
Streaming complexity of CSPs with randomly ordered constraints

Raghuvansh R. Saxena∗ Noah Singer† Madhu Sudan‡ Santhoshini Velusamy§

Abstract

We initiate a study of the streaming complexity of constraint satisfaction problems (CSPs)
when the constraints arrive in a random order. We show that there exists a CSP, namely
Max-DICUT, for which random ordering makes a provable difference. Whereas a 4/9 ≈ 0.445
approximation of DICUT requires Ω(

√
n) space with adversarial ordering, we show that with

random ordering of constraints there exists a 0.48-approximation algorithm that only needs
O(log n) space. We also give new algorithms for Max-DICUT in variants of the adversarial
ordering setting. Specifically, we give a two-pass O(log n) space 0.48-approximation algorithm

for general graphs and a single-pass Õ(
√
n) space 0.48-approximation algorithm for bounded

degree graphs.
On the negative side, we prove that CSPs where the satisfying assignments of the constraints

support a one-wise independent distribution require Ω(
√
n)-space for any non-trivial approxi-

mation, even when the constraints are randomly ordered. This was previously known only for
adversarially ordered constraints. Extending the results to randomly ordered constraints re-
quires switching the hard instances from a union of random matchings to simple Erdös-Renyi
random (hyper)graphs and extending tools that can perform Fourier analysis on such instances.

The only CSP to have been considered previously with random ordering is Max-CUT where
the ordering is not known to change the approximability. Specifically it is known to be as hard
to approximate with random ordering as with adversarial ordering, for o(

√
n) space algorithms.

Our results show a richer variety of possibilities and motivate further study of CSPs with
randomly ordered constraints.

∗Microsoft Research. Email: raghuvansh.saxena@gmail.com
†Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA and Harvard College, Har-

vard University, Cambridge, MA, USA. Supported by an NSF Graduate Research Fellowship (Award DGE2140739).
Email: ngsinger@andrew.cmu.edu.

‡School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Sup-
ported in part by a Simons Investigator Award and NSF Awards CCF 1715187 and CCF 2152413. Email:
madhu@cs.harvard.edu.

§School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Supported in
part by a Google Ph.D. Fellowship, a Simons Investigator Award to Madhu Sudan, and NSF Awards CCF 1715187
and CCF 2152413. Email: svelusamy@g.harvard.edu.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 100 (2022)



Contents

1 Introduction 3
1.1 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Positive results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Positive results in other streaming models . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Negative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Technical contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Positive results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Negative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Random-Order Streaming Model . . . . . . . . . . . . . . . . . . . . . . 8
2.2 The Max-CSP(·) Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 One Way Communication Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Analytical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Fourier analysis over Zq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Reservoir sampling in the streaming setting . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 k-wise independent hash family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Algorithms for Max-DICUT 14
3.1 O(log n)-space random-ordering (single-pass) algorithm . . . . . . . . . . . . . . . . 16
3.2 Two-pass O(log n)-space adversarial-ordering algorithm . . . . . . . . . . . . . . . . 18
3.3 O(D3/2√n log2 n)-space adversarial-ordering algorithm for degree-D bounded graphs 19

4 Lower bounds for Max-CSP in the random-ordering setting 22
4.1 The Generalized Uniform Randomized Mask Detection (RMD) Problem . . . . . . . 22
4.2 Proof of Theorem 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Proof of Theorem 4.3 29
5.1 Indististinguishability via Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Properties of random hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Putting the ingredients together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Hypergraph analyses 32
6.1 Proving Lemma 5.4: Upper-bounding the probability of cycles . . . . . . . . . . . . . 33
6.2 Proving Lemma 5.3: Upper-bounding hk,α(`, n) . . . . . . . . . . . . . . . . . . . . . 33

2



1 Introduction

In this paper we consider the streaming complexity of solving constraint satisfaction problems
(CSPs) approximately with randomly ordered constraints. We introduce these terms below be-
fore turning to the context and our work. Readers familiar with these topics may safely skip to
Section 1.1.

Constraint satisfaction problems: A constraint satisfaction problem (CSP) is described by
a family of predicates F ⊆ {f : Zkq → {0, 1}} where k, q ∈ N and Zq = {0, . . . , q − 1}. Given
such a family F , an instance Ψ of the problem Max-CSP(F) on n variables is described by m
constraints C1, . . . , Cm where for i ∈ [m], Ci = (fi, j(i) = (j1(i), . . . , jk(i))) with fi ∈ F and
j(i) is a sequence of k distinct elements of [n]. An assignment to the n variables is given by
a ∈ Znq . The assignment satisfies Ci if Ci(a) := fi(aj1(i), . . . , ajk(i)) = 1 and the value of the

assignment on the instance Ψ is given by valΨ(a) = 1
m

∑
i∈[m]Ci(a). The goal of Max-CSP(F)

is to compute valΨ := maxa∈Znq {valΨ(a)}. We will also be interested in approximation algorithms
ALG: Given α ∈ [0, 1], an α-approximation algorithm to Max-CSP(F) is one whose output satisfies
α · valΨ ≤ ALG(Ψ) ≤ valΨ for every instance Ψ.

Many natural problems can be expressed as CSPs. One example of particular interest to this
paper is the Max-DICUT problem which is Max-CSP({DICUT}) where DICUT : Z2

2 → {0, 1} is the
predicate DICUT(x, y) = (1−x)y (with the arithmetic being over Z2). Max-DICUT can equivalently
be viewed as a graph problem in which variables correspond to vertices and constraints correspond
to edges. The goal is then to estimate the size of the highest-value “directed partition” (i.e., {0, 1}-
assignment) of the vertices, where the value of a partition is the number of edges from 0-vertices
to 1-vertices.

Streaming Algorithms: The class of algorithms we consider (and rule out) are randomized
streaming algorithms. Inputs to these algorithms arrive as a stream of elements, in our case a
stream of constraints. We consider algorithms that use some bounded amount of space, denoted
s(n), to process the stream and produce their output. They may toss their own coins to process
the stream. In this work we focus mainly on algorithms whose inputs are randomly ordered, i.e.,
given an instance m on variables with constraint C1, . . . , Cm a permutation π : [m]→ [m] is chosen
uniformly at random and the constraints arrive in the order Cπ(1), . . . , Cπ(m). We say that an
algorithm is correct if it outputs a correct answer1 with probability 2/3, where the probability is
both over internal coin tosses and over the random arrival order of the input.

1.1 Previous work

The recent years have seen a significant amount of research on the streaming complexity of ap-
proximating CSPs with adversarial order of arrival. We refer the reader to Chou, Golovnev, Sudan
and Velusamy [CGSV21b] for some of the history. (See also [Sin22] and [Sud22] for some broader
surveys.) The summary of this line of research is a dichotomy result for “sketching algorithms” to
approximate all CSPs, while getting dichotomies in the more general streaming context for many
subclasses. A sketching algorithm is a streaming algorithm that works by compressing substreams
into small summaries called sketches with the feature that the sketch of a concatenation of two
streams can be obtained from sketches of the two component streams. All known algorithms for
CSPs (with proven guarantees on approximation) are sketching algorithms motivating the current

1Recall that approximation algorithms are not required to output any one fixed answer. An answer is correct on
input Ψ if it lies in the interval [α · valΨ, valΨ].

3



work. In this work we consider a weakening of the input space, to random ordering of constraints,
to explore the possibility of other algorithms, or to rule them out.

Turning to random order in graph streaming problems, [KKS14] gave a polylog(n)-space
random-order streaming algorithm for polylog(n)-approximating the maximum matching prob-
lem; [KMNT20] improved the exponent in the approximation factor. Another line of works
[MMPS17, PS18] explores “generic” ways in which sublinear-time algorithms for graph problems
can be transformed into random-ordering streaming algorithms; the latter work establishes provable
separations for random-ordering streaming from adversarial-order streaming for problems including
estimating the number of connected components and the minimum spanning tree weight. Most rele-
vantly, Kapralov, Khanna, and Sudan [KKS15] showed that the CSP Max-CUT = Max-CSP({CUT})
where CUT : Z2

2 → {0, 1} is defined by CUT(a, b) = a + b cannot be nontrivially approximated by
o(
√
n)-space streaming algorithms even in the random-order setting. Thus, other than [KKS15],

the previous works on random-order streaming have not studied CSPs; and in particular, none of
the previous works suggest that random order of arrival could lead to any algorithmic improvement.

1.2 Main results

In this paper, we present both positive (algorithmic) and negative (hardness) on the usefulness of
randomly-ordered streams for approximating CSPs, in comparison to adversarially-ordered streams.

1.2.1 Positive results

Our main positive result asserts that there exists a constraint satisfaction problem where random
arrival of constraints provably leads to better approximation with o(

√
n) space.

Theorem 1.1. There exists a O(log n)-space streaming algorithm that outputs a .483-approximation
to the Max-DICUT value of directed graphs on n vertices whose edges arrive in a random order.

This theorem is restated as Theorem 3.1 and proved in Section 3.1.
The result above should be contrasted with the result of Chou, Golovnev and Velusamy [CGV20]

who show that for every ε > 0, a streaming algorithm that achieves a (4/9 + ε)-approximation of
Max-DICUT requires Ω(

√
n) space when the constraints are ordered adversarially. (Note 4/9 =

0.444 . . ..) Their lower bound holds in the general setting of streaming algorithms, with a matching
upper bound using a sketching algorithm. Our algorithm is not a sketching algorithm. This is the
only result to our knowledge for a streaming CSP (even with assumptions on arrival order) where
a non-sketching algorithm outperforms known sketching algorithms. Indeed the ideas from this
algorithm help in contexts other than just the random arrival order and we describe some of these
consequences next.

1.2.2 Positive results in other streaming models

The algorithm used to prove Theorem 1.1 can also be modified to the setting of 2-pass algorithms
with adversarial order as asserted below.

Theorem 1.2. There exists a O(log n)-space 2-pass streaming algorithm that outputs a .483-
approximation to the Max-DICUT value of directed graphs on n vertices under adversarial ordering
of edges.

This theorem is restated as Theorem 3.2 and proved in Section 3.2. The 2-pass algorithm
answers an open question in [CGSV21b], perhaps with an unexpected answer.

4



Finally, we also show how the algorithm can be further modified to get the same approximation
to Max-DICUT using Õ(

√
n) space with a single-pass streaming algorithm in bounded degree graphs

with adversarial ordering of edges.

Theorem 1.3. There exists a Õ(
√
n)-space streaming algorithm that outputs a .483-approximation

to the Max-DICUT value of bounded-degree directed graphs on n vertices under adversarial ordering
of edges.

Theorem 3.3 states a more detailed relationship between the space needed and the maximum
degree of the graph. It implies the theorem above and is proved in Section 3.3. We remark
that [CGV20] show that o(

√
n) space algorithms cannot get better than a 4/9-approximation and

their proof actually holds even when the input graphs are of bounded degree. Thus Theorem 1.3
establishes the significance of the

√
n-space threshold — again a result that may be somewhat

surprising.

1.2.3 Negative results

Returning to our main quest of understanding streaming CSPs in the random-ordering setting
and motivated by the algorithmic potential demonstrated by Theorem 1.1 above, we re-explore
negative results on streaming to see when they apply also to random arrival ordering. We show
that for a broad class of constraint satisfaction problems, the known hardness results on streaming
algorithms with adversarial ordering, also extend (with non-trivial analysis) to the case of randomly
ordered constraints. We define the class of problems considered and the approximation lower bound
achieved below, starting with the latter.

We say that an algorithm is trivial if its output is a constant (independent of the input). For
a class of constraints F , define ρmin(F) to be the minimum (strictly, infimum) value valΨ over all
instance Ψ of Max-CSP(F). (A priori, ρmin(F) might not be computable given F , but [CGSV21b]
show it is computable.) Clearly an algorithm that outputs ρ = ρmin(F) on every instance is a valid,
but trivial, ρ-approximation algorithm for Max-CSP(F). Motivated by this [CGSV21b] define a
problem to be approximation-resistant to a class of algorithms if for every ε > 0 it does not have
a (ρ + ε)-approximation within the class. Our next theorem proves a broad class of CSPs to
be approximation-resistant to o(

√
n)-space single pass streaming algorithms, even with a random

ordering of constraints.
We now turn to the class of problems covered by our theorem. We say a predicate f : Zkq →

{0, 1} supports one-wise independence if there exists a distribution D supported on f−1(1) whose
marginals are uniform (i.e., if a = (a1, . . . , ak) ∼ D then for every i, ai is distributed uniformly
over Zq). We say a family F supports one-wise independence if every f ∈ F supports one-wise
independence. We say a family F weakly supports one-wise independence if there exists F ′ ⊆
F supporting one-wise independence with ρmin(F ′) = ρmin(F). Our theorem below asserts the
approximation resistance of Max-CSP(F) on randomly ordered instances when F weakly supports
one-wise independence.

Theorem 1.4. For every k, q ∈ N and F s.t. F ⊆ {f : Zkq → {0, 1}} that weakly supports one-
wise independence, Max-CSP(F) is approximation resistant to o(

√
n)-space streaming algorithms

in the random order model. That is, for every ε > 0, there exists τ > 0 such that every streaming
algorithm which (ρmin(F) + ε)-approximates Max-CSP(F) in the random-order model uses at least
τ
√
n space on instances with n variables.

We assert that all known families that are known to be approximation-resistant to o(
√
n)-

space single pass streaming algorithms, even under adversarial ordering, weakly support one-wise

5



independence [CGSV21b]. Such problems include Max-CUT (and thus our result subsumes that
of [KKS15]), Max-qUniqueGames, Max-qColoring, and Max-kOR. The question of proving random-
ordering approximation-resistance for Max-qUniqueGames was posed by Guruswami and Tao [GT19,
§5]. Our result thus strengthens our understanding of approximation resistance for the broadest
class of problems where it was previously understood.

1.3 Technical contributions

1.3.1 Positive results

All streaming algorithms for CSPs in previous works [GVV17, CGV20, CGSV21a, CGSV21b,
BHP+22] have been based on measuring generalizations of the “total bias” of CSP instances de-
fined originally in [GVV17]; this quantity, even in its richest form from [CGSV21b], is a sum
over the variables of some form of “bias”, and can be computed using norm-sketching algorithms
[Ind06, KNW10, AKO11]. Bias, in turn, roughly measures whether, considering each constraint
in which a variable appears independently, the variable prefers to take one value more often than
others. In the specific case of Max-DICUT, the bias bias(i) of vertex i is simply out-deg(i)−in-deg(i)

out-deg(i)+in-deg(i) ,

where out-deg(i) and in-deg(i) denote the out- and in-degrees of i, respectively. Thus, if bias(i) ≈ 1,
i has mostly out-edges, so we should assign it to 0, while if bias(i) ≈ −1, it has mostly in-edges, so
we should assign i to 1.

Thus, for the random-ordering algorithmic result, a key contribution of our work is the first
new algorithmic paradigm for streaming CSPs since [GVV17]. This should be contrasted with the
fact that many works [GT19, KK19, CGV20, CGSV21a, CGSV21b, SSV21, CGS+22] have made
significant progress on the hardness front. Instead of estimating the total bias of the input graph,
we build a snapshot of the graph: Specifically we merge vertices with (roughly) the same bias
and estimate the fraction of edges that go from vertices of different bias. To get this snapshot
information, we look at a representative sample of edges and consider the biases of their endpoints.
Here is where we use the random arrival order of edges: We can sample typical edges at the
beginning of the stream, and then we measure the bias of their endpoints over the rest of the
stream. (So really our algorithm just needs the first few edges to be random, and the rest of the
stream could even be ordered adversarially!)

Using this bias information to produce a cut is not trivial, but fortunately for us a previous work
of Feige and Jozeph [FJ15] analyzed exactly this question. They studied “oblivious algorithms” for
Max-DICUT, which are algorithms which randomly assign each vertex independently based solely on
its bias, and showed the existence of an αFJ-approximation algorithm for some αFJ ∈ (0.483, 0.4899).
Our theorem follows by appealing to their result. We remark that based on the trivial reduction
from Max-CUT, Max-DICUT’s approximability for o(

√
n)-space algorithms with randomly ordered

constraints is at most 1/2. And while [FJ15] showed that oblivious algorithms cannot do better
than 0.4899-approximations, it is quite possible that other quantities that can be easily estimated
with random arrival orders (such as the number of copies of O(1)-vertex subgraphs, such as paths)
could lead to 1/2-approximation algorithms.

The idea of computing a snapshot of the graph and then using that (via the Feige-Jozeph
analysis) to approximate the Dicut value of a graph turns out to work in other streaming settings
as well. For instance in the two-pass setting with adversarial ordering of the edges, we can pick
a random sample of edges in the first pass and then use the second pass to compute the bias of
the endpoints of the edges. This leads to a polylog space streaming 2-pass algorithm achieving the
same approximation for Max-DICUT even in the adversarial arrival setting. In the case of bounded
degree graphs also we are able to compute snapshots with Õ(

√
n)-space when the edge arrival order

6



is adversarial. While this requires some additional care, to deal with very sparse graphs (with most
vertices being isolated), the general plan can be implemented leading to a single-pass Õ(

√
n)-space

algorithm achieving the same approximation for Dicut.

1.3.2 Negative results

Turning to the negative results that form the technical meat of this paper, we comment briefly
on where previous works used the adversarial ordering and what we need to do to overcome it.
Starting with [KKS15], all hardness results for streaming Max-CSP(F) problems have been based
on constructing so-called “YES” and “NO” distributions over instances which have high and
low values, respectively (with high probability), and showing that these are indistinguishable by
reducing from a one-way communication problem. Designing these distributions is typically a trade-
off between desired properties for the streaming lower bound (e.g., optimizing the value gap between
YES and NO instances) and technical considerations in terms of how to prove the appropriate
communication lower bounds (and whether they even hold at all!). The distributions themselves
result from a two-fold process: First, sample a random hypergraph, and then treat each hyperedge
as a CSP constraint by labeling it with an appropriate predicate f ∈ F . Indeed, this “labeling”
is the only difference between the YES and NO distributions; typically, in the NO distribution
the labels are completely random, while in the YES distribution they are selected to be consistent
with some global assignment.

Now, consider the communication problem in which we split up hypergraph edges and labels
among T = O(1) of “players”, and the players must distinguish between the YES and NO cases.
At a high level, the technical complexity of such problems is closely connected to the structure
of the hypergraphs that the players receive. In particular, it becomes necessary to analyze a
counting problem involving Zq-labelings of edge-vertex incidences with sum constraints at vertices
and density constraints on edges (see Eq. (5.1) below for a technical statement). In previous
works aside from [KKS15], each player’s input hypergraph was a random (partial) hypermatching.
Crucially, hypermatchings (of any particular size) are unique up to renaming of vertices. While
this significantly simplifies the combinatorial analysis, it is not appropriate for proving random-
ordering streaming lower bounds. This is because, in the communication-to-streaming reduction,
the resultant stream of constraints is the concatenation of constraints contributed by each player;
these streams will have the property that in each successive “chunk” of ≈ 1/T constraints, no
variables are repeated, which is unlikely in a randomly-ordered stream. Thus, it is necessary to draw
the players’ input hypergraphs from a different distribution. In the case of Max-CUT, with alphabet
size q = 2 and arity k = 2, Kapralov et al. [KKS15] instead worked with general random graphs.
Such graphs are no longer unique up to renaming of vertices; there are many different equivalence
classes, and each behaves differently in the proof of the lower bound. However, [KKS15] manages
this difficulty by showing that (1) cycles are unlikely, and (2) conditioned on cycle-freeness, each
equivalence class corresponds to a union of paths with a certain length profile. It turns out that
both the k = 2 and q = 2 assumptions are significantly helpful the analysis of [KKS15]. If k > 2,
we lose the decomposition into unions of paths, while if q > 2, we need to worry about different
Zq-labelings even of the same path, and thus the length of paths comes into play.

Nevertheless, in our work, we manage to generalize to arbitrary k, q ∈ N by conducting a careful
combinatorial analysis of connected component sizes in random hypergraphs (see Section 6). This
allows us to develop streaming hardness results for all CSPs weakly supporting one-wise indepen-
dence (Theorem 1.4). Indeed, we show that perfectly satisfiable instances (i.e., those with value 1)
are indistinguishable from random instances with independent, uniformly random constraints!

7



2 Preliminaries

For n > 0, we use 0n to denote the all zeros vector of length n and S(n) to denote the set of all
permutations mapping the set [n] to itself. Let Σ be a set, n ∈ N, and π ∈ S(n) be a permutation.
For σ ∈ Σn and i ∈ [n], we use σi to denote coordinate i of σ and π(σ) to denote the vector
σπ(1), σπ(2), . . . , σπ(n). For σ ∈ Σ∗, we use |σ| to denote the number of coordinates in σ.

For a set S, we use ∆(S) to denote the set of all distributions whose support is S. For k > 0
and sets S1, S2, . . . , Sk, we use ∆unif(S1, S2, . . . , Sk) to denote the set of all distributions on the
product set S = S1 × S2 × . . .× Sk for which the marginal distribution on the set Si, for all i ∈ [k]
is uniform. We simply write ∆unif(S) if the decomposition into the sets Si is clear from context.

2.1 Definitions

2.1.1 The Random-Order Streaming Model

Let Σ be an alphabet set. A deterministic streaming algorithm ALG for Σ-streams is defined by
the tuple:

ALG = (S,mdfy, out),

where: (1) S = ‖ALG‖ is the space/memory required by the algorithm ALG. (2) mdfy =
Σ×{0, 1}S → {0, 1}S is the function the algorithm uses to update its state upon reading a symbol
from the stream. (3) out = {0, 1}S → {0, 1}S is the function the algorithm uses to compute its
output from its state at the end of the stream. We shall suppress arguments on the right hand
side when they are clear from context. We define a randomized streaming algorithm on Σ-streams
to be a distribution over deterministic streaming algorithms. Additionally, the space required by
a randomized streaming algorithm is the maximum space required by a deterministic algorithm in
its support.

Execution of a streaming algorithm. Let Σ be an alphabet set and ALG be a (deterministic)
algorithm for Σ-streams. For an element σ ∈ Σ∗ with m = |σ|, the algorithm ALG acts on
σ in m steps as follows. At the beginning (before step 1), the algorithm is the state s0 = 0S .
Then, for i ∈ [m], the algorithm reads the symbol σi and uses it to update its state by defining
si = mdfy(σi, si−1). Finally, after m steps, the algorithm outputs the value out(sm).

Note that all the states of the algorithm and its final output are determined by its input σ. For
i ∈ [m], we write ALG(σ, i) ∈ {0, 1}S to denote the state after step i of the algorithm on input
σ. We define ALG(σ, 0) = 0S for convenience. Finally, we write ALG(σ) ∈ {0, 1} to denote the
output of the algorithm on input σ.

Computation using streaming algorithms. Let Σ be an alphabet set and f : Σ∗ → {0, 1} be
a (possibly partial) function. For p > 0, we say that a randomized streaming algorithm A computes
the function f in the random-order streaming model with probability p if for all σ ∈ Σ∗, we have:

Pr
ALG∼A,π∼S(|σ|)

(ALG(π(σ)) = f(σ)) ≥ p.

Distinguishing using streaming algorithms. Let Σ be an alphabet set and (Y,N ) be a
pair of distributions over Σ∗. For δ ≥ 0, we say that a deterministic streaming algorithm ALG
distinguishes between Y and N with advantage δ in the random-order streaming model if:∣∣∣∣ Pr

σ∼Y,π∼S(|σ|)
(ALG(π(σ)) = 1)− Pr

σ∼N ,π∼S(|σ|)
(ALG(π(σ)) = 1)

∣∣∣∣ ≥ δ.
8



We say that ALG distinguishes between Y and N with advantage δ in the worst case streaming
model if: ∣∣∣∣ Pr

σ∼Y
(ALG(σ) = 1)− Pr

σ∼N
(ALG(σ) = 1)

∣∣∣∣ ≥ δ.
We may sometimes refer to a pair (Y,N ) of distributions as a streaming problem and say that
“ALG solves the (Y,N )-problem” instead of saying that “ALG distinguishes between Y and N”.
We also note that the two notions of distinguishability are equivalent if the distributions Y and N
are sufficiently symmetric.

Lemma 2.1. Let Σ be an alphabet set and D be a distribution over Σ∗ such that for all σ ∈ Σ∗

and π ∼ S(|σ|), we have D(σ) = D(π(σ)). Then, for all τ ∈ Σ∗, we have:

Pr
σ∼D

(σ = τ) = Pr
σ∼D,π∼S(|σ|)

(π(σ) = τ).

Proof. Let D′ be the distribution on N obtained by sampling σ from D and outputting |σ|. We
can view the process of sampling σ from D and then sampling π from S(|σ|) as the process of first
sampling an integer m ≥ 0 from D′, then sampling a permutation π from S(m) and finally, a string
σ from D conditioned on the fact that |σ| = m. Moreover, as π(σ) = τ can happen only if m = |τ |,
we get (using m = |τ |):

Pr
σ∼D,π∼S(|σ|)

(π(σ) = τ) = D′(m) · Pr
π∼S(m),σ∼D||σ|=m

(π(σ) = τ)

= D′(m) · 1

m!
·
∑

π∈S(m)

Pr
σ∼D||σ|=m

(π(σ) = τ)

= D′(m) · 1

m!
·
∑

π∈S(m)

Pr
σ∼D||σ|=m

(
σ = π−1(τ)

)
= D′(m) · 1

m!
·
∑

π∈S(m)

Pr
σ∼D||σ|=m

(σ = τ)

= D′(m) · Pr
σ∼D||σ|=m

(σ = τ)

= Pr
σ∼D

(σ = τ).

Corollary 2.2 (Random order to worst-case). Let Σ be an alphabet set and (Y,N ) be a pair of
distributions over Σ∗ such that for all σ ∈ Σ∗ and π ∼ S(|σ|), we have Y(σ) = Y(π(σ)) and
N (σ) = N (π(σ)). Then, for all δ ≥ 0 and any deterministic streaming algorithm ALG from Σ-
streams, we have that ALG distinguishes between Y and N with advantage δ in the random-order
streaming model if and only if ALG distinguishes between Y and N with advantage δ in the worst
case streaming model.

We shall also need the following connection between computation and distinguishing using
streaming algorithms.

Fact 2.3. Let Σ be an alphabet set, f : Σ∗ → {0, 1} be a partial function, and p > 0. If there exists
a randomized streaming algorithm A that computes the function f in the random-order stream-
ing model with probability p, then for all distributions Y and N supported on f−1(1) and f−1(0)
respectively, we have a deterministic streaming algorithm ALG, ‖ALG‖ ≤ ‖A‖ such that ALG
distinguishes between Y and N with advantage 2 ·

(
p− 1

2

)
in the random-order streaming model.

9



2.2 The Max-CSP(·) Problem

Throughout this subsection, we let q, k ∈ N and F be a non-empty set of functions mapping
Zkq → {0, 1}. Let n ≥ k ∈ N. An instance Ψ of Max-CSPn(F) is given by a sequence:

Ψ = (fi,Mi)i>0 ∈
(
F × {0, 1}k×n

)∗
,

where, for all i ∈ [|Ψ|], the matrix Mi is partial permutation matrix, i.e., a matrix with 0, 1 entries
and exactly one 1 in each row and at most one 1 in every column. Let m = |Ψ|. Intuitively, Ψ
can be seen as a sequence of m constraints, with constraint i ∈ [m] requiring that the function fi
when applied to the k variables indicated by Mi evaluates to 1. Here, for j ∈ [k] the jth variable
indicated by Mi is the unique column that has the 1 in row j of Mi.

Value of Ψ. For an assignment x ∈ Znq of the n variables, the fraction of satisfied constraints is
given by:

valΨ(x) =
1

L
·
∑
i∈[L]

fi(Mix). (2.4)

We define the value of Ψ to be the largest fraction of the constraints that can be satisfied by an
assignment. Thus,

valΨ = max
x∈Znq

valΨ(x). (2.5)

The function ρmin(·). The minimum value of an instance of Max-CSP(F) is given by:

ρmin(F) = inf
n∈N

Ψ instance of Max-CSPn(F)

valΨ. (2.6)

The following lemma, taken from [CGSV21b], gives an equivalent formulation of the function ρ(·)
above that is slightly more amenable to analysis.

Lemma 2.7 ([CGSV21b], Proposition 2.12). Let q, k ∈ N be given and F be a non-empty set of
functions mapping Zkq → {0, 1}. It holds that:

ρmin(F) = min
D∈∆(F)

max
D′∈∆(Zq)

E
f∼D
a∼D′k

[f(a)].

Approximation resistance. Let n ≥ k ∈ N and ε > 0. Define the partial function aprxF ,n,ε on
instances Ψ of Max-CSPn(F) to be 1 if valΨ = 1 and 0 if valΨ ≤ ρmin(F) + ε. We are now ready to
define the notion of approximation resistance.

Definition 2.8 (Approximation resistance). Let q, k ∈ N be given and F be a non-empty set of
functions mapping Zkq → {0, 1}. Let s : N→ R be a monotone function. We say that Max-CSP(F)
is approximation resistant to o(s) space in the random order streaming model if for all ε > 0 and
p > 1

2 , there exists τ > 0 such that for all n ∈ N and all randomized streaming algorithms A that
compute aprxF ,n,ε in the random-order streaming model with probability p, we have ‖A‖ ≥ τ · s(n).

One-wise independence. We say that a function f : Zkq → {0, 1} supports one-wise indepen-

dence if there exists a distribution D ∈ ∆unif

(
Zkq
)

that is supported on f−1(1). Similarly, we say
that a family F of functions (strongly) supports one-wise independence if all functions in the family
support one-wise independence. Finally, we say that a family F weakly supports one-wise indepen-
dence if there exists a non-empty sub-family F ′ ⊆ F that strongly supports one-wise independence
and satisfies ρmin(F) = ρmin(F ′).

10



2.3 One Way Communication Protocols

Let XA and XB be two sets. We will treat these sets as the inputs sets for Alice and Bob respectively.
We now define one-way communication protocols between Alice and Bob, where the inputs of the
parties come from the sets XA and XB respectively, and Alice sends a single message to Bob. We
start by defining deterministic protocols. Such a protocol is defined by a tuple:

Π = (L,msg, out),

where: (1) L = ‖Π‖ is the length of the protocol Π. (2) msg : XA → {0, 1}L is the function Alice
uses to compute her message. (3) out : XB × {0, 1}L → {0, 1} is the function Bob uses to compute
his output. We shall suppress the arguments on the right hand side when they are clear from
context. We define a randomized protocol to be a distribution over deterministic protocols with
the same input sets. The length of a randomized protocol is defined to be the maximum length of
the deterministic protocols in its support.

Execution of a protocol. Let XA and XB be sets and Π be a deterministic protocol with inputs
sets XA and XB. For xA ∈ XA and xB ∈ XB, we define the output Π(xA, xB) ∈ {0, 1} of the
protocol Π on inputs xA and xB as:

Π(xA, xB) = out
(
xB,msg

(
xA
))
.

This is because, when the inputs are xA and xB, the string msg
(
xA
)

is the message sent by Alice to
Bob, and therefore, out

(
xB,msg

(
xA
))

is the output computed by Bob upon receiving this message.

One-way communication problems. We define a communication problem to be a pair of
distributions2 (Y,N ) on the same product set XA × XB. A protocol for the (Y,N )-problem is a
one way communication protocol where Alice’s input comes from the set XA and Bob’s input comes
from the set XB. Let (Y,N ) be a communication problem and Π be a randomized communication
protocol for the (Y,N )-problem. For δ ≥ 0, we say that Π solves the (Y,N )-problem with advantage
δ if we have: ∣∣∣∣∣∣ Pr

(xA,xB)∼Y
Π∼Π

(
Π(xA, xB) = 1

)
− Pr

(xA,xB)∼N
Π∼Π

(
Π(xA, xB) = 1

)∣∣∣∣∣∣ ≥ δ.
2.4 Analytical tools

2.4.1 Random variables

Lemma 2.9 (Triangle inequality). Let Y,N ,Z ∈ ∆(Ω). Then

‖Y −N‖tv ≥ ‖Y − Z‖tv − ‖Z −N‖tv.

Lemma 2.10 (Data processing inequality). Let Y,N be random variables with sample space Ω, and
let Z be a random variable with sample space Ω′ which is independent of Y and N . If g : Ω×Ω′ → Ω′′

is any function, then
‖Y −N‖tv ≥ ‖g(Y,Z)− g(N,Z)‖tv.

We will use the following concentration inequality from [KK19].

2Note that this matches our notation for distributional streaming problems. Nonetheless, the difference will be
clear from context.

11



Lemma 2.11 ([KK19, Lemma 2.5]). Let X =
∑n

i=1Xi, where Xi are Bernoulli {0, 1}-valued
random variables satisfying, for every k ∈ [n], E[Xk | X1, . . . , Xk−1] ≤ p for some p ∈ (0, 1). Let
µ = np. Then for all ∆ > 0,

Pr[X ≥ µ+ ∆] ≤ exp

(
− ∆2

2(µ+ ∆)

)
.

We also need the following concentration inequality that we prove using Lemma 2.11.

Lemma 2.12. Let X =
∑n

i=1Xi, where Xi are Bernoulli {0, 1}-valued random variables satisfying,
for every k ∈ [n], E[Xk | X1, . . . , Xk−1] ≥ p for some p ∈ (0, 1). Let µ = np. Then for all ∆ > 0,

Pr[X ≤ µ−∆] ≤ exp

(
− ∆2

2(n− (µ−∆))

)
.

Proof. Follows immediately from Lemma 2.11 on the random variables Yi = 1−Xi, q = 1− p, and
ν = nq (since X ≤ µ−∆ is equivalent to Y ≥ ν + ∆).

2.4.2 Fourier analysis over Zq

Let q ≥ 2 ∈ N, and let ω
def
= e2πi/q denote a (fixed primitive) q-th root of unity. Here, we

summarize relevant aspects of Fourier analysis over Znq ; see e.g. [O’D14, §8] for details.3 Given a
function f : Znq → C and s ∈ Znq , we define the Fourier coefficient

f̂(s)
def
=
∑
x∈Znq

ω−s·xf(x)

where · denotes the inner product over Zq. For p ∈ (0,∞), we define f ’s p-norm

‖f‖p
def
=

∑
x∈Znq

|f(x)|p
1/p

.

We also define f ’s 0-norm

‖f‖0
def
=
∑
x∈Znq

1f(x)6=0

(a.k.a. the size of its support and the Hamming weight of its “truth table”). Also, for ` ∈ {0}∪ [n],
we define the level-` Fourier (2-)weight as

W`[f ]
def
=

∑
s∈Znq :‖s‖0=`

|f̂(s)|2.

These weights are closely connected to f ’s 2-norm:

Proposition 2.13 (Parseval’s identity). For every q, n ∈ N and f : Znq → C, we have

‖f‖22 = qn
n∑
`=0

W`[f ].

3[O’D14] uses a different normalization for norms and inner products, essentially because it considers expectations
instead of sums over inputs.

12



Moreover, let D def
= {w ∈ C : |w| ≤ 1} denote the (closed) unit disk in the complex plane. The

following lemma bounding the low-level Fourier weights for functions mapping into D is derived
from hypercontractivity theorems in [CGS+22]:

Lemma 2.14 ([CGS+22, Lemma 2.11]). There exists ζ > 0 such that the following holds. Let
q ≥ 2, n ∈ N and consider any function f : Znq → D. If for c ∈ N, ‖f‖0 ≥ qn−c, then for every
` ∈ {1, . . . , 4c}, we have

q2n

‖f‖20
W`[f ] ≤

(
ζc

`

)`
.

Lemma 2.15. Let U = U(Zmq ). Then for all Z ∈ ∆(Zmq ),

‖Z − U‖2tv ≤ q2m
m∑
`=1

W`[Z].

Proof. We have

‖Z − U‖tv =
qm

2
‖Z − U‖1.

Thus by Cauchy-Schwartz,
‖Z − U‖2tv ≤ q2m‖Z − U‖22.

Finally, we apply Parseval and observe that Ẑ(0) = Û(0) = 1 while for all s 6= 0, Û(s) = 0 by
symmetry.

2.4.3 Hypergraphs

Let 2 ≤ k, n ∈ N. A k-hyperedge on [n] is a k-tuple e = (e1, . . . , ek) ∈ [n]k of distinct indices,
and a k-hypergraph (a.k.a. “k-uniform hypergraph”) G on [n] is a sequence (e(1), . . . , e(m)) of (not
necessarily distinct) k-hyperedges. For α ∈ (0, 1), n ∈ N, let Gk,α(n) denote the uniform distribution
over k-hypergraphs on [n] with αn hyperedges.

Given a graph G with m edges e(1), . . . , e(m), we associate each hyperedge e(i) with a partial
permutation matrix Mi ∈ {0, 1}k×n, such that for each j ∈ [k], row j has a 1 only in position e(j)i.
We associate to G an adjacency matrix M ∈ {0, 1}km×n by stacking together M1, . . . ,Mm. Since
they encode the same information, we will often treat adjacency matrices and k-hypergraphs as
interchangeable (and speak of drawing a matrix M from Gk,α(n).

For a k-hypergraph G on vertex-set [n] with hyperedges (e(1), . . . , e(m)), we define the vertex-
hyperedge incidence graph BG, which is a bipartite graph (i.e., 2-hypergraph) defined as follows:
The left vertex-set is [n], the right vertex-set is [m], and there is an edge between i ∈ [n] and j ∈ [m]
iff i ∈ e(j).

2.5 Reservoir sampling in the streaming setting

Reservoir sampling is a term used to refer to a family of randomized streaming algorithms that are
used to sample uniform k random elements from the stream without prior knowledge on the length
of the stream. The simplest algorithm, known as Algorithm R, was created by Alan Waterman in
1975. The algorithm runs in O(k) space and works as follows: it maintains a “reservoir” of size k.
Initially, the first k elements in the stream are stored in the reservoir. For i > k, when the i-th
element of the stream, denoted by ai, arrives, the algorithm generates a random number j between
1 and i, and if j ≤ k, it replaces the j-th element in the reservoir with ai. It is not hard to show
that if m elements have arrived in the stream so far, then the probability of any one of them being
in the reservoir is exactly k/m (see [Vit85] for more details).

13



2.6 k-wise independent hash family

A k-wise independent hash family is a family of hash functions H(n,m) = {h : [n] → [m]} that
satisfies the following properties: For a hash function h drawn uniformly at random from H,

• for every x ∈ [n] and a ∈ [m], Pr[h(x) = a] = 1
m , and

• for every distinct x1, . . . , xk ∈ [n], h(x1), . . . , h(xk) are independent random variables.

We give a construction of H(n,m) for m = 2` for some ` ∈ N. Let r ∈ N be the smallest integer
such that 2r ≥ max{n,m}. Let F be a field of size 2r. Consider the hash family H = {ha1,...,ak :
ai ∈ F}, where ha1,...,ak is the hash function defined as follows. Let h′a1,...,ak

: F→ F be the function

defined as h′(x) =
∑k

i=1 aix
i−1. Let f : [n] → F be any injective function and g : F → [m] be a

function such that for every a ∈ [m], |g−1(a)| = 2r−`. We define ha1,...,ak = g ◦ h′a1,...,ak
◦ f .

To show that H is a k-wise independent family, observe that it suffices to show that H′ =
{h′a1,...,ak

: ai ∈ F} is a k-wise independent hash family. Indeed, for x ∈ [n] and a ∈ [m],

Pr
a1,...,ak∈F

[ha1,...,ak(x) = a] = Pr
a1,...,ak∈F

[h′a1,...,ak
(x) ∈ g−1(a)] = 2r−` · 2−r = 2−` .

The independence of h(x1), . . . , h(xk) follows from the independence of h′(x1), . . . , h′(xk). It is a
standard exercise to show that H′ is a k-wise independent family (see [Vad12] for instance).

3 Algorithms for Max-DICUT

We review the definition of Max-DICUT as an optimization problem on unweighted directed graphs.
Let G = (V,E) be an unweighted directed (multi)graph. G’s Max-DICUT value, denoted valG , is
defined as the size of the largest directed cut in the graph. Formally,

valG
def
= max

L,R:V=LtR
|EL→R| ,

where EL→R = {(i, j) ∈ E : i ∈ L and j ∈ R}. In this section, we prove the following three
theorems for a constant αFJ ≥ 0.483:

Theorem 3.1 (Random-ordering algorithm). Let ε > 0 and c > 0 be constants. There exists an
O(log n)-space single-pass streaming algorithm ALG such that for every directed graph G = (V,E)
with |V | = n and |E| ≤ nc, the following holds: On input the edges of G in a uniformly random
order, ALG outputs an (αFJ − ε)-approximation to valG with probability at least 2/3.

Theorem 3.2 (Two-pass algorithm). Let ε > 0 and c > 0 be constants. There exists an O(log n)-
space two-pass streaming algorithm ALG such that for every directed graph G = (V,E) with |V | = n
and |E| ≤ nc, the following holds: On input the edges of G in adversarial order, ALG outputs an
(αFJ − ε)-approximation to valG with probability at least 2/3.

Theorem 3.3 (Bounded-degree algorithm). Let ε > 0, c > 0 be constants. There exists an
O(D3/2√n log2 n)-space single-pass streaming algorithm ALG such that for every directed graph
G = (V,E) with |V | = n, |E| ≤ nc, and max-degree at most D, the following holds: On input the
edges of G in adversarial order, ALG outputs an (αFJ − ε)-approximation to valG with probability
at least 2/3.

14



But first, we build some notation. The bias of a vertex i ∈ V with respect to a di-

rected graph G = (V,E), denoted biasG(i), is defined as biasG(i) =
out-degG(i)−in-degG(i)
out-degG(i)+in-degG(i) , where

out-degG(i), in-degG(i) respectively denote the out-degree and in-degree of i in G. We now define a
quantity called the “density matrix” of a graph with respect to a partition of its vertices into bias
intervals. Given any vector t = (t1, . . . , t`) ∈ [−1, 1]` satisfying −1 = t1 < · · · < t` = 1, we let PG,t
denote the “canonical” partition partition of V into blocks of vertices V = V1 t · · · t V` where for
every r ∈ [` − 1], Vr = {i : biasG(i) ∈ [tr, tr+1)}, and V` = {i : biasG(i) = 1}. Now the density
matrix of G with respect to t, denoted by MG,t, is an ` × ` matrix of natural numbers defined as
MG,t(i, j) = |EVi→Vj |, for every i, j ∈ [`], i.e., the (i, j)-th entry of MG,t counts the number of edges
in G between vertices with biases in the intervals [ti, ti+1) (or {1} if i = `) and [tj , tj+1) (or {1} if
j = `).

The following lemma was proved in [FJ15] and it shows that there exists a vector t such that
for every directed graph G, the density matrix of G with the respect to the canonical partition PG,t
can be used to get a good approximation to the Max-DICUT value of G.

Lemma 3.4 ([FJ15]). There exists a constant αFJ ∈ (0.483, 0.4899), `FJ ∈ N, a vector of bias
thresholds tFJ = (t1, . . . , t`) ∈ [−1, 1]`FJ, and a vector of probabilities pFJ = (p1, . . . , p`) ∈ [0, 1]`

such that for every directed graph G,

αFJ · valG ≤
`FJ∑
i,j=1

pi(1− pj)MG,t(i, j) ≤ valG .

We observe that algorithmically, the estimate for valG in this lemma corresponds to assigning
each vertex in block Vi to L w.p. pi and R w.p. 1− pi, independently of all other vertices.

As a corollary of Lemma 3.4, we show that in order to get an (αFJ − ε)-approximation for the
Max-DICUT value of G, it suffices to obtain an additive ±ε′m approximation for every element of
MG,t, for ε′ = O(ε).

Corollary 3.5. Let αFJ, `FJ, tFJ,pFJ be as in Lemma 3.4. Let G be a directed graph and let m
denote the number of edges in G. Let ε ∈ (0, αFJ) and ε′ = ε

8(`FJ)2 . If there exists N ∈ R`FJ×`FJ

such that for every i, j ∈ [`FJ],

MG,t(i, j)− ε′m ≤ N(i, j) ≤MG,t(i, j) + ε′m,

then
(αFJ − ε)valG ≤

∑
i,j∈[`FJ]

pi(1− pj)N(i, j)− ε

8
m ≤ valG .

Proof. For the upper bound, we have∑
i,j∈[`FJ]

pi(1− pj)N(i, j)− ε

8
m ≤

∑
i,j∈[`FJ]

pi(1− pj)(MG,t(i, j) + ε′m)− ε

8
m

(assumption on N(i, j))

≤ valG + (`FJ)2ε′m− ε

8
m (Lemma 3.4)

≤ valG . (choice of ε′)

For the lower bound, we have∑
i,j∈[`FJ]

pi(1− pj)N(i, j)− ε

8
m ≥

∑
i,j∈[`FJ]

pi(1− pj)(MG,t(i, j)− ε′m)− ε

8
m

(assumption on N(i, j))

15



≥ αFJvalG − (`FJ)2ε′m− ε

8
m (Lemma 3.4)

≥ αFJvalG −
ε

4
m (choice of ε′)

≥ (αFJ − ε)valG . (valG ≥ m
4 )

In the following subsections, we describe how to estimate MG,t in a number of different
settings: O(log n)-space single-pass streaming algorithm under random ordering of edges (Sec-
tion 3.1), O(log n)-space two-pass streaming algorithm under adversarial ordering (Section 3.2),
and O(D3/2√n log2 n)-space single-pass streaming algorithm for degree-D bounded graphs under
adversarial ordering (Section 3.3). These algorithms share the same central principle: First, let
H = (V,E′) be a subgraph of G = (V,E) (i.e., E′ ⊆ E). Given bias thresholds −1 = t1 <
· · · < t` = 1, let MH⊆G,t ∈ N`×` denote the matrix with entries MH⊆G,t(i, j) = |E′Vi→Vj | where

PG,t = V1 t · · · t V` is the canonical partition of V with respect to bias in G. (Note that this is
distinct from the matrices MG,t and MH,t because it counts edges in H but measures bias with
respect to G.) Now the strategy of all three algorithms is to somehow sample a “representative”
subgraph H of G, and then estimate MG,t from MH⊆G,t simply by multiplying every entry by a

scale factor m(G)
m(H) (where m(G) = |E| and m(H) = |E′|). There are two questions associated with

this approach, which we answer differently in each setting:

1. How do we sample a “representative” subgraph H, which doesn’t oversample edges from EVi→Vj
for any i, j ∈ [`]? In Sections 3.1 and 3.2, H consists of random edges from G, while in
Section 3.3, H is the subgraph induced on random vertices from G. In both cases, we show that
(for a sufficiently large sample size), H is “sufficiently representative” with high probability
using concentration bounds.

2. How do we remember the “global bias” (i.e., the bias in G) of vertices we sample in H? In
the single-pass setting, we measure biases “online”: Each time we see a new vertex appear as
an endpoint in an edge, we decide whether to track its bias over the rest of the stream or not,
and if we decide not to, it cannot have positive degree in H. The two-pass setting obviates
this limitation, since we can decide which vertices to track in the first pass and then actually
track them in the second pass.

3.1 O(log n)-space random-ordering (single-pass) algorithm

In this subsection, we prove Theorem 3.1 by showing that Algorithm 1 is an (αFJ−ε)-approximation
streaming algorithm for computing Max-DICUT value when the edges of the input graph G are
randomly ordered and uses space at most O(log n). Algorithm 1 uses Algorithm 2 as a subroutine
to estimate MG,t within a small additive error and then uses this estimate to compute an (αFJ− ε)-
approximation to the Max-DICUT value of G. We now describe and analyse Algorithm 1 and
Algorithm 2.

16



Algorithm 1 Random-Order-Dicutε(n,σ):

Input: n ∈ N and a stream σ = (e(1), . . . , e(m)) representing randomly ordered edges of G on n
vertices.

1: Let `FJ, tFJ, pFJ be from Lemma 3.4. Let k and m0 be fixed according to Lemma 3.6 corre-
sponding to `FJ, tFJ, and ε′ = ε

8(`2FJ)
.

2: Store the first m0 edges that arrive in the stream.
3: Let N ← Random-Order-Estimate-MG,t(n,σ, tFJ, k).
4: if m < m0 then
5: Compute MG,tFJ

directly from the stored edges and N ←MG,tFJ
.

6: Output
∑`FJ

i,j=1 pi(1− pj)N(i, j)− ε
8m.

We are now ready to describe our first algorithm for estimating MG,t.

Algorithm 2 Random-Order-Estimate-MG,t(n,σ, t, k)

Input: the number n of vertices of a directed graph G, a stream σ = (e(1), . . . , e(m)) representing
randomly ordered edges of G, bias thresholds −1 = t1 < · · · < t` = 1, and a parameter k ∈ N.

1: Store the first k edges (e(1), . . . , e(k)) of the stream. Let H denote the corresponding subgraph.
2: Over the remainder of the stream, track the following:

• for every vertex i with positive degree in H, the degrees out-degG(i) and in-degG(i),

• and the total number m of edges in the stream.

3: After the stream ends, compute the following:

• for every i with positive degree in H, biasG(i),

• and the matrix MH⊆G,t.

Output: N ∈ R`×`, where for every i, j ∈ [`], N(i, j) = m
kMH⊆G,t(i, j).

Now the following lemma asserts the correctness of the estimate in Algorithm 2 for a sufficiently
large choice of k:

Lemma 3.6. For every ` ∈ N and threshold vector t ∈ [−1, 1]` and ε′ > 0, there exists k,m0 ∈ N
such that for every directed graph G = (V,E) with m = |E| ≥ m0 edges, with probability 2

3 , the
matrix N output by Algorithm 2 on input G satisfies, for every i, j ∈ [`], the inequalities

MG,t(i, j)− ε′m ≤ N(i, j) ≤MG,t(i, j) + ε′m.

Proof. Consider the canonical partition PG,t : V1 t · · · t V` = V of G with respect to t. Fix some
i, j ∈ [`] (over which we’ll take a union bound) and let T = MG,t(i, j) denote the total number of
edges in EVi→Vj .

Now consider random variables X1, . . . , Xk, where Xs is the indicator for the event that e(s)
belongs to EVi→Vj . Let X = X1 + · · · + Xk denote the number of observed edges (i.e., edges in
{e(1), . . . , e(k)}) that belong to EVi→Vj ; thus, X = MH⊆G,t(i, j). Note that E[Xs] = T/m and so

E[X] = Tk/m and E[N(i, j)] = T . Our goal is to prove that w.h.p., |N(i, j)− T | ≤ ε′m; rescaling
by k/m, we seek to prove that |X − Tk/m| ≤ ε′k w.h.p.

For this, we apply the concentration inequalities in Lemmas 2.11 and 2.12 to show that the
inequalities X−Tk/m ≤ ε′k, X−Tk/m ≥ −ε′k are violated with probability at most exp(−Oε′(k)).
This is sufficient to take a union bound over i, j ∈ [`] if we pick k sufficiently large in terms of ε′, `
and then m0 sufficiently large in terms of k.

17



Upper bound. Since e(1), . . . , e(s) are sampled from E(G) without replacement, for each s ∈ [k],
we have

E[Xs | X1, . . . , Xs−1] =
T − (X1 + · · ·+Xs−1)

m− (s− 1)
≤ T

m− k
.

Setting p = T/(m−k), µ = kp, and ∆ = ε′k/2, for sufficiently large m, we claim that µ− T
mk ≤ ∆,

and thus that µ + ∆ ≤ T
mk + ε′k. The claim follows because, canceling k’s and cross-multiplying

by m and m − k, we get the inequality kT ≤ ε′m(m − k)/2, which since T ≤ m holds whenever
k ≤ ε′/(2 + ε′)m (which holds for m0 ≥ (2 + ε′)k/ε′).

Now Lemma 2.11 implies that X ≥ µ+ ∆ with probability at most

exp

(
− ∆2

2(µ+ ∆)

)
≤ exp

(
− (ε′)2k2

8k(m/(m− k) + ε′/2)

)
≤ exp

(
− (ε′)2

8(1 + ε′/2)
k

)
(using T ≤ m and setting m0 ≥ 2k).

Lower bound. As in the upper bound, we get E[Xs | X1, . . . , Xs−1] ≥ T−k
m−k ; setting this time

p = (T − k)/(m − k), and again µ = pk and ∆ = ε′k/2, we now claim that µ − ∆ ≥ T
mk − ε

′k;
this holds because it’s implied by the inequality k(m − T ) ≤ ε′m(m − k)/2, which again holds
whenever k ≤ ε′/(2 + ε′)m (now since T ≥ 0). Now Lemma 2.12 implies that X ≤ µ − ∆, again
with probability at most

exp

(
− ∆2

2(k − (µ−∆))

)
≤ exp

(
− (ε′)2k

8(1− (T − k)/(m− k) + ε′/2)

)
≤ exp

(
− (ε′)2

8(1 + ε′/2)
k

)
(using T ≥ 0 and again m0 ≥ 2k).

Finally, we prove Theorem 3.1.

Proof of Theorem 3.1. Consider Algorithm 1. We fix `FJ, tFJ,pFJ, αFJ according to Lemma 3.4.
For the choice of k ∈ N in Lemma 3.6 that corresponds to `FJ, tFJ, and ε′ = ε

8(`FJ)2 , we run

Algorithm 2 with the parameters tFJ, k on the input graph G. For m ≥ m0, Lemma 3.6 implies
that with probability 2

3 , the output N of Algorithm 2 entrywise approximates MG,tFJ
up to an

additive ±ε′m. For m < m0, Algorithm 1 computes MG,tFJ
exactly. Now Corollary 3.5 implies that

the output of Algorithm 1 is an (αFJ − ε)-approximation to the Max-DICUT value of G as desired.
Finally, we show that Algorithm 1 can be implemented in O(log n) space. Since m0 is a constant,

it takes only O(log n) space to store the first m0 edges. Algorithm 2 can be implemented in O(log n)
space since it takes O(log n) space to store k edges and we use a simple counter in step 2 that uses
O(log n) space for m that is bounded by poly(n).

3.2 Two-pass O(log n)-space adversarial-ordering algorithm

In this subsection, we show how the random-ordering algorithm presented in Section 3.1 can be
modified to work with adversarial input ordering given two passes over the input stream to prove
Theorem 3.2.

Proof of Theorem 3.2. Let ALG denote the (αFJ − ε)-approximation algorithm for Max-DICUT in
the random ordering setting (Algorithm 1). Consider the following algorithm ALG′: In the first
pass ALG′ uses reservoir sampling (see Section 2.5) to randomly sample k edges from the stream;

18



this requires O(k) space.4 In the second pass, it runs the remainder of Algorithm 2 with parameters
tFJ, k to obtain N and outputs

∑`FJ
i,j=1 pi(1 − pj)N(i, j) − ε

8m. The same proof of correctness, as
well as the space analysis for Algorithm 1 works here as well. We conclude that with probability
at least 2/3, ALG′ outputs an (αFJ − ε)-approximation to the Max-DICUT value of G.

3.3 O(D3/2
√
n log2 n)-space adversarial-ordering algorithm for degree-D bounded

graphs

In this subsection, we prove Theorem 3.3 by showing that Algorithm 3 is an (αFJ−ε)-approximation
streaming algorithm for computing Max-DICUT value of degree-D bounded graphs and uses space
at most O(D3/2√n log2 n). The basic idea is to sample a subset of the vertices of the input graph G
and estimate MG,t using the density matrix for the induced subgraph MH⊆G,t. However, there are a
few issues that ensue. Firstly, we need to deal with the case where most of G’s vertices are isolated
(i.e., they have degree zero); we manage this by only sampling vertices which have positive degree,
by using a hash function on these vertices. This, in turn, requires estimating the number m of edges
in the stream, which is not known a priori. For an estimate m̂ that satisfies m̂ ≤ m < 2m̂, with
high probability, Algorithm 4 estimates MG,t correctly within a small additive error. Algorithm 3
runs Algorithm 4 for various estimates of m and using the correct output from Algorithm 4, it
computes an (αFJ− ε)-approximation to the Max-DICUT value of G. We now describe and analyse
Algorithm 3 and Algorithm 4.

Algorithm 3 Bounded-Degree-DicutD(n,σ):

Input: n ∈ N and a stream σ = (e(1), . . . , e(m)) representing randomly ordered edges of G on n
vertices.

1: Let `FJ, tFJ, pFJ be from Lemma 3.4. Let C1 and k be fixed according to Lemma 3.7 corre-
sponding to `FJ, tFJ, and ε′ = ε

8(`2FJ)
.

2: Store the first 2C2
1D edges that arrive in the stream.

3: for every integer b from 0 to blog(nD/2)c do
4: N̂b ← Bounded-Degree-Estimate-MG,t(n,σ, tFJ, k, 2

b)

5: if N̂b is not Fail then
6: N ← N̂b.

7: if m < 2C2
1D then

8: Compute MG,tFJ
directly from the stored edges and N ←MG,tFJ

.

9: Output
∑`FJ

i,j=1 pi(1− pj)N(i, j)− ε
8m.

4Note that if the length of the stream is known a priori, there is a simpler sampling procedure. In the first pass,
ALG′ can sample every edge in the stream with probability 2k

m
. Let S denote the number of edges that were sampled.

With high probability, |S| ≥ k. Now, ALG′ can choose a random subset of k edges from S.

19



Algorithm 4 Bounded-Degree-Estimate-MG,t(n,σ, t, k, m̂)

Input: the number n of vertices of a directed graph G, a stream σ = (e(1), . . . , e(m)) representing
adversarially ordered edges, a vector t = (t1, . . . , t`) ∈ [−1, 1]`, and parameters k, m̂ ∈ N, where
m̂ is a power of 2.

1: Sample a random hash function π : [n] → [m̂] from a 4-wise independent hash family H(n, m̂)
(see Section 2.6).

2: For the remainder of the stream, track the number of edges m that arrive.
3: Define s← k

√
m̂.

4: Initialize n̂← 0.
5: Initialize H ← (V, ∅), where V is the vertex set of G.
6: for each edge e(t) = (u, v) in the stream do
7: if π(u) ≤ s then
8: Track the bias of u. Increase n̂ by 1 if this is the first edge incident on u.

9: if π(v) ≤ s then
10: Track the bias of v. Increase n̂ by 1 if this is the first edge incident on v.

11: if π(u) ≤ s and π(v) ≤ s then
12: Add e to H.
13: if n̂ > (5s ·min{n, 4m̂})/m̂ then
14: Halt and output Fail.

15: if m < m̂ or m ≥ 2m̂ then
16: Halt and output Fail.

Output: N ∈ R`×`, where for every i, j ∈ [`], N(i, j) = m
µMH⊆G,t(i, j) where µ = ms2/m̂2.

The correctness of Algorithm 4 conditioned on the estimate m̂ being approximately accurate is
asserted in the following lemma:

Lemma 3.7. For every `, threshold vector t ∈ [−1, 1]`, and ε′ > 0, there exists C1 = C1(ε′) > 0
such that the following holds. Let G be a graph with n vertices, m edges, and max-degree ≤ D such
that m ≥ 2C2

1D, and let m̂ ∈ N be such that m̂ ≤ m < 2m̂. Then with probability 2
3 (over the

choice of the permutation π), the matrix N output by Algorithm 4 on input G (with parameters
k = C1

√
D, m̂) satisfies, for every i, j ∈ [`], the inequalities

MG,t(i, j)− ε′m ≤ N(i, j) ≤MG,t(i, j) + ε′m.

Proof. Let p = s/m̂ = k/
√
m5 and µ = p2m. Conditioned on m̂ ≤ m < 2m̂, we first bound

the probability that Algorithm 4 halts and outputs Fail. Observe that n̂ is the number of non-
isolated vertices with hash value at most s. Let S denote the set of non-isolated vertices in G. We
have |S| ≤ min{n, 2m} ≤ min{n, 4m̂}. For vertex i ∈ S, let Yi be the event that π(i) ≤ s. Let
Y =

∑
i∈S Yi = n̂. Let p = s/m̂.We have E[Yi] = p for every i ∈ [n] and hence E[Y ] = p|S|.6 Since

Yi, Yj are independent for i 6= j, the variance of Y is given by

Var[Y ] = p|S|+ p2(|S|2 − |S|)− p2|S|2 ≤ p|S| .

So by Chebyshev’s inequality,

Pr
[∣∣Y − p|S|∣∣ ≥ a√p|S|] ≤ 1

a2
.

5Note that p ≤ 1 since s
m̂

= C1

√
D
m̂
≤ C1

√
2D
m
≤ 1, by assumption.

6Note that p|S| ≥ 1 since |S| ≥ m/D and p|S| ≥ C1

√
m
D
≥ 1.

20



By setting a to be
√

10, we conclude that n̂ = Y ≤ 5p|S| ≤ (5s·min{n, 4m̂})/m̂ with probability
at least 9

10 .
Therefore with probability at least 9/10, conditioned on m̂ ≤ m < 2m̂, Algorithm 4 does not

halt and output Fail. Now conditioned on this event, we show that with high probability, the
matrix N output by Algorithm 4 on input G (with parameters k = C1

√
D, m̂) satisfies, for every

i, j ∈ [`], the inequalities

MG,t(i, j)− ε′m ≤ N(i, j) ≤MG,t(i, j) + ε′m.

Fix i, j ∈ [`], and let T = |EVi→Vj | = MG,t(i, j). Enumerate the edges of EVi→Vj as
e(e1), . . . , e(eT ) with e(et) = (ut, vt). For t ∈ [T ], let Xt be the indicator variable for the event
that π(ut) ≤ s and π(vt) ≤ s. The events π(ut) ≤ s and π(vt) ≤ s each occur with proba-
bility s/m̂ = p, and they are independent (since H is 4- and thus 2-wise independent). Hence

E[Xt] = p2 and, defining X = X1 + · · · + XT = MH⊆G,t(i, j), we have E[X] = p2T and so

E[N(i, j)] = mE[X]/µ = m(p2T )/(p2m) = T . Now observe that the desired inequality can be
restated as |N(i, j) − T | ≤ ε′m which, rescaling by µ/m = p2, is equivalent to the inequality
|X − Tp2| ≤ ε′µ. We prove that this holds with high probability using Chebyshev’s inequality.

First, we calculate that

Var[X] =

T∑
t,t′=1

E[XtXt′ ]− (Tp2)2.

Also, when e(et) and e(et′) do not share a vertex, the events π(ut) ≤ s, π(vt) ≤ s, π(ut′) ≤ s, and
π(vt′) ≤ s are all independent by 4-wise independence of π, and so E[XtXt′ ] = E[Xt]E[Xt′ ] = p4. On
the other hand, when they are dependent, we can upper-bound E[XtXt′ ] ≤ E[Xt] = p2. Since p ≤ 1
and each Xt is dependent on at most D′ = 2D − 1 variables Xt′ (by the max-degree assumption),
we have

Var[X] ≤ (T 2 −D′T )p4 +D′Tp2 − T 2p4 ≤ D′Tp2.

So by Chebyshev’s inequality,

Pr[|X − Tp2| ≥ ap
√
D′T ] ≤ 1

a2
.

Setting ap
√
D′T = ε′p2m, squaring, and simplifying, we get a2D′T = (ε′)2p2m2, so

1

a2
=

D′T

(ε′)2p2m2
=

D′Tm̂

(ε′)2k2m2

by the definition of p. Now D′ < 2D, T ≤ m, and m̂ ≤ m by assumption, and recalling k = C1

√
D,

we can upper-bound the probability by 2
(ε′)2C2

1
, which can be made arbitrarily small (in particular,

less than, say, 1/(100`2)) for a sufficiently large choice of C1.

Finally, we prove Theorem 3.3.

Proof of Theorem 3.3. Consider Algorithm 3. We fix `FJ, tFJ,pFJ, αFJ according to Lemma 3.4 and
k according to Lemma 3.7 corresponding to `FJ, tFJ, and ε′ = ε

8(`FJ)2 . Since the max-degree of G is

at most D, the number of edges m is at most nD/2. Observe that for every m, there is a unique

b ∈ [0, blog(nD/2)c] such that 2b ≤ m < 2b+1. Namely, for b̂ = blogmc, we have 2b̂ ≤ m < 2b̂+1.

For b = b̂, the algorithm executes Algorithm 4 with m̂ = 2b̂. For m ≥ 2C2
1D, Lemma 3.7 implies

that with probability 2
3 , the output N of Algorithm 4 entrywise approximates MG,tFJ

up to an

21



additive ±ε′m. For m < 2C2
1D, Algorithm 3 computes MG,tFJ

exactly. Now Corollary 3.5 implies
that output of Algorithm 3 is an (αFJ− ε)-approximation to the Max-DICUT value of G as desired.

Finally, we show that Algorithm 3 can be implemented in O(D3/2√n log2 n) space. The
first 2C2

1D edges in the stream can be stored in O(D log n) space. Since Algorithm 3 exe-
cutes Algorithm 4 O(log n) times, it suffices to prove that Algorithm 4 can be implemented in
O(D3/2√n log n) space. Firstly, it takes O(log n) space to store π (see Section 2.6 for an ex-
ample construction). Moreover, we can maintain the counter for the number of edges using
O(logm) space. We have n̂ ≤ (5s · min{n, 4m̂})/m̂. Every tracked vertex contributes only
O(D log n) space to store its degree and neighborhood. Therefore, Algorithm 4 requires at most

O
(
D3/2 log n ·min{n, m̂}/

√
m̂
)
≤ O(D3/2 log n ·

√
n) space. Hence, Algorithm 3 can be imple-

mented in O(D3/2 log2 n
√
n) space.

4 Lower bounds for Max-CSP in the random-ordering setting

4.1 The Generalized Uniform Randomized Mask Detection (RMD) Problem

We now define the Generalized-Uniform-RMD problem, the main focus of our lower bound. We shall
define both a communication version and a streaming version. In either case, we need to define a
pair of distributions. As the two pairs are rather closely related, we define them together.

Definition 4.1 (Generalized-Uniform-RMD). Let q, k ∈ N be given and F be a non-empty set of
functions mapping Zkq → {0, 1}. Let α > 0 and n ∈ N be parameters and DY ∈ ∆

(
F ×∆unif

(
Zkq
))

be a distribution with finite support7. For all integers 0 ≤ t ≤ αn and both versions, we now define
a distribution HF ,DY ,α(n, t) as follows:

1. For both versions:

(a) Sample a vector x∗ uniformly at random from Znq .

(b) For all i ∈ [αn], sample a matrix Mi ∈ {0, 1}k×n uniformly and independently from the
set of all partial permutation matrices8.

(c) For all i ∈ [αn], sample a pair (fi, Di) independently from DY .

(d) For all i ∈ [αn], sample a vector b(i) ∈ Zkq independently from Di if i ≤ t and uniformly

and independently from the set Zkq if i > t.

(e) For all i ∈ [αn], set z(i) = Mix
∗ − b(i).

2. Output as follows:

(a) For the communication version, define M (respectively, z) to be the matrix (resp., vec-
tor) obtained by stacking all the Mi (resp., z(i)) on top of each other. Also, define
the vector D to be the vector consisting of the pairs (fi, Di)i∈[αn]. Output the pair
(x∗, (M, z,D)). (The first element of the pair x∗ forms the input for Alice and the
second element (M, z,D) forms the input for Bob.)

(b) For the streaming version, output the stream (fi,Mi, z(i))i∈[αn]. (Note that the length of
the stream is αn and each symbol is a triple (fi,Mi, z(i)).)

7Observe that DY is a finite support distribution over pairs, the second element of which is itself a distribution.
8Recall that a partial permutation matrix is a matrix with 0, 1 entries and exactly one 1 in each row and at most

one 1 in every column.

22



For both versions, the problem Generalized-Uniform-RMDF ,DY ,α(n) is defined to be the pair of dis-
tributions (HF ,DY ,α(n, αn),HF ,DY ,α(n, 0)). We shall often refer to HF ,DY ,α(n, αn) as the “yes”
distribution and denote it by Y and HF ,DY ,α(n, 0) as the “no” distribution and denote it by N .
The remaining distributions will only be needed for the streaming version and will be used as “hy-
brids”.

We note that in the communication version of Definition 4.1, the matrix M given to Bob is the
adjacency matrix of a graph sampled from the distribution Gk,α(n) (see Section 2.4.3).

We now define what it means to solve the Generalized-Uniform-RMD communication problem
arising from the pair (F ,DY ) with non-trivial advantage. The main emphasis of the definition is
the advantage one can get as α → 0. It is natural to expect the advantage to shrink with α, and
the definition below requires that the advantage only shrinks linearly with α.

Definition 4.2 (Solving Generalized-Uniform-RMD with non-trivial advantage). Let q, k ∈ N be
given and F be a non-empty set of functions mapping Zkq → {0, 1}. Let DY ∈ ∆

(
F ×∆unif

(
Zkq
))

be a distribution with finite support and s : N → R be a function. We say that the pair (F ,DY )
can be solved with non-trivial advantage using o(s) communication if there exists δ > 0 such that
for all α, τ > 0, there exist infinitely many n ∈ N for which there exists a (randomized) protocol
Π that solves the Generalized-Uniform-RMDF ,DY ,α(n)-problem with advantage δ · α and satisfies
‖Π‖ ≤ τ · s(n).

4.2 Proof of Theorem 1.4

In this section, we state two theorems that together imply Theorem 1.4. These theorems are then
proved in the following sections. First, we have the following communication lower bound on the
Generalized-Uniform-RMD problem.

Theorem 4.3. Let q, k ∈ N be given and F be a non-empty set of functions mapping Zkq → {0, 1}.
Let DY ∈ ∆

(
F ×∆unif

(
Zkq
))

be a distribution with finite support. Then, (F ,DY ) cannot be solved
with non-trivial advantage using o(

√
n) communication.

We also show why the above communication lower bound implies that certain CSPs are ap-
proximation resistant.

Theorem 4.4. Let q, k ∈ N be given and F be a non-empty set of functions mapping Zkq → {0, 1}
and weakly supporting one-wise independence. There exists a distribution DY ∈ ∆

(
F ×∆unif

(
Zkq
))

with a finite support such that if (F ,DY ) cannot be solved with non-trivial advantage using o(
√
n)

communication, then Max-CSP(F) is approximation resistant to o(
√
n) space in the random order

streaming model.

4.3 Proof of Theorem 4.4

We now prove Theorem 4.4. The proof of Theorem 4.3 is in the following section. This proof closely
follows arguments in [KKS15, CGSV21b].

Proof of Theorem 4.4. As F weakly supports one wise independence, there exists a non-empty sub-
family F ′ ⊆ F that such that ρmin(F) = ρmin(F ′) and for all f ∈ F ′, there exists a distribution
Df ∈ ∆unif

(
Zkq
)

that is supported on f−1(1). Fix such a family F ′ and note by Lemma 2.7 that
there exists a distribution D ∈ ∆(F ′) such that

ρmin(F) = ρmin(F ′) = max
D′∈∆(Zq)

E
f∼D
a∼D′k

[f(a)]. (4.5)

23



Define the distribution DY to be the one that first samples f ∼ D and then outputs the pair
(f,Df ). Clearly, the support of DY is finite and all that remains to be shown is that if (F ,DY )
cannot be solved with non-trivial advantage using o(

√
n) communication, then Max-CSP(F) is

approximation resistant to o(
√
n) space in the random order streaming model. We shall show this

in the contrapositive.
Suppose that Max-CSP(F) is not approximation resistant to o(

√
n) space in the random order

streaming model, and let ε > 0, p > 1
2 be the parameters promised by Definition 2.8 in this case.

Thus, we have for all τ > 0 that there exists n ∈ N for which:

There exists a randomized streaming algorithms A, ‖A‖ < τ ·
√
n that

computes aprxF ,n,ε in the random-order streaming model with probability p.
(?)

In fact, for any τ > 0, we must have infinitely many values of n such that (?) holds. Indeed, if there
is a τ for which there only finitely many such n, as any non-trivial algorithm must have ‖ALG‖ ≥ 1,
we can construct a smaller τ for which there is no value of n satisfying (?), a contradiction.

To show that (F ,DY ) can be solved with non-trivial advantage using o(
√
n) communication,

we will show Definition 4.2 with the parameter δ = θ20, where we define θ = ε
100 ·

(p−1/2)·ρmin(F)
qk

.
Let α, τ > 0 be arbitrary. Applying the reasoning in the foregoing paragraph with this value of τ ,
we get that there are infinitely many n ∈ N for which (?) holds. Fix any such n that is also larger

than
(
k
θ

)5
(this only excludes finitely many values). We will show that there exists a protocol

Π that solves the Generalized-Uniform-RMDF ,DY ,α(n)-problem with advantage δ · α and satisfies
‖Π‖ ≤ τ ·

√
n). We do this in two steps.

Streaming algorithm for Generalized-Uniform-RMD. As a first step we define T =
1

α·θ10 and show that there exists a deterministic streaming algorithm ALG that solves the
Generalized-Uniform-RMDF ,DY ,αT (n) problem with advantage θ in the worst case streaming

model. To this end, for 0 ≤ t ≤ T , we let HybStr(t) be the (αnt)th hybrid distribution of
Generalized-Uniform-RMDF ,DY ,αT (n), as defined in Definition 4.1. We also define the distributions
YStr = HybStr(T ) and N Str = HybStr(0).

For an instance Ψ = (fi,Mi, z(i))i∈[αTn], we define an instance Clean(Ψ) of Max-CSPn(F) so that

for each i ∈ [αTn] for which z(i) = 0k, the instance Clean(Ψ) has (in order) the tuple (fi,Mi). Also
define the distribution YCSP (respectively, NCSP) to be the distribution that samples an instance
Ψ from YStr (resp. N Str) and outputs Clean(Ψ). We show that

Claim 4.6. We have valΨ′ = 1 for all Ψ′ in the support of YCSP.

Proof. It suffices to show that valΨ′ ≥ 1. If Ψ′ is in the support of YCSP, there exists Ψ in the
support of YStr such that Clean(Ψ) = Ψ′. Let L′ be the length of Ψ′ and

(
f ′i′ ,M

′
i′
)
i′∈[L′]

be the

constraints in Ψ′. By definition, we get that for all i′ ∈ [L′], there exists an i = i(i′) ∈ [αTn] such
that (fi,Mi, z(i)) =

(
f ′i′ ,M

′
i′ , 0

k
)
. Let x∗ as in definition Definition 4.1 be the one that gave rise to

Ψ. We have:

valΨ′ ≥ valΨ′(x
∗)

=
1

L′
·
∑
i′∈[L′]

f ′i′
(
M ′i′x

∗)
=

1

L′
·
∑
i′∈[L′]

fi(i′)
(
Mi(i′)x

∗)

24



=
1

L′
·
∑
i′∈[L′]

fi(i′)
(
b(i(i′))

)
(As z(i(i′)) = 0k)

= 1,

where the final step uses the fact that YStr = HybStr(T ) is the yes distribution in
Generalized-Uniform-RMDF ,DY ,αT (n), which implies that b(i(i′)) ∈ f−1

i(i′)(1) by our choice of DY .

Claim 4.7. For all i ∈ [αTn] and all x ∈ Znq , we have

Pr
Ψ′∼NCSP

(fi(Mix) = 1) ≤ ρmin(F) ·
(
1 + θ2

)
.

Proof. Let Dperm be the distribution that outputs a uniformly random partial permutation matrix

M ∈ {0, 1}k×n and Drow be the distribution that outputs a uniformly random matrix M ∈ {0, 1}k×n
with exactly one 1 in every row (but a column may have more than one 1). Clearly, Dperm is Drow

conditioned on the event that each row has its 1 in a different column. This means that

‖Dperm −Drow‖tv ≤ Pr
M∼Drow

( Exists two rows with 1 in the same column ) ≤ k2

n
≤ θ2 · ρmin(F),

by our choice of n, θ We get:

Pr
Ψ′∼NCSP

(fi(Mix) = 1) = Pr
f∼D,M∼Dperm

(f(Mx) = 1) (Items 1b and 1c)

≤ Pr
f∼D,M∼Drow

(f(Mx) = 1) + θ2 · ρmin(F).

(As ‖Dperm −Drow‖tv ≤ θ2 · ρmin(F))

Now, let D′ be the distribution over Zq that samples a uniformly random i ∈ [n] and outputs xi.
Observe that distribution of Mx when M ∼ Drow is the same as D′k. We get:

Pr
Ψ′∼NCSP

(fi(Mix) = 1) ≤ Pr
f∼D
a∼D′k

(f(a) = 1) + θ2 · ρmin(F)

≤ ρmin(F) ·
(
1 + θ2

)
. (Eq. (4.5))

Claim 4.8. We have:
Pr

Ψ′∼NCSP
(valΨ′ > ρmin(F) + ε) ≤ θ2.

Proof. Note that:

Pr
Ψ′∼NCSP

(valΨ′ > ρmin(F) + ε) ≤ Pr
Ψ′∼NCSP

(
∃x ∈ Znq : valΨ′(x) > ρmin(F) + ε

)
(Eq. (2.5))

≤ qn · max
x∈Znq

Pr
Ψ′∼NCSP

(valΨ′(x) > ρmin(F) + ε) (Union bound)

≤ qn · max
x∈Znq

Pr
Ψ∼N Str

(
valClean(Ψ)(x) > ρmin(F) + ε

)
.

To finish the proof, we now fix an arbitrary x ∈ Znq and upper bound the probability term above.

We shall omit writing Ψ ∼ N Str for brevity of notation. Note that valClean(Ψ)(x) > ρmin(F) + ε

implies by our choice of θ that either Clean(Ψ) has at most
(
1− θ2

)
· q−k · αTn constraints or it

has at least
(
1 + θ2

)
· (ρmin(F) + ε/2) · q−k · αTn that are satisfied by x. For all i ∈ [αTn], define

25



indicator random variables Xi and Yi such that Xi is 1 if and only if z(i) = 0k and Yi is 1 if and
only if Xi = 1 and fi(Mix) = 1. We get using a union bound:

Pr
(
valClean(Ψ)(x) > ρmin(F) + ε

)
≤ Pr

 ∑
i∈[αTn]

Xi ≤
(
1− θ2

)
· q−k · αTn


+ Pr

 ∑
i∈[αTn]

Yi ≥
(
1 + θ2

)
· (ρmin(F) + ε/2) · q−k · αTn

.
It is therefore sufficient to bound the probability terms on the right. We will do this using Chernoff
bounds. We first claim that the random variables Xi are mutually independent and so are the
random variables Yi. For this, note that both these random variables are determined by the
triple (fi,Mi, z(i)) and (1) For each i ∈ [αTn], the triple (fi,Mi, z(i)) is independent of x∗. This is
because, in the distribution N Str, the vector sampled in Item 1d is uniform over Zkq . (2) Conditioned
on x∗, the triples (fi,Mi, z(i)) are mutually independent. This can be observed from Definition 4.1.

Next, we analyze Pr(Xi = 1) and Pr(Yi = 1) for i ∈ [αTn]. For the former, we simply observe
from Item 1d that Pr(Xi = 1) = q−k. For the latter, we have from the definition of Yi that:

Pr(Yi = 1) = Pr
(
fi(Mix) = 1 ∧ z(i) = 0k

)
= Pr(fi(Mix) = 1 ∧ b(i) = Mix

∗) (Item 1e)

= q−k · Pr(fi(Mix) = 1) (Item 1d)

≤ q−k · ρmin(F) ·
(
1 + θ2

)
(Claim 4.7)

≤ q−k · (ρmin(F) + ε/2). (Claim 4.7)

We can now use Chernoff bounds to get:

Pr
(
valClean(Ψ)(x) > ρmin(F) + ε

)
≤ 2−θ

5·q−k·αTn + 2−θ
5·(ρmin(F)+ε/2)·q−k·αTn ≤ θ2 · q−n,

by our choice of T and θ.

Define NCSP
good to be the same as the distribution NCSP conditioned on the event in Claim 4.8

not happening. It follows that valΨ′ ≤ ρmin(F) + ε for all Ψ′ in the support of NCSP
good and that

‖NCSP
good − NCSP‖tv ≤ θ2 . Using the former, Claim 4.6, (?) and Fact 2.3, we get that there is a

deterministic streaming algorithm ALG′ with ‖ALG′‖ ≤ τ ·
√
n that distinguishes between YCSP

and NCSP
good with advantage 2 ·

(
p− 1

2

)
in the random-order streaming model. This means that∣∣∣∣∣ Pr

Ψ′∼YCSP,π∼S(|Ψ′|)

(
ALG′

(
π
(
Ψ′
))

= 1
)
− Pr

Ψ′∼NCSP
good,π∼S(|Ψ′|)

(
ALG′

(
π
(
Ψ′
))

= 1
)∣∣∣∣∣ ≥ 2θ.

Using ‖NCSP
good −NCSP‖tv ≤ θ2, we get:∣∣∣∣ Pr

Ψ′∼YCSP,π∼S(|Ψ′|)

(
ALG′

(
π
(
Ψ′
))

= 1
)
− Pr

Ψ′∼NCSP,π∼S(|Ψ′|)

(
ALG′

(
π
(
Ψ′
))

= 1
)∣∣∣∣ ≥ θ.

Next, use Corollary 2.2 to get:∣∣∣∣ Pr
Ψ′∼YCSP

(
ALG′

(
Ψ′
)

= 1
)
− Pr

Ψ′∼NCSP

(
ALG′

(
Ψ′
)

= 1
)∣∣∣∣ ≥ θ.

26



By definition of YCSP,NCSP, we have:∣∣∣∣ Pr
Ψ∼YStr

(
ALG′(Clean(Ψ)) = 1

)
− Pr

Ψ∼N Str

(
ALG′(Clean(Ψ)) = 1

)∣∣∣∣ ≥ θ.
Now consider a streaming algorithm ALG for the Generalized-Uniform-RMDF ,DY ,αT (n) problem
that goes over all triples (fi,Mi, z(i)) for i ∈ [αTn], and applies ALG′ on the triples for which
z(i) = 0k. By definition of ALG, we have∣∣∣∣ Pr

Ψ∼YStr
(ALG(Ψ) = 1)− Pr

Ψ∼N Str
(ALG(Ψ) = 1)

∣∣∣∣ ≥ θ. (4.9)

Protocol for Generalized-Uniform-RMD. We now use our algorithm ALG to define a (random-
ized) protocol Π that solves the Generalized-Uniform-RMDF ,DY ,α(n)-problem with advantage δ · α
and satisfies ‖Π‖ ≤ τ ·

√
n). To start, note that Eq. (4.9) together with the fact that HybStr(0) = YStr

and HybStr(T ) = N Str and the triangle inequality, implies there exists a t ∈ [T ] such that∣∣∣∣∣ Pr
Ψ∼HybStr(t)

(ALG(Ψ) = 1)− Pr
Ψ∼HybStr(t−1)

(ALG(Ψ) = 1)

∣∣∣∣∣ ≥ θ

T
≥ δ · α. (4.10)

Fix such a t and using it to define a Π for the Generalized-Uniform-RMDF ,DY ,α(n)-problem as in
Algorithm 5. Recall from Section 2.1.1 that notation ALG(σ, t) to denote the state of the streaming
algorithm ALG on input σ after it has processed t symbols from the stream.

Algorithm 5 The protocol Π for the Generalized-Uniform-RMDF ,DY ,α(n)-problem.

Input: Alice’s input is a vector x∗ ∈ Znq . Bob’s input is a triple (M, z,D) as in Definition 4.1.

Sampling phase:

1: Alice samples an instance ΨA from the yes distribution of the streaming version of
Generalized-Uniform-RMDF ,DY ,α(t−1)(n) conditioned on the value x∗.

2: Bob uses his input to construct ΨB,1 = (fi,Mi, z(i))i∈[αn]. Next, he samples an instance ΨB,2

from the no distribution of the streaming version of Generalized-Uniform-RMDF ,DY ,α(T−t)(n).

He appends this to ΨB,1 to get an instance ΨB =
(
ΨB,1,ΨB,2

)
.

Communication phase:

3: Alice and Bob together run ALG on the instance
(
ΨA,ΨB

)
as follows:

(a) Alice runs ALG on ΨA, and sends the final state ALG
(
ΨA, α(t− 1)n

)
to Bob.

(b) Bob receives a message M from Alice, and runs ALG on ΨB starting from the state M
and outputting what ALG outputs.

We now analyze the protocol Π and show that it solves the Generalized-Uniform-RMDF ,DY ,α(n)-
problem with advantage δ ·α. For an input Φ = (x∗, (M, z,D)) to the parties in the protocol Π, we
define ΨA(Φ) to be the random variable (over Alice’s randomness in Π) that equals the instance
sampled by Alice in Line 1. Similarly, we define ΨB(Φ) to be the random variable (over Bob’s
randomness in Π) that equals the instance sampled by Bob in Line 2. Let YCC and NCC be the
yes and no distributions in the communication version of Generalized-Uniform-RMDF ,DY ,α(n). We
show that:

27



Lemma 4.11. It holds for all instances Ψ′ that:

Pr
Ψ∼HybStr(t)

(
Ψ = Ψ′

)
= Pr

Φ∼YCC

Π∼Π

((
ΨA(Φ),ΨB(Φ)

)
= Ψ′

)
.

Pr
Ψ∼HybStr(t−1)

(
Ψ = Ψ′

)
= Pr

Φ∼NCC

Π∼Π

((
ΨA(Φ),ΨB(Φ)

)
= Ψ′

)
.

Before proving Lemma 4.11, we use it to finish the proof of Theorem 4.4 by showing that Π
solves the Generalized-Uniform-RMDF ,DY ,α(n)-problem with advantage δ ·α. As Line 3 simply runs
ALG on the sampled instance

(
ΨA(Φ),ΨB(Φ)

)
, we have:

δ · α ≤

∣∣∣∣∣ Pr
Ψ∼HybStr(t)

(ALG(Ψ) = 1)− Pr
Ψ∼HybStr(t−1)

(ALG(Ψ) = 1)

∣∣∣∣∣ (Eq. (4.10))

=

∣∣∣∣∣∣ Pr
Φ∼YCC

Π∼Π

(
ALG

((
ΨA(Φ),ΨB(Φ)

))
= 1
)
− Pr

Φ∼NCC

Π∼Π

(
ALG

((
ΨA(Φ),ΨB(Φ)

))
= 1
)∣∣∣∣∣∣

(Lemma 4.11)

=

∣∣∣∣∣∣ Pr
Φ∼YCC

Π∼Π

(Π(Φ) = 1)− Pr
Φ∼NCC

Π∼Π

(Π(Φ) = 1)

∣∣∣∣∣∣,
as desired. We now show Lemma 4.11.

Proof of Lemma 4.11. We only show the first statement as the proof for the second one is anal-
ogous. Let HybCC be the distribution obtained by first sampling a Φ ∼ YCC and then out-
putting

(
x∗,ΨA(Φ),ΨB(Φ)

)
as in the protocol Π. Viewing HybStr(t) as a distribution over(

x∗, (fi,Mi, z(i))i∈[αTn]

)
as in Definition 4.1, we shall show the stronger statement that the distri-

butions HybCC and HybStr(t) are the same. We do this in steps.

The marginal distribution of x∗ is the same. We first show that the marginal distribution
of x∗ is the same in both distributions. This is because by Definition 4.1, x∗ ∈ Znq is uniformly
random in both cases.

Conditioned on x∗, the marginals {(fi,Mi, z(i))}i∈[αTn] are mutually independent. For

the case of HybStr(t), this follows immediately from Definition 4.1. Thus, we only analyze the case
of HybCC. In this case, note first from Lines 1 and 2 that conditioned on x∗ the three marginals
corresponding to:

(fi,Mi, z(i))0<i≤α(t−1)n (fi,Mi, z(i))α(t−1)n<i≤αtn (fi,Mi, z(i))αtn<i≤αTn,

are mutually independent. This is because conditioned on x∗, the second vector above is Bob’s
input in Π that Alice does not need to see to sample the first vector in Line 1, and also because the
third vector is what Bob samples in Line 2, for which he does not need to see anything (including
his input). Thus, it is enough to show that the marginal distribution of all the coordinates in each
of the three vectors above are mutually independent conditioned on x∗.

For the first two vectors, this is because of Definition 4.1. For the third vector, this is also
because of Definition 4.1 and the fact that in the no distribution of Generalized-Uniform-RMD, the
triples (fi,Mi, z(i)) are independent and identically distributed.

28



For all i ∈ [αTn], the marginal distribution of (fi,Mi, z(i)) conditioned on x∗ is the
same. For 0 < i ≤ α(t − 1)n, this is because of the way Alice samples her ΨA in Line 1. For
α(t − 1)n < i ≤ αtn, this is by definition of YCC. For αtn < i ≤ αTn, this is because of the way
Bob samples his ΨB,2 in Line 2. Note that in this case as b(i) is chosen uniformly from Zkq , the
marginal distribution is actually independent of x∗.

5 Proof of Theorem 4.3

In this section we prove that the Generalized-Uniform-RMD communication problem arising from
(F ,DY ) cannot be solved with non-trivial advantage using o(

√
n) communication. The central

element in the proof is to look at the distribution of Bob’s input z conditioned on Alice’s message
and the matrix M , and to argue that the distributions are close in the YES and NO cases. By
definition, the distribution in the NO case is uniform over Zkmq and so what needs to be really
shown is that in the YES case also this distribution is close to uniform.

Note that Alice’s message specifies a set A ⊆ Znq such that x∗ ∼ Unif(A). Lemma 5.2 roughly
relates the distance of the conditional distribution of z (in the YES case) to the Fourier spectrum of
the indicator of the set A and to a somewhat complex combinatorial parameter associated with the
random hypergraph described by M (see Eq. (5.1)). More precisely Lemma 5.2 bounds this distance
provided M is “cycle-free” according to a natural notion of cycle-freeness for hypergraphs that we
introduce below. We then state two lemmas upper-bounding the expectation of the combinatorial
parameter (Lemma 5.3) and the probability of a cycle (Lemma 5.4), whose proofs are deferred to
Section 6. We use these bounds to complete the proof of Theorem 4.3.

The proof outline described above follows the same structure as that of [KKS15] with two sig-
nificant differences. First, the definition of cycle-freeness is different in our work and this difference
has a quantitative effect in that the probability of being cycle-free increases to Θ(α2) in our set-
ting compared to Θ(α3) in their work. This difference is significant in the context of “non-trivial
advantage”. Directly following the proof in [KKS15] would have led to a Θ(α) advantage and we
make some changes in the proof of Theorem 4.3 to show that despite the higher probability of
cycle-freeness, protocols with non-trivial advantage require Ω(

√
n) communication. The second

difference is in the combinatorial quantity of interest which sees differences due to the higher values
of k and q, and the richness of the distributions DY that we need to handle. The analysis of the
combinatorial quantity is also more complex and we describe the differences in the next section.

5.1 Indististinguishability via Fourier Analysis

Conditioned on a set A ⊂ Znq of x∗’s corresponding to an Alice message, a k-hypergraph M ∈
{0, 1}kαn×n, and a vector D = ((f1, D1), . . . , (fm, Dm)) ∈ (F ×∆unif(Zkq ))m, let ZA,M,D ∈ ∆(Zkαnq )
denote the conditional distribution of Bob’s input z in the YES case, i.e.,

ZA,M,D(z) = Pr
x∗∼U(A),b∼D1×···×Dm

[z = Mx∗ − b].

For a k-hypergraph G, let cf(G) denote the event that G is cycle-free in the sense that its point-

hyperplane incidence graph BG contains no cycles. Let S6=1
def
= {s ∈ (Zkq )αn : ∀i ∈ [αn], ‖s(i)‖0 6= 1}.

29



Then for ` ∈ [n], we define the quantity

hk,α(`, n)
def
= max

v∈Znq ,‖v‖0=`

(
E

M∼Gk,α(n)

[
1cf(M) ·

∣∣∣{s ∈ S6=1 : M>s = v
}∣∣∣]) . (5.1)

Lemma 5.2 (Fourier-analytic reduction). Fix n ∈ N, α ∈ (0, 1/100k), and a vector

D = ((f1, D1), . . . , (fm, DM )) ∈ (F ×∆unif(Zkq ))m.

Then

E
M∼Gk,α(n)

[1cf(M) · ‖ZA,M,D − U(Zkαnq )‖2tv] ≤ q2n

|A|2
kαn∑
`=1

hk,α(`, n)W`[1A]

where hk,α(`, n) is defined as in Eq. (5.1).

Proof. Fix s 6= 0 ∈ Zαknq and let D = D1 × · · · ×Dm. We have

ẐA,M,D(s) =
1

qαkn

∑
z∈Zkαnq

ZA,M,D(z)ω−s·z (definition of ẐA,M,D)

=
1

qαkn

∑
z∈Zkαnq

(
E

x∗∼A,b∼D
[1z=Mx∗−b]

)
ω−s·z (definition of ZA,M,D)

=
1

qαkn
E

x∗∼A,b∼D
[ω−s·(Mx∗−b)] (linearity of expectation)

=
1

qαkn

(
E

x∗∼A
[ω−s·(Mx∗)]

)( αn∏
i=1

(
E

b(i)∼Di
[ωs(i)·b(i)]

))
. (independence and linearity)

Now if s 6∈ S6=1, there exists i such that ‖s(i)‖0 = 1, so for some j ∈ [k], s(i)j 6= 0 while
s(i)j′ = 0 for all j′ 6= j. Thus, we have Eb(i)∼Di [ω

s(i)·b(i)] = ωs(i)j Eb(i)∼Di [ω
b(i)j ] = 0 because b(i)j

is uniformly distributed on Zq by one-wise independence of Di, and so ẐA,M,D(s) = 0. Otherwise,
using the trivial upper bound

∣∣Eb(i)∼Di [ω
s(i)·b(i)]

∣∣ ≤ 1, we have

|ẐA,M,D(s)| ≤ 1

qkαn

∣∣∣∣ E
x∗∼A

[ω−s·(Mx∗)]

∣∣∣∣
=

1

qkαn

∣∣∣∣ E
x∗∼A

[ω−(M>s)·x∗ ]

∣∣∣∣ (adjointness)

=
qn

qαkn|A|
|1̂A(M>s)|. (definition of 1̂A)

Thus, by Lemma 2.15 and taking expectation over M , we have

E
M∼Gk,α(n)

[1cf(M) · ‖ZA,M,D − U(Zmq )‖2tv] ≤ q2n

|A|2
∑

s 6=0∈S 6=1

E
M∼Gk,α(n)

[|1̂A(M>s)|2].

Rewriting as a sum over v = M>s gives exactly the desired inequality.

30



5.2 Properties of random hypergraphs

Now we state two lemmas about the distribution Gk,α(n) which we will prove in Section 6 below:

Lemma 5.3. For all 2 ≤ q, k ∈ N, there exists ch <∞ and α0 > 0 such that for all α ∈ (0, α0),

hk,α(`, n) ≤
(
ch`

n

)`/2
.

Lemma 5.4. For every k ≥ 2, there exists ccf < ∞ and α0 ∈ (0, 1) such that for all n ≥ k and
α ∈ (0, α0),

Pr
G∼Gk,α(n)

[¬cf(G)] ≤ cα2.

5.3 Putting the ingredients together

Modulo these lemmas, we can now prove Theorem 4.3:

Proof of Theorem 4.3. Suppose Alice and Bob use a one-way communication protocol Π for
Generalized-Uniform-RMDq,k,F ,DY ,α which uses at most s = τ

√
n communication and achieves ad-

vantage greater than αδ, where τ is a constant to be determined later. By Yao’s principle [Yao77],
we may assume WLOG that Π is deterministic and that, from Bob’s perspective, Alice’s message
partitions the set of possible x∗’s into sets {Ai ⊆ Znq }i∈[2s].

Conditioned on a fixed set A ⊆ Znq , we can view Bob’s input (M, z,D) in both the YES and
NO cases as being sampled by the following process: We sample M ∼ Gk,α(n) and D ∼ DαnY , and
then sample z either uniformly from U(Zkαnq ) in the NO case or from the conditional distribution
ZA,M,D in the YES case. Thus, Π achieves advantage at most

δA
def
= E

M∼Gk,α(n),D∼DαnY
[‖ZA,M,D − U(Zkαnq )‖tv].

Letting A denote the distribution which samples each Ai w.p. |Ai|/qn, we have

αδ ≤ E
A∼A

[δA]. (5.5)

Our goal is to contradict Eq. (5.5) for a sufficiently small choice of τ . We set τ = 2τ ′, where
τ ′ > 0 is to be determined later, and let s′ = τ ′

√
n. Also, let δ′ = αδ

2 , and let α0 be the minimum

of δ
2ccf

and the α0’s from Lemmas 5.3 and 5.4. Since α ≤ α0, we have ccfα
2 + δ′ ≤ αδ, so Eq. (5.5)

implies

ccfα
2 + δ′ ≤ E

A∼A
[δA]. (5.6)

A “typical” A ∼ A is large, so to contradict Eq. (5.6), we want to show that δA is small for large
A. Indeed, since s′ < s− logq(2/δ

′) (for sufficiently large n), we have PrA∼A[|A| ≤ qn−s′ ] ≤ δ′

2 , and

it therefore suffices to prove that if |A| ≥ qn−s′ , then δA ≤ cα2 + δ′

2 .

Let A ⊆ Znq with |A| ≥ qn−s
′
. Conditioning on cf(M) and using Jensen’s inequality and

Lemma 5.4, we have

δA ≤ Pr[¬cf(M)] + E
M∼Gk,α(n)

[1cf(M) · ‖ZA,M,D − U(Zkαnq )‖tv]

≤ ccfα
2 +

√
E

M∼Gk,α(n)
[1cf(M) · ‖ZA,M,D − U(Zkαnq )‖2tv]. (5.7)

31



Now we apply Lemma 5.2:

E
M∼Gk,α(n)

[1cf(M) · ‖ZA,M,D − U(Zkαnq )‖2tv] ≤ q2n

|A|2
kαn∑
`=1

hk,α(`, n)W`[1A]

We split the sum at ` = 4s′, using Lemma 2.14 for the first term and Parseval’s identity (Proposi-
tion 2.13) for the second:

=
q2n

|A|2
4s′∑
`=1

hk,α(`, n)W`[1A] +
q2n

|A|2
kαn∑
`=4s′

hk,α(`, n)W`[1A]

≤
4s′∑
`=1

hk,α(`, n)

(
ζs′

`

)`
+
q2n

|A|2
max

4s′≤`≤kαn
hk,α(`, n)

Since |A| ≥ qn−s′ and s′ = τ ′
√
n:

≤
4s′∑
`=1

hk,α(`, n)

(
ζτ ′
√
n

`

)`
+ q2s′ max

4s′≤`≤kαn
hk,α(`, n)

Applying Lemma 5.3 and s′ = τ ′
√
n:

≤
4s′∑
`=1

(
ζτ ′
√
ch
)`

+
(
16chq(τ

′)2
)2s′

where ch is the constant from Lemma 5.3. Upper-bounding with a geometric series and using the
fact that s′ ≥ 1 for sufficiently large n:

≤
∞∑
`=1

(
ζτ ′
√
ch
)`

+ 16chq(τ
′)2

=
ζτ ′
√
ch

1− ζτ ′√ch
+ 16cq(τ ′)2

Finally, we set τ ′ > 0 sufficiently small such that both of these terms are at most (δ′)2

4 . So plugging
in to Eq. (5.7) we get:

δA ≤ ccfα
2 +

δ′

2
,

as desired.

Remark. Even a weaker bound in Lemma 5.3 of (ch`
2/n)`/2 would have sufficed for us to prove

Theorem 4.3. On the other hand, we also note that the lemma can be strengthened even further and
our proof could actually yield any ch > 0 by choosing α0 small enough. We omit this optimization
in Section 6.

6 Hypergraph analyses

In this section we analyze the quantities of interest in random hypergraphs. In Section 6.1 we
analyze the probability that a random hypergraph has a cycle — this analysis is straightforward
(and included mainly for completeness). In Section 6.2 we analyze the quantity hk,α(`, n) which
takes more work. An overview is included in the beginning of Section 6.2.

32



6.1 Proving Lemma 5.4: Upper-bounding the probability of cycles

Proposition 6.1. Let 2 ≤ k ≤ n ∈ and α ∈ (0, 1). For every u, v ∈ [n] and j ∈ [αn],

Pr
G∼Gk,α(n)

[u, v ∈ e(j)] =

(
k
2

)(
n
2

) ,
where G has hyperedges e(1), . . . , e(αn).

Proof. By definition, e(j) is a uniformly random k-tuple of distinct vertices in [n]. Consider the
following equivalent process for sampling e(j): Let e′ = (e′1, . . . , e

′
n) be a uniformly random per-

mutation of [n], and then set e(ji) = (e′1, . . . , e
′
k). We wish to bound the probability that u and v

both occur in the first k positions in e′; there are
(
n
2

)
equiprobable pairs of indices at which they

can occur,
(
k
2

)
of which satisfy the desired property.

Proof of Lemma 5.4. First, fix ` ≥ 2. Let G have hyperedges (e(1), . . . , e(αn)). Fix a sequence
(v1, . . . , v`) ∈ [n]k of distinct vertices and (j1, . . . , j`) ∈ [αn]k of distinct edge-indices. Consider the
event C that (v1, . . . , v`) and (e(j1), . . . , e(j`)) form a cycle in G ∼ Gk,α(n). Let Ei denote the event
that vi, vi+1 ∈ e(ji) (for i ∈ [` − 1]) or vn, v1 ∈ e(j`) (for i = `). We have C = E1 ∧ · · · ∧ E`, and
since each edge e(ji) is selected independently, E1, . . . , E` are independent. Thus, we can apply
Proposition 6.1 to each Ei to conclude that

Pr[C] =

((
k
2

)(
n
2

))` ≤ (k
n

)2`

.

Now there are
(
n
`

)
`! ≤ n` sequences (v1, . . . , v`) and

(
αn
`

)
`! ≤ (αn)` sequences (j1, . . . , j`); union

bounding over all, we have

Pr
G∼Gk,α(n)

[G contains a cycle of length `] ≤ n`(αn)`
(
k

n

)2`

= (k2α)`.

Now we set α0 = 1
2k2 , take a union bound over `, and use the geometric series formula:

Pr
G∼Gk,α(n)

[¬cf(G)] ≤
n∑
`=2

(k2α)` ≤
∞∑
`=2

(k2α)` =
(k2α)2

1− k2α
≤ 2k4α2.

Taking ccf = 2k4 is thus sufficient.

6.2 Proving Lemma 5.3: Upper-bounding hk,α(`, n)

In what follows we fix a vector v ∈ Znq with support U ⊆ [n] and upper bound the quan-

tity EM∼Gk,α(n)

[
1cf(M) ·

∣∣{s ∈ S6=1 : M>s = v
}∣∣]. For M ∈ supp(Gk,α(n)) let X(M) = 1cf(M) ·∣∣{s ∈ S6=1 : M>s = v

}∣∣ so that the quantity of interest is EM∼Gk,α(n) [X(M)]. To analyze this ex-
pectation, first in Proposition 6.2 we give combinatorial conditions on M under which X(M) = 0.
Further we give a simpler upper bound on X(M) in terms of the connected component structure of
M when X(M) is potentially non-zero. Roughly, this proposition bounds X(M) by some function
of the size of the connected components of M that are incident to the set U . Lemmas 6.3 to 6.6
then analyze the probability that the components have large size. The resulting bounds are put
together to prove Lemma 5.3 at the end of this section.

33



We now turn to proving Lemma 5.3. Throughout this section, the vertex-hyperedge incidence
graph B = BM corresponding to a k-hypergraph M (from Section 6) will be the central object of
interest. While we refer to vertices of M as “vertices”, the vertices of B are referred to as either
“left vertices” (corresponding to vertices of M) or “right vertices” (corresponding to hyperedges
of M). Similarly we use “hyperedges” to refer to edges of M and “edges” to refer to edges of B.
In this interpretation, the i-th hyperedge e(i) of M is the neighborhood of the i-th right vertex of
B. Thus, sampling a random hypergraph M ∼ Gk,α(n) is equivalent to sampling B by setting each
right vertex’s neighborhood to be a uniform and independent subset of k left vertices. The vector
v can be viewed as a Zq-labelling of the left vertices of B, while the vector s is a Zq-labelling of
B’s edges. The condition s ∈ S6=1 means that no right-vertex of B has degree exactly one, and
the condition M>s = v implies that the left vertices of B are each labelled by the sum (modulo
q) of the labels of incident edges of B. The condition that U is the support of v implies that U is
exactly the set of left vertices with non-zero labels.

Now consider the connected component decomposition ofB, which induces a partition V1, . . . , Vt′

of B’s left vertices [n]. Since U ⊆ [n] is a subset of B’s left vertices, B’s partition of [n] further
induces a partition of U into subsets U1, . . . , Ut for t ≤ t′. (This partition is given by intersecting
each Vi with U and throwing it away if the intersection is empty. Thus, each component Ui of U
is contained in a single connected component of B.)

Note that this partition (given U and B) is essentially unique up to renaming of the parts. We
formalize this as follows. We say that U1, . . . , Ut is a canonical partition of U if each Ui contains the
least numbered vertex of U that is not contained in ∪j<iUj . (Note that every partition U1, . . . , Ut
can be converted into a canonical one by renumbering the parts. Furthermore given U and B
this partition is unique.) We let cc-part(B,U), for “connected component partition”, denote this
canonical partition of U induced by B. We say that B partitions U into t connected components if
cc-part(B,U) has t parts.

Given a subset U ′ ⊆ U contained in a unique connected component of B, we say it has L-type `
if ` = |U ′|, and R-type r if the connected component of B containing U ′ has exactly r right vertices.
These numbers satisfy the inequality ` ≤ kr since every left vertex must touch at least one right
vertex. More generally, if B partitions U into connected components cc-part(B,U) = (U1, . . . , Ut),
we say cc-part(B,U) is of L-type (`1, . . . , `t) if `i = |Ui| for every i ∈ [t]. We say cc-part(B,U) is valid
if `i ≥ 2 for every i. We say cc-part(B,U) is of R-type (r1, . . . , rt) if in B, the connected component
containing Ui has exactly ri right vertices for every i ∈ [t], and cc-part(B,U) is of R-total-type r if∑

i∈[t] ri = r.
The following proposition fixes a graph M and give conditions on when the quantity 1cf(M) ·∣∣{s ∈ S6=1 : M>s = v

}∣∣ is non-zero; moreover, when it is non-zero, we give an upper bound on it.

Proposition 6.2. For a fixed v ∈ Znq with support U ⊆ [n] and a fixed k-hypergraph M , the

quantity 1cf(M) ·
∣∣{s ∈ S 6=1 : M>s = v

}∣∣ is non-zero only if M is cycle-free, and cc-part(B,U) is
a valid partition. Furthermore, for every r ∈ N, if M is cycle-free and cc-part(B,U) is a valid
partition of R-total-type r, we have 1cf(M) ·

∣∣{s ∈ S 6=1 : M>s = v
}∣∣ ≤ qkr.

Proof. For the quantity 1cf(M) ·
∣∣{s ∈ S 6=1 : M>s = v

}∣∣ to be non-zero, clearly it is necessary that
M is cycle-free, which is equivalent to requiring that B is acyclic.

Fix s ∈ S6=1 with M>s = v. Let B 6= be the subgraph of B consisting of the edges with non-zero
labels. Recall that we view v and s as Zq-labelings of B’s left vertices and edges, respectively, such
that the sum of edge labels at every left vertex equals the vertex’s label (in Zq). Thus, every left
vertex which has degree zero in B 6= must be labelled 0. Thus, every vertex of U = supp(v) must
have degree at least 1 in B 6=, and conversely, defining a leaf of B 6= as a vertex with degree exactly
1 in B 6=, we see that every left vertex which is a leaf of B 6= must be in U .

34



Now the condition s ∈ S6=1 implies that no right vertex is a leaf in B 6=. Fix a vertex j ∈ U .
By the previous paragraph, j has degree at least 1 in B 6=. Now consider the connected component
of j in B6=. This component is a tree (since B is acyclic and B 6= is a subgraph of B), and so it
must have at least two leaves. Since right vertices cannot be leaves in S6=, these leaves must be
left vertices. At most one of these leaves can be j, so it follows that the component containing j
in B6= must contain at least one more vertex of U . Thus, the component containing j in B, which
is a superset of j’s component in B6=, must also contain at least one more vertex of U . Since this
holds for every j ∈ U , it follows that U is partitioned into connected components by B with each
component containing at least two vertices. In other words, cc-part(B,U) is a valid partition of U .

We now turn to bounding the number of vectors s satisfying s ∈ S6=1 and M>s = v assuming
M is cycle-free and cc-part(B,U) is a valid partition of U . Consider a right vertex of B whose
connected component does not contain any vertex of U . We claim that all edges of B in this
connected component must have a label of zero: this is so since if there is an edge with a non-zero
label, the component of B 6= containing this edge must have a leaf, but all of B6=’s leaves are in U .
We thus conclude that only edges of B from components containing vertices of U can have non-zero
labels. By definition of R-total-type we have that the number of right vertices of B in components
containing vertices of U is r, and so the number of edges of B in components containing vertices of
U is at most kr. It follows that the number of vectors s satisfying s ∈ S6=1 and M>s = v (assuming
B is cycle-free and cc-part(B,U) is a valid partition of U) is at most qkr.

Now, we prove several lemmas regarding the probability of a random graph M partition-
ing sets in various ways, building towards Lemma 6.6 below which bounds the probability that
cc-part(BM , U) is a valid partition of R-total-type r.

Lemma 6.3. Let n/2+1 ≤ n′ ≤ n and α ∈ (0, 1). Let M ∼ Gk,α′(n′) for α′ = αn/n′ and B = BM .
Then for every u ∈ [n′],

Pr
M

[B places u in a component of R-type at least r1] ≤ (2ek2α)r1 .

Proof. Let B’s right vertices have neighborhoods e(1), . . . , e(αn) (corresponding to M ’s hyper-
edges). For fixed j ∈ [αn], the probability that u ∈ e(j) is exactly k/n′. Thus, the probability that
there exists j ∈ [αn] such that u ∈ e(j) is at most αnk/n′ ≤ 2kα ≤ 2k2α.

Now, condition on the event that there exists j1 ∈ [αn] such that u ∈ e(j1). We bound the
probability that there exist r1 − 1 additional right vertices in B forming a connected component
with j1. For this to happen there must exist a set of distinct right vertices {j2, . . . , jr1} ⊆ [αn] and
a spanning tree T on {j1, . . . , jr1} such that if (ji, ji′) ∈ T then their neighborhoods intersect, i.e.,
e(ji)∩e(ji′) 6= ∅ (or, in M , the hyperedges e(ji) and e(ji′) share a common vertex). For a fixed set
{j2, . . . , jr1} and spanning tree T , this occurs with probability at most (2k2/n)r1−1, since we can do
a “depth-first search” on T : Each new right vertex’s neighborhood is selected independently of all
previous neighborhoods, and intersects its parent’s neighborhood with probability k2/n′ ≤ 2k2/n.

Now, we do a union bound over all possible subsets {j2, . . . , jr1} and spanning trees T . There
are

(
αn
r1−1

)
possible subsets and rr1−1

1 spanning trees. Thus the probability that there exists a
connected component of R-type r1 including j1 is at most(

αn

r1 − 1

)
· rr1−1

1 · (2k2/n)r1−1 ≤
(

2ek2αr1

(r1 − 1)

)r1−1

≤ er1(2ek2α)r1−1.

Factoring in the probability that there exists a right vertex j1 connecting to u gives the desired
conclusion.

35



Lemma 6.4. Let α ≤ 1/(2e3k2), n/2 + 1 ≤ n′ ≤ n and r1 ∈ N. Fix a set U1 ⊆ [n′] with |U1| = `1.
Let M ∼ Gk,α′(n′) for α′ = αn/n′ and let B = BM . Then

Pr
M

[B partitions U1 into a single connected component of R-type r1] ≤ (2ek2α)r1/2(2k(`1−1)/n)`1−1.

Proof. We first upper bound the LHS above by (2ek2α)r1(k2r1/n)`1−1, and then show that this is
upper bounded by the RHS for α ≤ 1/(2e3k2).

Let B’s right vertices have neighborhoods e(1), . . . , e(αn). Fix a left vertex u ∈ U1. We
condition on the event that, as in the previous lemma (Lemma 6.3), when B partitions [n]′, the
connected component containing u has R-type r1. We now bound the probability that the rest of
U1 is contained in this same component. Let S ⊆ [n′] be the set of left vertices in the connected
component containing u. Since this component has R-type r1, we have |S| ≤ kr1. Our goal is
to analyze the probability that U1 \ {u} ⊆ S. Since the conditioning is symmetric with respect
to renaming the vertices of U1 \ {u}, we can instead consider the probability that `1 − 1 random

independent left vertices are in S. There are
( |S|
`1−1

)
ways of choosing `1 − 1 vertices in S, out of

the possible universe of
(
n′−1
`1−1

)
≥
( n/2
`1−1

)
ways of choosing `1 − 1 vertices. We thus get that the

probability that U1 \ {u} ⊆ S is at most( |S|
`1−1

)( n/2
`1−1

) ≤ (2|S|
n

)`1−1

≤
(

2kr1

n

)`1−1

.

Combining this bound with the result of Lemma 6.3, we get that the probability that U1 is in
a connected component of R-type r1 is at most

(2ek2α)r1
(

2kr1

n

)`1−1

.

To conclude we need to show that the expression above is upper bounded by the RHS in the
statement of the claim.

We consider two cases. If r1 ≤ `1 then the bound is immediate assuming 2ek2α ≤ 1 since we
have

(2ek2α)r1
(

2kr1

n

)`1−1

≤ (2ek2α)r1
(

2k`1
n

)`1−1

≤ (2ek2α)r1/2
(

2k`1
n

)`1−1

.

When r1 > `1 we note that the expression axxb is non-increasing in x for integer x ≥ b and a ≤ 1/e
and hence is upper bounded by (ab)b ≤ bb. (Incrementing x by 1 multiplies the first term by a ≤ 1/e
while multiplying the second term by (1 + 1/x)b ≤ (1 + 1/b)b ≤ e.) We thus get

(2ek2α)r1
(

2kr1

n

)`1−1

= (2ek2α)r1/2(2ek2α)r1/2
(

2kr1

n

)`1−1

≤ (2ek2α)r1/2
(

2k(`1 − 1)

n

)`1−1

.

(The first inequality above applies axbx ≤ bb when a ≤ 1 and x ≤ b, x = r1, a = (2k2α)1/2, and
b = `1 − 1.) This concludes the proof of the lemma.

Lemma 6.5. Let α ≤ 1(2e3k2) and n ≥ 4. Fix r ∈ N, a set U ⊆ [n] and a canonical partition
U1, . . . , Ut of U . Let ` = |U | and `i = |Ui|. Let M ∼ Gk,α(n). We have

Pr[cc-part(B,U) = (U1, . . . , Ut) with R-total-type r] ≤ (32ek2α)r/2(2k/n)`−t
t∏
i=1

(`i − 1)`i−1.

36



Proof. Fix r1, . . . , rt such that
∑

i ri = r. For every i ∈ [t] we claim that conditioned on U1, . . . , Ui−1

being the first i − 1 components in the canonical partition cc-part(B,U) of U induced by B, the
probability that Ui is the i-th component and has R-type ri is at most (2ek2α)ri/2(2k(`i−1)/n)`i−1.
This follows essentially immediately from Lemma 6.4.

Indeed, observe that conditioned on U1, . . . , Ui−1 being the first i−1 components of the canonical
partition induced by cc-part(B,U), B is “random on the remaining vertices”, i.e., the neighborhood
of every remaining right vertex is a uniform and independent subset of k remaining left vertices,
where “remaining” means not in any of the connected components containing U1, . . . , Ui−1. Let n′

denote the number of remaining left vertices. We have n′ ≥ n/2 + 1 since the total number of right
vertices of B is αn, each touches k left vertices, and kαn ≤ n/2−1 for every n ≥ 4 and α ≤ 1/(4k).
Thus we can apply Lemma 6.4 to the remaining hypergraph which has at most αn edges and n′

vertices. We conclude that the probability that Ui is the i-th component in cc-part(B,U) and has
R-type ri is at most (2ek2α)ri/2(2k(`i − 1)/n)`i−1.

Taking the product of these conditional probabilities, it follows that the probability that
(U1, . . . , Ut) is the partition of U induced by B and has R-type (r1, . . . , rt) is at most

t∏
i=1

(2ek2α)ri/2(2k(`i − 1)/n)`i−1 = (2ek2α)r/2(2k/n)`−t
t∏
i=1

(`i − 1)`i−1.

Finally to conclude the lemma we take a union bound over all possible ways of obtaining ri’s that
sum to r. There are at most

(
r+t
t

)
≤ 4r such ways and thus we get that:

Pr[cc-part(B,U) = (U1, . . . , Ut) and has R-total-type r] ≤ 4r · (2ek2α)r/2(2k/n)`−t
t∏
i=1

(`i − 1)`i−1

= (32ek2α)r/2(2k/n)`−t
t∏
i=1

(`i − 1)`i−1.

Lemma 6.6. Let α ≤ 1(2e3k2), n ≥ 4 and ` ≤ n/(4ek). Fix r ∈ N, a set U ⊆ [n] with |U | = `.
Let M ∼ Gk,α(n) and B = BM . Then

Pr
M

[cc-part(B,U) is valid and has R-total-type r] ≤ 2(32ek2α)r/2(32ek`/n)`/2.

Proof. The lemma follows by using Lemma 6.5 and a union bound of all valid canonical partitions
of U . Fix t and `1, . . . , `t such that

∑
i `i = ` and `i ≥ 2 for all i. Let N(`1, . . . , `t) denote the

number of canonical partitions of U of L-type (`1, . . . , `t). We have:

N(`1, . . . , `t) =

(
`− 1

`1 − 1

)
·
(
`− `1 − 1

`2 − 1

)
· · ·
(
`− (

∑
i<t `i)− 1

`t − 1

)
≤ ``−t∏t

i=1(`i − 1)!
≤ (e`)`−t∏t

i=1(`i − 1)`i−1

For every such partition U1, . . . , Ut of L-type (`1, . . . , `t), Lemma 6.5 gives an upper bound on the
probability that the canonical partition of U under B is U1, . . . , Ut and has R-total-type r. Taking
the union over all such U1, . . . , Ut we get:

Pr
M

[cc-part(B,U) is of R-total-type r and of L-type(`1, . . . , `t)]

≤ N(`1, . . . , `t) · (32ek2α)r/2(2k/n)`−t
t∏
i=1

(`i − 1)`i−1

37



≤ (e`)`−t · (32ek2α)r/2(2k/n)`−t

≤ (32ek2α)r/2(2ek`/n)`−t

To conclude the lemma we need to take a union bound over all (`1, . . . , `t) that are valid. The
number of these is at most 4` for any give t. Furthermore we have t ≤ `/2 since `i ≥ 2 for every i.
We conclude

Pr
M

[cc-part(B,U) is valid of R-total-type r] ≤
`/2∑
t=1

4`(32ek2α)r/2(2ek`/n)`−t

≤ 2 · 4`(32ek2α)r/2(2ek`/n)`/2

= 2(32ek2α)r/2(32ek`/n)`/2.

We are now ready to prove Lemma 5.3.

Proof of Lemma 5.3. We prove the lemma for α0 = 1/(128e3k2q2k) and ch = 128ek.
Fix v ∈ Znq with support U of cardinality `. Let B = BM . By Proposition 6.2 we have that

1cf(M) ·
∣∣{s ∈ S6=1 : M>s = v

}∣∣ is zero unless M is cycle-free and cc-part(B,U) is a valid partition.
If cc-part(B,U) is a valid partition it must have R-total-type r for some r ≤ αn. But since every
vertex in U has nonzero degree in B, we must also have r ≥ `/k. For any given r in this range,
by Lemma 6.6 we have that cc-part(B,U) is a valid partition of R-total-type r with probability at
most 2(32ek2α)r/2(32ek`/n)`/2. Conditioned on this event we have (again from Proposition 6.2)
that 1cf(M) ·

∣∣{s ∈ S 6=1 : M>s = v
}∣∣ ≤ qkr. Combining these expressions we have that

E
M∼Gk,α(n)

[
1cf(M) ·

∣∣∣{s ∈ S6=1 : M>s = v
}∣∣∣]

≤
αn∑

r=`/k

2qkr(32ek2α)r/2(32ek`/n)`/2

≤
∞∑

r=`/k

2(32ek2q2kα)r/2(32ek`/n)`/2

≤ 4(32ek2q2kα)`/2k(32ek`/n)`/2,

where the final inequality uses the fact that for α ≤ α0 we have 32ek2q2kα ≤ 1/4 and so the sum
telescopes to at most twice the first term in the series. We simply the final expression further using
4 ≤ 4`/2 (which holds for every ` ≥ 2) and 32ek2q2kα ≤ 1 to get

hk,α(`, n)
def
= max

v∈Znq ,‖v‖0=`

(
E

M∼Gk,α(n)

[
1cf(M) ·

∣∣∣{s ∈ S 6=1 : M>s = v
}∣∣∣]) ≤ (ch`/n)`/2,

for ch = 128ek. (We note that we could have got any ch > 0 by choosing α small enough, but we
don’t seem to need this in the application of this lemma, so omit this easy step.)

38



References

[AKO11] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming Algorithms
via Precision Sampling. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science (FOCS 2011, Palm Springs, CA, USA, October 23-25, 2011), pages
363–372, October 2011.

[BHP+22] Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini
Velusamy. Sketching approximations for (some) symmetric Boolean CSPs: Closed-
form ratios and simple algorithms. February 2022.

[CGS+22] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and San-
thoshini Velusamy. Linear Space Streaming Lower Bounds for Approximating CSPs.
In Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC
2022, Rome, Italy, June 20-24, 2022), 2022. To appear.

[CGSV21a] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Ap-
proximability of all Boolean CSPs with linear sketches. February 2021.

[CGSV21b] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Ap-
proximability of all finite CSPs with linear sketches. In Proceedings of the 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2021, Denver, CO,
USA, February 7-10, 2022). IEEE Computer Society, 2021.

[CGV20] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal Streaming
Approximations for all Boolean Max-2CSPs and Max-kSAT. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS 2020, Virtual, November 16-
19, 2020), pages 330–341. IEEE Computer Society, November 2020.

[FJ15] Uriel Feige and Shlomo Jozeph. Oblivious Algorithms for the Maximum Directed Cut
Problem. Algorithmica, 71(2):409–428, February 2015.

[GT19] Venkatesan Guruswami and Runzhou Tao. Streaming Hardness of Unique Games. In
Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX 2019, Cambridge,
MA, USA, September 20-22, 2019), volume 145 of LIPIcs, pages 5:1–5:12. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, September 2019.

[GVV17] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming Com-
plexity of Approximating Max 2CSP and Max Acyclic Subgraph. In Klaus Jansen, José
D. P. Rolim, David Williamson, and Santosh S. Vempala, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques (APPROX
2017, Berkeley, CA, USA, August 16-18, 2017), volume 81 of LIPIcs, pages 8:1–8:19.
Schloss Dagstuhl — Leibniz-Zentrum für Informatik, August 2017.

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data
stream computation. Journal of the ACM, 53(3):307–323, May 2006. Conference
version in FOCS 2000.

[KK19] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approx-
imating MAX-CUT. In Proceedings of the 51st Annual ACM SIGACT Symposium

39



on Theory of Computing (STOC 2019, Phoenix, AZ, USA, June 23-26, 2019), pages
277–288. Association for Computing Machinery, June 2019.

[KKS14] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2014, Portland, OR, USA, January 5-7, 2014), pages
734–751, USA, January 2014. Society for Industrial and Applied Mathematics.

[KKS15] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for
approximating MAX-CUT. In Proceedings of the 26th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2015, San Diego, California, USA, January 4-6, 2015),
pages 1263–1282. Society for Industrial and Applied Mathematics, January 2015.

[KMNT20] Michael Kapralov, Slobodan Mitrović, Ashkan Norouzi-Fard, and Jakab Tardos. Space
efficient approximation to maximum matching size from uniform edge samples. In Pro-
ceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1753–1772. Society for Industrial and Applied Mathematics, January 2020.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. On the Exact Space Com-
plexity of Sketching and Streaming Small Norms. In Proceedings of the 2010 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010, Austin, TX, USA, Jan-
uary 17-19, 2010), pages 1161–1178. Society for Industrial and Applied Mathematics,
2010.

[MMPS17] Morteza Monemizadeh, S. Muthukrishnan, Pan Peng, and Christian Sohler. Testable
Bounded Degree Graph Properties Are Random Order Streamable. In Ioannis Chatzi-
giannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2017, Warsaw,
Poland, July 10-14, 2017), volume 80 of LIPIcs, pages 131:1–131:14. Schloss Dagstuhl
— Leibniz-Zentrum für Informatik, 2017.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New
York, NY, 1st edition edition, June 2014.

[PS18] Pan Peng and Christian Sohler. Estimating Graph Parameters from Random Or-
der Streams. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018, New Orleans, LA, USA, January 7-10, 2018). Society for
Industrial and Applied Mathematics, January 2018.

[Sin22] Noah Singer. On Streaming Approximation Algorithms for Constraint Satisfaction
Problems. Bachelor’s thesis, Harvard University, Cambridge, MA, March 2022.

[SSV21] Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation re-
sistance of every ordering CSP. In Mary Wootters and Laura Sanità, editors, Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX 2021, August 16-18, 2021), volume 207 of LIPIcs, pages 17:1–17:19. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, September 2021.

[Sud22] Madhu Sudan. Streaming and Sketching Complexity of CSPs: A survey. To appear as
invited talk at ICALP 2022, 2022.

40



[Vad12] Salil Vadhan. Pesudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[Vit85] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57, mar 1985.

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of com-
plexity. In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science (SFCS 1977, Providence, RI, USA, October 31-November 2, 1977), pages 222–
227. IEEE Computer Society, September 1977.

41
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


