
Almost Chor–Goldreich Sources and Adversarial Random
Walks

Dean Doron
Department of Computer Science

Ben Gurion University
deand@bgu.ac.il

Dana Moshkovitz*

Department of Computer Science
University of Texas at Austin

danama@cs.utexas.edu

Justin Oh†

Department of Computer Science
University of Texas at Austin

sjo@cs.utexas.edu

David Zuckerman‡

Department of Computer Science
University of Texas at Austin

diz@cs.utexas.edu

Abstract

A Chor–Goldreich (CG) source [CG88] is a sequence of random variables X = X1 ◦ . . . ◦Xt,
where each Xi ∼ {0, 1}d and Xi has δd min-entropy conditioned on any fixing of X1 ◦ . . . ◦Xi−1.
The parameter 0 < δ ≤ 1 is the entropy rate of the source. We typically think of d as constant
and t as growing. We extend this notion in several ways, defining almost CG sources. Most
notably, we allow each Xi to only have conditional Shannon entropy δd.

We achieve pseudorandomness results for almost CG sources which were not known to
hold even for standard CG sources, and even for the weaker model of Santha–Vazirani sources
[SV86]: We construct a deterministic condenser that on input X , outputs a distribution which
is close to having constant entropy gap, namely a distribution Z ∼ {0, 1}m for m ≈ δdt with
min-entropy m−O(1). Therefore, we can simulate any randomized algorithm with small failure
probability using almost CG sources with no multiplicative slowdown. This result extends to
randomized protocols as well, and any setting in which we cannot simply cycle over all seeds,
and a “one-shot” simulation is needed. Moreover, our construction works in an online manner,
since it is based on random walks on expanders.

Our main technical contribution is a novel analysis of random walks, which should be of
independent interest. We analyze walks with adversarially correlated steps, each step being
entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain
interleaved walks on two expanders), starting from a fixed vertex and walking according to
X1 ◦ . . . ◦Xt, accumulate most of the entropy in X .

*Supported in part by NSF Grant CCF-1705028 and CCF-2200956.
†Supported in part by NSF Grant CCF-1705028 and the David L. Miller and Mary H. Miller Graduate Fellowship.
‡Supported in part by NSF Grant CCF-1705028 and CCF-2008076 and a Simons Investigator Award (#409864).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 103 (2022)

Contents

1 Introduction 2
1.1 Santha–Vazirani Sources and Chor–Goldreich Sources . 3
1.2 Deterministic Condensing from Almost CG Sources . 5
1.3 Simulating True Randomness with Almost CG Sources . 6
1.4 On Almost CG Sources and the Smoothness Parameter . 8
1.5 Our Technique: A New Analysis of Adversarial Random Walks 9
1.6 On Supporting Bad Prefixes . 14
1.7 Extension: Online Condensing and Maintaining Constant Entropy Gap 15
1.8 Organization . 15

2 Preliminaries 15
2.1 Random Variables and Entropy . 15
2.2 Bipartite Graphs and Lossless Expanders . 17
2.3 Seeded Extractors and Condensers . 18
2.4 Martingales . 19

3 Almost Chor–Goldreich Sources 20
3.1 Suffix-Friendly Almost CG Sources . 21
3.2 From Shannon Entropy to Min-Entropy . 23
3.3 On Almost δ-CG Sources and δ-CG Sources . 25

4 Deterministic Condensing via Lossless Expanders 26
4.1 Additional Framework . 26
4.2 The Analysis for Standard Sources . 28
4.3 The General Case . 31

5 Deterministic Condensing from Any Rate 39
5.1 The Condenser . 40
5.2 The Analysis . 41
5.3 Condensing to Constant Entropy Gap from Suffix Friendliness and Any Rate 43

6 Condensing from Any d, Any γ, and from Shannon Entropy 44

7 Extracting with Constant Seed Length 45

8 On Chor–Goldreich Sources with Bad Prefixes 46

9 Open Problems 50

10 Acknowledgments 51

A Deferred Proofs 54
A.1 Condensing from Suffix Friendliness and Any Rate . 54
A.2 The Nisan–Zuckerman (NZ) Construction . 57
A.3 The NZ Construction for Almost CG Sources . 59
A.4 CG Sources from Shannon Sources . 60

B Maintaining Constant Entropy Gap Throughout the Walk 62

C The Construction’s Runtime 63

D An Analog of Unique Neighbor Expansion 64

1 Introduction

Randomness is an incredibly useful resource. The use of randomness is sometimes provably essen-
tial (e.g., in cryptography or property testing), and sometimes we conjecture it is not, prominently
in time-bounded randomized algorithms. Yet, it is often the case that randomized algorithms
outperform deterministic ones. However, true randomness is scarce, and often we may only be
able to access a weak, defective source of randomness. This motivates the problem of simulat-
ing randomized algorithms that expect to receive true randomness, using only weak sources of
randomness.

The most natural way to use a weak random source is to convert it into a high quality random
source. An extractor does exactly this. Specifically, a (deterministic) extractor for a class of sources
X over n bits is a function Ext : {0, 1}n → {0, 1}m such that for any X ∈ X it holds that Ext(X) is
close, in total variation distance, to Um, the uniform distribution on m bits. Deterministic extractors
are only possible for some restricted classes of sources.

For general sources X , randomness extraction is possible with the addition of a short random
seed Y ∼ {0, 1}`, independent of X . It is not hard to see that simulation of randomized algorithms
given a weak randomness source can be done by cycling over all seeds; see the well known
Lemma 2.10. For a running time T , that simulation takes 2`(T + tExt) time, where tExt is the
time it takes to compute the extractor. Since typically tExt ≤ T , we denote by 2` the simulation’s
slowdown, and naturally we want to minimize it. Generally, the distributions that we could hope to
extract from are modeled as an arbitrary probability distribution with some amount of min-entropy
[CG88, Zuc90], also known as k-sources.1 Unfortunately, we have a lower bound of ` ≥ log n+O(1)
on the seed length of extractors for arbitrary k-sources over n bits, so simulating BPP with weak
sources using extractors must incur at least Ω(n) slowdown.2

Previous research focused on two extremes: sources where deterministic extraction is possible,
and hence there’s a negligible slowdown, and simulations giving an Ω(n) slowdown. A basic
natural question is to ask whether anything can be done in between these extremes.

1. Are there natural weak sources where deterministic extraction is impossible, but where an
o(n) or even constant slowdown is possible?

It turns out that an affirmative answer to this question can be inferred from previous results, as we
will discuss later. However, for some applications, such as in one-shot scenarios like cryptography
and interactive proofs, one cannot cycle over all seeds. In other applications, even a constant
slowdown is undesirable. In such settings, a deterministic transformation is essential. We therefore
ask what is feasible deterministically.

2. Are there natural weak sources where deterministic extraction is impossible, but nevertheless
it is possible to deterministically transform the source into a random variable that is essentially
as useful as uniform randomness in many settings?

1We say that X is a k-source if its min-entropy is at least k, i.e., if every sequence x occurs in X with probability at
most 2−k.

2Note that the slowdown is (at least) linear in n, and the number of random coins is m < n. The difference between
n and m naturally depends on the entropy k that the source has. For the precise lower bounds on the parameters of
extractors for arbitrary k-sources, see [RT00]. In terms of explicit results, for k = Ω(n), a simulation with linear slowdown
follows from [Zuc07], and for arbitrary k-s we can get a polynomial slowdown (e.g., from [GUV09, LRVW03]).

2

We answer this question in the affirmative for Santha-Vazirani (SV) and Chor-Goldreich (CG)
sources, and generalizations of such sources, which we call Shannon CG sources and almost CG
sources, by giving constructions of deterministic condensers with constant entropy gap.

Additionally, in some situations one may not know the ultimate length of a weak random source,
or one may wish to extend the length of a given transformed random variable while preserving its
useful properties. This leads us to ask:

3. Can the deterministic transformations from Question 2 be computed in an online manner?

This online extraction question is of interest in cryptography [DGSX21a, DGSX21b]. We also answer
this question in the affirmative for our generalized notions of CG sources.

Our algorithms take a very natural approach: perform a random walk using the source as a
sequence of instructions. For arbitrary sources with entropy rate 1/2, a random walk may not mix
at all: each random step may be followed by an adversarial step that reverses the random step.
This raises the question:

4. Do random walks mix well in some sense for any natural weak sources with entropy rate
below 1/2?

We show that indeed it is possible to get good mixing properties for random walks using SV sources
and their generalizations. That is, for an adversarial random walk on a sufficiently high quality
expander, it suffices that each step has a small amount of fresh entropy for the walk to mix quite
well. We give an overview of our analysis, which is readily applicable even beyond the scope of
pseudorandomness, in Section 1.5.

1.1 Santha–Vazirani Sources and Chor–Goldreich Sources

Santha–Vazirani (SV) sources [SV86] are sequences of random bits in which the conditional distri-
bution of each bit given the previous ones can be partially controlled by an adversary. Namely,
X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}, is a δ-SV source if for any i and any prefix a ∈ {0, 1}i−1 and
b ∈ {0, 1}, it holds that Pr[Xi = b|X[1,i−1] = a] ≤ 1− δ/2.3 Chor and Goldreich [CG88] generalized
the SV model by considering each Xi ∼ {0, 1}d and assuming that no sequence of d bits has
too high a probability of being output. Formally, X is a δ-CG source if for any i and any prefix
a ∈ {0, 1}d(i−1), it holds that H∞(Xi|X[1,i−1] = a) ≥ δd, where H∞ denotes the min-entropy. We
typically think of d being constant and t growing.4

Santha and Vazirani showed that there is no deterministic extractor for SV sources that’s better
than outputting the first bit5 [SV86] (see also [RVW04]). Chor and Goldreich showed an even
stronger result for CG sources.

Theorem 1.1 ([CG88]). The class of δ-CG sources does not admit deterministic extraction.

We first observe that a constant-length seed suffices to extract from CG sources (and thus SV
sources). The proof is actually given in [NZ96, Lemma 10], although there is no theorem statement
to this effect (because the focus in [NZ96] was on general min-entropy sources).

3We denote X[1,i−1] = X1 ◦ . . . ◦Xi−1. Note that the Xi-s are not assumed to be independent.
4This is in contrast with “block-sources”, which is the term often used when t is very small and d is large.
5We note that some variations of SV sources do admit better deterministic extraction. See [BEG17].

3

Theorem 1.2 (informal; follows from [NZ96]). For any constants 0 < ε, δ ≤ 1, there exists an ε-error
extractor for δ-CG sources, with seed length ` = O(1).

This was improved to CG sources with subconstant δ in [SZ99, Lemma 5.3], but again there is
no theorem statement. Since we believe many are not aware of this result, for completeness, we
include a proof in Appendix A.2 that puts it in a more general framework.

By the previously mentioned connection, Theorem 1.2 gives a simulation using CG sources
with constant slowdown.6 However, there are scenarios where even constant seed is undesirable.
This work shows that there is a way to deterministically transform such generalized CG sources, in
an online manner, into a random variable that is essentially as useful as a nearly uniform random
variable in many scenarios. In a bit more detail, surprisingly, we show that one can simulate
low-error randomized algorithms, and in general biased distinguishers, in a “one-shot” manner. In
particular, we have the following theorem.

Theorem 1 (informal; follows from Theorem 2 and Claim 1.6). There exists a deterministic, efficient,
function Cond such that the following holds. Given a δ-CG sourceX = X1◦. . .◦Xt, eachXi ∼ {0, 1}d=O(1),
for any randomized algorithm A and any input w such that A(w, y) errs with probability Oδ,d(ε2) (over a
uniform y ∼ U), it holds that A(w,Cond(x)) errs with probability ε (over x ∼ X).

The one-shot simulation via CG sources (and later we will see that such a simulation is pos-
sible with a much richer class of sources) is possible in light of our deterministic condensers,
overviewed in Section 1.2 (see also the discussion in Section 1.3). We continue with the very natural
generalization of CG sources that we study.

Shannon CG Sources. Instead of requiring that each Xi, conditioned on every prefix, has at least
δd min-entropy, we only require the conditional Xi have δd Shannon entropy.7

While Shannon CG sources seem more general than the almost CG sources we define next, it
turns out that strong enough results for almost CG sources imply results for Shannon CG sources.
Thus, much of the technical focus of this work is on almost CG sources, with the case of Shannon
CG sources following as a corollary.

Almost CG Sources. Instead of requiring that each Xi, conditioned on every prefix, has at least
δd min-entropy, we only require the conditional Xi to be γ-close to some source with entropy rate δ.

Definition 1.3 (almost CG source, I). We say that X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, is a γ-almost
δ-CG source if for any i and any prefix a ∼ X[1,i−1], it holds that Xi|

{
X[1,i−1] = a

}
is γ-close, in total

variation distance, to a source with δd min-entropy.

The definition of almost CG sources is also quite natural. In particular, considering γ-s which
can be much larger than 2−d is very natural and has several advantages. In particular, it is often the

6We give a brief overview of the construction of Theorem 1.2. Given X1 ◦ . . . ◦Xt, we use a constant-sized seed Y to
extract, in a “strong” sense (say, using universal hashing) a uniform Z1 from X[1,a] where a = O(1). Then, we use Z1

as a seed to extract from X[a+1,b] to get Z2, where [a+ 1, b] is roughly twice as long as [1, a]. Continuing this way for
s = O(log t) times, we use Zs as a seed to extract from a suffix of X of length Ω(dt). The output of the final extraction is
the output of the extractor.

7Recall that one always have that H(X) ≥ H∞(X), for H(·) being the Shannon entropy. In fact, one can easily find
X-s with nearly maximal Shannon entropy, but extremely low min-entropy, or even smooth min-entropy.

4

case that the Xi-s are a result of some prior transformations, which almost always incur some error.
In fact, we already demonstrate such an example in this work. In Section 1.5.2, we will see that in
order to condense from an (almost) δ-CG source, we will first “condense” the original source into a
γ-almost δ′ CG source with δ′ > δ, and some γ > 0. In Definition 1.10 we will further extend our
definition of almost CG sources.

The techniques of [NZ96] also work to give a constant-seeded extractor for almost CG sources
as defined in Definition 1.3.

Theorem 1.4 (informal; see Appendix A.3). For any constants 0 < ε, δ, γ ≤ 1, and γ ≥ 0, there exists
an ε-error extractor for γ-almost δ-CG sources, with seed length ` = O(1).

For the formal statement, see Corollary A.8. Although this generalization is not hard, we
stress that it was not known, and in particular requires some observations about almost CG
sources provided in this work (see Lemma 3.3). Later on, we’ll discuss even further extensions of
CG-sources, for which the techniques of [NZ96] completely fail, while ours do not.

1.2 Deterministic Condensing from Almost CG Sources

Recall that we have the following parameters:

1. d is the length of each block, and t is the number of blocks (so X is distributed over n = dt
bits.);

2. Each block Xi is γ-close to having δ entropy rate; and,

3. m denotes the output length of our extractor (and later condenser).

Later, we will study two additional extensions for CG sources: Those with some λ-fraction of
damaged blocks, for which we have no guarantee, and those in which for every good block, it is
only guaranteed that all but some ρ-fraction of prefixes give rise to a (close to) high-entropic block.

While an extractor aims to purify a weak source X into a nearly-uniform source, a condenser
aims to improve the source’s quality, namely by increasing the entropy rate [RR99]. Formally,
Cond : {0, 1}n × {0, 1}` → {0, 1}m is a (k′, ε) condenser for a class of sources X distributed over
{0, 1}n if for any X ∈ X and an independent and uniform Y ∼ {0, 1}`, it holds that Cond(X,Y)
is ε-close to a source with k′ min-entropy. When ` = 0, we say the condenser is deterministic (or
seedless), and that X admits deterministic condensing.

The entropy rate of a condenser is k′

m , and we want it to be larger than k
n , where k is the min-

entropy in each X ∈ X . When the rate is very close to 1, i.e., when k′ is very close to m, it makes
sense to measure the additive difference m− k′.

Definition 1.5 (entropy gap). The entropy gap of a random variable Z ∼ {0, 1}m is ∆ = m−H∞(Z).
We say that a (k′, ε) condenser Cond has entropy gap ∆ if its output is ε-close to a source with entropy gap
∆. (Note that an extractor has entropy gap 0.)

Condensers were proven incredibly useful as building blocks for extractors (e.g., in [RSW06,
TUZ07, GUV09, Zuc07, BKS+10]). Regardless, they are also of great independent interest, because:

1. They can achieve parameters that are unattainable for extractors, and in particular,

5

2. There are classes of sources that admit deterministic condensing and (provably) do not admit
deterministic extraction.

For Item 1, we give as an example the fact that for arbitrary weak sources, condensers can achieve
smaller entropy loss8 and a smaller seed length. The latter fact was used for the construction of
full-fledged extractors and pseudorandom generators (see [BDT19, DMOZ20]).

Our focus in this work is on the intriguing phenomenon described in Item 2. Recall that the
class of CG sources do not admit deterministic extraction. Our main result is that not only do CG
sources, and even almost CG sources, admit deterministic condensing, but we are able to construct
explicit condensers for such sources with constant entropy gap!

Theorem 2 (see also Theorem 6.1). For any constants δ, ε, γ > 0, any constant integer d ≥ 1, the
following holds. For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δdt)

such that given an almost δ-CG source X with smoothness parameter γ, Cond(X) is ε-close to an (m −
O(log 1

ε))-source.

We view Theorem 2 as quite striking. It states that even a stream of constant-length random
strings where each element locally appears essentially deterministic (for example, consider d = 1000
and δd = 0.01), can be readily transformed, without any additional resources, into a random
variable that is almost as useful as nearly uniform randomness in many applications.

Deterministic extraction (and thus condensing) is known for several classes of sources. Some
have more algebraic structure, such as uniform distributions on affine subspaces or varieties (see
[CGL22, Dvi12] and references therein), where others are arguably better models of random sources
obtained from natural physical phenomena, such as bit-fixing sources, samplable sources, small-
space sources or local sources ([TV00, KRVZ06, DW12, Vio14, CG22] are just few examples). Our
study of CG sources and almost CG sources adds to the very short list of natural classes of sources
which admit deterministic condensing (even explicitly) but do not admit deterministic extraction.
In [BGM22], Ball, Goldreich, and Malkin considered the problem of condensing and extracting
from two somewhat dependent sources. They showed that ifX and Y are weak sources such that each
source has bounded influence on the outcome of the other source9, or that the mutual information
I(X,Y) is bounded, then condensing from X and Y is possible, whereas extraction is not. A more
contrived example is a certain type of block sources which appear in [BCDT19].

1.3 Simulating True Randomness with Almost CG Sources

The deterministic condenser guaranteed by Theorem 2 implies a constant-seed extractor as in
Theorem 1.4. This is because there are explicit extractors for sources with constant entropy gap ∆
that have seed length O(∆) [GW97] (see Theorem 2.12; there are even explicit extractors with seed
length O(log(∆/ε) [RVW02], but they don’t further improve our seed length asymptotically). We
now state our more general constant-seed extractor that works even for almost CG sources.

8The entropy loss of a condenser or an extractor is the difference between the input entropy and the output entropy.
When X is the set of all k-sources, the entropy loss of a seeded extractor Ext : {0, 1}n × {0, 1}` → {0, 1}m is k + d−m,
and the entropy loss of a (k′, ε) seeded condenser Cond : {0, 1}n×{0, 1}` → {0, 1}m is k+ d− k′. In seeded condensers,
the entropy loss can be zero, which is impossible for extractors (see [RT00, AT19]).

9For a discussion about the notion of bounded influence, see [BGM22, Section 2.2], or Definition 4.1 in the ECCC
version of [BGM22].

6

Theorem 3 (see also Theorem 7.1). For any constants δ, ε, γ > 0, any constant integer d ≥ 1, the
following holds. For any positive integer t there exists an explicit function

Ext : {0, 1}n=dt × {0, 1}`=O(1) → {0, 1}m=Ω(δdt)

such that given an almost δ-CG source X with smoothness parameter γ, and an independent uniform
Y ∼ {0, 1}`, it holds that Ext(X,Y) ≈ε Um.10

We now focus on ways in which our deterministic condenser is better than the constant-seed
extractor (even for exact CG sources). We give a one-shot simulation of randomized protocols with
almost CG sources for biased distinguishers, and particularly, a no-overhead simulation of BPP
algorithms that err with small probability. This wasn’t known even for CG sources, or even for SV
sources. We discuss this next.

The Usefulness of Constant Entropy Gap. While constant seed is needed to simulate a BPP
algorithm with error 1

3 using CG sources, what if we start with an algorithm that has a very small
constant error? What if we wish to simulate a protocol rather than an algorithm, and we cannot
simply cycle over all seeds? Our next discussion is devoted to what can be done with nonzero, yet
very small, entropy gap.

Consider the following simple observation.

Claim 1.6 (see, e.g., [DPW14]). Let Z ∼ {0, 1}m be ε
2 -close to some random variable with m − ∆

min-entropy. Then, for any BAD ⊆ {0, 1}m with density at most ρ(BAD) ≤ 2−∆−1ε, it holds that
Pr[Z ∈ BAD] ≤ ε.

Thus, Theorem 2 implies that we can sample roughly m
δ bits from an almost CG source, apply

our condenser, and simulate a randomized algorithm that uses m bits of randomness. As long as
the algorithm’s error is small enough compared to our condenser’s entropy gap, we can simulate
it to within a (larger) error ε, and the only overhead we have is computing the condenser. This is the
essence of Theorem 1. We note that sources with small entropy gap were recently used to simulate
algorithms that err rarely in the computational setting, where computational entropy is used rather
than the min-entropy of Claim 1.6 (see [DMOZ20]).

Additionally, we observe that Claim 1.6 and Theorem 1 suggest an alternative method for
simulating BPP algorithms with constant overhead. Given a randomized algorithm A that errs
with probability at most 1

3 , simply amplify the algorithm to error probability 2−∆−1ε by considering
A′ that repeats A on fresh randomness a constant number of times and takes the majority vote.
Then, one can simply run A′ using Z as the randomness. Note this method is different than the
standard one as it does not require computing an extractor at all. In other words, modulo different
constant error probabilities, a source with constant entropy gap is essentially as useful as a nearly
uniform source for BPP algorithms.

Sources with small ∆ have found applications in cryptography (see, e.g., [BDK+11, DRV12,
DY13, DPW14]), and our one-shot generation of constant-gap sources from almost CG sources
make the latter useful for those applications. In [DPW14], Dodis, Pietrzak, and Wichs considered
the notion of biased distinguishers, which is well-motivated in cryptography, and studied extractors

10We remark that the output length m = Ω(δdt) can in fact be stated as m = (1− θ)δdt where θ is an arbitrary small
constant, by slightly strengthening the constraints on the constructions’ parameters. For simplicity and readability, we
do not give the constraints’ dependence on θ.

7

that are only guaranteed to fool biased distinguishers rather than arbitrary ones. (This is also
related to “slice extractors.”)

Definition 1.7 (unpredictability extractor, [DPW14]). A function D : {0, 1}m × {0, 1}` → {0, 1} is
a µ-distinguisher if E[D(Um, Y)] ≤ µ, where (Um, Y) is uniform over {0, 1}m × {0, 1}`. A function
UExt : {0, 1}n×{0, 1}` → {0, 1}m is a (k, µ, ε)-unpredictability extractor if for any k-source X ∼ {0, 1}n

and any µ-distinguisher D, we have that E[D(UExt(X,Y), Y)] ≤ ε, where Y is uniform over {0, 1}` and
independent of X .

Dodis et al. showed that condensers with small entropy gap are equivalent to unpredictability
extractors [DPW14].11 This follows from the connection between sources with small entropy
gap and biased distinguishers, essentially rephrasing Claim 1.6: For any Z ∼ {0, 1}m which is
ε-close to having m − ∆ min-entropy, and a µ-distinguisher D : {0, 1}m → {0, 1}, it holds that
E[D(Z)] ≤ ε + 2∆µ. While Dodis et al. discussed seeded primitives and arbitrary weak source,
the connection between constant entropy gap and biased distinguishers readily follows to our
setting as well. Concretely, Theorem 2 gives deterministic unpredictability extractors for almost CG
sources.12 We believe the notion of a deterministic unpredictability extractor is a very natural one
and may find applications beyond the ones that stem from [DPW14].

To conclude this section, we mention a work by Gavinsky and Pudlák on deterministic con-
densers for SV sources [GP20]. There, they studied the less-standard notion of errorless condensers,
and showed that no such determinstic condenser exists for (standard) SV sources. We do allow
error, which evidently does enable deterministic condensing. (Allowing error also enables seeded
extraction from general weak sources, and is the standard model in pseudorandomness.) They also
gave a seedless condenser for a more restrictive model than SV sources, although it doesn’t have
constant entropy gap.

1.4 On Almost CG Sources and the Smoothness Parameter

Before presenting our technique, let us further discuss the smoothness parameter γ. Towards this
end, let us introduce the notion of smooth min-entropy, which we implicitly used above. For a
smoothness parameter α > 0, we let Hα

∞(X) = maxX′:|X−X′|≤αH∞(X ′).13 Using this terminology,
the i-th block in our almost CG source satisfies Hγ

∞(Xi|X[1,i−1] = a) ≥ δd for any prefix a ∼ X[1,i−1],
and the output of the condenser satisfies Hε

∞(Cond(X)) ≥ m−O(1).
One could imagine the the setting of γ > 0 to be a technical extension, but successfully handling

this regime draws highly nontrivial consequences. First, note that we cannot reduce the γ > 0
setting to the γ = 0 case via a union-bound type argument, since γt� 1. It turns out that this is not
simply a matter of proof technique.

Claim 1.8 (informal; see Claim 3.14). There exists an almost δ-CG source with smoothness parameter γ
which is far from any (1− 2γ)δ-CG source.

Despite this, our technique does handle constant γ-s. Moreover, we emphasize that an almost
CG source with γ > 0 over dt = n bits may not even have Ω(δn) bits of entropy. To see this, consider

11The use of biased distinguishers is also explicit in the recents works of [CT21, SV22].
12We note that [DPW14] cared about the entropy loss. Our condensers lose roughly a small constant fraction of the

entropy, which is much more that what is attainable for seeded condensers with small entropy gap.
13The distance here is the total variation distance. See Section 2.1.

8

the source X = X1 ◦ . . . ◦Xt such that for each i ∈ [t], Xi is zero with probability γ, and an arbitrary
δd-source over {0, 1}d \ {0}. Thus, Pr[X = 0] = γt and so H∞(X) ≤ t log 1

γ . Still, our condenser
outputs a source which is close to having roughly δn bits of entropy! This implies that such an X
must have ample smooth min-entropy. Indeed, this is the case.

Claim 1.9 (informal; see Claim 3.13). Every almost δ-CG source over n bits with smoothness parameter γ
has smooth min-entropy (1− 2γ)δn.

Such a claim follows from a technique similar to “entropy flattening” (see, e.g., [GV99]), where
the min-entropy of a distribution X is improved by taking multiple independent copies of X .

Handling Shannon Entropy. Handling γ > 0 enables us to extend our results to Shannon CG
sources. Given a Shannon δ-CG source, we show that by grouping every O(1) consecutive blocks,
we get an almost Ω(δ2)-CG sources with smoothness parameter γ that is exponentially-small in the
number of grouped blocks (see Corollary 3.11). Then, we can easily apply our results for almost CG
sources. See Theorems 6.4 and 7.3 for the precise condensing and extraction results. Note that the
transition from Shannon entropy to min-entropy necessarily induces error, so γ > 0 is crucial here.

Handling Damaged Blocks. Our random-walks based condensing method is flexible enough to
handle damaged blocks too. Namely, we allow some λ-fraction of the i-s to have completely arbitrary
conditional distributions.

Definition 1.10 (almost CG source, II). A (γ, λ)-almost δ-CG source is a sequence of random variables
X = X1◦. . .◦Xt, eachXi ∼ {0, 1}d, such that for at least (1−λ)t of the i-s, it holds thatHγ

∞(Xi|X[1,i−1] =
a) ≥ δd for any prefix a ∼ X[1,i−1].

When the damage pattern is arbitrary, we can condense to within O(λdt) entropy gap (i.e., we
lose d bits of entropy for each damaged block). Corollary 4.14 handles the λ > 0 setting as well. We
remark that the [NZ96, SZ99] technique would fail for even one damaged block. Moreover, when
the damaged locations are “nicely distributed”, our technique regains the O(1) entropy gap. We
elaborate it on this more in Section 1.5.4, and give the technical details in Theorems 5.4, 6.4, 7.3
and 7.4.

1.5 Our Technique: A New Analysis of Adversarial Random Walks

Our main technical contribution is a new analysis of adversarial random walks. Let’s begin our
discussion with exact Chor-Goldreich sources. Spectral analysis has been the main tool to analyze
random walks on expanders. However, it doesn’t seem to work for CG sources with rate below 1/2.
This is because there is no specialized method for CG sources; existing spectral methods that work
for CG sources also work for general min-entropy sources, and general sources with rate below 1/2
do not mix at all (recall that each random step may be followed by an adversarial step that reverses
the random step). Moreover, even for general sources with rate above 1/2 a random stopping time
is required, which amounts to a linear number of seeds. We hope to condense without a seed or
extract with a constant number of seeds.

Furthermore, spectral methods generally exploit the Markovian nature of random walks.
However, an adversarial random walk is not Markovian. That is, the distribution of the next
step depends not only on the walk’s current node, but also on the path it took to get there. Indeed,

9

although it is true that the distribution of the next step from a given node v is a convex combination
of instruction distributions over all the paths that end at v, the memory in the walk still presents a
challenge.

Our approach uses expansion directly. We therefore use the highest quality expanders: bipartite
lossless expanders.

Definition 1.11 (balanced lossless expander). We say aD-left-regular bipartite graphG = ([M], [M], E)
is a (Kmax, ε) lossless expander if for all subsets S ⊆ [M] of size at most Kmax, the neighborhood set ΓG(S)
has size at least (1− ε)D|S|.

For technical purposes, we will actually require that the right degree of the lossless expander be
small as well. For a high-level understanding of our work, it suffices to assume that the expander is
biregular.

For numerous applications a modest vertex expansion is not enough, and lossless expansion
is essential.14 An explicit construction of balanced (and somewhat imbalanced) constant-degree
lossless expanders was given by Capalbo, Reingold, Vadhan, and Wigderson [CRVW02].15 As
a pseudorandomness primitive, it is instructive to think of ΓG : {0, 1}m × {0, 1}d → {0, 1}m, the
neighborhood function of G, as a lossless conductor (where we use {0, 1}m ≡ [M]).

Definition 1.12 (balanced lossless conductor). A function LC : {0, 1}m × {0, 1}d → {0, 1}m is a
(kmax, ε) lossless conductor if for any k ≤ kmax, a k-sourceX , and an independent and uniform Y ∼ {0, 1}d,
it holds that Hε

∞(LC(X,Y)) ≥ k + d.16

That is, the output distribution “absorbs” the d bits of entropy from the seed, up to an ε
error. Intuitively, the larger the vertex expansion, the less freedom the adversary has to skew the
distribution over the next step. We soon make this intuition more concrete.

Our first construction, which works for large δ-s, goes as follows. Given an almost CG source
X = X1 ◦ . . . ◦Xt, each Xi ∼ [D], we walk, from a fixed node, along a (t+ 1)-partite graph with
a copy of G between each two layers (the graph’s size M is chosen as a function of the source’s
parameters). Namely, we start at some fixed Z0 ∈ [M], and for each i ∈ [t], let

Zi = ΓG(Zi−1, Xi),

and output Cond(X) = Zt.
For an exact δ-CG source, this amounts to a random walk where an adversary, after seeing

previous steps, chooses Dδ nodes among the D neighbors, and the random walker steps to a
random node among these Dδ nodes. We are able to show:

Theorem 4 (informal; see Theorem 4.8). Let X1 ◦ . . . ◦Xt be a δ-CG source, with each Xi ∼ {0, 1}d. Let
G be a sufficiently good D = 2d-regular expander. Then, for any η > 0, the last step Zt of a random walk on
G, performed as above, is η-close to a k −O(d+ log 1

η)-source.

The proof is nontrivial, and we discuss it next.
14Examples can be found in coding theory, data structures, algorithms, storage models, and proof complexity (see the

references in [CRVW02], and [BGI+08, DK08, CCLO22, LH22] for more recent works).
15For very small sets, Alon showed that lossless expansion follows from high girth. See also [AC02]. In the regime

where M � N , the degree needs to be super-constant, and explicit constructions for this regime are known (e.g.,
[TUZ07, GUV09]).

16The correct equivalence would be to lossless condensers if we allow the construction itself to depend on k (see
[TUZ07]). For the sake of our discussion, this difference won’t matter, and in the technical sections we will not use the
lossless condensers/conductors terminology.

10

Evading the Union Bound. The naive approach to analyze the output distribution after t steps
is to follow the definition of conductors. However, conductors only guarantee that the output
distribution is ε-close to a distribution with appropriate entropy. Thus, even disregarding the
correlation between source and seed, such an argument naturally forces us to union bound over the
error of each step. Indeed, one can even show that if each instruction comes from a δd-source, and
one wishes to add exactly δd entropy, then such a union bound is necessary. Our ultimate solution
avoids this union bound issue, and in doing so, only argues that the entropy gain at each step is
0.9δd instead.17

Expansion of Weight Functions. As usual in analyzing random walks, we need to handle real
nonnegative probabilities. It is standard to do this using eigenvalues, but there is a loss in going
from expansion to eigenvalues, or other analytic tools such as hypercontractivity. These analytic
methods don’t seem to capture lossless expansion.

We give a simple way to capture lossless expansion by directly generalizing the combinatorial
definition of expansion to nonnegative real numbers, which doesn’t seem to have been considered
before. Specifically, let 1S denote the indicator function of a set S. Then 1Γ(S)(v) = ∨w∈Γ(v)1S(w).
To generalize this to weight functions (nonnegative real valued functions), we replace the OR with
a max. We then show that the expansion of weight functions with support size at most K exactly
equals the expansion of sets with size at most K. This enables us to capture the effect of lossless
expansion. We can even generalize this weighted notion to unique neighbor expansion, although it
is not necessary for the proof.

1.5.1 The `q Norm as a Progress Measure

Recall that spectral analysis typically uses the `2 norm as a measure of progress. While the `2 norm
doesn’t appear to work in our setting, we manage to use the `q norm as a progress measure, for
some suitable q = 1 + α. That is, we show that the `q norm of the vertex distribution decreases by a
suitable multiplicative factor at each step.

Theorem 5 (informal; see Lemma 4.6). Let G = (U = [M], V = [M], E) be a bipartite D-regular (K, ε)
lossless expander with error ε = 1

Dβ
. For any 0 < α < β, set q = 1 + α and let δ ≥ 1− β + α.

Let pU be a probability distribution overU and let ru, for each u ∈ U , be a distribution over {0, 1}d ≡ [D],
each being a δd source. For any u ∈ U and v ∈ V let ru(u, v) denote the probability that the edge leading from
u to v is chosen under ru. Namely, for G’s labelling function ` : E → [D] we denote ru(u, v) ≡ ru(`(u, v)).
Define pV as the induced probability distribution on V . That is, pV (v) =

∑
u∈Γ(v) ru(u, v)pU (u). Then,

‖pV ‖qq ≤
8

Dδα
· ‖pU‖qq ,

as long as ‖pU‖qq is not already smaller than 1/Kα.

The `q-norm is a proxy measure for min-entropy, since any distribution p such that ‖p‖qq ≤ 2−αk is
ε-close to a distribution with entropy k − 1

α log 1
ε (see Corollary 2.3). Thus, Theorem 5 implies that

every step on a lossless expander, according to a δd source, adds roughly δd bits of entropy to the
vertex distribution, up to a “saturation” point of roughly k = logK bits of entropy. Since we have

17Or (1− θ)δd for an arbitrary constant θ close to 0, at the expense of modifying some constraints in the construction.

11

explicit constructions wherein k = m−O(1), a saturated vertex distribution already has constant
entropy gap.

One advantage of using the q-norm is that it allows us to better control the error term corre-
sponding to the small lossy part of the lossless expander. For example, certain nodes on the right
may have high degree, causing their probability after a step of a random walk to be large. This
problem is exacerbated by the adversarial nature of a random walk via an almost-CG-source, which
can assign up to γ probability to edges leading to high degree right nodes. By considering the
q-norm for a sufficiently small α, we have a measure of entropy that is less sensitive to such error,
all while still ensuring that the entropy gained at each step is roughly the same as the entropy in
each instruction.

To prove Theorem 5, since the distribution of the random walk’s vertex may not be uniform, we
generalize set expansion and unique neighbor expansion to apply to “weight functions” and proba-
bility distributions. We then apply Jensen’s inequality with a nonstandard choice of coefficients
that heavily weights the term where we gain. This gives a simple analysis of adversarial random
walks that uses expansion directly.

Overall, our analysis gives a “spectral-like” analysis of random walks even when such tech-
niques cannot be directly applied. In addition to its application in deterministic condensing, we
believe that this analysis of entropy gain via random walks from correlated and nonuniform steps
is interesting on its own.

Handling Smoothness. Up until now, we did not address the smoothness parameter γ thoroughly.
Quite surprisingly, it turns out that our technique based on the `q-norm analysis is flexible enough
to support constant γ-s without substantial changes. Indeed, when dealing with such instructions,
we extend Theorem 5 and show that the `q- norm decrease factor is now roughly 1

Dδα
+Dαγ. In fact,

there are cases where this factor is tight. This seems unfortunate, because we are now seemingly
only gaining less than log 1

γ min-entropy at each step, or in other words, lose the vast majority of
the desired δd bits.

The trick to overcome this is to simply pick α sufficiently small in the `q-norm analysis (recall
that we set q = 1 + α). Indeed, by choosing α ≈ 1

d log 1
γ , we see that γ is then comparable to 1

Dδα
.

Under the assumption that γ ≤ 2−O(1/δ), the decrease factor can be made to be D−0.9δα. Thus, we
once again gain roughly 90% of the entropy at each step. Setting α this small only results in a loss
of roughly O(d) bits of entropy over the entire walk.18 For the precise norm evolution with an
arbitrary γ, in Corollaries 4.11 and 4.12, we set α accordingly.

Additionally, we observe that the assumption γ ≤ 2−O(1/δ) is quite mild, as γ only depends on δ
and not d. Thus, for sufficiently large d-s, γ � D−O(1). We note that setting α to be a small constant,
say α = 1/6, would require γ ≤ D−O(1) in order to argue that 0.9δd bits of entropy is gained at each
step. We view our setting of parameter α as a way that allows us to avoid treating each instruction
source as pessimistically as a log 1

γ -source.

The Limit of Our First Construction. We now explain why our first construction only works for
large enough δ. For concreteness, assume that we are at some Zi−1 ∼ {0, 1}m with H∞(Zi−1) = k,
and walk according to Xi ∼ [D] having entropy δd (assume for now that γ = 0). For simplicity,

18A key point here is that the closer α is to 1, the larger we can allow our `q-norm bound to be in order to get high
entropy. See Corollary 2.3.

12

assume that Zi is flat over some set S ⊆ [M] of size K = 2k ≤ Kmax, recalling that we walk over a
sequence of (Kmax, ε) bipartite lossless expanders with M vertices, arranged in series. It may be
informative to simply think of the walk as over a single (Kmax, ε) undirected lossless expander.

While any large enough subset of S or of the edges leaving S has nice properties (for example,
at least 1− 2ε fraction of the vertices in S have a unique neighbor), there can still be ε-fraction of the
KD edges leaving S that behaves badly. In particular, εKD of the edges may lead to vertices that
have many incoming edges from S. Assume for simplicity that each node in S has the same number
of bad edges, namely εD edges from each node in S lead to heavy vertices. When Dδ ≤ εD, an
adversarial Xi can potentially, for each node, be supported only on instructions that lead to bad
edges. In this case, Zi+1 may have accumulate neither min-entropy, nor smooth min-entropy. Thus,
we must consider the case where Dδ � εD.

This raises the question of how small can we take ε to be as a function of D, or alternatively,
how large can we take δ to be given an existing lossless expander. Non-explicitly, we have ΓG-s
with a great seed length, namely d = 1 · log 1

ε +O(1), in which case we can take ε� D−(1−δ) even
when δ > 0 is arbitrarily small. In [CRVW02], however, the required seed length is d = 1

β log 1
ε for

some constant β < 1
2 .19 Denoting δthr = 1− β, we see that we can only hope to handle almost δ-CG

sources with δ > δthr, and we do indeed achieve this. We note that both in [CRVW02] and in an
optimal lossless expander, Kmax = ΩD(M), which is good enough to lead to constant entropy gap.

1.5.2 Our Two-Level Construction

We handle general δ > 0 via a two-level process: We first walk over a small, optimal lossless
expander in order to simulate an instruction with sufficiently large δ, and then “flush” it as a step
in the big CRVW graph over M vertices.

We are given X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d ≡ [D]. We let H = ([Dcrvw], [Dcrvw], E) be an
optimal lossless expanders with degree D, and we can choose its error ε to be very close to 1/D.
The number of vertices in H corresponds to the degree of our standard CRVW graph G over M
vertices, and we choose Dcrvw to be quasi-polynomial in D.20 For the exact choice of parameters for
G and H , see Section 5. Now:

• For some parameter b = poly(d), we group consecutive blocks of X into “super-blocks”
X ′1 ◦ . . . X ′t/b, each X ′i containing b blocks of length d each.

• For each i ∈ [t/b], we use X ′i as instructions to a separate random walk on H , starting from
some fixed node each time. Denote by Zi the final node reached after the b steps.

• We show that Z = Z1 ◦ . . . ◦ Zt/b is itself an almost CG source, but this time with δ > δthr.
Thus, we can use Z as instructions for G!

Fortunately,H is constant-sized, so we can find it in constant time. Using optimal constant-sized
ingredients is also a key idea in the [CRVW02] construction itself.

19The actual β is around 1
6

, and β < 1
2

is an inherent barrier for their construction.
20One can also think of H as an ε-error optimal lossless conductor H : {0, 1}poly(d) × {0, 1}d → {0, 1}poly(d) with seed

length d = log 1
ε

+O(1).

13

1.5.3 Removing the Constraints on d and γ

So far, we discussed how to condense from a γ-almost δ-CG source when γ < 2O(1/δ) and d >
poly(1/δ).21 To obtain Theorem 2, which has no such constraints, we observe that grouping
the instructions of the CG source into blocks of length poly(1/δ) yields a new CG source with
roughly the same entropy rate, but with sufficiently large instruction length, and smoothness error
exponentially small in 1/δ. The fact that grouping instructions into blocks improves the smoothness
error follows quite easily from the observation that sampling a heavy instruction (one whose
probability is at most γ) at step i is independent of sampling heavy instructions in previous steps.
Thus, the number of heavy instructions sampled over many i follows Chernoff-like tail bounds.
See Lemma 3.3 for details.

1.5.4 Suffix-Friendliness

While our technique is flexible enough to recover from damaged blocks and suffer only the expected
decrease in entropy per damaged block, it cannot achieve constant entropy gap, if, say, all the
damaged blocks are at the end. However, if at any step we can guarantee that we won’t encounter
too many damaged blocks from now on, we can regain constant entropy gap. Roughly speaking,
the favorable case is that the λ-fraction of bad blocks is nicely distributed in the sense that each
suffix contains at most λ-fraction of bad blocks (up to an additive term). We call this property suffix
friendliness (see the precise definition in Definition 3.4), and show that we can deterministically
condense from such sources to within constant entropy gap in Section 4.3.3. Moreover, we observe
that given an almost CG source with λ = 0, a random pattern that damages each block with
probability roughly λ, leads to a suffix friendly almost CG source with “bad blocks” parameter λ
(see Lemma 3.5).

1.5.5 The Construction’s Runtime

Recall that the simulation slowdown is also affected by the time it takes to compute the extractor, or
condenser (in the “one-shot” simulation setting). Our online manner of condensing, together with
the fact that the primitives we use (namely, the CRVW expander and the GW extractor) are efficient,
makes our construction efficient as well. In particular, in Appendix C we achieve a near-quadratic
runtime in the TM model. In the RAM model, in which each machine word can store integers up to
N = 2n and perform arithmetic in Fq for a prime q ≤ N at unit cost, our construction takes linear
time.

1.6 On Supporting Bad Prefixes

We extended δ-CG sources to handle smoothness γ and λ fraction of bad blocks. One can also
try and further relax the notion of CG sources in the following way: Instead of requiring that for
each non-damaged block Xi, for any prefix a ∼ X[1,i−1] it holds that Xi|{X[1,i−1] = a} is γ-close
to having entropy rate δ, we require it only for most prefixes. Concretely, what if we allow some
ρ-fraction of the prefixes to lead to instructions having low entropy? (See Definitions 8.3 and 8.6,
also for the Shannon-entropy variant.)

21We did not mention the constraint on d explicitly, however the intuition is clear: the raw amount of entropy in an
instruction, δd, should be at least 1.

14

That extension seems too permissive, at least in some regime of parameters. We show that any
random variable X ∼ {0, 1}n with H(X) ≥ (1− ζ)n is already an almost Ω(1)-CG source with error
parameters γ, λ, and ρ, all roughly equal to ζΩ(1). Moreover, with a constant seed, we show that we
can even increase the (smooth) entropy rate from an arbitrary Ω(1) to 1− ζ , at the cost of increasing
λ and ρ. Thus, since we provably cannot condense or extract from high Shannon entropy with
constant seed, we have an inherent barrier to handling ρ > 0 alongside a comparable, nonzero λ.
We discuss it further, and give the precise details, in Section 8.

1.7 Extension: Online Condensing and Maintaining Constant Entropy Gap

Unlike other condensers, our construction is an “online” one. That is, the construction makes one
pass over the randomness stream X1 ◦ . . . ◦Xt in order to form the required instructions, and never
needs to store more than a constant number of bits in memory before updating the location in the
big graph. Moreover, we don’t even need to know the number of blocks ahead of time!22

As given above, it is easy to see that the construction does not ensure constant entropy deficiency
in the output distribution throughout the random walk, but only at the end, even if there are no
corrupted instructions at all (λ = 0). However, one can easily adapt our approach to also work in
such a “completely online” fashion. The idea is to walk on graphs of gradually increasing size.
Namely, after every constant number of steps (for some fixed constant), we map the current vertex
to a vertex in a graph that is a constant times larger (but with the same degree) and continue the
walk from there. Although we do not give such a result in full formality, in Appendix B we present
an informal theorem and a brief discussion sketching its proof.

1.8 Organization

In Section 2 we give some preliminary definitions and results from previous work, and the connec-
tion between small `q norm and smooth min-entropy. In Section 3 we discuss almost CG sources,
both for min-entropy and for Shannon entropy. In Section 4 we establish deterministic condensing
for δ > δthr. In particular, after some necessary preparations in Section 4.1, in Section 4.2 we give
the analysis of the case where γ = λ = 0, and cover the general setting (including for suffix-friendly
sources) in Section 4.3. In Section 5 we give our two-level construction that condenses from any
constant rate δ > 0. Section 6 complements this result for Shannon entropy. In Section 7 we give
our extraction results that follows easily from previous sections. In Section 8 we discuss the notion
of bad prefixes described in Section 1.6. We conclude with a few open problems in Section 9.

2 Preliminaries

2.1 Random Variables and Entropy

The support of a random variable X distributed over some domain Ω is the set x ∈ Ω for which
Pr[X = x] 6= 0, which we denote by Supp(X).

The total variation distance (or, statistical distance) between two random variables X and Y
over the same domain Ω is defined as |X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). Whenever

22In the two-level construction of Section 1.5.2, we first computed all Zi-s just for the simplicity of exposition. Clearly
we can compute Zi, implement it on the big graph, and continue to compute Zi+1 without the need to keep storing Zi.

15

|X − Y | ≤ ε we say that X is ε-close to Y and denote it by X ≈ε Y . We denote by Un the random
variable distributed uniformly over {0, 1}n. We say a random variable is flat if it is uniform over its
support. Whenever we write x ∼ A for A being a set, we mean x is sampled uniformly at random
from the flat distribution over A.

For a function f : Ω1 → Ω2 (even a random one) and a random variable X distributed over
Ω1, f(X) is the random variable distributed over Ω2 obtained by choosing x according to X and
computing f(x). For a set A ⊆ Ω1, f(A) = {f(x) : x ∈ A}. For every f : Ω1 → Ω2 and two random
variables X and Y distributed over Ω1 it holds that |f(X)− f(Y)| ≤ |X − Y |, and is often referred
to as a data-processing inequality.

The (Shannon) entropy of a random variable X is H(X) =
∑

x∈Supp(X) Pr[X = x] log 1
Pr[X=x] .

The min-entropy of X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
,

and it always holds that H∞(X) ≤ H(X). For some ε > 0, we define the smooth min-entropy of X
by

Hε
∞(X) = max

X′:X′≈εX
H∞(X).

We record the following easy claim.

Claim 2.1. Let X ∼ {0, 1}n be a random variable such that X ≈ε Un. Then, H∞(X) ≥ log 1
ε .

A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy
at least k. We refer to k

n as the random variable’s entropy rate. When n is clear from context we
sometimes omit it and simply say that X is a k-source.

2.1.1 Distributions as Vectors

We naturally identify a random variable X over some finite domain Ω with the corresponding
distribution mass vector pX in RΩ, and often argue that X has large smooth min-entropy when pX
has small `q-norm.23 The following lemma gives the exact relation that we use.

Lemma 2.2. For any 0 < α < 1, let q = 1 + α. Let n be a positive integer, 1 < k ≤ n− 1, and let ε > 0 be
such that εα ≤ 1

2 . Let p be a distribution over {0, 1}n with ‖p‖qq ≤ 2−αk. Then, p is εα-close to a k − log 1
ε

source.

Proof: Let B1 be the set of x ∈ {0, 1}n such that p(x) > 1
ε2−k. We have:

2−αk ≥
∑

x∈{0,1}n
p(x)1+α ≥

∑
x∈B1

p(x)1+α ≥
(

2−k

ε

)α ∑
x∈B1

p(x).

Thus,
∑

x∈B1
p(x) ≤ εα. Let B2 ⊆ {0, 1}n \ B1 be the set of x-s for which 1

2ε2
−k < p(x) ≤ 1

ε2−k.
Note that | {0, 1}n \ (B1 ∪B2)| ≥ 2n − 2ε2k ≥ 2k+1ε1+α.

23We usually identify a random variable with its probability distribution.

16

Consider the following probability distribution r.

r(x) =


0 if x ∈ B1,
p(x) if x ∈ B2,

p(x) +

∑
y∈B1

p(y)

|{0,1}n\(B1∪B2)| otherwise.

By construction, r and p are εα-close. Now, from our bound on the number of elements outside
B1 ∪B2, we have that, for every x /∈ B1 ∪B2,

p(x) +

∑
y∈B1

p(x)

| {0, 1}n \ (B1 ∪B2)|
≤ 2−k

2ε
+

εα

2k+1ε1+α
≤ 2−k

ε
.

Thus, r is a (k − log 1
ε)-source.

Invoking Lemma 2.2 with ε = (ε′)
1
α , we get the following corollary.

Corollary 2.3. For any 0 < α < 1, let q = 1 + α. Let n be a positive integer, 1 < k ≤ n − 1, and let
0 < ε ≤ 1

2 . Let p be a distribution over {0, 1}n with ‖p‖qq ≤ 2−αk. Then, p is ε-close to a k− 1
α log 1

ε source.

2.2 Bipartite Graphs and Lossless Expanders

We say a bipartite graph G = (V1, V2, E) is D-regular if it’s D left-regular. We denote by ΓG(v)
the set of neighbors of v in G (whenever v ∈ V1, ΓG(v) ⊆ V2, and likewise whenever v ∈ V2).
When G is clear from context, we will simply write Γ. When we refer to a step over G, we mean
taking a step from V1 to V2. Our constructions utilize long walks over G, and specifically we will
walk on a layered graph from left to right, with copies of G between consecutive layers. For a
D-regular bipartite G = ([N], [N], E), a length-t walk over G starting from v ∈ [N] according to the
instructions (i1, . . . , it) ∈ [D]t is the sequence (v0, v1, . . . , vt), where vj is the ij-th neighbor of vj−1.

Definition 2.4 (bipartite expander). We say a bipartite graph G = ([N], [M], E) is a (K,A)-expander
if for all subsets S ⊆ [N] of size at most K, the neighborhood set ΓG(S) has size at least A · |S|.

When G is D-regular we can hope for A to be very close to D up to K ≈M/D. When indeed
A = (1− ε)D we say G is a (K, ε) lossless expander.24 An upper bound on the right degree of lossless
expanders will also be necessary for our analysis. We will require that each right node has degree
at most De for some constant exponent e ≥ 1. For concreteness, we will use the notation (K, ε, e)
lossless expander to denote a D-regular (K, ε) expander with right degree at most De. We will use
the lossless expander by Capalbo, Reingold, and Vadhan in its balanced setting of parameters.

Theorem 2.5 ([CRVW02]). There exists a constant β ∈ (0, 1) with β ≥ 1/6 such that the following holds.
For every positive integers N and D, there exists an explicit D-regular bipartite graph G = ([N], [N], E)
that is a (K, ε, e = 100) expander for ε = 1

Dβ
and K = Ω

(
1

D1+βN
)
.

Remark 2.6. Although [CRVW02] did not explicitly state an upper bound on the right degree, examining
their construction readily shows that the above upper bound holds. Indeed, the construction is essentially a
zig zag product between a regular eigenvalue expander, and two special constant sized (polynomial in D)
conductors. The largest right degree of the entire construction can be at most the product of the right degrees
of the constant sized conductors.

24For brevity, we use K rather than the more standard Kmax. It is useful to keep in mind that K = ΩD(M).

17

On first reading, we recommend, for simplicity, to think of e = 1 (in fact, considering the
biregular balanced bipartite expander that is the double cover of D-regular undirected lossless
expander will suffice). We will also make use of the fact that optimal lossless expanders have error
ε = O(1/D), and can be biregular.

Theorem 2.7 (nonexplicit lossless expanders). For every positive integers N and D, there exists a
D-regular bipartite graph G = ([N], [N], E) that is a (K, ε, 1) expander for ε = O

(
1
D

)
and K = Ω

(
N
D2

)
.

By brute-force, such an expander can be found deterministically in time NO(ND).

It will be convenient to formulate the above theorem as follows, suffering a slight increase in ε.

Corollary 2.8. There exists a universal constant c? > 1 such that for any constant 0 < β < 1 and

any positive integers D ≥ 2
c?

1−β and N , there exists a D-regular bipartite graph G = ([N], [N], E) that
is a (K, ε, 1) expander for ε = 1

Dβ
and K = N

c?D2 . By brute-force, such an expander can be found
deterministically in time NO(ND).

2.2.1 The Expander’s Activation Constant δthr

From here onward, for a given lossless expander, we’ll often refer to β as in the statements of
Theorem 2.5 and Corollary 2.8 as the “error parameter” of the expander. Also for a given expander,
we denote by δthr the “activation threshold” beyond which a single step via an instruction with δthr

entropy rate adds a decent amount of entropy to the vertex distribution. This activation threshold
will depend on the error parameter β. Indeed, as discussed in the overview of our techniques, we
will want δthr to be larger than 1− β. For concreteness, we often think of δthr = 1− β + ∆, where
again, ∆ is an arbitrary small constant. We now discuss specific settings of these parameters for the
lossless expanders we use in our construction.

For optimal lossless expanders, from Corollary 2.8, we can consider β arbitrarily close to 1.
Since β is close to 1, and ∆ is small, we can also think of δthr = 1 − β + ∆ as some arbitrarily
small constant. We will show that optimal lossless expanders facilitate entropy gain at each step
even when the instructions have arbitrarily small constant entropy rate. Inspecting the [CRVW02]
construction, we can see that their lossless expanders can have error parameter β = 1

6 (and even
slightly larger). In this case, we can take δthr = 5/6 + ∆. Similarly, we will show that the lossless
expanders from Theorem 2.5 facilitate entropy gain at each step when the instructions have entropy
rate slightly larger than 5/6.

As final remarks, note that we can always assume thatK = Ω
(

1
D2N

)
for both types of expanders.

Additionally, we note that the [CRVW02] gives an object stronger than a just vertex expander,
namely a lossless conductor, but the conductor’s vertex expansion properties will suffice for us.

2.3 Seeded Extractors and Condensers

Definition 2.9 (extractor). A function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε) (seeded) extractor if the following holds. For every (n, k) source X it holds that Ext(X,Y) ≈ε
Um, where Y is uniformly distributed over {0, 1}d and is independent of X . We say Ext is strong if
(Ext(X,Y), Y) ≈ Um × Y .

18

As mentioned in the introduction, seeded extractors can be used to simulate randomized
algorithms using weak sources.

Lemma 2.10 (see, e.g., [Vad12], Proposition 6.15). Let A(w, y) be a randomized algorithm deciding some
language L(w) such that A(w,Um) has error δ, and let Ext : {0, 1}n × {0, 1}` → {0, 1}m be an ε-error
extractor for X over n bits. Define A′(w, x) = majy∈{0,1}` {A(w,Ext(x, y))}. Then, for every X ∈ X ,
A′(w,X) has error 2(δ + ε).25

We will use two known constructions of seeded extractors. Recall that a universal family of hash
functions is a collection of functionsH ⊆ {0, 1}n → {0, 1}m satisfying Prh∼H[h(x) = h(y)] ≤ 2−m

for any x 6= y. There exist universal family of explicit hash functions of size 2n.

Theorem 2.11 (Leftover Hash Lemma [ILL89]). Let X ∼ {0, 1}n be such that H∞(X) ≥ k, let ε > 0,
and letH = {h1, . . . , hN} ⊆ {0, 1}n → {0, 1}m be a universal family of hash functions form = k−2 log 1

ε
of size 2n. Define ExtILL : {0, 1}n × {0, 1}n → {0, 1}m by

ExtILL(x, y) = hy(x).

Then, Ext is a strong (k, ε) extractor.

Theorem 2.12 ([GW97]). For every positive integer n, and any ∆ < n and ε > 0, there exists an
explicit (k = n − ∆, ε) extractor ExtGW : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(∆ + log 1

ε) and
m = n−O(∆ + log 1

ε).

In seeded condensers, the goal is to improve the quality of a random source X using few
additional random bits, albeit not necessarily into the uniform distribution.

Definition 2.13. A function
Cond : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, k′, ε) (seeded) condenser for a class of sources X over n bits if the following holds. For every
source X ∈ X it holds that Hε

∞(Cond(X,Y)) ≥ k′, where Y is uniformly distributed over {0, 1}d and is
independent of X . When d = 0, we say that X admits deterministic condensing.

2.4 Martingales

We use a few basic results about martingales. Recall that a martingale with respect to a sequence of
random variables X1, . . . , Xt is a sequence of real random variables Z0, . . . , Zt such that for all i,
Zi is a function of X1, . . . , Xt, E[|Zi|] <∞, and E[Zi+1|X1, . . . , Xi] = Zi. For a sequence of random
variables X0, . . . , Xt, we will specifically utilize the Doob martingale, which for a given Y that is a
function of X0, . . . , Xt, is the sequence Zi = E[Y |X0, . . . , Xi]. It is well known (and easy to verify)
that such a sequence Z0, . . . , Zt is a martingale (with respect to itself).

We will use the Azuma-Hoeffding Inequality as a tail bound on a martingale.

Theorem 2.14 (Azuma–Hoeffding). Suppose Z0, . . . , Zt is a martingale and that |Zi −Zi−1| ≤ ci. Then,
for any ε > 0,

Pr[Xn −X0 ≥ ε] ≤ e
−ε2

2
∑t
i=1

c2
i

25In fact, if X is the set of k-sources, the error probability can be made much smaller by letting Ext handle slightly
smaller entropies. See [Zuc96].

19

3 Almost Chor–Goldreich Sources

We now give the formal definitions of the generalized CG sources that we work with. The first and
main generalization is what we call an almost CG source. Such sources are similar to standard CG
sources but allow two types of “errors”.

1. Instead of each Xi being a δd-source for every prefix, each Xi is only γ-close to being a δd
source;

2. Instead of having a good min-entropy guarantee for every i ∈ [t], we have that for at most λt
of the i-s, there is no guarantee on the quality of the distribution of Xi regardless of the prefix.

Before formally defining sources of the above form, we first define what it means for a prefix to
be good, and for a block i ∈ [t] to be good.

Definition 3.1 (good step). Let 0 ≤ γ, δ ≤ 1. Let X = X1 ◦ . . . ◦Xt be a source with each Xi ∼ {0, 1}d.
We say that i ∈ [t] is (γ, δ)-good for X if for all prefixes (a1, . . . , ai−1) ∈ {0, 1}d(i−1) we have that:

Hγ
∞(Xi|X1, . . . , Xi−1 = a1, . . . , ai−1) ≥ δd.

(Note that for i = 1 we simply require Hγ
∞(X1) ≥ δd.)

When γ, δ, and X are clear from context, we will simply call a coordinate i “good” or a “good step”
without the quantifiers. We also call i “bad” or a “bad step” if it is not good. Additionally, we use G(X) as
the set of all good i-s.

With this definition, we can define the notion of an almost CG source.

Definition 3.2 (almost CG source). A (γ, λ)-almost δ-CG source is a sequence of random variables
X1 ◦ . . . ◦Xt with Xi ∈ {0, 1}d, such that at least (1− λ)t i-s are (γ, δ)-good for X .

We will eventually show that given an almost CG source, we can deterministically condense it
into a distribution on m = Ω(δdt) bits that is close to a m−O(λ)dt−O(1)-source. In other words,
we can condense it into a source with O(λ)dt+O(1) additive entropy gap. We remark that to the
best of our knowledge, up until know there were no known constructions that deterministically
condenses from such sources, even with γ = 0 and λ = 0.

The next lemma shows that grouping an almost CG source into blocks of length b results in an
almost CG source with a much smaller smoothness error γ.

Lemma 3.3. Let X = X1 ◦ . . . ◦Xt be a (γ, λ)-almost δ-CG source, with Xi ∼ {0, 1}d. For any positive
integer b, consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc, where X ′i = X[b(i−1)+1,b(i−1)+b]. Then:

• X ′ is a
(
γ′ = e−(1−γ)2b/8,

√
λ
)

-almost
(

1−γ−2
√
λ

2 · δ
)

-CG source.

• X ′ is a
(
γ′ = e−(γ(1−

√
λ))2b/2,

√
λ
)

-almost
(

(1− 2γ)(1−
√
λ)δ
)

-CG source.

Proof: Call the i-th super-block X ′i = X[b(i−1)+1,b(i−1)+b] “good” if less than
√
λ fraction of the steps

in the block are bad ones. By an averaging argument, there are at least 1 −
√
λ fraction of good

blocks overall.

20

Fix any good 1 ≤ i ≤ bt/bc and fix any prefix a = (a1, . . . , ab(i−1)) ∼ (X1, . . . , Xb(i−1)). We show
that the distribution X ′i conditioned on the prefix a is sufficiently close to an appropriate high
entropy source. For the rest of this proof, for convenience and brevity, we use Xj to refer to the
distribution of X(i−1)b+j conditioned on the fixed prefix a.

Since i is a good block, there are at least (1−
√
λ)b good steps within the block. Let b′ = (1−

√
λ)b.

For each j ∈ [b′], define Yj(x1, . . . , xb) as the indicator random variable that is 1 if and only if for
the j-th good step in the block (call it s(j)),

Pr[Xs(j) = xs(j)|X[1,s(j)−1] = x[1,s(j)−1]] ≥ D−δ.

Let Y =
∑
Yj . We define the Doob martingale

Zj = E[Y |X1, . . . , Xs(j)]

with the convention that Z0 = E[Y]. Note further that Zb = Y . We can conclude that

Z0 = E[Y] =
∑
j

E[Yj] ≤ γb′ = γ(1−
√
λ)b.

Further, we know that |Zj − Zj−1| ≤ 1 for all j. For the first bullet point, by the Azuma–Hoeffding
inequality (Theorem 2.14), we get

Pr

[
Y − γ(1−

√
λ)b >

1− γ(1−
√
λ)

2
b

]
≤ Pr

[
Zb − Z0 >

1− γ(1−
√
λ)

2
b

]
≤ e−(1−γ)2b/8.

Finally, we observe that any x1, . . . , xb for which Y (x1, . . . , xb) ≤ 1+γ(1−
√
λ)

2 b has expectation at

most
(
D−δ

)(1−√λ)b−
(

1+γ(1−
√
λ)

2

)
b ≤ D−

(
1−γ−2

√
λ

2

)
δb.

For the second conclusion, the proof is identical, but we use the Azuma–Hoeffding Inequality
with different parameters:

Pr
[
Y > 2γ(1−

√
λ)b
]
≤ Pr

[
Zb − Z0 > γ(1−

√
λ)b
]
≤ e−(γ(1−

√
λ))2b/2.

As an interpretation of the above lemma, we note that the first bullet essentially says that the
smoothness error is exponentially small in the length of the block. However, the rate of the CG-
source suffers (in particular it is at least halved). On the other hand, the second bullet point states
that such a loss in the entropy rate need not be necessary, in the right regime of parameters, such as
when γ < 1/2.

3.1 Suffix-Friendly Almost CG Sources

Ultimately, we hope to condense almost CG sources into sources with constant, additive, entropy
gap, since one can extract from such sources using only a constant number of auxiliary random bits
(see Theorem 2.12). Looking ahead, we won’t be able to do so unless we pose some restriction on
the bad steps. This is since we condense in an “online” manner. Thus, if for example, all bad steps
are at the end, we may lose roughly λdt bits of entropy overall. However, if we further require a
good fraction of good steps from all suffixes, we can evade this problem. With this motivation in
mind, we define the following.

21

Definition 3.4 (suffix-friendly almost CG source). A (γ, λ,Λ)-suffix-friendly-almost δ-CG source is a
sequence of random variables X1 ◦ . . . ◦Xt with Xi ∼ {0, 1}d, such that for every suffix Xj , . . . , Xt, for all
but at most (t− j + 1)λ+ Λ i-s between j and t, we have that i is (γ, δ)-good for X .

When δ and γ are clear from context, we may refer to X as being suffix-friendly with parameters λ and
Λ.

Such a definition is indeed natural: If each step is corrupted independently with probability λ,
the resulting distribution will be suffix-friendly with parameters O(λ) and Λ = O(1/λ), with high
probability:

Lemma 3.5. Let X = X1 ◦ . . . ◦Xt be a (γ, 0)-almost δ-CG source. Let Y = Y1 ◦ . . . ◦ Yt be a sequence of
independent Bernoulli random variables with Pr[Yi = 1] = λ < 1

2 . Suppose X ′ = X ′1 ◦ . . . ◦X ′t is formed
as follows. Independently, for each i ∈ [t], we do the following.

• If Yi = 0, we set the conditional distributions

X ′i |
{

(X ′1, . . . , X
′
i−1) = (a1, . . . ai−1)

}
= Xi | {(X1, . . . , Xi−1) = (a1, . . . ai−1)}

for every prefix (a1, . . . ai−1) ∈
(
{0, 1}d

)i−1
.

• If Yi = 1, we set the conditional distribution X ′i |
{

(X ′1, . . . , X
′
i−1) = (a1, . . . ai−1)

}
arbitrarily for

every prefix a1, . . . ai−1 ∈
(
{0, 1}d

)i−1
.

Then, with probability at least 9
10 over the choice of Y , X ′ is a (γ, 2λ,Λ)-suffix-friendly-almost δ-CG source,

where Λ = O
(

log(1/λ)
λ

)
.26

Proof: For any ` ∈ [t] we say that X ′ corrupts ` if Y` = 1. Fixing j ∈ [t], we first bound the
probability that X ′ corrupts more than (t − j + 1)λ + Λ coordinates in the suffix Xj , . . . , Xt. For
convenience, denote i = t − j + 1. Clearly, we can assume that i > Λ, so write i = Λ + i′ for
i′ ∈ [t− j − Λ + 1]. Let Zi denote the number of corruptions in the suffix of length i. By Chernoff,

Pr[Zi ≥ Λ + 2λ(Λ + i′)] ≤ Pr[Zi ≥ 2λi] ≤ e−λi/3 = e−λΛ/3−λi′/3.

To consider all suffixes, we union-bound over the above probability for all i′-s ranging from 1 to
t−j−Λ+1 ≤ t−Λ. However, we will treat different i′-s differently. First, note that, for a sufficiently
large t, there exists i? for which e−

λ
3
i∗ ≤ 1

20
1−e−λ/3
e−λ/3

. In fact, one can verify that i? = O
(

log 1/λ
λ

)
.

For every i′ > i?, we write i′ = i? + i′′, and can then union-bound over the events that ZΛ+i′ is
too large as follows:

t−Λ−i∗∑
i′′=1

e−
λ
3

Λ−λ
3

(i∗+i′′) ≤
∞∑
i′′=1

e−
λ
3
i?−λ

3
i′′ ≤ 1

20

1− e−λ/3

e−λ/3

∞∑
i′′=1

e−
λ
3
i′′ ≤ 1

20
.

For the case of i′ ≤ i?, since i? = O
(

log 1/λ
λ

)
, we observe that for some Λ = O(log(1/λ)/λ) it

holds that that e−
λ
3

Λ · i? ≤ 1
20 . Overall, the probability that any suffix Xj , . . . , Xt has more than

2λ(t− j + 1) + Λ bad steps is at most 1
10 .

26The choice of 9
10

is arbitrary, and the analysis can be easily extended to any success probability close to 1.

22

We can also prove a similar result to Lemma 3.3 about reducing the smoothness error γ for
suffix friendly almost CG sources.

Lemma 3.6. Let X = X1 ◦ . . . ◦Xt be a (γ, λ,Λ)-suffix-friendly-almost δ-CG source, with Xi ∼ {0, 1}d.
Let 0 < θ < 1 be any constant. For any positive integer b, consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc,
where X ′i = (Xb(i−1)+1, . . . , Xb(i−1)+b). Then:

• X ′ is a (γ = e−(1−γ)2b/8,
√
λ, Λ

θδb)-suffix-friendly-almost
(

1−γ−2
√
λ−2θδ

2

)
δ-CG source.

• X ′ is a (γ = e
−(γ(1−

√
λ−θδ))2

b

2 ,
√
λ, Λ

θδb)-suffix-friendly-almost
(

(1− 2γ)(1−
√
λ− θδ)

)
δ-CG source.

Proof: Similarly to the proof of Lemma 3.3, call the j-th super-block,X ′j = X(j−1)b+1◦· · ·◦X(j−1)b+b

“good” if less than
√
λ+ θδ fraction of the Xi-s in the block are bad steps.

We will show that for any suffix of the X ′j-s, there are at most Λ
θδb +

√
λ(t − j) bad blocks.

Consider any suffix of length s of the X ′j-s. There are at most Λ + λbs bad steps in X in this suffix.
By an averaging argument, for any a, there are at most(

Λ
s + λb

)
s

a

blocks with more than a bad steps in them. Setting a =
√
λb+ θδb tells us that the number of bad

blocks in the suffix is at most

Λ√
λb+ θδb

+
λb√

λb+ θδb
s ≤ Λ

θδb
+
√
λs.

The proof then proceeds as in Lemma 3.3. For each good block, there are at least b−a = (1−
√
λ−θδ)b

good steps. The probability that these steps sample heavy instructions (those with probability more
than D−δ) is at most γ. Thus, the expected fraction of heavy instructions from good steps is at most

γ(1 −
√
λ − θδ). Applying Theorem 2.14 with either ε = 1−γ(1−

√
λ−θδ)

2 or 2γ(1 −
√
λ − θδ) yields

the two bullet points.

3.2 From Shannon Entropy to Min-Entropy

A weaker definition than almost CG sources are sources where each step has high Shannon entropy.

Definition 3.7 (Shannon CG source). A λ-almost δ-Shannon-CG source is a sequence of random variables
X1 ◦ . . . ◦Xt with Xi ∼ {0, 1}d, such that for all but at most λt i-s, for all a ∈ ({0, 1}d)i−1,

H(Xi|X1, . . . , Xi−1 = a) ≥ δd.

One reason extractors are able to deal with min-entropy rather than Shannon entropy is because
sources with high Shannon entropy could still output a constant outcome 99% of the time. When
you only have one shot to extract a truly random output, such a source is useless. However, in the
setting of a source that is in fact a sequence of many constant-length sources, each having high
Shannon entropy, there are intuitively many chances for the source to output “good randomness”.
Considering many of the constant-length sources at once by grouping them into blocks, there is a

23

very small probability of getting a high-probability outcome for the entire block. In other words,
the block is close to a high min-entropy source.

We prove this formally here, giving a reduction from Shannon CG sources to almost CG sources.
We begin with a simple claim about Shannon entropy that states that sources with high Shannon
entropy are essentially smoothed min-entropy sources with error parameter close to 1.

Claim 3.8. Let X ∼ {0, 1}d. For any η, ξ > 0, define A ⊆ {0, 1}d as A = {x : Pr[X = x] ≥ η} and
suppose that Pr[X ∈ A] ≥ 1− ξ. Then,

H(X) ≤ ξd+ log
1

η
+ 1.

Proof: Write

H(X) =
∑
x∈A

Pr[X = x] log
1

Pr[X = x]
+
∑
x∈Ā

Pr[X = x] log
1

Pr[X = x]
. (1)

For the first term, note that∑
x∈A

Pr[X = x] log
1

Pr[X = x]
=
∑
x∈A

Pr[X = x|X ∈ A] Pr[X ∈ A] log
1

Pr[X = x|X ∈ A] Pr[X ∈ A]

=
∑
x∈A

Pr[X = x|X ∈ A] Pr[X ∈ A] log
1

Pr[X = x|X ∈ A]

+
∑
x∈A

Pr[X = x|X ∈ A] Pr[X ∈ A] log
1

Pr[X ∈ A]

≤ H(X| {X ∈ A}) + Pr[X ∈ A] log
1

Pr[X ∈ A]
,

and observe that H(X| {X ∈ A}) ≤ log 1
η since |A| ≤ 1

η . Similarly, we can bound the second term
of Equation (1) by∑

x∈Ā

Pr[X = x] log
1

Pr[X = x]
≤ ξ ·H(X|

{
X ∈ Ā

}
) + Pr[X /∈ A] log

1

Pr[X /∈ A]
,

and we can trivially bound H(X|
{
X ∈ Ā

}
) ≤ d. Finally, note that

Pr[X ∈ A] log
1

Pr[X ∈ A]
+ Pr[X /∈ A] log

1

Pr[X /∈ A]
≤ 1,

and the claim follows by collecting terms.

Corollary 3.9. Let δ > 0. There exists d? = d?(δ) = O(1/δ) such that for all d > d?, if X is a distribution
on {0, 1}d, with H(X) ≥ δd, then the total weight of elements x s.t. Pr[X = x] ≥ 1

Dδ/3
is at most 1− δ

3 .

Proof: Suppose not, then by Claim 3.8, set with ξ = δ/3 and η = 1/Dδ/3, we get:

H(X) ≤ ξd+ log
1

η
+ 1 ≤ 2

3
δd+ 1.

If d? = 3
δ = O(1/δ), then for any d > d? the above expression is at most δd.

24

From the above corollary we immediately see that we can view Shannon CG sources as almost CG
sources with very high smoothness error γ

Corollary 3.10. Let δ > 0. There exists d? = d?(δ) = O(1/δ) such that for any d > d? the following
holds. Let X = X1 ◦ . . . ◦ Xt be a λ-almost δ-Shannon-CG source, with Xi ∈ {0, 1}d. Then X is a
(γ = 1− δ/3, λ)-almost (δ/3)-CG source.

Similarly, ifX is a (λ,Λ)-suffix-friendly-almost δ-Shannon-CG source, then, X is a (γ = 1−δ/3, λ,Λ)-
almost (δ/3)-CG-source.

Using the first bullet of Lemma 3.3 or Lemma 3.6, and Corollary 3.10, we see that we can convert
Shannon CG sources to almost CG sources with small smoothness parameter γ.27

Corollary 3.11. Let X = X1 ◦ . . . ◦Xt be a λ-almost δ-Shannon-CG source, with Xi ∼ {0, 1}d. Suppose
d is sufficiently large as in Corollary 3.9. Suppose further that

√
λ ≤ δ/12. For any positive integer b,

consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc, where X ′i = (Xb(i−1)+1, . . . , Xb(i−1)+b). Then, X ′ is a

(γ = e−δ
2b/72,

√
λ)-almost (δ2/36)-CG source.

One can show the following suffix-friendly variant of the corollary by applying the first bullet
of Lemma 3.6 with θ = 1/12.

Corollary 3.12. Let X = X1 ◦ . . . ◦ Xt be a (λ,Λ)-suffix-friendly-almost δ-Shannon-CG source, with
Xi ∼ {0, 1}d. Suppose d is sufficiently large as in Corollary 3.9. Suppose further that

√
λ ≤ δ/24. For any

positive integer b, consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc, where X ′i = (Xb(i−1)+1, . . . , Xb(i−1)+b).

Then, X ′ is a (γ = e−δ
2b/72,

√
λ, 12Λ

δb)-suffix-friendly-almost (δ2/36)-CG source.

In Section 8 we will show how considering Shannon CG sources can help explain why it might
be difficult to deterministically condense from even more generalized notions of the almost CG sources
defined above.

3.3 On Almost δ-CG Sources and δ-CG Sources

As discussed in the introduction, we show that, although any (γ, 0)-almost δ-CG source is close
to some (general) (1− 2γ)δ-rate weak source (see Claim 3.13 below), there are (γ, 0)-almost δ-CG
sources that are far from any (1− 2γ)δ-CG source (see Claim 3.14). This tells us that although it is
plausible that one can extract roughly δdt bits of entropy from such a source (as we do), one cannot
do so by simply applying a technique for condensing standard CG sources. The two claims below
establish the above discussion formally.

Claim 3.13. LetX = X1◦. . .◦Xt be a (γ, 0)-almost δ-CG source. Then,X is ε-close to a (1−2γ)δdt-source,
where ε = e−γ

2t/2.

Proof: The proof is nearly identical to that in Lemma 3.3, considering the entire X1, . . . , Xt as a
single block.

Claim 3.14. For any positive integers t, d, and any 1 > δ > 0 and γ ≤ 1
4 such that d ≥ 4 log(1/γ)

δ , there
exists a (γ, 0)-almost δ-CG sourceX = X1◦. . .◦Xt, eachXi ∼ {0, 1}d, that is

(
1− e−γt/8 − 2−δd/4+1

)
-far

from any (1− 2γ)δ-CG source.
27This can be seen as a quantitative manifestation of the following phenomena: Let X(1), . . . , X(t) be independent

copies of some random variable X . Then, 1
t
H∞(X1 ◦ . . . ◦Xt) approaches H(X) as t tends to inifnity.

25

Proof: Consider the (γ, 0)-almost δ-CG source X = X1 ◦ . . . ◦ Xt, each Xi ∼ {0, 1}d, where for
every i, and every prefix a = a1, . . . , ai−1, the distribution of Xi conditioned on a is the following
convex combination.

• With probability γ, the output is the fixed zero string 0d.

• With probability 1 − γ, the output is a sample from an arbitrary δd-source whose support
does not contain 0d.

Let Y be any (1−2γ)δ-CG source. Consider the test T : {0, 1}dt → {0, 1} for which T (x1, . . . , xt) = 1
iff at least γt/2 of the xi-s are 0d. The expected number of xi-s that are 0d underX is γt. By Chernoff,
Pr[T (X) = 1] ≥ 1− e−γt/8.

On the other hand, under Y , we know that the expected number of xi-s that are 0d is at most
D−(1−2γ)δt. By Markov’s inequality (note that now we don’t necessarily have independence), the
probability of seeing more than γt/2 zeros is at most

2−(1−2γ)δdt

γt/2
=

2−(1−2γ)δd+1

γ
≤ 2−δd/4+1.

Thus, |E[T (X)]− E[T (Y)]| ≥ 1− e−γt/8 − 2−δ/4+1, implying the same lower bound on |X − Y | as
well.

4 Deterministic Condensing via Lossless Expanders

In this section we formalize our technique for deterministic condensing from almost CG sources
when δ ≥ δthr. (Later we will show that we can also extract from suffix-friendly almost CG sources;
even later we’ll show how to do all of this for arbitrary δ > 0). At a high level, we simply treat the
almost CG source as instructions for a random walk on a lossless expander of degree D starting
from an arbitrary fixed node. We analyze how the distribution on the expander’s vertices evolves
with each step by bounding its `q-norm for a suitable 1 < q < 2.

4.1 Additional Framework

There are two main concepts to formalize in order to handle even the case of standard CG sources.
First, since we use the `q norm as a proxy measure for entropy, we need to argue that vertex
expansion implies a good multiplicative factor `q-norm decrease when the next instruction has
sufficiently large entropy δ ≥ δthr, and the current distribution does not have too small `q norm
already (roughly 1

Kα). The framework in this section requires only the expansion property of left
sets, and requires no upper bound on the right degree.

We begin by generalizing some properties of vertex expansion to expansion of weight functions
as follows. Consider a bipartite graph G = (U, V,E). A weight function is simply an assignment
of nonnegative real numbers to the vertices of U or V . In other words, we consider functions
w : U → [0,∞), or w : V → [0,∞), and we denote by |w| its `1 norm:

∑
u∈U w(u) or

∑
v∈V w(v).

Given a weight function on U , we can define the “neighboring” weight function on V .

Definition 4.1. Let G = (U, V,E). Let w : U → [0,∞) be a weight function on U . We defineN (w) : V →
[0,∞) as:

N (w)(v) = max
u∈Γ(v)

w(u)

26

When the weight function w is clear from context, for any v ∈ V we may use the notation uv to denote
arg maxu∈Γ(v)w(u) (with ties broken arbitrarily).

Observe that the above notion generalizes the notion of neighbor sets. That is, when w corre-
sponds to the indicator function of a set of nodes in S ⊂ U , then N (w) is the indicator function of
Γ(S) ⊂ V .

Lemma 4.2. Let G = (U, V,E) be a (K, ε, e)-expander for any e. For all weight functions w : U → [0,∞)
supported on at most K nodes, |N (w)| ≥ (1− ε)D|w|.

Proof: Write w = w1 + . . . + wt, where each wi is a multiple of an indicator function on a set of
size Si at most K, and Si ⊇ Si+1 for all i. Observe that in this case, |N (w)| =

∑
i |N (wi)|. Since

|Γ(Si)| ≥ (1− ε)D|Si|, we have |N (wi)| ≥ (1− ε)D|wi|. Thus,

|N (w)| =
∑
i

|N (wi)| ≥
∑
i

(1− ε)D|wi| = (1− ε)D|w|.

In Appendix D, we also generalize the notion of “unique neighbor expansion” in expander
graphs using similar arguments (although this is not necessary for our analysis).

We now generalize Lemma 4.2 to work for distributions with large `q-norm for q = 1 +α, rather
than just weight functions supported on at most K nodes. We first prove a simple claim about such
distributions.

Claim 4.3. Let 0 < α < 1 and let q = 1 + α. Let K > 1. Suppose p is a probability distribution over a
finite domain U such that

∑
u∈U p(u)q ≥ 1

Kα . For any r > 1, let Tr ⊆ U be the set of heaviest rK elements
of U according to p. Then, ∑

u∈Tr

p(u)q ≥
(

1− 1

rα

)∑
u∈U

p(u)q.

Proof: First, for every u ∈ U \ Tr, p(u) ≤ 1
rK . We have:

∑
u∈U\Tr

p(u)q ≤ max
u∈U\Tr

p(u)α
∑

u∈U\Tr

p(u) =

(
1

rK

)α
.

Thus, ∑
u∈Tr

p(u)q =
∑
u∈U

p(u)q −
∑

u∈U\Tr

p(u)q

=

(
1−

∑
u∈U\Tr p(u)q∑
u∈U p(u)q

)∑
u∈U

p(u)q ≥
(

1− 1

rα

)∑
u∈U

p(u)q.

We can now generalize Lemma 4.2 to hold not only when a weight function w is supported on
at most K nodes, but also when the weight function represents the contribution of each node to the
`q-norm of a distribution.

27

Lemma 4.4. Let G = (U, V,E) be a (K, ε, e)-expander for any e. Let 0 < α, η < 1, and set q = 1 + α. Let
p be any distribution over U such that

∑
u∈U p(u)q ≥ 1

(ηK)α . Then,∑
v∈V

max
u∈Γ(v)

p(u)q ≥ (1− ε− ηα)D
∑
u∈U

p(u)q.

Proof: Let T ⊆ U be the heaviest 1
η · ηK = K nodes. Note that:

∑
v∈V maxu∈Γ(v) p(u)q ≥∑

v∈Γ(T) maxu∈Γ(v) p(u)q. Let w(·) be a weight function on U such that w(u) = p(u)q for u ∈ T , and
w(u) = 0 otherwise. Notice that |N (w)| =

∑
v∈Γ(T) maxu∈Γ(v) p(u)q. Since w is supported on K

nodes, Lemma 4.2 implies ∑
v∈V

max
u∈Γ(v)

p(u)q ≥ (1− ε)D|w|.

Finally, Claim 4.3 tells us:

(1− ε)D|w| ≥ (1− ε)(1− ηα)D
∑
u∈U

p(u)q ≥ (1− ε− ηα)D
∑
u∈U

p(u)q.

We utilize the framework we have developed so far to prove the following useful corollary.

Corollary 4.5. Let G = (U, V,E) be a bipartite D-regular (K, ε, e)-expander for any e. Let α > 0, and let
p be a probability distribution on U with ‖p‖qq ≥

1
εKα . Then,∑

v∈V

∑
u∈Γ(v)\uv

p(u)q ≤ 2εD
∑
u∈U

p(u)q.

Proof: Applying Lemma 4.4 with η = ε1/α gives us

|N (w)| ≥ (1− 2ε)D|w|.

Rearranging gives the result.

4.2 The Analysis for Standard Sources

To demonstrate some of our key ideas in a familiar setting, we now show how to deterministically
condense from a standard CG source (i.e., γ = λ = 0) with our technique. We first show how the
`q-norm decreases at each step.

Lemma 4.6. Let G = (U, V,E) be a bipartite D-regular (K, ε = 1
Dβ
, e)-expander for any e. For any

0 < α < β
e , set q = 1 + α and let δ ≥ 1− β + eα.

Let pU be a probability distribution overU and let ru, for each u ∈ U , be a distribution over {0, 1}d ≡ [D],
each being a δd source. For any u ∈ U and v ∈ V let ru(u, v) denote the probability that the edge leading from
u to v is chosen under ru. That is, for G’s labelling function ` : E → [D], we denote ru(u, v) ≡ ru(`(u, v)).
Define pV as the induced probability distribution on V . That is,

pV (v) =
∑

u∈Γ(v)

ru(u, v)pU (u). (2)

Suppose that ‖pU‖qq ≥
1

εKα . Then,

‖pV ‖qq ≤
8

Dδα
· ‖pU‖qq .

28

Proof: By definition, for each v ∈ V ,

pV (v) = ruv(uv, v)pU (uv) +
∑

u∈Γ(v)\uv

ru(u, v)pU (u). (3)

Now, note that:∑
v∈V

ruv(uv, v)pU (uv)
q ≤

∑
v∈V

∑
u∈Γ(v)

ru(u, v)pU (u)q =
∑
u∈U

∑
v∈Γ(u)

ru(u, v)pU (u)q ≤
∑
u∈U

pU (u)q. (4)

Note that Equation (4) is true for any distributions ru and pU .
The point is we want to raise the first term of Equation (3) to the q, as this will be our gain.

Thus, for each fixed v, noting that v has at most De neighbors, we apply Jensen’s inequality
(
∑

i λixi)
q ≤

∑
i λix

q
i for

∑
i∈[De] λi = 1, with:

• λ1 = 1/2,

• λi = 1
2(De−1) for i ∈ {2, . . . , De},

• x1 = 2ruv(uv, v)pU (uv), and,

• xi = 2(De−1)ru(u, v)pU (u) where u is the i-th neighbor of v (and 0 if there is no i’th neighbor)
for i ∈ {2, . . . , De}.

Thus, noticing that
∑

i λixi = pV (v), we have:

∑
v∈V

pV (v)q ≤
∑
v∈V

1

2
(2ruv(uv, v)pU (uv))

q +
∑

u∈Γ(v)\uv

1

2(De − 1)
(2(De − 1)ru(u, v)pU (u))q


≤ 2α

∑
v∈V

ruv(uv, v)α · ruv(uv, v)pU (uv)
q + 2αDeα

∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q

≤ 2α
1

Dδα

∑
v∈V

ruv(uv, v)pU (uv)
q + 2αDeα 1

Dδq

∑
v∈V

∑
u∈Γ(v)\uv

pU (u)q

≤ 2α

Dδα

∑
u∈U

pU (u)q + 2αDeα 1

Dδq
· 2εD

∑
u∈U

pU (u)q

≤ 8

Dδα
· ‖pU‖qq .

In the second to last inequality, we used Corollary 4.5. In the last inequality, we used the fact
that if δ ≥ 1− β + eα, then

εD1+eα−δq = D1−β+eα−δ−δα < D−δα. (5)

We next give a general lemma that states that, for any distribution on nodes, and any collection of
distributions on edges, the `q-norm cannot increase too much. This will be useful toward analyzing
the case when a good step occurs, but the `q-norm is already small enough, or in the next section,
when a bad step occurs at any time.

29

Lemma 4.7. Let G = (U, V,E) be any bipartite D-regular graph with maximum right degree at most De.
Let pU be any probability distribution on U . Let ru, for each u ∈ U , be any distributions over {0, 1}d ≡ [D].
Let pV be the induced probability distribution on V :

pV (v) =
∑

u∈Γ(v)

ru(u, v)pU (u).

Then,
‖pV ‖qq ≤ D

eα · ‖pU‖qq .

Proof: Using Jensen’s inequality, we get

‖pV ‖qq =
∑
v∈V

 ∑
u∈Γ(v)

ru(u, v)pU (u)

q

=
∑
v∈V

 ∑
u∈Γ(v)

1

De
De · ru(u, v)pU (u)

q

≤ Deα
∑
v∈V

∑
u∈Γ(v)

ru(u, v)qpU (u)q ≤ Deα
∑
v∈V

∑
u∈Γ(v)

ru(u, v)pU (u)q = Deα
∑
u∈U

pU (u)q.

We now show how to use a lossless expander with error ε = 1/Dβ to condense a δ-CG source for
sufficiently large δ (relative to 1− β). On first reading it may be instructive to think of 1− β = δ/2
and ∆ = δ/2. The interpretation of the following theorem is that the guarantee from Lemma 4.6
implies that a decent amount of entropy is gained at each step of a random walk (assuming Dδ is
large compared to 81/α). Thus if the total entropy gained after t steps is comparable to the “capacity”
k = logK of the lossless expander, then the final distribution of the random walk would have
entropy close to that capacity.

Theorem 4.8. Let 1 > β > ∆ > 0 be constants. Let δ ≥ δthr = 1−β+∆. LetX1◦. . .◦Xt be a δ-CG source,
with each Xi ∼ {0, 1}d. Let G = (U = [N], V = [N], E) be a D-regular (K = 2k, ε = 1

Dβ
, e)-expander

for some constant e, and where d = logD ≥ 30e
∆δ . Further, suppose that

0.9δdt ≥ k − e

∆
log

1

ε
= k − e β

∆
d.

Consider the distribution on the vertices of G after a random walk according to X1, . . . , Xt starting from an
arbitrary node. Namely, let Z0 ∼ [N] be concentrated on an arbitrary fixed node, and for i ∈ [t] let

Zi = ΓG(Zi−1, Xi).

Then, for any η > 0, Zt is η-close to a
(
k −

(
β
∆ + 1

)
ed− e

∆ log 1
η

)
-source.

Proof: Let pi ∈ RV denote the distribution of Zi. For any i ∈ [t] and v ∈ V ,

pi(v) =
∑

u∈Γ(v)

Pr [Xi = `G(u, v)|Zi−1 = u] · pi−1(u),

where `G : E → [D] is the labeling of the edges. In order to apply Lemma 4.6, note that for any
i ∈ [t] and u ∈ U , Xi| {Zi−1 = u} is a δd-source. This is since Zi−1 is a deterministic function

30

of X1, . . . , Xi−1, so Xi| {Zi−1 = u} is a convex combination of Xi|
{
X[1,i−1] = a[1,i−1]

}
for some

(a1, . . . , ai−1)-s, each of which is a δd-source, by the definition of a δ-CG source.
Set α = ∆/e and q = 1 + α. We first claim that there must exist a timestep s ∈ [t] such

that ‖ps‖qq ≤
1

εKα . Suppose not. Then, at every timestep i, we can apply Lemma 4.6 (with

α = ∆/e < β/e). Since ‖p0‖qq = 1, we have that ‖pt‖qq ≤
(

8
Dδα

)t. However, by our assumption that
30e
∆δ ≤ d, we have 81/α ≤ D0.1δ. Also by our assumption, we know that D.9δt ≥ ε1/αK. Therefore :

‖pt‖qq ≤
(

8

Dδα

)t
=

(
81/α

Dδ

)αt
≤
(

1

D0.9δt

)α
≤
(

1

ε1/αK

)α
,

a contradiction.
Now, let ` ∈ [t] be the last timestep in which ‖p`‖qq ≤

1
εKα . There are two cases to consider.

1. ` = t, in which case: ‖pt‖qq ≤
(

1
ε1/αK

)α
.

2. ` < t. In this case, we must have that ‖p`+1‖qq >
(

1
ε1/αK

)α
. By Lemma 4.7, the `+ 1-th step

can only increase the norm by a factor of Deα. Since ` is the last time the norm is too small to
apply Lemma 4.6, we can apply Lemma 4.6 to every step after `+ 1, and so the norm must
decrease every step after `+ 1. Thus we have:(

De

ε1/αK

)α
≥ ‖p`+1‖qq ≥ . . . ≥ ‖pt‖

q
q >

(
1

ε1/αK

)α
In particular we have ‖pt‖qq ≤

(
De

ε1/αK

)α
.

In either case, by Corollary 2.3, for any η > 0, Zt is η-close to a
(
k − β

αd− ed−
1
α log 1

η

)
-source.

Recall that in both an optimal lossless expander and in the expander from [CRVW02], k =
n−O(d), so Zt above is close to a source with constant entropy gap. Moreover, when the size of the
expander is chosen properly in comparison to the amount of entropy in the source (i.e. tightness in
the constraint 0.9δdt = k − 1

∆ log 1
ε), then the entropy loss is roughly 0.1δdt.

4.3 The General Case

We now show how to handle the case when each conditional distribution is only γ-close to having
δ ≥ δthr entropy rate, and there are at most λ fraction of bad steps in the source. To handle the error
parameter γ, we modify the proof of Lemma 4.6 to show that the `q norm essentially decreases by a
factor of O

(
1

Dδα
+ γDeα

)
. We then choose α small enough so that γDeα is comparable to 1

Dδα
and

so the decrease in `q norm is similar to that in Lemma 4.6 (i.e., overall O
(

1
Dδα

)
). To handle the case

of a bad step, we apply Lemma 4.7 and show that since there are λt such steps, overall they do not
affect the entropy of the random walk too much.

31

4.3.1 Handling the Case of γ > 0

The following lemma shows in general how using a distribution that is γ-close to a δd-source affects
the `q norm.

Lemma 4.9. Let G = (U, V,E) be a bipartite D-regular (K, ε, e)-expander for some e. For any α > 0, let
q = 1 + α, and fix some γ > 0.

Let pU be a probability distribution on U and let ru for each u ∈ U be a collection of distributions over
{0, 1}d ≡ [D], each γ-close to a δd source. Suppose that ‖pU‖qq ≥

1
εKα . Let pV be the induced probability

distribution on V :
pV (v) =

∑
u∈Γ(v)

ru(u, v)pU (u).

Then,

‖pV ‖qq ≤
(

2α

Dδα
+ 2qεD1−δ+eα−δα + 2qqγ + 2qDeαqγ

)
‖pU‖qq .

Proof: The proof is similar to that of Lemma 4.6. We divide the contribution of each right hand
node v ∈ V into a contribution from the heaviest left hand neighbor, and the contribution from the
rest of the neighbors. We can apply Jensen’s inequality in the same way to work directly with sums
of terms of the form ru(u, v)qpU (u)q. We’ll show that certain sums of this form are close to sums of
terms of the form au(u, v)qpU (u)q for the δd-source au that each ru is close to. Toward this end, we
first prove a small claim:

Claim 4.10. For every ru(·), let au(·) be the corresponding δd-source it is γ-close to. For every v ∈ V , let
Tv be an arbitrary subset of Γ(v). Then,∑

v∈V

∑
u∈Tv

ru(u, v)qpU (u)q ≤
∑
v∈V

∑
u∈Tv

au(u, v)qpU (u)q + 2qγ ·
∑
u∈U

pU (u)q.

Proof: We will show that∣∣∣∣∣∑
v∈V

∑
u∈Tv

ru(u, v)qpU (u)q −
∑
v∈V

∑
u∈Tv

au(u, v)qpU (u)q

∣∣∣∣∣ ≤ 2qγ ·
∑
u∈U

pU (u)q.

First, note that the collection of subsets Tv ⊆ Γ(v) for v ∈ V naturally induces a collection of
subsets Su ⊆ Γ(u) where Su = {v : u ∈ Tv}. Thus, it suffices to show that∣∣∣∣∣∑

u∈U

∑
v∈Su

ru(u, v)qpU (u)q −
∑
u∈U

∑
v∈Su

au(u, v)qpU (u)q

∣∣∣∣∣ ≤ 2qγ ·
∑
u∈U

pU (u)q.

Now note that the Lipschitz constant of the function f(x) = xq on [0, 1] is q. In other words, for
every x, y ∈ [0, 1], |xq − yq| ≤ q · |x− y|. We use this fact, together with the triangle inequality and

32

the fact that ru and au are γ-close, to get:∣∣∣∣∣∑
u∈U

∑
v∈Su

ru(u, v)qpU (u)q −
∑
u∈U

∑
v∈Su

au(u, v)qpU (u)q

∣∣∣∣∣ ≤∑
u∈U

∑
v∈Su

|ru(u, v)qpU (u)q − au(u, v)qpU (u)q|

≤
∑
u∈U

pU (u)q
∑

v∈Γ(u)

|ru(u, v)q − au(u, v)q|

≤
∑
u∈U

pU (u)q
∑

v∈Γ(u)

q |ru(u, v)− au(u, v)|

≤ 2qγ ·
∑
u∈U

pU (u)q.

Now again, we write pV as:

pV (v) = ruv(uv, v)pU (uv) +
∑

u∈Γ(v)\uv

ru(u, v)pU (u).

Again, for each v, we apply Jensen’s inequality in the same way as in the proof of Lemma 4.6.

∑
v∈V

pV (v)q ≤
∑
v∈V

1

2
(2ruv(uv, v)pU (uv))

q +
∑

u∈Γ(v)\uv

1

2(De − 1)
(2(De − 1)ru(u, v)pU (u))q


≤ 2α

∑
v∈V

ruv(uv, v)qpU (uv)
q + 2αDeα

∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q.

We show that: ∑
v∈V

ruv(uv, v)qpU (uv)
q ≤

(
1

Dδα
+ 2qγ

)
‖pU‖qq , (6)

and that: ∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q ≤
(

2εD

Dδq
+ 2qγ

)
‖pU‖qq . (7)

For the first summand, by Claim 4.10 we have:∑
v∈V

ruv(uv, v)qpU (uv)
q ≤

∑
v∈V

auv(uv, v)qpU (uv)
q + 2qγ ·

∑
u∈U

pU (u)q

=
∑
v∈V

auv(uv, v)α · auv(uv, v)pU (uv)
q + 2qγ ·

∑
u∈U

pU (u)q

≤ 1

Dδα

∑
v∈V

auv(uv, v)pU (uv)
q + 2qγ ·

∑
u∈U

pU (u)q

≤ 1

Dδα

∑
u∈U

pU (u)q + 2qγ ·
∑
u∈U

pU (u)q.

33

In the last inequality, we used Equation (4). Next:∑
v∈V

∑
u∈Γ(v)\uv

ru(u, v)qpU (u)q ≤
∑
v∈V

∑
u∈Γ(v)\uv

au(u, v)qpU (u)q + 2qγ ·
∑
u∈U

pU (u)q

≤ 2εD

Dδq

∑
u∈U

pU (u)q + 2qγ ·
∑
u∈U

pU (u)q,

where in the last inequality, we used Corollary 4.5. Putting Equation (6) and Equation (7) together
gives:

∑
v∈V

pV (v)q ≤
(

2α
(

1

Dδα
+ 2qγ

)
+ 2αDeα

(
2εD

Dδq
+ 2qγ

))
‖pU‖qq

≤
(

2α

Dδα
+ 2qεD1−δ+eα−δα + 2qqγ + 2qDeαqγ

)
‖pU‖qq .

We present two corollaries that address the q-norm decrease when d is large or small relative to
1/γ. The first corollary tells us that for a large enough d (relative to 1/γ), we can choose α to be
roughly 1

d log 1
γ .

Corollary 4.11. Let 1 > β > ∆ > 0 be constants. Let G = (U, V,E) be a bipartite D-regular (K, ε =
1
Dβ
, e)-expander for any constant e. Let δ ≥ δthr = 1− β + ∆, and γ > 0. Assume that d > log(1/γ)

2∆ .
Let pU be a probability distribution on U and let ru, for each u ∈ U , be a collection of distributions over

{0, 1}d ≡ [D] each γ-close to a δd source. Let α ≤ log(1/γ)
2de , and set q = 1 + α. Suppose that ‖pU‖qq ≥

1
εKα .

If pV is the induced probability distribution on V , then

‖pV ‖qq ≤
32

Dδα
‖pU‖qq .

Proof: Recall that by Lemma 4.9 we have

‖pV ‖qq ≤
(

2α

Dδα
+ 2qεD1−δ+eα−δα + 2qqγ + 2qDeαqγ

)
‖pU‖qq .

Now, since d > log 1/γ
2∆ and α ≤ log 1/γ

2de , we know that ∆ > eα. Therefore, δ > δthr > 1−β+eα. Thus,
just as in the proof of Lemma 4.6, by Equation (5) we know that εD1−δ+eα−δα ≤ 1

Dδα
. Moreover,

since α ≤ log(1/γ)
2de ≤ log(1/γ)

(e+δ)d , we have Deαγ < 1
Dδα

. Thus,

‖pV ‖qq ≤
(

2α

Dδα
+ 2q

1

Dδα
+ 21+q 1

Dδα
+ 21+q 1

Dδα

)
‖pU‖qq ≤

32

Dδα
‖pU‖qq .

The next corollary tells us that when d is small relative to 1/γ we can pick α to be anything
smaller than ∆/e.

34

Corollary 4.12. Let 1 > β > ∆ > 0 be constants. Let G = (U, V,E) be a bipartite D-regular (K, ε =
1
Dβ
, e)-expander for any constant e. Let δ ≥ δthr = 1− β + ∆, and let γ > 0. Assume that d ≤ log(1/γ)

2∆ .
Let pU be a probability distribution on U and let ru, for each u ∈ U , be a collection of distributions over

{0, 1}d ≡ [D] each γ-close to a δd source. Let α ≤ ∆/e, and set q = 1 + α. Suppose that ‖pU‖qq ≥
1

εKα . If
pV is the induced probability distribution on V , then

‖pV ‖qq ≤
32

Dδα
‖pU‖qq

Proof: Again, apply Lemma 4.9, and we use the fact that δ > 1− β + eα to get that εD1−δ+eα−δα ≤
1

Dδα
. Moreover, (e+ δ)α ≤ 2∆, so together with our assumption γ ≤ 1

D2∆ , this implies Deαγ ≤ 1
Dδα

.
Thus, we get

‖pV ‖qq ≤
(

2α

Dδα
+ 2q

1

Dδα
+ 21+q 1

Dδα
+ 21+q 1

Dδα

)
‖pU‖qq ≤

32

Dδα
‖pU‖qq

in this case too.

4.3.2 Handling the Case of λ > 0

We are now ready to handle λ > 0, in addition to γ > 0.

Theorem 4.13. Let 1 > β > ∆ > 0 be constants. Let δ > δthr = 1 − β + ∆, and let γ, λ > 0. Let
X1 ◦ · · · ◦Xt be a (γ, λ)-almost δ-CG source, with each Xi ∼ {0, 1}d. For any positive integers N and K,
let G = (U = [N], V = [N], E) be a D-regular (K = 2k, ε = 1

Dβ
, e)-expander for any constant e. Further,

suppose that d ≥ 80e
∆δ , γ ≤ 2−100e/δ, and

(0.9δ − 2eλ) dt ≥ k − 2eβ

log(1/γ)
d2.

Consider the distribution on the vertices of G after a random walk according to X1, . . . , Xt starting from an
arbitrary node. Namely, let Z0 ∼ [N] be concentrated on a arbitrary fixed node, and for i ∈ [t] let:

Zi = ΓG(Zi−1, Xi)

Then for any η > 0, Zt is η-close to a
(
k − λedt− 2βed2 − 2ed log 1

η

)
-source.

Proof: As in Theorem 4.8 we let pi denote the distribution of Zi, and write

pi(v) =
∑

u∈Γ(v)

Pr[Xi = (u, v)|Zi−1 = u] · pi−1(u).

We know that when i is a good step, Pr[Xi = (u, v)|Zi−1 = u] is a convex combination of sources
that are γ-close to a δd source and is thus itself γ-close to a δd source. We analyze the `q norm using
different α depending on whether d > log(1/γ)

2∆ or d ≤ log(1/γ)
2∆ .

35

Case 1. Suppose that d > log(1/γ)
2∆ , and choose α = log(1/γ)

2de . We first claim that there must exist
some time s when ‖ps‖qq ≤

1
εKα . Suppose not, then for every i ∈ [t] that is a good step, we can apply

Corollary 4.11, and for every bad step, we can apply Lemma 4.7. There are at least (1− λ)t good
steps, and at most λt bad steps. Overall this tells us that

‖pt‖qq ≤ D
eλαt

(
321/α

Dδ

)(1−λ)αt

.

Since by hypothesis γ < 1
2100e/δ , we know that 321/α = 210de/ log(1/γ) ≤ D0.1δ. Also by hypothesis

we have (0.9δ − 2λ)dt ≥ k − 2eβ
log 1/γd

2 = k − β
αd and so

‖pt‖qq ≤
(

Deλ

D0.9δ(1−λ)

)αt
≤
(
D2eλ

D0.9δ

)αt
≤

(
Dβ/α

K

)α
=

(
1

ε1/αK

)α
,

in contradiction.
Now, let ` ∈ [t] be the last time that ‖p`‖qq ≤

1
εKα . There are at most λt bad steps remaining after

`, and Lemma 4.7, each such step increases the `q norm by a factor of at most Deα. Thus,

‖pt‖qq ≤
(
Deλt

ε1/αK

)α
.

By Corollary 2.3, for any η > 0, Zt is η-close to a (k − λedt− 1
α log 1

ε −
1
α log 1

η)-source.

Case 2. Suppose d ≤ log 1/γ
2∆ . We then set α = ∆/e. Again, we claim that there must exist some

time s when ‖ps‖qq ≤
1

εKα . If not, then we can apply Corollary 4.12 for every good step, and
Lemma 4.7 for every bad step, giving us

Deλαt

(
321/α

Dδ

)(1−λ)αt

≤
(
D2eλ

D0.9δ

)αt
≤

D
2eβ

log 1
γ
d

K


α

≤

(
Deβ/∆

K

)α
=

(
1

ε1/αK

)α
,

in contradiction. In the second inequality, we used the fact that d ≥ 80e
∆δ , and so 321/α = 32e/∆ ≤

D0.1δ. Again there is a last time ` that ‖p`‖qq ≤
1

εKα . And again, there are at most λt bad steps
remaining after `. Thus,

‖pt‖qq ≤
(
Deλt

ε1/αK

)α
.

And here too, for any η > 0, pt is η-close to a (k − λedt− 1
α log 1

ε −
1
α log 1

η)-source.

In Case 1 we chose α = log 1/γ
2de , and then 1

α < 2ed. In Case 2 we chose α = ∆/e. Since by our
assumption d > 80e

∆δ we have that 1
α < 2ed in this case too. Therefore, it is always the case that

k − λedt− 1

α
log

1

ε
− 1

α
log

1

η
≥ k − λedt− 2βed2 − 2ed log

1

η
,

as needed.

36

We can now plug-in the explicit lossless expanders of Theorem 2.5, with error parameter β ≥ 1/6,
and e = 100 to Theorem 4.13 above and get an explicit deterministic condenser for high rate sources.

Corollary 4.14. Let d ∈ N, δ > 0 and γ, λ ≥ 0 be constants that satisfy the following constraints:

• δ ≥ 1− β + ∆ = 11
12 ,

• d ≥ 80e
∆δ ≥ 2000e, and

• γ ≤ 2−100e/δ,

where we chose β = 1/6 and ∆ = 1/12, and we let e = 100 as given in Theorem 2.5. Then, for any positive
integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=(0.9δ−2eλ)dt+O(1)

such that for any (γ, λ)-almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d, and any η > 0,
Cond(X) is η-close to an

(
m− λedt−O(d2)−O

(
d · log 1

η

))
-source.

That is, for any constant η, there exists an η-error deterministic condenser for (γ, λ)-almost δ-CG sources
with the above constraints with entropy gap λedt+O(1).

We note that 0.9 can be made arbitrarily close to 1 in Theorem 4.13 and Corollary 4.14. In
general, unless stated otherwise, the numbers represented by decimals in this paper can be made
arbitrarily close to 1 by sufficiently strengthening the constants in constraints such as γ ≤ 2O(1/δ).
We keep them as is for convenience and readability.

In Section 6, we will dispense with the lower bound on d and upper bound on γ by grouping
together consecutive blocks.

4.3.3 Handling the Case of Suffix Friendliness

Observe that the above condenser cannot hope to achieve constant entropy gap when λ > 0 is not
constant. This is because if all the λ-fraction of bad steps are at the end, each step can reduce the
entropy by roughly d bits, and there are no future good steps to regain the lost entropy. In this
section we show that by imposing the condition of suffix friendliness, we can still condense to
constant entropy gap.

We can give analogues of Theorem 4.13 and Corollary 4.14 in the case of suffix friendly almost
CG sources, and show that we can condense such sources to constant entropy gap. We first give a
theorem similar to Theorem 4.13 that claims that only a constant amount of entropy is lost in the
case of a suffix-friendly CG sources.

Theorem 4.15. Let 1 > β > ∆ > 0 be constants. Let δ > δthr = 1 − β + ∆, and let γ, λ > 0. Let
X1, . . . , Xt be a (γ, λ,Λ)-suffix-friendly almost δ-CG source, with each Xi ∼ {0, 1}d. For any N and K,
suppose G = (U = [N], V = [N], E) is a D-regular (K = 2k, ε = 1

Dβ
, e)-expander for any constant e.

Further, suppose that d ≥ 80e
∆δ , γ ≤ 2−100e/δ, λ ≤ δ

6e , and

(0.9δ − 2eλ)dt− 2Λed ≥ k − 2eβ

log 1/γ
d2.

37

Consider the distribution on the vertices of G after a random walk according to X1, . . . , Xt starting from
an arbitrary node. Namely, let Z0 ∼ [N] be concentrated on an arbitrary fixed node, and for i ∈ [t] let

Zi = ΓG(Zi−1, Xi).

Then, for any η > 0, Zt is η-close to a
(
k − 2βed2 −

(
6e2Λ
δ + 2e log 1

η

)
d
)

-source.

Proof: As in Theorem 4.13, we can choose α = log(1/γ)
2de or α = ∆/e depending on whether we

are in the case of d > log(1/γ)
2∆ or d ≤ log(1/γ)

2∆ respectively. Using a similar argument again, we can
show that in either case, there must exist a time s such that ‖ps‖qq ≤

1
εKα . Overall, there are at least

(1− λ)t− Λ good steps, and at most λt+ Λ bad steps. By the constraints on d, δ, γ, and k we can
verify again that in either case, each of the good steps decreases ‖pi‖qq by a factor of D0.9δα, and
each of the bad steps increases it by Deα. Thus, if there was no time s for which ‖ps‖qq ≤

1
εKα , then

we can apply Corollary 4.12 or Corollary 4.11 for good steps and Lemma 4.7 for bad steps. Again
in either case (and thus either choice of α), by our parameter constraints, we can verify that:

‖pt‖qq ≤
(
Deλt+eΛ

)α(1

D0.9δ((1−λ)t−Λ)

)α
≤
(
D2eΛ+2eλt

D0.9δt

)α
≤
(

1

ε1/αK

)α
.

In either case, we again let 1 ≤ ` ≤ t be the last time that ‖p`‖qq ≤
1

εKα .
Let g and b be the number of good and bad steps respectively between ` and t. Since ` is

the last time that the `q norm is sufficiently small, it must be the case that: eb > 0.9δg. This is
because again, by our setting of parameters, in either case, every good step decreases the ‖pi‖qq
by a factor of D−0.9δα and every bad step increases it by Dα. So if 0.9δg ≥ eb then there must
be a timestep greater then ` where the ‖pi‖qq is smaller that 1

εKα . Moreover, by the suffix friendly
property, b ≤ λ(t− `+ 1) + Λ. Therefore,

t− `+ 1 = g + b ≤ e

0.9δ
b + b ≤ 3e

δ
b ≤ 3e

δ
(λ(t− `+ 1) + Λ).

Thus, t− `+ 1 ≤
3e
δ

Λ

1− 3e
δ
λ
≤ 6eΛ

δ , where we used the fact that λ ≤ δ
6e . Since any step can worsen the

||pi||qq by a factor of at most Deα,

||pt||qq ≤ Dα(t−`+1)||p`||qq ≤

(
D6e2Λ/δ

ε1/αK

)α
.

Thus, in either case, by our choice of parameters, we have by Corollary 2.3 that Zt is η-close to a
(k − 2βed2 − (6e2Λ

δ + 2e log 1/η)d)-source.

We can again directly use the lossless expander construction of Theorem 2.5 to get a deterministic
condenser.

Theorem 4.16. Let d,Λ > 1 be constant positive integers and let, δ, γ, λ > 0 be constants that satisfy the
following constraints:

• δ ≥ 1− β + ∆ = 11
12 ,

38

• d ≥ 80e
∆δ ≥ 2000,

• γ ≤ 2−100/δ, and

• λ ≤ δ
6e ,

where we chose β = 1/6 and ∆ = 1/12, and we let e = 100 as given in Theorem 2.5. Then, for any positive
integer t, and any positive integer Λ, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=(0.9δ−2eλ)dt+O(1)

such that for any (γ, λ,Λ)-suffix-friendly-almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d,
and any η > 0, Cond(X) is η-close to an

(
m−O(d2)−O(Λ · d)−O

(
d · log 1

η

))
-source.

That is for constant η, there exists an η-error deterministic condenser for (γ, λ,Λ)-suffix-friendly-almost
δ-CG sources with the above constraints with entropy gap O(1).

5 Deterministic Condensing from Any Rate

In this section, we expand our random-walks based construction to handle an arbitrary min-entropy
rate δ > 0. The idea is to first split the source into t/b blocks, each of some constant length b. We
then use a constant-sized optimal lossless expander H (found via brute force), and run t/b (separate)
random walks on H using each of the length-b blocks as a set of random walk instructions. Since
optimal lossless expanders allow for deterministic condensing for arbitrarily small δthr, H will
condense each length-b block into a distribution with constant entropy gap. Thus, for sufficiently
large b, each of the t/b random walk distributions will be close to a source with entropy rate close
to 1 (even conditioned on previous blocks). Then, we can use these distributions as instructions for
a random walk on the graph G of Theorem 2.5.

In other words, one can view the condensing procedure as a series of epochs. In each epoch, we
walk a constant number of steps on H until the entropy rate of the vertex distribution is sufficiently
high. Once the epoch is completed, and the entropy rate is sufficiently high, we can “flush the
entropy” from the steps in the epoch into the “big” lossless expander G from [CRVW02] by using
the vertex position in H as an instruction for a step in the big graph.

More formally, the construction goes as follows. Let c? be the global constant from Corollary 2.8.
We are given a (γ, λ)-almost δ-CG source X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d. Here, δ > 0 is an
arbitrary constant, and d, γ, λ satisfy the following. Let e = 100.

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108·e2 δ

2 = 1
1012 δ

2.

We describe the parameters of the two expander graphs we need.28

28In the cases where we write 10a for some constant a, we note that smaller constants in fact suffice. However, we do
not present these smaller, yet messier constants, for the sake of readability.

39

The Small Graph. Set β = 1− δ
2 and ∆ = δ

3 . Notice that β ≥ ∆ and that δthr = 1−β+∆ = 2
3δ < δ.

Set the epoch length

b =
106 · d3 · e

δ
,

and let
dCRVW = logDCRVW =

(
0.9δ − 2

√
λ
)
db+

2β

log(1/γ)
d2 + 2d+ log c?.

Since d ≥ 2c?

δ , by Corollary 2.8 there exists a degree D bipartite graph

H = ([DCRVW], [DCRVW], E)

that is a
(
K = DCRVW

c?D2 , ε = 1
Dβ
, 1
)

-lossless expander. We can construct H in constant time since b is
constant.

The Big Graph. Set βCRVW = 1
6 and ∆CRVW = 1

12 . Let γCRVW = η = 2−200e. Finally let:

δCRVW =
k −
√
λdb− 2βd2 − 2d log 1

η

dCRVW

=
dCRVW − 2d− log c? −

√
λdb− 2βd2 − 2d log 1

η

dCRVW

= 1−

√
λdb+ 2d+ log c? + 2βd2 + 2d log 1

η

dCRVW

.

Our assumption λ ≤ 1
108e

δ2 implies that
√
λ

0.9δ−2
√
λ
≤ 1

72 . This, combined with our choice of b implies
that each of the six terms subtracted from 1 in the above is at most 1

72 . Thus, δCRVW ≥ 11
12 . Let

G = ([N], [N], E)

be the
(
KCRVW = Ω

(
N

D2
CRVW

)
, εCRVW = 1

D
1/6
CRVW

, e

)
-expander guaranteed to us by Theorem 2.5 with

kCRVW =
(

0.9δCRVW − 2e
√
λ
)
dCRVW ·

t

b
+

2eβCRVW

log(1/γCRVW)
d2

CRVW.

Note this implies that

n = logN = kCRVW +O(dCRVW) =
(

0.9δCRVW − 2e
√
λ
)
dCRVW ·

t

b
+

2eβCRVW

log 1/γCRVW

d2
CRVW +O(dCRVW).

5.1 The Condenser

Having defined our two expanders, we are ready to describe the construction. First, as notation, for
any labeled D-regular graph G = ([N], [N], E), and any sequence of strings x1, . . . , xt with each
xi ∈ {0, 1}d, let

RW(G, x1, . . . , xt) ∈ [N]

40

denote the node reached after walking on G using x1, . . . , xt starting from a fixed arbitrary node,
say the first one. That is, RW(G, x1, . . . , xt) = vt where the sequence of nodes v0, . . . , vt is defined
via v0 = 1 and vi = ΓG(vi−1, xi).

Recall that we are given as input (γ, λ)-almost δ-CG source X1 ◦ . . . ◦Xt, with each Xi ∼ {0, 1}d,
and with the constraints dictated as above. Our condenser is constructed as follows. Given
x1, . . . , xt ∈ {0, 1}d,

1. For every j ∈ [t/b], let zj = RW(H,x(j−1)b+1, . . . , x(j−1)b+b).

2. Output w = RW(G, z1, . . . , zt/b).

5.2 The Analysis

We first show:

Lemma 5.1. The sequence Z1, . . . , Zt/b is an (γCRVW,
√
λ)-almost δCRVW-CG source.

Proof: Call the j-th epoch X(j−1)b+1, . . . , X(j−1)b+b “good” if less than
√
λ fraction of the steps in

the epoch are bad ones. By an averaging argument, there are at least 1−
√
λ fraction of good epochs

overall. We’ll show that for every good epoch j, and for every prefix z1, . . . , zj−1 ∈ {0, 1}(j−1)dCRVW ,
the conditional distribution Zj |

{
Z[1,j−1] = z[1,j−1]

}
is γCRVW-close to a (δCRVW ·dCRVW)-source. First, we

note that any prefix z1, . . . , zj−1 is simply a function of the prefixes x1, . . . , x(j−1)b. Thus, it suffices
to show that when j is a good epoch, for any prefix x1, . . . , x(j−1)b, the conditional distribution
Zj |
{
X[1,(j−1)b] = x[1,(j−1)b]

}
is γCRVW-close to a (δCRVW · dCRVW)-source.

Fix any x1, . . . , x(j−1)b, and any good epoch j, and consider the (conditional) sequence of
random variables

X(j−1)b+1, . . . , X(j−1)b+b|
{
X[1,(j−1)b] = x[1,(j−1)b]

}
.

Such a sequence is a (γ,
√
λ)-almost δ-CG source because j is a good block and the original

X1, . . . , Xt is a (γ, λ)-almost δ-CG source. Moreover, recall that

Zj |
{
X[1,(j−1)b] = x[1,(j−1b)]

}
= RW(H,X(j−1)b+1, . . . , X(j−1)b+b)|

{
X[1,(j−1)b] = x[1,(j−1b)]

}
.

• 1 > β = 1− δ
2 > ∆ = δ

3 > 0,

• δ > 1− β + ∆,

• d ≥ 80
δ∆ = 103

δ2 ,

• γ ≤ 2−100/δ, and,

•
(

0.9δ − 2
√
λ
)
db ≥ k − 2β

log 1/γd
2.

Therefore, we can apply Theorem 4.13 with

X(j−1)b+1, . . . , X(j−1)b+b|
{
X[1,(j−1)b] = x[1,(j−1b)]

}
as our (γ,

√
λ)-almost δ-CG source. We then get that the conditional distribution on Zj is η-close to

a source with
(
k −
√
λdb− 2βd2 − 2d log 1

η

)
= δCRVW · dCRVW min-entropy.

41

Lemma 5.2. For any ηCRVW > 0, the distribution of W = RW(G,Z1, . . . , Zt/b) is ηCRVW-close to a(
kCRVW −

√
λedt− poly(d, 1/δ) · log(1/ηCRVW)

)
-source.

Proof: We verify that all conditions of Theorem 4.13 are met in order to apply it with G and the
Zi-s as instructions. Indeed,

• 1 > βCRVW = 1
6 > ∆CRVW = 1

12 ,

• δCRVW > 11
12 = 1− βCRVW + ∆CRVW,

• dCRVW ≥ 106e ≥ 80 · 12 · 12
11 · e ≥

80e
δCRVW∆CRVW

,

• γCRVW = η = 2−200e ≤ 2−100e/δCRVW , and,

• (0.9δCRVW − 2e
√
λ)dCRVW

t
b = kCRVW − 2eβCRVW

log(1/γCRVW)d
2
CRVW.

Therefore, for any ηCRVW > 0, RW(G,Z1, . . . , Zt/b) is ηCRVW-close to a source with min-entropy

kCRVW −
√
λedCRVW

t

b
− 2βCRVWed

2
CRVW − 2edCRVW log(1/ηCRVW).

We note that all but the first two terms are poly(d, 1
δ) (and that the second to last term isO(log 1

ηCRVW
).

Additionally, observing that, by our choice of b, dCRVW
b ≤ d yields the result.

We can finally state the final theorem about the condenser we construct.

Theorem 5.3. Let d > 1 be a positive integer and let, δ, γ, λ > 0 be constants that satisfy the following
constraints:

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108e2

δ2.

For any positive integer t, there exists an explicit function Cond : {0, 1}n=dt → {0, 1}m with m = Ω(δdt)
such that for any (γ, λ)-almost δ-CG source X = X1 ◦ . . . ◦ Xt with each Xi ∼ {0, 1}d, and any
η > 0, Cond(X) is η-close to a

(
m−

√
λedt− poly(d, 1/δ) · log(1/η)

)
-source, where e = 100 as given

in Theorem 2.5.
That is, for constant η, there exists an η-error deterministic condenser for (γ, λ)-almost δ-CG sources

with the above constraints with entropy gap
√
λedt+O(1).

Proof: It’s easy to to verify from the construction and Lemma 5.2 that we can takem = kCRVW +O(1).
It only remains to verify that k = Ω(δdt):

42

kCRVW =
(

0.9δCRVW − 2e
√
λ
)
dCRVW ·

t

b
+

2eβCRVW

log 1/γCRVW

d2
CRVW

≥
(

0.9δCRVW − 2e
√
λ
)
dCRVW ·

t

b

= 0.9

(
k −
√
λdb− 2βd2 − 2d log

1

η

)
t

b
− 2
√
λedCRVW

t

b

= 0.9

(
dCRVW − 2d− log c? −

√
λdb− 2βd2 − 2d log

1

η

)
t

b
− 2e
√
λdCRVW

t

b

≥ 0.9

((
0.9δ −

√
λ
)
db−

√
λdb− 2βd2 − 2d log

1

η

)
t

b
− 2e
√
λdCRVW

t

b

≥ (0.81δ − 2
√
λ)dt− 0.9

(
2βd2 + 2d log

1

η

)
t

b
− 2e
√
λdCRVW

t

b

≥ (0.81δ − 4e
√
λ)dt− 0.9

(
2βd2 + 2d log

1

η

)
t

b

≥ 0.8δdt−
(
2d2 + 200ed

) t
b
.

In the second to last inequality, we used the fact that for our choice of dCRVW and b, we have
dCRVW/b ≤ d. In the last inequality, we used the fact that 4e

√
λ ≤ 4

104 δ ≤ 0.01δ. Finally, by our choice
of b, we know that (2d2/b+ 200d/b+ 1/b)t ≤ 0.01δt ≤ 0.01δdt. So overall, k ≥ 0.79δdt = Ω(δdt).

We remark that again, the constant 0.79 can be made arbitrarily close to 1 by strengthening the
appropriate constraints. Namely by increasing the length of b, increasing the 100 in γ ≤ 2−100e/δ

and increasing the 108 in λ ≤ 1
108e

δ2.

5.3 Condensing to Constant Entropy Gap from Suffix Friendliness and Any Rate

Similarly to the condenser in Section 4.3.3, the above condenser cannot hope to achieve constant
entropy gap when λ > 0. The issue is the same: we cannot win if all the bad steps are at the end. We
again show one can resolve such an issue by imposing suffix friendliness, and give a construction
of a deterministic condenser for suffix-friendly almost CG sources for arbitrary δ > 0. The full
construction and proof is very similar to the non-suffix-friendly case, and we defer the details to
Appendix A.1.

Theorem 5.4. Let d > 1, δ, γ, λ > 0 be constants that satisfy the following constraints:

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
1012 δ

2.

For any positive integer t, and any positive integer Λ, there exists an explicit function Cond : {0, 1}n=dt →
{0, 1}m with m = Ω(δdt) such that for any (γ, λ,Λ)-suffix-friendly almost δ-CG source X = X1, . . . , Xt

with each Xi ∼ {0, 1}d, and any η > 0, Cond(X) is η-close to a m− poly(d, 1/δ) · (Λ + log(1/η)).
That is, for constant η and Λ, there exists an η-error deterministic condenser for (γ, λ,Λ)-suffix-friendly-

almost δ-CG sources with the above constraints with entropy gap O(1).

43

6 Condensing from Any d, Any γ, and from Shannon Entropy

In this section we show how to deterministically condense almost CG sources without any con-
straints on d or γ relative to δ (in Section 5, we required, roughly, d ≥ 1

δ2 and γ ≤ 2−1/δ). The main
observation is that simply grouping the instructions of a CG source into blocks both increases d
and reduces γ, while (roughly) preserving the entropy rate. For appropriately large blocks, the new
CG source meets the constraints of Theorem 5.3 or Theorem 5.4.

As a consequence, we can also show that one can deterministically condense from Shannon
CG sources. The result follows immediately from combining Corollary 3.11 or Corollary 3.12 with
Theorem 5.3 or Theorem 5.4, respectively.

Theorem 6.1. Let δ > 0, and γ, λ ≥ 0 be constants such that λ ≤ 1
1024 δ

8. Let d ≥ 1 be any positive integer.
For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δdt)

such that for any (γ, λ)-almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d, and any η > 0,
Cond(X) is η-close to an

(
m− λ1/4dt− poly(d, 1/δ) · log(1/η)

)
-source.

Proof (sketch): As usual, let c? be the global constant from Corollary 2.8. The first bullet of
Lemma 3.3 states that for any b, X ′ = X ′1 ◦ · · · ◦ X ′bt/bc is a (γ = e−(1−γ)2b/8,

√
λ)-almost δ′-CG

source with δ′ > δ
8 . We see that by setting b = O(c?/(δ4(1− γ)2)), all conditions needed to apply

Theorem 5.3 with X ′ are met:

• db ≥ max
{

103

δ′2 ,
2c?

δ′

}
,

• γ = e−(1−γ)2b/72 ≤ 2−100/δ′ , and

•
√
λ ≤ 1

1012 δ
′2.

Before we continue, let us briefly discuss the hidden constant in the expression for m = Ω(δdt).
For large γ-s we cannot hope to get m arbitrarily close to δdt. Indeed, when γ > 1/2, both bullets of
Lemma 3.3 yield a significant entropy loss. In other words, overall, the true amount of (smooth)
min-entropy in the input X depends on both γ and δ. However, for γ � 1

2 we can use the second
bullet of Lemma 3.3 to argue that the new CG source has roughly (1− 2γ)δ entropy rate overall.
Then, as discussed at the end of Section 5.2, one can adjust the random walk techniques to make m
(and thus the output entropy) close to the smooth entropy of X , namely close to δdt.

The following is the analogous result for suffix friendly almost CG sources.

Theorem 6.2. Let δ > 0, and γ, λ ≥ 0 be constants such that λ ≤ 1
1024 δ

8. Let d ≥ 1 be any positive integer.
For any positive integer t and any positive integer Λ, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δdt)

such that for any (γ, λ,Λ)-suffix-friendly almost δ-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d,
and any η > 0, Cond(X) is η-close to an (m− poly(d, 1/δ) · (Λ + log(1/η)))-source.

44

Finally, we state similar results for condensing from Shannon CG sources.

Theorem 6.3. Let δ > 0 and λ ≥ 0 be constants such that λ ≤ 1
1024 δ

8. Let d ≥ 1 be any positive integer.
For any positive integer t, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}m=Ω(δ2dt)

such that for any λ-almost δ-Shannon-CG source X = X1 ◦ . . . ◦ Xt with each Xi ∼ {0, 1}d, and any
η > 0, Cond(X) is η-close to an

(
m− λ1/4dt− poly(d, 1/δ) · log(1/η)

)
-source.

Proof (sketch): If needed, we can first group X into blocks of length b′ so that db′ > d∗(δ) where d∗

is the constant from Corollary 3.10. The new CG source will have the same rate δ. Thus we can
then assume that X is a CG-source with d > d∗

As usual, let c? be the global constant from Corollary 2.8. Corollary 3.11 states that for any
b, X ′ = X ′1 ◦ · · · ◦X ′bt/bc is a (γ = e−δ

2b/72,
√
λ)-almost δ′-CG source with δ′ = δ2

36 . We see that by
setting b = O(c?/δ4), all conditions needed to apply Theorem 5.3 with X ′ are once again met.

The following is the analogous result for suffix friendly Shannon CG sources, obtained by using
Corollary 3.12 and Theorem 5.4.

Theorem 6.4. Let δ > 0 and λ ≥ 0 be constants such that λ ≤ 1
1024 δ

8. Let d ≥ 1 be any positive integer.
For any positive integer t and any positive integer Λ, there exists an explicit function

Cond : {0, 1}n=dt → {0, 1}Ω(δ2dt)

such that for any (λ,Λ)-suffix-friendly almost δ-Shannon-CG source X = X1 ◦ . . . ◦Xt with each Xi ∼
{0, 1}d, and any η > 0, Cond(X) is η-close to an (m− poly(d, 1/δ) · (Λ + log(1/η)))-source.

7 Extracting with Constant Seed Length

In previous sections we have constructed condensers for almost CG sources and Shannon CG
sources that output sources with very small entropy gap. Specifically:

1. (γ, λ)-almost δ-CG-sources with λ = 0,29 with any constant δ > 0. This follows from Theo-
rem 6.1.

2. (γ, λ,Λ)-suffix-friendly almost δ-CG-sources with any constant δ > 0, and any integer con-
stant Λ. This follows from Theorem 6.2.

3. δ-Shannon CG-sources for any constant δ > 0. This follows from Theorem 6.3.

4. (λ,Λ)-suffix-friendly almost δ-Shannon-CG-source for any constant δ > 0 and any integer
constant Λ. This follows from Theorem 6.4.

For all of the above sources we can employ the high min-entropy extractor of Theorem 2.12 and get
a long close-to-uniform string while investing only a constant-sized uniform seed. We omit the
easy proof (which amounts to using the triangle inequality and the fact that applying functions can
never increase the statistical distance).

29Clearly, when λ is greater than 0 but still a small sub-constant, we can still apply an extractor with a short seed. For
brevity, we omit the dependence of the seed length on λ 6= 0.

45

Theorem 7.1 (following Item 1 above). For any constants δ, ε > 0, any positive integer d ≥ 1, and any
constant γ > 0, the following holds. For any positive integer t there exists an explicit function

CGExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε(1) → {0, 1}m=Ω(δdt)

such that given a (γ, 0)-almost δ-CG-source X , and an independent uniform Y ∼ {0, 1}`, it holds that
CGExt(X,Y) ≈ε Um.

Theorem 7.2 (following Item 2 above). For any constants δ, ε, any constant Λ ∈ N, any positive integer
d ≥ 1, any constant γ > 0, and any λ ≤ 10−24δ8, the following holds. For any positive integer t there exists
an explicit function

SFCGExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε,Λ(1) → {0, 1}m=Ω(δdt)

such that given a (γ, λ,Λ)-suffix-friendly almost δ-CG-source X , and an independent uniform Y ∼
{0, 1}`, it holds that SFCGExt(X,Y) ≈ε Um.

Again, we note that in Theorems 7.1 and 7.2, for γ � 1/2 we can make m close to the expected
smooth min-entropy of the input sourceX , i.e., (1−2γ)δdt. Namely, we can output (1−θ)(1−2γ)δdt
entropy for an arbitrarily small constant θ > 0, at the expense of modifying the other constants.
(The GW extractor of Theorem 2.12 has tiny entropy loss.) We do not give details on optimizing the
entropy loss in this work.

Theorem 7.3 (following Item 3 above). For any constants δ, ε > 0 and any positive integer d ≥ 1, the
following holds. For any positive integer t there exists an explicit function

ShannonExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε(1) → {0, 1}m=Ω(δ2dt)

such that given a δ-Shannon-CG-source X , and an independent uniform Y ∼ {0, 1}`, it holds that
ShannonExt(X,Y) ≈ε Um.

Theorem 7.4 (following Item 4 above). For any constants δ, ε > 0, any constant Λ ∈ N, any positive
integer d ≥ 1, and any λ ≤ 10−24δ8, the following holds. For any positive integer t there exists an explicit
function

SFShannonExt : {0, 1}n=dt × {0, 1}`=Od,δ,ε,Λ(1) → {0, 1}m=Ω(δ2dt)

such that given a (λ,Λ)-suffix-friendly almost δ-Shannon-CG-source X , and an independent uniform
Y ∼ {0, 1}`, it holds that SFShannonExt(X,Y) ≈ε Um.

Finally, we note that instead of using the GW extractors of Theorem 2.12, one can instead use
the high min-entropy extractors of Reingold, Vadhan, and Wigderson [RVW02]. For entropy gap
∆, these extractors attain a seed length of O(log(∆/ε)) instead of the O(∆ + log(1/ε)) seed length
of Theorem 2.12. When ε is large, this may lead to an improved constant ` in the above theorems.

8 On Chor–Goldreich Sources with Bad Prefixes

A very natural, and seemingly useful, way to extend our notion of almost CG sources is to allow
bad prefixes. Namely, for each i ∈ [t] (or for most of them), Xi|

{
X[1,i−1] = a

}
is close to having high

min-entropy only for most a-s in the support of X[1,i−1]. We define this notion formally.

46

Definition 8.1 (good prefix). Let γ, δ > 0. Let X = X1 ◦ . . . ◦Xt be a source with each Xi ∼ {0, 1}d.
For i ∈ [t], we say that a prefix (a1, . . . , ai−1) is (γ, δ)-good for X if

Hγ
∞(Xi|X[1,i−1] = a1, . . . , ai−1) ≥ δd.

Previously, a good step required high min-entropy conditioned on all prefixes. Now, we only
require 1− ρ fraction of good prefixes.

Definition 8.2 (good step). Let γ, δ, ρ > 0. Let X = X1 ◦ . . .◦Xt be a source with each Xi ∼ {0, 1}d. We
say that i ∈ [t] is (γ, δ, ρ)-good forX if with probability at least 1−ρ over prefixes (a1, . . . , ai−1) ∼ X[1,i−1]

we have that the prefix is (γ, δ)-good for X . (Note that for i = 1 we simply require Hγ
∞(X1) ≥ δd.)

Our extended definition then goes as follows.

Definition 8.3 (almost CG source, III). A (γ, λ, ρ)-almost δ-CG source is a sequence of random variables
X1 ◦ . . . ◦Xt with each Xi ∈ {0, 1}d, such that at least (1− λ)t i-s are (γ, δ, ρ)-good for X .

Naturally, we can also define an almost Shannon CG source, where again, for each i, there is
a small probability over prefixes (X1, . . . , Xi−1) = (a1, . . . , Xi−1) for some small fraction of i, and
also for a small fraction of i, there is no guarantee on the quality of the distribution (for any prefix).
To begin this definition, we can again, naturally define the notion of a good prefix and a good step.

Definition 8.4 (good Shannon prefix). Let δ > 0. Let X = X1 ◦ . . . ◦ Xt be a source with each
Xi ∈ {0, 1}d. For i ∈ [t], we say that a prefix (a1, . . . , ai−1) is δ-Shannon-good for X if

H(Xi|X1, . . . , Xi−1 = a1, . . . , ai−1) ≥ δd.

When δ and X are clear from context, and it is also clear we are discussing Shannon entropy, we will simply
call a prefix “good” without the quantifiers.

Definition 8.5 (good Shannon step). Let δ, ρ > 0. Let X = X1 ◦ . . . ◦ Xt be a source with each
Xi ∈ {0, 1}d. We say that i ∈ [t] is (δ, ρ)-Shannon-good for X if with probability at least 1− ρ over prefixes
(a1, . . . , ai−1) ∼ (X1, . . . , Xi−1) we have that the prefix is δ-Shannon-good for X . (Note that for i = 1 we
simply require Hγ

∞(X1) ≥ δd.)
When δ, ρ and X are clear from context, and it is also clear we are discussing Shannon entropy, we will

simply call a coordinate i “good” or a “good step” without the quantifiers. We also call i “bad” or a “bad
step” if it is not good. Additionally, we use G(X) as the set of all good i-s.

Definition 8.6 (almost Shannon CG source). A (λ, ρ)-almost δ-Shannon-CG source is a sequence of
random variables X1 ◦ . . . ◦Xt with each Xi ∼ {0, 1}d, such that at least (1− λ)t i-s are (δ, ρ)-good for X .

While we do not know how to handle ρ > 0 in a way that extends our result, we argue here
that there may be an inherent reason for that lack of success. At least in a certain parameter regime
(particularly when λ > 0), we provably cannot extract from such sources with constant seed.

Theorem 8.7. For any small enough constants ζ, β > 0, there exists no constant-seed extractor for (γ, λ, ρ)-
almost (1 − ζ)-CG sources where γ = λ = ρ = ζβ . That is, for any such source X = X1 ◦ . . . ◦ Xt ∼
({0, 1}d)t and any function g : {0, 1}dt × {0, 1}` → {0, 1}m where ` = O(1) and m = ω(1), it holds that
|g(X,U`)− Um| ≥ 1

2 .

47

Toward establishing Theorem 8.7, we need the following extension of Corollary 3.11.

Lemma 8.8. Let X = X1 ◦ . . . ◦ Xt be a (λ, ρ)-almost δ-Shannon-CG source, with Xi ∈ {0, 1}d. Let
δ, ρ > 0 be constant. For any positive integer b, consider the distribution X ′ = X ′1 ◦ . . . ◦X ′bt/bc, where
X ′i = X[(i−1)b+1,ib]. Then, X ′ is a (

γ = e−δ
2b/36 + ρ1/4,

√
λ, ρ1/4

)
almost δ′-CG source for δ′ = δ2

18 −
δ
6

(√
ρ+
√
λ
)

.

We defer the proof to Appendix A.4. Note that the result gives no meaningful lower bound on
the entropy rate unless δ

3 >
√
ρ+
√
λ.

Unlike almost CG sources with δ = 0, under the more general definition it turns out that any
high-entropy weak source is an almost CG source with the appropriate error parameters. This is
true even for sources with high Shannon entropy.

Lemma 8.9. Let X ∼ {0, 1}n be a random variable with H(X) ≥ (1 − ζ)n for ζ ≤ 2−40, let d and t be
any positive integers such that d · t = n, and let b ≥ 6 ln 1

ζ be a positive integer that divides t. Then:

1. Writing X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, we have that X is a (ζ1/4, ζ1/4)-almost (1 −
√
ζ)-

Shannon CG source with block size d.

2. Writing X = X ′1, ◦ . . . ◦X ′t/b, each X ′i ∼ {0, 1}
bd, we have that X is a (2ζ1/16, ζ1/8, ζ1/6) almost

1
64 -CG source.

Recall that H(X) ≥ H∞(X), so the above also holds for X-s with H∞(X) ≥ (1− ζ)n as well.

Proof: The chain rule for Shannon entropy tell us that

1

t
H(X) =

1

t

∑
i∈[t]

H(Xi|X[1,i−1]) ≥ (1− ζ)d,

whereH(Xi|X[1,i−1]) =
∑

a Pr[X[1,i−1] = a]·h(i, a), and for brevity, we write h(i, a) = H(Xi|X[1,i−1] =
a). By an averaging argument,

Pr
i∼[t],a∼X[1,i−1]

[
h(i, a) ≤ (1−

√
ζ)d
]
≤
√
ζ.

By another averaging argument, we can conclude that

Pr
i∈[t]

[
Pr

a∼X[1,i−1]

[
h(i, a) ≤ (1−

√
ζ)d
]
≤ ζ1/4

]
≥ 1− ζ1/4,

which gives us Item 1. By Lemma 8.8, noting that

(1−
√
ζ)2

18
− 1−

√
ζ

6
·
(√

ζ1/4 +

√
ζ1/4

)
≥ 1− 2

√
ζ

16
− ζ1/8

3
≥ 1

64
,

we have thatX ′ that is formed by grouping b consecutive blocks together, is a
(
e−b/72 + ζ1/16, ζ1/8, ζ1/16

)
-

almost 1
64 -CG source. Having chosen b large enough, we get Item 2.

48

Next, we show that we can invest a constant number of bits to regain the original (smooth)
entropy rate. Clearly this should come at additional cost, and indeed we get worse ρ and λ.

Lemma 8.10. Let X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, be a (γ, λ, ρ)-almost δ-CG source and let ζ > 0
be any constant. Let Ext : {0, 1}d × {0, 1}d → {0, 1}m be the extractor from Theorem 2.11 set with error
εE = 2−

δ
3
d. For any y ∈ {0, 1}d, denote

Z(y) = Ext(X1, y) ◦ . . .Ext(Xt, y).

Let τ =

√
λ+ ρ+ 2−

δζ
3
d. Then, with probability at least 1− τ over y ∼ Ud, Z(y) is a (γ, λ′ =

√
τ , ρ′ =√

τ)-almost (1− ζ)-CG source.

Proof: First, note that the output length of Ext is m = δd − 2 log(1/εE) = δ
3d. Fix some i ∈ G(X),

and denoteHi = (X1, . . . , Xi−1). Further, for h ∼ H denote Xi,h = Xi| {Hi = h}. When h is good,
we know that Xi,h is γ-close to some X ′i,h which is a δd-source. Thus,(

Y,Ext(X ′i,h, Y)
)
≈εE

(Y,Um)

By an averaging argument, there exists a set Bi,h ⊆ {0, 1}d of density at most εζE such that for every
y /∈ Bi,h,

Ext(X ′i,h, y) ≈
ε1−ζE

Um.

By Claim 2.1, and our aforementioned choice of parameters, D′i,h = Ext(X ′i,h, y) has entropy rate
1
m log(1/ε1−ζ

E) = 1− ζ. Denoting Di,h = Ext(Xi,h, y), we know that Di,h ≈γ D′i,h.
Denoting the set of good prefixes by Hi, we have established that

∀i ∈ G(X) ∀h ∈ Hi ∀y /∈ Bi,h, Hγ
∞(Ext(Xi,h, y)) ≥ (1− ζ)m.

Let I(i, h, y) be the bad event Hγ
∞(Ext(Xi,h, y)) < (1− ζ)m. Collecting error terms, we have that

Pr
i∼[t],h∼Hi,y∼Ud

[I(i, h, y)] ≤ λ+ (1− λ)
(
ρ+ (1− ρ)εζE

)
≤ τ2.

By an averaging argument, we have a set BY ⊆ {0, 1}d of bad seeds of density at most τ such that
for every y /∈ BY we get that Pri∼[t],h∼Hi [I(i, h, y)] ≤ τ . By yet another averaging argument, we
get that for every y /∈ BY there exists a set of bad indices BI(y) of density at most

√
τ such that

for every y /∈ BY and i /∈ BI(y) it holds that Hγ
∞(Ext(Xi,h), y) ≥ (1− ζ)m with probability at least

1−
√
τ over h ∼ Hi.

We can now combine Lemmas 8.8 and 8.10 to get our the following corollary.

Corollary 8.11. Let X ∼ {0, 1}n be a random variable with H(X) ≥ (1− ζ)n for a constant ζ < 2−64.
Then, there exist constant positive integers d and `, and an explicit function

f : {0, 1}n × {0, 1}` → {0, 1}m=Ω(n) ,

such that with probability at least 1− 2ζ1/32 over y ∈ {0, 1}`, f(X, y) = Z1 ◦ . . . ◦ Zt is a (γ, λ, ρ)-almost
(1− ζ)-CG source, where each Zi ∼ {0, 1}d, γ = 2ζ1/6, and ρ = λ = O(ζ1/64).

49

Proof of Theorem 8.7 (sketch): The above corollary shows we can convert, using a constant-length
seed, a high entropy source (even a high Shannon entropy one) into a high min-entropy almost CG
source, albeit with large ρ and λ. On the other hand, there exist no constant-seed condensers that
condense from (1− ζ)n min-entropy (out of n bits) to m−O(1) min-entropy (out of m bits) where
m = Ω(n), let alone from Shannon entropy.

Thus, it seems plausible that (at least) one of the following holds.

1. The barrier to condensing from f(X, y), for a good y, is that almost CG sources with ρ > 0 (or
at least, a relatively large ρ) do not admit deterministic condensing, or even condensing with
constant seed. That is, we cannot hope for an analogue of Theorem 5.3 when a small fraction
of the prefixes are bad. Or,

2. The barrier lies in the fraction of bad steps. That is, without suffix-friendliness, no constant
seed condensing exists, even using techniques which do not work in an “online” fashion like
ours.

We leave this as a line of inquiry for future research.

9 Open Problems

We present several open problems that arise from our work. Recall that in our notation, a (γ, λ, ρ)-
almost δ-CG source is a CG source in which every good conditional distribution is γ-close to a
δ-source, there are at most λ bad steps, and there is a weight of at most ρ on bad prefixes at each
step. A (γ, λ)-almost δ-CG source is a (γ, λ, 0)-almost δ-CG source.

The first two problems, which concern ρ and λ type errors, follow naturally from the discussion
in the previous section.

Open Problem 1: Is there an analogue of Theorem 5.3 to (γ, 0, ρ)-almost δ-CG sources? That is,
given a random walk via such a source, X1 ◦ . . .◦Xt, is the final vertex distribution O(ρ)-close
to a distribution with constant entropy gap? (An error ofO(ρ) is expected, as one can consider
the almost CG source X that outputs a fixed string with probability ρ, and otherwise follows
the distribution of a (γ, 0, 0)-almost δ-CG source.)

Open Problem 2: Is there an analogue of Theorem 5.3 to (γ, λ)-almost δ-CG sources without suffix
friendliness? Namely, is there an explicit deterministic condenser that outputs a distribution
with constant entropy gap without the suffix-friendliness requirement? (This problem does
not ask whether our random walk construction achieves this, as we know it cannot.)

Open Problem 3: Relaxing Open Problem 1, is there an analogue of Theorem 5.3 to (γ, 0, ρ)-almost
δ-CG sources, where the output distribution only has high Shannon entropy?

Open Problem 4: Can we improve Corollary 4.11 and Corollary 4.12 so that the q-norm decrease
at each step is

‖pV ‖qq ≤
1

Cα
‖pU‖qq

for some C very close to D and all sufficiently small α? We note that a positive answer will
essentially solve Open Problem 3.

50

10 Acknowledgments

We wish to thank Oded Goldreich for valuable comments and suggestions on a preliminary version
of this paper, and Salil Vadhan and Yevgeniy Dodis for very helpful discussions. We also thank an
anonymous reviewer for useful comments and for pointing out a minor flaw in a previous version
of this manuscript.

References

[AC02] Noga Alon and Michael Capalbo. Explicit unique-neighbor expanders. In Proceedings
of the 43rd Annual Symposium on Foundations of Computer Science (FOCS), pages 73–79.
IEEE, 2002.

[AT19] Nir Aviv and Amnon Ta-Shma. On the entropy loss and gap of condensers. ACM
Transactions on Computation Theory (TOCT), 11(3):1–14, 2019.

[BCDT19] Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. Two-source
condensers with low error and small entropy gap via entropy-resilient functions. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak,
François-Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Annual
Cryptology Conference, pages 1–20. Springer, 2011.

[BDT19] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from
two-source to nonmalleable extractors: achieving near-logarithmic min-entropy. SIAM
Journal on Computing, (0):STOC17–31, 2019.

[BEG17] Salman Beigi, Omid Etesami, and Amin Gohari. Deterministic randomness extraction
from generalized and distributed Santha–Vazirani sources. SIAM Journal on Computing,
46(1):1–36, 2017.

[BGI+08] Radu Berinde, Anna C. Gilbert, Piotr Indyk, Howard Karloff, and Martin J. Strauss.
Combining geometry and combinatorics: A unified approach to sparse signal recovery.
In Proceedings of the 46th Annual Allerton Conference on Communication, Control, and
Computing, pages 798–805. IEEE, 2008.

[BGM22] Marshall Ball, Oded Goldreich, and Tal Malkin. Randomness extraction from some-
what dependent sources. In Proceedings of the 13th Innovations in Theoretical Computer
Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Sim-
ulating independence: New constructions of condensers, ramsey graphs, dispersers,
and extractors. Journal of the ACM (JACM), 57(4):20, 2010.

[CCLO22] Xue Chen, Kuan Cheng, Xin Li, and Minghui Ouyang. Improved decoding of expander
codes. In Proceedings of the 13th Innovations in Theoretical Computer Science Conference
(ITCS). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

51

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[CG22] Eshan Chattopadhyay and Jesse Goodman. Improved extractors for small-space
sources. In Proceedings of the 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 610–621. IEEE, 2022.

[CGL22] Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In Proceedings of the 62nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 622–633. IEEE, 2022.

[CRVW02] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness
conductors and constant-degree lossless expanders. In Proceedings of the 34th Annual
Symposium on Theory of Computing (STOC), pages 659–668. ACM, 2002.

[CT21] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
eliminating randomness at almost no cost. In Proceedings of the 53rd Annual Symposium
on Theory of Computing (STOC), pages 283–291. ACM, 2021.

[DGSX21a] Yevgeniy Dodis, Siyao Guo, Noah Stephens-Davidowitz, and Zhiye Xie. No time to
hash: On super-efficient entropy accumulation. In CRYPTO, volume 12828 of Lecture
Notes in Computer Science, pages 548–576. Springer, 2021.

[DGSX21b] Yevgeniy Dodis, Siyao Guo, Noah Stephens-Davidowitz, and Zhiye Xie. Online linear
extractors for independent sources. In Proceedings of the 2nd Conference on Information-
Theoretic Cryptography (ITC). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[DK08] Domingos Dellamonica Jr. and Yoshiharu Kohayakawa. An algorithmic Friedman–
Pippenger theorem on tree embeddings and applications. The Electronic Journal of
Combinatorics, pages R127–R127, 2008.

[DMOZ20] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal
pseudorandomness from hardness. In Proceedings of the 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1057–1068. IEEE, 2020.

[DPW14] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without entropy
waste. In Advances in Cryptology–EUROCRYPT 2014, pages 93–110. Springer, 2014.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil Vadhan. Randomness condensers for
efficiently samplable, seed-dependent sources. In Theory of Cryptography Conference,
pages 618–635. Springer, 2012.

[Dvi12] Zeev Dvir. Extractors for varieties. computational complexity, 21(4):515–572, 2012.

[DW12] Anindya De and Thomas Watson. Extractors and lower bounds for locally samplable
sources. ACM Transactions on Computation Theory (TOCT), 4(1):1–21, 2012.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In Theory of Cryptography
Conference, pages 1–22. Springer, 2013.

52

[GP20] Dmitry Gavinsky and Pavel Pudlák. Santha-Vazirani sources, deterministic condensers
and very strong extractors. Theory of Computing Systems, 64(6):1140–1154, 2020.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from parvaresh–vardy codes. Journal of the ACM (JACM),
56(4):20, 2009.

[GV99] Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero knowl-
edge with applications to the structure of szk. In Proceedings. Fourteenth Annual IEEE
Conference on Computational Complexity (Formerly: Structure in Complexity Theory Confer-
ence)(Cat. No. 99CB36317), pages 54–73. IEEE, 1999.

[GW97] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties:
A quality-size trade-off for hashing. Random Structures & Algorithms, 11(4):315–343,
1997.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the 21st Annual Symposium on Theory of
computing (STOC), pages 12–24, 1989.

[KRVZ06] Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors
for small-space sources. In Proceedings of the 38th Annual Symposium on Theory of
Computing (STOC), pages 691–700. ACM, 2006.

[LH22] Ting-Chun Lin and Min-Hsiu Hsieh. Good quantum LDPC codes with linear time
decoder from lossless expanders. arXiv preprint arXiv:2203.03581, 2022.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combina-
torica, 8(3):261–277, 1988.

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to constant factors. In Proceedings of the 35th Annual Symposium on Theory of computing
(STOC), pages 602–611, 2003.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded
computation. In Proceedings of the 61st Annual Symposium on Theory of Computing
(STOC), pages 159–168. ACM, 1999.

[RSW06] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via
repeated condensing. SIAM Journal on Computing, 35(5):1185–1209, 2006.

[RT00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and
depth-two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24, 2000.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of Mathematics, pages 157–187,
2002.

53

[RVW04] Omer Reingold, Salil Vadhan, and Avi Wigderson. A note on extracting randomness
from Santha-Vazirani sources. In Electronic Colloquium on Computational Complexity
(ECCC), 2004.

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from
semi-random sources. Journal of Computer and System Sciences, 33(1):75–87, 1986.

[SV22] Ronen Shaltiel and Emanuele Viola. On hardness assumptions needed for “extreme
high-end” PRGs and fast derandomization. In Proceedings of the 13th Innovations in
Theoretical Computer Science Conference (ITCS). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[SZ99] Aravind Srinivasan and David Zuckerman. Computing with very weak random
sources. SIAM Journal on Computing, 28(4):1433–1459, 1999.

[TUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers,
unbalanced expanders, and extractors. Combinatorica, 27:213–240, 2007.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions.
In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2000), pages 32–42. IEEE, 2000.

[Vad12] Salil Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing, 43(2):655–
672, 2014.

[Zuc90] David Zuckerman. General weak random sources. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science (FOCS), pages 534–543. IEEE, 1990.

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16(4):367–391, 1996.

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of Max Clique
and Chromatic Number. Theory of Computing, 3:103–128, 2007.

A Deferred Proofs

A.1 Condensing from Suffix Friendliness and Any Rate

This section provides details on the construction in and proof of Theorem 5.4.
The construction is nearly identical to that in the non suffix-friendly case, with a slight modifi-

cation of some parameters. Namely, we slightly adjust the size of both the small and big graph,
along with some other parameters, in order to facilitate the slightly different analysis. We list out
all parameters again here for completeness.

Let c? be the global constant from Corollary 2.8. For any constant δ, suppose we have a (γ, λ,Λ)-
suffix-friendly-almost δ-CG source X1, . . . , Xt with each Xi ∼ {0, 1}d. Again let e = 100 and
suppose that

54

• d ≥ max
{

103

δ2 ,
2c?

δ

}
,

• γ ≤ 2−100/δ, and,

• λ ≤ 1
108e2

δ2.

Our construction again consists of an optimal constant sized lossless conductor, and the lossless
conductor from [CRVW02].

The Small Graph (Suffix Friendly) The parameters here are nearly identical to before. Except, we
utilize the fact that

√
λ ≤ .01δ to replace the term (0.9δ −

√
λ) with 0.89δ. We’ll need to assume this

worst case upper bound for technical reasons in the averaging argument of Lemma A.1.30 Namely,
we set β = 1− δ/2, ∆ = δ/3. We set the epoch length b = 106d3e

δ , and

dCRVW = logDCRVW = 0.89 · δdb+
2β

log(1/γ)
d2 + 2d+ log c?.

We let H = ([DCRVW], [DCRVW], E) be the D-regular bipartite graph that is a
(
K = DCRVW

c?D2 , ε = 1
Dβ

)
-

lossless expander guaranteed to us by by Corollary 2.8.

The Big Graph (Suffix Friendly) We change the size N (and thus indirectly K) to facilitate
the conditions of Theorem 4.15 rather than Theorem 4.13. We also modify δCRVW to reflect the
entropy rate in each Zi when assuming the inequality

√
λ ≤ 0.01δ is tight. Again, let βCRVW = 1/6,

∆CRVW = 1/12, γCRVW = η = 2−100, and

δCRVW =
k − 0.01δdb− 2βd2 − 2d log 1

η

dCRVW

≥ 11

12
.

Let G = ([N], [N], E) be the
(
KCRVW = Ω

(
N

D2
CRVW

)
, εCRVW = 1

D
1/6
CRVW

)
-expander guaranteed to us

by Theorem 2.5 with

kCRVW =
(

0.9δCRVW − 2e
√
λ
)
dCRVW

t

b
− 2 · δΛe

106
dCRVW +

2eβCRVW

log(1/γCRVW)
d2

CRVW.

Note again that n = logN = kCRVW +O(dCRVW).

The Analysis

The construction given the above graphs is the same as in the non-suffix-friendly case. We divide
the random walk into t/b blocks of length b, and we let Zj be the distribution on H after a random
walk using the j-th block as instructions.

Lemma A.1. The sequence Z1, . . . , Zt/b is an
(
γCRVW,

√
λ, δΛ

106

)
-suffix-friendly almost δCRVW-CG source.

30We note that there is no place in this work where it is necessary for us to consider the more fine grained fact that the
entropy loss is 0.9δ − λ rather than 0.9δ − 0.01δ. In other words, we always “think” of λ as large as possible in terms of
δ. However, we’ve kept the entropy loss as accurate as possible whenever we can.

55

Proof: Call the j-th epoch of the original CG source, X(j−1)b+1, . . . , X(j−1)b+b “good” if less than
0.01δ fraction of the Xi-s in the epoch are bad steps. We’ll show that for any suffix of the Zj-s, there
are at most δΛ

106 +
√
λ(t − j) bad epochs. Consider any suffix of length s of the Zj-s. There are at

most Λ + λbs bad steps in X in this suffix. By an averaging argument, for any a, there are at most(
Λ
s + λb

)
s

a

epochs with more than a bad steps in them. Setting a =
√
λb + 0.005δb ≤ 0.01δb tells us that the

number of bad epochs in the suffix is at most

Λ√
λb+ 0.005δb

+
λb√

λb+ 0.005δb
s ≤ 200Λ

δb
+
√
λs ≤ δΛ

106
+
√
λs,

where the last inequality comes from our choice of b and our lower bound on d. Now, as before one
can observe that the all conditions for Theorem 4.13 are met and therefore the distribution on Zj
conditioned on any prefix is η-close to a source with

k − 0.01δdb− 2βd2 − 2d log
1

η
= δCRVW · dCRVW

min-entropy.

Lemma A.2. For any ηCRVW > 0, the distribution of W = RW(G,Z1, . . . , Zt/b) is ηCRVW-close to a
(k − poly(d, 1/δ) · (Λ + log 1/ηCRVW))-source

Proof: We verify all conditions of Theorem 4.15 are met to apply it with G and the Zi-s:

• 1 > βCRVW = 1/6 > ∆CRVW = 1/12,

• δCRVW > 11/12 = 1− βCRVW + ∆CRVW,

• dCRVW ≥ 106e ≥ 80 · 12 · 12
11 · e ≥

80e
δCRVW∆CRVW

,

• γCRVW = η ≤ 2−200e ≤ 2−100e/δCRVW ,

•
√
λ ≤ δ

104e
≤ δ

6e , and,

• (0.9δCRVW − 2
√
λ)dCRVW

t
b − 2 · δΛe

106 dCRVW = kCRVW − 2βCRVW

log 1/γCRVW
d2

CRVW.

Therefore, for any ηCRVW > 0, W is ηCRVW-close to a source with min-entropy:

kCRVW − 2βed2
CRVW −

(
Λe2

105
+ 2e log(1/ηCRVW)

)
dCRVW.

Notice that all the terms after kCRVW in the above expression are poly(d, 1/δ) · (Λ + log(1/ηCRVW)).

Using the fact that n = kCRVW +O(1), and that kCRVW = Ω(δdt), yields Theorem 5.4.

56

A.2 The Nisan–Zuckerman (NZ) Construction

The overall idea is as follows. Given a CG source X = X1 ◦ . . . ◦Xt, we use a constant-sized Y to
extract a uniform Z1 from a X[t−a+1,t] where a = O(1). Then, we use Z1 as a seed to extract from
X[t−b+1,t−a] to get Z2, where the latter interval is roughly twice as long as the former. Continuing
this way for s− 1 = O(log t) times, we finally use Zs−1 as a seed to extract from a perfix of X of
length Ω(dt), which is our final output. Formally, Theorem 1.2 follows from the following, more
general, theorem.

Theorem A.3 (follows from [NZ96]). For any positive integers t, d, any ε, δ > 0, and any α > 1,
the following holds. For some positive integer a, let {Exti}i be a family of explicit extractors, each
Exti : {0, 1}α

i−1ad × {0, 1}bi → {0, 1}mi being a (ki = δαi−1ad, εi) extractor, where mi ≥ bi+1.
Setting s = dlogα(1 + (α− 1) ta)e, there exists an explicit extractor

ExactCGExt :
(
{0, 1}d

)t
× {0, 1}b1 → {0, 1}ms

for δ-CG sources with error ε =
∑

i∈[s] εi.

Proof: We are given a δ-CG source X = X1 ◦ . . . ◦Xt, each Xi ∼ {0, 1}d, and α > 1. We define a
sequence of exponentially-growing intervals as follows. Set I1 = [t − a + 1, t], and for all i > 1,
given Ii−1 = [`i−1, `i−1], we set Ii = [`i−1−α(`i−`i−1), `i−1−1]. Note that |Ii| = α · |Ii−1|, and that
Is starts at 1 when s = logα(1 + (α− 1) ta).31 The parameter s stands for the number of extraction
steps we perform, and note that s = O(log t) whenever a and α are constants.

Recall that b1 is the seed length of Ext1 : {0, 1}ad × {0, 1}b1 → {0, 1}m1 , and let Y ∼ {0, 1}b1 be
uniform and independent of X . We define the following sequence of random variables.

• Z1 = Ext1(XI1 , Y), and,

• For all i ∈ [2, s], denote Zi = Exti(XIi , Zi−1), where Exti : {0, 1}α
i−1ad × {0, 1}bi → {0, 1}mi .

Recall that we indeed require mi ≥ bi+1. (If mi > bi+1, we only use the first bi+1 bits of Zi to extract
from XIi+1 .) The δ-CG source extractor is given by

ExactCGExt(X,Y) = Zs.

Clearly, ExactCGExt is explicit since the Exti-s are explicit. For simplicity, we also denote Z0 = Y
and m0 = b1. The correctness will follow from the following lemma.

Lemma A.4. For all i ∈ [s] it holds that(
XIs , . . . , XIi+1 , Zi

)
≈ε(i)

(
XIs , . . . , XIi+1

)
× Umi ,

where ε(i) =
∑i

j=1 εj .
31We assume s and α(`i − `i−1) are integers, and otherwise the construction can be adjusted without significant loss

in parameters.

57

Proof: The proof is by induction on i. For i = 1 the lemma readily holds, since Y is uniform and
independent of X , and XI1 is a δ-source conditioned on any fixing of (XIs , . . . , XI2). The latter
readily follows from the fact that X is a δ-CG source. Next, fix i > 1 and assume the claim holds for
i− 1. By the induction’s hypothesis,(

XIs , . . . , XIi+1 , XIi , Zi−1

)
≈ε(i−1)

(
XIs , . . . , XIi+1 , XIi

)
× Umi−1 .

Conditioned on any value of XIs , . . . , XIi+1 , the random variable XIi is a δ-source over αi−1ad bits.
Thus, recalling that Zi = Exti(XIi , Zi−1), it follows that(

XIs , . . . , XIi+1 , Zi
)
≈ε(i−1)

(
XIs , . . . , XIi+1

)
× Exti(XIi , Umi−1)

≈ε(i−1)+εi

(
XIs , . . . , XIi+1

)
× Umi ,

as required.

Applying Lemma A.4 with i = s we get that ExactCGExt(X,Y) = Zs ≈ε Ums , concluding the proof.
Note that if the extractors are strong, one can increase the number of output bits by considering
Zi = Exti(XIi , Zi−1) ◦ Zi−1 rather than Zi = Exti(XIi , Zi−1).

In [NZ96], they take the family of seeded extractors to be a universal family of hash functions
(see Theorem 2.11). Instantiating Theorem A.3 with ExtILL(x, y) = hy(x) ◦ ȳ, for ȳ being a suitable
prefix of y, we get the following explicit extractor for δ-CG sources.32

Corollary A.5. For any positive integers t, d, any ε > 0 and a constant δ > 0, the following holds. For any
constant β > 0 there exists an explicit function

ExactCGExt : {0, 1}n=dt × {0, 1}` → {0, 1}m

where m = (1 − β)δn and ` = d + Oβ,δ(log 1
ε), such that given a δ-CG source X = X1 ◦ . . . ◦Xt, each

Xi ∼ {0, 1}d, and an independent uniform Y ∼ {0, 1}`, it holds that ExactCGExt(X,Y) ≈ε Um.

Proof: The extractor from Theorem 2.11 is strong, so we can append to hy(x) any prefix of y. We
choose the prefix so that mi = bi+1. In particular, bi+1 = αiad, and the length of hy(x) is ki−2 log 1

εi
,

so we take ȳ to be of length αiad− ki + 2 log 1
εi
, and we need it to be at most |y| = αi−1ad. Towards

this end, we choose

• α = 1 + (1− β)δ,

• a to be the smallest integer larger than 4
β(1−β)δ2 · log(1/ε)

d , and ,

• For all i ∈ [s], εi = (α−1)ε
αi

.

Under those choices:

• One can verify that indeed αiad− ki + 2 log 1
εi
≤ αi−1ad, and also,

• The errors satisfy
∑

i∈[s] εi = (α− 1)ε
∑

i∈[s] α
−i ≤ ε, as required.

Finally, note that the seed length is b1 = ad = d+O(log(1/ε)), and the output length is

ms = bs+1 = αsad ≥
(

1 + (α− 1)
t

a

)
ad ≥ (α− 1)td = (1− β)δdt.

32Choosing to work with the extractor of [RVW02] instead of ExtILL would improve the seed length ` in the high ε
regime. See the discussion at the end of Section 7.

58

A.3 The NZ Construction for Almost CG Sources

We show that the above construction can be applied to (γ, 0)-almost δ-CG sources as well, thereby
establishing Theorem 1.4. The idea is natural once we saw, in Lemma 3.3, that grouping into blocks
improves γ at the expense of slightly worse smooth entropy rate per block: Each time we group
consecutive blocks for the next extraction step, we make sure we group enough blocks so that we
can union-bound over the smoothness error. For brevity, we use the notation γ-almost δ-CG source
in place of (γ, 0)-almost δ-CG source.

Theorem A.6. For any positive integers t, d, any ε, δ, γ ∈ (0, 1), and any α > 1, the following holds. For
some positive integer a, let {Exti}i be a family of explicit extractors, each Exti : {0, 1}α

i−1ad × {0, 1}bi →
{0, 1}mi being a (ki = (1− 2γ)δαi−1ad, εi) extractor, where mi ≥ bi+1 and aαi−1 ≥ 8

(1−γ)2 ln 1
εi

.
Setting s = dlogα(1 + (α− 1) ta)e, there exists an explicit extractor

AlmostCGExt :
(
{0, 1}d

)t
× {0, 1}b1 → {0, 1}ms

for δ-CG sources with error ε = 2
∑

i∈[s] εi.

Proof: The proof closely follows Theorem A.3, where the only difference is that we need to make
sure α and a are large enough so that each XIi is sufficiently close to having high min-entropy.
Towards that end, we extend Lemma A.4 as follows, wherein we use the same construction and
notation of Theorem A.3.

Lemma A.7. For all i ∈ [s] it holds that(
XIs , . . . , XIi+1 , Zi

)
≈ε(i)

(
XIs , . . . , XIi+1

)
× Umi ,

where ε(i) = 2
∑i

j=1 εj .

Proof: The proof is by induction on i. For i = 1, conditioned on any value of XIs , . . . , XI2 , XI1

comprises a blocks that form a γ-almost δ-CG source. By the second item of Lemma 3.3, XI1

is γ1-close to having δ′ entropy rate, where γ1 = e−
γ2

2
a and δ′ = (1 − 2γ)δ.33 Under each such

conditioning, recalling that Y is independent of X , we have that Z1 ≈ε1+γ1 Um1 . This is also true
on average over XIs , . . . , XI2 . By our assumption on a, we have that γ1 ≤ ε1, which established the
claim for i = 1.

Next, fix i > 1 and assume the claim holds for i− 1. By the induction’s hypothesis,(
XIs , . . . , XIi+1 , XIi , Zi−1

)
≈ε(i−1)

(
XIs , . . . , XIi+1 , XIi

)
× Umi−1 .

Conditioned on any value of XIs , . . . , XIi+1 , the random variable XIi comprises αi−1a blocks that
form a γ-almost δ-CG source. Again, by Lemma 3.3, each conditioning gives rise to a source over

αi−1ad bits that is γi-close to a source with δ′ entropy rate, for γi = e−
−γ2

2
αi−1a. By our assumption

on a and α, we have that γi ≤ εi. Thus, similarly to Lemma A.4 we get(
XIs , . . . , XIi+1 , Zi

)
≈ε(i−1)+2εi

(
XIs , . . . , XIi+1

)
× Umi ,

as desired.
33Technically, Lemma 3.3 only states a result for an almost CG source divided into evenly sized blocks. However, it’s

easy to see such a result also holds for an almost CG source divided into any collection of contiguous blocks of arbitrary
size: each block will have appropriate entropy rate, while the smoothness error will be exponentially small in the length
of the block.

59

As before, we apply the above lemma with i = s to conclude the proof.

Similar to what we did in Appendix A.2, we instantiate the above theorem with a universal
family of hash functions as extractors, and set the parameters accordingly.

Corollary A.8. For any positive integers t, d, any ε > 0 and any constants δ, γ > 0 the following holds.
For any constant β ≥ γ2

dδ ln 2 , there exists an explicit function

AlmostCGExt : {0, 1}n=dt × {0, 1}` → {0, 1}m

wherem = (1−2γ−β)δn and ` = Oβ,δ,γ(d log 1
ε), such that given a γ-almost δ-CG sourceX = X1◦. . .◦Xt,

each Xi ∼ {0, 1}d, and an independent uniform Y ∼ {0, 1}`, it holds that AlmostCGExt(X,Y) ≈ε Um.

Proof: As in Corollary A.5, we choose mi = bi+1 and append the seed accordingly. We choose:

• a to be the smallest integer larger than max
{

2 ln 2
γ2 + 2

γ2 ln 1
ε ,

2 ln 2
(1−2γ−β)δγ2

}
,

• α = 1 + ∆ for ∆ = 2 ln 2
γ2a

, and,

• For all i ∈ [s], εi = e−
γ2

2
aαi−1

. This matches the requirement in Theorem A.6.

The parameters are set so that for all i ∈ [s], εi ≤ ε
2i+1 . To see this, note that a ≥ 2 ln 2

γ2 + 2
γ2 ln 1

ε

and α − 1 ≥ 2 ln 2
γ2a

. The latter inequality implies that αi − αi−1 ≥ 2 ln 2
γ2a

for all i, and so aαi−1 ≥
2 ln 2
γ2 (i+ 1) + 2

γ2 ln 1
ε , which in turn implies that εi = e−

γ2

2
aαi−1 ≤ ε

2i+1 . Thus,
∑

i∈[s] 2εi ≤ ε.
Here too, we also need to make make sure that αiad− ki + 2 log 1

εi
≤ αi−1ad. Plugging-in the

expression for εi and collecting terms, we get that ∆ ≤ (1− 2γ)δ − γ2

d ln 2 needs to hold. This indeed
holds by our requirement on a. The output length is then

ms = bs+1 = αsad ≥
(

1 + ∆ · t
a

)
ad ≥ ∆td ≥ (1− 2γ − β)δdt,

where the last inequality follows from our requirement on β. Finally, the seed length is given by
b1 = ad = Oβ,δ,γ(d log 1

ε).

We remark that one can also use the first item of Lemma 3.3 instead of the second one. This
would allow supporting γ > 1

2 at the expense of worse output length of roughly m = 1
2δn.

A.4 CG Sources from Shannon Sources

Proof of Lemma 8.8: By first, by averaging argument, there are at most
√
λ · bt/bc blocks that have

more than
√
λb bad indices for X . Call a block 1 ≤ i ≤ bt/bc good if it has less than

√
λb bad indices.

Fix any good block 1 ≤ i ≤ bt/bc. For convenience, say j ∈ [b] is a good step in the block if the
step b(i−1) + j is good. We’ll show that with high probability over prefixes X[1,...,(i−1)b], the current
(good) block X[(i−1)b+1,...,ib] conditioned on the prefix is close to high min-entropy. For convenience,
let X ′ = X[1,...,(i−1)b] and X ′′ = X[(i−1)b+1,...,ib].

60

For each good j ∈ [b], define Gj ∈ {0, 1}db(i−1)+j−1 as the set prefixes to step j that are δ-good
for X . Additionally, for each good j, define Wj(x1, . . . , xib) as the indicator random variable
whether x1, . . . , xb(i−1)+j−1 6∈ Gj . Let W =

∑
good jWj . By linearity of expectation:

EX′,X′′ [W] = EX′,X′′

 ∑
good j

Wj

 ≤ ρb
Thus by Markov:

Pr
X′,X′′

[W ≥ √ρb] ≤ √ρ

Now define B ⊂ {0, 1}db(i−1) as the set of prefixes a to the current block i such that:

Pr
X′′

[
W ≥ √ρb

∣∣X ′ = a
]
> ρ1/4

By averaging, we know that Pr[X ′ ∈ B] < ρ1/4. Now consider any prefix a outside of B. We show
that conditioned on this prefix, the distribution of X ′′ is close to high min-entropy.

For the rest of this proof, for convenience and brevity, we use Xj to refer to the distribution of
X(i−1)b+j conditioned on a good fixed prefix a outside of B. Furthermore, for the rest of this proof,
all random variables, expectation statements and probability statements are implicitly conditioned
on a.

Let E1 be the event that W ≥ √ρb. Notice that since we’re implicitly conditioning on a prefix a
outside of B, Pr[E1] ≤ ρ1/4. Let p(x) = Pr[X ′′ = x]. Now:

Pr
x∼X′′

[p(x) ≥ r] ≤ Pr
x∼X′′

[p(x) ≥ r|E1] + ρ1/4

We now bound the probability of Prx∼X′′ [p(x) ≥ r|E1]. Again for convenience, all notation beyond
this point is implicitly conditioned on E1. Conditioned on the fact that W <

√
ρb, we know there

exists at least (1−
√
λ)b−√ρb = (1−

√
λ−√ρ)b steps j in the block that such that the distribution

of Xj conditioned on its respective prefix has Shannon entropy at least δd.
For convenience, denote Xj as the j-th step in the current block. For each ` ∈ [(1−

√
λ−√ρ)b],

let J `(x1, . . . , xb) ∈ [b] be the random variable denoting the `-th step in the block j such that
H(Xj |X[1,...,j−1] = x[1,...,j−1]) ≥ δd.

Define Y`(x1, . . . , xb) as the indicator random variable that is 1 if and only if

Pr[XJ` = xJ` |X[1,...,J`−1] = x[1,...,J`−1]] ≥
1

Dδ/3
.

Let Y =
∑

` Y`. First, we observe that:

E[Y] =
∑
`

E[Y`] ≤
(

1−√ρ−
√
λ
)
b · E[Y`] ≤ (1− δ/3)

(
1−√ρ−

√
λ
)
b ≤

(
1−

(
δ

3
+
√
ρ+
√
λ

))
b

Where we used Corollary 3.9 for to bound E[Y`]. We define the Doob martingale

Z` = E[Y |X1, . . . , XJ`]

61

with the convention thatZ0 = E[Y]. Note further thatZb = Y . Further, we know that |Zj−Zj−1| ≤ 1
for all j. Thus, by the Azuma-Hoeffding inequality, we get

Pr

[
Y −

(
1−

(
δ

3
+
√
ρ+
√
λ

))
b >

1

2

(
δ

3
+
√
ρ+
√
λ

)
b

]
≤ Pr

[
Zb − Z0 >

1

2

(
δ

3
+
√
ρ+
√
λ

)
b

]
≤ e−δ2b/36

Finally, we observe that for any x1, . . . , xb s.t.

Y (x1, . . . , xb) ≤

(
1− δ

6
−
√
ρ

2
−
√
λ

2

)
b

has probability at most:

(
D−δ/3

)(1−√ρ−
√
λ)b−

(
1− δ

6
−
√
ρ

2
−
√
λ

2

)
b

= D−δ
2/36+δ

√
ρ/6+δ

√
λ/6.

B Maintaining Constant Entropy Gap Throughout the Walk

Here we continue our discussion on a truly online construction that maintains constant entropy
gap at all intermediate steps in the case of λ = 0.

Theorem B.1 (online condensing from almost CG sources). For any constants δ, ε, γ > 0, and any
constant integer d ≥ 1, there exists a pair of algorithms (Update,Output) such that the following holds.

• Update takes as input a state string s ∈ {0, 1}?, and x ∈ {0, 1}d, and outputs in time polynomial in
|s| a new state string s′ with |s′| ≤ |s|+O(1).

• Output takes as input a state string s ∈ {0, 1}? and outputs a string Output(s) in time O(|s|).

• For any γ-almost δ-CG source X = X1 ◦ · · · ◦ Xt with Xi ∼ {0, 1}d, for the sequence of states
si = Update(si−1, Xi) (for some fixed s0), for every i, Output(si) is a source on Ω(δdi) bits with
constant entropy gap.

We now briefly discuss why we can support the above theorem given our techniques.

The State. The state s will contain the following information.

• A vertex in a “big graph” Gi from [CRVW02]. G0 will be of some appropriate constant size.
Note that we never store the entire graph, simply an encoding of a vertex within the graph.
The vertex is initialized arbitrarily.

• A vertex in a “small graph” H that is an optimal lossless expander of appropriate constant
size found via brute force. The vertex is initialized arbitrarily.

62

• A “buffer” of constant length containing the sequence of the most recently seen Xi-s. The
buffer is initialized to be empty.

• A counter of the number of steps taken in H .

• A counter of the number of steps taken in Gi.

The Update Function. Given a current state, the function Update will behave as follows.

• We append the current Xi to the buffer.

• If the sequence of elements in the buffer is long enough to define a step in H , we take a step
in H according the sequence, and reset the buffer to empty.

• If the number of (recent) steps in H is enough to ensure that the distribution on H has ample
entropy, we use the vertex position of H to take a step in Gi. We reset the position in H to an
arbitrary fixed vertex.

• If the number of (recent) steps inGi is enough to ensure that the distribution onGi is saturated
with entropy, we append an appropriate constant number of 0-s to the encoding of the vertex
in Gi. We then treat this as an encoding of a vertex in a [CRVW02] graph Gi+1 that is a
constant times larger than Gi, but with the same degree.

The Output Function. The function Output will simply return the current vertex v in Gi.

The fact that the current vertex distribution always has constant entropy gap follows from
the fact that the current graph Gi is never more than a constant times larger than the current
entropy. The easiest way to view the embedding process in the last part of the update function is
via the lossless conductor view of the [CRVW02] construction. We take a step in the larger Gi+1 by
applying the lossless conductor with the vertex encoding as the source. Clearly the operation of
appending 0-s preserves the q-norm of the distribution and so, by Theorem 5, each step in any Gi
gradually increases the entropy in the vertex encoding.

C The Construction’s Runtime

Our construction is explicit, which is evident by our use of explicit ingredients. But since we also
care about fast simualtion via almost CG sources, it is appealing to determine the runtime more
accurately.

Claim C.1 (condenser runtime). Given t, d, δ, γ, λ, let Cond : {0, 1}dt → {0, 1}m be the condenser from
Theorem 5.3. Then, given x ∼ X , where X is a (γ, λ)-almost δ-CG source over n = dt bits, we can compute
Cond(x) in time Õ(n2). (In the TM model.)

Proof: The construction amounts to taking steps on a constant-sizedH (which can be written down
in constant time) and the CRVW graph G, over {0, 1}m, where m < n. Thus, we can bound the
runtime of Cond by n · T , for T being the time it takes to compute ΓG, the neighborhood function of
G.

63

Inspecting the construction of [CRVW02] for the balanced case, we see that the only non
constant-sized object that is being applied is a permutation conductor, which can be implemented by
taking a step on a constant-degree spectral expander, say a Ramanujan graph Γ over U = 2m−O(1)

vertices. For concreteness, we take the LPS Ramanujan graph [LPS88]. Each vertex in Γ is indexed
by a 2× 2 matrix over a prime field Fq of cardinality O(U).34 The graph Γ is a Cayley graph with a
set of generators that can be precomputed in linear time. Taking a single step over Γ amounts to
matrix multiplication, which then amounts to performing a constant number of field operations.
The bit complexity of addition and multiplication in Fq is Õ(log q) = Õ(n). Overall, computing
Cond takes Õ(n2) time.

Clearly, the same holds for condensing from Shannon entropy (Theorem 6.3) and the suffix-friendly
analogues.

To establish the runtime of extraction, we simply need to account for the time it takes to compute
the [GW97] extractor.

Claim C.2 (extractor runtime). The extractors from Section 7, set to extract with constant error ε > 0,
run in time Õ(n2), where n is the length of the corresponding source. (In the TM model.)

Proof: To extract from the condensed output, we apply the [GW97] extractor from Theorem 2.12
on input of length m and constant-length seed. Very roughly, computing the GW extractor amounts
to taking a length-O(log(1/ε)) walk over a spectral expander, followed by an application of a
two-universal family of hash functions. As we consider the constant error regime, this can be done
in time Õ(n). Thus, the condenser’s runtime is the dominant factor. We refer the reader to the
appendix of [DMOZ20] for a detailed review of the [GW97] construction.

Runtime in the RAM Model. The runtime analysis in the above two claims was done in the
standard Turing machine model. However, for applications, we often care more about the RAM
model, in which we assume that we perform arithmetic operations in Fq at unit cost, even when q
is exponential in n (note that it takes log q bits to store a field element, and in the RAM model we
assume this is the word size). When each field operations takes constant time, it is easy to verify
both our condensers and extractors run in time linear in n.

D An Analog of Unique Neighbor Expansion

The following definition is a generalization of the notion of “unique neighbor expansion” in
expander graphs. Although the notion is not necessary for our result, we believe it is interesting in
its own right.

Definition D.1. Let G = (U, V,E). Let w : U → [0,∞) be a weight function on U . We define
Ndiff(w) : V → R as:

Ndiff(w)(v) = w(uv)−
∑

u∈Γ(v)\uv

w(u)

We will also use |Ndiff(w)| to denote
∑

v∈V Ndiff(w)(v). Note that here, the meaning of | · | is different than
the standard `1-norm of the weight function. Some terms, and thus even the whole sum, can be negative.

34The LPS construction works only for certain primes, but we can handle this without significant loss in parameters.

64

We can then show that a generalized notion of unique neighbor expansion holds under this
definition.

Lemma D.2. Let G = (U, V,E) be a (K, ε, e)-expander for any e. For all weight functions w : U → [0,∞)
supported on at most K nodes, it holds that

|Ndiff(w)| ≥ (1− 2ε)D|w|.

Proof: Observe that

D|w| =
∑
v∈V

w(uv) +
∑

u∈Γ(v),u 6=uv

w(u)

 = |N (w)|+
∑
v∈V

∑
u∈Γ(v),u 6=uv

w(u).

Thus, we have
D|w| − |N (w)| =

∑
v∈V

∑
u∈Γ(v),u6=uv

w(u).

Since |N (w)| ≥ (D − εD)|w|, we have

εD|w| ≥
∑
v∈V

∑
u∈Γ(v),u6=uv

w(u).

Finally, ∑
v∈V
Ndiff(w)(v) = D|w| − 2

∑
v∈V

∑
u∈Γ(v),u 6=uv

w(u) ≥ (D − 2εD)|w|.

65

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

