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Abstract

We study the query complexity of one-sided ϵ-testing the class of Boolean functions f :
Fn → {0, 1} that describe affine subspaces and Boolean functions that describe axis-parallel
affine subspaces, where F is any finite field. We give a polynomial-time ϵ-testers that ask
Õ(1/ϵ) queries. This improves the query complexity Õ(|F|/ϵ) in [16].

We then show that any one-sided ϵ-tester with proximity parameter ϵ < 1/|F|d for the
class of Boolean functions that describe (n − d)-dimensional affine subspaces and Boolean
functions that describe axis-parallel (n − d)-dimensional affine subspaces must make at least
Ω(1/ϵ+ |F|d−1 log n) and Ω(1/ϵ+ |F|d−1n) queries, respectively. This improves the lower bound
Ω(log n/ log log n) that is proved in [16] for F = GF(2). We also give testers for those classes
with query complexity that almost match the lower bounds.1

1 Introduction

Property testing of Boolean function was first considered in the seminal works of Blum, Luby, and
Rubinfeld [3] and Rubinfeld and Sudan [22] and has recently become a very active research area.
See, for example, the works referenced in the surveys and books [12, 14, 20, 21].

Let F be a finite field. A Boolean function f : Fn → {0, 1} describes a (n − d)-dimensional
affine subspace if f−1(1) ⊆ Fn is a (n− d)-dimensional affine subspace. We denote the class of all
such functions by d-AS. The class AS= ∪kk-AS and (≤ d)-AS= ∪k≤dk-AS. A Boolean function
f : Fn → {0, 1} describes an axis-parallel (n− d)-dimensional affine subspace if f−1(1) ⊆ Fn is an
axis parallel (n− d)-dimensional affine subspace, i.e., there are d entries 1 ≤ i1 < i2 < · · · < id ≤ n
and constants λi ∈ F , i ∈ [d], such that f−1(1) = {a ∈ Fn|ai1 = λ1, . . . , aid = λd}. We denote
the class of all such functions by d-APAS. In the same way, we define the class APAS and (≤ d)-
APAS. If in the above definitions, instead of “affine subspace” we have “linear subspace”, then we
get the classes d-LS, LS, (≤ d)-LS, d-APLS, APLS and (≤ d)-APLS. Those classes are studied
in [13, 16, 19].

A related classes of Boolean functions f : {0, 1}n → {0, 1} that are studied in the literature, [4,
6, 7, 8, 10, 13, 16, 19], are d-Monomial (conjunction of d negated Boolean variables)2, Monomial
(conjunction of negated Boolean variables), (≤ d)-Monomial (conjunction of at most d negated

1See the definitions of the classes in the introduction and many other results in Tables 1 and 2.
2In the literature, this class is defined as conjunction of d (non-negated) variables. Testability of f for this class

is equivalent to testability of f(x + 1n) of d-Monomial as defined in this paper. The same applies to the classes
(≤ d)-Monomial and Monomial.
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Boolean variables), d-Term (conjunction of d literals3), Term (conjunction of literals), (≤ d)-
Term (conjunction of at most d literals). Those are equivalent to the two family of classes APLS
(for Monomial) and APAS (for Term) over the binary field GF(2).

In property testing a class C of Boolean functions, a tester for C is a randomized algorithm
T that has access to a Boolean function f via a black-box oracle that returns f(x) when a point
x is queried. Given a proximity parameter, ϵ, if f ∈ C, the tester T accepts with probability at
least 2/3, and if f is ϵ-far from C (i.e., for every g ∈ C, Prx[f(x) ̸= g(x)] > ϵ) then it rejects
with probability at least 2/3. We say that T is a one-sided tester if it always accepts when f ∈ C;
otherwise, it is called a two-sided tester.

Testers for the above classes were studied in [4, 6, 8, 10, 13, 16, 19]. In [19], Parnas et al. gave
two-sided testers for the above classes that make O(1/ϵ) queries. See also [4, 13]. The one-sided
testers were studied by Goldreich and Ron in [16]. They gave a polynomial-time one-sided testers
for the classes AS, APAS, LS, (≤ d)-LS, APLS and (≤ d)-APLS that make Õ(|F|/ϵ) queries4.
In this paper, we give a polynomial-time5 testers for these classes that make Õ(1/ϵ) queries.

For the classes d-AS and d-APAS, Goldreich and Ron gave the lower bound Ω(1/ϵ + log n/
log logn) for the query complexity of any tester when F = GF(2) and ϵ ≤ 2−d. In this paper, we
give the lower bounds Ω(1/ϵ + |F|d−1n) and Ω(1/ϵ + |F|d−1 log n), respectively, for the proximity
parameter ϵ < 1/|F|d. We also give testers for those classes with query complexity that almost
match the lower bounds.

See other results in Table 1 and 2 and the tester with self-corrector in the Appendix.

2 Overview of the Testers and the Lower Bounds

2.1 The Algorithm for Functions that describe Affine and Linear Subspace

In this section, we give the one-sided testers for AS, LS and (≤ d)-LS.
Our tester that tests whether a function describes an affine subspace, AS, is built on the

reduction of Goldreich and Ron’s [16] and four stages. For completeness, we first present Goldreich
and Ron’s reduction. They show that testing whether a function f(x) describes an affine subspace
(resp. axis-parallel affine subspace) can be randomly reduced to testing whether h(x) = f(x + a)
describes a linear subspace (resp. axis-parallel linear subspace) where a ∈ f−1(1). This follows
from the fact that if f−1(1) = u + L for some linear subspace L ⊆ Fn, then for any a ∈ f−1(1),
f−1(1) = a+ L and, therefore, h−1(1) = L.

Thus, in the reduction, the tester accepts if f is evaluated to 0 on uniformly at random O(1/ϵ)
points6. Otherwise, let a be a point such that f(a) = 1. Then they run the tester for functions
that describe linear subspaces to test f(x+ a). See more details in [16] Section 4.

The above reduction reduces the problem of testing AS to testing LS. Now, for testing LS we
have four stages. In the following three stages, we show how to test whether the function describes
a well-structured (n − d)-dimensional subspace. A function describes a well-structured (n − d)-
dimensional subspace if f−1(1) = {(a, ϕ(a))|a ∈ Fn−d}, where ϕ : Fn−d → Fd is a linear function.

3A literal is a variable or its negation.
4They also gave a tester for (≤ d)-AS∪{z(x)} and (≤ d)-APAS∪{z(x)} with the same query complexity where

z(x) is the zero function.
5Goldreich and Ron algorithm and our algorithm run in time linear in the number of queries
6If f is ϵ-far from AS, then it is ϵ-far from the function h(x) that satisfies h−1(1) = {0n}. Therefore, whp, some

point a satisfies f(a) = 1. This is not true for (≤ d)-AS because h ̸∈ (≤ d)-AS.
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Class/Theo. Lower Bound Upper Bound ϵ

AS Ω(1/ϵ) Õ(1/ϵ) < 1
2

1,27 0 0 > 1
2

(≤ d)-AS Ω(1/ϵ+ |F|d−1n) Õ(1/ϵ) + Õ(|F|d)n † < 1
|F|d

Ω(1/ϵ) Õ(1/ϵ) +O(1/(ϵ− 1/|F|d)) > 1
|F|d

6,13,24,27 0 0 > 1
2

d-AS Ω(1/ϵ+ |F|d−1n) Õ(1/ϵ) + Õ(|F|d)n † < 1
|F|d

Ω(1/ϵ+ n) Õ(1/ϵ) + Õ(|F|d)n † < 1− 1
|F|d

Ω(1) O(1/(ϵ− 1 + |F|−d)) > 1− 1
|F|d

6,7,13,22,27 0 0 > 1− 1
|F|d+

‡

APAS Ω(1/ϵ) Õ(1/ϵ) > 1
2

3,27 0 0 > 1
2

(≤ d)-APAS Ω(1/ϵ+ |F|d−1 log n) Õ(1/ϵ) + |F|d+o(d) log n < 1
|F|d

Ω(1/ϵ) Õ(1/ϵ) +O(1/(ϵ− 1/|F|d)) > 1
|F|d

8,18,24,27 0 0 > 1
2

d-APAS Ω(1/ϵ+ |F|d−1 log n) O(1/ϵ) + |F|d+o(d) log n < 1
|F|d

Ω
(
1
ϵ +min

(
log(1/ϵ)
log |F| , d

)
· log n

d

)
O(1/ϵ) + |F|d+o(d) log n < 1− 1

|F|d

Ω(1) O(1/(ϵ− 1 + |F|−d)) > 1− 1
|F|d

8,10,18,22,27 0 0 > 1− 1
|F|d+

LS Ω(1/ϵ) Õ(1/ϵ) < 1
2

1,27 0 0 > 1
2

(≤ d)-LS Ω(1/ϵ) Õ(1/ϵ) < 1
2

2,27 0 0 > 1
2

d-LS Ω(1/ϵ+ n) Õ(1/ϵ) +O(|F|dn) < 1− 1
|F|d

Ω(1) O(1/(ϵ− 1 + |F|−d)) > 1− 1
|F|d

7, 12,20,27 0 0 > 1− 1
|F|d+

APLS Ω(1/ϵ) Õ(1/ϵ) > 1
2

3,27 0 0 > 1
2

(≤ d)-APLS Ω(1/ϵ) Õ(1/ϵ) > 1
2

4,27 0 0 > 1
2

d-APLS Ω
(
1
ϵ +min

(
log(1/ϵ)
log |F| , d

)
· log n

d

)
O
(
1
ϵ +min

(
log(1/ϵ)
log |F| , d

)
· log n

d

)
< 1
|F| −

1
|F|d

Ω(1) O(1/(ϵ− |F|−1 + |F|−d) + log n) > 1
|F| −

1
|F|d

Ω(1) O(1/(ϵ− 1 + |F|−d)) > 1− 1
|F|d

10,14,16,20,27 0 0 > 1− 1
|F|d+

Figure 1: A table of the lower bounds and upper bounds achieved in this paper. Any upper bound
(resp. lower bound) for the proximity parameter ϵ is also an upper bound for ϵ′ ≥ ϵ (resp. ϵ′ ≤ ϵ).
† Those testers are exponential time testers. ‡ |F|−d+ means |F|−d + o(|F|−d). See Th. 26 and Lem. 19
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Class/Corollary Lower Bound Upper Bound ϵ

Term Ω(1/ϵ) Õ(1/ϵ) < 1
2

5,28 0 0 > 1
2

(≤ d)-Term Ω(1/ϵ+ 2d log n) Õ(1/ϵ) + 2d+o(d) log n < 1
2d

Ω(1/ϵ) Õ(1/ϵ) +O(1/(ϵ− 1/2d)) > 1
2d

9,19,25,28 0 0 > 1
2

d-Term Ω(1/ϵ+ 2d log n) O(1/ϵ) + 2d+o(d) log n < 1
2d

Ω
(
1
ϵ +min (log(1/ϵ), d) · log n

d

)
O(1/ϵ) + 2d+o(d) log n < 1− 1

2d

Ω(1) O(1/(ϵ− 1 + 2−d)) > 1− 1
2d

9,11,19,23,28 0 0 > 1− 1
2d
+‡

Monomial Ω(1/ϵ) Õ(1/ϵ) < 1
2

5,28 0 0 > 1
2

(≤ d)-Monom. Ω(1/ϵ) Õ(1/ϵ) < 1
2

Ω(1/ϵ) O(1/ϵ) + Õ(22d) < 1
2

5,28,29 0 0 > 1
2

d-Monomial Ω
(
1
ϵ +min (log(1/ϵ), d) · log n

d

)
O
(
1
ϵ +min (log(1/ϵ), d) · log n

d

)
< 1

2 −
1
2d

Ω(1) O(1/(ϵ− 1/2 + 2−d) + log n) > 1
2 −

1
2d

Ω(1) O(1/(ϵ− 1 + 2−d)) > 1− 1
2d

11,15,17,21,28 0 0 > 1− 1
2d
+

Figure 2: A table of the lower bounds and upper bounds achieved in this paper for Term and
Monomial.
‡ 2−d+ means 2−d + o(2−d). See Theorem 26 and Lemma 19

Then, in the fourth stage, we show how to test whether a function describes a linear subspace using
the first three stages.

In the first stage, we give a tester that tests whether f is a function that describes a well-
structured (n − d)-dimensional injective relation. That is, it satisfies: For every a ∈ Fn−d, there
is at most one b ∈ Fd such that f(a, b) = 1. The class of such functions is denoted by d-R.
We show that if f is ϵ-far from d-R, then there are α, β < 1 such that αβ = O(ϵ/ log(1/ϵ)) and
Pra∈Fn−d [Prb∈Fd [f(a, b) = 1] ≥ β] ≥ α. Then with a proper double search, the tester, with high
probability, can find a, b(1) ̸= b(2) such that f(a, b(1)) ̸= f(a, b(2)) and reject. If f ∈ d-R, then no
such a, b(1) ̸= b(2) can be found. Therefore, this is a one-sided tester. The query complexity of this
stage is Õ(log2(1/ϵ)/ϵ) = Õ(1/ϵ).

In the second stage, we give a tester that tests whether f describes a well-structured (n − d)-
dimensional bijection. That is: For every a ∈ Fn−d, there is exactly one b ∈ Fd such that f(a, b) =
1. The class of such functions is denoted by d-F. The tester for d-F first runs the above tester for
d-R with proximity parameter ϵ/2 and rejects if it rejects. So, we may assume that f is ϵ/2-close to
d-R. Define the function Rf : Fn−d → Fd ∪ {⊥} where Rf (a) is equal to the first b ∈ Fd (in some
total order) that satisfies f(a, b) = 1 and ⊥ if no such b exists. We show that if f is ϵ/2-close to d-R
and ϵ-far from d-F then7 Pr[Rf (a) =⊥] ≥ ϵ|F|d/2. See details in Section 3. Since computing Rf (a)

7if |F|dϵ > 2, the tester accepts. This is because any function in d-R is |F|n−d/|F|n ≤ 1/|F|d ≤ ϵ/2 close to any
function in d-F. Therefore, if f is ϵ/2-close to d-R, and |F|dϵ > 2 then it is ϵ-close to d-F.
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takes |F|d queries, the query complexity of testing whether Pr[Rf (a) =⊥] ≥ ϵ|F|d/2 is O(1/ϵ).
This is also a one-sided tester because when f ∈ d-F, Pr[Rf (a) =⊥] = 0. The query complexity of
this stage is Õ(1/ϵ).

In the third stage, we give a tester that tests whether a function f describes a well-structured
(n− d)-dimensional linear subspace. The class of such functions is denoted by d-WSLS. First, the
tester runs the tester for d-F with proximity parameter ϵ/2 and rejects if it rejects. Now define a
function Ff : Fn−d → Fd where Ff (a) = Rf (a) if RF (a) ̸=⊥ and f(a, b) = 0d otherwise. We show
that if f is ϵ-far from d-WSLS and ϵ/2-close to d-F, then Ff is (|F|dϵ/2)-far from linear functions.
See details in Section 3. The tester then uses the testers in [3, 22] to test if Ff is (|F|dϵ/2)-far
from linear functions. Since computing Ff (a) takes |F|d queries and the testers in [3, 22] make
O(2/(ϵ|F|d) queries, the query complexity of this test is O(1/ϵ). Since the testers in [3, 22] are
one-sided, this tester is also one-sided. The query complexity of this tester is Õ(1/ϵ).

Now, in the fourth stage, we give a tester that tests whether f describes a linear subspace.
Recall that the class of such functions is denoted by LS. The tester at the (d+1)-th iteration uses
a non-singular n× n matrix M such that fd(x) := f(xM) satisfies

1. If f is ϵ-far from LS then fd is ϵ-far from LS.

2. If f ∈ LS then fd ∈ LS.

3. If f ∈ LS then f−1d (1) = {(a, ϕ(a))|a ∈ L} for some linear subspace L ⊆ Fn−d and linear
function ϕ : Fn−d → Fd.

Items 1 and 2 are true for any non-singular matrix M . At the (d + 1)-th iteration, the tester
runs the tester that tests whether fd ∈ d-WSLA with proximity parameter ϵ/2 and accepts if it
accepts. We show that if fd ∈ LS and the tester rejects, then it is because some a ∈ Fn−d has
no b ∈ Fd, such that fd(a, b) = 1. In that case, the tester does not reject and uses the point
(a, 0d) ∈ Fd to construct a new non-singular matrix M ′ such that fd+1 = f(xM ′) satisfies the
above items 1-3. Items 1 and 2 hold for fd+1 because M ′ is non-singular. For item 3, we will
have, if f ∈ LS, then f−1d+1(1) = {(a, ϕ′(a))|a ∈ L′} for some linear subspace L′ ⊆ Fn−d−1 and

a linear function ϕ′ : Fn−d−1 → Fd+1. The tester then continues to the (d + 2)-th iteration if
d < (2 + log(1/ϵ)/ log |F|); otherwise, it accepts.

If f ∈ LS, then at each iteration, the tester either accepts or moves to the next iteration. Also,
when d = (2 + log(1/ϵ)/ log |F|), the tester accepts. So, this tester is one-sided.

On the other hand, if f is ϵ-far from LS, then it is ϵ-far from the function h that satisfies h−1(1) =
{0n} (which is in LS). Therefore,8, Pr[f ̸= 0] ≥ ϵ/2. Now since for d = 2 + log(1/ϵ)/ log |F|,
every function g in d-R satisfies Pr[g(x) = 1] ≤ |F|−d ≤ ϵ/4, the tester of d-WSLA, with high
probability, rejects when it calls the tester of d-R.

Therefore, this tester is one-sided, and its query complexity is Õ(1/ϵ). This completes the
description of the tester of the class LS.

The above tester also works for testing the class (≤ k)-LS. The only change is that the tester
rejects if d > k.

2.2 The Algorithm for Functions that describe Axis-Parallel Affine Subspace

The class of functions that describe axis-parallel affine subspace and the class of functions that
describe axis-parallel linear subspace are denoted by APAS and APLS, respectively. Then d-

8This is true since Pr[f ̸= 0] ≥ Pr[f ̸= h]−Pr[h ̸= 0] ≥ ϵ−1/|F|n. Now we may assume that ϵ ≥ 2/|F|n because,
otherwise, we can query f in all the points using O(|F|n) = O(1/ϵ) queries.
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APAS, d-APLS, (≤ d)-APAS, and (≤ d)-APLS are defined similarly to those in the previous
subsection. When the field is F = GF(2), those classes are equivalent to Term, Monomial,
d-Term, d-Monomial, (≤ d)-Term, and (≤ d)-Monomial, respectively.

We first give an overview of the testers for APAS and APLS. As in the previous section,
the reduction of Goldreich and Ron reduces the problem of testing whether the function describes
an axis-parallel affine subspace (APAS) to testing whether the function describes an axis-parallel
linear subspace (APLS).

The tester for testing whether the function describes an axis-parallel linear subspace, first runs
the tester for LS with proximity parameter ϵ/100 and rejects if it rejects. Then it draws uniformly
at random x, y, z ∈ f−1(1) and tests if f(wx,y + z) = 1 where for every i ∈ [n], wx,y

i = 0 if
xi = yi = 0 and wx,y

i ∈ {0, 1} drawn uniformly at random, otherwise. If f(wx,y + z) = 1, then the
tester accepts; otherwise, it rejects.

We show that if f ∈ APLS, then with probability 1, f(wx,y + z) = 1. This fact is obvious.
We also show that if f is ϵ-far from APLS and ϵ/100-close to LS, then with constant probability
f(wx,y + z) ̸= 1. Obviously, this tester is one-sided and makes Õ(1/ϵ) queries.

We give some intuition for why the latter is true. Let f be ϵ-far from APLS and ϵ/100-close to
LS. If f−1(1) is very close to a linear subspace L, then, for a uniformly at random x, y, z ∈ f−1(1),
with high probability, x, y, z are in L. Then, since f−1(1) is ϵ-far from APLS, L is also Ω(ϵ)-far
from APLS. So assuming x, y ∈ L, with high probability, wx,y is not in L. This follows from the
fact that, if L ∈ LS\APLS, then some entry in the points in L is a non-zero linear combination of
the other entries; therefore this entry is, whp, uniformly at random in wx,y. Thus, whp, wx,y ̸∈ L,
but not necessarily (whp) not in f−1(1) because wx,y is not a uniformly random point. So we
need to add some randomness to wx,y, which is why we add a random z to wx,y. Then, assuming
x, y, z ∈ L, whp, wx,y + z is not L. Now since z is almost random uniform in L and wx,y is not in
L, whp, wx,y + z is an almost random uniform point in some coset outside L. Then again, since
f−1(1) is very close to L, we get, whp, wx,y + z ̸∈ f−1(1). This implies that, whp, f(wx,y + z) ̸= 1.
See details in Section 6.

Now for testing the class (≤ d)-APLS, we prove that if f is (ϵ/100)-close to APLS and (ϵ/100)-
close to (≤ d)-LS, then it is ϵ-close to (≤ d)-APLS. So we run the tester for APLS and (≤ d)-LS,
with proximity parameter ϵ/100, and accept if both accept.

2.3 Lower Bound for Testing Classes with Fixed/Bounded Dimension

For the class of Boolean functions that describe (n − d)-dimensional affine/linear subspaces (d-
AS and d-LS) and Boolean functions that describe axis-parallel (n − d)-dimensional affine/linear
subspaces (d-APAS and d-APLS), we give lower bounds that depend on n, the number of variables.
See Tables 1 and 2 and the proofs in Section 7.

Here we will give the technique used to prove the lower bound for the class d-APLS. For this
class, we give the lower bound

Ω

(
1

ϵ
+min

(
log(1/ϵ)

log |F|
, d

)
· log n

d

)
for the query complexity.

First, the lower bound Ω(1/ϵ) follows from [5]. Then any tester for the above classes can
distinguish between functions in the class d-APLS and d′-APLS for d′ = min(log(1/ϵ)/ log |F|, d)−
1. This is because the distance between any function in d′-APLS and a function in d-APLS is at
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least ϵ. Since the tester is one-sided, using Yao’s principle, we show that there is a deterministic
algorithm that can distinguish between all the functions in d-APLS and a subclass C ⊆ d′-APLS
of size |C| ≥ (2/3)|d′-APLS|. We then show that for any f ∈ C, this algorithm asks queries that
eliminate all possible entries in the points of f−1(1) that are not identically zero, except for at most
d entries. Therefore, with d more queries, we get an exact learning algorithm for C. Thus, the
number of queries of the tester must be at least the information-theoretic lower bound for learning
C minus d, which is log |C| − d. This gives the lower bound.

3 Definitions and Preliminary Results

Let F be a finite field of q = |F| elements, and B(F) be the set of all Boolean functions f : Fn →
{0, 1}. We say that f ∈ B(F) describes a well-structured (n − d)-dimensional injective relation if
for every a ∈ Fn−d, there is at most one element b ∈ Fd such that9 f(a, b) = 1. The class of such
functions is denoted by d-R. Here F0 = {()}, so every Boolean function describes a well-structured
n-dimensional injective relation. That is 0-R= B(F).

For a class C ⊆ B(F) and functions f, g ∈ B(F) we define dist(f, g) = Pr[f(x) ̸= g(x)] and
dist(f, C) = minh∈C dist(f, h). For any f ∈ B(F) define the function Rf : Fn−d → Fd ∪ {⊥},
⊥̸∈ Fd, where Rf (a) is equal to the minimum b ∈ Fd (in some total order over Fd) that satisfies
f(a, b) = 1 and Rf (a) =⊥ if no such b exists. If d = 0, we have Rf : Fn → {(),⊥}, where Rf (a) = ()
if f(a) = 1 and Rf (a) =⊥ if f(a) = 0. For any f ∈ B(F) define fR ∈ B(F) as fR(a, b) = 1 if
b = Rf (a) and fR(a, b) = 0 otherwise. The proof of the following lemma is straightforward.

Lemma 1. We have

1. Rf (a) can be computed using qd queries to f .

2. fR(a, b) can be computed using qd queries to f .

3. fR ∈ d-R.

4. If f ∈ d-R then fR = f .

5. dist(f, d-R) = dist(f, fR).

We now show

Lemma 2. Let q = |F| and r = max(0, d log q − log(2/ϵ)). If f is ϵ-far from d-R then there is ℓ0,
r + 1 ≤ ℓ0 ≤ d log q such that for

α =
ϵqd

2ℓ0+1min(d log q − 1, log(1/ϵ))
, β =

2ℓ0−1

qd

we have Pra∈Fn−d [Prb∈Fd [f(a, b) ̸= fR(a, b)] ≥ β] ≥ α.
In particular,

αβ ≥ ϵ

4 log(1/ϵ)
.

9By f(a, b), we mean the following: If a = (a1, . . . , an−d) and b = (b1, . . . , bd), then f(a, b) =
f(a1, . . . , an−d, b1, . . . , bd).
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Proof. For every a ∈ Fn−d, let ma = |{b ∈ Fd|f(a, b) = 1}|. Let Na = 0 if ma = 0 and Na = ma−1
if ma ≥ 1. Then Na = qdPrb∈Fd [f(a, b) ̸= fR(a, b)]. Since, by Lemma 1, dist(f, fR) = dist(f, d-
R) ≥ ϵ,

Ea[Na] =

∑
aNa

qn−d
≥ ϵqn

qn−d
= ϵqd.

Since Na < qd, we have

ϵqd ≤ Ea[Na] ≤
d log q∑
i=1

2iPra[2
i−1 ≤ Na < 2i]

=

r∑
i=1

2iPra[2
i−1 ≤ Na < 2i] +

d log q∑
i=r+1

2iPra[2
i−1 ≤ Na < 2i]

≤ 2r min(r, 1) + (d log q − r − 1) max
r+1≤i≤d log q

2iPra[2
i−1 ≤ Na < 2i].

Therefore, there is r + 1 ≤ ℓ0 ≤ d log q such that

Pra[2
ℓ0−1 ≤ Na < 2ℓ0 ] ≥ ϵqd − 2r min(r, 1)

2ℓ0(d log q − r − 1)
≥ (ϵ/2)qd

2ℓ0(min(d log q − 1, log(1/ϵ)))
= α.

Therefore,

Pra∈Fn−d [Prb∈Fd [f(a, b) ̸= fR(a, b)] ≥ β] = Pr

[
Na

qd
≥ β

]
≥ Pr[Na ≥ 2ℓ0−1] ≥ α.

We say that f ∈ B(F) describes a well-structured (n − d)-dimensional bijection, if for every
a ∈ Fn−d, there is exactly one b ∈ Fd such that f(a, b) = 1. This class is denoted by d-F. In
particular, f ∈ 0-F if it is the constant 1 function.

We define Ff : Fn−d → Fd where Ff (a) = Rf (a) if Rf (a) ̸=⊥ and Ff (a) = 0d otherwise.
Define fF ∈ B(F) as fF(a, b) = 1 if b = Ff (a) and fF(a, b) = 0 otherwise. The following lemma is
straightforward.

Lemma 3. We have

1. d-F ⊂ d-R.

2. Ff (a) can be computed using qd queries to f .

3. fF(a, b) can be computed using qd queries to f .

4. fF ∈ d-F.

5. If f ∈ d-F then fF = f .

6. dist(f, d-F) = dist(f, fF).

7. dist(fR, fF) = q−dPrx[Rf (x) =⊥].

We now prove

Lemma 4. If f is ϵ/2-close to d-R and ϵ-far from d-F, then Pr[Rf (a) =⊥] ≥ ϵqd/2.
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Proof. By item 5 in Lemma 1, we have dist(f, fR) ≤ ϵ/2. By item 6 in Lemma 3, dist(f, fF) ≥ ϵ.
Therefore, dist(fR, fF) ≥ ϵ/2. By item 7 in Lemma 3, Prx[Rf (x) =⊥] ≥ ϵqd/2.

We say that L ⊆ Fn is a well-structured (n− d)-dimensional linear subspace if there is a linear
function ϕ : Fn−d → Fd such that

L = {(a, ϕ(a)) | a ∈ Fn−d}.

We say that f ∈ B(F) describes a well-structured (n−d)-dimensional linear subspace if f−1(1) is
a well-structured (n−d)-dimensional linear subspace. We denote by d-WSLS the class of Boolean
functions that describes a well-structured (n − d)-dimensional linear subspace. Consider the class
Linear of linear functions Λ : Fn−d → Fd. We show

Lemma 5. We have

1. d-WSLS⊂ d-F.

2. If f ∈ d-WSLS then Rf (x) = Ff (x) ∈Linear.
3. dist(fF, d-WSLS) = q−d · dist(Ff (x),Linear).

Proof. Items 1 and 2 are obvious. For an event X, denote by [X] the indicator random variable of
X. We now prove item 3.

We have

dist(fF, d-WSLS) = min
g∈d-WSLS

dist(fF, g)

= min
g∈d-WSLS

1

qn

∑
a∈Fn−d

∑
b∈Fd

[fF(a, b) ̸= g(a, b)]

= min
g∈d-WSLS

1

qn

∑
a∈Fn−d

[Ff (a) ̸= Fg(a)]

= min
Λ∈Linear

1

qn

∑
a∈Fn−d

[Ff (a) ̸= Λ(a)]

= q−ddist(Ff (x),Linear).

We now prove

Lemma 6. If f is ϵ-far from d-WSLS and ϵ/2-close to d-F, then Ff is (qdϵ/2)-far from Linear.

Proof. If f is ϵ/2-close from d-F, then by item 6 in Lemma 3, dist(f, fF) ≤ ϵ/2. Since dist(f, d-WSLS
) ≥ ϵ we have dist(fF, d-WSLS) ≥ ϵ/2. The by item 3 in Lemma 5, dist(Ff ,Linear) ≥ qdϵ/2.

We say that f ∈ B(F) describes an (n− d)-dimensional affine/linear subspace if f−1(1) ⊆ Fn

is (n − d)-dimensional affine/linear subspace. The classes of such functions are denoted by d-AS
and d-LS, respectively. Denote (≤ d)-AS= ∪d≥k≥0(k-AS) and AS= ∪k≥0(k-AS). Similarly, we
define (≤ d)-LS= ∪d≥k≥0(k-LS) and LS= ∪k≥0(k-LS).

We now prove.
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Lemma 7. For any function f ∈ B(F) and any nonsinglar n× n-matrix M we have

1. If f ∈ LS and h(x) = f(xM),then h ∈ LS and dim(h−1(1)) = dim(f−1(1))

2. dist(f(x),LS) = dist(f(xM),LS).

Proof. For the proof, we use the fact that the map x → xM is a bijection. We have h−1(1) =
{a|h(a) = 1} = {a|f(aM) = 1} = {aM |f(aM) = 1}M−1 = f−1(1)M−1. This implies item 1.

We now prove item 2. Let g(x) ∈ LS. Then, for h(x) = g(xM−1), we have h−1(1) = g−1(1)M .
Therefore g(xM−1) ∈ LS. This also implies that if g(xM−1) ∈ LS, then g(x) = g(xM−1M) ∈ LS.
Therefore g(x) ∈ LS iff g(xM−1) ∈ LS. Now we have

dist(f(x),LS) = min
g(x)∈LS

dist(f(x), g(x)) = min
g(x)∈LS

dist(f(x), g(xM−1))

= min
g(x)∈LS

dist(f(xM), g(x)) = dist(f(xM),LS).

We say that f ∈ B(F) is (n − d)-dimensional axis-parallel linear/affine subspace if there are
d entries i1 < i2 < · · · < id such that f−1(1) = {a ∈ Fn|ai1 = ai2 = · · · = aid = 0} (resp. there
are ξi ∈ F , i ∈ [d] such that f−1(1) = {a ∈ Fn|ai1 = ξ1, ai2 = ξ2, · · · , aid = ξd}). The class of
such functions are denoted by d-APLS and d-APAS, respectively. Similarly, as above, we define
(≤ d)-APLS= ∪d≥k≥0(k-APLS), APLS= ∪k≥0(k-APLS), (≤ d)-APAS= ∪d≥k≥0(k-APAS),
and APAS= ∪k≥0(k-APAS). Obviously, d-APLS⊂ d-LS and d-APAS⊂ d-AS.

4 Three Testers

In this section, we give testers for d-R, d-F and d-WSLS.

Test-d-R(f, ϵ)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject”

1. For ℓ = max(1, d log q − log(1/ϵ)) to d log q

2. Let α(ℓ) = ϵqd

2ℓ+1 min(d log q−1,log(1/ϵ)) , β(ℓ) = 2ℓ−1

qd

3. Draw uniformly at random r = 10/α(ℓ) assignments a(1), . . . , a(r) ∈ Fn−d

Draw uniformly at random s = 10/β(ℓ) assignments b(1), . . . , b(s) ∈ Fd

If there is a(i) and two b(j1) ̸= b(j2) such that f(a(i), b(j1)) = f(a(i), b(j2)) = 1 then Reject
4. Accept.

Figure 3: A tester for d-R.

We first prove

Lemma 8. There is a polynomial-time one-sided tester for d-R that makes

O(min(log(1/ϵ), d log q)2/ϵ) = O(log2(1/ϵ)/ϵ) = Õ(1/ϵ).

queries.

10



Proof. Consider the tester Test-d-R in Figure 3. When d = 0, 0-R = B(F). Since the commands
in the For loop in Test-0-R are not executed, the tester accepts all functions. Now suppose d ≥ 1.
If f ∈ d-R then, (see step 3) there are no a and b(1) ̸= b(2) such that f(a, b(1)) = f(a, b(2)) = 1.
Therefore, the tester accepts with probability 1.

Now suppose f is ϵ-far from d-R. By Lemma 2, there is ℓ0 where max(1, d log q − log(1/ϵ)) ≤
ℓ0 ≤ d log q such that Pra[Prb[f(a, b) ̸= fR(a, b)] ≥ β(ℓ0)] ≥ α(ℓ0). For such ℓ0 in the For loop, the
probability that one of the assignments a(i) satisfies Prb[f(a

(i), b) ̸= fR(a
(i), b)] ≥ β(ℓ0) is at least

1 − (1 − α(ℓ0))
10/α(ℓ0) ≥ 99/100. For such an a(i), the probability that there are two b(j1) ̸= b(j2)

such that f(a(i), b(j1)) = f(a(i), b(j2)) = 1 is at least

1− (1− β(ℓ0))
10/β(ℓ0) − 10

β(ℓ0)
β(ℓ0)(1− β(ℓ0))

10/β(ℓ0)−1 ≥ 99

100
.

Therefore, with probability at least 98/100 > 2/3, the tester rejects.
Since for every ℓ, α(ℓ)β(ℓ) ≥ ϵ/(4 log(1/ϵ)), the query complexity is min(d log q − 1, log(1/ϵ)) ·

100/(α(ℓ)β(ℓ)) = Õ(1/ϵ).

Test-d-F(f, ϵ)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject” with v =empty or v ∈ Fn−d s.t. Rf (v) =⊥

1. If Test-d-R(f, ϵ/2) =Reject then Reject; Return v = empty.
2. For i = 1 to ⌊10/(qdϵ)⌋
3. Draw uniformly at random a ∈ Fn−d

4. If Rf (a) =⊥ then Reject: Return v = a
5. Accept

Figure 4: A Tester for d-F.

We now give a tester for d-F. See Figure 4. Notice that when the tester rejects, it also returns
v ∈ {empty} ∪ Fd. We will use this in the next section. So, we can ignore that for this section.

Lemma 9. There is a polynomial-time one-sided tester for d-F that makes Õ(1/ϵ) queries.

Proof. Consider the tester Test-d-F. By Lemma 8 and (1) in Lemma 1, the query complexity is
Õ(1/ϵ) + (10/(qdϵ))qd = Õ(1/ϵ).

If f ∈ d-F then by item 1 in Lemma 3, f ∈ d-R and therefore Test-d-R in step 1 accepts. For
every a, Rf (a) ̸=⊥, so the tester accepts in step 5.

Now suppose f is ϵ-far from d-F. If f is ϵ/2-far from d-R, then with probability at least 2/3,
the tester rejects in step 1. If f is ϵ/2-close to d-R then by Lemma 4, Pra[Rf (a) =⊥] ≥ ϵqd/2.

Therefore, with probability at least 1 − (1 − ϵqd/2)10/(q
dϵ) ≥ 2/3, the tester rejects in the “For”

loop.

We now prove
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Test-d-WSLS(f, ϵ)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject” with v =empty or v ∈ Fn−d s.t. Rf (v) =⊥
Test-Linear(F, ϵ) tests whether F : Fn−d → Fd is linear or ϵ-far from linear

1. If Test-d-F(f, ϵ/2) =Reject then Reject; Return v (that Test-d-F returns).
2. If Test-Linear(Ff , q

dϵ/2) =Reject then
If for some query a that Test-Linear asks Rf (a) =⊥ then Reject; Return v = a
Otherwise, Reject; Return v =empty.

3. Accept

Figure 5: A Tester for d-WSLS.

Lemma 10. There is a polynomial-time one-sided tester for d-WSLS that makes Õ(1/ϵ) queries.

Proof. Consider the tester Test-d-WSLS in Figure 5. If f ∈ d-WSLS, then, by (1) in Lemma 5,
f ∈ d-F and therefore the algorithm does not reject in step 1. By (2) in Lemma 5, Ff (x) ∈Linear,
and therefore, the tester does not reject in step 2. Thus, the tester accepts with probability 1.

Suppose f is ϵ-far from d-WSLS. If f is ϵ/2-far from d-F, then with probability at least 2/3,
Test-d-F(f, ϵ/2) rejects in step 1. If f is ϵ/2-close to d-F, then by Lemma 6, Ff is qdϵ/2-far from
Linear. Therefore, with probability at least 2/3, Test-Linear(Ff , q

dϵ) rejects.
The query complexity ofTest-d-F is Õ(1/ϵ), and the query complexity ofTest-Linear(Ff , q

dϵ/2)
is O(1/ϵ). The latter follows from item 2 in Lemma 3 and the fact that the testers for linear func-
tions in [3, 22] have query complexity O(1/ϵ).

5 A Tester for AS

We recall the definitions of the classes. We say that f ∈ B(F) describes an (n − d)-dimensional
affine/linear subspace if f−1(1) ⊆ Fn is (n − d)-dimensional affine/linear subspace. The class of
such functions is denoted by d-AS and d-LS, respectively. Denote (≤ d)-AS= ∪d≥k≥0(k-AS) and
AS= ∪k≥0(k-AS). Similarly, we define (≤ d)-LS= ∪d≥k≥0(k-LS) and LS= ∪k≥0(k-LS).

In this section, we prove.

Theorem 1. There are polynomial-time one-sided testers for AS and LS that make Õ(1/ϵ) queries.

Theorem 2. There is a polynomial-time one-sided tester for (≤ d)-LS that makes Õ(1/ϵ) queries.

In this section, we give the proofs of the above theorems for LS and (≤ d)-LS. The reduction
of Goldreich and Ron in [16] section 4 gives the result for AS.

Consider the tester Test-LS in Figure 6. In this tester, In is the n × n identity matrix, and
ej = (0, 0, · · · , 0, 1) ∈ F j . We first prove the following.

Lemma 11. Let L ⊆ Fm be a linear subspace such that em ̸∈ L. Then there is a linear function
ϕ : Fm−1 → F such that L = {(a, ϕ(a))|a ∈ L′} for some linear subspace L′ ⊆ Fm−1.
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Test-LS(f, ϵ)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject”.

1. If f(0n) = 0 then Reject.
2. k ← 0;N = In;
3. While k ≤ m := log(1/ϵ)/ log(q) + 2 do
4. v ← Test-k-WSLS(f(xN), ϵ, δ = 1− 1/(10m)); If Accept, then Accept.
5. If Reject and v =empty then Reject.
6. If Reject and v ̸=empty (Rfk(v) =⊥) then
7. Find a non-singular (n− k)× (n− k) matrix M s.t. v = en−kM

N ← N · diag(M, Ik).
k ← k + 1

8. Accept

Figure 6: A Tester for LS.

Proof. Suppose, for the contrary, that there are no linear function ϕ and linear subspace L′ ⊆ Fm−1

such that L = {(a, ϕ(a))|a ∈ L′}. For u = (u1, . . . , um) ∈ Fm, denote u′ = (u1, . . . , um−1). Let
t = dimL and {b1, . . . , bt} ⊂ Fm be a basis for L. Consider the t × m matrix H that has bi in
its ith row. We have rank(H) = t. The last column in H is independent of the other columns.
Otherwise, L can be expressed as L = {(a, ϕ(a))|a ∈ L′} for some linear subspace L′ ⊆ Fm−1 and
linear function ϕ, and we get a contradiction. Therefore, if we remove the last column of H, we get
a matrix H ′ of rank t− 1. Since b′1, . . . , b

′
t are the rows of H ′, there are λi ∈ F , not all zero, such

that
∑

i λib
′
i = 0m−1. Since b =

∑
i λibi ̸= 0m, b ∈ L, and b′ =

∑
i λib

′
i = 0m−1, we must have that

b = λem for some λ ̸= 0. Therefore λ−1b = em ∈ L. A contradiction.

We are now ready to prove Theorem 1.

Proof. Consider the tester Test-LS in Figure 6. Notice that we added the confidence parameter
δ = 1− 1/(10m) to the tester Test-k-WSLS in step 4. We can achieve this confidence by running
Test-k-WSLS with confidence 2/3, O(logm) = O(log log(1/ϵ)) times.
Completeness: Suppose f ∈LS. Since f−1(1) is a linear subspace, we have 0n ∈ f−1(1) and
f(0n) = 1. Therefore, the tester does not reject in step 1. If f−1(1) = Fn, then f ∈ 0-WSLA and
Test-0-WSLA(f(x), ϵ, δ) in step 4 accepts, and therefore Test-LS accepts. So, we may assume
that dim(f−1(1)) < n.

Consider the “While” loop in the tester and denote by Nk the value of the matrix N in the
(k + 1)th iteration. Let fk(x) = f(xNk). We now prove by induction the following claim, which
implies the completeness of the tester.

Claim 1. We have.

1. As long as n− k > dim(f−1(1)) and the tester does not accept, we have Nk is a non-singular
matrix, dim(f−1k (1)) = dim(f−1(1)), dist(fk,LS) = dist(f,LS), and

f−1k (1) = {(u, ϕk(u)) | u ∈ Lk}
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for some linear subspace Lk ⊆ Fn−k and a linear function ϕk : Lk → Fk.

2. If n− k = dim(f−1(1)), then Lk = Fn−k, and the tester accepts.

3. If n− k = n− log(1/ϵ)/ log q − 3, the tester accepts.

Proof. We prove 1. Obviously, the claim is true for k = 0. We assume it is true for k and prove it
for k + 1.

Since, by item 1 in Lemma 7, n − k > dim(f−1(1)) = dim(f−1k (1)), we have Lk ̸= Fn−k and
therefore dim(Lk) < n− k.

We now show that either Test-k-WSLA(fk(x), ϵ, δ) accepts or returns v ̸=empty, v ̸= 0n−k,
and therefore Rfk(v) =⊥.

In step 4, Test-k-WSLA first calls Test-k-F, which calls Test-k-R on fk. See Figures 5, 4,
and 3. Since10 fk ∈ k-R, Test-k-R does not reject. Therefore, if Test-k-F rejects, it is because
some v satisfies Rfk(v) =⊥. Then Test-k-WSLA tests the linearity of Ffk . Since Rfk(a) = ϕk(a)
is linear for a ∈ Lk, the linearity test fails only if some v ∈ Fn−k\Lk is queried in the linearity test,
in which case Rfk(v) =⊥. So, the tester either accepts or returns v, which satisfies Rfk(v) =⊥.
We now show that v ̸= 0n−k. Since Rfk(v) =⊥, fk(v, u) = 0 for every u ∈ Fk. In particular,
fk(v, 0

k) = 0. Since fk(0
n) = f(0n) = 1, we have v ̸= 0n−k.

We now show that Nk+1 is non-singular. Consider step 7 in the tester. Since v ̸= 0n−k, there
is a non-singular matrix M that satisfies v = en−kM . Since, by the induction hypothesis, Nk is
non-singular, we have Nk+1 = Nk · diam(M, Ik) is a non-singular matrix. By Lemma 7, we have
dim(f−1k+1(1)) = dim(f−1(1)) and dist(fk+1,LS) = dist(f,LS).

Now

f−1k+1(1) = f−1k (1) · diag(M, Ik)
−1 = {(uM−1, ϕk(u))|u ∈ Lk} = {(w, ϕk(wM))|w ∈ LkM

−1}.

Since11 v ̸∈ Lk, en−k = vM−1 ̸∈ LkM
−1 and by Lemma 11, LkM

−1 = {(z, π(z))|z ∈ L′} for
some linear subspace L′ ⊆ Fn−(k+1) and a linear function π : Fn−(k+1) → F . Let ϕ′(z) =
(π(z), ϕk((z, π(z))M)). Then ϕ′ : Fn−(k+1) → Fk+1 is a linear function, and

f−1k+1(1) = {(w, ϕk(wM))|w ∈ LM−1} = {(z, ϕ′(z))|z ∈ L′}.

This completes the proof of 1.
We now prove item 2. Since dim(f−1k (1)) = dim(f−1(1)) = n − k and Lk ⊆ Fn−k, we have

Lk = Fn−k. Now when Lk = Fn−k, fk ∈ k-WSLA and therefore, the tester accepts.
Item 3 follows from steps 3 and 7 in the tester.
This completes the proof of the claim.

Soundness: Let f be ϵ-far from LS. Then, by item 2 in Lemma 7, for any non-singular matrix
N , f(xN) is ϵ-far from LS. In particular, f(xN) is ϵ-far from Test-k-WSLS. Therefore, with
probability at least 1 −m/(10m) = 9/10, it does not accept in the “While” loop. Now, we show
that with probability at least 2/3, it rejects in the “While” loop.

Since f is ϵ-far from LS, it is ϵ-far from the function h that satisfies h−1(1) = {0n} (which is in
LS). Therefore, Pr[f ̸= 0] ≥ ϵ−1/qn ≥ ϵ/2. Now since for k = 2+log(1/ϵ)/ log |F|, every function
g in k-R satisfies Pr[g(x) = 1] ≤ |F|−k ≤ ϵ/4, the tester of k-WSLA, with probability at least
2/3, rejects when it calls the tester of k-R when it reaches k = 2 + log(1/ϵ)/ log |F|. Therefore,
with probability at least 1− 1/3− 1/10 > 1/2, the tester rejects.

10This follows from the fact that if a ∈ Lk, then f(a, ϕk(a)) = 1, otherwise no b satisfies f(a, b) = 1.
11If v ∈ Lk then (v, ϕk(v)) ∈ f−1

k (1) and fk(v, ϕk(v)) = 1 which implies Rfk (v) ̸=⊥. A contradiction.
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For the proof of Theorem 2, we add to the tester in Figure 6, the command
“If k = d+ 1 then Reject.”
between steps 3 and 4. The proof is the same as above.

6 A Tester for APAS

We recall the definitions of the classes. We say that f ∈ B(F) is (n− d)-dimensional axis-parallel
linear/affine subspace if there are d entries i1 < i2 < · · · < id such that f−1(1) = {a ∈ Fn|ai1 =
ai2 = · · · = aid = 0} (resp. there are ξi ∈ F , i ∈ [d] such that f−1(1) = {a ∈ Fn|ai1 = ξ1, ai2 =
ξ2, · · · , aid = ξd}). The class of such functions are denoted by d-APLS and d-APAS, respectively.
Similarly, as in the previous section, we define (≤ d)-APLS= ∪d≥k≥0(k-APLS), APLS= ∪k≥0(k-
APLS), (≤ d)-APAS= ∪d≥k≥0(k-APAS), and APAS= ∪k≥0(k-APAS). Obviously, d-APLS⊂
d-LS and d-APAS⊂ d-AS.

In this section, we prove.

Theorem 3. There are polynomial-time one-sided testers for APAS and APLS that make Õ(1/ϵ)
queries.

Theorem 4. There is a polynomial-time one-sided tester for (≤ d)-APLS that makes Õ(1/ϵ)
queries.

Since Term=APAS and Monomial=APLS over F = GF(2), we have.

Corollary 5. There are polynomial-time one-sided testers for Term, Monomial, and (≤ d)-
Monomial that make Õ(1/ϵ) queries.

Test-APLS(f, ϵ)
Input: Oracle that accesses a Boolean function f : Fn → {0, 1}.
Output: Either “Accept” or “Reject”.

1. If Test-LS(f, ϵ/200) rejects then Reject.
2. For i = 1 to 30.
3. Draw m = O(1/ϵ) elements U ⊆ Fn uniformly at random
4. If there are three distinct x, y, z ∈ U such that f(x) = f(y) = f(z) = 1 then
5. Define w ∈ Fn such that for every i ∈ [n],

wi = 0 if xi = yi = 0 and wi ∈ F random uniform otherwise.
6. If f(w + z) = 0 then Reject.
7. Accept.

Figure 7: A Tester for APLS.

In this section, we prove the theorems for APLS and (≤ d)-APLS. The reduction of Goldreich
and Ron in [16] section 4 gives the result for APAS.

When we write Prx∈H , we mean x is drawn uniformly at random from H. By Prx, we mean
Prx∈Fn .

We first prove
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Lemma 12. Let L be a linear subspace that is not an axis-parallel linear subspace. Let H ⊆ Fn

be any set that is ϵ/100-close to L and Prx[x ∈ H] ≥ ϵ. For any x, y ∈ Fn, define the random
variable wx,y ∈ Fn where wx,y

i = 0 if xi = yi = 0; otherwise wx,y
i is drawn uniformly at random

from F . Then
Prx,y,z∈H,wx,y [wx,y + z ∈ H] ≤ 0.95.

Proof. In this proof, we omit the subscript wx,y from all the probabilities. Since Prx[x ∈ H] ≥ ϵ
and Prx[x ∈ H∆L] ≤ ϵ/100, we have Prx[x ∈ L] ≥ 99ϵ/100. Since L is a linear subspace
that is not an axis-parallel linear space, by permuting the coordinates, we may assume that wlog,
L = {(u, ϕ(u))|u ∈ Fn−d}, where d ∈ [n] and ϕ : Fn−d → Fd is a non-zero linear function. Then
wlog, ϕ1(u) := ϕ(u)1 is a non-zero linear function. For x = (u, ϕ(u)) ∈ L and y = (v, ϕ(v)) ∈ L
let X be the event that ϕ1(u) ̸= 0 or ϕ1(v) ̸= 0. If the event X occurs, then wx,y

n−d+1 is uniformly
random in F . Let w′ = (wx,y

1 , . . . , wx,y
n−d). Therefore

Prx,y∈L[w
x,y ̸∈ L] ≥ Prx,y∈L[w

x,y
n−d+1 ̸= ϕ(w′)]

≥ Prx,y∈L[w
x,y
n−d+1 ̸= ϕ(w′)|X] ·Pru,v∈Fn−d [X]

=

(
1− 1

q

)3

≥ 1

8
.

Now, for the event12 A = [wx,y + z ∈ H]

Prx,y,z∈H [A] ≤ Prx,y,z∈H∩L[A] +Prx,y,z∈H [(x ̸∈ H ∩ L) ∨ (y ̸∈ H ∩ L) ∨ (z ̸∈ H ∩ L)]

≤ Prx,y,z∈H∩L[A] +
3Prx[x ∈ H∆L]

Prx[x ∈ H]

≤ Prx,y,z∈H∩L[A] +
3(ϵ/100)

ϵ
.

≤ Prx,y,z∈L[A] +Prx,y,z∈L[(x ̸∈ H ∩ L) ∨ (y ̸∈ H ∩ L) ∨ (z ̸∈ H ∩ L)] +
3

100

≤ Prx,y,z∈L[A] +
3Prx[x ∈ H∆L]

Prx[x ∈ L]
+

3

100

≤ Prx,y,z∈L[A] +
3 · (ϵ/100)
99ϵ/100

+
3

100
= Prx,y,z∈L[A] +

3

99
+

3

100

12We are using the facts that for any two events W and V , Pr[U ] ≤ Pr[U |V ] + Pr[¬V ] and Pr[U |V ] ≤ Pr[U ] +
Pr[¬V ].
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Now, since for every w ̸∈ L, L ∩ (w + L) = ∅,

Prx,y,z∈L[A] = Prx,y,z∈L[w
x,y + z ∈ H]

≤ Prx,y,z∈L[w
x,y + z ∈ H|wx,y ̸∈ L] +Prx,y,z∈L[w

x,y ∈ L]

≤ Prx,y,z∈L[w
x,y + z ∈ H|wx,y ̸∈ L] +

7

8

≤ max
w ̸∈L

Prz∈L[w + z ∈ H] +
7

8

≤ max
w ̸∈L

Prz[z ∈ L,w + z ∈ H]

Prz[z ∈ L]
+

7

8

= max
w ̸∈L

Prz′ [z
′ ∈ (w + L) ∩H]

Prz[z ∈ L]
+

7

8

≤ Prz′ [z
′ ∈ L∆H]

Prz[z ∈ L]
+

7

8

≤ ϵ/100

99ϵ/100
+

7

8
=

1

99
+

7

8
.

Therefore,

Prx,y,z∈H [wx,y + z ∈ H] ≤ 4

99
+

3

100
+

7

8
≤ 0.95.

We are now ready to prove Theorem 3.

Proof. Consider the tester in Figure 7.
Soundness: If f ∈ APLS, then it is in LS. So, the tester does not reject in step 1. There is
d ∈ [n] and d entries i1 < i2 < · · · < id such that f−1(1) = {a ∈ Fn|ai1 = ai2 = · · · = aid = 0}.
Therefore, for any x, y, z ∈ f−1(1), we have wx,y + z ∈ f−1(1), and the tester does not reject in the
“For” loop. So, it accepts.
Completeness: Suppose f is ϵ-far from APLS. If f is ϵ/200-far from LS, then with probability
at least 2/3, the tester rejects in step 1. So, we may assume that f is ϵ/200-close to LS. Since f is
ϵ-far from APLS, it is ϵ-far from the function h ∈ APLS that satisfies h−1(1) = {0n}. Therefore,
Pr[f = 1] ≥ ϵ− 1/qn ≥ ϵ/2. By Lemma 12, for H = f−1(1), we have

Prx,y,z,wx,y [f(wx,y + z) = 1|f(x) = f(y) = f(z) = 1] ≤ 0.95.

Since Pr[f = 1] ≥ ϵ/2, there is a constant c such that for m = c/ϵ, the algorithm, with
probability at least 99/100, at every iteration of the “For” loop, finds three points x, y, z ∈ U such
that f(x) = f(y) = f(z) = 1.13 Therefore, the probability that the tester rejects is 1 − 0.9530 −
1/100 ≥ 2/3.

Before proving Theorem 4, we give the following result.

13If Pr[f = 1] = ϵ′ ≥ ϵ/2, then the probability that at every iteration of the “For” loop, the tester finds three points

x, y, z ∈ U such that f(x) = f(y) = f(z) = 1 is
(
1− (1− ϵ′)c/ϵ −

(
c/ϵ
1

)
ϵ′(1− ϵ′)c/ϵ−1 −

(
c/ϵ
2

)
ϵ′2(1− ϵ′)c/ϵ−2

)30

. This

is greater than 99/100 for a large enough constant c.
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Lemma 13. If f is (ϵ/100)-close to APLS and (ϵ/100)-close to (≤ d)-LS, then it is ϵ-close to
(≤ d)-APLS.

Proof. Suppose f ′1 ∈ d1-LS, f
′
2 ∈ d2-LS, and d1 < d2. Then Pr[f ′i(x) = 1] = q−di and therefore

3q−d1/2 ≥ q−d1 + q−d2 ≥ dist(f ′1, f
′
2) ≥ q−d1 − q−d2 ≥ q−d1/2. (1)

Now assume, for the contrary, f is ϵ-far from (≤ d)-APLS. Since f is ϵ/100-close toAPLS, there
is d′ > d such that f is ϵ/100-close to d′-APLS. Let f1 ∈ d′-APLS be such that dist(f1, f) ≤ ϵ/100.
Choose any f2 ∈ d-APLS. Since f is ϵ-far from f2 we get that f1 is 99ϵ/100-far from f2. Therefore,
by (1), 3q−d/2 ≥ dist(f1, f2) ≥ 99ϵ/100. This implies

q−d ≥ 33

50
ϵ.

Since f is (ϵ/100)-close to (≤ d)-LS, there is f3 ∈ (≤ d)-LS such that dist(f, f3) ≤ ϵ/100. Therefore,
dist(f1, f3) ≤ ϵ/50. Now again, by (1), ϵ/50 ≥ dist(f1, f3) ≥ q−d/2. This implies

q−d ≤ 1

25
ϵ <

33

50
ϵ.

A contradiction.

We are now ready to prove Theorem 4.

Proof. The tester simply runs the tester for APLS with proximity parameter ϵ/100. Then it runs
the tester for (≤ d)-LS with proximity parameter ϵ/100 and accepts if both testers accept.
Soundness. If f ∈ (≤ d)-APLS, then f ∈ APLS and f ∈ (≤ d)-LS. Therefore, the tester accepts.
Completeness. If f is ϵ-far from (≤ d)-APLS, then by Lemma 13, it is either ϵ/100-far from
APLS or ϵ/100-far from (≤ d)-LS. Therefore, with probability of at least 2/3 the tester rejects.

7 Lower Bounds

In this section, we give all the other lower bounds in Table 1.

7.1 Preliminary Results

We first give some preliminary results.
Throughout this section, z(x) will denote the zero function and q = |F|. We will also assume

that d < cn for some constant c < 1.
Let C ⊂ B(F) be a class of Boolean functions and h ∈ B(F). We say that U ⊂ Fn is a hitting

set for C with respect to h if, for every f ∈ C, there is u ∈ U such that f(u) ̸= h(u). When h = z,
the zero function, we say that U ⊂ Fn is a hitting set for C. The minimal size of a hitting set
for C (resp. with respect to h) is denoted by H(C) (resp. H(C, h)). Obviously, if C ′ ⊆ C, then
H(C) ≥ H(C ′).

We now prove

Lemma 14. Let C ⊆ B(F) be a class of Boolean functions. Let ϵ0 = dist(C, h) := minf∈C dist(f, h).
Any one-sided tester for C with proximity parameter ϵ < ϵ0 must make at least H(C, h) queries.
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Proof. Let T be a one-sided tester for C with proximity ϵ < ϵ0. Since dist(C, h) = ϵ0, the tester T
can distinguish between h(x) and any function in C. The tester accepts with probability 1 when
f ∈ C and with probability at least 2/3 rejects when f = h; therefore, there is a deterministic
algorithm14 A with the same query complexity as T such that

1. If f ∈ C, then A(f) = 1.

2. A(h) = 0.

We now run the algorithm A and answer h(a) for every query a. Let U be the set of queries. Then
|U | is at most the query complexity of A (and of T ). We now show that U is a hitting set for C
with respect to h. If U is not a hitting set for C with respect to h, then there is g ∈ C such that
g(u) = h(u) for all u ∈ U . Then A cannot distinguish between h and g, and we get a contradiction.
Therefore, U is a hitting set for C with respect to h. Thus, the query complexity of T is at least
|U | ≥ H(C, h).

We now prove

Lemma 15. Let d′ < d. Then dist(d-AS, d′-AS) = dist(d-APLS, d′-APLS) = q−d
′ − q−d.

Proof. Obviously, dist(d-AS, d′-AS) ≤ dist(d-APLS, d′-APLS). For every g ∈ d-AS, Pr[g = 1] =
q−d. Therefore, for h ∈ d′-AS, we have Pr[g ̸= h] ≥ Pr[h = 1]−Pr[g = 1] = q−d

′−q−d. Therefore,
dist(d-AS, d′-AS) ≥ q−d

′ − q−d.
Now for g, h that satisfy g−1(1) = {(a, 0d)|a ∈ Fn−d} and h−1(1) = {(b, 0d′)|b ∈ Fn−d′},

we have: g ∈ d-APLS, h ∈ d′-APLS and dist(g, h) = q−d
′ − q−d. Therefore dist(d-APLS, d′-

APLS) ≤ q−d
′ − q−d, and the result follows.

The following is an information-theoretic lower bound.

Lemma 16. Any deterministic algorithm that exactly learns15 a class C of Boolean functions
f : Fn → {0, 1} must ask at least log |C| black-box queries.

7.2 Lower Bound for (≤ d)-AS

Theorem 6. Any one-sided testers for (≤ d)-AS and d-AS with proximity parameter ϵ < q−d

must make at least

Ω

(
1

ϵ
+ qd−1n

)
queries.

Proof. The lower bound Ω(1/ϵ) follows from [5]. For ξ = (ξ1, . . . , ξd−1) ∈ Fd−1 and an affine
subspace L ⊂ Fn−d+1 of dimension n− d, let fξ,L be the function that satisfies f−1(1) = {ξ} × L.
Obviously, fξ,L ∈ d-AS. Let C ⊆ d-AS be the class of such functions. We have dist(d-AS, z) = q−d.
We now prove that H(C) ≥ qd−1(n − d + 1). Since H(d-AS) ≥ H(C), by Lemma 14, the result
follows.

To this end, let H be a hitting set for C. Suppose, on the contrary, that |H| < qd−1(n −
d + 1). For ξ ∈ Fd−1 let Hξ = {a ∈ H|(a1, . . . , ad−1) = ξ}. By the pigeonhole principle, there

14Just choose a seed that accepts h and use it for the algorithm T .
15For f ∈ C and access to a black-box to f , the algorithm returns a function equivalent to f .
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is ξ′ ∈ Fd−1, such that |Hξ′ | ≤ n − d. Let Hξ′ = {b(1), . . . , b(t)} ⊆ Fn, t ≤ n − d. Consider
S = {(bd, . . . , bn)|b ∈ Hξ′} ⊆ Fn−d+1. If dim(Span(S)) < n−d, we add to S elements from Fn−d+1

to make dim(Span(S)) = n−d. Let L = Span(S)+v for some v ∈ Fn−d+1\Span(S). Now consider
the function h := fξ′,L ∈ C. We will show that h(u) = 0 for all u ∈ H; therefore H is not a hitting
set for C. A contradiction.

Let u ∈ H. Then either (u1, . . . , ud−1) ̸= ξ′ or (u1, . . . , ud−1) = ξ′ and (ud, . . . , un) ∈ Span(S).
Since Span(S) ∩ L = ∅ and h−1(1) = {ξ′} ∪ L, we have u ̸∈ {ξ′} × L and therefore h(u) = 0.

7.3 Lower Bound for d-AS and d-LS

In this subsection, we prove

Theorem 7. Let d > 0. Any one-sided tester for d-AS and d-LS with proximity parameter
ϵ < 1− q−d must make at least

Ω

(
1

ϵ
+ n

)
queries, and for d-AS with proximity ϵ < q−d must make at least

Ω

(
1

ϵ
+ qd−1n

)
queries.

Proof. The second bound is from Theorem 6. We now prove the first bound for d-AS. The same
proof holds for d-LS.

We use Lemma 14 with h(x) = α(x) = 1, the constant function 1. We have ϵ0 := dist(d-
AS, α) = 1 − q−d. Let U be a hitting set for d-AS with respect to α. Suppose, on the contrary,
|U | ≤ n− d. If dim(Span(U)) < n− d, then add elements to U such that dim(Span(U)) = n− d.
Let L = Span(U) and let h ∈ d-AS be a function such that h−1(1) = L. Then h(u) = α(u) for
every u ∈ U , and therefore U is not a hitting set for d-AS with respect to α. A contradiction.
Therefore H(d-AS, α) ≥ |U | ≥ n− d.

7.4 Lower Bound for (≤ d)-APAS

In this subsection, we prove.

Theorem 8. Any one-sided tester for (≤ d)-APAS and d-APAS with proximity parameter ϵ <
1/qd must make at least

Ω

(
1

ϵ
+ qd−1 log n

)
queries.

In particular, we have.

Corollary 9. Any one-sided tester for (≤ d)-Term and d-Term with proximity parameter ϵ < 1/2d

must make at least

Ω

(
1

ϵ
+ 2d log n

)
queries.
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Proof. We give the proof for d-APAS. The same proof holds for (≤ d)-APAS. The lower bound
Ω(1/ϵ) follows from [5]. We use Lemma 14. First, we have dist(d-APAS, z) = q−d.

Let U ⊆ Fn be a hitting set for d-APAS. Since the function g that satisfies g−1(1) = {x ∈
Fn|xi1 = ξ1, . . . , xid = ξd} is in d-APAS, there is u ∈ U such that ui1 = ξ1, . . . , uid = ξd.
Therefore, for every 1 ≤ i1 < i2 < · · · < id ≤ n and ξ1, ξ2, . . . , ξd ∈ F , there is u ∈ U , such that
ui1 = ξ1, . . . , uid = ξd. Such a set is called an (n, d)-universal set over F16. It is well known,
[9, 17, 23]17, that such a set has a size of at least Ω(qd−1 log n).

7.5 Lower Bounds for d-APLS

In this section, we prove.

Theorem 10. Any one-sided tester for d-APLS and d-APAS with proximity parameter ϵ ≤
q−1 − q−d must make at least

Ω

(
1

ϵ
+min

(
log(1/ϵ)

log |F|
, d

)
· log n

d

)
queries.

In particular,

Corollary 11. Any one-sided tester for d-Monomial and d-Term with proximity parameter ϵ ≤
1/2− 2−d must make at least

Ω

(
1

ϵ
+min (log(1/ϵ), d) · log n

d

)
queries.

Proof. The lower bound Ω(1/ϵ) follows from [5].
Let T be a tester for d-APLS (resp. d-APAS) with proximity parameter ϵ ≤ 1 − q−d, which

makes Q queries. Consider the class d′-APLS where d′ = min(⌊log(1/(ϵ + q−d))/ log q)⌋, d − 1).
Then, by Lemma 15, dist(d-APLS, d′-APLS) = q−d

′ − q−d ≥ ϵ (resp. dist(d-APAS, d′-APLS) ≥
ϵ). Therefore

1. If f ∈ d-APLS then T (f) =Accept.

2. If f ∈ d′-APLS then with probability at least 2/3, T (f) =Reject.

Using Yao’s principle18, there is a deterministic algorithm A that has query complexity Q (as T )
and a class C ⊆ d′-APLS such that |C| ≥ (2/3)|d′-APLS| and

1. If f ∈ d-APLS then A(f) =Accept.

2. If f ∈ C then A(f) =Reject.

16Also called covering arrays.
17The lower bound follows from combining the lower bound in [9] for d = 2 with the lower bound in [17] or [23].
18For a random uniform g ∈ d′-APLS, we have Es[Eg[T (g)]] = Eg[Es[T (g)]] ≥ 2/3 where s is the random seed of

T . Then there is s0 such that Eg[T (g)] ≥ 2/3.
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We will show in the following how to change A to an exact learning algorithm for C that makes
Q+ d queries, and then, by Lemma 16, the query complexity of T is at least19

log |C| − d ≥ log

(
2

3
|d′-APLS|

)
− d = log

(
2

3

(
n

d′

))
− d = Ω

(
min

(
log(1/ϵ)

log |F|
, d

)
· log n

d

)
.

It remains to show how to change A to an exact learning algorithm for C that makes Q+d queries.
To this end, consider the following algorithm (ei is the point that contains 1 in the i-th coordinate
and zero elsewhere)

1. Given access to a black-box for f ∈ C.

2. Let X = [n].

3. Run A and for every query b that A asks such that f(b) = 1, define X ← X\{i|bi = 1}.
4. For every i ∈ X if f(ei) = 1 then remove i from X.

5. Return the function h that satisfies h−1(1) = {a ∈ Fn|(∀i ∈ X)ai = 0}.

Now, suppose f−1(1) = {a ∈ Fn|ai1 = · · · = aid′ = 0}. We now show

Claim 2. After step 3, we have |X| ≤ d and {i1, . . . , id′} ⊆ X.

Proof. If, on the contrary, some j ∈ [d′], ij ̸∈ X, there is b such that bij = 1 and f(b) = 1. Then
b ∈ f−1(1) and therefore bij = 0. A contradiction.

Suppose, on the contrary, X contains more than d elements. Let id′+1, . . . , id ∈ X be distinct and
distinct from i1, . . . , id′ . Consider the function g such that g−1(1) = {a ∈ F b|ai1 = · · · = aid = 0}.
Since A accepts g ∈ d-APLS and rejects f ∈ C, there must be a query b that A makes such that
g(b) ̸= f(b). Since g−1(1) ⊂ f−1(1), we have b ∈ f−1(1)\h−1(1), and then for some j > d′, we have
bij = 1 and f(b) = 1. Therefore, ij ̸∈ X after step 3. A contradiction. This finishes the proof of
the claim.

By the above claim, step 5 makes at most d queries; therefore, the query complexity of the
learning algorithm is Q + d. If, after step 3, i ∈ {i1, . . . , id′}, then f(ei) = 0, and then i is not
removed from X after step 4. If after step 3, i ̸∈ {i1, . . . , id′} and i ∈ X, then the query ei satisfies
f(ei) = 1, and then i is removed from X after step 4. So, after step 4, we have X = {i1, . . . , id′}
and hence h = f .

8 Upper Bounds

In this section, we prove the upper bounds in the table.
The following theorems cover all the upper bounds in the table.
We first prove.

Theorem 12. There is a polynomial-time one-sided tester for d-LS with proximity parameter ϵ
that makes

Õ

(
1

ϵ

)
+O(qdn)

queries.
19Here, we assume that d ≪ n. For large d, we can replace step 4 in the learning algorithm that makes at

most d queries with the algorithm in [24] that makes d′ log(d/d′) − O(d′) queries. This changes log |C| − d to
log |C| − d′ log(d/d′)−O(d′), and we get the lower bound for any d.
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Proof. Let en−k,i ∈ Fn−k be the point that has 1 in the i-th coordinate and zero elsewhere. Before
we give the tester, notice that if we run the tester of (≤ d)-LS (that makes Õ(1/ϵ) queries) on f ,
the only case where it fails to test d-LS is when f ∈ k-LS where k < d, and f is ϵ-far from d-LS.
This happens when the tester of (≤ d)-LS calls Test-k-WSLS (for f(xM)), and it accepts. So we
need to change the tester Test-k-WSLS so that when k < d and f ∈ k-LS, it rejects.

To solve this, the following modification is made. In Test-k-WSLS between step 2 and step 3
(before the tester accepts), we add the following step when k < d:
• If for some i ∈ [n − k] we have Rf (en−k,i) =⊥, then Return v = en−k,i, Otherwise Reject.

Given that f−1(1) = {(a, b)|a ∈ L, ϕ} for some linear subspace L ⊆ Fn−k and linear function
ϕ : Fn−k → Fk, this step tests whether L = Fn−k. That is, the tester is the same as (≤ d)-LS but
does not accept when f ∈ k-LS and k < d. The following claim finishes the proof.

Claim 3. L = Fn−k if and only for every i, Rf (en−k,i) ̸=⊥.

Proof. If L = Fn−k, then f(en−k,i, ϕ(en−k,i)) = 1 and therefore Rf (en−k,i) ̸=⊥ for every i ∈ [n−k].
If for every i, Rf (en−d,i) ̸=⊥, then for every i, there is b(i) ∈ Fd such that f(en−d,i, b

(i)) = 1.
Therefore for every i, en−d,i ∈ L, Since L is a linear space we get L = Fn−d.

This step has query complexity at most qd(n− d) = O(qdn).

Before we prove the following theorem, we give some preliminary results.
By [11], we have

|d-LS| =
(

n

n− d

)
q

:=
(qn − 1) · · · (qd+1 − 1)

(qn−d − 1) · · · (q − 1)
≤ (2q)d(n−d) (2)

and therefore

|d-AS| = qd
(

n

n− d

)
q

≤ qd(2q)d(n−d). (3)

By the probabilistic method, we show

Lemma 17. There is a hitting set for d-AS (and d-LS) of size

O(d(log q)qdn).

Proof. We choose uniformly at random m = O(d(log q)qdn) points a1, . . . , am ∈ Fn. The probabil-
ity that there is f ∈ d-AS such that for all i ∈ [m], f(ai) = 0 is at most

|d-AS|
(
1− 1

|F|d

)m

< 1.

So a hitting set of size m exists.

Theorem 13. There is an exponential time one-sided tester for d-AS (and (≤ d)-AS) with prox-
imity parameter ϵ that makes

Õ

(
1

ϵ

)
+O(d(log q)qdn)

queries.
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Proof. We use the hitting set to find a such that f(a) = 1 and then tests f(x+ a) using the tester
of d-LS in Theorem 12.

We now prove.

Theorem 14. There is a polynomial-time one-sided tester for d-APLS with proximity parameter
ϵ < 1/q that makes

O

(
1

ϵ
+min

(
log(1/ϵ)

log q
, d

)
· log n

d

)
queries.

In particular,

Corollary 15. There is a polynomial-time one-sided tester for d-Monomial with proximity pa-
rameter ϵ < 1/2 that makes

O

(
1

ϵ
+min (log(1/ϵ), d) · log n

d

)
queries.

Proof. If d < 3 log(1/ϵ)/ log |F|, the tester learns the function exactly with O(d log(n/d)) queries
using the algorithm in [24]. Then it tests if the output hypothesis is equal to the target on
uniformly at random O(1/ϵ) points. If this occurs, then the tester accepts; otherwise, it rejects.
The correctness of this case is obvious. See the reduction from learning to testing in [15].

If d > d′ := 3 log(1/ϵ)/ log |F|, then the tester learns d′ entries 1 ≤ i1 < i2 < · · · < id′ ≤ n such
that f−1(1) ⊆ A := {a ∈ Fn|ai1 = · · · = aid′ = 0} using d′ log(n/d) queries [24]. Then for uniformly
at random O(1/ϵ) points B, and for every point b ∈ B it tests if “f(b) = 1 implies b ∈ A”. If this
occurs, then the tester accepts; otherwise, it rejects.

We now prove the correctness of the second case (d > d′). If f ∈ d-APLS, then the learning
algorithm indeed learns d′ entries 1 ≤ i1 < i2 < · · · < id′ ≤ n such that f−1(1) ⊆ A := {a ∈
Fn|ai1 = · · · = aid′ = 0}. Therefore, for every other point b, if f(b) = 1, then b ∈ f−1(1) ⊆ A,
which implies b ∈ A.

Now suppose f is ϵ-far from d-APLS. Since every g ∈ d-APLS satisfies Pr[g(x) ̸= 0] ≤ q−d ≤
ϵ3, f is (ϵ − ϵ3)-far from 0. Since Prb[b ∈ A] ≤ q−d

′ ≤ ϵ3, f−1(1) is (ϵ − 2ϵ3)-far from A. Since
ϵ − 2ϵ3 > ϵ/4, with constant probability, some b ∈ B satisfies f(b) = 1 and b ̸∈ A, and the tester
rejects.

We now prove.

Theorem 16. There is a polynomial-time one-sided tester for d-APLS with proximity parameter
ϵ > q−1 − q−d that makes

O

(
1

ϵ+ q−d − q−1
+ log n

)
queries.

In particular,
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Corollary 17. There is a polynomial-time one-sided tester for d-Monomial with proximity pa-
rameter ϵ > 1/2− 2−d that makes

O

(
1

ϵ+ 2−d − 1/2
+ log n

)
queries.

Proof. As in Theorem 14, the tester learns one entry 1 ≤ i1 ≤ n such that f−1(1) ⊆ A := {a ∈
Fn|ai1 = 0} using log n queries [24]. Then for uniformly at random O(1/(ϵ + q−d − q−1)) points
B, and for every point b ∈ B it tests if “f(b) = 1 implies b ∈ A”. If this occurs, then the tester
accepts; otherwise, it rejects.

If f ∈ d-APLS, then as in Theorem 14, the tester accepts.
Now suppose f is ϵ-far from d-APLS. Since, by Lemma 15, d-APLS is (q−1 − q−d)-far from

1-APLS, f−1(1) is (ϵ + q−d − q−1)-far from A. Therefore, with constant probability, some b ∈ B
satisfies f(b) = 1 and b ̸∈ A, and the tester rejects.

We now prove.

Theorem 18. There is a polynomial-time one-sided tester for d-APAS (and (≤ d)-APAS) with
proximity parameter ϵ that makes

O

(
1

ϵ
+ qd+o(d) log n

)
queries.

In particular,

Corollary 19. There is a polynomial-time one-sided tester for d-Term (and (≤ d)-Term) with
proximity parameter ϵ that makes

O

(
1

ϵ
+ 2d+o(d) log n

)
queries.

Proof. The tester builds an (n, d)-universal set U over F of size O(qd+o(d) log n). This can be done
in polynomial time [18] (in the number of queries). For every a ∈ U , it asks a black-box query until
it finds a such that f(a) = 1. Such a exists. See the proof of Theorem 8. Then f(x + a) is either
in d-APLS or ϵ-far from d-APLS. So it runs the tester of d-APLS on f(x+ a).

The rest of this section deals with the cases when ϵ is close to one.

Theorem 20. There is a polynomial-time one-sided tester for d-LS (d-APLS) with proximity
parameter ϵ > 1− 1/qd that makes

O

(
1

ϵ− 1 + 1/qd

)
queries.

In particular,
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Corollary 21. There is a polynomial-time one-sided tester for d-Monomial with proximity pa-
rameter ϵ > 1− 1/2d that makes

O

(
1

ϵ− 1 + 1/2d

)
queries.

Proof. If d = 1 and q = 2, the tester accepts. Otherwise, the tester chooses O(1/(ϵ − 1 + 1/qd))
uniformly at random points B. If f is identically one on B, the tester accepts. If for some point
a ∈ B, f(a) = 0, then it chooses b ∈ Fn uniformly at random. If f(b) = 1 and f(a+ b) = 1, then
it rejects. Otherwise, it accepts.

Let f ∈ d-LS and L = f−1(1). If f is identically one on the points of B or f(b) = 0, then it
accepts. If for some a ∈ B, f(a) = 0 and f(b) = 1, then a ̸∈ L and b ∈ L and since L is a linear
subspace, a+ b ̸∈ L. Therefore, f(a+ b) = 0, and the tester accepts.

Now suppose f is ϵ-far from d-LS. Let α be the one function. Since α is 1− q−d far from d-LS,
we get that f is ϵ− 1 + q−d far from α. Therefore, with high probability, one of the points a ∈ B
satisfies f(a) = 0. Now

Pr[Rejects] = Prb[f(b) = 1, f(a+ b) = 1]

≥ 1−Prb[f(b) = 0]−Prb[f(a+ b) = 0]

≥ 1− 2

(
ϵ− 1 +

1

qd

)
≥ 1− 2

qd
.

Therefore, for d > 1 or q > 2, with constant probability, the tester rejects.
The only case that remains is when20 d = 1 and q = 2. For λ ∈ {0, 1}n−1, consider the linear

subspace Lλ = {(a, ϕλ(a))}, where ϕλ(a) =
∑n−1

i=1 λiai. Let gλ ∈ 1-LS be the boolean function
that satisfies g−1λ (1) = Lλ. It is easy to see that gλ(x) = ϕλ(x1, . . . , xn−1) + xn + 1. Let f be
any boolean function. We have (Here, [f(x) ̸= gλ(x)] is the indicator random variable of the event
f(x) ̸= gλ(x))

Eλ[Ex[f ̸= gλ]] = Ex[Eλ[f ̸= gλ]] ≤
1

2
+

1

2n−1
.

Therefore, for every boolean function f , there is g ∈ 1-LS such that Prx[f ̸= g] ≤ 1/2 + 1/2n−1.
Therefore, the tester, in this case, for ϵ > 1/2(+1/2n−1), accepts for any f .

Theorem 22. There is a polynomial-time one-sided tester for d-AS (d-APAS) with proximity
parameter ϵ > 1− 1/qd that makes

O

(
1

ϵ− 1 + 1/qd

)
queries.

In particular,

Corollary 23. There is a polynomial-time one-sided tester for d-Term with proximity parameter
ϵ > 1− 1/2d that makes

O

(
1

ϵ− 1 + 1/2d

)
queries.

20Notice that for d = 0, 0-LS=(≤ 0)-LS. See the results for (≤ 0)-LS in the Table.
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Proof. The tester chooses 10 points uniformly at random. If f is zero on all the points, then it
accepts. Otherwise, let a be a point such that f(a) = 1. The tester then runs the tester of d-LS
on f(x+ a).

If f ∈ d-AS, then the tester accepts.
If f is ϵ-far from d-AS, then f is ϵ− q−d ≥ 1− 2q−d far from z (the zero function). Therefore,

with high probability, some point a satisfies f(a) = 1. Then f(x + a) is ϵ-far from d-LS, and the
result follows.

Again here, the tester for q = 2 and d = 1 accepts all functions.

Theorem 24. There is a polynomial-time one-sided tester for (≤ d)-AS ((≤ d)-APAS) with
proximity parameter ϵ > 1/qd that makes

Õ

(
1

ϵ

)
+O

(
1

ϵ− 1/qd

)
queries.

In particular,

Corollary 25. There is a polynomial-time one-sided tester for (≤ d)-Term with proximity param-
eter ϵ > 1/2d that makes

Õ

(
1

ϵ

)
+O

(
1

ϵ− 1/2d

)
queries.

Proof. The tester chooses O(1/(ϵ−q−d)) uniformly at random points. If f is zero on all the points,
then it accepts. Otherwise, let a be a point such that f(a) = 1. The tester then runs the tester of
(≤ d)-LS on f(x+ a).

If f ∈ (≤ d)-AS, then it is obvious that the tester accepts.
If f is ϵ-far from (≤ d)-AS, then since (≤ d)-AS is q−d far from z, we get that f is (ϵ− q−d)-far

from z. Therefore, with high probability, the tester finds a such that f(a) = 1.

We now investigate the value of ϵ, where the tester does need to ask any queries.
We define the isolation factor of a class C as

IF(C) := max
f∈B(F)

dist(f, C).

Obviously.

Lemma 18. If C1 ⊆ C2, then IF(C1) ≥ IF(C2).

The following is obvious,

Theorem 26. There is a one-sided tester for C with proximity parameter ϵ > IF(C) that makes
no queries.

Proof. Since any f ∈ B(F) satisfies dist(f, C) ≤ IF(C) < ϵ, the tester does not ask any query and
just accepts.

We now prove
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Lemma 19. We have

1. 1
2 ≥ IF(APLS) ≥ IF(LS) ≥ 1

2 − on(1).

2. 1
2 ≥ IF(APAS) ≥ IF(AS) ≥ 1

2 − on(1).

3. 1
2 + 1

2qd
≥ IF((≤ d)-APLS) ≥ IF((≤ d)-LS) ≥ 1

2 − on(1).

4. 1
2 + on(1) ≥ IF((≤ d)-APAS) ≥ IF((≤ d)-AS) ≥ 1

2 − on(1).

5. 1− 1
qd

+Θ
(

1
q3d/2

)
≥ IF(d-APLS) ≥ IF(d-LS) ≥ 1− 1

qd
.

6. 1− 1
qd

+Θ
(

1
q2d

)
≥ IF(d-APAS) ≥ IF(d-AS) ≥ 1− 1

qd
.

Proof. By Chernoff’s bound, it is easy to show that for all the above classes C, for a random
uniform function f ∈ B(F), with probability greater than zero, we have dist(f, C) ≥ 1/2 − on(1).
Therefore, IF(C) ≥ 1/2− on(1). This gives the lower bounds in items 1-4.

Let C be one of the classes APAS, APLS, LS, or AS, and let f ∈ B(F). Since 1 ∈ C (the
one function) and the function h that satisfies h−1(1) = {0n} is in C, we have

1 = Pr[f ̸= 0] +Pr[f ̸= 1] ≥ Pr[f ̸= h]−Pr[h ̸= 0] +Pr[f ̸= 1] (4)

= Pr[f ̸= h]− 1

qn
+Pr[f ̸= 1].

Therefore, min(Pr[f ̸= h],Pr[f ̸= 1]) ≤ 1/2 + 1/(2qn). Since the probability of each point is
1/qn, we get IF(APLS) ≤ 1/2. This gives the upper bounds in items 1-2. Applying (4) with any
h ∈ d-APLS, we get the upper bound in item 3.

We now prove the upper bound in item 4. For λ ∈ Fd, let gλ be such that g−1λ (1) = Lλ := {a ∈
Fn|ai = λi, i ∈ [d]}. Let C be the class that contains the 1 function (which is in 0-APAS) and all
gλ. Obviously, C ⊆ (≤ d)-APAS. Therefore, by Lemma 18, an upper bound for IF(C) gives an
upper bound for IF((≤ d)-APAS).

Consider a function that satisfies dist(f, C) = IF(C). For λ ∈ Fd, Let Mλ = Lλ ∩ f−1(1).
Suppose there are λ(1) ̸= λ(2) such that m := |Mλ(1) | − |Mλ(2) | ≥ 2. We now define the following
function f0. Take any ⌈m/2⌉ elements B1 from Mλ(1) and ⌈m/2⌉ elements B2 from Lλ(2)\Mλ(2) .
Define f0 to be equal to f on all Lλ where λ ̸= λ(1), λ(2). Then f0 is 1 onMλ(1)\B1 andMλ(2)∪B2 and
is 0 on (Lλ(1)\Mλ(1)) ∪ B1 and Lλ(2)\(Mλ(2) ∪ B2). It is easy to see that dist(f0, C) ≥ dist(f, C) =
IF(C) and, therefore, dist(f0, C) = IF(C). In addition, f0 satisfies the property that for M ′λ =
Lλ ∩ f−10 (1), we have m′ := ||M ′

λ(1) | − |M ′λ(2) | ≤ 1. Therefore, we may assume that w.l.o.g, for any

λ, |Mλ| − |M0d | ∈ {0, 1}. If IF(C) > 1/2 + 4/qn−d, then21

1

2
+

4

qn−d
< dist(f, C) ≤ dist(f, 1) =

∑
λ

Pr[Lλ\Mλ] =
∑
λ

(
1

qd
−Pr[Mλ]

)
≤ 1− qdPr[M0d ].

Therefore, Pr[M0d ] < 1/(2qd)− 4/qn, and for every λ,

Pr[Mλ] ≤ Pr[M0d ] +
1

qn
<

1

2qd
− 3

qn
.

21Here Pr[A] = Prx[x ∈ A] where x is random uniform in Fn.
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Now

1

2
+

4

qn−d
< dist(f, C) ≤ dist(f, g0d) =

1

qd
−Pr[M0n ] +

∑
λ ̸=0d

Pr[Mλ]

=
1

qd
+Pr[M1d ]−Pr[M0d ] +

∑
λ ̸=0d,1d

Pr[Mλ]

≤ 1

qd
+

1

qn
+

∑
λ ̸=0d,1d

Pr[Mλ] <
1

qd
+

1

qn
+

qd − 2

2qd
− 3(qd − 2)

qn
<

1

2
.

A contradiction. Therefore IF(C) ≤ 1/2 + on(1).
We now prove 5-6. For C = d-LS, d-APLS, d-AS, and d-APAS, By Lemma 15, dist(C, 0-LS) =

1− q−d. Therefore, IF(C) ≥ 1− q−d.
For C = d-LS and d-APLS, let f ∈ B(F). We have two cases: If Pr[f = 1] ≤ 1 − 2q−d,

then for any g ∈ C, Pr[f ̸= g] ≤ Pr[f = 1] + Pr[g = 1] ≤ 1 − q−d. The second case is when
Pr[f = 1] > 1− 2q−d. Consider the following functions gi ∈ d-APLS that satisfies g−1i (1) = {a ∈
Fn|a(i−1)d+1 = · · · = aid = 0}, for i ∈ [m] and m = qd/2. By the inclusion–exclusion principle,

Pr
[
∪mi=1g

−1
i (1)

]
=

m∑
i=1

(−1)i+1

(
m
i

)
qid

=
m

qd
−Θ

(
m2

q2d

)
.

Then

Pr
[
f−1(1) ∩ ∪mi=1g

−1
i (1)

]
≥ Pr[f−1(1)] +Pr[∪mi=1g

−1
i (1)]− 1 =

m− 2

qd
−Θ

(
m2

q2d

)
.

Now since

Pr
[
f−1(1) ∩ ∪mi=1g

−1
i (1)

]
= Pr

[
∪mi=1(f

−1(1) ∩ g−1i (1))
]
≤

m∑
i=1

Pr
[
(f−1(1) ∩ g−1i (1))

]
,

there is i0 ∈ [m] such that

Pr
[
(f−1(1) ∩ g−1i0

(1))
]
≥ m− 2

mqd
−Θ

(
m

q2d

)
=

1

qd
−Θ

(
1

mqd
+

m

q2d

)
=

1

qd
−Θ

(
1

q3d/2

)
.

Then

Pr[f ̸= gi0 ] ≤ 1−Pr
[
(f−1(1) ∩ g−1i0

(1))
]
≤ 1− 1

qd
+Θ

(
1

q3d/2

)
.

Therefore IF(d-APLS) ≤ 1− q−d +Θ(q−3d/2).
For C = d-AS and d-APAS, let f ∈ B(F). For λ ∈ Fd let g−1λ (1) = {a ∈ Fn|a1 = λ1, . . . , ad =

λd}. Since {g−1λ (1)}λ is a partition of Fn, we have Pr[f = 1] =
∑

λ∈Fd

∑
[f = gλ]. Therefore,

there is λ0 such that Pr[f = gλ0 ] = Pr[f = 1]/qd. Then Pr[f ̸= gλ0 ] = 1 − Pr[f = 1]/qd. Now,
if Pr[f = 1] ≤ 1 − 2q−d + q−2d, then Pr[f ̸= gλ0 ] ≤ Pr[f = 1] + Pr[gλ0 = 1] ≤ 1 − q−d + q−2d.
Otherwise,

Pr[f ̸= gλ0 ] = 1− Pr[f = 1]

qd
< 1− 1− 2q−d + q−2d

qd
= 1− 1

qd
+Θ(q−2d).

Therefore, IF(d-APAS) ≤ 1− q−d +Θ(q−2d).
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Now we show

Theorem 27. We have

1. There are one-sided testers for APLS, LS, APAS, (≤ d)-AS (≤ d)-APLS, (≤ d)-LS,
(≤ d)-APAS and (≤ d)-AS with proximity parameter ϵ > 1/2 that make no queries.

2. There are one-sided testers for d-APLS and d-LS with proximity parameter ϵ > 1 − q−d +
Θ(q−3d/2) that make no queries.

3. There are one-sided testers for d-APAS and d-AS with proximity parameter ϵ > 1 − q−d +
Θ(q−2d) that make no queries.

In particular,

Corollary 28. We have

1. There are one-sided testers for Monomial, Term, (≤ d)-Monomial, and (≤ d)-Term with
proximity parameter ϵ > 1/2 that make no queries.

2. There are one-sided testers for d-Monomial with proximity parameter ϵ > 1−2−d+Θ(2−3d/2)
that make no queries.

3. There are one-sided testers for d-Term and d-AS with proximity parameter ϵ > 1 − 2−d +
Θ(2−2d) that make no queries.

Proof. The result follows from Lemma 19 and Theorem 26.
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Appendix: Testing Monomial and Term with Self-Corrector

Test-(≤ d)-Monomial(f, ϵ)
Input: Oracle that accesses a Boolean function f : Fn

2 → F2.
Output: Either “Accept” or “Reject”.

1. If AKKLR-Test(f,min(ϵ, 2−d−3)) rejects then Reject.

2. Choose m = O(22d log d) uniformly at random Z = {z(1), . . . , z(m)}.
3. Choose t = 2d+1 log(100d), P := {y(1), . . . , y(t)} ⊂ Z such that P ⊆ f−1(1).
4. If no such P exists, then Accept.

5. Let y = Y (y(1), . . . , y(t)).

6. Choose m = 2d+1 log(100) uniformly at random x(1), . . . , x(m) ∈ Fn
2

7. Use self-corrector to compute zi = g(y)(x(i)), i ∈ [m].
Here g is the degree-d polynomial that is close to f .

8. If zi = 1 for all i ∈ [m], then Accept else Reject.

Figure 8: A Tester for (≤ d)-Monomial.

In this appendix, we prove.

Theorem 29. There is a one-sided ϵ-tester for (≤ d)-Monomial that makes O(1/ϵ+d22d) queries.

The following is the self-corrector.

Lemma 20. (Self-corrector [2]) Let f : Fn
2 → F2 be a Boolean function that is ϵ-close to a

polynomial g of degree d. Let A = Fd+1
2 \{0d+1, 10d}. Then

Pry(0),y(1),...,y(d)∈Fn
2

g(0) = ∑
λ∈A∪{10d}

f

(
d∑

i=0

λi+1y
(i)

) ≥ 1− ϵ(2d+1 − 1),

and for every x ∈ Fn
2 ,

Pry(1),...,y(d)∈Fn
2

[
g(x) + g(0) =

∑
λ∈A

f

(
λ1x+

d∑
i=1

λi+1y
(i)

)]
≥ 1− ϵ(2d+1 − 2).

For y(1), . . . , y(t) ∈ Fn
2 , we define the random variable Y (y(1), . . . , y(t)) ∈ Fn

2 to be y =

(y1, . . . , yn) where yi = 1 if (∀j ∈ [t])y
(j)
i = 1 and22 yi = xi, otherwise. Notice that, for a function

g : Fn
2 → F2, we have g(y) = g(Y (y(1), . . . , y(t))) : Fn

2 → F2.
We now prove

Lemma 21. Let g : Fn
2 → F2 be a polynomial of degree d. Let t = 2d+1 log(d/δ). If g is a

monomial, then

Pry(1),...,y(t),Y [g(Y (y(1), . . . , y(t))) ≡ 1 | g(y(1)) = · · · = g(y(t)) = 1] = 1.

22The variable xi.
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If g is not a monomial, then

Pry(1),...,y(t),Y [g(Y (y(1), . . . , y(t))) ≡ 1 | g(y(1)) = · · · = g(y(t)) = 1] ≤ δ.

Proof. Let y = Y (y(1), . . . , y(t)). Suppose g = xi1 · · ·xik is a monomial. Since for all j ∈ [t],

g(y(j)) = 1 we have that for all j ∈ [t] and all ℓ ∈ [k], y
(j)
iℓ

= 1. Therefore, for all ℓ ∈ [k], yiℓ = 1.
Thus g(y) = 1.

If g is not a monomial, then g = Mh, where M is a monomial and h ̸≡ 1 is a polynomial of
degree deg(g)−deg(M) that is independent of the variables in M and satisfies h|xi←0 ̸≡ 0 for every
i ∈ [n]. Suppose, wlog, M = x1x2 · · ·xk. Then h is of degree d−k and is independent of x1, . . . , xk.
Let wlog, M ′ = xk+1 · · ·xd be one of the monomials of h. Then for any i ∈ [k + 1, d], we have23

Pr[xi = 0 | g(x) = 1] =
Pr[xi = 0, h(x) = 1,M(x) = 1]

Pr[h(x) = 1,M(x) = 1]

=
Pr[xi = 0, h(x) = 1] ·Pr[M(x) = 1]

Pr[h(x) = 1,M(x) = 1]

≥ Pr[xi = 0, h(x) = 1]

=
1

2
Pr[h|xi←0(x) = 1] ≥ 1

2d+1
.

Now for any i ∈ [k + 1, d]

Pry(1),...,y(t) [(∀j ∈ [t])y
(j)
i = 1 | g(y(1)) = · · · = g(y(t)) = 1] ≤

(
1− 1

2d+1

)t

.

and

Pry(1),...,y(t) [(∃i ∈ [k + 1, d])(∀j ∈ [t])y
(j)
i = 1 | g(y(1)) = · · · = g(y(t)) = 1] ≤ d

(
1− 1

2d+1

)t

≤ δ.

So now, with probability at least 1 − δ, (∀i ∈ [k + 1, d])(∃j ∈ [t])y
(j)
i = 0. Then, for y =

Y (y(1), . . . , y(t)), yi = 1 for all i ∈ [k] and yi = xi for all i = [k + 1, d]. Therefore, g(y) =
h(y) ̸≡ 1.

We are now ready to prove Theorem 29. Consider the tester Test-(≤ d)-Monomial in Figure 8.
In the first step, the tester runs the one-sided tester of Alon et al. [1], AKKLR-Test, that tests if
the function f is min(ϵ, 2−d−3)-close to a polynomial (over F2) of degree at most d. If f is (≤ d)-
Monomial, then AKKLR-Test accepts. If f is min(ϵ, 2−d−3)-far from any polynomial of degree
at most d, then, with probability at least 2/3, it rejects. So, after step 1, we may assume that f is
min(ϵ, 2−d−3)-close to g where g is a polynomial (over F2) of degree at most d. In particular,

Pr[f = 1] ≥ Pr[g = 1]−Pr[g ̸= f ] ≥ 2−d −min(ϵ, 2−d−3) ≥ 2−d−1.

The query complexity of AKKLR-Test is O(1/ϵ+ d22d).
In steps 2-4, if f is ϵ-far from (≤ d)-Monomial, then since Pr[f = 1] ≥ 2−d−1, with high

probability, the tester succeeds in finding such P ⊆ f−1(1). The query complexity in steps 2-4 is
O(22d log d).

23It is well known that for any non-zero polynomial g of degree d over F2, we have Pr[g = 1] ≥ 2−d.
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Let y = Y (y(1), . . . , y(t)). Notice that g(y) is a function g(y) : Fn
2 → F2 and a polynomial of

degree at most d. By Lemma 21, if f is a monomial, then g = f and

Pry(1),...,y(t),Y [g(y) ≡ 1] = 1.

If f is ϵ-far from monomial (and min(ϵ, 2−d−3)-close to a polynomial (over F2) of degree at most
d), then g is not a monomial and therefore

Pry(1),...,y(t),Y [g(y) ≡ 1] ≤ δ.

Now steps 6-8 test if g is the constant one function. Since we only have access to a black box to f ,
the tester uses self-corrector to query g. This is possible by Lemma 20. If g ≡ 1, the self-corrector
always returns zi = 1, and the tester accepts. If g ̸≡ 1, then, since g is a polynomial of degree
at most d, Prx[g(x) = 0] ≥ 1/2d, and therefore, with high probability, one of the x(i) satisfies
g(y)(x(i)) = 0. Steps 6-8 make O(22d) queries. This completes the proof of the Theorem.
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