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Abstract
Vanishing sums of roots of unity can be seen as a natural generalization of knapsack from Boolean
variables to variables taking values over the roots of unity. We show that these sums are hard to
prove for polynomial calculus and for sum-of-squares, both in terms of degree and size.
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1 Introduction

Statements from combinatorics, constraint satisfaction problems (CSP), arithmetic circuit
design, and algebra itself can be formalized either as statements about polynomial equalities
(and inequalities), or via propositional logic. The approach based on propositional logic is
amenable to state-of-the-art algorithms for satisfiability (SAT), usually variations of Conflict-
Driven-Clause-Learning SAT solvers (CDCL), see for instance [28, 29, 3]. These solvers are
surprisingly efficient, but their reasoning is ultimately based on the resolution proof system.
On problems coming from algebra, CDCL solvers do not exploit the algebraic aspects of
the problem, and therefore are typically unable to solve them. Switching to algebra allows
to leverage on tools as Hilbert’s Nullstellensatz and Gröbner basis computation in order to
solve systems of polynomial equations [10], or semidefinite programming to solve systems
of polynomial inequalities [30, 25]. These algebraic tools have been successful in practice
for instance to solve κ-coloring [11, 12, 13] and the verification of arithmetic multiplier
circuits [22, 21, 23]. κ-coloring, and in general CSP problems over finite domains of
size κ, are naturally encoded using κ-valued variables. In particular, the algebraic tools
for κ-coloring use the Fourier encoding, which represents values via complex variables z

subjected to the constraint zκ = 1 and hence such that

z ∈ {1, ζ, ζ2, . . . , ζκ−1} ,

where ζ is a primitive κth root of unity. A κ-valued variable z can be alternatively
represented as a collection of indicator Boolean variables x1, . . . , xκ equipped with the
additional constraint x1 + · · · + xκ = 1.

Picking the right encoding is essential to leverage the algebraic structure of the problem.
Even simple changes, for instance adding new variables to represent Boolean negations may
already give significant speedups both in theory and in practice [14, 20].
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In this paper, following a general approach from proof complexity, we show that algorithms
leveraging Hilbert’s Nullstellensatz or Gröbner basis computations cannot prove efficiently
the unsatisfiability of some natural sets of polynomials equations over the Fourier variables.

The proof systems we consider are polynomial calculus and sum-of-squares. Polynomial
calculus is a well studied proof system that captures Hilbert’s Nullstellensatz and Gröbner
basis computations. It is a system that certifies the unsatisfiability of sets of polynomial
equations. It has been studied for polynomials over different fields or rings and, in particular,
also for polynomials over the complex numbers C, see for instance [7]. Given polynomials
p1, . . . , pm with coefficients in a field F, a refutation of {p1 = 0, . . . , pm = 0} in polynomial
calculus over F, denoted as PCF, is a sequence of polynomials p1, . . . , ps over F such that
ps = 1 and each pm+1, . . . , ps is either (1) r · pk for some polynomial r with coeffcients in F
and some k < i; or (2) a linear combination αpj + βpk for j, k < i and α, β ∈ F.

Regarding sum-of-squares, it is a systems to certify the unsatisfiability of sets of polynomial
equations and inequalities over R. A sum-of-squares SoSR refutation of the set of contraints
{p = 0 : p ∈ P} ∪ {h ≥ 0 : h ∈ H} is an identity of the form

−1 =
∑
p∈P

qp · p +
∑
h∈H

qh · h +
∑
s∈S

s2 ,

where the s, qp, qh are polynomials over R and moreover the qhs are sums of squared
polynomials. In presence of Boolean or {±1}-valued variables, SoSR p-simulates PCR [4, 34].

In this paper, we introduce a generalization of sum-of-squares with polynomials over
C, SoSC (see Section 2 for the formal definition). Since C is not an ordered field, this
generalization of sum-of-squares to C can only be used to certify the unsatisfiability of sets
of polynomial equations. For sets of polynomial equations over R and in the presence of
Boolean variables, SoSC coincides with the usual notion of sum-of-squares over R, but the
generalization is necessary to deal with Fourier variables or to reason about polynomials over
C. In presence of Fourier variables, SoSC p-simulates PCC, see Section 2 for more details.

PC and SoS can be used to solve computational problems once they are encoded as sets
of polynomials equations. It is customary to discuss sets of polynomial equations simply as
sets of polynomials. We adopt this custom and we say that a set of polynomials over C is
satisfiable when it has a common zero α ∈ Cn. The most naïve algebraic encoding is to use
variables ranging over {0, 1} to represent the truth values of variables. This Boolean nature
of a variable x is enforced via the polynomial x2 − x. With this encoding then, for example,
the satisfiability of a propositional clause x ∨ ¬y ∨ z can be encoded as the satisfiability of
the set of polynomials {(1 − x)y(1 − z), x2 − x, y2 − y, z2 − z}. Truth values of variables
are sometimes also encoded in the Fourier basis {±1} and, as we already mentioned, for
some CSPs it is convenient to use κ-valued variables using the κth roots of unity.

Finding deductions in PC/SoS may be hard, and in general there are important proxy
measures to estimate such hardness: the maximum degree of the polynomials involved in the
deductions, and the number of monomials involved in the whole proof when polynomials are
written explicitly as sums of monomials (size). The degree is a very rough measure of the
proof search space, the size is a lower bound on the time required to produce the proof.

Studying size and degree complexity in algebraic systems over Fourier encodings is
particularly relevant to understand how to leverage to proof complexity techniques like
the Smolensky’s method in circuit complexity [33]. He proved exponential lower bounds
to compute the MODp function by bounded-depth circuits using the unbounded gates in
{∧, ∨, MODq}, for p and q relatively prime, employing a reduction to low-degree polynomials
over GF(q) approximating such circuits. In proof complexity, it is a long-standing problem
to obtain lower bounds for proof systems over bounded-depth formulas with modular gates.
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Non-trivial degree lower bounds for Fourier encodings were first obtained for the Nullstel-
lensatz proof system and PC by Grigoriev in [18] and Buss et al. in [7] for the Tseitin principle
over p-valued variables (instead of the usual {0, 1}) and the so-called MODp principles [7].

For PC/SoSR over Boolean variables we know degree and size lower bounds for the
encodings of several computational problems, see for instance [2, 17, 31, 32, 35]. For the
size lower bounds in PC and SoSR this is essentially due to degree-size tradeoffs: if a set of
polynomials over Boolean variables has no refutation in PC/SoSR of degree at most D, then
it has no refutation containing less than 2Ω

(
(D−d)2

n

)
monomials, see [1, 19].

No such degree-size relation holds for polynomials over the Fourier variables. For instance,
it is well-known that Tseitin contradictions over the Boolean variables {0, 1} require an
exponential number of monomials to be refuted in PC, while PC can refute them with a
linear number of monomials if the encoding uses the variables {±1}, see [7].

To the best of our knowledge, the first size lower bounds in PC/SoSR for polynomials with
{±1} variables are proved by [34] for the pigeonhole principle and random 11-CNFs. Moreover
that work provides a technique to turn strong degree lower bounds in that framework into
strong size lower bounds for the same polynomials composed with some carefully constructed
gadgets. We extend this latter approach to get size lower bound under the Fourier encoding
of κ-valued variables, and we apply it to a generalization of knapsack for these variables.

The classical knapsack problem corresponds to the set of polynomials{ n∑
i=1

cixi − r , x2
1 − x1, . . . , x2

n − xn

}
, (1)

where r, c1, . . . , cn ∈ C. For knapsack are known linear degree lower bounds in PC, see
[19, Theorem 5.1], and, when all the cis are 1 and r ∈ R, degree lower bounds in SoSR of
the form min{2⌊min{r, n − r}⌋ + 3, n}, see [17]. Size lower bounds are also implied by the
respective size-degree tradeoffs [19, 1].

Sums of roots of unity We consider the problem of when a sum of n variables with values
in the κth roots of unity can be equal to some value r ∈ C, that is the satisfiability of

SRUκ,r
n :=

{ ∑
i∈[n]

zi − r, zκ
1 − 1, . . . , zκ

n − 1
}

. (2)

Linear relations of the form
∑n

i=1 ciζi = 0, where ci are complex numbers and ζi are roots
of unity, arise naturally in several contexts [9], and have been extensively studied in the
literature, see for instance [16, 15]. When κ divides n, κ | n, it is easy to see that SRUκ,0

n is
satisfiable, because the κth roots of unity sum to zero.

When κ is a power of a prime number p, this is indeed the only possibility, that is SRUκ,0
n

is satisfiable over C if and only if p | n. (For the simple proof of this fact see Proposition 4 in
Section 2.) For the general case of κ ∈ N, Lam and Leung [24] characterize exactly the set of
natural numbers n such that SRUκ,0

n is satisfiable. As a corollary of their results, if κ is not
a power of a prime then, there exists a n0(κ) s.t. for every n ≥ n0(κ) the set of polynomials
SRUκ,0

n is satisfiable.

Our results In this paper we show the hardness to certify in PC and SoSC the unsatisfiability
of SRUκ,0

n when κ is a prime and does not divide n. For simplicity, we leave the discussion
for the case when κ is a power of a prime for the journal version. Our main results regarding
PC/SoSC informally say that SoSC and PCC cannot capture divisibility arguments.



4 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

A linear degree lower bound for SRU2,0
n follows immediately, via a linear transformation,

from the known degree lower bound for knapsack in SoS, since the Grigoriev’s lower bound
in [17] can easily extended to SoSC. In this paper we generalize this result proving degree
and size lower bounds in SoSC for SRUκ,r

n for κ an odd prime.

▶ Theorem 1 (Degree lower bound for SRUκ,r
n ). Let n, d ∈ N, κ be a prime, r ∈ C. Let r be

written as r1 + ζr2, where r1, r2 ∈ R and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ} ,

then there are no SoSC-refutations of SRUκ,r
n of degree at most d. In particular, SRUκ,0

n

requires refutations of degree Ω
(

n
κ

)
in SoSC.

From the set of polynomials in SRU2,r
n we can easily infer the polynomials in SRUκ,0

n ,
via a linear transformation and a weakening. This is enough to prove degree lower bounds
for SRUκ,0

n in PCC since, Impagliazzo, Pudlák, and Sgall [19, Theorem 5.1] proved a linear
degree lower bound for knapsack and therefore SRU2,r

n for any r (see Appendix A). This is
not the case for SoSC: SRU2,r

n is refutable in small degree and size in SoSC if r ∈ C \ R, see
Example 6. In other words, in SoSC, unlike the case of PC, it is not possible to reduce the
hardness of SRUκ,0

n , for κ > 2 to knapsack.
To prove the degree lower bound in SoSC for SRUκ,r

n (Theorem 1) first we construct a
candidate pseudo-expectation for SRUκ,r

n based on the symmetries of the set of polynomials.
Then we prove its correctness, following the approach by Blekherman [5, 6] as presented
in [27, Theorem B.11] but generalized to SoSC. We only show in Section 5 how to use the
generalization of Blekherman’s theorem (Theorem 25) to prove Theorem 1.

We also prove a size lower bound for SRUκ,0
n in SoSC. We lift degree lower bounds to size

lower bounds generalizing to κ-valued Fourier variables the lifting approach due to Sokolov
[34], originally designed for real valued polynomials and {±1}-variables.

▶ Theorem 2 (Size lower bound for SRUκ,0
n ). Let κ be a prime and n ∈ N, if n ≫ κ then the

set of polynomials SRUκ,0
n has no refutation in SoSC within monomial size 2o(n).

Theorem 2, for κ = 2, follows easily from the techniques of Sokolov [34] and Grigoriev’s
degree lower bound for knapsack [17]. For κ > 2 it requires some non-trivial extension of
the lifting technique from [34]. That is, the composition of polynomials with appropriate
gadgets (see Definition 8). Our generalization of the lifting from [34] is Theorem 11 in
Section 3.

Theorem 1 and Theorem 2 also hold for PCC, since SoSC simulates PCC.

Structure of the paper In the next section, we give the necessary preliminaries on roots
of unity and the formal definition of SoSC. In Section 3 we lift degree lower bounds to size
lower bounds for sets of polynomials over the roots of unity and we prove Theorem 2. The
main technical ingredient of this proof is Theorem 9. Its proof is deferred to Section 4. The
proof of Theorem 1 is in Section 5.

2 Preliminaries

Given n, k ∈ N, let [n] := {1, . . . , n}, and if k divides n we write k | n. For a ∈ R and
b ∈ N, let

(
a
0
)

:= 1 and
(

a
b

)
:= a(a−1)...(a−b+1)

b! for b ≥ 1. Boldface symbols indicate vectors,
and x denotes a vector with n elements (x1, . . . , xn). We denote with x Boolean variables,
with z κ-valued variables and with y generic variables or auxiliary variables. Given a set of
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polynomials P ⊆ C[y], ⟨P ⟩ denotes the ideal generated by P in C[y]. Let i be the imaginary
unit in C, i.e. i2 = −1.

Vanishing sums of roots of unity For a positive integer κ, a κth root of unity is a root
of the polynomial zκ − 1. All the roots of unity except 1 are also roots of the polynomial
1 + z + · · · + zκ−1, indeed zκ − 1 = (z − 1) · (1 + z + · · · + zκ−1). A κth root of unity ζ is
called primitive if ζt ̸= 1 for all 1 ≤ t < κ. If this is the case the κth roots of unity are
indeed 1, ζ, ζ2, . . . , ζκ−1. Some of the results of this paper hold for roots of unity in generic
fields but, for sake of clarity, we only consider roots of unity in C. Notice that the complex
conjugate of ζt is ζκ−t. For concreteness, we denote as ζ a specific primitive κth root of
unity, for instance e2πi/κ, and as Ωκ the set {1, ζ, ζ2, . . . , ζκ−1}. We often denote as ω a
generic element in Ωκ.

The κth cyclotomic polynomial is the unique irreducible univariate polynomial in Z[X]
that divides Xκ − 1 and does not divides Xκ′ − 1 for any κ′ ∈ [κ − 1]. The κth cyclotomic
polynomial is denoted as Φκ(X). If κ is prime, then Φκ(X) = 1 + X + · · · + Xκ−1. If κ = pm

for some prime p and integer m then the κth cyclotomic polynomial is

Φκ(X) = 1 + Xpm−1
+ X2pm−1

+ · · · + X(p−1)pm−1
.

▶ Proposition 3. Let κ be a prime number. The set of polynomials SRUκ,0
n is satisfiable over

C if and only if κ | n.

Proof. Let ζ be a primitive κth root of unity. That is ζ is a root of the κth cyclotomic
polynomial Φκ(X) = 1 + X + · · · + Xκ−1. If κ | n, say n = κ · a, then a solution is trivial to
construct: 1 + · · · + 1︸ ︷︷ ︸

a

+ ζ + · · · + ζ︸ ︷︷ ︸
a

+ · · · + ζκ−1 + · · · + ζκ−1︸ ︷︷ ︸
a

= aΦκ(ζ) = 0.

Suppose now the set of polynomials SRUκ,0
n is satisfiable over C. Let y1, . . . , yn be a

solution. For j = 0, . . . , κ − 1, let αj = |{ℓ ∈ [n] : yℓ = ζj}|. From the definition it follows
immediately that

∑p−1
j=0 αj = n and that for some j > 0, αj ̸= 0.

That is ζ is a root of the univariate polynomial p(X) =
∑κ−1

j=0 αjXj , but then ζ is also a
root of p(X) − ακ−1Φκ(X) =

∑κ−2
j=0 (αj − ακ−1)Xj . This polynomial has degree strictly less

than κ − 1 and hence it must be identically 0, i.e. α0 = α1 = · · · = ακ−1. Since
∑κ−1

j=0 αj = n

this implies κ | n. ◀

▶ Proposition 4. Let κ be a power of a prime number p. The set of polynomials SRUκ,0
n is

satisfiable over C if and only if p | n.

Proof. Let ζ be a primitive pmth root of unity, i.e. all the pmth roots of unity are
1, ζ, ζ2, . . . , ζpm−1. The polynomial 1 + Xpm−1 + X2pm−1 + · · · + X(p−1)pm−1 is the monic
polynomial with integer coefficients of minimum degree with ζ as a root.

If p | n, say n = p · a, then a solution is trivial to construct:

1 + · · · + 1︸ ︷︷ ︸
a

+ ζpm−1
+ · · · + ζpm−1︸ ︷︷ ︸

a

+ · · · + ζpm−1(p−1) + · · · + ζpm−1(p−1)︸ ︷︷ ︸
a

= 0 .

Suppose now the set of polynomials in SRUκ,0
n is satisfiable. Let y1, . . . , yn be a solution.

For j = 0, . . . , p − 1, let αj = |{ℓ ∈ [n] : yℓ = ζj}|. Now, for every ℓ ∈ {0, . . . , pm−1 − 1} we
have

ζpm−1(p−1)+ℓ = −ζℓ(1 + ζpm−1
+ · · · + ζpm−1(p−2)) ,
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that is, similar as Proposition 3, ζ is a root of a univariate polynomial p(X) =
∑pm−1(p−1)−1

j=0 α′
jXj

but now α′
j = αj − αℓ where ℓ ∈ {0, . . . , pm−1 − 1} is such that ℓ ≡ j (mod pm−1(p − 1)).

As in Proposition 3, this polynomial must also be identically 0, i.e. for every j α′
j = 0. That

is
∑pm−1

j=0 αj = p
∑pm−1−1

ℓ=0 αℓ. Since
∑p−1

j=0 αj = n this implies p | n. ◀

We define the proof systems of interest in this work: we recall the usual definition of
polynomial calculus and introduce a variant of Sum-of-Squares designed to deal with complex
numbers and complex roots of unity.

PC over the complex numbers Given a set of polynomials P ⊂ C[x] and q ∈ C[x], a
refutation of P in polynomial calculus over C, denoted as PCC, is a sequence of polynomials
p1, . . . , ps in C[x] such that ps = 1 and each pi is either (1) a polynomial from the set P ; (2)
r · pk for some polynomial r ∈ C[x] and some k < i; or (3) a linear combination αpj + βpk

for j, k < i and α, β ∈ C. The degree of the refutation is max{deg(pi)} and the size of the
refutation is the sum of the number of monomials among all pis.

SoS over the complex numbers The key concept at the core of the sum-of-squares proof
system is that squares of real valued polynomials are always positive. For a complex valued
polynomial p ∈ C[y] we use that p ·p∗ ≥ 0, where p∗ is the function that maps the assignment
α to the complex conjugate of the value p(α). We need a polynomial representation of
function p∗ that we call formal conjugate of p. To have such polynomial, in general, we would
need to use a twin formal variable to represent x∗ for any original variable x. Furthermore
we would need to add to the proof system various axioms to relate x and x∗. In this work
we focus on SoSC under the Boolean and Fourier encodings, hence we can represent formal
conjugates as polynomials without any additional axiom or variable. For a Boolean variable
x ∈ {0, 1} we have that x∗ is x itself. For a Fourier variable z raised to an integer power
0 ≤ t < κ, the function (zt)∗ is zκ−t. Then the operator ∗ extends homomorphically on sums
and products, and it is equal to the usual complex conjugate on complex number. We are
now ready to define the sum-of-squares proof system over complex number.

▶ Definition 5 (Sum-of-Squares over C, SoSC). Fix an integer κ ≥ 2. Consider a set of
polynomials P ⊆ C[x, z] where P contains zκ − 1 and for each variable z, and contains
x2 − x for each variable x. A refutation of P in SoSC is an equality of the form

−1 =
∑
p∈P

qp · p +
∑
s∈S

s · s∗ ,

where the s ∈ S and qp for p ∈ P are in C[x, z] and each s∗ is the formal conjugate of s.
The degree of the refutation is max{deg(qp) + deg(p), deg(s · s∗) : p ∈ P, s ∈ S}. The

size of the refutation is the total number of monomials occurring with non-zero coefficients
among polynomials {qp, p : p ∈ P} ∪ {s, s∗ : s ∈ S}.

Notice that, for polynomials p, q ∈ R[x, z], (p + iq)(p − iq) = p2 + q2. Therefore for
P ⊆ R[x] and containing x2

i − xi for every i ∈ [n], the notion of SoSC and SoSR coincide.
By Hilbert’s Nullstellensatz, SoSC is complete: for every unsatisfiable set of polynomials

P there is a SoSC-refutation. Conversely, only unsatisfiable sets of polynomials have SoSC
refutations: for any assignment α of a polynomial s, polynomial s · s∗ evaluates to |s(α)|2

which is a non-negative real number.
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▶ Example 6. The set of polynomials {
∑

j∈[n] xj − i, x2
1 − x1, . . . , x2

n − xn} has a simple
SoSC refutation:

−1 = −(
∑

j∈[n]

xj − i)(
∑

j∈[n]

xj + i) + (
∑

j∈[n]

xj)2 .

Via similar algebraic equalities it is not hard to see that SoSC can refute easily the set of
polynomials corresponding to knapsack in eq. (1) when r ∈ C \ R and all cis are real. By a
simple modification of [4, Lemma 3.1] and [34], we also have that, in presence of the axioms
yκ

i − 1, SoSC simulates PCC, that is PCC refutations can be converted to SoSC refutations
with just a polynomial increase in size.1 Impagliazzo, Pudlák, and Sgall in [19, Theorem 5.1]
prove that the set of polynomials in eq. (1) is hard for PCC, hence SoSC is strictly stronger
than PCC.

3 Size lower bounds in Sum-of-Squares

In this section we prove the size lower bound for SRUκ,0
n in SoSC from the the corresponding

degree lower bound. That is we show how to prove Theorem 2 from Theorem 1. On a
very high level, this is done composing the polynomials in SRUκ,r

n with some polynomials g,
obtaining then some new set of polynomials SRUκ,r

n ◦ g. Then a lifting theorem shows that
degree lower bounds on SRUκ,r

n imply size lower bounds on SRUκ,r
n ◦ g.

▶ Definition 7 (composition of polynomials). Let x, y1, . . . yn be tuples of distinct variables
where yj = (yj1, . . . , yjℓj

). Given a polynomial p ∈ C[x] and g = (g1 . . . , gn) with gj ∈ C[yj ]
we denote by p ◦ g the polynomial obtained substituting each instance of the variable xj in p

with the polynomial gj(yj) and then expanding the obtained algebraic expression as a sum of
monomials in the new variables. The polynomial p ◦ g then belongs to the ring C[y1, . . . , yn].

Similarly, for a set of polynomials P ⊂ C[x] we denote as P ◦ g the set of polynomials
{p ◦ g : p ∈ P}.

We are interested in composing polynomials with g with good properties. Those are a
generalization of the notion of compliant gadgets from [34, Definition 2.1].

▶ Definition 8 (compliant polynomial). A polynomial g ∈ C[y1, . . . , yℓ] is compliant if it is
symmetric and there exists a function h : Ωκ → Ωℓ

κ such that
1. g ◦ h = id, i.e. for all b ∈ Ωκ, g(h(b)) = b;
2. for each b ∈ Ωκ, the first κ coordinates of h(b) list all the elements of Ωκ; and
3.
∏

ω∈Ωκ
h(ω) is a constant function.

We say that g = (g1 . . . , gn) with gj ∈ C[yj ] is compliant when each gj is compliant.

The original definition of [34, Definition 2.1] focuses on real polynomials and sets of values
{0, 1} and {±1}, while ours focuses on complex polynomials and the set of κth roots of unity.

The overall structure of the size lower bound is via a typical size-degree trade-offs that can
be found for instance in [8, 34, 1]. The idea is to show, first, that there exists a relatively long
sequence of restrictions such that the restricted polynomials have small degree refutations
(Theorem 9 below) and, secondly, that each individual restriction can only make the degree
decrease a little (Lemma 10 below). These two components will imply that the sequence

1 The main difference with [4, Lemma 3.1] and [34] is to consider polynomials s · s∗ instead of squares s2

and then to use the algebraic equality (p + q)(p + q)∗ + (p − q)(p − q)∗ = 2pp∗ + 2qq∗ instead of the
one for the reals (p + q)2 + (p − q)2 = 2p2 + 2q2 .
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of restrictions must be very long and this will imply the size-degree trade-off. For the sake
of a cleaner argument we consider the notion of reduced degree: the reduced degree of a
refutation in SoSC of a set of polynomials P containing the polynomials xκ

j − 1 is the degree
of the refutation where we do not take in account the degrees of the polynomials qp where p

is xκ
j − 1 (see Definition 5).
The first component comes from a generalization of [34, Theorem 4.1].

▶ Theorem 9. Let P be finite a set of polynomials of degree d0 in C[x] containing the
polynomials xκ

j − 1 for each j ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi

] and ω1, ω2, . . . , ωm ∈ Ωκ. If there is a SoSC refutation of P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [ℓi]} of size s then there exists a sequence of variables xi1 , . . . , xim with
m ≥ ℓκn ln(s)/D such that
1. ℓ = maxi ℓi;
2. the choice of xit

only depends on ω1, . . . , ωt−1;
3. there is a SoSC refutation of P↾xi1 =ω1,...,xim =ωm

of reduced degree at most D + d0.

The proof of this result is in Section 4. The second component is the following lemma.

▶ Lemma 10. Let P be a finite set of polynomials in C[x] containing the polynomials xκ
j − 1

for each j ∈ [n]. Suppose any SoSC refutation of P has reduced degree at least D. Then,
for any variable xj there is ω ∈ Ωκ such that SoSC refutations of P↾xj=ω must have reduced
degree at least D − 2κ + 2.

Proof. (sketch) For sake of contradiction, suppose there exists some variable x such that
for every ω ∈ Ωκ, P↾x=ω has a refutation of reduced degree D − 2κ + 1. For every ℓ ∈ N,
xℓ − ωℓ is a multiple of x − ω. Therefore, for every p ∈ P , the polynomial p − p↾x=ω belongs
to the ideal generated by x − ω. This means that we can transform refutations of P↾x=ω

into refutations of P ∪ {x − ω} without increasing the degree. Hence, there are refutations of
P ∪ {x − ω} of reduced degree D − 2κ + 1 for every ω ∈ Ωκ.

Let πω be a refutation of P ∪ {x − ω} of reduced degree D − 2κ + 1. Let qω(x) =∏
ω′ ̸=ω(x − ω′).

It is easy to see that multiplying πω by the polynomial qωq∗
ω we get a derivation of −qωq∗

ω

from P . This new derivation has reduced degree D−2κ+1+2(κ−1) = D−1. Now we can take
a linear combination (with non-negative real coefficients) of the previous derivations to get
the derivation of −1. More precisely we need numbers αω ≥ 0 such that

∑
ω∈Ωκ

αωqωq∗
ω −1 ∈

⟨xκ − 1⟩. Setting αω = 1/qω(ω)qω(ω)∗ we get that that
∑

ω∈Ωκ
αωqωq∗

ω − 1 is zero for all
ω ∈ Ωκ and therefore in the ideal ⟨xκ − 1⟩. This finally gives a SoSC refutation of P in degree
D − 1, contradicting the assumption on P . ◀

Now we put together Theorem 9 and Lemma 10 to get the size-degree trade-off, which is
a generalization of [34, Theorem 4.2].

▶ Theorem 11. Let P a finite set of polynomials of degree at most d0 in C[x] containing
the polynomials xκ

i − 1 for each i ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi ]. If P requires degree D to be refuted in SoSC, then

P ◦ g ∪ {yκ
ij − 1 : i ∈ [n], j ∈ [ℓi]}

requires monomial size at least exp( (D−d0)2

8ℓκ(κ−1)n ) to be refuted in SoSC, where ℓ = maxi∈[n] ℓi.

Proof. Let s be the smallest size of a SoSC refutation of the set of polynomials P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [ℓi]}. We alternate applications of Theorem 9 to pick xit
with applications
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of Lemma 10 to pick ωt, and in the end we have a sequence of variables/values xi1 =
ω1, . . . , xim

= ωm. By these choices, the restricted set of polynomials P ↾xi1 =ω1,...,xim =ωm

requires refutations of reduced degree at least D − 2κm + 2m. By Theorem 9, we can set
m = ℓkn ln(s)/D′ for some D′ > 0 and get a refutation of reduced degree at most D′ + d0.
Hence, D′ + d0 ≥ D − 2m(κ − 1) and we get that ln(s) ≥ D′(D−D′−d0)

2ℓkn(κ−1) . The largest value is

attained for D′ = (D − d0)/2 and we get ln(s) ≥ (D−d0)2

8ℓkn(κ−1) . ◀

We finally prove the size lower bound for SRUκ,0
n claimed in Theorem 2, using Theorems 1

and 11.

▶ Theorem 2 (Size lower bound for SRUκ,0
n ). Let κ be a prime and n ∈ N, if n ≫ κ then the

set of polynomials SRUκ,0
n has no refutation in SoSC within monomial size 2o(n).

Proof. Let n = (2κ + 1)n′ + b with b ∈ {0, . . . , 2κ}. Let ℓ1 = · · · = ℓb = 2κ + 2 and
ℓb+1 = · · · = ℓn′ = 2κ + 1. Consider the tuple g = (g1, . . . , gn′) where gi ∈ C[yi1, . . . , yiℓi

] is
the polynomial

gi(yi1, . . . , yiℓi) := 1
κ

(
∑

j∈[ℓi]

yij − (ℓi − 2κ)) .

We have that SRUκ,0
n after renaming of variables is a subset of

SRUκ,r
n′ ◦ g ∪ {yκ

ij − 1 : i ∈ [n′], j ∈ [ℓi]} (3)

with r = − n′+b
κ . By Theorem 1, there are no SoSC refutations of SRUκ,r

n′ in degree n′

κ . Each
gi is compliant. Indeed, the polynomial gi is symmetric and we can take as hi : Ωκ → Ωℓi

κ

the function mapping

hi : ω 7→ (1, ζ, ζ2, . . . , ζκ−1, 1, 1, . . . , 1︸ ︷︷ ︸
ℓi−2κ

, ω, ω, . . . , ω︸ ︷︷ ︸
κ

) ,

where ζ is a primitive κth root of unity in C. Clearly, g ◦ h is the identity and∏
ω∈Ωκ

hi(ω) = ζκ(κ−1)/2ωκ = ζκ(κ−1)/2

since ω is a κth root of unity. By Theorem 11, the set of polynomials (3) requires SoSC

refutations of monomial size at least exp( ( n′
κ −κ)2

8ℓκ(κ−1)n′ ) = 2Ω(n) if n ≫ κ. Therefore SRUκ,0
n

requires refutations size 2Ω(n), too. ◀

4 Proof of Theorem 9

The whole argument in this section is a generalization of the proof of [34, Theorem 4.1].
Here, we fix a primitive κth root of unity ζ and a tuple of polynomials g = (g1, . . . , gn) with
gi ∈ C[yi] compliant on Ωκ = {1, ζ, . . . , ζκ−1}. In particular, for each i ∈ [n], ℓi ≥ κ + 1. Let
Tn be the set of terms in C[y1, . . . , yn].

Notation for terms in Tn We use a compact notation to denote the terms in Tn. Given
i ∈ [n], let αi = (αi1, . . . , αiℓi

) ∈ Nℓi and let Y αi
i :=

∏
j∈[ℓi] y

αij

ij . We can uniquely write
each term t in C[y1, . . . , yn] as

t =
∏

i∈[n]

Y αi
i ,

for suitable tuples αi ∈ Nℓi .
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Permutations and symmetrizations of terms in Tn Let Sℓi be the group of permutations
over ℓi elements. Given σ ∈ Sℓi

, and αi as above, let the image of the monomial Y αi
i be

σY αi
i :=

∏
j∈[ℓi] y

αij

iσ(j). We will be interested in σ ∈ Sℓi
that are κ-cycles. They always exist

since the fact that g is compliant implies that ℓi > κ for each i ∈ [n].

▶ Example 12. Say ℓ = 4, κ = 3, and σ is the 3-cycle (1 2 3). The term t = y0
1,1y1

1,2y2
1,3y1

1,4
is Y α

1 with α = (0, 1, 2, 1). The permutation σ maps t to σt = y0
1,2y1

1,3y2
1,1y1

1,4.

In general, a term t ∈ Tn has the form
∏

i∈[n] Y αi
i and given a permutation we want to

apply it only to the variables in t relative to some index i0.
That is, given i0 ∈ [n] and σ ∈ Sℓi0

, we consider the map (σ; i0) : Tn → Tn defined by

(σ; i0)
( ∏

i∈[n]

Y αi
i

)
:= σY

αi0
i0

·
∏

i∈[n],i̸=i0

Y αi
i .

The reason we consider the action of permutations on Tn is that we want to symmetrize
the terms in Tn, but only the part of them relative to some index i0.

▶ Definition 13 (the symmetrization SYMσ,i0(t)). Given i0 ∈ [n], a term t ∈ Tn, and σ ∈ Sℓi0

a κ-cycle, we consider the polynomial SYMσ,i0(t) defined as

SYMσ,i0(t) :=
κ−1∑
m=0

(σ; i0)m(t) ,

where (σ; i0)m is (σ; i0) ◦ · · · ◦ (σ; i0)︸ ︷︷ ︸
m times

and (σ; i0)0 is the identity.

▶ Example 14 (Example 12 cont’d.). Recall that t = y0
1,1y1

1,2y2
1,3y1

1,4 and σ = (1 2 3). Let
i0 = 1. We have (σ; 1)(t) = y0

1,2y1
1,3y2

1,1y1
1,4 and

SYMσ,1(t) = y0
1,1y1

1,2y2
1,3y1

1,4 + y0
1,2y1

1,3y2
1,1y1

1,4 + y0
1,3y1

1,1y2
1,2y1

1,4 ,

while, for instance, SYMσ,2(t) = 3t.

▶ Lemma 15. Let p, q ∈ C[y1, . . . , yn], i0 ∈ [n] and σ ∈ Sℓi . If q is invariant under (σ; i0),
then SYMσ,i0(pq) = SYMσ,i0(p)q.

Proof. The action of (σ; i0) is multiplicative, therefore

SYMσ,i0(pq) =
κ−1∑
m=0

(σ; i0)m(pq)

=
κ−1∑
m=0

(σ; i0)m(p) · (σ; i0)m(q)

=
κ−1∑
m=0

(σ; i0)m(p) · q (since q is invariant under (σ; i0))

= SYMσ,i0(p)q .

◀

We want to apply restrictions of a specific form to the symmetrized terms. The restrictions
we use are the βi,σ defined below.
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▶ Definition 16 (the partial assignment βi,σ). For i ∈ [n] and a κ-cycle σ = (j0 j1 . . . jκ−1),
let βi,σ be the partial assignment on the variables yi mapping yi,jm

to ζm, for every m =
0, . . . , κ − 1 and mapping the remaining variables yi,j to themselves. We denote the partial
assignment βi,σ applied to a polynomial p as p↾βi,σ .

The main reason to consider the symmetrization together with the partial assignment
βi,σ is that, together, they act as if they were a partial restriction mapping some terms to 0.

▶ Lemma 17. Let i0 ∈ [n] and j0, . . . , jκ−1 ∈ [ℓi] be distinct indices. Let σ be the κ-cycle
(j0 j1 . . . jκ−1). Let t =

∏
i∈[n] Y αi

i be a generic term in Tn. Then

SYMσ,i0(t)↾βi0,σ
=
{

0 if κ ∤
∑κ−1

m=0 αi0,jm

κ · t↾βi0,σ
otherwise .

Proof. Since (σ; i0)0 is the identity, we have (σ; i0)0(t)↾βi0,σ
= t↾βi0,σ

. For (σ; i0)1, we can
see that now βi0,σ maps variable yi0jm

to ζm+1.

(σ; i0)1(t)↾βi0,σ
= ω · t↾βi0,σ

,

where ω = ζ
∑κ−1

m=0
αi0jm . Likewise, for every 0 ≤ m < κ, we have that

(σ, i0)m(t)↾βi0,σ
= ωm · t↾βi0,σ

.

That is

SYMσ,i0(t)↾βi0,σ =
( κ−1∑

m=0
ωm

)
t↾βi0,σ =

{
0 if w ̸= 1
κ · t↾βi0,σ

otherwise ,

where the last equality follows since all ω ̸= 1 are roots of the univariate polynomial
1 + X + X2 + · · · + Xκ−1. To conclude it is enough to observe that by definition, ω ̸= 1 if
and only if κ ∤

∑k−1
m=0 αi0,jm . ◀

▶ Lemma 18. If SYMσ,i(t)↾βi,σ
= 0 then SYMσ,i(t∗)↾βi,σ

= 0, where t∗ is the formal conjugate
of t.

Proof. By Lemma 17, SYMσ,i(t)↾βi,σ = 0 implies that κ ∤
∑k−1

m=0 αi0,jm . The exponent of the
variable yi,j in t∗ is κ − αi,j , therefore κ ∤

∑k−1
m=0(κ − αi0,jm

) and hence, again by Lemma 17,
SYMσ,i(t∗)↾βi,σ = 0. ◀

▶ Lemma 19. Let t =
∏

i∈[n] Y αi
i be such that for each i ∈ [n], αi ∈ [κ]ℓi and suppose

the entries of the vector αi0 are not all equal. Then there exist a κ-cycle σ such that
SYMσ,i0(t)↾βi0,σ

= 0.

Proof. By Lemma 17, it is enough to show that there are κ distinct indices j0, . . . , jκ−1 ∈ [ℓi]
such that κ ∤ αi0,j0 +· · ·+αi0,jκ−1 . Consider two distinct indices j0, j1 such that αi0,j0 > αi0,j1 .
Now consider arbitrary distinct indices j2, . . . , jκ ∈ [ℓi]. We can find those indices since
ℓi ≥ κ + 1. It must be that either κ ∤ αi0,j0 +

∑κ
m=2 αi0,jm

or κ ∤ αi0,j1 +
∑κ

m=2 αi0,jm
.

Otherwise, if κ divided both sums, then κ | αi0,j0 − αi0,j1 which is strictly between 0 and κ

and hence not divisible by κ. ◀

Now, by linearity, we define SYMσ,i(p)↾βi,σ for every p ∈ C[y1, . . . , yn]. Before proving
Theorem 9 we need to show that this operator behaves well on polynomials of the form pp∗.



12 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

▶ Lemma 20. For every polynomial p ∈ C[y1, . . . , yn], every i0 ∈ [n] and every κ-cycle
σ ∈ Sℓi0

, there are polynomials s0, . . . , s(κ−1) such that

SYMσ,i0(pp∗)↾βi0,σ
= s0s∗

0 + · · · + s(κ−1)s
∗
(κ−1) ,

and moreover the total number of monomials in s0s∗
0 + · · · + s(κ−1)s

∗
(κ−1) before cancellations

is at most the number of monomials in pp∗ (again before cancellations).

Proof. The permutation σ is a κ-cycle, say (j0 j1 . . . jκ−1). Let t(α) the monomial∏κ−1
m=0 y

αi0jm

i0jm
, where the αi0jm

are integers between 0 and κ − 1. By construction the formal
conjugate of t(α) is

∏κ−1
m=0 y

κ−αi0jm

i0jm
, which can be written as t(ke − α) where e is the vector

of dimension κ with all entries 1. Let ∥α∥ =
∑κ−1

m=0 αi0jm we divide the partition the vectors
of exponents α in A0, A1, . . . , A(κ−1) based on the residue of their norm modulo κ. Namely
Am = {α : ∥α∥ = m (mod κ)}. We have that

p =
∑

α∈A0

pαt(α) +
∑

α∈A1

pαt(α) + · · · +
∑

α∈A(κ−1)

pαt(α) .

Before computing SYMσ,i0(pp∗)↾βi0,σ
we observe that SYMσ,i0(t(α)t(α′)∗)↾βi0,σ

is non-zero if
and only if κ divides ∥α∥+∥ke−α′∥ (by Lemma 17), and the latter occurs when ∥α∥ = ∥α′∥
mod κ. By linearity of SYMσ,i0(·) and this observation we have that

SYMσ,i0(pp∗)↾βi0,σ
=

∑
α,α′∈A

pαp∗
α′SYMσ,i0(t(α)t(α′)∗)↾βi0,σ

=
∑

α,α′∈A0

pαp∗
α′SYMσ,i0(t(α)t(α′)∗)↾βi0,σ + · · · +

∑
α,α′∈Aκ−1

pαp∗
α′SYMσ,i0(t(α)t(α′)∗)↾βi0,σ

= κ ·
∑

α,α′∈A0

pαp∗
α′t(α)↾βi0,σ t(α′)∗↾βi0,σ + · · · + κ ·

∑
α,α′∈A(κ−1)

pαp∗
α′t(α)↾βi0,σ t(α′)∗↾βi0,σ

= κ ·
( ∑

α∈A0

pαt(α)↾βi0,σ

)
·
( ∑

α∈A0

pαt(α)↾βi0,σ

)∗ + · · ·

· · · + κ ·
( ∑

α∈A(κ−1)

pαt(α)↾βi0,σ

)
·
( ∑

α∈A(κ−1)

pαt(α)↾βi0,σ

)∗

= s0s∗
0 + · · · + s(κ−1)s

∗
(κ−1) ,

where each sm is
√

κ ·
∑

α∈Am
pαt(α)↾βi0,σ

. We conclude the proof discussing the size. Let cm

be the number of monomials in
∑

α∈Am
pαt(α). The polynomial sm has no more monomials

than cm, being its restriction. Hence, the total count of monomials in s0s∗
0 + · · ·+s(κ−1)s

∗
(κ−1),

before cancellations, is at most
∑κ−1

m=0 c2
m which is less than

(∑κ−1
m=0 cm

)2
, the number of

mononomials in pp∗ before cancellations. ◀

We have now all the ingredients needed to prove Theorem 9. For convenience of the
reader we restate it here.

▶ Theorem 9. Let P be finite a set of polynomials of degree d0 in C[x] containing the
polynomials xκ

j − 1 for each j ∈ [n]. Let g be a tuple of compliant polynomials with
gi ∈ C[yi1, . . . , yiℓi

] and ω1, ω2, . . . , ωm ∈ Ωκ. If there is a SoSC refutation of P ◦ g ∪ {yκ
ij −

1 : i ∈ [n], j ∈ [ℓi]} of size s then there exists a sequence of variables xi1 , . . . , xim
with

m ≥ ℓκn ln(s)/D such that
1. ℓ = maxi ℓi;
2. the choice of xit

only depends on ω1, . . . , ωt−1;
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3. there is a SoSC refutation of P↾xi1 =ω1,...,xim =ωm
of reduced degree at most D + d0.

Proof. Let π be a SoSC refutation of P ◦ g ∪ {yκ
ij − 1 : i ∈ [n], j ∈ [ℓi]} of size s. Proof π

has the form

−1 =
∑

p∈P ◦g

qp · p +
∑
i∈[n]
j∈[ℓi]

qij(yκ
ij − 1) +

∑
q∈Q

q · q∗ , (4)

where qp, qij , qs are polynomials in C[y1, . . . , yn]. Without loss of generality we can consider
a “multilinearized” version of (4) where each polynomial is reduced modulo the ideal
⟨yκ

ij − 1 : i ∈ [n], j ∈ [ℓi]⟩. That is each polynomial qp, qs have variables yij with degree at
most κ − 1. This comes at the cost of increasing polynomially the size of the proof.

We say a term t =
∏

i∈[n] Y αi
i is fat when there are at least D/κ distinct indices i so that

the entries of the vector αi are not all equal. By Lemma 19, if a term is fat there are at
least D/κ maps (σ; i) with distinct indices i so that SYMσ,i(t)↾βi,σ= 0.

Let F be the set of fat terms in the qps and in q · q∗ before cancellations.2 We have at
most ℓ(ℓ − 1) . . . (ℓ − κ + 1)/k ≤ ℓκ/κ possible κ-cycles in total, hence the maps (σ; i) are at
most n · ℓκ/κ. Therefore by averaging we have a pair (σ1, i1) so that the fat terms t ∈ F

where SYMσ1,i1(t)↾βi1,σt
= 0 are at least k

ℓκn · D
k · |F | = D

ℓκn |F |.
Fix an arbitrary ω1 ∈ Ωκ. By applying (σ1; i1)0, . . . , (σ1; i1)κ−1 to (4), summing and

restricting by βi1,σ1 we obtain the equality

−κ =
∑

p∈P ◦g

SYMi1,σ1(qp·p)↾βi1,σ1
+
∑
i∈[n]
j∈[ℓi]

SYMi1,σ1(qij(yκ
ij−1))↾βi1,σ1

+
∑
q∈Q

SYMi1,σ1(q·q∗)↾βi1,σ1
.

(5)

Now, since g is symmetric, p is invariant under the action of (σ1; i1) and, by Lemma 15,
then

SYMi1,σ1(qp · p)↾βi1,σ1
= SYMi1,σ1(qp)↾βi1,σ1

·p↾βi1,σ1
.

For the same reason

SYMi1,σ1(qij(yκ
ij − 1))↾βi1,σ1

= SYMi1,σ1(qij)↾βi1,σ1
(yκ

ij − 1)↾βi1,σ1
.

Therefore, by Lemma 20, the expression in (5) is a SoSC refutation π′
1 of (P ◦g)↾βi1,σ1

. Notice
that, by the properties of g, it is possible to extend βi1,σ1 to a β′ setting all the remaining
variables in yi1 and such that gi1(β′(yi1,1), . . . , β′(yi1,ℓi1

)) = w1.
Restricting π′

1 by β′ we obtain a SoSC refutation of (P ↾xi1 =ω1) ◦ g. Let π1 be this
refutation. By Lemma 17 and Lemma 20, π1 has size at most s and, by construction, π1
contains at most (1 − D

ℓkn
)|F | fat terms.

By repeating this process m times, we get a partial assignment xi1 = ω1, . . . , xim = ωm

and a SoSC refutation π′ of (P↾xi1 =ω1,...,xim =ωm
) ◦ g such that π′ contains no fat terms. This

is because the number of fat terms in π′ is at most(
1 − D

ℓκn

)m

s ≤ exp
(

− Dm

ℓκn
+ ln(s)

)
< 1 ,

2 This set of polynomials is the analogue of the quadratic representation in [34].
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if m ≥ ℓκn ln(s)/D. To conclude the argument we need to transform π′ into an SoSC
refutation of P↾xi1 =ω1,...,xim =ωm

of reduced degree at most D + d0.
For a ∈ {0, . . . , κ − 1} let χa(X) be the univariate polynomial that evaluates to 1 in

X = ζa and 0 whenever X = ζb with b ̸= a. That is, χa(X) is the polynomial

χa(X) = 1∏
0≤i<κ,i ̸=a(ζa − ζi)

∏
0≤i<κ,i ̸=a

(X − ζi)

i.e., written as a sum of monomials

χa(X) = 1∏
0≤i<κ,i ̸=a(ζa − ζi) ·

∑
j

(−1)jelj(1, . . . , ζa−1, ζa+1, . . . , ζκ−1) · Xκ−1−j ,

where elj is the jth elementary symmetric polynomial on κ − 1 variables.
To transform π′ into a refutation of P↾xi1 =ω1,...,xim =ωm

, we need to set the remaining yij

variables so that for any unassigned xi, the corresponding gi(yi) evaluates to xi. For each
i ∈ [n] and j ∈ [ℓi] we substitute all the occurrences of the variable yij in π′ with

κ−1∑
a=0

hi(ζa)jχa(xi) , (6)

recall that hi(ζa)j is the jth coordinate of the image of ζa under the function hi : Ωκ → Ωℓi
κ

witnessing the gadget gi is compliant.
We use the χa(xi) written as a sum of monomials. Let π′′ be the result of this

transformation applied to π′. We have that no monomial in π′′ has degree bigger than
D
κ (κ − 1) < D.

To conclude we need to show how to modify π′′ to a SoSC refutation of P↾xi1 =ω1,...,xim =ωm
.

The part of π′′ that is a “sum of squares” of the form ss∗ after the transformation will remain
a sum of squares. We need to only show that the axioms (P ↾xi1 =ω1,...,xim =ωm

) ◦ g, once
converted back to the x-variables via the transformation in (6), are easily derivable from
P↾xi1 =ω1,...,xim =ωm

and the axioms xκ
i − 1 in degree at most D + d0.

Given polynomials p, q ∈ C[x], we write p ≡ q to denote the fact that p − q is in the ideal
generated by xκ

1 − 1, . . . , xκ
n − 1. It is enough to show that

gi

(
κ−1∑
a=0

hi(ζa)1χa(xi), . . . ,

κ−1∑
a=0

hi(ζa)ℓi
χa(xi)

)
≡ xi (7)

and that(
κ−1∑
a=0

hi(ζa)jχa(xi)
)κ

≡ 1 (8)

If the two equalities above hold, then π′′ can be easily modified to a SoSC proof of
P ↾xi1 =ω1,...,xim =ωm in reduced degree not exceeding D + d0. To see this observe that
an equivalence p ≡ q under the ideal generated by xκ

1 − 1, . . . , xκ
n − 1 can be proved in

degree at most max{deg(p), deg(q)} and here need to show equivalences between (restricted)
polynomials from π′ and P of degree, respectively, at most D and d0, both at most D + d0.

First notice that

χa(xi)2 ≡ χa(xi)
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and, for every a ̸= b in {0, . . . , κ − 1}

χa(xi)χb(xi) ≡ 0

To see (8) we argue as follows(
κ−1∑
a=0

h(ζa)jχa(xi)
)κ

=
∑

0≤a1,...,ak<κ

∏
ℓ∈[κ]

h(ζaℓ)jχaℓ
(xi)

≡
κ−1∑
a=0

h(ζa)κ
j · χa(xi)

=
κ−1∑
a=0

χa(xi)

= 1 .

Similarly to prove (7) we argue as follows

gi

(
κ−1∑
a=0

hi(ζa)1χa(xi), . . . ,

κ−1∑
a=0

hi(ζa)ℓiχa(xi)
)

≡
κ−1∑
a=0

gi(hi(ζa)1, . . . , hi(ζa)ℓi) · χa(xi)

=
κ−1∑
a=0

gi ◦ hi(ζa) · χa(xi)

=
κ−1∑
a=0

ζa · χa(xi)

= xi

The last equality claims that
∑κ−1

a=0 ζaχa(xi) is identically equal to the polynomial xi. To see
this, we observe that

∑κ−1
a=0 ζaχa(xi) is a univariate polynomial of degree < κ, say

∑κ−1
j=0 cjxj

i

for some coefficients cj . When we evaluate it on the κth roots of unity it is always 0 unless
when xi is ζa where it is ζa, hence we can set-up a system of κ linear equations to find
the value a of the cjs. The linear equations are linearly independent and there is a unique
solution. Setting cj = 0 for all j ̸= i and ci = 1, i.e., the polynomial is identically equal to xi,
is such solution. ◀

5 Degree lower bounds in Sum-of-Squares

In this section we prove Theorem 1, restated here for convenience of the reader.

▶ Theorem 1 (Degree lower bound for SRUκ,r
n ). Let n, d ∈ N, κ be a prime, r ∈ C. Let r be

written as r1 + ζr2, where r1, r2 ∈ R and ζ is some κth primitive root of unity. If

κd ≤ min{r1 + r2 + (κ − 1)n + κ, n − r1 − r2 + κ} ,

then there are no SoSC-refutations of SRUκ,r
n of degree at most d. In particular, SRUκ,0

n

requires refutations of degree Ω
(

n
κ

)
in SoSC.

It is convenient to consider the following Boolean encoding of the sums of roots of unity,

bool-SRUκ,r
n :=

{ ∑
i∈[n]

( ∑
j∈[κ]

ζj−1xij

)
− r, x2

ij − xij ,
∑
j∈[κ]

xij − 1 : i ∈ [n], j ∈ [κ]
}

. (9)
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The set of equations SRUκ,r
n uses variables taking values in {1, ζ, ζ2, . . . , ζκ−1}, the encoding

in eq. (9) uses indicator variables to select the appropriate power of ζ. For our purposes it is
enough to show the degree lower bound for bool-SRUκ,r

n .

▶ Proposition 21. The degree needed to refute SRUκ,r
n in PCC/SoSC is at least the degree

needed to refute bool-SRUκ,r
n in PCC/SoSC.

Proof. (sketch) Take a refutation of SRUκ,r
n of degree D. Necessarily κ ≤ D. We want

to argue that bool-SRUκ,r
n has a refutation of degree D, as well. To avoid ambiguity we

consider SRUκ,r
n defined on variables z and bool-SRUκ,r

n on variables x. We apply the linear
substitution

zi 7→
∑
j∈[κ]

ζj−1xij ,

to the degree D refutation of SRUκ,r
n . We get a refutation of degree D of the resulting set of

polynomials. It is sufficient to show we can infer the these polynomials in low degree PCC
from the axioms of bool-SRUκ,r

n . Indeed, from bool-SRUκ,r
n we can easily infer xijxij′ = 0 for

each i ∈ [n] and j ̸= j′ ∈ [κ], hence we have( ∑
j∈[κ]

ζj−1xij

)κ

=PC
∑
j∈[κ]

ζ(j−1)kxκ
ij =PC

∑
j∈[κ]

xij =PC 1 ,

where with p =PC q we mean that the p − q is derivable in PC. The whole derivation of
bool-SRUκ,r

n has degree D. ◀

To show the degree lower bound for bool-SRUκ,r
n we construct a degree-d pseudo-

expectation for bool-SRUκ,r
n , i.e., a linear operator Ẽ : C[x] → C such that

Ẽ(1) = 1,
Ẽ(mp) = 0, for every p ∈ bool-SRUκ,r

n and m monomial such that deg(p) + deg(m) ≤ d,
Ẽ(s · s∗) ∈ R≥0, for every polynomial s s.t. deg(s · s∗) ≤ d.

It is easy to see that the existence of a degree-d pseudo-expectation for a set of polynomials
P implies that P cannot be refuted in degree-d SoSC. The construction of an appropriate
pseudo-expectation Ẽ for bool-SRUκ,r

n is the goal of this section.

Some notation In this section we consider fixed r ∈ C and r1, r2 ∈ R such that r = r1 +ζr2.
Let ej be the vector of dimension κ with the jth entry 1 and all other entries 0. For j ∈ [κ],
let x(j) := (x1j , . . . , xnj). That is, bool-SRUκ,r

n is a set of polynomials in C[x(1), . . . , x(κ)].
Given a tuple of sets I = (I1, . . . , Iκ), where Ij ⊆ [n], let XI :=

∏
j∈[κ]

∏
i∈Ij

xij . With ∥ · ∥
we always denote the 1-norm. So ∥x(j)∥ denotes the polynomial

∑
i∈[n] xij .

A potential satisfying assignment of bool-SRUκ,r
n consists of γ = (γ1, . . . , γκ), the

allocation of the n roots of unity in the directions ζ0, . . . , ζκ−1. The sum
∑

j∈[κ] ζj−1γj must
be equal to the target value r = r1 + ζr2, so we spread uniformly n − r1 − r2 among the γjs,
and then add r1 and r2 to γ1 and γ2 respectively. This leads to the definitions

γ1 = n−r1−r2
κ + r1 ,

γ2 = n−r1−r2
κ + r2 ,

γj = n−r1−r2
κ for j ≥ 3 .

(10)

Observe that ∥γ∥ = n. For ease of notation let γ̂ = n−r1−r2
κ and r3 = · · · = rκ = 0.

Therefore, we can write γj = γ̂ + rj for each j ∈ [κ].
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Given I = (I1, . . . , Iκ) with Ij ⊆ [n], and variables v = (v1, . . . , vκ), let S(XI) be the
polynomial in the variables v defined by

S(XI) :=


(n − |

⋃
j∈[κ] Ij |)!
n!

∏
j∈[κ]

|Ij |−1∏
ℓ=0

(vj − ℓ) if the sets in I are pair-wise disjoint ,

0 otherwise .

(11)

By linearity, extend S(·) to all polynomials. That is, given p =
∑

I αIXI with αI ∈ C, let
S(p) :=

∑
I αIS(XI). We define

Ẽ(p) := S(p)(γ)

and we show that Ẽ is a pseudo-expectation for bool-Knκ,r
n .

Let B be the ideal ⟨x2
ij − xij , xijxij′ : i ∈ [n], j, j′ ∈ [κ], j ̸= j′⟩. Given polynomials

p, q ∈ C[x(1), . . . , x(κ)], we use the notation p ≡ q to denote that p − q ∈ B.

▶ Lemma 22. If p ≡ q then Ẽ(p) = Ẽ(q).

Proof. By definition p ≡ q means there exists a polynomial s ∈ B such that p = q + s. By
construction, Ẽ maps to 0 every polynomial in B, in particular Ẽ(s) = 0. By the linearity of
Ẽ, then Ẽ(p) = Ẽ(q). ◀

From the definition of Ẽ, it follows easily that the lifts of the polynomials in bool-SRUκ,r
n

are mapped to 0 by Ẽ.

▶ Theorem 23. For every I = (I1, . . . , Iκ) with Ij ⊆ [n] and i ∈ [n], and every p ∈
bool-SRUκ,r

n , Ẽ(XIp) = 0.

Proof. The fact that Ẽ(XI(x2
ij − xij)) = 0 is immediate by the definition of Ẽ.

Given a = (a1, . . . , aκ) ∈ [n]κ, let Ea := (n−∥a∥)!
n!

∏
j∈[κ]

∏aj−1
ℓ=0 (γj − ℓ). Notice that for

every j ∈ [κ], Ea+ej
= Ea

γj−aj

n−∥a∥ . If the sets Ij are not pair-wise disjoint then, by definition,
the pseudo-expectation is already 0, so it is enough to consider the case when the Ijs are
pair-wise disjoint.

Let t = (t1, . . . , tκ) where tj = |Ij |. To show that Ẽ(XI(
∑

j∈[κ] xij − 1)) = 0 we have two
cases. If i ∈

⋃
j∈[κ] Ij , then

Ẽ(XI(
∑
j∈[κ]

xij − 1)) = Et − Et = 0 .

If i /∈
⋃

j∈[κ] Ij , then

Ẽ(XI(
∑
j∈[κ]

xij − 1)) =
∑
j∈[κ]

Et+ej − Et = Et ·

(∑
j∈[κ]

γj − tj

n − ∥t∥ − 1

)
= Et ·

(
∥γ∥ − ∥t∥
n − ∥t∥ − 1

)
= 0 ,

since ∥γ∥ = n.
Finally we prove that Ẽ(XI(

∑
j∈[κ] ζj−1∥x(j)∥ − r1 − ζr2)) = 0:

Ẽ(XI(
∑
j∈[κ]

ζj−1∥x(j)∥ − r1 − ζr2)) = Et

∑
j∈[κ]

ζj−1tj +
∑

i/∈
⋃

j∈[κ]
Ij

(
∑
j∈[κ]

ζj−1Et+ej
) − (r1 + ζr2)Et
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= Et

∑
j∈[κ]

ζj−1tj + (n − ∥t∥)
∑
j∈[κ]

ζj−1Et+ej − (r1 + ζr2)Et

= Et

∑
j∈[κ]

ζj−1tj + Et

∑
j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)Et

= Et ·

∑
j∈[κ]

ζj−1tj +
∑
j∈[κ]

ζj−1(γj − tj) − (r1 + ζr2)


= Et ·

∑
j∈[κ]

ζj−1γj − (r1 + ζr2)


= Et ·

∑
j∈[κ]

ζj−1γ̂ +
∑
j∈[κ]

ζj−1rj − (r1 + ζr2)


= 0 ,

since γj = γ̂ + rj , rj = 0 for j > 2, and
∑

j∈[k] ζj−1 = 0. ◀

This result, together with Theorem 24 below, implies that Ẽ is a degree-d pseudo-
expectation for bool-SRUκ,r

n , and therefore a degree-d lower bound for the refutations of
bool-SRUκ,r

n and SRUκ,r
n in SoSC, i.e. Theorem 1. The idea is to use to Blekherman’s

approach in [27, Appendix B,C]. Let us recall first some useful notation.
Let Sn be the symmetric group of n elements. For a set J ⊆ [n] and a permutation

σ ∈ Sn, let σJ := {σ(j) : j ∈ J}. Consider variables y = (y1, . . . , yn). For a set J ⊆ [n] let
YJ :=

∏
j∈J yj . Given a polynomial p ∈ C[y], that is p(y) =

∑
J⊆[n] pJYJ , with pJ ∈ C, let

σp(y) :=
∑

J

pJYσJ .

Then define the symmetrization of p as the polynomial Sym(p) ∈ C[y] given by

Sym(p)(y) := 1
n!
∑

σ∈Sn

σp(y) .

▶ Theorem 24. For every polynomial p ∈ C[x(1), . . . , x(κ)] of degree at most d, if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ ,

then Ẽ(p · p∗) ≥ 0 where p∗ is the formal conjugate of p.

Proof. Let γ be defined as in eq. (10), and recall γ̂ = n−r1−r2
κ . Recall that the polynomial

S(XI) when evaluated on γ is exactly Ẽ(XI), see the comment after eq. (11). We have that

Ẽ(p · p∗) = S(p · p∗)(γ) [by the definition of Ẽ]
= S(p · p∗)(r1 + γ̂, r2 + γ̂, . . . , rκ + γ̂) [by the definition of γ]
= Sym(p↾ρ ·p↾∗

ρ)(γ̂e1) [by Theorem 26 below]

=
d∑

j=0
pd−j(γ̂) · p∗

d−j(γ̂)
j−1∏
i=0

(γ̂ − i)(n − γ̂ − i) , [by Theorem 25 below]

where ρ is the substitution given by ρ(xij) := yi + rj

n (recall that r3 = · · · = rκ = 0). Now,
pd−j(γ̂) · p∗

d−j(γ̂) is always real and non-negative since it is the module of the complex
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number pd−j(γ̂), hence to enforce the non-negativity of Ẽ(p · p∗) it is enough to argue that∏j−1
i=0 (γ̂ − i)(n − γ̂ − i) ≥ 0. This is true if γ̂ − d + 1 ≥ 0 and n − γ̂ − d + 1 ≥ 0. I.e. if

−(κ − 1)n + κd − κ ≤ r1 + r2 ≤ n − κd + κ . ◀

▶ Theorem 25 (adaptation of [27, Theorem B.11]). Given variables y = (y1, . . . , yn) and
p, q ∈ C[y] with degree at most d ≤ n/2,

Sym(p · p∗)(y) ≡
d∑

j=0
pd−j(∥y∥) · p∗

d−j(∥y∥)
j−1∏
i=0

(∥y∥ − i)(n − ∥y∥ − i) ,

where pd−j is a univariate polynomial with coefficients in C, p∗
d−j is the formal conjugate of

pd−j and the degree of both polynomials is at most (d − j)/2.

This result is provable using exactly the same argument of Blekherman in [27, Theorem
B.11], adapted to complex numbers.

▶ Theorem 26. Given p ∈ C[x(1), . . . , x(κ)],

S(p)(r1 + ∥y∥, r2 + ∥y∥, r3 + ∥y∥, . . . , rκ + ∥y∥) ≡ Sym(p↾ρ)(y) ,

where ρ is the substitution given by ρ(xij) := yi + rj

n (recall that r3 = · · · = rκ = 0).

Proof. Given a vector of variables y = (y1, . . . , ym), let
(∥y∥

t

)
be the polynomial(

∥y∥
t

)
:= ∥y∥(∥y∥ − 1) · · · (∥y∥ − t + 1)

t! .

It holds that
(∥y∥

t

)
≡
∑

I⊆[n]
|I|=t

YI . (See Lemma 27 on page 20). This immediately implies

that∏
j∈[κ]

(
∥x(j)∥

tj

)
≡

∑
I=(I1,...,Iκ), Ij⊆[n]

|Ij |=tj

XI . (12)

For a vector of sets I = (I1, . . . , Iκ) and a permutation σ ∈ Sn, let σI := (σI1, . . . , σIκ).
Given a polynomial p =

∑
I pIXI in C[x(1), . . . , x(κ)] and a permutation σ ∈ Sn let

σp :=
∑

I

pIXσI .

Now, for any polynomial p ∈ C[x(1), . . . , x(κ)]
1
n!
∑

σ∈Sn

σp ≡ S(p)(∥x(1)∥, . . . , ∥x(κ)∥) . (13)

To see this equivalence, by linearity, it is enough to show that for every I with Ij ⊆ [n]
1
n!
∑

σ∈Sn

XσI ≡ S(XI)(∥x(1)∥, . . . , ∥x(κ)∥) .

If the sets in I are not pair-wise disjoint it is immediate to see that 1
n!
∑

σ∈Sn
XσI ∈ B, and

therefore 1
n!
∑

σ∈Sn
XσI ≡ 0. Suppose then I = (I1, . . . , Iκ) and the sets Ij are pair-wise

disjoint. Let tj = |Ij |, then

1
n!
∑

σ∈Sn

XσI =
(n − ∥t∥)!

∏
j∈[κ] tj !

n! ·
∑

S=(S1,...,Sκ)
pair-wise disj.

|Sj |=tj

XS



20 On vanishing sums of roots of unity, polynomial calculus and sum-of-squares

≡
(n − ∥t∥)!

∏
j∈[κ] tj !

n! ·
∑

S=(S1,...,Sκ)
|Sj |=tj

XS

≡ (n − ∥t∥)!
n!

∏
j∈[κ]

tj ! ·
∏

j∈[κ]

(
∥x(j)∥

tj

)
(14)

= S(XI)(∥x(1)∥, . . . , ∥x(κ)∥) ,

where the equality in eq. (14) follows from eq. (12).
To conclude, it is then enough to observe that the statement we want to prove follows

from eq. (13) restricting both sides of the equality by ρ. To prove this we use that
σXI↾ρ= σ(XI↾ρ). ◀

▶ Lemma 27.
(∥y∥

t

)
≡
∑

I⊆[n]
|I|=t

YI .

Proof. To prove the equality we proceed by induction on t. The base case is immediate to
see:

(∥y∥
1
)

= ∥y∥ =
∑

i∈[n] yi.
For every n ≥ t > 1,∑
i∈[n]

yi

∑
I⊆[n]

|I|=t−1

YI ≡ t
∑

I⊆[n]
|I|=t

YI + (t − 1)
∑

I⊆[n]
|I|=t−1

YI .

That is, using the inductive hypothesis,

∥y∥
(

∥y∥
t − 1

)
≡ t

∑
I⊆[n]
|I|=t

YI + (t − 1)
(

∥y∥
t − 1

)
,

and therefore∑
I⊆[n]
|I|=t

YI ≡ ∥y∥ − t + 1
t

(
∥y∥
t − 1

)
=
(

∥y∥
t

)
. ◀

6 Conclusions

The study of algebraic proof systems under Fourier encoding is still at its infancy. There are
many natural questions about its size efficiency. We understand reasonably well the strength
relation between resolution and PC in the Boolean encoding. Sokolov [34] stresses that we
do not even know yet whether PC with {±1} simulates resolution or not.

We mentioned already that the study of κ-coloring of graphs is a very natural application
of PC with Fourier encoding. There are some degree lower bounds in literature [26], but size
lower bounds are still unknown. Understanding size would allow to understand larger classes
of algebraic algorithms for this problem.
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A Degree lower bound for SRUκ,r
n in polynomial calculus

▶ Theorem 28. Let c1, . . . , cn ∈ C \ {0}, r ∈ C and κ ∈ N. The set of polynomials

{ n∑
i=1

cizi − r, zκ
1 − 1, . . . , zκ

n − 1
}

(15)

has no refutations of degree smaller than ⌊ n
2 ⌋ in PCC.

Proof. Let ζ be a primitive κth root of unity. If the set of polynomials in (15) is satisfiable
then the degree lower bound is obviously true. Suppose then it is unsatisfiable. This means
the set of polynomials{ n∑

i=1
cizi − r, (z1 − 1)(z1 − ζ), . . . , (zn − 1)(zn − ζ)

}
(16)

is unsatisfiable too. To prove a degree lower bound for the PCC-refutations of (15) is then
enough to prove a degree lower bound for the PCC-refutations of (16).

Now, the set of polynomials in (16) is unsatisfiable if and only if the set of polynomials

{ n∑
i=1

cixi −
r −

∑
i∈[n] ci

ζ − 1 , x2
1 − x1, . . . , x2

n − xn

}
(17)

is unsatisfiable. Moreover, via a linear trasformation we can transform PCC-refutations of
(16) into PCC-refutations of (17) and viceversa. The linear transformation is zi = xi(ζ −1)+1.
This transformation does not preserve the size PCC-refutations but, being linear, it preserves

the degree. By [19, Theorem 5.1]3 applied with m =
r−
∑

i∈[n]
ci

ζ−1 we get the desired degree
lower bound for (17) and hence for (16) and (15). ◀

The lower bound will hold for any univariate p with at least two complex roots and the
axioms p(z0), . . . , p(zn), instead of zκ

1 − 1, . . . , zκ
n − 1.

3 The theorem was originally stated for real numbers, but it holds for complex numbers, too.
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