the PS-orb
of a canonical ROF, at most one of the Tk, say Ts, is a scalar multiple of a variable xi. As ∂C

∂xixj
= 0

for all j 6= i ∈ [n], we can find out xi. On the other hand, for k ∈ [s− 1] and for a xi ∈ var(Qk,l),

∂C
∂xi

= r1 · · · rm · ∏
l′∈[sk]\{l}

Qk,l′ ,

where r1, · · · , rm are pairwise variable disjoint, and every ri is either a variable or a +-rooted sub-
ROF of Qk,l . As sk ≥ 2 and Qk,1, . . . , Qk,sk are non-constant polynomials, for every Qk,l , there exists
xj ∈ var(Tk) such that Qk,l is an irreducible factor of ∂C

∂xj
(because of Fact 2.5). Thus, by obtaining

black-box access to the derivatives of C with respect to the variables in var(Tk), factoring them,
collecting all the factors and then discarding a factor r if there exists another factor r′ such that
var(r) ⊂ var(r′), we get black-box access to Qk,1, . . . , Qk,sk up to constant multiples. However,
notice that if we want to query the black-box of a Qk,l at one point, we need to query the black-box
of C at poly(n) points. So, if we try to recursively learn Qk,1, . . . , Qk,sk , the running time of the
algorithm would be exponential in the depth of C.

We need to be able to get black-box access to Qk,1, . . . , Qk,sk in such a way that to obtain the
value of Qk,l at one point, we only need to query the black-box of C at one point. We do this by
first learning var(Qk,1), . . . , var(Qk,sk) and some roots of Qk,1, . . . , Qk,sk using the black-boxes of
Qk,1, . . . , Qk,sk that we obtained above. Then we set all variables in x \ var(Qk,l) to random field
elements. This gives us black-box access to ck,lQk,l + c′k,l , for some unknown ck,l 6= 0, c′k,l ∈ F.
Plugging in the root of Qk,l into this black-box we learn c′k,l . Subtracting this from ck,lQk,l + c′k,l
gives us black-box access to ck,lQk,l , where ck,l is unknown. Notice that now we only need to make
one query to the black-box of C to learn the value of ck,lQk,l .

We learn γ by finding a common root a = (a1, . . . , an) of Qk,l for all k ∈ [s], l ∈ [sk] and
setting γ = C(a). Then, we find out c1 . . . , cs ∈ F such that ∑s

k=1 ck ·∏sk
l=1 ck,l · Qk,l = C− γ and

multiply Q1,1, . . . , Qs,1 by c1, . . . , cs, respectively. After that, we learn Tk by recursively learning
ckck,1Qk,1, ck,2Qk,2, . . . , ck,sk Qk,sk and multiplying them. We now describe the algorithm formally.

Algorithm 13 Reconstruct-ROF(f (x))
Input: Black-box access to an n-variate ROF f (x) in the PS-orb of a canonical ROF.
Output: An ROF C in the PS-orb of a canonical ROF computing f .

79

/* Learning var(T1), . . . , var(Ts). */
1. Let E← ∅, and G ← (x, E) be an undirected graph.
2. for i, j ∈ [|x|] do
3. If ∂2 f

∂xi∂xj
6= 0, add edge

{
xi, xj

}
to E.

4. end for
5. Let C ← {x1, . . . , xs} be the set of connected components of G, where s← |C|.

/* Discovering factors of T1, . . . , Ts. */
6. if ∃k ∈ [s] such that |xk| = 1 then
7. If xk = {xi} , Tk ← xi, Nk ← {xi}.
8. end if
9. for k ∈ [s] such that |xk| ≥ 2 do

10. Nk ← ∅.
11. for i such that xi ∈ xk do
12. Compute black-box access to ∂ f

∂xi
and then obtain black-box access to all its irreducible fac-

tors. Add all the irreducible factors to Nk.
13. end for
14. for r1, r2 ∈ Nk do
15. If var(r1) ⊆ var(r2), Nk ← Nk \ {r1}. Else, if var(r2) ⊆ var(r1), Nk ← Nk \ {r2}.
16. end for
17. end for

/* Obtaining efficient black-box access to the factors of T1, . . . , Ts. */
18. for k ∈ [s] such that |xk| ≥ 1 do
19. for r ∈ Nk do
20. ar ← a vector of size |var(r)| which is a root of r. a′r ← a random vector of size n− |var(r)|.
21. βr ← f (var(r) = ar, x \ var(r) = a′r). r ← f (var(r), x \ var(r) = a′r)− βr.
22. end for
23. end for

/* Learning γ and c1, . . . , cs. */
24. Construct a = (a1, . . . , an), a common root of ∏r∈N1

r, . . . , ∏r∈Ns
r. γ← f (a).

25. Solve for c1, . . . , cs such that f − γ = c1 ·∏r∈N1
r + · · ·+ cs ·∏r∈Ns

r.
26. For all k ∈ [s], replace an arbitrary r ∈ Nk by ck · r. If ∃k ∈ [s] such that |xk| = 1, Tk ← ckTk.

/* Reconstructing T1, . . . , Ts. */
27. for k ∈ [s] such that |xk| ≥ 2 do
28. Tk ← 1.
29. for r ∈ Nk do
30. y← var(r). Tk ← Tk×Reconstruct-ROF(r(y)).
31. end for
32. end for
33. C← T1 + · · ·+ Ts + γ. Return C.

F.2 Analysis of the algorithm

We will assume, without loss of generality, that an ROF has no edge labels and every leaf node is
either a constant or a constant multiple of a variable.

80

Lemma F.1. If f (x) computed by an ROF C′ in the PS-orb of a canonical ROF, then the ROF C returned by
the algorithm is equal to C′ up to scaling of the leaves with high probability. Moreover, there is a one-to-one
correspondence between the gates of C and the gates of C′ with a gate of C computing a non-zero constant
multiple of the polynomial computed by the corresponding gate of C′.

Proof. We induct on the product-depth ∆ of C′. If ∆ = 0, then as C′ is in the PS-orb of a canonical
ROF, C′ = cixi + γ, where ci 6= 0, γ ∈ F. In this case C has only one connected component
x1 = {xi}. In Step 7, T1 = xi. Step 24 can be implemented by simply setting a to be the all zero
vector and Step 25 by computing ∂ f

∂xi
. Thus, C = C′ and for ∆ = 0, the lemma is true.

Now, suppose that the lemma is true for all ROFs of product-depth at most ∆ ≥ 0 and let C′
be a product-depth ∆ + 1 ROF. Let C′ = T′1 + · · ·+ T′s + γ′. There exists at most one k′ ∈ [s], such
that |var(T′k′)| = 1 and for every k ∈ [s] \ {k′}, let T′k = Q′k,1 · · ·Q′k,sk

, where sk ≥ 2 and for every
l ∈ [sk], Q′k,l is either a variable or a +-rooted sub-ROF of C′.

Claim F.1. There is a bijection π : [s]→ [s] s.t. the connected component xπ(k) = var(T′k) for all k ∈ [s].

Proof. Fix any k ∈ [s]. If |var(T′k)| = 1, say T′k = c · xi for some c ∈ F×, then ∂2 f
∂xi∂xj

= 0 for all j ∈
[s] \ {i}, and so, {xi} is a connected component in C. If |var(T′k)| ≥ 2, then as C′ is in the PS-orb of a
canonical ROF, T′k = Q′k,1 · · ·Q′k,sk

, where sk ≥ 2. If xi, xj ∈ var(T′k) are such that xi ∈ var(Q′k,l) and

xj ∈ var(Q′k,l′), for l 6= l′, then as ∂2 f
∂xi∂xj

6= 0,
{

xi, xj
}
∈ E. On the other hand, if l = l′, then as sk ≥ 2

and Q′k,1, . . . , Q′k,sk
are non-constant, there exists a xm ∈ var(Q′k,l′′), l′′ 6= l such that ∂2 f

∂xi∂xm
6= 0 and

∂2 f
∂xj∂xm

6= 0. Thus, {xi, xm} ,
{

xj, xm
}
∈ E and so xi and xj are in the same connected component.

Moreover, as for any xi ∈ var(T′k) and xj ∈ var(T′1)] · · ·] var(T′k−1)] var(T′k+1)] · · ·] var(T′s),
∂2 f

∂xi∂xj
= 0, this connected component is exactly var(T′k), proving the claim.

Claim F.2. After Steps 6-8 and the for loop of lines 18-23 have been executed, for all k ∈ [s], with high
probability, Nπ(k) =

{
Qk,1, ..., Qk,sk

}
where Qk,l is a non-zero constant multiple of Q′k,l for all l ∈ [sk] and

π is the bijection given in Claim F.1.

Proof. Fix any k ∈ [s]. If |var(T′k)| = 1, say var(T′k) = {xi}, then Claim F.1 immediately implies
that after Steps 6-8 have been executed, Nπ(k) = {xi}. On the other hand if |var(T′k)| ≥ 2, then
observe that for any xi ∈ var(Q′k,l),

∂C′

∂xi
= r1 · · · rm · ∏

l′∈[sk]\{l}
Q′k,l′ ,

where r1, · · · , rm are pairwise variable disjoint and every ri is a variable or a +-rooted sub-ROF of
Q′k,l . Hence, after the for loop 11-13 has been executed, Nπ(k) will contain two types of factors:

• constant multiples of Q′k,1, . . . , Q′k,sk
and

• constant multiples of +-rooted sub-ROFs of Q′k,1, ..., Q′k,sk
.

The first kind of factors are present because sk ≥ 2, Q′k,1, ..., Q′k,sk
are non-constant polynomials and

being +-rooted sub-ROFs are irreducible (see Fact 2.5). As all variables appearing in any +-rooted

81

sub-ROF of Q′k,l are also variables of Q′k,l , the second kind of factors are removed from Nπ(k) by
the for loop of lines 14-16. Moreover, as Q′k,l and Q′k,l′ are variable disjoint for l 6= l′, the first kind
of factors are not removed. This means that after the for loop of lines 9-17 has been executed, for
all k ∈ [s], Nπ(k) =

{
Qk,1, ..., Qk,sk

}
where Qk,l is a non-zero constant multiple of Q′k,l for all l ∈ [sk].

Thus, a root of Qk,l is also a root of Q′k,l .
Now, inside the loop of lines 18-23, for r = Qk,l , f (var(r), x \ var(r) = a′r) = ck,lQ′k,l + c′k,l for

some ck,l , c′k,l ∈ F. As every coordinate of a′r is chosen randomly (say, from a subset of F of size n4),
with high probability ck,l 6= 0. As ar is a root of Q′k,l , βr = f (var(r) = ar, x \ var(r) = a′r) = c′k,l .
Hence, after this loop has been executed r = ck,lQ′k,l , proving the claim.

Thus, for all k ∈ [s], T′k is a non-zero constant multiple of the product of the polynomials in
Nπ(k). So, for some c1, . . . , cs ∈ F×, C′ = T′1 + · · · T′s + γ′ = ∑k∈[s] ck ·∏l∈[sk]

Qk,l + γ. Since in Step
24, a is a common root of Qk,l , for all k ∈ [s] and l ∈ [sk], γ′ = f (a) = γ. As the polynomials

in
{

∏l∈[sk]
Qk,l : k ∈ [s]

}
are linearly independent, c1, . . . , cs are unique. Once c1, . . . , cs have been

learnt in Step 25 and N1, . . . , Ns updated in Step 26, we have for all k ∈ [s], T′k is equal to the product
of the polynomials in Nπ(k). For all k ∈ [s] and l ∈ [sk], as Qk,l is a product-depth ∆ ROF in the
PS-orb of a canonical ROF, from the induction hypothesis, the output of Reconstruct-ROF(Qk,l) is
a ROF in the PS-orb of a canonical ROF and is equal to Qk,l up to scaling of the leaves. After the
loop 27-32 has been executed, for all k ∈ [s], Tπ(k) is an ROF in the PS-orb of a canonical ROF and
is equal to T′k up to scaling of the leaves. Hence, C′ = T′1 + · · ·+ T′s + γ′ = T1 + · · ·+ Ts + γ = C.

For the “moreover” part of the lemma, notice that from the induction hypothesis, we have the
desired one-to-one correspondence between gates of the ROF output by Reconstruct-ROF(Qk,l)
and the gates of Qk,l for all k ∈ [s] and l ∈ [sk]. Then, as Tπ(k) = T′k , this yields the desired
one-to-one correspondence between the gates of C′ and C.

Running time of the algorithm

We will show that the algorithm runs in time poly(n). From black-box access to f , a black-box
access to ∂2 f

∂xi∂xj
, for any i, j ∈ [n], can be computed in poly(n) time (Fact A.1). Whether ∂2 f

∂xi∂xj
is

zero or not can be determined in poly(n) time using the Schwartz-Zippel test. Hence G can be
constructed in time poly(n). The connected components of G can also be computed in poly(n)
time. Clearly, lines 6-8 run in poly(n) time. Now we analyse the runtime of the loop of lines 9-17.

A black-box access to ∂ f
∂xi

can be obtained in poly(n) time from black-box access to f . Once we

have black-box access to ∂ f
∂xi

, black-box access to its irreducible factors can be computed in poly(n)
time using the algorithm in [KT90]. Hence, the for loop of lines 11-13 executes in poly(n) time. For
Step 15, var(r1) and var(r2) can be determined by obtaining black-box access to the derivatives of
r1 and r2 with respect to all x variables and checking using the Schwartz-Zippel lemma which of
them are non-zero. Thus this step, and hence, the for loop of lines 14-16 executes in poly(n) time.

Once we have black-box access to all polynomials in N1, . . . , Ns, for all k ∈ [s] and all r ∈ Nk,
a′r and ar can be computed in poly(n) time. To construct ar, first set all but one variable appearing
in r to random values. After doing this, r becomes an affine form whose root can be computed
easily. Notice that on line 21, we obtain black-box access to Qk,l using only one query to f .

The vector a can be constructed in poly(n) time by just combining all ar’s constructed in the
loop of lines 18-23. To compute c1, . . . , cs in Step 25, we can simply evaluate f and ∏l∈sk

Qk,l for all

82

k ∈ [s] at s many random points b1, . . . bs and solve the linear system of equations{
f (bi)− γ = ∑

k∈[s]
ck ·∏

l∈sk

Qk,l(bi) : k ∈ [s]

}

for c1, . . . , cs. As
{

∏l∈[sk]
Qk,l : k ∈ [s]

}
are linearly independent, with high probability, the coeffi-

cient matrix of this system will be invertible.
So far we have shown that for each call to the algorithm, the time spent outside the recursive

calls on line 30 is poly(n). Now, given input f , the total number of recursive calls is at most
poly(n). This is because each leaf of the recursion tree corresponds to a distinct variable in x and
whenever Reconstruct-ROF(r) is called from inside Reconstruct-ROF(r′), var(r) (var(r′). Thus,
the runtime of the algorithm is poly(n), as a black-box query to r amounts to only one query to f .

F.3 Canonization: Recovering scaling and translation

We shall slightly abuse the terminology in this section and say that a leaf of an ROF is a variable
if it is a constant multiple of a variable. This is consistent with our assumption in the previous
section that any leaf of an ROF is either a constant multiple of a variable or a constant. To recover
the scaling matrix and the translation vector, we use the following procedure.

Procedure 14 Canonize(C)
Input: An ROF C in the PS-orb of a canonical ROF.
Output: A scaling matrix S ∈ GL(|x|, F) and a vector b such that C (Sx + b) is a canonical ROF.

1. N1 ← set of all +-gates in C directly connected to a variable. N2 ← set of all variable leaves
connected to ×-gates. Initialize S← In×n and b = (b1, . . . , bn) = 0.

2. for v ∈ N1] N2 do
3. If v ∈ N1 and the variable and constant children of v are αixi and βi respectively, where

αi ∈ F×, then bi ← −βi
αi

and S← diag
(

0, . . . , 0, α−1
i , 0, . . . , 0

)
· S.

4. Else, if v ∈ N2 and v = αixi, αi ∈ F×, S← diag
(

0, . . . , 0, α−1
i , 0, . . . , 0

)
· S and bi ← 0.

5. end for
6. Return S, b.

Clearly, the procedure runs in poly(n) time; its correctness follows from the next observation.

Observation F.1. Let S, b = Canonize(C). Then, C(Sx + b) is a canonical ROF.

Proof. Let v ∈ N1 and let the variable and constant children of v be αixi and βi, respectively. As
bi = −βi

αi
and S is updated as diag

(
0, . . . , 0, α−1

i , 0, . . . , 0
)
· S, after the execution of the loop of

lines 2-5, αixi + βi from C becomes xi in C(Sx + b). Similarly, if v ∈ N2 and v = αixi, because S is
updated as diag

(
0, . . . , 0, α−1

i , 0, . . . , 0
)
· S, after the execution of the loop of lines 2-5, αixi becomes

xi in C(Sx+b). Since the only difference between a canonical ROF and an ROF in its PS-orb is that
in the latter a variable can be scaled and translated, this proves the observation.

We now show that not only does Procedure 14 recover the translation vector but also that this
vector is recovered uniquely. The following claim comes in handy in Appendix E.

83

Claim F.3. Let C′ be an ROF in the PS-orb of a canonical ROF, S′ be a scaling matrix and b′ a translation
vector such that C′(S′x + b′) is a canonical ROF. Also, let C = Reconstruct-ROF(C′(x)) and S, b =
Canonize(C). Then, b = b′.

Proof. Let v ∈ N1] N2. From Lemma F.1, the corresponding gate v′ in C′ is such that v = c · v′ for
some c 6= 0. So, if v ∈ N1, then v′ must be a + gate with variable and constant children. If the
variable and constant children of v′ are α′ixi and β′i, respectively, then the variable and the constant

children of v are cα′ixi and cβ′i, respectively. Observe that b′i =
−β′i
α′i

. Thus, bi =
−cβ′i
cα′i

=
−β′i
α′i

= b′i .
Similarly, if v ∈ N2, then v′ is also a variable leaf. Thus, bi = b′i = 0.

G A pictorial overview of Algorithm 1

In this section, we pictorially depict the execution of Algorithm 1. We consider the following sim-
ple example to show the working of Phase 1 of the algorithm mentioned in Section 4.1.

+

× × × x4

x13 x14 x15 x8 + x5 x6

× × x7

x10 x11 x12 x9 +

× x1

x3 x2

The original ROF C

7→

+

× × × −x4 + x5 + 2x8 + 3x14 − 1

x13 + x14 x14 − 1 x15 − 2 x8 + x10 + 4x5 + x8 − 6 3x6 + x14 − 4

× × 7x7 + x9 + x15

x10 + x15 x11 − 3 x12 − 5 x9 + 3x14 +

× 5x1 + x2 + x7 + 4x12 − 3x15 + 1

6x3 + 3x13 + 5x14 2x2 + x3 + 6x7 + 2x13

f ∈ orb(C)

In the following figures, `i, `i,j, `′i,j, hi, h′i, hi,j, h′i,j etc. denote affine forms.

+

× × × −y0 + y2,3 + `0(z1, z2)

z1,1 z1,2 z1,3 z2,1 + 4y3,1 + `3,1(z1, z2) 3y3,2 + `3,2(z1, z2)

× × 7y2,4 + `2,4(z1, z2)

z2,3 z2,4 z2,5 z2,2 +

× 5y2,3 + y2,2 + y2,4 + `2,3(z1, z2)

6y2,1 + `2,1(z1, z2) 2y2,2 + y2,1 + `2,2(z1, z2)

Step 1

84

In Step 1, all the good terms of f are made variable disjoint. Furthermore, every “good” linear
factor - affine form connected to a × gate computing a polynomial of degree at least 3 in f -
gets mapped to (a constant multiple) of a distinct variable. In our example, the good term has
three good linear factors, which have been mapped to z1,1, z1,2, z1,3. Also, there are five good
linear factors in the bad term; these have been mapped to z2,1, . . . , z2,5. Let z1 := {z1,1, z1,2, z1,3},
z2 := {z2,1, . . . , z2,5}, z := z1] z2, and y := x \ z. Step 2 extensively uses skewed paths. In the
above figure, there are two skewed paths identified by the “marker monomials” z2,1 and z2,1z2,2.

× ×

z2,1 + y3,1 + h3,1(z1, z2) y3,2 + h3,2(z1, z2)

× × 7y2,4 + `′2,4(z1, z2, y \ {y2,3, y2,4})

z2,3 z2,4 z2,5 z2,2 +

× 5y2,3 + y2,4 + `′2,4(z1, z2, y \ {y2,3, y2,4})

y2,1 + h2,1(z1, z2) y2,2 + h2,2(z1, z2)

Step 2.1

In Step 2.1, every affine form corresponding to a variable in the top quadratic form or a quadratic
form along a skewed path which is redundant for det(HC) is mapped to an affine form of the
type yi,j + hi,j(z). In the above figure, the y-variables corresponding to affine forms in the top
quadratic form and in the quadratic form along the skewed path z2,1z2,2 are y3,1, y3,2 and y2,1, y2,2,
respectively. We shall refer to all the remaining y-variables, i.e., y0, y2,3, y2,4 as u-variables.

×

z2,1 +

× × u2 + h2(z1, z2, y \ u)

z2,3 z2,4 z2,5 z2,2 +

× u1 + h1(z1, z2, y \ u)

y2,1 + h2,1(z1, z2) y2,2 + h2,2(z1, z2)

Step 2.2

In Step 2.2, every affine form corresponding to a dangling variable along a skewed path which is
redundant for det(HC) is mapped to an affine form of the type ui + hi(z, y \ u). There might be
dangling variables along skewed paths that are present in a set of essential variables of det(HC).
In our simple example, such variables are not present. In the general case, such variables can be

85

handled by picking a basis of an appropriate vector space. This space is spanned by the u-parts of
the affine forms corresponding to the dangling variables along skewed paths and the top dangling
variable (see Section 4.1 for more details). A word of caution: the affine form corresponding to the
top dangling variable has not been handled; it will be fixed in Step 3. Let y2 = {u1, u2, y2,1, y2,2}.
In the above figure, the variables in z1 and y \ y2 are external for the bad term and all variables in
x \ {y3,1, y3,2} are external for the top quadratic form. These will be removed in Step 2.3.

× ×

z2,1 + y3,1 + α3,1 y3,2 + α3,2

× × u2 + h′2(z2, y2,1, y2,2)

z2,3 z2,4 z2,5 z2,2 +

× u1 + h′1(z2, y2,1, y2,2)

y2,1 + h′2,1(z2) y2,2 + h′2,2(z2)

Step 2.3

In Step 2.3, external variables are removed from the affine forms in the top quadratic form, quadratic
forms along skewed paths and corresponding to dangling variables along skewed paths. In the
above figure, h′i,j and h′i are obtained after removing external variables from hi,j and hi, respectively.

+

× × × u0 + α0

z1,1 z1,2 z1,3 z2,1 + y3,1 + α3,1 y3,2 + α3,2

× × u2 + h′2(z2, y2,1, y2,2)

z2,3 z2,4 z2,5 z2,2 +

× u1 + h′1(z2, y2,1, y2,2)

y2,1 + h′2,1(z2) y2,2 + h′2,2(z2)

Step 3

In Step 3, the affine form corresponding to the top-most dangling variable is mapped to u0 + α0, α0 ∈
F. Now, all the terms of f are variable disjoint. After this, we recursively call Algorithm 1 on the
factors of the good and the bad terms to map them to variable disjoint ROFs.

86

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

