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Abstract
A Chor–Goldreich (CG) source [CG88] is a sequence of random variables X = X1 ◦ . . . ◦Xt,

each Xi ∼ {0, 1}d, such that each Xi has δd min-entropy for some constant δ > 0, even
conditioned on any fixing of X1 ◦ . . . ◦ Xi−1. We typically think of d as constant. We extend
this notion in several ways, and most notably allow each Xi to be only γ-close to having δd
min-entropy.

Studying such almost CG sources allows us to achieve pseudorandomness results which
were not known to hold even for standard CG sources, and even for the weaker model of
Santha–Vazirani sources [SV86]. We construct a deterministic condenser that on input X , outputs
a distribution which is close to having constant entropy gap, namely a distribution Z ∼ {0, 1}m
for m ≈ δdt with min-entropy m−O(1).

Our new primitive readily implies fast simulation results:

• We can simulate BPP using almost CG sources with constant multiplicative slowdown.
• When the randomized algorithm has small failure probability, we can simulate it using

almost CG sources with no multiplicative slowdown. This result extends to randomized
protocols as well, and any setting in which we cannot simply cycle over all seeds, and a
“one-shot” simulation is needed.

Moreover, our framework is flexible enough to work even when the Xi-s only have Shannon
entropy rather than min-entropy, and in some cases, even when a few Xi-s are completely
damaged.

Our main technical contribution is a novel analysis of random walks which may be of
independent interest. We analyze walks with adversarially correlated steps, each step being
entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain
interleaved walks on two expanders), starting from a fixed vertex and walking according to
X1 ◦ . . . ◦Xt, accumulate most of the entropy in X .
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1 Introduction

Randomness is an incredibly useful resource. The use of randomness is sometimes provably essen-
tial (e.g., in cryptography or property testing), and sometimes we conjecture it is not, prominently
in time-bounded randomized algorithms, yet it is often the case that randomized algorithms vastly
outperform deterministic ones. However, true randomness is scarce, and often we may only be
able to access a weak, defective source of randomness. This motivates the problem of simulating ran-
domized algorithms that expect to receive true randomness, using only weak sources of randomness
[Zuc96].

The most natural way to use a weak random source is to convert it into a high quality random
source. A (seedless or deterministic) extractor does exactly this. Specifically, an extractor for a class
of sources X over n bits is a function Ext {0, 1}n → {0, 1}m such that for any X ∈ X it holds that
Ext(X) is close, in total variation distance, to Um, the uniform distribution on m bits. However, this
is only possible for some restricted classes of sources.

For typical sources X randomness extraction is only possible with the addition of a short
random seed Y ∼ {0, 1}`, independent of X . It’s not hard to see that simulation of randomized
algorithms can be done by cycling over all seeds; see the well known Lemma 2.9. Letting T = T (|w|)
be a bound on the runtime of A, the simulation takes 2`(T + tExt) time, where tExt is the time it
takes to compute the extractor. Since typically tExt � T , we denote by 2` the simulation’s slowdown,
and naturally we want it to minimize it.

Generally, the distributions that we could hope to extract from are simply modeled as an
arbitrary probability distribution with some amount of min-entropy in it [CG88, Zuc90], also
known as k-sources.1 Unfortunately, we have a lower bound of ` ≥ log n+O(1) on the seed length
of extractors for arbitrary k-sources, so simulating BPP (using extractors) with arbitrary weak
sources must incur at least Ω(n) slowdown.2

Previous research focused on these two extremes: sources where deterministic extraction is
possible, and hence there’s a negligible slowdown, and simulations giving an Ω(n) slowdown. We
initiate a fine-grained study in between these extremes by asking the following questions.

1. Are there natural weak sources where deterministic extraction is impossible, but where an
o(n) or even constant slowdown is possible?

2. For some applications, one cannot cycle over all seeds, such as in one-shot scenarios like
cryptography and interactive proofs. Are there natural weak sources where deterministic
extraction is impossible, yet it’s possible to use such sources in various restricted one-shot
settings?

An affirmative answer to Question 1 can be inferred from the literature for Santha–Vazirani (SV)
and Chor–Goldreich (CG) sources, discussed below. We give a highly nontrivial generalization of
this to approximate SV and CG sources. Moreover, we answer Question 2 affirmatively for such
almost-SV and almost-CG sources, which was not known previously even for exact SV and CG
sources.

1We say that X is a k-source if its min-entropy is at least k, i.e., if every sequence x occurs in X with probability at
most 2−k.

2Note that the slowdown is (at least) linear in n, and the number of random coins is m < n. The difference between
n and m naturally depends on the entropy k that the source has. For the precise lower bounds on the parameters of
extractors for arbitrary k-sources, see [RT00]. In terms of explicit results, for k = Ω(n), a simulation with linear slowdown
follows from [Zuc07], and for arbitrary k-s we can get a polynomial slowdown (e.g., from [GUV09, LRVW03]).
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For our constructions, we take a very natural approach of using random walks. For arbitrary
sources with entropy rate 1/2, a random walk may not mix at all: each random step may be
followed by an adversarial step that reverses the random step. This raises the question:

3. Do random walks mix well in some sense for any natural weak sources with entropy rate
below 1/2?

We show, via new techniques, that it is indeed possible to get good mixing properties for almost
CG and SV sources with any constant entropy rate.

1.1 Santha–Vazirani Sources and Chor–Goldreich Sources

We now discuss the sources we study. One of the first classes of semi-random sources to be
investigated are Santha–Vazirani (SV) sources [SV86], which are sequences of random bits in which
the conditional distribution of each bit given the previous ones can be partially controlled by an
adversary. Namely, X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}, is a δ-SV source if for any i and any prefix
a ∈ {0, 1}i−1 and b ∈ {0, 1}, it holds that Pr[Xi = b|X[1,i−1] = a] ≤ 1 − δ/2.3 Chor and Goldreich
[CG88] generalized the SV model by considering each Xi ∼ {0, 1}d and assuming that no sequence
of d bits has too high a probability of being output. Formally, X is a δ-CG source if for any i and any
prefix a ∈ {0, 1}d(i−1), it holds that H∞(Xi|X[1,i−1] = a) ≥ δd, where H∞ denotes the min-entropy.
We typically think of d being constant and t growing.4

It is known that one cannot deterministically extract from SV sources5:

Theorem 1.1 ([SV86], see also [RVW04]). The class of δ-CG sources do not admit deterministic extraction.

It follows from [NZ96, SZ99] that a constant-length seed suffices to extract from CG sources
(and thus SV sources).

Theorem 1.2 (informal; follows from [NZ96, SZ99]). For any constants 0 < ε, δ ≤ 1, there exists an
ε-error extractor for δ-CG sources, with seed length ` = O(1).

By the above connection, this gives a simulation with constant slowdown.6

In our work, we significantly extend the class of sources with which we can simulate randomized
algorithms with only constant slowdown. Perhaps even more surprisingly, we can simulate low-
error randomized algorithms, and in general biased distinguishers, in a “one-shot” manner via
deterministic condensers, which we soon define.

3We denote X[1,i−1] = X1 ◦ . . . ◦Xi−1. Note that the Xi-s are not assumed to be independent.
4This is in contrast with “block-sources”, which is the term often used when t is very small and d is large.
5We note that some variations of SV sources are known to admit deterministic extraction. See [BEG17].
6We give a brief overview of the construction of Theorem 1.2. Given X1 ◦ . . . ◦Xt, we use a constant-sized seed Y to

extract, in a “strong” sense (say, using universal hashing) a uniform Z1 from X[1,a] where a = O(1). Then, we use Z1

as a seed to extract from X[a+1,b] to get Z2, where [a+ 1, b] is roughly twice as long as [1, a]. Continuing this way for
s = O(log t) times, we use Zs as a seed to extract from a suffix of X of length Ω(dt). The output of the final extraction is
the output of the extractor.

2



Almost CG Sources. Instead of requiring that each Xi, conditioned on every prefix, has at least
δd min-entropy, we only require the conditional Xi to be γ-close to some source with entropy rate δ.
This is the first extension of CG sources we consider.

Definition 1.3 (almost CG source, I). We say that X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, is a γ-almost
δ-CG source if for any i and any prefix a ∼ X[1,i−1], it holds that Xi|

{
X[1,i−1] = a

}
is γ-close, in total

variation distance, to a source with δd min-entropy.

Considering γ-s which can be much larger than 2−d is very natural and has several advantages.
In particular, it is often the case that the Xi-s are a result of some prior transformations, which
almost always incur some error.7 Moreover, handling γ > 0 allow us to consider Xi-s with only the
weaker guarantee of having high Shannon entropy. We elaborate on it soon.

1.2 Simulating True Randomness with Almost CG Sources

Recall that we have the following parameters:

1. d is the length of each block, and t is the number of blocks (so X is distributed over n = dt
bits.);

2. Each block Xi is γ-close to having δ entropy rate; and,

3. m denotes the output length of our extractor (and later condenser).

Later, we will study two additional extensions for CG sources: Those with some λ-fraction of
damaged blocks, for which we have no guarantee, and those in which for every good block, it is
only guaranteed that some ρ-fraction of prefixes give rise to a (close to) high-entropic block.

Theorem 1 (see also Theorem 7.1). For any constants δ, ε > 0, every large enough integer constant d,
and any γ ≤ 2−O(1/δ), the following holds. For any positive integer t there exists an explicit function

Ext : {0, 1}n=dt × {0, 1}`=O(1) → {0, 1}m=Ω(δdt)

such that given an almost δ-CG source X with smoothness parameter γ, and an independent uniform
Y ∼ {0, 1}`, it holds that Ext(X,Y ) ≈ε Um.8

While for γ = 0, Theorem 1 can be deduced from previous work, existing techniques fail to
handle constant γ-s. Moreover, our paper gives something stronger even for the γ = 0 case: We
give a one-shot simulation of randomized protocols with almost CG sources for biased distinguishers,
and particularly, a no-overhead simulation of BPP algorithms that err with small probability. This
wasn’t known even for CG sources, or even for SV sources. We discuss this next.

7Indeed we already demonstrate such an example in this work. In Section 1.5.2, we will see that in order to handle an
arbitrary constant δ > 0, even for γ = 0, we will go through an intermediate γ-almost δ′-CG source for γ > 0 and δ′ > δ.

8We remark that the output length m = Ω(δdt) can in fact be stated as m = (1− θ)δdt where θ is an arbitrary small
constant, by slightly strengthening the constraints on the constructions’ parameters. For simplicity and readability, we
do not give the constraints’ dependence on θ.
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1.3 Deterministic Condensing from Almost CG Sources

While an extractor aims to purify a weak source X into a nearly-uniform source, a condenser
aims to improve the source’s quality, namely by increasing the entropy rate [RR99]. Formally,
Cond : {0, 1}n × {0, 1}` → {0, 1}m is a (k′, ε) condenser for a class of sources X distributed over
{0, 1}n if for any X ∈ X and an independent and uniform Y ∼ {0, 1}`, it holds that Cond(X,Y )
is ε-close to a source with k′ min-entropy. When ` = 0, we say the condenser is deterministic (or
seedless), and that X admits deterministic condensing.

The entropy rate of a condenser is k′

m , and we want it to be larger than k
n , where k is the min-

entropy in each X ∈ X . When the rate is very close to 1, i.e., when k′ is very close to m, it makes
sense to measure the additive difference m− k′.

Definition 1.4 (entropy gap). The entropy gap of a random variable Z ∼ {0, 1}m is ∆ = m−H∞(Z).
We say that a (k′, ε) condenser Cond has entropy gap ∆ if its output is ε-close to a source with entropy gap
∆. (Note that an extractor has entropy gap 0.)

Condensers were proven incredibly useful as building blocks for extractors (e.g., in [RSW06,
TUZ07, GUV09, Zuc07, BKS+10]). Regardless, they are also of great independent interest, because:

1. They can achieve parameters that are unattainable for extractors, and in particular,

2. There are classes of sources that admit deterministic condensing and (provably) do not admit
deterministic extraction. To the best of our knowledge, our work is the first to demonstrate
this for a natural class of sources.

For Item 1, we give as an example the fact that for arbitrary weak sources, condensers can achieve
smaller entropy loss9 and a smaller seed length. The latter fact was used for the construction of
full-fledged extractors and pseudorandom generators (see [BDT19, DMOZ20]).

Our focus in this work is on the intriguing phenomenon described in Item 2. Recall that the
class of CG sources do not admit deterministic extraction. Our main result is that not only do
CG sources, and even almost CG sources, admit deterministic condensing, but we also construct
explicit condensers for such sources with constant entropy gap!

Theorem 2 (see also Corollary 4.17). For any constants δ, ε > 0, every large enough integer constant d,
and any γ ≤ 2−O(1/δ), the following holds. For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δdt)

such that given an almost δ-CG sourceX with smoothness parameter γ, Cond(X) is ε-close to an (m−O(1))-
source.

Deterministic extraction (and thus condensing) is known for several classes of sources. Some
have more algebraic structure, such as uniform distributions on affine subspaces or varieties
(see [CGL22, Dvi12] and references therein), where others are arguably better models of random
sources obtained from natural physical phenomena, such as bit-fixing sources, samplable sources,

9The entropy loss of a condenser or an extractor is the difference between the input entropy and the output entropy.
When X is the set of all k-sources, the entropy loss of a seeded extractor Ext : {0, 1}n × {0, 1}` → {0, 1}m is k + d−m,
and the entropy loss of a (k′, ε) seeded condenser Cond : {0, 1}n×{0, 1}` → {0, 1}m is k+ d− k′. In seeded condensers,
the entropy loss can be zero, which is impossible for extractors (see [RT00, AT19]).
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small-space sources or local sources ([TV00, KRVZ06, DW12, Vio14, CG22] are just few examples).
To the best of our knowledge, our study of CG sources and almost CG sources provide the first
natural classes of sources which admit deterministic condensing (even explicitly) but do not admit
deterministic extraction.10

One can readily obtain Theorem 1 from Theorem 2 by applying a constant-seed extractor.
Indeed, it is known how to explicitly transform sources with entropy gap ∆ into (close to) uniform
ones by investing O(∆) random bits [GW97] (see Theorem 2.11).

The Usefulness of Constant Entropy Gap. While constant seed is needed to simulate a BPP
algorithm with error 1

3 using CG sources, what if we start with an algorithm that has a very small
constant error? What if we wish to simulate a protocol rather than an algorithm, and we cannot
simply cycle over all seeds? Our next discussion is devoted to what can be done with nonzero, yet
very small, entropy gap.

Consider the following simple observation.

Claim 1.5 (see, e.g., [DPW14]). Let Z ∼ {0, 1}m be ε
2 -close to some random variable with m − ∆

min-entropy. Then, for any BAD ⊆ {0, 1}m with density at most ρ(BAD) ≤ 2−∆−1ε, it holds that
Pr[Z ∈ BAD] ≤ ε.

Thus, Theorem 2 implies that we can sample roughly m
δ bits from an almost CG source, apply

our condenser, and simulate a randomized algorithm that uses m bits of randomness. As long as
the algorithm’s error is small enough compared to our condenser’s entropy gap, we can simulate it
to within a (larger) error ε, and the only overhead we have is computing the condenser. We note that
sources with constant entropy gap were recently used to simulate algorithms that err rarely in
the computational setting, where computational entropy is used rather than the min-entropy of
Claim 1.5 (see [DMOZ20]).

Sources with small ∆ have found applications in cryptography (see, e.g., [BDK+11, DRV12,
DY13, DPW14]), and our one-shot generation of constant-gap sources from almost CG sources
make the latter useful for those applications. In [DPW14], Dodis, Pietrzak, and Wichs considered
the notion of biased distinguishers, which is well-motivated in cryptography, and studied extractors
that are only guaranteed to fool biased distinguishers rather than arbitrary ones. (This is also
related to “slice extractors.”)

Definition 1.6 (unpredictability extractor, [DPW14]). A function D : {0, 1}m × {0, 1}` → {0, 1} is
a µ-distinguisher if E[D(Um, Y )] ≤ µ, where (Um, Y ) is uniform over {0, 1}m × {0, 1}`. A function
UExt : {0, 1}n×{0, 1}` → {0, 1}m is a (k, µ, ε)-unpredictability extractor if for any k-source X ∼ {0, 1}n

and any µ-distinguisher D, we have that E[D(UExt(X,Y ), Y )] ≤ ε, where Y is uniform over {0, 1}` and
independent of X .

Dodis et al. showed that condensers with small entropy gap are equivalent to unpredictability
extractors [DPW14].11 This follows from the connection between sources with small entropy
gap and biased distinguishers, essentially rephrasing Claim 1.5: For any Z ∼ {0, 1}m which is
ε-close to having m − ∆ min-entropy, and a µ-distinguisher D : {0, 1}m → {0, 1}, it holds that
E[D(Z)] ≤ ε + 2∆µ. While Dodis et al. discussed seeded primitives and arbitrary weak source,

10A more contrived example is a certain type of block sources which appear in [BCDT19].
11The use of biased distinguishers is also explicit in the recents works of [CT21, SV22].
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the connection between constant entropy gap and biased distinguishers readily follows to our
setting as well. Concretely, Theorem 2 gives deterministic unpredictability extractors for almost CG
sources.12 We believe the notion of a deterministic unpredictability extractor is a very natural one
and may find applications beyond the ones that stem from [DPW14].

To conclude this section, we mention a work by Gavinsky and Pudlák on deterministic con-
densers for SV sources [GP20]. There, they studied the less-standard notion of errorless condensers,
and showed that no such determinstic condenser exists for (standard) SV sources. We do allow
error, which evidently does enable deterministic condensing. (Allowing error also enables seeded
extraction from general weak sources, and is the standard model in pseudorandomness.) They also
gave a seedless condenser for a more restrictive model than SV sources, although it doesn’t have
constant entropy gap.

1.4 On Almost CG Sources and the Smoothness Parameter

Before presenting our technique, let us further discuss the smoothness parameter γ. Towards this
end, let us introduce the notion of smooth min-entropy, which we implicitly used above. For a
smoothness parameter α > 0, we let Hα

∞(X) = maxX′:|X−X′|≤αH∞(X ′).13 Using this terminology,
the i-th block in our almost CG source satisfies Hγ

∞(Xi|X[1,i−1] = a) ≥ δd for any prefix a ∼ X[1,i−1],
and the output of the condenser satisfies Hε

∞(Cond(X)) ≥ m−O(1).
One could imagine the the setting of γ > 0 to be a technical extension, but successfully handling

this regime draws highly nontrivial consequences. First, note that we cannot reduce the γ > 0
setting to the γ = 0 case via a union-bound type argument, since γt� 1. It turns out that this is not
simply a matter of proof technique.

Claim 1.7 (informal; see Claim 3.11). There exists an almost δ-CG source with smoothness parameter γ
which is far from any (1− 2γ)δ-CG source.

Despite this, our technique does handle constant γ-s. Moreover, we emphasize that an almost
CG source with γ > 0 over dt = n bits may not even have Ω(δn) bits of entropy. To see this, consider
the source X = X1 ◦ . . . ◦Xt such that for each i ∈ [t], Xi is zero with probability γ, and an arbitrary
δd-source over {0, 1}d \ {0}. Thus, Pr[X = 0] = γt and so H∞(X) ≤ t log 1

γ . Still, our condenser
outputs a source which is close to having roughly δn bits of entropy! This implies that such an X
must have ample smooth min-entropy. Indeed, this is the case.

Claim 1.8 (informal; see Claim 3.10). Every almost δ-CG source over n bits with smoothness parameter γ
has smooth min-entropy (1− 2γ)δn.

We note that the technique stemming from [SZ99] that handles the γ = 0 case completely fails
when γ ≥ 1

log t .
14

12We note that [DPW14] cared about the entropy loss. Our condensers lose roughly a small constant fraction of the
entropy, which is much more that what is attainable for seeded condensers with small entropy gap.

13The distance here is the total variation distance. See Section 2.1.
14When γ decreases as a function of t, the smoothness relaxation is moot, since γ is already smaller than 2−d and can

be “incorporated” into the actual min-entropy.
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Handling Shannon Entropy. Handling γ > 0 enables us to extend our results to an even weaker
notion of randomness streams. We say X is a δ-Shannon-CG source if Xi, conditioned on every pre-
fix, in only guaranteed to have high Sannon entropy.15 Given a δ-Shannon-CG source, we show that
by grouping every O(1) consecutive blocks, we get an almost Ω(δ2)-CG sources with smoothness
parameter γ that is exponentially-small in the number of grouped blocks (see Lemma 3.8). Then,
we can easily apply our results for almost CG sources. See Theorems 6.2 and 7.3 for the precise
condensing and extraction results. Note that the transition from Shannon entropy to min-entropy
necessarily induces error, so γ > 0 is crucial here.

Handling Damaged Blocks. Our random-walks based condensing method is flexible enough to
handle damaged blocks too. Namely, we allow some λ-fraction of the i-s to have completely arbitrary
conditional distributions.

Definition 1.9 (almost CG source, II). A (γ, λ)-almost δ-CG source is a sequence of random variables
X = X1◦. . .◦Xt, eachXi ∼ {0, 1}d, such that for at least (1−λ)t of the i-s, it holds thatHγ

∞(Xi|X[1,i−1] =
a) ≥ δd for any prefix a ∼ X[1,i−1].

When the damage pattern is arbitrary, we can condense to within O(λdt) entropy gap (i.e., we
lose d bits of entropy for each damaged block). Corollary 4.17 handles the λ > 0 setting as well.
We remark that the [NZ96, SZ99] technique would fail for even one damaged block. When the
damaged locations are “nicely distributed”, we regain the O(1) entropy gap. We elaborate it more
soon in Section 1.5.3, and give the technical details in Theorems 5.6, 6.2, 7.3 and 7.4.

1.5 Our Technique: A New Analysis of Adversarial Random Walks

Our main technical contribution is a new analysis of adversarial random walks. Let’s begin our
discussion with exact Chor-Goldreich sources. Spectral analysis has been the main tool to analyze
random walks on expanders. However, it doesn’t seem to work for CG sources with rate below
1/2. This is because there is no specialized method for CG sources; existing spectral methods that
work for CG sources also work for general min-entropy sources, and general sources with rate
below 1/2 do not mix at all. (Recall that each random step may be followed by an adversarial step
that reverses the random step.) Moreover, even for general sources with rate above 1/2 a random
stopping time is required, which amounts to a linear number of seeds. We hope to condense
without a seed or extract with a constant number of seeds.

Furthermore, spectral methods generally exploit the Markovian nature of random walks.
However, an adversarial random walk is not Markovian. That is, the distribution of the next
step depends not only on the walk’s current node, but also on the path it took to get there. Indeed,
although it is true that the distribution of the next step from a given node v is a convex combination
of instruction distributions over all the paths that end at v, the memory in the walk still presents a
challenge.

Our approach uses expansion directly. We therefore use the highest quality expanders: bipartite
lossless expanders.

15One always have that H(X) ≥ H∞(X), for H(·) being the Shannon entropy. Moreover, there are X-s with nearly
maximal Shannon entropy, but extremely low min-entropy, or even smooth min-entropy.
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Definition 1.10 (balanced lossless expander). We say a bipartite graphG = ([M ], [M ], E) is a (Kmax, ε)
lossless expander if for all subsets S ⊆ [M ] of size at most Kmax, the neighborhood set ΓG(S) has size at
least (1− ε)D|S|.

For numerous applications a modest vertex expansion is not enough, and lossless expansion
is essential.16 An explicit construction of balanced (and somewhat imbalanced) constant-degree
lossless expanders was given by Capalbo, Reingold, Vadhan, and Wigderson [CRVW02].17 As
a pseudorandomness primitive, it is instructive to think of ΓG : {0, 1}m × {0, 1}d → {0, 1}m, the
neighborhood function of G, as a lossless conductor (where we use {0, 1}m ≡ [M ]).

Definition 1.11 (balanced lossless conductor). A function LC : {0, 1}m × {0, 1}d → {0, 1}m is a
(kmax, ε) lossless conductor if for any k ≤ kmax, a k-sourceX , and an independent and uniform Y ∼ {0, 1}d,
it holds that Hε

∞(LC(X,Y )) ≥ k + d.18

That is, the output distribution “absorbs” the d bits of entropy from the seed, up to an ε
error. Intuitively, the larger the vertex expansion, the less freedom the adversary has to skew the
distribution over the next step. We soon make this intuition more concrete.

Our first construction, which works for large δ-s, goes as follows. Given an almost CG source
X = X1 ◦ . . . ◦Xt, each Xi ∼ [D], we walk, from a fixed node, along a (t+ 1)-partite graph with
a copy of G between each two layers (the graph’s size M is chosen as a function of the source’s
parameters). Namely, we start at some fixed Z0 ∈ [M ], and for each i ∈ [t], let

Zi = ΓG(Zi−1, Xi),

and output Cond(X) = Zt.
For an exact δ-CG source, this amounts to a random walk where an adversary, after seeing

previous steps, chooses Dδ nodes among the D neighbors, and the random walker steps to a
random node among these Dδ nodes.

Evading the Union Bound. The naive approach to analyze the output distribution after t steps
is to follow the definition of conductors. However, conductors only guarantee that the output
distribution is ε-close to a distribution with appropriate entropy. Thus, even disregarding the
correlation between source and seed, such an argument naturally forces us to union bound over the
error of each step. Indeed, one can even show that if each instruction comes from a δd-source, and
one wishes to add exactly δd entropy, then such a union bound is necessary. Our ultimate solution
avoids this union bound issue, and in doing so, only argue that the entropy gain at each step is
0.9δd instead.19

16Examples can be found in coding theory, data structures, algorithms, storage models, and proof complexity (see the
references in [CRVW02], and [BGI+08, DK08, CCLO22, LH22] for more recent works).

17For very small sets, Alon showed that lossless expansion follows from high girth. See also [AC02]. In the regime
where M � N , the degree needs to be super-constant, and explicit constructions for this regime are known (e.g.,
[TUZ07, GUV09]).

18The correct equivalence would be to lossless condensers if we allow the construction itself to depend on k (see
[TUZ07]). For the sake of our discussion, this difference won’t matter, and in the technical sections we will not use the
lossless condensers/conductors terminology.

19Or (1− θ)δd for an arbitrary constant θ close to 1, at the expense of modifying some constraints in the construction.
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1.5.1 The `q Norm as a Progress Measure.

Recall that spectral analysis typically uses the `2 norm as a measure of progress. While the `2 norm
doesn’t appear to work in our setting, we manage to use the `q norm as a progress measure, for
some suitable q = 1 + α. That is, we show that the `q norm of the vertex distribution decreases by a
suitable multiplicative factor at each step.

Theorem 3 (informal; see Lemma 4.9). Let G = (U = [M ], V = [M ], E) be a bipartite D-regular
lossless expander with error ε = 1

Dβ
). For any 0 < α < β, set q = 1 + α and let δ ≥ 1− β + α.

Let pU be a probability distribution overU and let ru, for each u ∈ U , be a distribution over {0, 1}d ≡ [D],
each being a δd source. For any u ∈ U and v ∈ V let ru(u, v) denote the probability that the edge leading from
u to v is chosen under ru. That is for G’s labelling function ` : E → [D], we denote ru(u, v) ≡ ru(`(u, v)).
Define pV as the induced probability distribution on V . That is, pV (v) =

∑
u∈Γ(v) ru(u, v)pU (u). Then,

‖pV ‖qq ≤
16

Dδα
· ‖pU‖qq ,

as long as ‖pU‖qq is not already small enough.

The `q-norm is a proxy measure for min-entropy, since any distribution p such that ‖p‖qq ≤ 2−αk

is ε-close to a distribution with entropy k − 1
α log 1

ε −O(1) (see Corollary 2.3). Thus, our analysis
gives a “spectral-like” analysis of random walks even when such techniques cannot be directly
applied. In addition to its application in deterministic condensing, we believe that this analysis of
entropy gain via random walks from correlated and nonuniform steps is interesting on its own.

To prove Theorem 3, since the distribution of the random walk’s vertex may not be uniform, we
generalize set expansion and unique neighbor expansion to apply to “weight functions” and proba-
bility distributions. We then apply Jensen’s inequality with a nonstandard choice of coefficients
that heavily weights the term where we gain. This gives a simple analysis of adversarial random
walks that uses expansion directly.

Handling Smoothness. Up until now, we did not address the smoothness parameter γ explicitly.
Quite surprisingly, it turns out that our technique based on the `q-norm analysis is flexible enough
to support constant γ-s without substantial changes. Indeed, when dealing with such instructions,
we extend Theorem 3 and show that the `q- norm decrease factor is now roughly 1

Dδα
+Dαγ. In fact,

there are cases where this factor is tight. This seems unfortunate, because we are now seemingly
only gaining less than log 1

γ min-entropy at each step, or in other words, lose the vast majority of
the desired δd bits.

The trick to overcome this is to simply pick α sufficiently small in the `q-norm analysis (recall
that we set q = 1 + α). Indeed, by choosing α ≈ 1

d log 1
γ , we see that γ is then comparable to 1

Dδα
.

Under the assumption that γ ≤ 2−O(1/δ), the decrease factor can be made to be D−0.9δα. Thus, we
once again gain roughly 90% of the entropy at each step. Setting α this small only results in a loss
of roughly O(d) bits of entropy over the entire walk.20 For the precise norm evolution with an
arbitrary γ, in Corollaries 4.14 and 4.15, we set α accordingly.

Finally, we observe that the assumption γ ≤ 2−O(1/δ) is quite mild, as γ only depends on δ and
not d. Thus, for sufficiently large d-s, γ � D−O(1). We note that setting α to be a small constant,

20A key point here is that the closer α is to 1, the larger we can allow our `q-norm bound to be in order to get high
entropy. See Corollary 2.3.
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say α = 1/6, would require γ ≤ D−O(1) in order to argue that 0.9δd bits of entropy is gained at each
step. We view our setting of parameter α as a way that allows us to avoid treating each instruction
source as pessimistically as a log 1

γ -source.

The Limit of our First Construction. We now explain why our first construction only works for
large enough δ. For concreteness, assume that we are at some Zi−1 ∼ {0, 1}m with H∞(Zi−1) = k,
and walk according to Xi ∼ [D] having entropy δd (assume for now that γ = 0). For simplicity,
assume that Zi is flat over some set S ⊆ [M ] of size K = 2k ≤ Kmax, recalling that we walk over a
(Kmax, ε) lossless expanders with M vertices.

While any large enough subset of S or of the edges leaving S has nice properties (for example,
at least 1− 2ε fraction of the vertices in S have a unique neighbor), there can still be ε-fraction of the
KD edges leaving S that behaves badly. In particular, εKD of the edges may lead to vertices that
have many incoming edges from S. Assume for simplicity that each node in S has the same number
of bad edges, namely εD edges from each node in S lead to heavy vertices. When Dδ ≤ εD, an
adversarial Xi can potentially, for each node, be supported only on instructions that lead to bad
edges. In this case, Zi+1 may have accumulate neither min-entropy, nor smooth min-entropy. Thus,
we must consider the case where Dδ � εD.

This raises the question of how small can we take ε to be as a function of D, or alternatively,
how large can we take δ to be given an existing lossless expander. Non-explicitly, we have ΓG-s
with a great seed length, namely d = 1 · log 1

ε +O(1), in which case we can take ε� D−(1−δ) even
when δ > 0 is arbitrarily small. In [CRVW02], however, the required seed length is d = 1

β log 1
ε for

some constant β < 1
2 .21 Denoting δthr = 1− β, we see that we can only hope to handle almost δ-CG

sources with δ > δthr, and we do indeed achieve this. We note that both in [CRVW02] and in an
optimal lossless expander, Kmax = ΩD(M), which is good enough to lead to constant entropy gap.

1.5.2 Our Two-Phase Construction

We handle general δ > 0 via a two-phase process: We first walk over a small, optimal lossless
expanders in order to simulate an instruction with sufficiently large δ, and then “flush” it as a step
in the big CRVW graph over M vertices.

We are given X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d ≡ [D]. We let H = ([Dcrvw], [Dcrvw], E) be an
optimal losslses expanders with degree D, and we can choose its error ε to be very close to 1/D.
The number of vertices in H corresponds to the degree of our standard CRVW graph G over M
vertices, and we choose Dcrvw to be quasi-polynomial in D.22 For the exact choice of parameters for
G and H , see Section 5. Now:

• For some parameter b = poly(d), we group consecutive blocks of X into “super-blocks”
X ′1 ◦ . . . X ′t/b, each X ′i containing b blocks of length d each.

• For each i ∈ [t/b], we use X ′i as instructions to a separate random walk on H , starting from
some fixed node each time. Denote by Zi the final node reached after the b steps.

21The actual β is around 1
6

, and β < 1
2

is an inherent barrier for their construction.
22One can also think of H as an ε-error optimal lossless conductor H : {0, 1}poly(d) × {0, 1}d → {0, 1}poly(d) with seed

length d = log 1
ε

+O(1).
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• We show that Z = Z1 ◦ . . . ◦ Zt/b is itself an almost CG source, but this time with δ > δthr.
Thus, we can use Z as instructions for G!

Fortunately,H is constant-sized, so we can find it in constant time. Using optimal constant-sized
ingredients is also a key idea in the [CRVW02] construction itself.

1.5.3 Online Condensing and Suffix-Friendliness

Our condenser’s construction is an “online” one: We make one pass over the randomness stream
X1 ◦ . . . ◦ Xt, and never need to store more than a constant number of bits in memory before
updating the location in the big graph. Moreover, we don’t even need to know the number of
blocks ahead of time.23

The construction’s online nature is a great advantage for applications, yet it comes at a cost.
While our technique is flexible enough to recover from damaged blocks and suffer only the expected
decrease in entropy per damaged block, it cannot achieve constant entropy gap, if, say, all the
damaged blocks are at the end. However, if at any step we can guarantee that we won’t encounter
too many damaged blocks from now on, we can regain constant entropy gap. Roughly speaking,
the favorable case is that the λ-fraction of bad blocks is nicely distributed in the sense that each
suffix contains at most λ-fraction of bad blocks (up to an additive term). We call this property suffix
friendliness (see the precise definition in Definition 3.3), and show that we can deterministically
condense from such sources to within constant entropy gap Section 4.3.3. Moreover, we observe
that given an almost CG source with λ = 0, a random pattern that damages each block with
probability roughly λ, leads to a suffix friendly almost CG source with “bad blocks” parameter λ
(see Lemma 3.4).

The Construction’s Runtime. Recall that the simulation slowdown is also affected by the time
it takes to compute the extractor, or condenser (in the “one-shot” simulation setting). Our online
manner of condensing, together with the fact that the primitives we use (namely, the CRVW
expander and the GW extractor) are efficient, makes our construction efficient as well. In particular,
in Appendix B we achieve a near-quadratic runtime in the TM model. In the RAM model, in which
each machine word can store integers up to N = 2n and preform arithmetic in Fq for a prime q ≤ N
at unit cost, our construction takes linear time.

1.6 On Supporting Bad Prefixes

We extended δ-CG sources to handle smoothness γ and λ fraction of bad blocks. One can also
try and further relax the notion of CG sources in the following way: Instead of requiring that for
each non-damaged block Xi, for any prefix a ∼ X[1,i−1] it holds that Xi|{X[1,i−1] = a} is γ-close
to having entropy rate δ, we require it only for most prefixes. Concretely, what if we allow some
ρ-fraction of the prefixes to lead to instructions having low entropy? (See Definitions 8.3 and 8.6,
also for the Shannon-entropy variant.)

That extension seems too permissive, at least in some regime of parameters. We show that any
random variable X ∼ {0, 1}n with H(X) ≥ (1− ζ)n is already an almost Ω(1)-CG source with error
parameters γ, λ, and ρ, all roughly equal to ζΩ(1). Moreover, with a constant seed, we show that we

23In the two-phase construction of Section 1.5.2, we first computed all Zi-s just for the simplicity of exposition. Clearly
we can compute Zi, implement it on the big graph, and continue to compute Zi+1 without the need to keep storing Zi.
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can even increase the (smooth) entropy rate from an arbitrary Ω(1) to 1− ζ , at the cost of increasing
λ and ρ. Thus, since we provably cannot condense or extract from high Shannon entropy with
constant seed, we have an inherent barrier to handling ρ > 0 alongside a comparable, nonzero λ.
We discuss it further, and give the precise details, in Section 8.

1.7 Organization

In Section 2 we give some preliminary definitions and results from previous work, and the connec-
tion between small `q norm and smooth min-entropy. In Section 3 we discuss almost CG sources,
both for min-entropy and for Shannon entropy. In Section 4 we establish deterministic condensing
for δ > δthr. In particular, after some necessary preparations in Section 4.1, in Section 4.2 we give
the analysis of the case where γ = λ = 0, and cover the general setting (including for suffix-friendly
sources) in Section 4.3. In Section 5 we give our two-phase construction that condenses from any
constant rate δ > 0. Section 6 complements this result for Shannon entropy. In Section 7 we give
our extraction results that follows easily from previous sections. In Section 8 we discuss the notion
of bad prefixes described in Section 1.6. We conclude with a few open problems in Section 9.

2 Preliminaries

2.1 Random Variables and Entropy

The support of a random variable X distributed over some domain Ω is the set x ∈ Ω for which
Pr[X = x] 6= 0, which we denote by Supp(X).

The total variation distance (or, statistical distance) between two random variables X and Y
over the same domain Ω is defined as |X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). Whenever
|X − Y | ≤ ε we say that X is ε-close to Y and denote it by X ≈ε Y . We denote by Un the random
variable distributed uniformly over {0, 1}n. We say a random variable is flat if it is uniform over its
support. Whenever we write x ∼ A for A being a set, we mean x is sampled uniformly at random
from the flat distribution over A.

For a function f : Ω1 → Ω2 (even a random one) and a random variable X distributed over
Ω1, f(X) is the random variable distributed over Ω2 obtained by choosing x according to X and
computing f(x). For a set A ⊆ Ω1, f(A) = {f(x) : x ∈ A}. For every f : Ω1 → Ω2 and two random
variables X and Y distributed over Ω1 it holds that |f(X)− f(Y )| ≤ |X − Y |, and is often referred
to as a data-processing inequality.

The (Shannon) entropy of a random variable X is H(X) =
∑

x∈Supp(X) Pr[X = x] log 1
Pr[X=x] .

The min-entropy of X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
,

and it always holds that H∞(X) ≤ H(X). For some ε > 0, we define the smooth min-entropy if X by

Hε
∞(X) = max

X′:X′≈εX
H∞(X).

We have the following easy claim.

Claim 2.1. Let X ∼ {0, 1}n be a random variable such that X ≈ε Un. Then, H∞(X) ≥ log 1
ε .
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A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy
at least k. We refer to k

n as the random variable’s entropy rate. When n is clear from context we
sometimes omit it and simply say that X is a k-source.

2.1.1 Distributions as Vectors

We naturally identify a random variable X over some finite domain Ω with the corresponding
distribution mass vector pX in RΩ, and often argue that X has large smooth min-entropy when pX
has small `q-norm.24 The following lemma gives the exact relation that we use.

Lemma 2.2. For any 0 < α < 1, let q = 1 + α. Let n be a positive integer, 1 < k ≤ n− 1, and let ε > 0 be
such that εα ≤ 1

2 . Let p be a distribution over {0, 1}n with ‖p‖qq ≤ 2−αk. Then, p is εα-close to a k − log 1
ε

source.

Proof: Let B1 be the set of x ∈ {0, 1}n such that p(x) > 1
ε2−k. We have:

2−αk ≥
∑

x∈{0,1}n
p(x)1+α ≥

∑
x∈B1

p(x)1+α ≥
(

2−k

ε

)α ∑
x∈B1

p(x).

Thus,
∑

x∈B1
p(x) ≤ εα. Let B2 ⊆ {0, 1}n \ B1 be the set of x-s for which 1

2ε2
−k < p(x) ≤ 1

ε2−k.
Note that | {0, 1}n \ (B1 ∪B2)| ≥ 2n − 2ε2k ≥ 2k+1ε1+α.

Consider the following probability distribution r.

r(x) =


0 if x ∈ B1,
p(x) if x ∈ B2,

p(x) +

∑
y∈B1

p(y)

|{0,1}n\(B1∪B2)| otherwise.

By construction, r and p are εα-close. Now, from our bound on the number of elements outside
B1 ∪B2, we have that, for every x /∈ B1 ∪B2,

p(x) +

∑
y∈B1

p(x)

| {0, 1}n \ (B1 ∪B2)|
≤ 2−k

2ε
+

εα

2k+1ε1+α
≤ 2−k

ε
.

Thus, r is a (k − log 1
ε )-source.

Invoking Lemma 2.2 with ε = (ε′)
1
α , we get the following corollary.

Corollary 2.3. For any 0 < α < 1, let q = 1 + α. Let n be a positive integer, 1 < k ≤ n − 1, and let
0 < ε ≤ 1

2 . Let p be a distribution over {0, 1}n with ‖p‖qq ≤ 2−αk. Then, p is ε-close to a k− 1
α log 1

ε source.
24We usually identify a random variable with its probability distribution.
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2.2 Bipartite Graphs and Lossless Expanders

We say a bipartite graph G = (V1, V2, E) is D-regular if it’s D left-regular. We denote by ΓG(v)
the set of neighbors of v in G (whenever v ∈ V1, ΓG(v) ⊆ V2, and likewise whenever v ∈ V2).
When G is clear from context, we will simply write Γ. When we refer to a step over G, we mean
taking a step from V1 to V2. Our constructions utilize long walks over G, and specifically we will
walk on a layered graph from left to right, with copies of G between consecutive layers. For a
D-regular bipartite G = ([N ], [N ], E), a length-t walk over G starting from v ∈ [N ] according to the
instructions (i1, . . . , it) ∈ [D]t is the sequence (v0, v1, . . . , vt), where vj is the ij-th neighbor of vj−1.

Definition 2.4 (bipartite expander). We say a bipartite graph G = ([N ], [M ], E) is a (K,A)-expander
if for all subsets S ⊆ [N ] of size at most K, the neighborhood set ΓG(S) has size at least A · |S|.

When G is D-regular we can hope for A to be very close to D up to K ≈M/D. When indeed
A = (1− ε)D we say G is a (K, ε) lossless expander.25 We will use the lossless expander by Capalbo,
Reingold, and Vadhan in its balanced setting of parameters.

Theorem 2.5 ([CRVW02]). There exists a constant β ∈ (0, 1) with β ≥ 1/6 such that the following holds.
For every positive integers N and D, there exists an explicit D-regular bipartite graph G = ([N ], [N ], E)
that is a (K, ε) expander for ε = 1

Dβ
and K = Ω

(
1

D1+βN
)
.

We will also make use of the fact that optimal lossless expanders have error ε = O(1/D).

Theorem 2.6 (nonexplicit lossless expanders). For every positive integers N and D, there exists a
D-regular bipartite graph G = ([N ], [N ], E) that is a (K, ε) expander for ε = O

(
1
D

)
and K = Ω

(
N
D2

)
. By

brute-force, such an expander can be found deterministically in time NO(ND).

It will be convenient to formulate the above theorem as follows, suffering a slight increase in
the error.

Corollary 2.7. There exists a universal constant c? > 1 such that for any constant 0 < β < 1 and any

positive integers D ≥ 2
c?

1−β and N , there exists a D-regular bipartite graph G = ([N ], [N ], E) that is a
(K, ε) expander for ε = 1

Dβ
and K = N

c?D2 . By brute-force, such an expander can be found deterministically
in time NO(ND).

2.2.1 The Expander’s Activation Constant δthr

From here onward, for a given lossless expander, we’ll often refer to β as in the statements of
Theorem 2.5 and Corollary 2.7 as the “error parameter” of the expander. Also for a given expander,
we denote by δthr the “activation threshold” beyond which a single step via an instruction on
that expander with δthr entropy rate adds a decent amount of entropy to the vertex distribution.
This activation threshold will depend on the error parameter β. Indeed, as discussed in the
overview of our techniques, we will want δthr larger than 1− β. For concreteness, we often think of
δthr = 1− β + ∆, where again, ∆ is an arbitrary small constant. We now discuss specific settings of
these parameters for the lossless expanders we use in our construction.

For optimal lossless expanders, from Corollary 2.7, we can consider β arbitrarily close to 1.
Since β is close to 1, and ∆ is small, we can also think of δthr = 1− β + ∆ as some arbitrarily small

25For brevity, we use K rather than Kmax in the technical sections. It is useful to keep in mind that K = ΩD(M).
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constant. We’ll show that optimal lossless expanders facilitate entropy gain at each step when the
instructions have arbitrarily small constant entropy rate.

Inspecting the construction from [CRVW02], we can see that their lossless expanders can have
error parameter β = 1

6 (and even slightly larger). In this case, we see that we can take δthr = 5/6+∆.
We’ll show that the lossless expanders from Theorem 2.5 facilitate entropy gain at each step when
the instructions have entropy rate slightly larger than 5/6.

As final remarks, we can always assume that K = Ω
(

1
D2N

)
for both types of expanders we

consider. Additionally we note that [CRVW02] gives an object stronger than a just vertex expander,
namely a lossless conductor, but the conductor’s vertex expansion properties will suffice for us.

2.3 Seeded Extractors and Condensers

Definition 2.8 (extractor). A function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε) (seeded) extractor if the following holds. For every (n, k) source X it holds that Ext(X,Y ) ≈ε
Um, where Y is uniformly distributed over {0, 1}d and is independent of X . We say Ext is strong if
(Ext(X,Y ), Y ) ≈ Um × Y .

As mentioned in the introduction, seeded extractors can be used to simulate randomized
algorithms using weak sources.

Lemma 2.9 (see, e.g., [Vad12], Proposition 6.15). Let A(w, y) be a randomized algorithm deciding some
language L(w) such that A(w,Um) has error δ, and let Ext : {0, 1}n × {0, 1}` → {0, 1}m be an ε-error
extractor for X over n bits. Define A′(w, x) = majy∈{0,1}` {A(w,Ext(x, y))}. Then, for every X ∈ X ,
A′(w,X) has error 2(δ + ε).26

We will use two known constructions of seeded extractors. Recall that a universal family of hash
functions is a collection of functionsH ⊆ {0, 1}n → {0, 1}m satisfying Prh∼H[h(x) = h(y)] ≤ 2−m

for any x 6= y. There exist universal family of explicit hash functions of size 2n.

Theorem 2.10 (Leftover Hash Lemma [ILL89]). Let X ∼ {0, 1}n be such that H∞(X) ≥ k, let ε > 0,
and letH = {h1, . . . , hN} ⊆ {0, 1}n → {0, 1}m be a universal family of hash functions form = k−2 log 1

ε
of size 2n. Define ExtILL : {0, 1}n × {0, 1}n → {0, 1}m by

ExtILL(x, y) = hy(x).

Then, Ext is a strong (k, ε) extractor.

Theorem 2.11 ([GW97]). For every positive integer n, and any ∆ < n and ε > 0, there exists an
explicit (k = n − ∆, ε) extractor ExtGW : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(∆ + log 1

ε ) and
m = n−O(∆ + log 1

ε ).

In seeded condensers, the goal is to improve the quality of a random source X using few
additional random bits, albeit not necessarily into the uniform distribution.

26In fact, if X is the set of k-sources, the error probability can be made much smaller by letting Ext handle slightly
smaller entropies. See [Zuc96].
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Definition 2.12. A function
Cond : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, k′, ε) (seeded) condenser for a class of sources X over n bits if the following holds. For every
source X ∈ X it holds that Hε

∞(Cond(X,Y )) ≥ k′, where Y is uniformly distributed over {0, 1}d and is
independent of X . When d = 0, we say that X admits deterministic condensing.

In some cases, we will not be able to guarantee closeness to high min-entropy, but we will be
able to output a distribution with very high Shannon entropy. In this case, we say that Cond is a
(k, k′, ε) Shannon condenser for X .

2.4 Martingales

We use a few basic results about martingales. Recall that a martingale with respect to a sequence of
random variables X1, . . . , Xt is a sequence of real random variables Z0, . . . , Zt such that for all i,
Zi is a function of X1, . . . , Xi, E[|Zi|] <∞, and E[Zi+1|X1, . . . , Xi] = Zi. For a sequence of random
variables X0, . . . , Xt we will specifically utilize the Doob martingale, which, for a given Y that is a
function of X0, . . . , Xt, is the sequence Zi = E[Y |X0, . . . , Xi]. It is well known (and easy to verify)
that such a sequence Z0, . . . , Zt is a martingale (with respect to itself).

We will use the Azuma-Hoeffding Inequality as a tail bound on a martingale.

Theorem 2.13 (Azuma-Hoeffding). Suppose Z0, . . . , Zt is a martingale and that |Zi − Zi−1| ≤ ci. Then,
for any ε > 0,

Pr[Xn −X0 ≥ ε] ≤ e
−ε2

2
∑t
i=1

c2
i .

3 Almost Chor–Goldreich Sources

We now give the formal definitions of the generalized CG sources that we work with. The first and
main generalization is what we call an almost CG source. Such sources are similar to standard CG
sources but allow two types of “errors”.

1. Instead of each Xi being a δd-source for every prefix, each Xi is only γ-close to being a δd
source;

2. Instead of having a good min-entropy guarantee for every i ∈ [t], we have that for at most λt
of the i-s, there is no guarantee on the quality of the distribution of Xi regardless of the prefix.

Before formally defining sources of the above form, we first define what it means for a prefix to
be good, and for a block i ∈ [t] to be good.

Definition 3.1 (good step). Let 0 ≤ γ, δ ≤ 1. Let X = X1 ◦ . . . ◦Xt be a source with each Xi ∈ {0, 1}d.
We say that i ∈ [t] is (γ, δ)-good for X if for all prefixes (a1, . . . , ai−1) ∈ {0, 1}d(i−1) we have that:

Hγ
∞(Xi|X1, . . . , Xi−1 = a1, . . . , ai−1) ≥ δd.

(Note that for i = 1 we simply require Hγ
∞(X1) ≥ δd.)

When γ, δ, and X are clear from context, we will simply call a coordinate i “good” or a “good step”
without the quantifiers. We also call i “bad” or a “bad step” if it is not good. Additionally, we use G(X) as
the set of all good i-s.

16



With this definition, we can define the notion of an almost CG source.

Definition 3.2 (almost CG source). A (γ, λ)-almost δ-CG source is a sequence of random variables
X1 ◦ . . . ◦Xt with Xi ∈ {0, 1}d, such that at least (1− λ)t i-s are (γ, δ)-good for X .

We will eventually show that given an almost CG source, we can deterministically condense it
into a distribution on m = Ω(δdt) bits that is close to a m−O(λ)dt−O(1)-source. In other words,
we can condense it into a source with O(λ)dt+O(1) additive entropy gap. We remark that to the
best of our knowledge, up until know there were no known constructions that deterministically
condenses from such sources, even with γ = 0 and λ = 0.

3.1 Suffix-Friendly Almost CG Sources

Ultimately, we hope to condense almost CG sources into sources with constant, additive, entropy
gap, since one can extract from such sources using only a constant number of auxiliary random bits
(see Theorem 2.11). Looking ahead, we won’t be able to do so unless we pose some restriction on
the bad steps. This is since we condense in an “online” manner. Thus, if for example, all bad steps
are at the end, we may lose roughly λdt bits of entropy overall. However, if we further require a
good fraction of good steps from all suffixes, we can evade this problem. With this motivation in
mind, we define the following.

Definition 3.3 (suffix-friendly almost CG source). A (γ, λ,Λ)-suffix-friendly-almost (δ)-CG source is a
sequence of random variables X1 ◦ . . . ◦Xt with Xi ∈ {0, 1}d, such that for every suffix Xj , . . . , Xt, for all
but at most (t− j + 1)λ+ Λ i-s between j and t, we have that i is (γ, δ)-good for X .

When δ and γ are clear from context, we may refer to X as being suffix-friendly with parameters λ and
Λ.

Such a definition is indeed natural: If each step is corrupted independently with probability λ,
the resulting distribution will be suffix-friendly with parameters O(λ) and Λ = O(1/λ), with high
probability.

Lemma 3.4. Let X = X1 ◦ . . . ◦Xt be a (γ, 0)-almost δ-CG source. Let Y = Y1 ◦ . . . ◦ Yt be a sequence of
independent Bernoulli random variables with Pr[Yi = 1] = λ < 1

2 . Suppose X ′ = X ′1 ◦ . . . ◦X ′t is formed
as follows. Independently, for each i ∈ [t], we do the following.

• If Yi = 0, we set the conditional distributions

X ′i |
{

(X ′1, . . . , X
′
i−1) = (a1, . . . ai−1)

}
= Xi | {(X1, . . . , Xi−1) = (a1, . . . ai−1)}

for every prefix (a1, . . . ai−1) ∈
(
{0, 1}d

)i−1
.

• If Yi = 1, we set the conditional distribution X ′i |
{

(X ′1, . . . , X
′
i−1) = (a1, . . . ai−1)

}
arbitrarily for

every prefix a1, . . . ai−1 ∈
(
{0, 1}d

)i−1
.

Then with probability at least 9
10 over the choice of Y , X ′ is a (γ, 2λ,Λ)-suffix-friendly-almost δ-CG source,

where Λ = O
(

log(1/λ)
λ

)
.27

27The choice of 9
10

is arbitrary, and the analysis can be easily extended to any success probability close to 1.
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Proof: For any ` ∈ [t] we say that X ′ corrupts ` if Y` = 1. Fixing j ∈ [t], we first bound the
probability that X ′ corrupts more than (t − j + 1)λ + Λ coordinates in the suffix Xj , . . . , Xt. For
convenience, denote i = t − j + 1. Clearly, we can assume that i > Λ, so write i = Λ + i′ for
i′ ∈ [t− j − Λ + 1]. Let Zi denote the number of corruptions in the suffix of length i. By Chernoff,

Pr[Zi ≥ Λ + 2λ(Λ + i′)] ≤ Pr[Zi ≥ 2λi] ≤ e−λi/3 = e−λΛ/3−λi′/3.

To consider all suffixes, we union-bound over the above probability for all i′-s ranging from 1 to
t−j−Λ+1 ≤ t−Λ. However, we will treat different i′-s differently. First, note that, for a sufficiently
large t, there exists i? for which e−

λ
3
i∗ ≤ 1

20
1−e−λ/3
e−λ/3

. In fact, one can verify that i? = O
(

log 1/λ
λ

)
.

For every i′ > i?, we write i′ = i? + i′′, and can then union-bound over the events that ZΛ+i′ is
too large as follows:

t−Λ−i∗∑
i′′=1

e−
λ
3

Λ−λ
3

(i∗+i′′) ≤
∞∑
i′′=1

e−
λ
3
i?−λ

3
i′′ ≤ 1

20

1− e−λ/3

e−λ/3

∞∑
i′′=1

e−
λ
3
i′′ ≤ 1

20
.

For the case of i′ ≤ i?, since i? = O
(

log 1/λ
λ

)
, we observe that for some Λ = O(log(1/λ)/λ) it

holds that that e−
λ
3

Λ · i? ≤ 1
20 . Overall, the probability that any suffix Xj , . . . , Xt has more than

2λ(t− j + 1) + Λ bad steps is at most 1
10 .

3.2 From Shannon Entropy to Min-Entropy

A weaker definition than almost CG sources are sources where each step has high Shannon entropy.

Definition 3.5 (Shannon CG source). A (λ)-almost δ-Shannon-CG source is a sequence of random
variables X1 ◦ . . . ◦Xt with Xi ∈ {0, 1}d, such that for all but at most λt i-s, for all a ∈ ({0, 1}d)i−1,

H(Xi|X1, . . . , Xi−1 = a) ≥ δd.

One reason extractors are able to deal with min-entropy rather than Shannon entropy is because
sources with high Shannon entropy could still output a constant outcome 99% of the time. When
you only have one shot to extract a truly random output, such a source is useless. However, in the
setting of a source that is in fact a sequence of many constant-length sources, each having high
Shannon entropy, there are intuitively many chances for the source to output “good randomness”.
Considering many of the constant-length sources at once by grouping them into blocks, there is a
very small probability of getting a high-probability outcome for the entire block. In other words,
the block is close to a high min-entropy source.

We prove this formally here, giving a reduction from Shannon-CG sources to almost CG sources.
We begin with a simple claim about Shannon entropy that states that sources with high Shannon
entropy are essentially smoothed min-entropy sources with error parameter close to 1.

Claim 3.6. Let X ∼ {0, 1}d. For any η, ξ > 0, define A ⊆ {0, 1}d as A = {x : Pr[X = x] ≥ η} and
suppose that Pr[X ∈ A] ≥ 1− ξ. Then,

H(X) ≤ log
1

ξ
+ log

1

1− ξ
+ log

1

η
+ ξd.
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Proof: By our definitions,

H(X) =
∑
x∈A

Pr[X = x] log
1

Pr[X = x]
+
∑
x∈Ā

Pr[X = x] log
1

Pr[X = x]

≤ log
1

ξ
+ log

1

1− ξ

+
∑
x∈A

Pr[X = x|x ∈ A] log
1

Pr[X = x|x ∈ A]

+ ξ
∑
x∈Ā

Pr[X = x|x ∈ Ā] log
1

Pr[X = x|x ∈ Ā]

≤ log
1

ξ
+ log

1

1− ξ
+ log

1

η
+ ξd.

Corollary 3.7. Let δ > 0. There exists d? = d?(δ) = O(log(1/δ)/δ) such that for all d > d?, if X is a
distribution on {0, 1}d, with H(X) ≥ δd, then the total weight of elements x s.t. Pr[X = x] ≥ 1

Dδ/3
is at

most 1− δ
3 .

Proof: Suppose not, then by Claim 3.6, set with ξ = δ/3 and η = 1/Dδ/3, we get:

H(X) ≤ log
1

ξ
+ log

1

1− ξ
+ log

1

η
+ ξd ≤ log

3

δ
+ log

1

1− δ/3
+

2

3
δd.

If d? =
3
(

log 3
δ

+log 1
1−δ/3

)
δ = O(log(1/δ)/δ), then for any d > d? we have log 3

δ + log 1
1−δ/3 <

1
3δd.

Lemma 3.8. Let X = X1 ◦ . . . ◦Xt be a (λ)-almost δ-Shannon-CG source, with Xi ∈ {0, 1}d. Suppose
d is sufficiently large as in Corollary 3.7. Suppose further that

√
λ ≤ δ/18. For any positive integer

b, consider the distribution X ′ = X ′1 ◦ . . . ◦ X ′bt/bc, where X ′i = X[b(i−1)+1,b(i−1)+b]. Then, X ′ is a

(γ = e−δ
2b/72,

√
λ)-almost (δ2/36)-CG source.

Proof: Call the i-th block X[b(i−1)+1,b(i−1)+b] “good” if less than
√
λ fraction of the steps in the block

are bad ones. By an averaging argument, there are at least 1−
√
λ fraction of good blocks overall.

Fix any good 1 ≤ i ≤ bt/bc and fix any prefix a = (a1, . . . , ab(i−1)) ∼ (X1, . . . , Xb(i−1)). We show
that the distribution of the block X ′i = X(i−1)b+1 ◦ . . . ◦Xib conditioned on the prefix a is γ-close to

a
(
δ2

18 −
√
λ
)
d-source. For the rest of this proof, for convenience and brevity, we use Xj to refer to

the distribution of X(i−1)b+j conditioned on the fixed prefix a.
Since i is a good block, there are at least (1−

√
λ)b good steps within the block. Let b′ = (1−

√
λ)b.

For each j ∈ [b′], define Yj(x1, . . . , xb) as the indicator random variable that is 1 if and only if for the
j-th good step in the block (call it s(j)), Pr[Xs(j) = xs(j)|X[1,s(j)−1] = x[1,s(j)−1]] ≥ 1

Dδ/3
. We define

the Doob martingale
Zj = E[Y |X1, . . . , Xs(j)]
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with the convention that Z0 = E[Y ]. Note further that Zb = Y . By Corollary 3.7 we can conclude
that

Z0 = E[Y ] =
∑
j

E[Yj ] ≤
(

1− δ

3

)
b′ ≤

(
1− δ

3
−
√
λ

)
b.

Further, we know that |Zj − Zj−1| ≤ 1 for all j. Thus, by the Azuma-Hoeffding inequality
(Theorem 2.13), we get

Pr

[
Y −

(
1− δ

3
−
√
λ

)
b >

(
δ

6
+

√
λ

2

)
b

]
≤ Pr

[
Zb − Z0 >

(
δ

6
+

√
λ

2

)
b

]
≤ e−δ2b/72.

Finally, we observe that for any x1, . . . , xb s.t. Y (x1, . . . , xb) ≤
(

1− δ
6 −

√
λ

2

)
b has probability at

most
(
D−δ/3

)(1−√λ)b−
(

1− δ
6
−
√
λ

2

)
b

= D(−δ2/18+δ
√
λ/2)b = D−δ

2b/36.

We can also prove a similar result for suffix friendly Shannon CG sources.

Lemma 3.9. Let X = X1 ◦ . . . ◦Xt be a (λ,Λ)-suffix-friendly-almost δ-Shannon-CG source, with Xi ∈
{0, 1}d. Suppose d is sufficiently large as in Corollary 3.7. Suppose further that

√
λ ≤ δ/12. For any

positive integer b, consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc, where X ′i = (Xb(i−1)+1, . . . , Xb(i−1)+b).

Then, X ′ is a (γ = e−δ
2b/72,

√
λ, 12Λ

δb )-almost (δ2/36)-CG source.

Proof: Call the j-th block, X(j−1)b+1, . . . , X(j−1)b+b “good” if less than δ/6 fraction of the Xi-s in
the block are bad steps.

We’ll show that for any suffix of theX ′j-s, there are at most 12Λ
δb +

√
λ(t−j) bad epochs. Consider

any suffix of length s of the X ′j-s. There are at most Λ + λbs bad steps in X in this suffix. By an
averaging argument, for any a, there are at most(

Λ
s + λb

)
s

a

blocks with more than a bad steps in them. Setting a =
√
λb+ δb/12 ≤ δb/6 tells us that the number

of bad blocks in the suffix is at most
Λ√

λb+ δb/12
+

λb√
λb+ δb/12

s ≤ 12Λ

δb
+
√
λs

The proof then proceeds as in Lemma 3.8. For each good block, there are at least (b−a) = (1−a/b)b
good steps. The probability that these steps sample heavy instructions (those with probability more
than D−δ/3) is at most (1− δ/3). Thus the expected fraction of heavy instructions from good steps
is at most 1− δ/3− a/b. Therefore, the probability of the block sampling more than 1− δ/6− a/(2b)
heavy instructions is at most e−δ

2b/72. A sequence of instructions for the block with less than
1− δ/6− a/(2b) heavy instructions has probability at most(

D−δ/3
)(1−a/b)b−(1−δ/6−a/(2b))b

= D−δ
2b/18+aδ/6 ≤ D−δ2b/36.

In Section 8 we’ll show how considering Shannon CG sources can help explain why it might be
difficult to deterministically condense from even more generalized notions of the almost CG sources
defined above.
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3.3 On Almost δ-CG Sources and δ-CG Sources

As discussed in the introduction, we show that, although any (γ, 0)-almost δ-CG source is close
to some (general) (1− 2γ)δ-rate weak source (see Claim 3.10 below), there are (γ, 0)-almost δ-CG
sources that are far from any (1− 2γ)δ-CG source (see Claim 3.11). This tells us that although it is
plausible that one can extract roughly δdt bits of entropy from such a source (as we do), one cannot
do so by simply applying a technique for condensing standard CG sources. The two claims below
establishe the above discussion formally.

Claim 3.10. LetX = X1◦. . .◦Xt be a (γ, 0)-almost δ-CG source. Then,X is ε-close to a (1−2γ)δdt-source,
where ε = e−γ

2t/2.

Proof: For each i ∈ [t], let Ai(x1, . . . , xt) be the indicator variable that is 1 iff Pr[Xi = xi|X[1,i−1] =

x[1,i−1]] > D−δ, where we denote D = 2d. Since the conditional distribution of Xi for every prefix
is γ-close to a δd-source, we know that for every i, Pr[Ai = 1] ≤ γ. Let A =

∑
i∈[t]Ai. We define the

Doob martingale
Zj = E[A|X1, . . . , Xj ],

with the convention that Z0 = E[A]. Note further that Zt = A.

Z0 = E[A] ≤ γt.

Further, we know that |Zj − Zj−1| ≤ 1 for all j. Thus, by the Azuma-Hoeffding inequality
(Theorem 2.13), we get

Pr [A− γt > γt] ≤ Pr [Zb − Z0 > γt] ≤ e−γ2t/2.

Finally, we observe that any x1, . . . , xt for which A(x1, . . . , xt) ≤ 2γt has weight at most(
D−δ

)(1−2γ)t
= 2−(1−2γ)δdt

in X , which concludes our proof.

Claim 3.11. For any positive integers t, d, and any 1 > δ > 0 and γ ≤ 1
4 such that d ≥ 4 log(1/γ)

δ , there
exists a (γ, 0)-almost δ-CG sourceX = X1◦. . .◦Xt, eachXi ∼ {0, 1}d, that is

(
1− e−γt/8 − 2−δd/4+1

)
-far

from any (1− 2γ)δ-CG source.

Proof: Consider the (γ, 0)-almost δ-CG source X = X1 ◦ . . . ◦ Xt, each Xi ∼ {0, 1}d, where for
every i, and every prefix a = a1, . . . , ai−1, the distribution of Xi conditioned on a is the following
convex combination.

• With probability γ, the output is the fixed zero string 0d.

• With probability 1 − γ, the output is a sample from an arbitrary δd-source whose support
does not contain 0d.
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Let Y be any (1−2γ)δ-CG source. Consider the test T : {0, 1}dt → {0, 1} for which T (x1, . . . , xt) = 1
iff at least γt/2 of the xi-s are 0d. The expected number of xi-s that are 0d underX is γt. By Chernoff,
Pr[T (X) = 1] ≥ 1− e−γt/8.

On the other hand, under Y , we know that the expected number of xi-s that are 0d is at most
D−(1−2γ)δt. By Markov’s (note that now we don’t necessarily have independence), the probability
of seeing more than γt/2 zeros is at most

2−(1−2γ)δdt

γt/2
=

2−(1−2γ)δd+1

γ
≤ 2−δd/4+1.

Thus, |E[T (X)]− E[T (Y )]| ≥ 1− e−γt/8 − 2−δ/4+1, implying the same lower bound on |X − Y | as
well.

4 Deterministic Condensing via Lossless Expanders

In this section we formalize our technique for deterministic condensing from almost CG sources
when δ > δthr. (Later we will show that we can also extract from suffix-friendly almost CG sources;
even later we’ll show how to do all of this for arbitrary δ > 0). At a high level, we simply treat the
almost CG source as instructions for a random walk on a lossless expander of degree D from an
arbitrary fixed node. We analyze how the distribution on the expander’s vertices evolves with each
step by bounding its `q-norm for a suitable 1 < q < 2.

4.1 Additional Framework

There are two main concepts to formalize in order to handle even the case of standard CG sources.
First, since we use `q norm as a proxy measure for entropy, we need to argue that that the vertex
expansion implies a good multiplicative factor `q-norm decrease for sufficiently large δ ≥ δthr.
Second, we will establish the fact that vertex expansion for sets of size at most K implies a good
multiplicative factor `q-norm decrease for distributions with `q-norm larger than roughly 1

Kα .
We begin by generalizing some properties of vertex expansion to expansion of weight functions

as follows. Consider a bipartite graph G = (U, V,E). A weight function is simply an assignment
of nonnegative real numbers to the vertices of U or V . In other words, we consider functions
w : U → [0,∞), or w : V → [0,∞), and we denote by |w| its `1 norm:

∑
u∈U w(u) or

∑
v∈V w(v).

Given a weight function on U , we can define the “neighboring” weight function on V .

Definition 4.1. Let G = (U, V,E). Let w : U → [0,∞) be a weight function on U . We defineN (w) : V →
[0,∞) as:

N (w)(v) = max
u∈Γ(v)

w(u)

When the weight function w is clear from context, for any v ∈ V we may use the notation uv to denote
arg maxu∈Γ(v)w(u) (with ties broken arbitrarily).

Observe that the above notion generalizes the notion of neighbor sets. That is, when w corre-
sponds to the indicator function of a set of nodes in S ⊂ U , then N (w) is the indicator function of
Γ(S) ⊂ V .

Lemma 4.2. Let G = (U, V,E) be a (K, ε)-expander. For all weight functions w : U → [0,∞) supported
on at most K nodes, |N (w)| ≥ (1− ε)D|w|.

22



Proof: Write w = w1 + . . . + wt, where each wi is a multiple of an indicator function on a set of
size Si at most K, and Si ⊇ Si+1 for all i. Observe that in this case, |N (w)| =

∑
i |N (wi)|. Since

|Γ(Si)| ≥ (1− ε)D|S|, we have |N (wi)| ≥ (1− ε)D|wi|. Thus,

|N (w)| =
∑
i

|N (wi)| ≥
∑
i

(1− ε)D|wi| = (1− ε)D|w|.

The following definition is a generalization of the notion of “unique neighbor expansion” in
expander graphs.

Definition 4.3. Let G = (U, V,E). Let w : U → [0,∞) be a weight function on U . We define
Ndiff(w) : V → R as:

Ndiff(w)(v) = w(uv)−
∑

u∈Γ(v)\uv

w(u)

We will also use |Ndiff(w)| to denote
∑

v∈V Ndiff(w)(v). Note that here, the meaning of | · | is different than
the standard `1-norm of the weight function. Some terms, and thus even the whole sum, can be negative.

Lemma 4.4. Let G = (U, V,E) be a (K, ε)-expander. For all weight functions w : U → [0,∞) supported
on at most K nodes, it holds that

|Ndiff(w)| ≥ (1− 2ε)D|w|.

Proof: Observe that

D|w| =
∑
v∈V

w(uv) +
∑

u∈Γ(v),u 6=uv

w(u)

 = |N (w)|+
∑
v∈V

∑
u∈Γ(v),u 6=uv

w(u).

Thus, we have
D|w| − |N (w)| =

∑
v∈V

∑
u∈Γ(v),u6=uv

w(u).

Since |N (w)| ≥ (D − εD)|w|, we have

εD|w| ≥
∑
v∈V

∑
u∈Γ(v),u6=uv

w(u).

Finally, ∑
v∈V
Ndiff(w)(v) = D|w| − 2

∑
v∈V

∑
u∈Γ(v),u 6=uv

w(u) ≥ (D − 2εD)|w|.

We now generalize Lemmas 4.2 and 4.4 to work for distributions with large `q-norm for q = 1+α,
rather than just weight functions supported on at most K nodes. We first prove a simple claim
about such distributions.
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Claim 4.5. Let 0 < α < 1 and let q = 1 + α. Let K > 1. Suppose p is a probability distribution over a
finite domain U such that

∑
u∈U p(u)q ≥ 1

Kα . For any r > 1, let Tr ⊆ U be the set of heaviest rK elements
of U according to p. Then, ∑

u∈Tr

p(u)q ≥
(

1− 1

rα

)∑
u∈U

p(u)q.

Proof: First, for every u ∈ U \ Tr, p(u) ≤ 1
rK . Therefore, since p is a probability distribution

|U |−rK
rK ≤ 1. We have:

∑
u∈U\Tr

p(u)q ≤ max
u∈U\Tr

p(u)α
∑

u∈U\Tr

p(u) =

(
1

rK

)α
.

Thus, ∑
u∈Tr

p(u)q =
∑
u∈U

p(u)q −
∑

u∈U\Tr

p(u)q

=

(
1−

∑
u∈U\Tr p(u)q∑
u∈U p(u)q

)∑
u∈U

p(u)q ≥
(

1− 1

rα

)∑
u∈U

p(u)q.

We can now generalize Lemma 4.2 to hold not only when a weight function w is supported on
at most K nodes, but also when the weight function represents the contribution of each node to the
`q-norm of a distribution.

Lemma 4.6. Let G = (U, V,E) be a (K, ε)-expander. Let 0 < α, η < 1, and set q = 1 + α. Let p be any
distribution over U such that

∑
u∈U p(u)q ≥ 1

(ηK)α . Then,∑
v∈V

max
u∈Γ(v)

p(u)q ≥ (1− ε− ηα)D
∑
u∈U

p(u)q.

Proof: Let T ⊆ U be the heaviest 1
η · ηK = K nodes. Note that:

∑
v∈V maxu∈Γ(v) p(u)q ≥∑

v∈Γ(T ) maxu∈Γ(v) p(u)q. Let w(·) be a weight function on U such that w(u) = p(u)q for u ∈ T , and
w(u) = 0 otherwise. Notice that |N (w)| =

∑
v∈Γ(T ) maxu∈Γ(v) p(u)q. Since w is supported on K

nodes, Lemma 4.2 implies ∑
v∈V

max
u∈Γ(v)

p(u)q ≥ (1− ε)D|w|.

Finally, Claim 4.5 tells us:

(1− ε)D|w| ≥ (1− ε)(1− ηα)D
∑
u∈U

p(u)q ≥ (1− ε− ηα)D
∑
u∈U

p(u)q.

We can finally give an analogue of Lemma 4.4 that holds whenever the `q norm is sufficiently large.
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Lemma 4.7. LetG = (U, V,E) be a (K, ε)-expander. Let 0 < α < 1 and q = 1+α. Let p be any distribution
on U such that

∑
u∈U p(u)q ≥ 1

εKα . Let w be the weight function on U such that w(u) = p(u)q. Then,

|Ndiff(w)| ≥ (1− 4ε)D|w|.

Proof: Applying Lemma 4.6 with η = ε1/α gives us

|N (w)| ≥ (1− 2ε)D|w|.

The proof then proceeds as in Lemma 4.4. We can observe that

2εD|w| ≥
∑
v∈V

∑
u∈Γ(v),u 6=uv

w(u),

and so we get ∑
v∈V
Ndiff(w)(v) = D|w| − 2

∑
v∈V

∑
u∈Γ(v),u 6=uv

w(u) ≥ (D − 4εD)|w|.

We utilize the framework we have developed so far to prove the following useful corollary.

Corollary 4.8. Let G = (U, V,E) be a bipartite D-regular (K, ε) expander. Let α > 0, and let p be a
probability distribution on U with ‖p‖qq ≥

1
εKα . Then,∑

v∈V

∑
u∈Γ(v)\uv

p(u)q ≤ 4εD
∑
u∈U

p(u)q.

Proof: Applying Lemma 4.7 we get:

∑
v∈V

p(uv)q − ∑
u∈Γ(v)\uv

p(u)q

 ≥ (D − 4εD)
∑
u∈U

p(u)q.

Since
∑

v∈V p(uv)
q ≤ D

∑
u∈U p(u)q, we have∑

v∈V

∑
u∈Γ(v)\uv

p(u)q ≤ 4εD
∑
u∈U

p(u)q.

4.2 The Analysis – Warm Up

We now show how to deterministically condense from a standard CG source (i.e., γ = λ = 0) with
our technique. We first show how the `q-norm decreases at each step.
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Lemma 4.9. Let G = (U, V,E) be a bipartite D-regular (K, ε = 1
Dβ

)-expander. For any 0 < α < β, set
q = 1 + α and let δ ≥ 1− β + α.

Let pU be a probability distribution overU and let ru, for each u ∈ U , be a distribution over {0, 1}d ≡ [D],
each being a δd source. For any u ∈ U and v ∈ V let ru(u, v) denote the probability that the edge leading from
u to v is chosen under ru. That is for G’s labelling function ` : E → [D], we denote ru(u, v) ≡ ru(`(u, v)).
Define pV as the induced probability distribution on V . That is,

pV (v) =
∑

u∈Γ(v)

ru(u, v)pU (u). (1)

Suppose that ‖pU‖qq ≥
1

εKα . Then,

‖pV ‖qq ≤
16

Dδα
· ‖pU‖qq .

Proof: By definition, for each v ∈ V ,

pV (v) = ruv(uv, v)pU (uv) +
∑

u∈Γ(v)\uv

ru(u, v)pU (u).

Now, note that:∑
v∈V

ruv(uv, v)pU (uv)
q ≤

∑
v∈V

∑
u∈Γ(v)

ru(u, v)pU (u)q =
∑
u∈U

∑
v∈Γ(u)

ru(u, v)pU (u)q ≤
∑
u∈U

pU (u)q. (2)

Note that Equation (2) is true for any distributions ru and pU . The point is we want to raise the first
term of Equation (1) to the q, as this will be our gain. Thus, for each fixed v, we apply Jensen’s
inequality (

∑
i λixi)

q ≤
∑

i λix
q
i for

∑
i∈[D] λi = 1, with:

• λ1 = 1/2,

• λi = 1
2(D−1) for i ∈ {2, . . . , D},

• x1 = 2ruv(uv, v)pU (uv), and,

• xi =
∑

u∈Γ(v)\uv 2(D − 1)ru(u, v)pU (u) for i ∈ {2, . . . , D}.

Thus, noticing that
∑

i λixi = pV (v), we have:

∑
v∈V

pV (v)q ≤
∑
v∈V

1

2
(2ruv(uv, v)pU (uv))

q +
∑

u∈Γ(v)\uv

1

2(D − 1)
(2(D − 1)ru(u, v)pU (u))q


≤ 2α

∑
v∈V

ruv(uv, v)α · ruv(uv, v)pU (uv)
q + 2αDα

∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q

≤ 2α
1

Dδα

∑
v∈V

ruv(uv, v)pU (uv)
q + 2αDα 1

Dδq

∑
v∈V

∑
u∈Γ(v)\uv

pU (u)q

≤ 2α

Dδα

∑
u∈U

pU (u)q + 2αDα 1

Dδq
· 4εD

∑
u∈U

pU (u)q

≤ 16

Dδα
· ‖pU‖qq .

26



In the second to last inequality, we used Corollary 4.8. In the last inequality, we used the fact
that if δ ≥ 1− β + α, then

εDq(1−δ) = D1−β+α−δ−δα < D−δα. (3)

We next give a general lemma that states that, for any distribution on nodes, and any collection of
distributions on edges, the `q-norm cannot increase too much. This will be useful toward analyzing
the case when a good step occurs, but the `q-norm is already small enough, or in the next section,
when a bad step occurs at any time.

Lemma 4.10. Let G = (U, V,E) be any bipartite D-regular graph. Let pU be any probability distribution
on U . Let ru, for each u ∈ U , be any distributions over {0, 1}d ≡ [D]. Let pV be the induced probability
distribution on V :

pV (v) =
∑

u∈Γ(v)

ru(u, v)pU (u).

Then,
‖pV ‖qq ≤ D

α · ‖pU‖qq .

Proof: Using Jensen’s inequality, we get

‖pV ‖qq =
∑
v∈V

 ∑
u∈Γ(v)

ru(u, v)pU (u)

q

=
∑
v∈V

 ∑
u∈Γ(v)

1

D
D · ru(u, v)pU (u)

q

≤ Dα
∑
v∈V

∑
u∈Γ(v)

ru(u, v)qpU (u)q ≤ Dα
∑
v∈V

∑
u∈Γ(v)

ru(u, v)pU (u)q = Dα
∑
u∈U

pU (u)q.

We now show how to use a lossless expander with error ε = 1/Dβ to condense a δ-CG source for
sufficiently large δ (relative to 1− β). On first reading it may be instructive to think of 1− β = δ/2
and ∆ = δ/2. The interpretation of the following theorem is that the guarantee from Lemma 4.9
implies that a decent amount of entropy is gained at each step of a random walk (assuming Dδ

is large compared to 161/α). Thus if the total entropy gained after t steps is comparable to the
“capacity” k = logK of the lossless expander, then the final distribution of the random walk would
have entropy close to that capacity.

Theorem 4.11. Let 1 > β > ∆ > 0 be constants. Let δ ≥ δthr = 1 − β + ∆. Let X1 ◦ . . . ◦ Xt be a
δ-CG source, with each Xi ∼ {0, 1}d. Let G = (U = [N ], V = [N ], E) be a D-regular (K = 2k, ε = 1

Dβ
)-

expander, where d = logD ≥ 40
∆δ . Further, suppose that

0.9δdt ≥ k − 1

∆
log

1

ε
= k − β

∆
d.

Consider the distribution on the vertices of G after a random walk according to X1, . . . , Xt starting from an
arbitrary node. Namely, let Z0 ∼ [N ] be concentrated on an arbitrary fixed node, and for i ∈ [t] let

Zi = ΓG(Zi−1, Xi).

Then, for any η > 0, Zt is η-close to a
(
k −

(
β
∆ + 1

)
d− 1

∆ log 1
η

)
-source.
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Proof: Let pi ∈ RV denote the distribution of Zi. For any i ∈ [t] and v ∈ V ,

pi(v) =
∑

u∈Γ(v)

Pr [Xi = `G(u, v)|Zi−1 = u] · pi−1(u),

where `G : E → [D] is the labeling of the edges. In order to apply Lemma 4.9, note that for any
i ∈ [t] and u ∈ U , Xi| {Zi−1 = u} is a δd-source. This is since Zi−1 is a deterministic function
of X1, . . . , Xi−1, so Xi| {Zi−1 = u} is a convex combination of Xi|

{
X[1,i−1] = a[1,i−1]

}
for some

(a1, . . . , ai−1)-s, each of which is a δd-source, by the definition of a δ-CG source.
Set α = ∆ and q = 1 + α. We first claim that there must exist a timestep s ∈ [t] such that

‖ps‖qq ≤
1

εKα . Suppose not. Then, at every timestep i, we can apply Lemma 4.9 (with α = ∆ < β).

Since ‖p0‖qq = 1, we have that ‖pt‖qq ≤
(

16
Dδα

)t. However, by our assumption that 40
∆δ ≤ d, we have

161/α ≤ D0.1δ. Also by our assumption, we know that D.9δt ≥ ε1/αK. Therefore :

‖pt‖qq ≤
(

16

Dδα

)t
=

(
161/α

Dδ

)αt
≤
(

1

D0.9δt

)α
≤
(

1

ε1/αK

)α
,

a contradiction.
Now, let ` ∈ [t] be the last timestep in which ‖p`‖qq ≤

1
εKα . There are two cases to consider.

1. For every `′ > `, it’s still the case that ‖p`′‖qq ≤
1

εKα .

2. There exists `′ > ` such that ‖p`′‖qq >
1

εKα . In this case, by Lemma 4.10, the step that increases
the norm above 1

εKα can only increase the norm by a factor of Dα. Since ` is the last time the
norm is sufficiently small, we are guaranteed that

‖pt‖qq ≤
(

D

ε1/αK

)α
.

Finally, by Corollary 2.3, for any η > 0, Zt is η-close to a
(
k − β

∆d− d−
1
α log 1

η

)
-source.

Recall that in both an optimal lossless expander and in the expander from [CRVW02], k =
n−O(d), so Zt above is close to a source with constant entropy gap. Moreover, when the size of the
expander is chosen properly in comparison to the amount of entropy in the source (i.e. tightness in
the constraint 0.9δdt = k − 1

∆ log 1
ε ), then the entropy loss is roughly .1δdt.

4.3 The General Case

We now show how to handle the case when each conditional distribution is only γ-close to having
δ entropy rate, and there are at most λ fraction of bad steps in the source. To handle the error
parameter γ, we modify the proof of Lemma 4.9 to show that the `q norm essentially decreases by a
factor of O

(
1

Dδα
+ γDα

)
. We then choose α small enough so that γDα is comparable to 1

Dδα
and so

the decrease in `q norm is similar to that in Lemma 4.9 (i.e. overall O
(

1
Dδα

)
). To handle the case of

a bad step, we apply Lemma 4.10 and show that since there are λt such steps, overall they do not
affect the entropy of the random walk too much.
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4.3.1 Handling the Case of γ > 0

The following lemma shows in general how using a distribution that is γ-close to a δd-source affects
the `q norm.

Lemma 4.12. Let G = (U, V,E) be a bipartite D-regular (K, ε)-expander. For any α > 0, let q = 1 + α,
and fix some γ > 0.

Let pU be a probability distribution on U and let ru for each u ∈ U be a collection of distributions over
{0, 1}d ≡ [D], each γ-close to a δd source. Suppose that ‖pU‖qq ≥

1
εKα . Let pV be the induced probability

distribution on V :
pV (v) =

∑
u∈Γ(v)

ru(u, v)pU (u).

Then,

‖pV ‖qq ≤
(

2α

Dδα
+ 21+qDq(1−δ)ε+ 2qqγ + 2qDαqγ

)
‖pU‖qq .

Proof: The proof is similar to that of Lemma 4.9. We divide the contribution of each right hand
node v ∈ V into a contribution from the heaviest left hand neighbor, and the contribution from the
rest of the neighbors. We can apply Jensen’s inequality in the same way to work directly with sums
of terms of the form ru(u, v)qpU (u)q. We’ll show that certain sums of this form are close to sums of
terms of the form au(u, v)qpU (u)q for the δd-source au that each ru is close to. Toward this end, we
first prove a small claim:

Claim 4.13. For every ru(·), let au(·) be the corresponding δd-source it is γ-close to. For every v ∈ V , let
Tv be an arbitrary subset of Γ(v). Then,∑

v∈V

∑
u∈Tv

ru(u, v)qpU (u)q ≤
∑
v∈V

∑
u∈Tv

au(u, v)qpU (u)q + 2qγ ·
∑
u∈U

pU (u)q.

Proof: We will show that∣∣∣∣∣∑
v∈V

∑
u∈Tv

ru(u, v)qpU (u)q −
∑
v∈V

∑
u∈Tv

au(u, v)qpU (u)q

∣∣∣∣∣ ≤ 2qγ ·
∑
u∈U

pU (u)q.

First, note that the collection of subsets Tv ⊆ Γ(v) for v ∈ V naturally induces a collection of
subsets Su ⊆ Γ(u) where Su = {v : u ∈ Tv}. Thus, it suffices to show that∣∣∣∣∣∑

u∈U

∑
v∈Su

ru(u, v)qpU (u)q −
∑
u∈U

∑
v∈Su

au(u, v)qpU (u)q

∣∣∣∣∣ ≤ 2qγ ·
∑
u∈U

pU (u)q.

Now note that the Lipschitz constant of the function f(x) = xq on [0, 1] is q. In other words, for
every x, y ∈ [0, 1], |xq − yq| ≤ q · |x− y|. We use this fact, together with the triangle inequality and
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the fact that ru and au are γ-close, to get:∣∣∣∣∣∑
u∈U

∑
v∈Su

ru(u, v)qpU (u)q −
∑
u∈U

∑
v∈Su

au(u, v)qpU (u)q

∣∣∣∣∣ ≤∑
u∈U

∑
v∈Su

|ru(u, v)qpU (u)q − au(u, v)qpU (u)q|

≤
∑
u∈U

pU (u)q
∑

v∈Γ(u)

|ru(u, v)q − au(u, v)q|

≤
∑
u∈U

pU (u)q
∑

v∈Γ(u)

q |ru(u, v)− au(u, v)|

≤ 2qγ ·
∑
u∈U

pU (u)q.

Now again, we write pV as:

pV (v) = ruv(uv, v)pU (uv) +
∑

u∈Γ(v)\uv

ru(u, v)pU (u).

Again, for each v, we apply Jensen’s inequality in the same way as in the proof of Lemma 4.9.

∑
v∈V

pV (v)q ≤
∑
v∈V

1

2
(2ruv(uv, v)pU (uv))

q +
∑

u∈Γ(v)\uv

1

2(D − 1)
(2(D − 1)ru(u, v)pU (u))q


≤ 2α

∑
v∈V

ruv(uv, v)qpU (uv)
q + 2αDα

∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q.

We show that: ∑
v∈V

ruv(uv, v)qpU (uv)
q ≤

(
1

Dδα
+ 2qγ

)
‖pU‖qq , (4)

and that: ∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q ≤
(

4εD

Dδq
+ 2qγ

)
‖pU‖qq . (5)

For the first summand, by Claim 4.13 we have:∑
v∈V

ruv(uv, v)qpU (uv)
q ≤

∑
v∈V

auv(uv, v)qpU (uv)
q + 2qγ ·

∑
u∈U

pU (u)q

=
∑
v∈V

auv(uv, v)α · auv(uv, v)pU (uv)
q + 2qγ ·

∑
u∈U

pU (u)q

≤ 1

Dδα

∑
v∈V

auv(uv, v)pU (uv)
q + 2qγ ·

∑
u∈U

pU (u)q

≤ 1

Dδα

∑
u∈U

pU (u)q + 2qγ ·
∑
u∈U

pU (u)q.
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In the last inequality, we used Equation (2). Next:∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q ≤
∑
v∈V

∑
u∈Γ(v)\uv

au(u, v)qpU (u)q + 2qγ ·
∑
u∈U

pU (u)q

≤ 4εD

Dδq

∑
u∈U

pU (u)q + 2qγ ·
∑
u∈U

pU (u)q,

where in the last inequality, we used Corollary 4.8. Putting Equation (4) and 5 together gives:

∑
v∈V

pV (v)q ≤
(

2α
(

1

Dδα
+ 2qγ

)
+ 2αDα

(
4εD

Dδq
+ 2qγ

))
‖pU‖qq

=

(
2α

Dδα
+ 21+qDq(1−δ)ε+ 2qqγ + 2qDαqγ

)
‖pU‖qq .

We present two corollaries that address the q-norm decrease when d is large or small relative to
1/γ. The first corollary tells us that for a large enough d (relative to 1/γ), we can choose α to be
roughly 1

d log 1
γ .

Corollary 4.14. Let 1 > β > ∆ > 0 be constants. LetG = (U, V,E) be a bipartiteD-regular (K, ε = 1
Dβ

)-
expander. Let δ ≥ δthr = 1− β + ∆, and γ > 0. Assume that d > log(1/γ)

2∆ .
Let pU be a probability distribution on U and let ru, for each u ∈ U , be a collection of distributions over

{0, 1}d ≡ [D] each γ-close to a δd source. Let α ≤ log(1/γ)
2d , and set q = 1 + α. Suppose that ‖pU‖qq ≥

1
εKα .

If pV is the induced probability distribution on V , then

‖pV ‖qq ≤
32

Dδα
‖pU‖qq .

Proof: Recall that by Lemma 4.12 we have

‖pV ‖qq ≤
(

2α

Dδα
+ 21+qDq(1−δ)ε+ 2qqγ + 2qDαqγ

)
‖pU‖qq .

Now, since d > log 1/γ
2∆ and α ≤ log 1/γ

2d , we know that ∆ > α. Therefore, δ > δthr = 1− β + α. Thus,
just as in the proof of Lemma 4.9, by Equation (3) we know that Dq(1−δ)ε ≤ 1

Dδα
. Moreover, since

α ≤ log(1/γ)
2d ≤ log(1/γ)

(1+δ)d , we have Dαγ < 1
Dδα

. Thus,

‖pV ‖qq ≤
(

2α

Dδα
+ 21+q 1

Dδα
+ 21+q 1

Dδα
+ 21+q 1

Dδα

)
‖pU‖qq ≤

32

Dδα
‖pU‖qq .

The next corollary tells us that when d is small relative to 1/γ we can pick α to be anything
smaller than ∆.

31



Corollary 4.15. Let 1 > β > ∆ > 0 be constants. LetG = (U, V,E) be a bipartiteD-regular (K, ε = 1
Dβ

)-
expander. Let δ ≥ δthr = 1− β + ∆, and let γ > 0. Assume that d ≤ log(1/γ)

2∆ .
Let pU be a probability distribution on U and let ru, for each u ∈ U , be a collection of distributions over

{0, 1}d ≡ [D] each γ-close to a δd source. Let α ≤ ∆, and set q = 1 + α. Suppose that ‖pU‖qq ≥
1

εKα . If pV
is the induced probability distribution on V , then

‖pV ‖qq ≤
32

Dδα
‖pU‖qq

Proof: Again, apply Lemma 4.12, and we use the fact that δ > 1−β+α to get thatt Dq(1−δ)ε ≤ 1
Dδα

.
Moreover, (1 + δ)α ≤ 2∆, so together with our assumption γ ≤ 1

D2∆ , this implies Dαγ ≤ 1
Dδα

. Thus,
we get

‖pV ‖qq ≤
(

2α

Dδα
+ 21+q 1

Dδα
+ 21+q 1

Dδα
+ 21+q 1

Dδα

)
‖pU‖qq ≤

32

Dδα
‖pU‖qq

in this case too.

4.3.2 Handling the Case of λ > 0

We are now ready to handle λ > 0, in addition to γ > 0.

Theorem 4.16. Let 1 > β > ∆ > 0 be constants. Let δ > δthr = 1 − β + ∆, and let γ, λ > 0. Let
X1 ◦ · · · ◦ Xt be a (γ, λ)-almost δ-CG source, with each Xi ∼ {0, 1}d. For any positive integers N and
K, let G = (U = [N ], V = [N ], E) be a D-regular (K = 2k, ε = 1

Dβ
) expander. Further, suppose that

d ≥ 80
∆δ , γ ≤ 2−100/δ, and

(0.9δ − 2λ) dt ≥ k − 2β

log(1/γ)
d2.

Consider the distribution on the vertices of G after a random walk according to X1, . . . , Xt starting from an
arbitrary node. Namely, let Z0 ∼ [N ] be concentrated on a arbitrary fixed node, and for i ∈ [t] let:

Zi = ΓG(Zi−1, Xi)

Then for any η > 0, Zt is η-close to a
(
k − λdt− 2βd2 − 2d log 1

η

)
-source.

Proof: As in Theorem 4.11 we let pi denote the distribution of Zi, and write

pi(v) =
∑

u∈Γ(v)

Pr[Xi = (u, v)|Zi−1 = u] · pi−1(u).

We know that when i is a good step, Pr[Xi = (u, v)|Zi−1 = u] is a convex combination of sources
that are γ-close to a δd source and is thus itself γ-close to a δd source. We analyze the `q norm using
different α depending on whether d > log(1/γ)

2∆ or d ≤ log(1/γ)
2∆ .
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Case 1. Suppose that d > log(1/γ)
2∆ , and choose α = log(1/γ)

2d . We first claim that there must exist
some time s when ‖ps‖qq ≤

1
εKα . Suppose not, then for every i ∈ [t] that is a good step, we can apply

Corollary 4.14, and for every bad step, we can apply Lemma 4.10. There are at least (1− λ)t good
steps, and at most λt bad steps. Overall this tells us that

‖pt‖qq ≤ D
λαt

(
321/α

Dδ

)(1−λ)αt

.

Since by hypothesis γ < 1
2100/δ , we know that 321/α = 210d/ log(1/γ) ≤ D0.1δ. Also by hypothesis we

have (0.9δ − 2λ)dt ≥ k − 2β
log 1/γd

2 = k − β
αd and so

‖pt‖qq ≤
(

Dλ

D0.9δ(1−λ)

)αt
≤
(
D2λ

D0.9δ

)αt
≤

(
Dβ/α

K

)α
=

(
1

ε1/αK

)α
,

in contradiction.
Now, let ` ∈ [t] be the last time that ‖p`‖qq ≤

1
εKα . There are at most λt bad steps remaining after

`, and Lemma 4.10, each such step increases the `q norm by a factor of at most Dα. Thus,

‖pt‖qq ≤
(

Dλt

ε1/αK

)α
.

By Corollary 2.3, for any η > 0, Zt is η-close to a (k − λdt− 1
α log 1

ε −
1
α log 1

η )-source.

Case 2. Suppose d ≤ log 1/γ
2∆ . We then set α = ∆. Again, we claim that there must exist some time

s when ‖ps‖qq ≤
1

εKα . If not, then we can apply Corollary 4.15 for every good step, and Lemma 4.10
for every bad step, giving us

Dλαt

(
321/α

Dδ

)(1−λ)αt

≤
(
D2λ

D0.9δ

)αt
≤

D
2β

log 1
γ
d

K


α

≤

(
Dβ/∆

K

)α
=

(
1

ε1/αK

)α
,

in contradiction. In the second inequality, we used the fact that d ≥ 80
∆δ , and so 321/α = 321/∆ ≤

D0.1δ. Again there is a last time ` that ‖p`‖qq ≤
1

εKα . And again, there are at most λt bad steps
remaining after `. Thus,

‖pt‖qq ≤
(

Dλt

ε1/αK

)α
.

And here too, for any η > 0, pt is η-close to a (k − λdt− 1
α log 1

ε −
1
α log 1

η − 1)-source.

In Case 1 we chose α = log 1/γ
2d , and then 1

α < 2d. In Case 2 we chose α = ∆. Since by our
assumption d > 80

∆δ we have that 1
α < 2d in this case too. Therefore, it is always the case that

k − λdt− 1

α
log

1

ε
− 1

α
log

1

η
≥ k − λdt− 2βd2 − 2d log

1

η
,

as needed.
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We can now plug-in the explicit lossless expanders of Theorem 2.5, with error parameter β ≥ 1/6,
to Theorem 4.16 above and get an explicit deterministic condenser for high rate sources.

Corollary 4.17. Let d ∈ N, δ > 0 and γ, λ ≥ 0 be constants that satisfy the following constraints:

• δ ≥ 1− β + ∆ = 11
12 ,

• d ≥ 80
∆δ ≥ 2000, and

• γ ≤ 2−100/δ,

where we chose β = 1/6 and ∆ = 1/12. Then, for any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=(0.9δ−2λ)dt+O(1)

such that for any (γ, λ)-almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d, and any η > 0,
Cond(X) is η-close to an

(
m− λdt−O(d2)−O

(
d · log 1

η

))
-source.

That is, for any constant η, there exists an η-error deterministic condenser for (γ, λ)-almost δ-CG sources
with the above constraints with entropy gap λdt+O(1).

We note that 0.9 can be made arbitrarily close to 1 in Theorem 4.16 and Corollary 4.17. In
general, unless stated otherwise, the numbers represented by decimals in this paper can be made
arbitrarily close to 1 by sufficiently strengthening the constants in constraints such as γ ≤ 2O(1/δ).
We keep them as is for convenience and readability.

4.3.3 Handling the Case of Suffix Friendliness

Observe that the above condenser cannot hope to achieve constant entropy gap when λ > 0. This is
because if all the λ-fraction of bad steps are at the end, each step can reduce the entropy by roughly
d bits, and there are no future good steps to regain the lost entropy. In this section we show that by
imposing the condition of suffix friendliness, we can still condense to constant entropy gap.

We can give analogues of Theorem 4.16 and Corollary 4.17 in the case of suffix friendly almost
CG sources, and show that we can condense such sources to constant entropy gap. We first give a
theorem similar to Theorem 4.16 that claims that only a constant amount of entropy is lost in the
case of a suffix-friendly CG sources.

Theorem 4.18. Let 1 > β > ∆ > 0 be constants. Let δ > δthr = 1 − β + ∆, and let γ, λ > 0. Let
X1, . . . , Xt be a (γ, λ,Λ)-suffix-friendly almost δ-CG source, with each Xi ∼ {0, 1}d. For any N and K,
suppose G = (U = [N ], V = [N ], E) is a D-regular (K = 2k, ε = 1

Dβ
)-expander. Further, suppose that

d ≥ 80
∆δ , γ ≤ 2−100/δ, λ ≤ δ/6, and

(0.9δ − 2λ)dt− 2Λd ≥ k − 2β

log 1/γ
d2.

Consider the distribution on the vertices of G after a random walk according to X1, . . . , Xt starting from
an arbitrary node. Namely, let Z0 ∼ [N ] be concentrated on an arbitrary fixed node, and for i ∈ [t] let

Zi = ΓG(Zi−1, Xi).

Then, for any η > 0, Zt is η-close to a
(
k − 2βd2 −

(
6Λ
δ + 2 log 1

η

)
d
)

-source.
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Proof: As in Theorem 4.16, we can choose α = log(1/γ)
2d or α = ∆ depending on whether we are

in the case of d > log(1/γ)
2∆ or d ≤ log(1/γ)

2∆ respectively. Using a similar argument again, we can
show that in either case, there must exist a time s such that ‖ps‖qq ≤

1
εKα . Overall, there are at least

(1− λ)t− Λ good steps, and at most λt+ Λ bad steps. By the constraints on d, δ, γ, and k we can
verify again that in either case, each of the good steps decreases ‖pi‖qq by a factor of D0.9δα, and
each of the bad steps increases it by Dα. Thus, if there was no time s for which ‖ps‖qq ≤

1
εKα , then

we can apply Corollary 4.15 or Corollary 4.14 for good steps and Lemma 4.10 for bad steps. Again
in either case (and thus either choice of α), by our parameter constraints, we can verify that:

‖pt‖qq ≤
(
Dλt+Λ

)α( 1

D0.9δ((1−λ)t−Λ)

)α
≤
(
D2Λ+2λt

D0.9δt

)α
≤
(

1

ε1/αK

)α
.

In either case, we again let 1 ≤ ` ≤ t be the last time that ‖p`‖qq ≤
1

εKα .
Let g and b be the number of good and bad steps respectively between ` and t. Since ` is

the last time that the `q norm is sufficiently small, it must be the case that: b > 0.9δg. This is
because again, by our setting of parameters, in either case, every good step decreases the ‖pi‖qq
by a factor of D−0.9δα and every bad step increases it by Dα. So if 0.9δg ≥ b then there must be
a timestep greater then ` where the ‖pi‖qq is smaller that 1

εKα . Moreover, by the suffix friendly
property, b ≤ λ(t− `+ 1) + Λ. Therefore,

t− `+ 1 = g + b ≤ 1

0.9δ
b+ b ≤ 3

δ
b ≤ 3

δ
(λ(t− `+ 1) + Λ).

Thus, t − ` + 1 ≤
3
δ

Λ

1− 3
δ
λ
≤ 6Λ

δ , where we used the fact that λ ≤ δ
6 . Since any step can worsen the

||pi||qq by a factor of at most Dα,

||pt||qq ≤ Dα(t−`+1)||p`||qq ≤

(
D6Λ/δ

ε1/αK

)α
.

Thus, in either case, by our choice of parameters, we have by Corollary 2.3 that Zt is η-close to a
(k − 2βd2 − (6Λ

δ + 2 log 1/η)d)-source.

We can again directly use the lossless expander construction of Theorem 2.5 to get a deterministic
condenser.

Theorem 4.19. Let d,Λ > 1 be constant positive integers and let, δ, γ, λ > 0 be constants that satisfy the
following constraints:

• δ ≥ 1− β + ∆ = 11
12 ,

• d ≥ 80
∆δ ≥ 2000,

• γ ≤ 2−100/δ, and

• λ ≤ δ
6 ,
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where we chose β = 1/6 and ∆ = 1/12. Then, for any positive integer t, and any positive integer Λ, there
exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=(0.9δ−2λ)dt+O(1)

such that for any (γ, λ,Λ)-suffix-friendly-almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d,
and any η > 0, Cond(X) is η-close to an

(
m−O(d2)−O(Λ · d)−O

(
d · log 1

η

))
-source.

That is for constant η, there exists an η-error deterministic condenser for (γ, λ,Λ)-suffix-friendly-almost
δ-CG sources with the above constraints with entropy gap O(1).

5 Deterministic Condensing from Any Rate

In this section, we expand our random-walks based construction to handle an arbitrary min-entropy
rate δ > 0. The idea is to first split the source into t/b blocks, each of some constant length b. We
then use a constant-sized optimal lossless expander H (found via brute force), and run t/b (separate)
random walks on H using each of the length-b blocks as a set of random walk instructions. Since
optimal lossless expanders allow for deterministic condensing for arbitrarily small δthr, H will
condense each length-b block into a distribution with constant entropy gap. Thus, for sufficiently
large b, each of the t/b random walk distributions will be close to a source with entropy rate close
to 1 (even conditioned on previous blocks). Thus, we can use these distributions as instructions for
a random walk on the graph G of Theorem 2.5.

In other words, one can view the condensing procedure as a series of epochs. In each epoch, we
walk a constant number of steps on H until the entropy rate of the vertex distribution is sufficiently
high. Once the epoch is completed, and the entropy rate is sufficiently high, we can “flush the
entropy” from the steps in the epoch into the “big” lossless expander G from [CRVW02] by using
the vertex position in H as an instruction for a step in the big graph.

More formally, the construction goes as follows. Let c? be the global constant from Corollary 2.7.
We are given a (γ, λ)-almost δ-CG source X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d. Here, δ > 0 is an
arbitrary constant, and d, γ, λ satisfy the following.

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108 δ

2.

We describe the parameters of the two expander graphs we need.28

The Small Graph. Set β = 1− δ
2 and ∆ = δ

3 . Notice that β ≥ ∆ and that δthr = 1−β+∆ = 2
3δ < δ.

Set the epoch length

b =
106 · d3

δ
,

28In the cases where we write 10a for some constant a, we note that smaller constants in fact suffice. However, we do
not present these smaller, yet messier constants, for the sake of readability.
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and let
dCRVW = logDCRVW =

(
0.9δ − 2

√
λ
)
db+

2β

log(1/γ)
d2 + 2d+ log c?.

Since d ≥ 2c?

δ , by Corollary 2.7 there exists a degree D bipartite graph

H = ([DCRVW], [DCRVW], E)

that is a
(
K = DCRVW

c?D2 , ε = 1
Dβ

)
-lossless expander. We can construct H in constant time since b is

constant.

The Big Graph. Set βCRVW = 1
6 and ∆CRVW = 1

12 . Let γCRVW = η = 2−200. Finally let:

δCRVW =
k −
√
λdb− 2βd2 − 2d log 1

η

dCRVW

=
dCRVW − 2d− log c? −

√
λdb− 2βd2 − 2d log 1

η

dCRVW

= 1−

√
λdb+ 2d+ log c? + 2βd2 + 2d log 1

η

dCRVW

.

Our assumption λ ≤ 1
108 δ

2 implies that
√
λ

0.9δ−2
√
λ
≤ 1

72 . This, combined with our choice of b implies
that each of the six terms subtracted from 1 in the above is at most 1

72 . Thus, δCRVW ≥ 11
12 .

Let
G = ([N ], [N ], E)

be the
(
KCRVW = Ω

(
N

D2
CRVW

)
, εCRVW = 1

D
1/6
CRVW

)
guaranteed to us by Theorem 2.5 with:

kCRVW =
(

0.9δCRVW − 2
√
λ
)
dCRVW ·

t

b
+

2βCRVW

log(1/γCRVW)
d2

CRVW.

Note this implies that

n = logN = kCRVW +O(dCRVW) =
(

0.9δCRVW − 2
√
λ
)
dCRVW ·

t

b
+

2βCRVW

log 1/γCRVW

d2
CRVW +O(dCRVW).

5.1 The Condenser

Having defined our two expanders, we are ready to describe the construction. First, as notation, for
any labeled D-regular graph G = ([N ], [N ], E), and any sequence of strings x1, . . . , xt with each
xi ∈ {0, 1}d, let

RW(G, x1, . . . , xt) ∈ [N ]

denote the node reached after walking on G using x1, . . . , xt starting from a fixed arbitrary node,
say the first one. That is, RW(G, x1, . . . , xt) = vt where the sequence of nodes v0, . . . , vt is defined
via v0 = 1 and vi = ΓG(vi−1, xi).

Recall that we are given as input (γ, λ)-almost δ-CG source X1 ◦ . . . ◦Xt, with each Xi ∼ {0, 1}d,
and with the constraints dictated as above. Our condenser is constructed as follows. Given
x1, . . . , xt ∈ {0, 1}d,
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1. For every j ∈ [t/b], let zj = RW(H,x(j−1)b+1, . . . , x(j−1)b+b).

2. Output w = RW(G, z1, . . . , zt/b).

5.2 The Analysis

We first show:

Lemma 5.1. The sequence Z1, . . . , Zt/b is an (γCRVW,
√
λ)-almost δCRVW-CG source.

Proof: Call the j-th epoch X(j−1)b+1, . . . , X(j−1)b+b “good” if less than
√
λ fraction of the steps in

the epoch are bad ones. By an averaging argument, there are at least 1−
√
λ fraction of good epochs

overall. We’ll show that for every good epoch j, and for every prefix z1, . . . , zj−1 ∈ {0, 1}(j−1)dCRVW ,
the conditional distribution Zj |

{
Z[1,j−1] = z[1,j−1]

}
is γCRVW-close to a (δCRVW ·dCRVW)-source. First, we

note that any prefix z1, . . . , zj−1 is simply a function of the prefixes x1, . . . , x(j−1)b. Thus, it suffices
to show that when j is a good epoch, for any prefix x1, . . . , x(j−1)b, the conditional distribution
Zj |
{
X[1,(j−1)b] = x[1,(j−1)b]

}
is γCRVW-close to a (δCRVW · dCRVW)-source.

Fix any x1, . . . , x(j−1)b, and any good epoch j, and consider the (conditional) sequence of
random variables

X(j−1)b+1, . . . , X(j−1)b+b|
{
X[1,(j−1)b] = x[1,(j−1)b]

}
.

Such a sequence is a (γ,
√
λ)-almost δ-CG source because j is a good block and the original

X1, . . . , Xt is a (γ, λ)-almost δ-CG source. Moreover, recall that

Zj |
{
X[1,(j−1)b] = x[1,(j−1b)]

}
= RW(H,X(j−1)b+1, . . . , X(j−1)b+b)|

{
X[1,(j−1)b] = x[1,(j−1b)]

}
.

We now we verify that all the conditions of Theorem 4.16 are met. Indeed, we have that

• 1 > β = 1− δ
2 > ∆ = δ

3 > 0,

• δ > 1− β + ∆,

• d ≥ 80
δ∆ = 103

δ2 ,

• γ ≤ 2−100/δ, and,

•
(

0.9δ − 2
√
λ
)
db ≥ k − 2β

log 1/γd
2.

Therefore, we can apply Theorem 4.16 with

X(j−1)b+1, . . . , X(j−1)b+b|
{
X[1,(j−1)b] = x[1,(j−1b)]

}
as our (γ,

√
λ)-almost δ-CG source. We then get that the conditional distribution on Zj is η-close to

a source with
(
k −
√
λdb− 2βd2 − 2d log 1

η − 1
)

= δCRVW · dCRVW min-entropy.

Lemma 5.2. For any ηCRVW > 0, the distribution of W = RW(G,Z1, . . . , Zt/b) is ηCRVW-close to a(
kCRVW −

√
λdt− poly(d, 1/δ) · log(1/ηCRVW)

)
-source.
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Proof: We verify that all conditions of Theorem 4.16 are met in order to apply it with G and the
Zi-s as instructions. Indeed,

• 1 > βCRVW = 1
6 > ∆CRVW = 1

12 ,

• δCRVW > 11
12 = 1− βCRVW + ∆CRVW,

• dCRVW ≥ 106 ≥ 80 · 12 · 12
11 ≥

80
δCRVW∆CRVW

,

• γCRVW = η = 2−200 ≤ 2−100/δCRVW , and,

• (0.9δCRVW − 2
√
λ)dCRVW

t
b = kCRVW − 2βCRVW

log(1/γCRVW)d
2
CRVW.

Therefore, for any ηCRVW > 0, RW(G,Z1, . . . , Zt/b) is ηCRVW-close to a source with min-entropy

kCRVW −
√
λdCRVW

t

b
− 2βCRVWd

2
CRVW − 2dCRVW log(1/ηCRVW).

We note that all but the first two terms are poly(d, 1
δ ) (and that the second to last term isO(log 1

ηCRVW
).

Additionally, observing that, by our choice of b, dCRVW
b ≤ d yields the result.

We can finally state the final theorem about the condenser we construct:

Theorem 5.3. Let d > 1 be a positive integer and let, δ, γ, λ > 0 be constants that satisfy the following
constraints:

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108 δ

2.

For any positive integer t, there exists an explicit function Cond : {0, 1}n=dt → {0, 1}m with m = Ω(δdt)
such that for any (γ, λ)-almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d, and any η > 0,
Cond(X) is η-close to a

(
m−

√
λdt− poly(d, 1/δ) · log(1/η)

)
-source.

That is, for constant η, there exists an η-error deterministic condenser for (γ, λ)-almost δ-CG sources
with the above constraints with entropy gap

√
λdt+O(1).

Proof: It’s easy to to verify from the construction and Lemma 5.2 that we can takem = kCRVW +O(1).
It only remains to verify that k = Ω(δdt):
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kCRVW =
(

0.9δCRVW − 2
√
λ
)
dCRVW ·

t

b
+

2βCRVW

log 1/γCRVW

d2
CRVW

≥
(

0.9δCRVW − 2
√
λ
)
dCRVW ·

t

b

= 0.9

(
k −
√
λdb− 2βd2 − 2d log

1

η
− 1

)
t

b
− 2
√
λdCRVW

t

b

= 0.9

(
dCRVW − 2d− log c? −

√
λdb− 2βd2 − 2d log

1

η
− 1

)
t

b
− 2
√
λdCRVW

t

b

≥ 0.9

((
0.9δ −

√
λ
)
db−

√
λdb− 2βd2 − 2d log

1

η
− 1

)
t

b
− 2
√
λdCRVW

t

b

≥ (0.81δ − 2
√
λ)dt− 0.9

(
2βd2 + 2d log

1

η
+ 1

)
t

b
− 2
√
λdCRVW

t

b

≥ (0.81δ − 4
√
λ)dt− 0.9

(
2βd2 + 2d log

1

η
+ 1

)
t

b

≥ 0.8δdt−
(
2d2 + 200d+ 1

) t
b
.

In the second to last inequality, we used the fact that for our choice of dCRVW and b, we have
dCRVW/b ≤ d. In the last inequality, we used the fact that 4

√
λ ≤ 4

104 δ ≤ 0.01δ. Finally, by our choice
of b, we know that (2d2/b+ 200d/b+ 1/b)t ≤ 0.01δt ≤ 0.01δdt. So overall, k ≥ 0.79δdt = Ω(δdt).

We remark that again, the constant 0.79 can be made arbitrarily close to 1 by strengthening the
appropriate constraints. Namely by increasing the length of b, increasing the 100 in γ ≤ 2−100/δ

and increasing the 108 in λ ≤ 1
108 δ

2.

5.3 Condensing to Constant Entropy Gap from Suffix Friendliness and Any Rate

Similarly to the condenser in Section 4.3.3, the above condenser cannot hope to achieve constant
entropy gap when λ > 0. The issue is the same: we cannot win if all the bad steps are at the end. We
again show one can resolve such an issue by imposing suffix friendliness, and give a construction
of a deterministic condenser for suffix-friendly almost CG sources for arbitrary δ > 0.

The construction is nearly identical to that in the non suffix-friendly case, with a slight modifi-
cation of some parameters. Namely, we slightly adjust the size of both the small and big graph,
along with some other parameters, in order to facilitate the slightly different analysis. We list out
all parameters again here for completeness.

Let c? be the global constant from Corollary 2.7. For any constant δ, suppose we have a
(γ, λ,Λ)-suffix-friendly-almost δ-CG source X1, . . . , Xt with each Xi ∼ {0, 1}d. Suppose that

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108 δ

2.

Our construction again consists of an optimal constant sized lossless conductor, and the lossless
conductor from [CRVW02].
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The Small Graph (Suffix Friendly) The parameters here are nearly identical to before. Except, we
utilize the fact that

√
λ ≤ .01δ to replace the term (0.9δ −

√
λ) with 0.89δ. We’ll need to assume this

worst case upper bound for technical reasons in the averaging argument of Lemma 5.4.29 Namely,
we set β = 1− δ/2, ∆ = δ/3. We set the epoch length b = 106d3

δ , and

dCRVW = logDCRVW = 0.89 · δdb+
2β

log(1/γ)
d2 + 2d+ log c?.

We let H = ([DCRVW], [DCRVW], E) be the D-regular bipartite graph that is a
(
K = DCRVW

c?D2 , ε = 1
Dβ

)
-

lossless expander guaranteed to us by by Corollary 2.7.

The Big Graph (Suffix Friendly) We change the size N (and thus indirectly K) to facilitate
the conditions of Theorem 4.18 rather than Theorem 4.16. We also modify δCRVW to reflect the
entropy rate in each Zi when assuming the inequality

√
λ ≤ 0.01δ is tight. Again, let βCRVW = 1/6,

∆CRVW = 1/12, γCRVW = η = 2−100, and

δCRVW =
k − .01δdb− 2βd2 − 2d log 1

η

dCRVW

≥ 11

12
.

Let G = ([N ], [N ], E) be the
(
KCRVW = Ω

(
N

D2
CRVW

)
, εCRVW = 1

D
1/6
CRVW

)
guaranteed to us by Theo-

rem 2.5 with

kCRVW =
(

0.9δCRVW − 2
√
λ
)
dCRVW

t

b
− 2 · δΛ

106
dCRVW +

2βCRVW

log(1/γCRVW)
d2

CRVW.

Note again that n = logN = kCRVW +O(dCRVW).

5.3.1 The Analysis (Suffix Friendly)

The construction given the above graphs is the same as in the non-suffix-friendly case. We divide
the random walk into t/b blocks of length b, and we let Zj be the distribution on H after a random
walk using the j-th block as instructions.

Lemma 5.4. The sequence Z1, . . . , Zt/b is an
(
γCRVW,

√
λ, δΛ

106

)
-suffix-friendly almost δCRVW-CG source.

Proof: Call the j-th epoch of the original CG source, X(j−1)b+1, . . . , X(j−1)b+b “good” if less than
0.01δ fraction of the Xi-s in the epoch are bad steps. We’ll show that for any suffix of the Zj-s, there
are at most δΛ

106 +
√
λ(t − j) bad epochs. Consider any suffix of length s of the Zj-s. There are at

most Λ + λbs bad steps in X in this suffix. By an averaging argument, for any a, there are at most(
Λ
s + λb

)
s

a

29We note that there is no place in this work where it is necessary for us to consider the more fine grained fact that the
entropy loss is 0.9δ − λ rather than 0.9δ − 0.01δ. In other words, we always “think” of λ as large as possible in terms of
δ. However, we’ve kept the entropy loss as accurate as possible whenever we can.
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epochs with more than a bad steps in them. Setting a =
√
λb + 0.005δb ≤ 0.01δb tells us that the

number of bad epochs in the suffix is at most

Λ√
λb+ 0.005δb

+
λb√

λb+ 0.005δb
s ≤ 200Λ

δb
+
√
λs ≤ δΛ

106
+
√
λs,

where the last inequality comes from our choice of b and our lower bound on d. Now, as before one
can observe that the all conditions for Theorem 4.16 are met and therefore the distribution on Zj
conditioned on any prefix is η-close to a source with

k − 0.01δdb− 2βd2 − 2d log
1

η
= δCRVW · dCRVW

min-entropy.

Lemma 5.5. For any ηCRVW > 0, the distribution of W = RW(G,Z1, . . . , Zt/b) is ηCRVW-close to a (k −
poly(d, 1/δ) · (Λ + log 1/ηCRVW))-source

Proof: We verify all conditions of Theorem 4.18 are met to apply it with G and the Zi-s:

• 1 > βCRVW = 1/6 > ∆CRVW = 1/12,

• δCRVW > 11/12 = 1− βCRVW + ∆CRVW,

• dCRVW ≥ 106 ≥ 80 · 12 · 12
11 ≥

80
δCRVW∆CRVW

,

• γCRVW = η ≤ 1/2200 ≤ 1/2100/δCRVW ,

•
√
λ ≤ δ

104 ≤ δ
6 , and,

• (0.9δCRVW − 2
√
λ)dCRVW

t
b − 2 · δΛ

106dCRVW = kCRVW − 2βCRVW

log 1/γCRVW
d2

CRVW.

Therefore, for any ηCRVW > 0, W is ηCRVW-close to a source with min-entropy:

kCRVW − 2βd2
CRVW −

(
Λ

105
+ 2 log(1/ηCRVW)

)
dCRVW.

Notice that all the terms after kCRVW in the above expression are poly(d, 1/δ) · (Λ + log(1/ηCRVW)).

Using the fact that n = kCRVW + O(1), and that kCRVW = Ω(δdt), we get our final theorem for this
section.

Theorem 5.6. Let d > 1, δ, γ, λ > 0 be constants that satisfy the following constraints:

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108 δ

2.

For any positive integer t, and any positive integer Λ, there exists an explicit function Cond : {0, 1}n=dt →
{0, 1}m with m = Ω(δdt) such that for any (γ, λ,Λ)-suffix-friendly almost δ-CG source X = X1, . . . , Xt

with each Xi ∈ {0, 1}d, and any η > 0, Cond(X) is η-close to a m− poly(d, 1/δ) · (Λ + log(1/η)).
That is, for constant η and Λ, there exists an η-error deterministic condenser for (γ, λ,Λ)-suffix-friendly-

almost δ-CG sources with the above constraints with entropy gap O(1).
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6 Condensing from Shannon Entropy

In this section we show that one can deterministically condense from almost Shannon CG sources.
The result follows immediately from combining Lemma 3.8 or Lemma 3.9 with Theorem 5.3 or
Theorem 5.6 respectively.

Theorem 6.1. Let δ > 0 and λ ≥ 0 be constants such that λ ≤ 1
1024 δ

8. There exists a constant d? =
d?(δ) = O(log(1/δ)/δ) such that for any constant d ≥ d? the following holds.

For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δ2dt)

such that for any λ-almost δ-Shannon-CG source X = X1 ◦ . . . ◦ Xt with each Xi ∼ {0, 1}d, and any
η > 0, Cond(X) is η-close to an

(
m− λ1/4dt− poly(d, 1/δ) · log(1/η)

)
-source.

Proof: As usual, let c? be the global constant from Corollary 2.7. Lemma 3.8 states that for any
b, X ′ = X ′1 ◦ · · · ◦X ′bt/bc is a (γ = e−δ

2b/72,
√
λ)-almost δ′-CG source with δ′ = δ2

36 . We see that by
setting b = O

(
c∗

δ4

)
, all conditions needed to apply Theorem 5.3 with X ′ are met:

• db ≥ max
{

103

δ′2 ,
2c?

δ′

}
,

• γ = e−δ
2b/72 ≤ 2−100/δ′ , and

•
√
λ ≤ 1

108 δ
′2.

The following is the analogous result for suffix friendly Shannon CG sources, obtained by using
Lemma 3.9 and Theorem 5.6.

Theorem 6.2. Let δ > 0 and λ ≥ 0 be constants such that λ ≤ 1
1024 δ

8. There exists a constant d? =
d?(δ) = O(log(1/δ)/δ) such that for any constant d ≥ d? the following holds.

For any positive integer t and any positive integer Λ, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}Ω(δ2dt)

such that for any (λ,Λ)-suffix-friendly almost δ-Shannon-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼
{0, 1}d, and any η > 0, Cond(X) is η-close to an (m− poly(d, 1/δ) · (Λ + log(1/η)))-source.

7 Extracting with Constant Seed Length

In previous sections we have constructed condensers for almost CG sources and Shannon CG
sources that output sources with very small entropy gap. Specifically:

1. (γ, λ)-almost δ-CG-sources with λ = 0,30 any constant δ > 0 and γ small enough with respect
to δ. This follows from Theorem 5.3.

30Clearly, when λ is greater than 0 but still a small sub-constant, we can still apply an extractor with a short seed. For
brevity, we omit the dependence of the seed length on λ 6= 0.
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2. (γ, λ,Λ)-suffix-friendly almost δ-CG-sources with any constant δ > 0, any integer constant Λ
and any γ that is small enough with respect to δ. This follows from Theorem 5.6.

3. δ-Shannon CG-sources for any constant δ > 0. This follows from Theorem 6.1.

4. (λ,Λ)-suffix-friendly almost δ-Shannon-CG-source for any constant δ > 0 and any integer
constant Λ. This follows from Theorem 6.2.

For all of the above sources we can employ the high min-entropy extractor of Theorem 2.11 and get
a long close-to-uniform string while investing only a constant-sized uniform seed. We omit the
easy proof (which amounts to using the triangle inequality and the fact that applying functions can
never increase the statistical distance).

Theorem 7.1 (following Item 1 above). For any constants δ, ε > 0, every large enough integer constant
d ≥ d?(δ), and any γ ≤ 2−100/δ, the following holds. For any positive integer t there exists an explicit
function

CGExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε(1) → {0, 1}m=Ω(δdt)

such that given a (γ, 0)-almost δ-CG-source X , and an independent uniform Y ∼ {0, 1}`, it holds that
CGExt(X,Y ) ≈ε Um.

Theorem 7.2 (following Item 2 above). For any constants δ, ε, any constant Λ ∈ N, every large enough
integer constant d ≥ d?(δ), and any γ ≤ 2−100/δ and λ ≤ 10−8δ2, the following holds. For any positive
integer t there exists an explicit function

SFCGExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε,Λ(1) → {0, 1}m=Ω(δdt)

such that given a (γ, λ,Λ)-suffix-friendly almost δ-CG-source X , and an independent uniform Y ∼
{0, 1}`, it holds that SFCGExt(X,Y ) ≈ε Um.

We note that in Theorems 7.1 and 7.2, m can be close to δdt, namely (1− θ)δdt for an arbitrarily
small constant θ > 0, at the expense of modifying the other constants. (The GW extractor of
Theorem 2.11 has tiny entropy loss.)

Theorem 7.3 (following Item 3 above). For any constants δ, ε > 0 and every large enough integer
constant d ≥ d?(δ), the following holds. For any positive integer t there exists an explicit function

ShannonExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε(1) → {0, 1}m=Ω(δ2dt)

such that given a δ-Shannon-CG-source X , and an independent uniform Y ∼ {0, 1}`, it holds that
ShannonExt(X,Y ) ≈ε Um.

Theorem 7.4 (following Item 4 above). For any constants δ, ε > 0, any constant Λ ∈ N, every large
enough integer constant d ≥ d?(δ), and any λ ≤ 10−24δ8, the following holds. For any positive integer t
there exists an explicit function

SFShannonExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε,Λ(1) → {0, 1}m=Ω(δ2dt)

such that given a (λ,Λ)-suffix-friendly almost δ-Shannon-CG-source X , and an independent uniform
Y ∼ {0, 1}`, it holds that SFShannonExt(X,Y ) ≈ε Um.
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8 On Chor–Goldreich Sources with Bad Prefixes

A very natural, and seemingly useful, way to extend our notion of almost CG sources is to allow
bad prefixes. Namely, for each i ∈ [t] (or for most of them), Xi|

{
X[1,i−1] = a

}
is close to having high

min-entropy only for most a-s in the support of X[1,i−1]. We define this notion formally.

Definition 8.1 (good prefix). Let γ, δ > 0. Let X = X1 ◦ . . . ◦Xt be a source with each Xi ∼ {0, 1}d.
For i ∈ [t], we say that a prefix (a1, . . . , ai−1) is (γ, δ)-good for X if

Hγ
∞(Xi|X[1,i−1] = a1, . . . , ai−1) ≥ δd.

Previously, a good step required high min-entropy conditioned on all prefixes. Now, we only
require 1− ρ fraction of good prefixes.

Definition 8.2 (good step). Let γ, δ, ρ > 0. Let X = X1 ◦ . . .◦Xt be a source with each Xi ∼ {0, 1}d. We
say that i ∈ [t] is (γ, δ, ρ)-good forX if with probability at least 1−ρ over prefixes (a1, . . . , ai−1) ∼ X[1,i−1]

we have that the prefix is (γ, δ)-good for X . (Note that for i = 1 we simply require Hγ
∞(X1) ≥ δd.)

Our extended definition then goes as follows.

Definition 8.3 (almost CG source). A (γ, λ, ρ)-almost δ-CG source is a sequence of random variables
X1 ◦ . . . ◦Xt with each Xi ∈ {0, 1}d, such that at least (1− λ)t i-s are (γ, δ, ρ)-good for X .

Naturally, we can also define an almost Shannon CG source, where again, for each i, there is
a small probability over prefixes (X1, . . . , Xi−1) = (a1, . . . , Xi−1) for some small fraction of i, and
also for a small fraction of i, there is no guarantee on the quality of the distribution (for any prefix).
To begin this definition, we can again, naturally define the notion of a good prefix and a good step.

Definition 8.4 (good Shannon prefix). Let δ > 0. Let X = X1 ◦ . . . ◦ Xt be a source with each
Xi ∈ {0, 1}d. For i ∈ [t], we say that a prefix (a1, . . . , ai−1) is (δ)-Shannon-good for X if

H(Xi|X1, . . . , Xi−1 = a1, . . . , ai−1) ≥ δd.

When δ and X are clear from context, and it is also clear we are discussing Shannon entropy, we will simply
call a prefix “good” without the quantifiers.

Definition 8.5 (good Shannon step). Let δ, ρ > 0. Let X = X1 ◦ . . . ◦ Xt be a source with each
Xi ∈ {0, 1}d. We say that i ∈ [t] is (δ, ρ)-Shannon-good for X if with probability at least 1− ρ over prefixes
(a1, . . . , ai−1) ∼ (X1, . . . , Xi−1) we have that the prefix is (δ)-Shannon-good for X . (Note that for i = 1
we simply require Hγ

∞(X1) ≥ δd.)
When δ, ρ and X are clear from context, and it is also clear we are discussing Shannon entropy, we will

simply call a coordinate i “good” or a “good step” without the quantifiers. We also call i “bad” or a “bad
step” if it is not good. Additionally, we use G(X) as the set of all good i-s.

Definition 8.6 (almost Shannon CG source). A (λ, ρ)-almost δ-Shannon-CG source is a sequence of
random variables X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d, such that at least (1− λ)t i-s are (δ, ρ)-good for X .

While we do not know how to handle ρ > 0 in a way that extends our result, we argue here
that there may be an inherent reason for that lack of success. At least in a certain parameter regime
(particularly when λ > 0), we provably cannot extract from such sources with constant seed.
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Theorem 8.7. For any small enough constants ζ, β > 0, there exists no constant-seed extractor for (γ, λ, ρ)-
almost (1 − ζ)-CG sources where γ = λ = ρ = ζβ . That is, for any such source X = X1 ◦ . . . ◦ Xt ∼
({0, 1}d)t and any function g : {0, 1}dt × {0, 1}` → {0, 1}m where ` = O(1) and m = ω(1), it holds that
|g(X,U`)− Um| ≥ 1

2 .

Toward establishing Theorem 8.7, we need the following extension of Lemma 3.8.

Lemma 8.8. Let X = X1 ◦ . . . ◦ Xt be a (λ, ρ)-almost δ-Shannon-CG source, with Xi ∈ {0, 1}d. Let
δ, ρ > 0 be constant. For any positive integer b, consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc, where
X ′i = X[(i−1)b+1,ib]. Then, X ′ is a (

γ = e−δ
2b/36 + ρ1/4,

√
λ, ρ1/4

)
almost δ′-CG source for δ′ = δ2

18 −
δ
6

(√
ρ+
√
λ
)

.

We defer the proof to Appendix A.1. Note that the result gives no meaningful lower bound on
the entropy rate unless δ

3 >
√
ρ+
√
λ.

Unlike almost CG sources with δ = 0, under the more general definition it turns out that any
high-entropy weak source is an almost CG source with the appropriate error parameters. This is
true even for sources with high Shannon entropy.

Lemma 8.9. Let X ∼ {0, 1}n be a random variable with H(X) ≥ (1 − ζ)n for ζ ≤ 2−40, let d and t be
any positive integers such that d · t = n, and let b ≥ 6 ln 1

ζ be a positive integer that divides t. Then:

1. Writing X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, we have that X is a (ζ1/4, ζ1/4)-almost (1 −
√
ζ)-

Shannon CG source with block size d.

2. Writing X = X ′1, ◦ . . . ◦X ′t/b, each X ′i ∼ {0, 1}
bd, we have that X is a (2ζ1/16, ζ1/8, ζ1/6) almost

1
64 -CG source.

Recall that H(X) ≥ H∞(X), so the above also holds for X-s with H∞(X) ≥ (1− ζ)n as well.

Proof: The chain rule for Shannon entropy tell us that

H(X)/t =
1

t

∑
i∈[t]

H(Xi|X[1,i−1]) ≥ (1− ζ)d,

whereH(Xi|X[1,i−1]) =
∑

a Pr[X[1,i−1] = a]·h(i, a), and for brevity, we write h(i, a) = H(Xi|X[1,i−1] =
a). By an averaging argument,

Pr
i∼[t],a∼X[1,i−1]

[
h(i, a) ≤ (1−

√
ζ)d
]
≤
√
ζ.

By another averaging argument, we can conclude that

Pr
i∈[t]

[
Pr

a∼X[1,i−1]

[
h(i, a) ≤ (1−

√
ζ)d
]
≤ ζ1/4

]
≥ 1− ζ1/4,
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which gives us Item 1. By Lemma 8.8, noting that

(1−
√
ζ)2

18
− 1−

√
ζ

6
·
(√

ζ1/4 +

√
ζ1/4

)
≥ 1− 2

√
ζ

16
− ζ1/8

3
≥ 1

64
,

we have thatX ′ that is formed by grouping b consecutive blocks together, is a
(
e−b/72 + ζ1/16, ζ1/8, ζ1/16

)
-

almost 1
64 -CG source. Having chosen b large enough, we get Item 2.

Next, we show that we can invest a constant number of bits to regain the original (smooth)
entropy rate. Clearly this should come at additional cost, and indeed we get worse ρ and λ.

Lemma 8.10. Let X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, be a (γ, λ, ρ)-almost δ-CG source and let ζ > 0
be any constant. Let Ext : {0, 1}d × {0, 1}d → {0, 1}m be the extractor from Theorem 2.10 set with error
εE = 2−

δ
3
d. For any y ∈ {0, 1}d, denote

Z(y) = Ext(X1, y) ◦ . . .Ext(Xt, y).

Let τ =

√
λ+ ρ+ 2−

δζ
3
d. Then, with probability at least 1− τ over y ∼ Ud, Z(y) is a (γ, λ′ =

√
τ , ρ′ =√

τ)-almost (1− ζ)-CG source.

Proof: First, note that the output length of Ext is m = δd − 2 log(1/εE) = δ
3d. Fix some i ∈ G(X),

and denoteHi = (X1, . . . , Xi−1). Further, for h ∼ H denote Xi,h = Xi| {Hi = h}. When h is good,
we know that Xi,h is γ-close to some X ′i,h which is a δd-source. Thus,(

Y,Ext(X ′i,h, Y )
)
≈εE

(Y,Um)

By an averaging argument, there exists a set Bi,h ⊆ {0, 1}d of density at most εζE such that for every
y /∈ Bi,h,

Ext(X ′i,h, y) ≈
ε1−ζE

Um.

By Claim 2.1, and our aforementioned choice of parameters, D′i,h = Ext(X ′i,h, y) has entropy rate
1
m log(1/ε1−ζ

E ) = 1− ζ. Denoting Di,h = Ext(Xi,h, y), we know that Di,h ≈γ D′i,h.
Denoting the set of good prefixes by Hi, we have established that

∀i ∈ G(X) ∀h ∈ Hi ∀y /∈ Bi,h, Hγ
∞(Ext(Xi,h, y)) ≥ (1− ζ)m.

Let I(i, h, y) be the bad event Hγ
∞(Ext(Xi,h, y)) < (1− ζ)m. Collecting error terms, we have that

Pr
i∼[t],h∼Hi,y∼Ud

[I(i, h, y)] ≤ λ+ (1− λ)
(
ρ+ (1− ρ)εζE

)
≤ τ2.

By an averaging argument, we have a set BY ⊆ {0, 1}d of bad seeds of density at most τ such that
for every y /∈ BY we get that Pri∼[t],h∼Hi [I(i, h, y)] ≤ τ . By yet another averaging argument, we
get that for every y /∈ BY there exists a set of bad indices BI(y) of density at most

√
τ such that

for every y /∈ BY and i /∈ BI(y) it holds that Hγ
∞(Ext(Xi,h), y) ≥ (1− ζ)m with probability at least

1−
√
τ over h ∼ Hi.

We can now combine Lemmas 8.8 and 8.10 to get our the following corollary.
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Corollary 8.11. Let X ∼ {0, 1}n be a random variable with H(X) ≥ (1− ζ)n for a constant ζ < 2−64.
Then, there exist constant positive integers d and `, and an explicit function

f : {0, 1}n × {0, 1}` → {0, 1}m=Ω(n) ,

such that with probability at least 1− 2ζ1/32 over y ∈ {0, 1}`, f(X, y) = Z1 ◦ . . . ◦ Zt is a (γ, λ, ρ)-almost
(1− ζ)-CG source, where each Zi ∼ {0, 1}d, γ = 2ζ1/6, and ρ = λ = O(ζ1/64).

Proof of Theorem 8.7 (sketch): The above corollary shows we can convert, using a constant-length
seed, a high entropy source (even a high Shannon entropy one) into a high min-entropy almost CG
source, albeit with large ρ and λ. On the other hand, there exist no constant-seed condensers that
condense from (1− ζ)n min-entropy (out of n bits) to m−O(1) min-entropy (out of m bits) where
m = Ω(n), let alone from Shannon entropy.

Thus, it seems plausible that (at least) one of the following holds.

1. The barrier to condensing from f(X, y), for a good y, is that almost CG sources with ρ > 0 (or
at least, a relatively large ρ) do not admit deterministic condensing, or even condensing with
constant seed. That is, we cannot hope for an analogue of Theorem 5.3 when a small fraction
of the prefixes are bad. Or,

2. The barrier lies in the fraction of bad steps. That is, without suffix-friendliness, no constant
seed condensing exists, even using techniques which do not work in an “online” fashion like
ours.

We leave this as a line of inquiry for future research.

9 Open Problems

We present several open problems that arise from our work. Recall that in our notation, a (γ, λ, ρ)-
almost δ-CG source is a CG source in which every good conditional distribution is γ-close to a
δ-source, there are at most λ bad steps, and there is a weight of at most ρ on bad prefixes at each
step. A (γ, λ)-almost δ-CG source is a (γ, λ, 0)-almost δ-CG source.

The first two problems, which concern ρ and λ type errors, follow naturally from the discussion
in the previous section.

Open Problem 1: Is there an analogue of Theorem 5.3 to (γ, 0, ρ)-almost δ-CG sources? That is,
given a random walk via such a source, X1 ◦ . . .◦Xt, is the final vertex distribution O(ρ)-close
to a distribution with constant entropy gap? (An error ofO(ρ) is expected, as one can consider
the almost CG source X that outputs a fixed string with probability ρ, and otherwise follows
the distribution of a (γ, 0, 0)-almost δ-CG source.)

Open Problem 2: Is there an analogue of Theorem 5.3 to (γ, λ)-almost δ-CG sources without suffix
friendliness? Namely, is there an explicit deterministic condenser that outputs a distribution
with constant entropy gap without the suffix-friendliness requirement? (This problem does
not ask whether our random walk construction achieves this, as we know it cannot.)
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Open Problem 3: Can the constraint on γ in Theorem 5.3 be removed? That is, can we handle
(γ, λ)-almost δ-CG sources, for “very” large error such as γ = 0.1?

Open Problem 4: Relaxing Open Problem 1, is there an analogue of Theorem 5.3 to (γ, 0, ρ)-almost
δ-CG sources, where the output distribution only has high Shannon entropy?

Open Problem 5: Can we improve Corollary 4.14 and Corollary 4.15 so that the q-norm decrease
at each step is

‖pV ‖qq ≤
1

Cα
‖pU‖qq

for some C very close to D and all sufficiently small α? We note that a positive answer will
essentially solve Open Problem 3 and Open Problem 4.
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A Deferred Proofs

A.1 CG Sources to Shannon Sources

Proof of Lemma 8.8: By first, by averaging argument, there are at most
√
λ · bt/bc blocks that have

more than
√
λb bad indices for X . Call a block 1 ≤ i ≤ bt/bc good if it has less than

√
λb bad indices.

Fix any good block 1 ≤ i ≤ bt/bc. For convenience, say j ∈ [b] is a good step in the block if the
step b(i−1) + j is good. We’ll show that with high probability over prefixes X[1,...,(i−1)b], the current
(good) block X[(i−1)b+1,...,ib] conditioned on the prefix is close to high min-entropy. For convenience,
let X ′ = X[1,...,(i−1)b] and X ′′ = X[(i−1)b+1,...,ib].

For each good j ∈ [b], define Gj ∈ {0, 1}db(i−1)+j−1 as the set prefixes to step j that are (δ)-
good for X . Additionally, for each good j, define Wj(x1, . . . , xib) as the indicator random variable
whether x1, . . . , xb(i−1)+j−1 6∈ Gj . Let W =

∑
good jWj . By linearity of expectation:

EX′,X′′ [W ] = EX′,X′′

 ∑
good j

Wj

 ≤ ρb
Thus by Markov:

Pr
X′,X′′

[W ≥ √ρb] ≤ √ρ

Now define B ⊂ {0, 1}db(i−1) as the set of prefixes a to the current block i such that:

Pr
X′′

[
W ≥ √ρb

∣∣X ′ = a
]
> ρ1/4
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By averaging, we know that Pr[X ′ ∈ B] < ρ1/4. Now consider any prefix a outside of B. We show
that conditioned on this prefix, the distribution of X ′′ is close to high min-entropy.

For the rest of this proof, for convenience and brevity, we use Xj to refer to the distribution of
X(i−1)b+j conditioned on a good fixed prefix a outside of B. Furthermore, for the rest of this proof,
all random variables, expectation statements and probability statements are implicitly conditioned
on a.

Let E1 be the event that W ≥ √ρb. Notice that since we’re implicitly conditioning on a prefix a
outside of B, Pr[E1] ≤ ρ1/4. Let p(x) = Pr[X ′′ = x]. Now:

Pr
x∼X′′

[p(x) ≥ r] ≤ Pr
x∼X′′

[p(x) ≥ r|E1] + ρ1/4

We now bound the probability of Prx∼X′′ [p(x) ≥ r|E1]. Again for convenience, all notation beyond
this point is implicitly conditioned on E1. Conditioned on the fact that W <

√
ρb, we know there

exists at least (1−
√
λ)b−√ρb = (1−

√
λ−√ρ)b steps j in the block that such that the distribution

of Xj conditioned on its respective prefix has Shannon entropy at least δd.
For convenience, denote Xj as the j-th step in the current block. For each ` ∈ [(1−

√
λ−√ρ)b],

let J `(x1, . . . , xb) ∈ [b] be the random variable denoting the `-th step in the block j such that
H(Xj |X[1,...,j−1] = x[1,...,j−1]) ≥ δd.

Define Y`(x1, . . . , xb) as the indicator random variable that is 1 if and only if Pr[XJ` = xJ` |X[1,...,J`−1] =

x[1,...,J`−1]] ≥ 1
Dδ/3

. Let Y =
∑

` Y`. First, we observe that:

E[Y ] =
∑
`

E[Y`] ≤
(

1−√ρ−
√
λ
)
b · E[Y`] ≤ (1− δ/3)

(
1−√ρ−

√
λ
)
b ≤

(
1−

(
δ

3
+
√
ρ+
√
λ

))
b

Where we used Corollary 3.7 for to bound E[Y`]. We define the Doob martingale

Z` = E[Y |X1, . . . , XJ` ]

with the convention thatZ0 = E[Y ]. Note further thatZb = Y . Further, we know that |Zj−Zj−1| ≤ 1
for all j. Thus, by the Azuma-Hoeffding inequality, we get

Pr

[
Y −

(
1−

(
δ

3
+
√
ρ+
√
λ

))
b >

1

2

(
δ

3
+
√
ρ+
√
λ

)
b

]
≤ Pr

[
Zb − Z0 >

1

2

(
δ

3
+
√
ρ+
√
λ

)
b

]
≤ e−δ2b/36

Finally, we observe that for any x1, . . . , xb s.t.

Y (x1, . . . , xb) ≤

(
1− δ

6
−
√
ρ

2
−
√
λ

2

)
b

has probability at most:(
D−δ/3

)(1−√ρ−
√
λ)b−

(
1− δ

6
−
√
ρ

2
−
√
λ

2

)
b

= D−δ
2/36+δ

√
ρ/6+δ

√
λ/6.
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B The Construction’s Runtime

Our construction is explicit, which is evident by our use of explicit ingredients. But since we also
care about fast simualtion via almost CG sources, it is appealing to determine the runtime more
accurately.

Claim B.1 (condenser runtime). Given t, d, δ, γ, λ, let Cond : {0, 1}dt → {0, 1}m be the condenser from
Theorem 5.3. Then, given x ∼ X , where X is a (γ, λ)-almost δ-CG source over n = dt bits, we can compute
Cond(x) in time Õ(n2). (In the TM model.)

Proof: The construction amounts to taking steps on a constant-sizedH (which can be written down
in constant time) and the CRVW graph G, over {0, 1}m, where m < n. Thus, we can bound the
runtime of Cond by n · T , for T being the time it takes to compute ΓG, the neighborhood function of
G.

Inspecting the construction of [CRVW02] for the balanced case, we see that the only non
constant-sized object that is being applied is a permutation conductor, which can be implemented by
taking a step on a constant-degree spectral expander, say a Ramanujan graph Γ over U = 2m−O(1)

vertices. For concreteness, we take the LPS Ramanujan graph [LPS88]. Each vertex in Γ is indexed
by a 2× 2 matrix over a prime field Fq of cardinality O(U).31 The graph Γ is a Cayley graph with a
set of generators that can be precomputed in linear time. Taking a single step over Γ amounts to
matrix multiplication, which then amounts to performing a constant number of field operations.
The bit complexity of addition and multiplication in Fq is Õ(log q) = Õ(n). Overall, computing
Cond takes Õ(n2) time.

Clearly, the same holds for condensing from Shannon entropy (Theorem 6.1) and the suffix-friendly
analogues.

To establish the runtime of extraction, we simply need to account for the time it takes to compute
the [GW97] extractor.

Claim B.2 (extractor runtime). The extractors from Section 7, set to extract with constant error ε > 0,
run in time Õ(n2), where n is the length of the corresponding source. (In the TM model.)

Proof: To extract from the condensed output, we apply the [GW97] extractor from Theorem 2.11
on input of length m and constant-length seed. Very roughly, computing the GW extractor amounts
to taking a length-O(log(1/ε)) walk over a spectral expander, followed by an application of a
two-universal family of hash functions. As we consider the constant error regime, this can be done
in time Õ(n). Thus, the condenser’s runtime is the dominant factor. We refer the reader to the
appendix of [DMOZ20] for a detailed review of the [GW97] construction.

Runtime in the RAM Model. The runtime analysis in the above two claims was done in the
standard Turing machine model. However, for applications, we often care more about the RAM
model, in which we assume that we perform arithmetic operations in Fq at unit cost, even when q
is exponential in n (note that it takes log q bits to store a field element, and in the RAM model we
assume this is the word size). When each field operations takes constant time, it is easy to verify
both our condensers and extractors run in time linear in n.

31The LPS construction works only for certain primes, but we can handle this without significant loss in parameters.
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