
Range Avoidance for Low-depth Circuits and
Connections to Pseudorandomness

Venkatesan Guruswami * Xin Lyu† Xiuhan Wang‡

Abstract

In the range avoidance problem, the input is a multi-output Boolean circuit with more out-
puts than inputs, and the goal is to find a string outside its range (which is guaranteed to
exist). We show that well-known explicit construction questions such as finding binary linear
codes achieving the Gilbert-Varshamov bound or list-decoding capacity, and constructing rigid
matrices, reduce to the range avoidance problem of log-depth circuits, and by a further recent
reduction [Ren, Santhanam, and Wang, ECCC 2022] to NC0

4 circuits where each output depends
on at most 4 input bits.

On the algorithmic side, we show that range avoidance for NC0
2 circuits can be solved in

polynomial time. We identify a general condition relating to correlation with low-degree pari-
ties that implies that any almost pairwise independent set has some string that avoids the range
of every circuit in the class. We apply this to NC0 circuits, and to small width CNF/DNF and
general De Morgan formulae (via a connection to approximate-degree), yielding non-trivial
small hitting sets for range avoidance in these cases.

Keywords: Pseudorandomness, Explicit constructions, Low-depth circuits, Boolean function
analysis, Hitting sets.

*UC Berkeley. Email: venkatg@berkeley.edu. Research supported in part by NSF CCF-2210823 and a Simons
Investigator Award.

†UC Berkeley. Email: xinlyu@berkeley.edu.
‡Tsinghua University. Email: wangxh19@mails.tsinghua.edu.cn.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 102 (2022)

1 Introduction

We study a basic computational problem in circuit analysis called the range avoidance problem
(which we call AVOID henceforth): given the description of a multi-output Boolean circuit C map-
ping n input bits to m := m(n) > n output bits1, find a y ∈ {0, 1}m that is outside the range of C
(i.e., C(x) ̸= y for every x ∈ {0, 1}n). This is a total search problem that has been the subject of
a few recent works [KKMP21, Kor21, RSW22], which highlight its significance and connections to
central themes in computational complexity including circuit complexity, proof complexity, and
pseudorandomness.

To gain some intuition about the problem, note that AVOID can be trivially solved by a Monte
Carlo algorithm: a random guess would solve AVOID with probability 1 − 2n−m ≥ 1

2 . There
is also a straightforward ZPPNP algorithm for AVOID: the algorithm just repeatedly samples a
string y ∈ {0, 1}m and tests if y ∈ Range(C) by calling the NP oracle. Remarkably, the work by
Korten [Kor21] showed that if we can deterministically solve AVOID, then we can obtain explicit
constructions of many important objects in CS theory and mathematics, including Ramsey graphs,
two-source extractors, rigid matrices, Boolean functions hard against polynomial-size circuits, etc.
These reductions put AVOID in a central position among several notoriously hard explicit con-
struction questions that have resisted attack for decades.

In this work, we study AVOID problem for low-depth Boolean circuits (in particular, NC0 and
NC1 circuits). For every constant k ≥ 1, we say a circuit C : {0, 1}n → {0, 1}m is an NC0

k-AVOID

instance, if each output bit of C depends on at most k input bits. Similarly, we say C is an NC1
k

instance, if each output bit of C can be computed by a (k log n)-depth Boolean circuit of fan-in two.
A recent work by Ren, Santhanam and Wang [RSW22] demonstrates some attractive motivations
to study AVOID problem for these weak circuit models. In particular, they showed the following.

Theorem 1 (Theorem 5.8 of [RSW22]). Suppose there is an FP (resp. FPNP)2 algorithm for NC0
4-AVOID.

Then the following statements are true.

• For every k ≥ 1, there is an FP (resp. FPNP) algorithm for NC1
k-AVOID.

• For every ε > 0, there is a family of functions in E (resp. ENP) that does not have Boolean circuits of
depth n1−ε.

Item (1) shows that NC0
4-AVOID is as hard as NC1-AVOID. Item (2) shows that finding explicit

Boolean functions hard against low-depth circuits can be reduced to NC0
4-AVOID. Together, these

connections demonstrate that studying AVOID for weak circuit classes is already challenging and
fruitful. This suggests two new research directions to approach AVOID from above and below:
(i) we can show the “usefulness” of AVOID for “weak” circuit classes by reducing further explicit
construction problems to it, and (ii) starting from weak circuit classes such as NC0

2, we can try to
design algorithms for AVOID of increasingly powerful models. Ultimately, we aim for an AVOID

algorithm for a circuit class expressive enough to capture some elusive explicit construction ques-
tions.

1.1 Our Results

In this work, we make progress on both directions mentioned above. On the one hand, we reduce
a sample of famous explicit construction problems to NC1-AVOID. This improves the previous

1The function m(n) is called the stretch of the circuit.
2Recall that FP,FPNP are function classes analogue of the decision problem classes P,PNP.

1

results by Korten [Kor21], who only showed reductions to AVOID of general polynomial-size cir-
cuits. Reducing the explicit construction problems to NC1-AVOID makes them potentially more
tractable.

On the other hand, towards solving AVOID of low-depth circuits unconditionally, we offer two
approaches to design deterministic algorithms for AVOID of low-depth circuits. We give a simple
deterministic algorithm for NC0

2-AVOID, and a novel approach to construct hitting sets for AVOID

instances. This is to say, for a class of circuits C ⊆ {C : {0, 1}n → {0, 1}m} that satisfy certain
conditions, we can deterministically construct a set S ⊆ {0, 1}m of size |S| = poly(m), such that
for every C ∈ C, we have S ̸⊆ Range(C). Note that a hitting set construction implies an FPNP

algorithm to solve AVOID of C. It is incomparable to an FP algorithm, because the hitting set is
oblivious to the actual circuit, and the same hitting set can work for a broad class of “weak” circuits.

In the following, we elaborate on our contributions and their implications.

1.1.1 Reductions to NC1-AVOID

As our first set of results, we reduce a sample of famous and central explicit construction questions
to NC1

k-AVOID for constant k. In particular, we consider the following explicit construction tasks.

• Rigid matrices. A matrix M ∈ Fn×n
2 is called (ε, δ)-rigid, if one cannot reduce the rank of M

to εn by alternating at most δn2

log n entries in M. The motivation to study explicit constructions
of rigid matrices is due to its connection to circuit lower bounds [Val77].

• Binary linear codes which meet the Gilbert-Varshamov bound (the best known rate vs. dis-
tance trade-off for binary codes which is achieved by random linear codes). This is an out-
standing challenge that has been open for much of coding theory’s history. Recently there
has been impressive progress in the low-rate regime [TS17], but the general question remains
a tantalizing challenge at the intersection of coding theory and pseudorandomness.

• Binary linear codes that achieve list-decoding capacity. While there are explicit codes over
large alphabets that achieve list-decoding capacity (i.e., are decodable up to the information-
theoretically largest fraction of worst-case errors with small lists) [GR08], the best known
binary codes fall well short of achieving capacity [GR09].

We reduce these explicit construction questions to AVOID. We first define explicit construction
problems in the complexity-theoretic language: let Π ∈ {LINEAR CODE, LIST-DECODABLE CODE,
RIGID MATRIX} be a property of algebraic objects. Define the Π-construction problem: given as
input 1n, output an object of size n that satisfies the property Π.

Theorem 2 (Informal). Suppose that for each k ≥ 1, there is an FP (resp. FPNP) algorithm for NC1
k-

AVOID. Then, there is an FP (resp. FPNP) algorithm for Π-Construction for Π ∈ {LINEAR CODE,
LIST-DECODABLE CODE, RIGID MATRIX}.

Furthermore, by Theorem 1, the same conclusion holds if we assume the existence of an FP (resp.
FPNP) algorithm for NC0

4-AVOID.

Our reductions for linear codes are new, and the reduction for rigid matrices improves a simi-
lar result in [Kor21], in the sense that we reduce the question to AVOID on logarithmic-depth circuits.
Our technique is general enough that it can be applied to many other construction problems to

2

give reductions to AVOID of low-depth circuits3. For brevity, we only present three representative
examples in this paper.

Proof idea. All of the three reductions follow the same framework. To illustrate the idea, we
briefly discuss the reduction for rigid matrices. We follow the idea of Korten [Kor21]. That is, we
carefully construct a circuit C : {0, 1}n2−1 → {0, 1}n2

, whose outputs, when interpreted as matrices
in Fn×n

2 , contain all “non-rigid” matrices. To design the circuit, note that if a matrix M ∈ Fn×n
2 is

not rigid, then there is a way to compress the matrix. Namely, we can write M = L · R + S where
L, R are n × εn and εn × n matrices, and S is a sparse matrix with only δn2

log n entries being 1. Note

that for ε, δ ∈ (0, 1) sufficiently small, we can encode L, R, S with 2εn2 + 2 log n · δn2

log n < n2 bits and
recover M in polynomial time. In more detail, the encoding just stores L, R explicitly, and stores a
list of δn2

log n pairs (x, y) ∈ [n]2, specifying the non-zero entries of S.

Given this encoding, the reduction to AVOID is simple: we design a circuit C as follows. The
input to C is a tuple (L, R,S), where L, R are n × εn and εn × n matrix, respectively. S is a list
of n2

log n pairs describing a sparse matrix S. Given the tuple, the circuit C computes the matrix
L · R + S. It is easy to see that the range of C includes every non-rigid matrix. Hence, we can
construct a rigid matrix by finding a matrix outside the range of C. However, it is not clear from
the reduction whether C can be implemented in logarithmic depth.

In fact, computing L · R can be done by a logarithmic circuit easily. If the matrix S is presented
in its natural form as a square matrix, adding S to L · R is also easy. Therefore, the main bottleneck
in this reduction is to recover the sparse matrix S from its short description S . Note that using
a short encoding of S is essential for the reduction, as we need to ensure that the input length is
strictly smaller than n2. Still, there is some room for manoeuvre: it is not necessary to encode S in
an information-theoretically optimal way, and we can afford a certain amount of redundancy, as
long as the overall number of bits to encode L, R, S is bounded by n2 − 1.

Succincter comes into play. We achieve the improvement by utilizing techniques from succinct
data structures (see, e.g., [Pat08, Yu20]). Succinct data structures allow storage of a data set using
an amount of memory that is close to the information-theoretic lower bound, but they still allow
for retrieving information efficiently. In particular, there is a classic data structure [Pat08], which
can store an n-bit string of Hamming weight k using log (n

k)+O(n/ log2 n) bits. Moreover, one can
recover any bit of the string by querying at most O(log n) bits in the memory. This data structure
perfectly fits our purpose: we can encode the sparse matrix S by the memory configuration4 of the
data structure storing S, which is denoted by S ′ in the following. Then, we can recover each entry
of S by querying O(log n) bits in S ′. By a simple construction (Lemma 26), this implies that each
entry of S can be computed by a logarithmic-depth circuit given S ′.

Therefore, given L, R and S ′, there is a logarithmic-depth circuit C′ that computes L · R + S.
The number of bits to describe L, R,S ′ is bounded by

2εn2 + log
(

n2

δn2

log n

)
+ O(n2/ log2 n) < (1 − Ω(1))n2 + O(n2/ log2 n) < n2.

Hence, C′ is a valid NC1-AVOID instance, and any matrix outside the range of C′ is (εn, δn2

log n)-rigid.

3However, we note that the reduction for two-source extractors in [Kor21] might be an exception. Still, by combining
[Kor21] with our technique, one can reduce two-source extractor construction to NC2-AVOID. i.e., each output can be
computed by a Boolean circuit of depth O(log2 n).

4In our application, we do not care about the complexity of preparing the data structure, as the AVOID problem asks
one to avoid every output in the range of the circuit.

3

This completes the proof sketch for the rigid matrix reduction. Reductions for linear codes
follow the same approach. Namely, every generator matrix M that fails to generate a desired code
can be compressed, where the compression of M consists of a structured algebraic part A and a
low-Hamming weight binary string B. The structured part A has an efficient encoding/decoding
scheme, and the combination of A and B to recover M is also efficiently computable. Using a naive
encoding scheme for B results in an inefficient (in terms of circuit depth) decoding procedure.
Replacing the naive encoding scheme with the succinct data structure gives the desired efficient
reduction.

1.1.2 Unconditional Algorithms for AVOID of Weak Circuits

On the positive side, we show an algorithm for NC0
2-AVOID, as well a hitting set construction for

solving AVOID of low-depth circuits and large stretch.

A polynomial time algorithm for NC0
2-AVOID. When the given circuit C : {0, 1}n → {0, 1}m is in

NC0
2 (i.e., each output bit depends on only two input bits), we can solve AVOID of C by a simple

deterministic polynomial-time algorithm.

Theorem 3. There is a polynomial time algorithm which, given an NC0
2 circuit C : {0, 1}n → {0, 1}m

where m > n, outputs a string y ∈ {0, 1}m that is not in the range of C.

The idea behind Theorem 3 is simple. Let C1(x) be the first output bit of C. We observe that
there is always a way to fix C1 to a constant, so that we can reduce the problem to solving NC0

2-
AVOID for a smaller circuit C′ : {0, 1}n−1 → {0, 1}m−1. To illustrate, suppose that C1(x) is an AND
of two variables (say, x1 and x2). Then, by setting C1 to 1, we have effectively restricted that x1
and x2 must be 1. Hence, we can replace every appearance of x1, x2 with constant 1 in C, and get
a new NC0

2-AVOID instance C′ : {0, 1}n−2 → {0, 1}m−1. Suppose y ∈ {0, 1}m−1 is not in the range
of C′. Then we claim that 1 ◦ y (where ◦ denotes string concatenation) is not in the range of C. In
fact, for C1(x) evaluating to 1, one has to set both x1 and x2 as 1. But then there is no way to find
an input x where C(x)2...m = C′(x) = y.

The argument above illustrates one step of the reduction. To design an algorithm for NC0
2-

AVOID, we can recursively apply the reduction, until at one point where we are left with a circuit
C′′ : {0, 1}0 → {0, 1}m−n. At this point, C′′ always outputs a fixed string, while the number of
possible outputs is 2m−n > 1, which allows us to solve AVOID for C′′ trivially. Finally, we can
backtrack to recover a string y ∈ {0, 1}m, which solves AVOID for the original circuit C.

Since the result in [RSW22] (see also Theorem 1) gives a strong evidence suggesting that
solving NC0

4-AVOID unconditionally is hard and would imply surprisingly strong circuit lower
bounds, the strategy above probably fails to give an algorithm for NC0

4-AVOID. Still, finding out
the complexity of NC0

3-AVOID remains an interesting question.

Approaching AVOID via hitting sets. We also introduce a novel technique for solving AVOID in
FPNP. Informally, we show that there is an FPNP algorithm for simple circuits if the stretch m(n)
is large enough. Here is the list of our results.

Theorem 4 (Informal). Let m = m(n), s = s(n) be two non-decreasing functions and k, w ≥ 1 be two
constants. Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function. There is an FPNP algorithm for
AVOID(C) if one of the following statements hold:

• Each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n;

4

• Each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw;

• Each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(
√

s);

• Each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ 2ω(n1/2·log(s)).

Formally, our result is stronger than FPNP algorithm. Our construction is a hitting set which
is independent of the circuit C. That is, we can output a set of polynomial size which always
contains a solution for AVOID(C), without looking at the input circuit C. We formally list our results
here.

Theorem 5. Let m = m(n), s = s(n) be two non-decreasing functions and k, w ≥ 1 be two constants.
Suppose C : {−1, 1}n → {−1, 1}m is a multi-output function. The following statements hold.

• If each output bit Ci(x) depends on only k input bits and m ≥ 24k+1nk−1 + n, then there is a set
S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and satisfies S ̸⊆ Range(C).

• If each output bit Ci(x) is a width-w size-s CNF or DNF of input bits and m ≥ 32s2nw, then
there is a set S ⊆ {−1, 1}m of size O(s2 log2 m) that is computable in polynomial time and satisfies
S ̸⊆ Range(C).

• If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(
√

s), then there is a set
S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and satisfies S ̸⊆ Range(C).

• If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ 2ω(n1/2·log(s)), then there is a set
S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and satisfies S ̸⊆ Range(C).

In all cases, the set S is independent of the circuit C. Namely, only knowing m, n, s, k, w suffices to
construct the set S.

Perhaps surprisingly, we construct the hitting set by exploiting an interesting connection to
pseudorandomness of distributions. In particular, we carry out a two-step plan as follows.

• For a class of simple circuits C ⊆ {C : {0, 1}n → {0, 1}m}, we show that if the stretch m is
sufficiently large, then under any input distribution x over {0, 1}n, the output distribution
C(x) cannot be pairwise independent over {0, 1}m.

• On the other hand, we can sample a pairwise independent string of length m, with only
2 log m truly random bits.

Putting two items together, we conclude that the support of a low-entropy pairwise indepen-
dent distribution D over {0, 1}m constitutes a hitting set for AVOID of C. Indeed, if the support of
D is contained in Range(C) for some C ∈ C, then we know that under a proper input distribution
x over {0, 1}n, C(x) can sample D perfectly, which leads to a contradiction to Item (1).

Here, Item (2) is standard [ABI86]. We achieve Item (1) by generalizing a technique by Mossel,
Shpilka and Trevisan [MST06], where the authors showed that it is impossible for NC0

3 circuits to
expand n uniformly random bits into a (4n + 1)-bit string that fools every linear test (i.e., the output
fails to be a low-biased distribution). We generalize the [MST06] result by considering an arbitrary
distribution (instead of uniform distribution) over inputs.

We briefly describe the high-level proof strategy below. We start with a simplicity measure
of Boolean functions, parameterized by an integer d ≥ 1 and a real δ ∈ (0, 1). A function f :

5

{0, 1}n → {0, 1} is called (d, δ)-simple, if under any distribution x over {0, 1}n, there is a parity
test over a set S ⊆ [n] of size |S| ≤ d, such that∣∣∣Pr

x

[
f (x) =

⊕
q∈S

xq
]
− 1

2

∣∣∣ ≥ δ.

The following theorem shows our general template to construct hitting sets based on simplic-
ity of functions.

Theorem 6. Suppose m > n ≥ 2. Let C : {0, 1}n → {0, 1}m be a circuit and ε > 0 be a parameter. Sup-
pose each output bit Ci is a (d, ε)-simple function of input bits and m > 2

ε2 nd. Then, for every distribution
x over the input space {0, 1}n, the output distribution C(x) is not pairwise independent.

We prove Theorem 6 following the technique of [MST06]. Let x be sampled from an arbitrary
but fixed distribution. Since there are m ≥ 2

ε2 nd outputs and each output is correlated with a
parity test on at most d inputs, by pigeonhole principle, there are at least 2

ε2 output bits that are
ε-correlated with the same parity test. Then we follow [MST06] and carry out a second-moment
argument, which shows that there is a pair of indices i, j ∈ [m] among the 2

ε2 outputs, such that
Ci(x) and Cj(x) have a correlation lower-bounded by 3

8 ε2, meaning that C(x) does not sample a
pairwise independent distribution.

Note that the argument above also shows a lower bound of the correlation between two out-
put bits. This allows us to use an almost pairwise independent distribution in the final construc-
tion, which makes the size of our hitting set even smaller. See Section 5 for the details.

Instantiating Theorem 6 with some canonical circuit classes, we deduce the results listed in
Theorem 5.

• The results for NC0
k circuits and constant-width DNF/CNFs are proved by ad-hoc but straight-

forward arguments. We remark that [MST06] has shown that every NC0
k function is either an

F2 polynomial of degree ⌈k/2⌉ or correlated with a parity test on at most ⌈k/2⌉ inputs under
the uniform distribution of inputs. We managed to prove a correlation lower bound under ar-
bitrary distributions, but we need to use parity tests on at most (k − 1) inputs, which in turn
determines that our construction only works for NC0

k-AVOID with stretch at least Ω(nk−1).
Still this is non-trivial in the sense that prior to our work, even an algorithm for NC0

k-AVOID

with stretch o(nk) appears to not have been known.

• The results for unbounded-width CNF/DNFs and small-size De Morgan formulae are proved
by relating the simplicity of functions to their (large-error) approximate degree, a central no-
tion in complexity theory that has been studied extensively (see, e.g., [KS04, RS10, BT21]).
Specifically, to show the simplicity of a function, it suffices (and, in some sense, is necessary)
to find a low-degree polynomial over reals that point-wise approximates the function within
a slightly non-trivial error (e.g. within error 1

2 −
1
n)5. This connection allows us to translate

known approximate degree upper bounds for CNF/DNF [KS04] and small-size De Morgan
formulae [Rei11] to the simplicity of corresponding function classes.

Discussions. We find the connection to pseudorandomness quite interesting. In some sense,
following Razborov and Rudich’s natural proof [RR97], our argument establishes a separation

5Note that the polynomial p(x) ≡ 1
2 trivially 1

2 -approximates every Boolean function.

6

result for weak circuits (with large stretches) by studying a natural property about distributions6

over hypercubes. Namely, we consider the property of being a pairwise independent distribution.
By standard pseudorandomness constructions [ABI86], there is a low-entropy distribution that
attains this property easily, while our results rule out the possibility of sampling such distributions
by weak circuit classes that only receive a short random seed, even if the random seed can come
from an arbitrary distribution.

We leave it as an intriguing question to further explore the potential of this framework.
Namely, can we identify more (pseudorandom) property of distributions, where there exists a
low-entropy (and hopefully polynomial-time constructible) distribution with this property, but
every weak circuit from a class C fails to sample a distribution with this property, even if its input
distribution can be carefully tailored?

Note that the existence of such a “pseudorandom” property usually implies an efficient sta-
tistical test to distinguish the output of C-circuits from uniform (in our example, this is a linear test
on two output bits of C). Thus, under the cryptography assumption that NC1 circuits can compute
PRG of polynomial stretch, it seems difficult to push this technique to NC1. Still, we note there is
a gap between our results and the best-known lower bounds and pseudorandomness results: for
example, we know strong lower bounds and good PRGs against AC0 (see e.g. [?, TX13, Lyu22]).
Moreover, when the input distribution is uniform, we have very good sampling lower bounds
against AC0 circuits of quasi-polynomial stretches [Vio10, Vio20]. If, quantitatively, solving C-
AVOID is as hard as proving lower bounds/constructing PRGs for C, then these results suggest
that one should be able to solve AC0-AVOID of (large) quasi-polynomial stretches. However, our
result can only give a hitting set construction for AC0 circuits of sub-exponential stretch7. We leave
it as an interesting open question to close the gap between the known pseudorandomness results
and our hitting sets. Namely, can we give better hitting sets for AC0 circuits of smaller stretch, or is
there any formal evidence suggesting that AVOID of low-end models (e.g., AC0) is strictly harder
than designing PRG for AC0?

Comparison with previous works. Attempting to solve AVOID of weak circuits with large stretch,
Ren, Santhanam and Wang [RSW22] presented an algorithmic framework in FPNP, which is based
on Williams’ algorithmic method [Wil14] and rectangular PCPs [BHPT20]. Our framework is not
directly comparable to theirs. A polynomial-size hitting set construction appears to be stronger
than an FPNP algorithm, as a hitting set implies an FPNP algorithm in a straightforward way. But
our assumption (the existence of a proper “natural property” of distributions) is incomparable to
the assumption in [RSW22].

We note that [RSW22] also showed an FPNP algorithm for De Morgan formula-AVOID with
stretch m ≥ 2ω(

√
s log(s)) as an application of their technique. To devise the algorithm, they also

used the approximate degree upper bounds [Rei11] as a key technical ingredient. For this applica-
tion, our result compares favorably with theirs. First, our hitting set construction is considerably
simpler and can also handle a somewhat smaller stretch: the algorithm in [RSW22] needs a “con-
structive version” of the approximate degree upper bounds, which roughly says that one can
deterministically find a degree-(

√
s log s) polynomial approximating a given size-s De Morgan

formula. The log(s) overload in turn determines that their algorithm can only handle stretches

6This is in contrast with the typical notion of natural proofs, where natural properties of languages/Boolean func-
tions are considered.

7We explicitly give a construction for depth-2 circuits (e.g., DNFs) with stretch 2n1/2
. It is easy to see that we can

extend our results to depth-d AC0 circuit of stretch roughly 2n1−Ω(1/d)
by the known approximate degree upper bound

for AC0.

7

larger than nω(
√

s log s). In contrast, our solution only needs the existence of a low-degree approxi-
mate polynomial, enabling us to construct hitting sets for stretch nO(

√
s). Second, the framework

in [RSW22] cannot obtain a non-trivial algorithm from large-error (ε = 1 − n−Ω(1)) approximate
degree. In particular, their framework does not naturally apply to polynomial-size DNF/CNFs as
our result does.

1.2 Conclusion & Open Questions

In this work, we study the range avoidance problem for low depth circuits. We reduce some ex-
plicit construction challenges to the range avoidance problem of NC0

4 circuits. On the algorithmic
side, we give a polynomial time algorithm for NC0

2-range avoidance. We also introduce a hitting
set construction for the range avoidance problem of weak circuit classes with large stretch.

As suggested by [RSW22], NC0
4-AVOID might be hard to solve. For NC0

3, our hitting set con-
struct works when the stretch is at least C · n2 for a large constant C. For smaller stretch, the
complexity of NC0

3 is less clear. It is natural to ask:

Open Question 1. Is there a deterministic polynomial time algorithm for NC0
3-AVOID with stretch

n1+o(1), even when an NP oracle is available?
As we have mentioned, our hitting set construction suggests a new approach to solve AVOID

for weak computational models. It naturally raises the following questions.

Open Question 2. For some weak computational models (e.g., AC0), is there a distribution that can
be efficiently sampled using a short seed but cannot be sampled by these models? They are some
known sampling lower bounds for AC0 when the input distribution is uniform [Vio10, Vio20]. Do
techniques in those works help in proving a sampling lower bound under arbitrary distributions?

Open Question 3. For a class of circuits C ⊆ {{0, 1}n → {0, 1}m}, it is easy to see (via the proba-
bilistic method) that there exists a hitting set H for AVOID of C with size |H| ≤ poly(log |C|). Note
that such a hitting set constitutes a “universal” solution to explicit construct problems. Namely,
for every explicit construction problem Π that is reducible to C-AVOID, there is a string x ∈ H that
has the property Π. It would be interesting to identify the construction of the hitting set H itself as
an explicit construction problem, and study its complexity and/or algorithms via various kinds
of approaches (including the pseudorandomness approach considered in this work).

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we put some preliminaries, including the
problems we study and some mathematical tools used in our proofs. In Section 3, we show how to
reduce some explicit construction problems to NC0

4-AVOID. In Section 4, we give a polynomial time
algorithm for NC0

2. In Section 5, we show a general framework to construct hitting sets for AVOID

by correlations with low-degree parities. Finally we show some applications of this method.

2 Preliminaries

In this section, we state necessary background knowledge and set up some useful pieces of nota-
tion.

Range Avoidance. We first define the AVOID problem, which is the primary subject of this work.

8

Definition 7 (AVOID [Kor21, RSW22]). AVOID is the following problem: given a Boolean circuit C :
{0, 1}n → {0, 1}m where m > n, find an m-bit string outside the range of C. If the input circuit is
guaranteed to be in some circuit class C, we also call the problem C-AVOID.

Definition 8 (NC circuits). For each k ≥ 1, we define NC0
k and NC1

k as follows. NC0
k contains all functions

that depend on at most k input bits. For every n ≥ 1, NC1
k contains all n-bit functions that are computable

by (k log n)-depth Boolean circuits of fan-in two.

We will be mainly interested in NC0
k-AVOID and NC1

k-AVOID for constant k’s. When we say
an explicit construction problem reduces to NC1-AVOID, we mean there exists k ≥ 1 such that the
problem reduces to NC1

k-AVOID.

Explicit Constructions. We study the following explicit construction problems, starting with rigid
matrices.

Definition 9 (rigid matrix [Val77]). Let q ≥ 1 be a prime power and r, s ≥ 1 be two integers. We say
an n × n matrix M over Fq is (r, s)-rigid, if for any matrix S ∈ Fn×n

q with at most s non-zero entries, the
rank of M + S is at least r.

An explicit construction of (Ω(n2), n1+ε)-rigid matrices would imply a lower bound against
linear-size, logarithmic-depth arithmetic circuits [Val77]. By probabilistic method, a random ma-
trix is (Ω(n2), Ω(n2/ log n))-rigid with high probability. This motivates us to formulate the fol-
lowing problem.

Definition 10 (RIGID). (ε, δ, q)-RIGID is the following problem: given input 1n, output an n × n matrix
over Fq that is

(
εn, δn2

log n

)
-rigid.

The next object we consider is linear codes with good rates and distances.

Definition 11 (linear code [Ham50]). Let r, p ∈ (0, 1), n ∈ N and k = r · n. We say an k × n matrix
G of full row rank over F2 is a generator matrix of a (r, p)-linear code, if every two distinct codewords
generated by G have Hamming distance at least pn, or equivalently, the Hamming weight of any nonzero
codeword is at least pn.

By probabilistic method, for every r, p ∈ (0, 1) such that r < 1 − h(p), there is a family of
linear codes with rate r and distance pn (the inequality r < 1 − h(p) is called Gilbert-Varshamov
bound in literature). However, despite an extensive line of efforts, an explicit construction meeting
this bound remains widely open. We formulate the linear code construction in the complexity-
theoretic language as follows.

Definition 12 (LINEARCODE). (r, p)-LINEARCODE is the following problem: given input 1n, output a
matrix G ∈ Frn×n

2 such that G is a generator matrix of a (r, p)-linear code.

Finally, we study linear codes with good list-decoding capacity.

Definition 13 (list-decodable code [Eli57, Woz58]). Let r, p ∈ (0, 1), n ∈ N and k = r · n. We say
an rn × n matrix G over F2 is a generator matrix of a (p, L)-list decodable code if for every z ∈ Fn

2 , the
number of codewords c ∈ Im(G) within Hamming distance pn from z is at most L, i.e.

|{s ∈ Frn
2 : wt(sG − z) ≤ pn}| ≤ L

where wt(s) denotes the number of ones in the string s.

9

The probabilistic method shows the existence of (r, p, L)-list decodable codes, provided that
r < 1 − h(p) − 2

log2 L . Again, finding an explicit family of linear codes approaching this limit
remains an outstanding challenge.

Definition 14 (LISTDECODABLE). (r, p, L)-LISTDECODABLE is the following problem: given input 1n,
output a matrix G ∈ Frn×n

2 such that G is a generator matrix of a (p, L)-list decodable code.

2.1 Boolean Functions

In this subsection, we list some useful notations about Boolean functions. To represent a Boolean
variable, we sometimes use F2 as the domain and sometimes use {−1, 1} as the domain. When
the domain is F2, we use 1 to represent True and 0 to represent False. When the domain is {−1, 1},
we use −1 to represent True and 1 to represent False.

Definition 15 (parity functions). For every set S ⊆ [n], define the parity function χS : {−1, 1}n →
{−1, 1} by

χS(x) = ∏
i∈S

xi.

Definition 16 (equality functions). For every set S ⊆ [n] and z ∈ {−1, 1}n, we define the equality
function EQS,z(x) to be 1 if xi = zi holds for every i ∈ S and 0 otherwise.

It can be easily verified that parity functions and equality functions have the following rela-
tion:

Fact 17. For every set S ⊆ [n] and z ∈ {−1, 1}n, we have

EQS,z(x) =
1

2|S| ∑
T⊆S

(
∏
i∈T

zi

)
χT(x).

Definition 18 (inner product). For two Boolean functions f , g : {−1, 1}n → R, we define their inner
product by:

⟨ f , g⟩ = 1
2n ∑

x∈{−1,1}n

f (x)g(x).

For a given distribution φ : {−1, 1}n → [0, 1] where φ(x) := Prx∼φ[x = x], we define their inner product
over φ by:

⟨ f , g⟩φ = ∑
x∈{−1,1}n

f (x)g(x)φ(x).

Definition 19 (correlation). We say two Boolean functions f , g : {−1, 1}n → {−1, 1} are ε-correlated if

|⟨ f , g⟩| ≥ ε.

For a given distribution φ : {−1, 1}n → [0, 1], we say they are ε-correlated under φ if

|⟨ f , g⟩φ| ≥ ε.

10

2.2 Miscellaneous

Definition 20 (binary entropy). The binary entropy function h : [0, 1] → R is defined as

h(p) := −p log2 p − (1 − p) log2(1 − p).

For a distribution D, we use x ∼ D to denote that a random variable x is drawn from D. We
then define ε-biased distribution and ε-almost pairwise independent distribution here.

Definition 21 (ε-biased distribution). A distribution D on {−1, 1}n is ε-biased if for every nonempty
T ⊆ [n], it holds that

−ε ≤ E
x∼D

[
∏
i∈T

xi

]
≤ ε.

Definition 22 (ε-almost pairwise independent distribution). A distribution D on {−1, 1}n is ε-almost
pairwise independent if for every two distinct indices i, j ∈ [n] and vector v⃗ ∈ {−1, 1}2, it holds that∣∣∣∣ Pr

x∼D
[(xi, xj) = v⃗]− 1

4

∣∣∣∣ < ε.

We have the following standard constructions of ε-biased distribution and ε-almost pairwise
independent distribution.

Theorem 23 ([NN93, AGHP92]). For every ε ∈ (0, 1) and n ∈ N, there is an explicit (polynomial-time
computable) ε-biased distribution with support size O(n2/ε2).

Theorem 24 ([AGHP92]). For every ε ∈ (0, 1) and n ∈ N, there is an explicit (polynomial-time com-
putable) ε-almost pairwise independent distribution with support size O(log2 n/ε2).

3 Explicit Constructions Reduce to NC0
4-AVOID

In this section, we reduce several central explicit construction problems in coding theory and
complexity theory to solving AVOID for logarithmic depth circuits.

3.1 Technical Ingredients

We need the following technical tools from literature.

Lemma 25 ([Pat08], Theorem 1). Given an array of n elements from an alphabet Σ, and let fσ > 0 be the
number of occurences of letter σ in the array. There is a data structure storing the array with at most

O(|Σ| log n) + ∑
σ∈Σ

fσ log2
n
fσ

+ O(n/ log2 n)

bits of memory. Moreover, there is an algorithm that, upon receiving an index i ∈ [n], queries at most
O(log n) bits in the data structure and returns the i-th entry of the array.

Note that the ∑σ∈Σ fσ log2
n
fσ

term is the entropy of the array, i.e. the information-theoretical
lower bound to store the array.

The query process of the data structure can be modeled as a depth-O(log n) decision tree. The
following lemma converts it to an NC1 circuit to suit our purpose.

11

Lemma 26. Every function that can be computed by a depth-d decision tree can be computed by a depth-2d
circuit.

Proof. Prove by induction. When d = 1, the output then only depends on a single bit and can be
trivially computed by a circuit of depth 2.

Suppose the statement holds for d. Let T be a depth-(d + 1) decision tree. Suppose the root
of T queries xi and proceeds to the left or right subtree, depending on whether xi is 0 or 1. By our
assumption, the two subtrees can be computed by circuits of depth 2d. Let the circuits be C0, C1.
Then we construct a circuit C as

C(x) := (xi ∧ C1(x)) ∨ (¬xi ∧ C0(x)).

It is easy to verify that C(x) computes T(x) correctly and has depth 2(d + 1), which completes the
proof.

The following lemma asserts that the summation of integers is in NC1.

Lemma 27 ([Sav76]). Iteratively adding (i.e., summing up) n n-bit integers can be done in NC1.

3.2 Rigid Matrices

In this subsection, we reduce constructing rigid matrices to NC1-AVOID.

Theorem 28. For any fixed ε, δ such that ε + δ < 1
2 and any prime power q, (ε, δ, q)-RIGID reduces in

polynomial time to NC1-AVOID.

Proof. WLOG we can assume n is sufficiently large since for small values of n we can solve the
problem by brute force and reduce to a trivial instance. Let M be an n × n matrix over Fq that is

not
(

εn, δn2

log n

)
rigid. That is, M can be written as X + S where X has rank at most εn and S has at

most δn2

log n non-zero entries. X can be equivalently expressed as the product of an n × εn matrix L
and εn × n matrix R. S can be encoded by the data structure in Lemma 25. Given this observation,
we construct a circuit as follows. We interpret the input bits as the encoding of L, R and the data
structure encoding S. For the output bit representing Mij, we first compute ∑k∈[εn] LikRkj, which
can be done by a circuit of O(log n)-depth. Then we compute Sij by making a query to the data
structure, which can also be done by a circuit of O(log n)-depth by Lemma 26. Finally, we compute
Mij by XOR-ing these two results.

To encode L and R, we need 2εn2 log q bits. One way to encode S is by storing the indices of
the non-zero entries and their values, which requires 2 log n + log q bits per non-zero entry. Thus
the optimal encoding requires at most (2 log n + log q) δn2

log n bits, and our data structure needs

(2 log n + log q)
δn2

log n
+ 2q log n + O(n2/ log2 n) < 2δn2 log q

number of bits. Note that the number of output bits is n2 log q. As ε + δ < 1
2 , the number of

input bits is less than the number of output bits. Thus the resulting instance is a valid NC1-AVOID

instance, and any string outside the range of the circuit must be
(

εn, δn2

log n

)
-rigid.

12

3.3 Linear Codes Achieving the Gilbert-Varshamov Bound

Constructing binary codes that approach the Gilbert-Varshamov bound is a famous open problem
in coding theory. Below we show that this task also reduces to NC1-AVOID.

Theorem 29. For any r, p ∈ (0, 1) such that r < 1 − h(p), (r, p)-LINEARCODE reduces in polynomial
time to NC1-AVOID.

Proof. WLOG we can assume n is sufficiently large since for small values of n we can solve the
problem by brute force and reduce to a trivial instance. Let k = rn. We first describe a method
to compress any “bad” generator matrix into at most (kn − 1) bits. Suppose G ∈ Fk×n

2 generates
a code that is not (r, p)-linear code. It implies there is a nonzero z ∈ Fk such that the vector
s = z · G ∈ Fn

2 contains at most pn ones. Let i ∈ [k] be such that zi = 1. Let G−i ∈ F
(k−1)×n
2 be the

matrix obtained by removing the i-th row of G. Note that we can recover G from (G−i, s, z, i): we
simply let z−i be the vector obtained by removing the i-th coordinate of z. Then we can calculate
the i-th row of G by z−i · G−i + s.

Then we design the circuit C as follows. C interprets its input as a tuple (G−i, S, z−i, i), which
contains the following pieces of information.

• A (k − 1)× n matrix G−i.

• A data structure as in Lemma 25 encoding a string s ∈ Fn
2 of Hamming weight at most pn.

• A vector z−i ∈ Fk−1
2 .

• An index i ∈ [k] (encoded by its log k-bit binary representation).

The output of C is a k × n matrix G. For each j ∈ [k], the j-th row of G is computed as follows.
First, if j ̸= i, depending on whether j < i, C outputs the j-th or (j − 1)-th row of G−i. The i-th row
is computed by calculating z−i · G−i and adding it with the string encoded by S. By Lemma 25
and Lemma 26, each output of C can be computed by an NC1-circuit.

Finally, note that the number of input bits is

(k − 1)n + h(p)n + O(n/ log2 n) + (k − 1) + log k < kn.

The inequality is valid provided that n is sufficiently large (in particular, if it holds that r + h(p) <
1−O(1/ log2 n)). Therefore, we conclude that C is a valid NC1-AVOID instance. It is clear that any
solution to AVOID(C) is a generator matrix for a (r, p)-linear code.

3.4 List-Decodable Codes

Constructing binary codes that achieve list-decoding capacity remains an outstanding challenge.
Below we show that, again, this task reduces to range avoidance of log-depth circuits.

Theorem 30. For any fixed r, p, L such that r < 1 − h(p)− 2
⌈log2 L⌉ , (r, p, L)-LISTDECODABLE reduces

in polynomial time to NC1-AVOID.

Proof. WLOG we can assume n is sufficiently large since for small n’s we can solve the problem
by brute force and reduce to a trivial instance. Let k = rn. Let G ∈ Fk×n

2 be a generator matrix of a
code that is not (p, L)-list decodable. That is, there is a center z ∈ Fn

2 and L codewords that lie in

13

the Hamming ball with center z and radius pn. Among these codewords we can pick t := ⌈log2 L⌉
ones that are linearly independent, namely, y1 + z, y2 + z, . . . , yt + z. Then we can select k − t rows
in G, denoted by g1, g2, . . . , gk−t such that {g1, g2, . . . , gk−t, y1 + z, y2 + z, . . . , yt + z} is a linearly
independent set. We use a length-k binary string s to encode which rows we have selected. For the
remaining rows, they must be some linear combinations of {g1, g2, . . . , gk−t, y1 + z, y2 + z, . . . , yt +
z}, and we can use t vectors c1, c2, . . . , ct ∈ Fk

2 to encode the coefficients.
Then we construct a circuit as follows. We interpret the inputs as:

• A vector z ∈ Fn
2 ;

• t data structures as in Lemma 25 encoding y1, y2, . . . , yt ∈ Fn
2 where each yi has at most pn

1’s;

• A binary string s ∈ Fk
2 with k − t 1’s;

• (k − t) vectors g1, g2, . . . , gk−t ∈ Fn
2 ;

• t vectors c1, c2, . . . , ct ∈ Fk
2.

We first compute gk−t+i := yi + z for i ∈ [t], where each coordinate of each yi is computed by
making a query to the data structure. This step can be done in O(log n)-depth by Lemma 26. For
the output bit representing Gij, we first compute si and the partial sum p = s1 + s2 + . . . + si,
which can be done in (log n)-depth by Lemma 27. If si = 1, we output the j-th coordinate in gp.
Otherwise, the index of the coefficient vectors corresponding to this row is q := i − p. We then
output ∑ℓ∈[k] cqℓgℓj, which can be done in O(log n)-depth. Thus the circuit can be implemented
in O(log n)-depth. By the previous argument, any G that is not a generator matrix of a (p, L)-list
decodable code lies in the range of this circuit.

Note that the number of input bits is

n + t(h(p)n + O(n/ log2 n)) + k + (k − t)n + tk

< 2n + t(h(p)n + O(n/ log2 n) + k − n) + nk

< tn
(

2
t
+ h(p) + O(1/ log2 n) + r − 1

)
+ nk

< nk,

meaning the resulting instance has less number of inputs than outputs and is hence a valid AVOID

instance.

3.5 Reduction to NC0
4-AVOID

In this subsection, we use the reduction by Ren, Santhanam and Wang [RSW22] (i.e., Theorem 1) to
further reduce these explicit construction problems to NC0

4-AVOID. This result shows that solving
even NC0

4-AVOID would have unexpected consequences in pseudorandomness and complexity
theory.

Specifically, combining Theorem 1 with our reductions (Theorem 28, 29 and 30), we get the
following corollary.

Corollary 31. Suppose there is a polynomial-time deterministic algorithm for NC0
4-AVOID. Then the

following are true.

14

• For every ε, δ such that ε + δ < 1
2 , there is a family of

(
εn, δn2

log n

)
-rigid matrices that are computable

in deterministic polynomial time.

• For every rate r ∈ (0, 1) and p < 1 − h(r), there is a family of (r, p)-linear code, whose generator
matrices are computable in deterministic polynomial time.

• For every rate r ∈ (0, 1) and parameters p ∈ (0, 1), L ≥ 1 such that r < 1 − h(p)− 2
⌈log2 L⌉ , there

is a family of (r, p, L)-list-decodable code, whose generator matrices are computable in deterministic
polynomial time.

From an algorithmic perspective, Corollary 31 provides a potential approach to attack these
notoriously hard explicit construction problems. From a pessimistic viewpoint, Corollary 31 gives
further evidence supporting the hardness of solving NC0

4 unconditionally.

4 A Polynomial Time Algorithm for NC0
2-AVOID

In this section, we give a polynomial time algorithm for NC0
2-AVOID.

Reminder of Theorem 3. There is a polynomial time algorithm which, given an NC0
2 circuit C :

{0, 1}n → {0, 1}m where m > n, outputs a string y ∈ {0, 1}m that is not in the range of C.

Proof. There are 4 types of functions that depend on at most two variables:

• Functions that are either constant 0 or constant 1.

• Functions that depend on a single variable.

• AND-type or OR-type functions.

• XOR-type functions.

Let C1, . . . , Cm denote the output bits of the circuit C. Starting with y = ⋆m, our algorithm
will inspect each Ci, i ∈ [m] in the increasing order and gradually fill in bits in y. For each Ci, the
algorithm fixes yi to a constant 0/1, which also implicitly restricts the input space: that is, suppose
we fix yi = b. Then, requiring Ci(x) = b makes the set of “feasible” x ∈ {0, 1}n smaller. We show
that eventually we can find a string y ∈ {0, 1}m such that C−1(y) = ∅, which solves AVOID of C.

In more detail, starting with y = ⋆m. We enumerate i = 1, . . . , m and do the following.

• If Ci is a constant, say, Ci(x) ≡ b for all x ∈ {0, 1}n, we can set yi = ¬b and other output bits
arbitrarily. It is easy to see that y is not in the range of C.

• Suppose Ci depends only on one input variable. Write Ci(x) = xji ⊕ bi. Then we can set
yi = 0. For every x ∈ {0, 1}n that Ci(x) = yi, we have xji = bi. Then we replace every
appearance of xji in Ck (k > i) with bi.

• Suppose Ci is an AND-type circuit. Namely, Ci(x) = (xj1i ⊕ b1i) ∧ (xj2i ⊕ b2i). Then we set
yi = 1. For every x ∈ {0, 1}n that Ci(x) = yi, we have xj1i = ¬b1i and xj2i = ¬b2i. Then we
replace every appearance of xj1i , xj2i with ¬b1i, ¬b2i, respectively.

15

• Suppose Ci is an OR-type function. Namely, Ci(x) = (xj1i ⊕ b1i) ∨ (xj2i ⊕ b2i). Then we can
set yi = 0. For every x ∈ {0, 1}n that Ci(x) = yi, we have xj1i = b1i and xj2i = b2i. Then we
replace every appearance of xj1i , xj2i with corresponding constants.

• It remains to handle the case that Ci is an XOR-type function. Suppose Ci(x) = xj1i ⊕ xj2i ⊕ bi.
We can set yi = bi. For every x ∈ {0, 1}n that Ci(x) = yi, we have xj1i = xj2i . Then, for each
xj2i appearing in Ck for some k > i, we can replace xj2i with xj1i . After that, we can remove
xj2i .

In summary, if there is an output bit that is constant, then we can construct a solution to
AVOID accordingly. Otherwise, we can remove at least one input variable by fixing yi to a constant.
Since m > n, there must be a i ∈ [m] where Ci is a constant (because each non-constant function
will incur one removal of input variable). Therefore, the procedure above always succeeds in
finding a string y ∈ {0, 1}m such that C−1(y) = ∅. This algorithm is clearly deterministic and
runs in polynomial time.

5 A Hitting Set Construction for AVOID

In this section, we use {−1, 1} to represent True and False, respectively. By Boolean function we
mean functions of the form f : {−1, 1}n → {−1, 1}.

5.1 The General Template

We first show the general framework to construct hitting sets for AVOID instances of weak circuits.
We start with a definition of “simple functions”.

Definition 32. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let d ∈ N and δ > 0. We say f is a
(d, δ)-simple function, if for any distribution φ over {−1, 1}n, there is a set S ⊆ [n] of size at most d such
that the correlation between χS and f under φ is at least δ. That is,

|⟨ f , χS⟩φ| :=

∣∣∣∣∣∑x
φ(x) f (x)χS(x)

∣∣∣∣∣ ≥ δ.

Suppose F ⊆ { f : {−1, 1}n → {−1, 1}} is a collection of functions. We say F is a (d, δ)-simple
collection, if each function in F is (d, δ)-simple.

For intuition, it is easy to see that every k-bit function f : {−1, 1}k → {−1, 1} is (k, 2−k)-
simple.

The meta-construction of hitting set. The following theorem shows our “meta-construction” of
hitting set: roughly, for every AVOID-instance C : {−1, 1}n → {−1, 1}m, if the stretch m = m(n) is
sufficiently large (relative to the “simplicity” of the function class), then the support of an almost
pairwise independent distribution would be a hitting set for AVOID(C).

Theorem 33. Suppose m > n ≥ 2. Let C : {−1, 1}n → {−1, 1}m be a circuit and ε > 0 be a parameter.
Suppose each output bit Ci is a (d, ε)-simple function of input bits and m > 2

ε2 nd. Let D be any 3
8 ε2-almost

pairwise independent distribution over {0, 1}m. Then, the support of D is a hitting set for AVOID(C). That
is, supp(D) ̸⊆ Range(C).

16

Using a standard construction of ε-almost pairwise independent distributions (Theorem 24),
the support of D has size bounded by O(log2 m/ε4). Therefore, by Theorem 33 we can construct a
hitting set of size O(log2 m/ε4) for AVOID(C). Remarkably, the hitting set is oblivious to the circuit
C: one can construct it without actually looking into C.

Proof of Theorem 33. Suppose by contradiction that there exists a pairwise independent distribu-
tion D such that supp(D) ⊆ Range(C). Then, every string y ∈ supp(D) is an output of C.
This implies that under a proper input distribution φ over {−1, 1}n, the output distribution of
{C(x) : x ∼ φ} is exactly D, which is a 3

8 ε2-almost pairwise independent distribution. In the fol-
lowing, we show that C cannot sample a 3

8 ε2-almost pairwise independent distribution under any
input distribution. This would lead to a contradiction and complete the proof.

Let φ be a distribution supported on {−1, 1}n. Given φ, every output of C is correlated with
χS for some |S| ≤ d by Definition 32. By pigeonhole principle, there must be m

2·nd > 1
ε2 =: t outputs

C1, C2, . . . , Ct that are correlated with the same set S. By negating the output if necessary, we can
assume WLOG that

Pr
x∼φ

[Ci(x) = χS] ≥
1
2
+ ε, ∀i ∈ [t].

Define
Z(x) = |#{i ∈ [t] : Ci(x) = 0} − #{i ∈ [t] : Ci(x) = 1}|.

We note that

E
x∼φ

[Z(x)] ≥ E
x∼φ

[|#{i ∈ [t] : Ci(x) = χS(x)}| − |#{i ∈ [t] : Ci(x) ̸= χS(x)}|] ≥ 2εt.

Define Zi,j(x) to be 1 if Ci(x) = Cj(x) and −1 otherwise. Then clearly Zi,i(x) = 1. Note that
Z(x)2 = ∑i,j Zi,j(x), then

E
x∼φ

[
∑
i,j

Zi,j(x)

]
= E

x∼φ
[Z(x)2] ≥ E

x∼φ
[Z(x)]2 ≥ 4ε2t2 = 4t.

It then follows that

E
x∼φ

[
∑
i ̸=j

Zi,j(x)

]
≥ 3t.

Hence, there must be some i ̸= j such that Ex∼φ[Zi,j(x)] ≥ 3t
t(t−1) >

3ε2

2 , meaning that

Pr
x∼φ

[C(x)i = C(x)j]− Pr
x∼φ

[C(x)i ̸= C(x)j] = E
x∼φ

[C(x)i · C(x)j] >
3ε2

2
.

By averaging principle, either Prx∼φ[(C(x)i, C(x)j) = (1, 1)] or Prx∼φ[(C(x)i, C(x)j) = (−1,−1)]
is greater than 1

4 +
3ε2

8 . This contradicts to the fact that C(φ) samples a 3ε2

8 -almost pairwise inde-
pendent distribution.

In the following, we show that for many natural circuit classes (NC0
k for constant k, constant-

width CNF/DNFs, small-size De Morgan formulae, etc.), functions computable in these classes
are (d, δ)-simple with interesting parameters. Consequently, it allows us to apply Theorem 33 to
construct hitting set for AVOID problem of those circuit classes (for large enough stretch).

17

5.2 Applications

NC0
k circuits. Our first application is a hitting set for NC0

k-AVOID with stretch m(n) ≥ ω(nk−1).

Lemma 34. For every k ≥ 2 and every k-bit Boolean function f : {−1, 1}k → {−1, 1} that is not χ[k] or
−χ[k], the following is true. For any distribution φ : {−1, 1}k → [0, 1], there is some S ⊊ [k] and some z
and such that ∣∣∣∣∣∣ ∑

x∈{−1,1}k

φ(x) f (x)EQS,z(x)

∣∣∣∣∣∣ ≥ 2−2k.

Proof. Let k ≥ 2 and δ = 2−2k. Suppose there is a function f : {−1, 1}k → {−1, 1} and a distribu-
tion φ violating the statement of lemma. We derive a contradiction in the following.

We say that two inputs x, y are adjacent if they only differ at one coordinate. Suppose there are
two adjacent x, y such that they differ at the i-th coordinate and |φ(x)− φ(y)| ≥ δ. We construct
S = [k] \ {i} and observe that∣∣∣∣∣∣ ∑

z∈{−1,1}k

φ(z) f (z)EQS,x(z)

∣∣∣∣∣∣ = |φ(x) f (x) + φ(y) f (y)| ≥ |φ(x)− φ(y)| ≥ δ.

Since we assumed that f and φ violate the lemma statement, we have

Observation 1: |φ(x)− φ(y)| < δ holds for every adjacent x, y ∈ {−1, 1}k.

Next, since f is not χ[k] or −χ[k], there must be adjacent inputs x, y such that f (x) = f (y).
Suppose they differ at the i-th coordinate. Let S = [k] \ {i}. Similarly, we have∣∣∣∣∣∣ ∑

z∈{−1,1}k

φ(z) f (z)EQS,x(z)

∣∣∣∣∣∣ = |φ(x) f (x) + φ(y) f (y)| = φ(x) + φ(y).

Having assumed that f and φ violate the lemma statement, we have

Observation 2: There are adjacent x, y ∈ {−1, 1}k such that φ(x) ≤ φ(x) + φ(y) ≤ δ.

Finally, for each z ∈ {−1, 1}k, let dis(x, z) denote the Hamming distance between x and z. By
two observations above, we have

∑
z∈{−1,1}k

φ(z) ≤ ∑
z∈{−1,1}k

(dis(x, z) + 1) · δ ≤ k2kδ ≤ k2−k < 1.

This contradicts to the fact that φ is a distribution.

Lemma 35. For every k ≥ 2, every k-bit Boolean function f : {−1, 1}k → {−1, 1} that is not χ[k] or
−χ[k] is (k − 1, 2−2k)-simple.

Proof. By Lemma 34 and Fact 17, there exists some S ⊊ [k] and z ∈ {−1, 1}k such that∣∣∣∣∣∣ ∑
x∈{−1,1}k

φ(x) f (x)EQS,z(x)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ ∑

x∈{−1,1}k

φ(x) f (x) ∑
T⊆S

1
2|S|

(
∏
i∈T

zi

)
χT(x)

∣∣∣∣∣∣ ≥ 2−2k.

18

As ∏i∈T zi can only be ±1, by averaging principle, there exists some T ⊆ S ⊊ [k] such that

|⟨ f , χT⟩φ| =

∣∣∣∣∣∣ ∑
x∈{−1,1}k

φ(x) f (x)χT(x)

∣∣∣∣∣∣ ≥ 2−2k.

Corollary 36. Let C : {−1, 1}n → {−1, 1}m be a NC0
k circuit where m > 24k+1nk−1 + n, then there is a

set S ⊆ {−1, 1}m of size 2O(k)m2 that is computable in polynomial time and S ̸⊆ Range(C).

Proof. Let S be the support of a
(3

2 · 2−4k)-biased distribution over {−1, 1}m. By Theorem 23, it is
of size 2O(k)m2 and can be computed in polynomial time. We consider two cases.

• Suppose there are at least n + 1 outputs that are parities of exactly k input bits. Without loss
of generality assume they are C1, . . . , Cn+1. In this case, we interpret each Ci as a function
Ci : Fn

2 → F2 by identifying −1, 1 with 1, 0 respectively. Then we know for each i ∈ [n + 1],
Ci is an affine function of input bits. Since there are only n input bits, C1, . . . , Cn+1 are linearly
dependent. That is, there is ∅ ̸= J ⊆ [n + 1] such that ∏i∈J Ci(x) is a constant. On the other
hand, as S is the support of a 3

2 · 2−4k-biased distribution, there must be y1, y2 ∈ S such that

∏
i∈J

y1
i ̸= ∏

i∈J
y2

i .

Therefore, at least one of y1, y2 is not in the range of C.

• It remains to consider the case that there are at least m − n outputs that are not in the form
±χS where |S| = k. In this case, the correctness follows directly by combining Theorem 33
and Lemma 35.

Constant-width CNF/DNFs. Next, we apply our construction to constant-width CNF and DNFs.

Lemma 37. For every function f : {−1, 1}n → {−1, 1} that can be computed by a width-w size-s
CNF/DNF, and any distribution φ : {−1, 1}n → [0, 1], there exists a set S ⊆ [n] and some z such that
|S| ≤ w and ∣∣∣∣∣ ∑

x∈{−1,1}n

φ(x) f (x)EQS,z(x)

∣∣∣∣∣ ≥ 1
4s

.

Proof. WLOG we assume f is a DNF. Suppose f =
∨s

i=1 Ci, where each Ci is a logical AND over at
most w literals (i.e., variables or their negations). We can first assume Prx∼φ[f (x) = True] ∈ (1

4 , 3
4),

or otherwise we can set S = ∅ and z = 0n such that∣∣∣∣∣ ∑
x∈{−1,1}n

φ(x) f (x)EQS,z(x)

∣∣∣∣∣ =
∣∣∣∣ Pr

x∼φ
[f (x) = False]− Pr

x∼φ
[f (x) = True]

∣∣∣∣ > 1
2
>

1
4s

.

By averaging principle, there exists i ∈ [n] such that Prx∼φ[Ci(x) = True] ≥ 1
4s . Let S be the

variables in Ci and z be an arbitrary assignment satisfying Ci, then we have |S| ≤ w and∣∣∣∣∣ ∑
x∈{−1,1}n

φ(x) f (x)EQS,z(x)

∣∣∣∣∣ ≥ 1
4s

.

19

Lemma 38. Every function f : {−1, 1}n → {−1, 1} that can be computed by a width-w size-s CNF/DNF
is
(
w, 1

4s

)
-simple.

Proof. By Lemma 37 and Fact 17, there exists some S ⊆ [n] and z ∈ {−1, 1}n such that |S| ≤ w
such that∣∣∣∣∣ ∑

x∈{−1,1}n

φ(x) f (x)EQS,z(x)

∣∣∣∣∣ =
∣∣∣∣∣ ∑

x∈{−1,1}n

φ(x) f (x) ∑
T⊆S

1
2|S|

(
∏
i∈T

zi

)
χT(x)

∣∣∣∣∣ ≥ 1
4s

.

As ∏i∈T zi can only be ±1, by averaging principle, there exists some T ⊆ S such that |T| ≤ |S| ≤ w
and

|⟨ f , χT⟩φ| =
∣∣∣∣∣ ∑

x∈{−1,1}n

φ(x) f (x)χT(x)

∣∣∣∣∣ ≥ 1
4s

.

Corollary 39. Let C : {−1, 1}n → {−1, 1}m be a circuit where m > 32s2nw and each output can be
computed by a width-w size-s CNF/DNF, then there is a set S ⊆ {−1, 1}m of size O(s2 log2 m) that is
computable in polynomial time and S ̸⊆ Range(C).

Proof. Let S be the support of a
(3

8 ·
1

16s2

)
-almost pairwise independent distribution. By Theorem

24, it is of size O(s2 log2 m) and can be computed in polynomial time. The correctness directly
follows from Theorem 33 and Lemma 38.

5.3 Simplicity of Functions from Approximate Degree

In this section, we derive the simplicity of functions (as per Definition 32) by connecting it with
(large-error) approximate degree of Boolean functions, a well-studied complexity measure of Boolean
functions in literature (see, e.g., [KS04, RS10, Rei11, BT21]).

Definition 40. Let f : {−1, 1}n → {−1, 1} be a Boolean function. For any ε ∈ [0, 1), the ε-approximate
degree of f , denoted by degε(f), is the least d ∈ N such that there is a degree-d real polynomial p : Rn → R

satisfying |p(x)− f (x)| ≤ ε for every x ∈ {−1, 1}n.

In the literature, when ε is not specified, it is typically set as ε = 1
3 . However, for us it is

also beneficial to study case that ε is very close to 1 (Note that the zero polynomial trivially 1-
approximates every Boolean function).

We show that upper bounds for ε-approximate degree translate to simplicity of functions.

Theorem 41. Suppose n ≥ 10. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Let ε ∈ (0, 1), d ∈ N

be such that deg1−ε(f) ≤ d. Then f is
(

d, ε
3nd/2

)
-simple.

Proof. Let p(x) = ∑S⊆[n],|S|≤d p̂(S) · χS(x) be a degree-d real polynomial such that | f (x)− p(x)| ≤
1 − ε holds for every x ∈ {−1, 1}n. By Parseval’s identity, we have

∑
S⊆[n]

p̂(S)2 = E
x∼{−1,1}n

[p(x)2] ≤ (1 + 1 − ε)2 ≤ 4.

By Cauchy-Schwarz inequality, we have

4 · 2nd ≥
(

∑
S⊆[n]

p̂(S)2

)(
∑

S⊆[n],|S|≤d
1

)
≥
(

∑
S⊆[n],|S|≤d

| p̂(S)|
)2

.

20

Therefore,
∑

S⊆[n],|S|≤d
| p̂(S)| ≤ 3nd/2.

Note that from f (x) ∈ {−1, 1} and |p(x)− f (x)| ≤ 1 − ε we have f (x)p(x) ≥ ε. Hence, for every
distribution φ over {−1, 1}n, we have

∑
x∈{−1,1}n

φ(x) · f (x) · p(x) ≥ ∑
x∈{−1,1}n

φ(x) · ε = ε.

Write p(x) = ∑S⊆[n],|S|≤d p̂(S) · χS(x). By averaging principle, there is S ⊆ [n], |S| ≤ d such that

∑
x∈{−1,1}n

φ(x) · f (x) · χS(x) ≥ ε

3nd/2 .

Since this argument holds for every distribution φ, we conclude that f is
(

d, ε
3nd/2

)
-simple.

Approximate degree of natural circuit classes. We have the following known upper bounds on
approximate degree.

• For f being a size-s De Morgan formula, following a lone ling of efforts [Rei11, Tal17], we
now know that deg1/3(f) = O(

√
s). Consequently, f is

(
O(

√
s), n−O(

√
s)
)

-simple.

• For f being a CNF/DNF of unbounded width and size s, it is known that deg1− 1
s
(f) =

O(
√

n log s) [KS04, dW08]. Consequently, f is
(√

n log(s), n−O(n1/2 log s)
)

-simple.

Combining these approximate degree upper bounds with Theorem 33 and 41, as well as the
construction from Theorem 24, the following corollary is immediate.

Corollary 42. Let m = m(n), s = s(n) be two non-decreasing functions. Suppose C : {−1, 1}n →
{−1, 1}m is a multi-output function. The following statements hold.

• If each output bit Ci(x) is a size-s De Morgan formula of input bits and m ≥ nω(
√

s), then there is a set
S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and satisfies S ̸⊆ Range(C).

• If each output bit Ci(x) is a size-s DNF or CNF of input bits and m ≥ nω(
√

n log(s)), then there is a set
S ⊆ {−1, 1}m of size poly(m) that is computable in polynomial time and satisfies S ̸⊆ Range(C).

In both cases, the set S is independent of the circuit C.

References

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986.

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992.

21

[BHPT20] Amey Bhangale, Prahladh Harsha, Orr Paradise, and Avishay Tal. Rigid matrices
from rectangular pcps or: Hard claims have complex proofs. In Sandy Irani, editor,
61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 858–869. IEEE, 2020.

[BT21] Mark Bun and Justin Thaler. The large-error approximate degree of ac0. Theory Com-
put., 17:1–46, 2021.

[dW08] Ronald de Wolf. A note on quantum algorithms and the minimal degree of epsilon-
error polynomials for symmetric functions. 2008.

[Eli57] Peter Elias. List decoding for noisy channels. 1957.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Trans. Inf. Theory, 54(1):135–150,
2008.

[GR09] Venkatesan Guruswami and Atri Rudra. Better binary list decodable codes via multi-
level concatenation. IEEE Trans. Inf. Theory, 55(1):19–26, 2009.

[Ham50] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, 1950.

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou.
Total functions in the polynomial hierarchy. In James R. Lee, editor, 12th Innovations
in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Confer-
ence, volume 185 of LIPIcs, pages 44:1–44:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

[Kor21] Oliver Korten. The hardest explicit construction. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022,
pages 433–444. IEEE, 2021.

[KS04] Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2õ(n1/3). J. Comput.
Syst. Sci., 68(2):303–318, 2004.

[Lyu22] Xin Lyu. Improved pseudorandom generators for AC0 circuits. Electron. Colloquium
Comput. Complex., TR22-021, 2022.

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased generators in
nc0. Random Struct. Algorithms, 29(1):56–81, 2006.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions
and applications. SIAM J. Comput., 22(4):838–856, 1993.

[Pat08] Mihai Patrascu. Succincter. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 305–313. IEEE
Computer Society, 2008.

[Rei11] Ben Reichardt. Reflections for quantum query algorithms. In Dana Randall, editor,
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 560–569. SIAM,
2011.

22

[RR97] Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

[RS10] Alexander A. Razborov and Alexander A. Sherstov. The sign-rank of ac0. SIAM J.
Comput., 39(5):1833–1855, 2010.

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem
for circuits. Electron. Colloquium Comput. Complex., (48), 2022.

[Sav76] John E. Savage. The complexity of computing. Wiley New York, 1976.

[Tal17] Avishay Tal. Formula lower bounds via the quantum method. In Hamed Hatami,
Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 1256–1268. ACM, 2017.

[TS17] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page
238–251, New York, NY, USA, 2017. Association for Computing Machinery.

[TX13] Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved
derandomization of AC0. In Proceedings of the 28th Conference on Computational Com-
plexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 242–247. IEEE Com-
puter Society, 2013.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef Gruska,
editor, Mathematical Foundations of Computer Science 1977, 6th Symposium, Tatranska
Lomnica, Czechoslovakia, September 5-9, 1977, Proceedings, volume 53 of Lecture Notes
in Computer Science, pages 162–176. Springer, 1977.

[Vio10] Emanuele Viola. The complexity of distributions. In 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,
USA, pages 202–211. IEEE Computer Society, 2010.

[Vio20] Emanuele Viola. Sampling lower bounds: Boolean average-case and permutations.
SIAM J. Comput., 49(1):119–137, 2020.

[Wil14] Ryan Williams. Nonuniform acc circuit lower bounds. J. ACM, 61(1), jan 2014.

[Woz58] John M Wozencraft. List decoding. Quarterly Progress Report, 48:90–95, 1958.

[Yu20] Huacheng Yu. Nearly optimal static las vegas succinct dictionary. In Kon-
stantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1389–1401. ACM,
2020.

23

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

