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Abstract

A folklore conjecture in quantum computing is that the acceptance probability of a
quantum query algorithm can be approximated by a classical decision tree, with only a
polynomial increase in the number of queries. Motivated by this conjecture, Aaronson
and Ambainis (Theory of Computing, 2014) conjectured that this should hold more
generally for any bounded function computed by a low degree polynomial.

In this work we prove two new results towards establishing this conjecture: first,
that any such polynomial has a small fractional certificate complexity; and second,
that many inputs have a small sensitive block. We also give two new conjectures that,
if true, would imply the Aaronson and Ambainis conjecture given our results.

On the technical side, many classical techniques used in the analysis of Boolean
functions seem to fail when applied to bounded functions. Here, we develop a new
technique, based on a mix of combinatorics, analysis and geometry, and which in part
extends a recent technique of Knop et al. (STOC 2021) to bounded functions.

1 Introduction

Aaronson and Ambainis [2] popularized the conjecture that quantum query algorithms can be
approximated by classical query algorithms, on most inputs, with only a polynomial increase
in the number of queries. This captures the informal belief that quantum algorithms can only
achieve exponential speedup on highly structured inputs. Moreover, since the acceptance
probability of quantum query algorithms can be computed by low degree polynomials, they
conjectured that this holds more generally for any bounded function computed by a low
degree polynomial.

∗Research supported by NSF awards 1953928 and 2006443.
†Research supported by NSF CAREER award 2141536.
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A bit more formally, let f : {0, 1}n → [0, 1] be a function which computes for each input x
the acceptance probability of a quantum query algorithm. If the quantum algorithm makes
at most q queries, then Beals et al. [7] showed that f is computed by a real polynomial
of degree at most d = 2q. Aaronson and Ambainis conjectured that any such f can be
approximated by a shallow decision tree.

Conjecture 1.1 (Aaronson-Ambainis (AA) conjecture [2]). Let f : {0, 1}n → [0, 1] be
computed by a degree d polynomial, and let ε > 0. Then there exists a decision tree T of
depth poly(d, 1/ε), such that

Ex∈{0,1}n [|f(x)− T (x)|] ≤ ε.

The AA conjecture is known to be true for Boolean functions. Specificially, the seminal
work of Nisan and Szegedy [17] showed that for every Boolean function f : {0, 1}n → {0, 1},
its decision tree complexity and its polynomial degree are equivalent, up to polynomial
factors. However, their proof technique does not extend to bounded functions. In fact,
many techniques used to study Boolean functions seem to fail when attempting to extend
them to bounded functions.

We prove two new results in this paper, which we view as stepping stones towards a
better understanding of bounded low degree polynomials:

1. In a bounded low degree polynomial, all inputs have a small fractional certificate
complexity.

2. In a bounded low degree polynomial of large variance, many inputs have a small sen-
sitive block.

We note that the first result holds for all inputs, whereas the AA conjecture only claims that
f(x) ≈ T (x) for most inputs, and as such the two are incomparable; and that the second
result is a direct corollary of the AA conjecture, as it trivially holds for decision trees. We
show that it also follows from bounding the fractional certificate complexity.

1.1 Our results

We start with defining the above notions more precisely. Let f : {0, 1}n → [0, 1] be a
bounded function, let x ∈ {0, 1}n be an input, and ε > 0 be a tolerance parameter. The
ε-certificate complexity of f at x is the minimal size of a set I ⊂ [n], such that any input y
which agrees with x on I satisfies |f(y)− f(x)| ≤ ε. The ε-fractional certificate complexity1

is its linear relaxation, where we replace a set I with a distribution π over [n], and require
that any y that is close to x under π satisfies |f(y) − f(x)| ≤ ε (see Section 2 for formal
definitions).

It is known that for Boolean functions, certificate complexity and fractional certificate
complexity are equivalent, up to polynomial factors [1,3,19]. However, for bounded functions

1A similar notion called randomized certificate complexity was introduced by Aaronson [1].
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they are not. Consider for example the linear function f(x) = (x1 + . . . + xn)/n. For
any constant ε, its ε-certificate complexity is Ω(n). In contrast, its ε-fractional certificate
complexity is O(1).

Motivated by this example, we explore the connections between fractional certificate
complexity (which as we will see, is equivalent to fractional block sensitivity) and polynomial
degree for bounded functions. Our first result is a bound on the ε-fractional certificate
complexity that is polynomial in the degree d, tolerance parameter ε and logarithmic in the
number of variables n.

Theorem 1.2 (Informal version of Theorem 2.9). Let f : {0, 1}n → [0, 1] be computed by a
degree d polynomial, and let ε > 0. The ε-fractional certificate complexity of f is at most
poly(d, 1/ε, log n).

Comment 1.3. The log n term appearing in Theorem 1.2 but not in Conjecture 1.1 might
seem out of place. However, as Conjecture 1.1 allows for approximation of the function f ,
it is well-known that any degree d bounded function can be approximated up to error ε by its
restriction to poly(2d, 1/ε) inputs [8]. So, if we allow approximation, then we may assume
that log n = O(d+ log(1/ε)).

Next, we show that bounded functions with a small fractional certificate complexity and
large variance have an interesting property - many inputs have small sensitive blocks.

Theorem 1.4 (Informal version of Theorem 4.2). Let f : {0, 1}n → [0, 1], ε > 0 and assume
Var[f ] = Ω(ε). Then for at least an ε-fraction of inputs x ∈ {0, 1}n, there is a block B ⊂ [n]
of size |B| ≤ r such that

|f(x)− f(x⊕B)| ≥ ε,

where r is polynomial in the ε-fractional certificate complexity of f and in log(1/ε).

The proof of Theorem 1.4 follows from a new connection between fractional certificate
complexity, convex geometry and concentration of measure (specifically, Talagrand’s concen-
tration inequality [20]).

Combining Theorem 1.2 and Theorem 1.4 gives the following corollary, that shows that
for low degree bounded polynomials with large variance, many points have a small sensitive
block.

Corollary 1.5. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial, let ε > 0, and
assume Var[f ] = Ω(ε). Then for at least an ε-fraction of inputs x ∈ {0, 1}n, there is a block
B ⊂ [n] of size |B| ≤ r such that

|f(x)− f(x⊕B)| ≥ ε,

where r = poly(d, 1/ε, log n).

1.2 New conjectures

Finally, we propose two conjectures that, if true, would in particular resolve the AA con-
jecture based on the results we show in this work. However, we believe that both are of
independent interest beyond the connection to the AA conjecture.
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Stable interpolating sets for polynomials. The first approach is based on stable in-
terpolating sets for polynomials. A set S ⊂ {0, 1}n is an interpolating set for degree d
polynomials if two degree d polynomials which agree on S must agree on all points in the
hypercube. It is well known that Hamming balls of radius d are such an interpolating set.
We conjecture that, by mildly increasing their radius, they are stable - if two polynomial are
close to each other on all points in S, then they are close on most points in the hypercube.
This conjecture is equivalent to the conjecture that Theorem 1.4 can be extended to hold for
all inputs, and not just an ε-fraction of inputs. We show that this conjecture, if true, when
combined with Corollary 1.5 implies the AA conjecture. For details see Section 5.1.

Talagrand’s concentration inequality for L∞ norm. The second approach is inspired
by Talagrand’s concentration inequality [20]. Talagrand’s concentration inequality states
that if X, Y ⊂ {0, 1}n are large sets, then most points in X are close in L2 to the convex
hull of Y . We examine what happens if we replace the L2 norm with the L∞ norm, and
make the following conjecture: if X, Y do not have influential variables, then most points
in X are close to the convex hull of Y also in the L∞ norm. We show that this conjecture,
if true, when combined with Theorem 1.2 also implies the AA conjecture. For details see
Section 5.2.

1.3 Related works

The notions of block sensitivity and certificate complexity are extensively used in Boolean
function analysis, namely, when the output of the function f takes Boolean values. Moti-
vated by the study of quantum query algorithms, which is naturally captured by a bounded
function, Aaronson [1] introduced the notion of randomized certificate complexity, which
is very close to fractional certificate complexity. Tal [19] introduced the notions of frac-
tional block-sensitivity and fractional certificate complexity (which are LP duals). Frac-
tional block-sensitivity has been used to show a tight connection between the zero-error
randomized decision tree complexity and two-sided bounded error randomized decision tree
complexity [13]. Subsequent works [3, 4, 10, 12] studied fractional certificate complexity and
fractional block-sensitivity, motivated by various applications in Boolean function analysis
and communication complexity.

However, to the best of our knowledge, all these works focused only on Boolean functions.
In particular, they showed that fractional certificate complexity and certificate complexity
are polynomially related for Boolean functions. As we already discussed, this property is
false for bounded functions. Motivated by studying quantum query algorithms, e.g., the AA
conjecture, we study the fractional certificate complexity for bounded functions.

Previous works on Aaronson-Ambainis conjecture. Besides its importance in quan-
tum computing, the AA conjecture is also a very intriguing problem in the area of Boolean
function analysis. This conjecture is known to be true for Boolean functions [15, 18]. For
bounded functions, a weaker bound with an exponential dependence on the degree instead
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of polynomial, can be proved using hyper-contractive inequalities [8]. Montanaro [16] proved
a special case of the conjecture for block-multilinear forms where all the coefficients have the
same magnitude. Recently, Bansal, Sinha and de Wolf [6] confirmed this conjecture in the
case of functions with completely bounded degree-d block-multilinear form.

Paper organization. We define complexity measures for bounded functions in Section 2.
We prove Theorem 1.2 in Section 3 and Theorem 1.4 in Section 4. Section 5 is devoted to two
approaches towards the proof of the AA conjecture: the first based on stable interpolating
sets for polynomials, and the second on extending Talagrand’s inequality to the L∞ norm.

2 Complexity measures of bounded functions

We introduce classic complexity measures of Boolean functions, as well as their linear relax-
ations, generalized to bounded functions.

Let f : {0, 1}n → [0, 1] be a bounded function, x ∈ {0, 1}n an input, and let ε > 0 be a
tolerance parameter. Given a block B we denote by x⊕B the input obtained by flipping the
bits in x corresponding to B. A block B is called ε-sensitive for x if |f(x⊕B)− f(x)| ≥ ε.
The family of ε-sensitive blocks for x is defined as

Sε(f, x) = {B ⊂ [n] : |f(x⊕B)− f(x)| ≥ ε} .

Definition 2.1 (ε-block sensitivity). The ε-block sensitivity of f at x, denoted BSε(f, x), is
the maximal number of pairwise disjoint blocks B1, . . . , Bk ∈ Sε(f, x).

Definition 2.2 (ε-certificate complexity). The ε-certificate complexity of f at x, denoted
Cε(f, x), is the minimal size of a set I ⊂ [n] that intersects all blocks B ∈ Sε(f, x). Equiva-
lently:

∀y ∈ {0, 1}n : yI = xI ⇒ |f(y)− f(x)| < ε.

We next define the linear relaxations of block sensitivity and certificate complexity, called
fractional block sensitivity and fractional certificate complexity. These notion were intro-
duced by Tal [19] in the context of Boolean functions. A similar notion to fractional certificate
complexity, called randomized certificate, was introduced earlier by Aaronson [1].

Definition 2.3 (ε-fractional block sensitivity). The ε-fractional block sensitivity of f at x,
denoted FBSε(f, x), is the maximal k such that there exists a distribution ν over Sε(f, x)
that satisfies

∀i ∈ [n] : Pr
B∼ν

[i ∈ B] ≤ 1/k.

Definition 2.4 (ε-fractional certificate complexity). The ε-fractional certificate complexity
of f at x, denoted FCε(f, x), is the minimal k such that there exists a distribution π over [n]
that satisfies:

∀B ∈ Sε(f, x) : Pr
i∼π

[i ∈ B] ≥ 1/k.
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In other words:

∀y ∈ {0, 1}n :
(
Pr
i∼π

[yi ̸= xi] < 1/k
)
⇒ |f(y)− f(x)| ≤ ε.

Example 2.5. Let f(x) = (x1 + · · · + xn)/n. Fix an input x ∈ {0, 1}n and ε > 0. Let
y ∈ {0, 1}n such that |f(x) − f(y)| ≥ ε. This implies that the Hamming distance between
x, y is at least εn, and hence Pri∼π[xi ̸= yi] ≥ ε, where π is the uniform distribution over
[n]. This implies that FCε(f, x) ≤ 1/ε, which in particular is independent of n.

The following lemma is the classic connection between matchings, covers and their linear
relaxations, when specialized to our setting. See [19] for a proof in the special case of block
sensitivity, certificate complexity and their fractional relaxations (the proof in [19] is for
Boolean functions, but it works equally well in our context).

Lemma 2.6. BSε(f, x) ≤ FBSε(f, x) = FCε(f, x) ≤ Cε(f, x).

We need one more definition of block sensitivity where we do not specify the tolerance ε.

Definition 2.7 (Block sensitivity). The block sensitivity of f at x, denoted BS(f, x), is
defined as

BS(f, x) = max
B1,...,Bk

k∑
i=1

|f(x)− f(x⊕Bi)|,

where the maximum is over all collections of pairwise disjoint blocks.

Claim 2.8. BS(f, x) ≥ ε · BSε(f, x) for any ε > 0.

For any complexity measure C (such as Cε,BSε, etc), we define C(f) = maxx C(f, x).

2.1 Our results

With the definitions out of the way, we can now formally state our first theorem.

Theorem 2.9. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial. Then for any
ε > 0,

FBSε(f) = FCε(f) ≤ O

(
d8 log16 n

ε4

)
.

It is known that bounded low degree polynomials have bounded block sensitivity. This
was first shown by Backurs and Bavarian [5] and then sharpened by Filmus, Hatami, Keller,
and Lifshitz [9].

Lemma 2.10 ( [9]). Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial. Then
BS(f) = O(d2).
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Theorem 2.9 follows by combining Lemma 2.10 with the following theorem, which is our
main technical contribution in this context. It upper bounds the integrality gap of block
sensitivity for any bounded function (not necessarily computed by a low degree polynomial).
A similar result for total Boolean functions is known [1, 3, 19], but their techniques do not
seem to migrate well to the setting of bounded functions. Instead, we take a different
approach, adapting ideas from [12] to the setting of bounded functions.

Theorem 2.11 (Upper bounding the integrality gap for block sensitivity). Let f : {0, 1}n →
[0, 1] and set B = max(BS(f), 1). Then for every ε > 0,

FBSε(f) ≤ O

(
B4 log16 n

ε4

)
.

We note that we did not attempt to optimize the exponents appearing in Theorem 2.9
and Theorem 2.11.

3 Upper bounding the integrality gap of block sensi-

tivity

We prove Theorem 2.11 in this section. Before doing so, it would be convenient to recast
the definitions of fractional block sensitivity and fractional certificates in a more systematic
way.

3.1 Smoothness and fractional cover

Definition 3.1 (Smooth distribution). Let p ∈ (0, 1). A distribution D over {0, 1}n is
p-smooth if it satisfies Prx∼D[xi = 1] ≤ p for all i ∈ [n].

Definition 3.2 (Smooth probability). Let S ⊂ {0, 1}n. We denote by psmooth(S) the minimal
p, such that there exists a p-smooth distribution D supported on S.

Definition 3.3 (Cover probability). Let S ⊂ {0, 1}n. We denote by pcover(S) the maximal
p, such that there exists a distribution π over [n] satisfying Pri∼π[xi = 1] ≥ p for all x ∈ S.

Recall the definition of Sε(f, x) = {B ⊂ [n] : |f(x⊕B)− f(x)| ≥ ε}. We can recast the
definitions of fractional block sensitivity and fractional certificates as

FBSε(f, x) = psmooth(Sε(f, x)), FCε(f, x) = pcover(Sε(f, x)).

We next prove a number of useful claims about psmooth and pcover.

Claim 3.4. psmooth(S) = pcover(S) for any S ⊂ {0, 1}n.

Proof. This is the classic LP duality between fractional matching and fractional covers in
hypergraphs (see for example [14]).
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Let p(S) := psmooth(S) = pcover(S). Note that if 0n ∈ S then p(S) = 0.

Claim 3.5. Let S ⊂ {0, 1}n \ {0}n. Then p(S) ≥ 1/n.

Proof. Let π be the uniform distribution over [n]. As 0n /∈ S we have Pr[xi = 1] ≥ 1/n for
all x ∈ S. Thus p(S) = pcover(S) ≥ 1/n.

Claim 3.6. Let S ⊂ {0, 1}n with p(S) = p. Let D be a q-smooth distribution over {0, 1}n
where q < p. Then

Pr
x∼D

[x ∈ S] ≤ q/p.

Proof. Let α = Prx∼D[x ∈ S]. Let D′ be the distribution of x ∼ D conditioned on x ∈ S,
namely D′(x) = 0 if x /∈ S, and D′(x) = D(x)/α if x ∈ S. Note that D′ is (q/α)-smooth and
supported on S, and hence q/α ≥ p.

We identify {0, 1}n with subsets of [n]. In particular, given x, y ∈ {0, 1}n we identify
x ∪ y, x ∩ y and x \ y with the usual definition for sets (union, intersection, set difference).

Claim 3.7. Let D be a p-smooth distribution over {0, 1}n. For k ≥ 1, define a distribution
D′ by the following sampling process: sample y1, . . . , yk ∼ D independently and output

z =
⋃
i ̸=j

yi ∩ yj.

Then D′ is (pk)2-smooth

Proof. This follows from the definition of smoothness. For any coordinate ℓ ∈ [n] we have

Pr
z∼D′

[zℓ = 1] ≤
∑
i ̸=j

Pr
yi∼D

[(yi)ℓ = 1] Pr
yj∼D

[(yj)ℓ = 1] ≤ (pk)2.

3.2 Bounding the integrality gap

We now turn to prove Theorem 2.11. It will be convenient to allow to mildly change ε.
The following is our main technical lemma in this section. To simplify notations, we set
Bε(f) = max(BSε(f), 1) throughout the section.

Lemma 3.8. Let f : {0, 1}n → [0, 1] and ε ∈ (0, 1). Then there exists 1 ≤ t ≤ log4 n such
that

FBSε(f) ≤ FBSε/t(f) ≤ O
(
Bε/t(f)

4
)
.

Combining Lemma 3.8 with the bound BSδ(f) ≤ BS(f)/δ given by Claim 2.8 implies
Theorem 2.11. We prove Lemma 3.8 in the remainder of this subsection. The following
lemma is an adaptation of [12, Lemma 3.2] to bounded functions.

8



Lemma 3.9. Let f : {0, 1}n → [0, 1] and ε ∈ (0, 1/3). Then

FBS3ε(f)√
FBSε(f)

≤ O (Bε(f)) .

Proof. Let FBS3ε(f) = 1/p and FBSε(f) = 1/q. Note that 0 ≤ q ≤ p ≤ 1. We may assume
that q ≥ 4p2, otherwise the claim is trivial. Let x ∈ {0, 1}n so that FBS3ε(f) = FBS3ε(f, x).
Let S = S3ε(f, x), and let D be a p-smooth distribution supported on S. Let k to be
determined later, and sample y1, . . . , yk ∼ D independently. Define

e =
⋃
i ̸=j

(yi ∩ yj) .

Finally, let zi = yi \ e. Observe that z1, . . . , zk are pairwise disjoint.
Observe that Claim 3.7 implies that e is (pk)2-smooth and set δ = (pk)2/q. Let S0 =

Sε(f, x) and note that by assumption p(S0) ≥ q. Claim 3.6 implies that Pr[e ∈ S0] ≤ δ, or
in other words

Pr[|f(x)− f(x⊕ e)| ≥ ε] ≤ δ. (1)

Next, fix i ∈ [k] and also fix yi for a moment. Define

ei =
⋃

j ̸=j′,j,j′ ̸=i

(yj ∩ yj′) \ yi.

Applying Claim 3.7 again we get that ei is also (pk)2-smooth. Let Si = Sε(f, x⊕ yi), which
again satisfies p(Si) ≥ q. Applying Claim 3.6 again gives

Pr
{yj}j ̸=i

[|f(x⊕ yi)− f(x⊕ yi ⊕ ei)| ≥ ε] ≤ δ.

Note that yi ⊕ ei = yi ∨ ei = yi ∨ e = zi ⊕ e. Averaging also over yi gives

Pr[|f(x⊕ yi)− f(x⊕ zi ⊕ e)| ≥ ε] ≤ δ. (2)

Next, since each yi ∼ D is supported on S3ε(f, x), we have |f(x)− f(x⊕ yi)| ≥ 3ε with
probability one. Combining this with Equations (1) and (2), and setting w = x⊕ e, gives

Pr[|f(w)− f(w ⊕ zi)| ≥ ε] ≥ 1− 2δ. (3)

Recall that δ = (pk)2/q. We choose k = Ω(
√
q/p) so that δ ≤ 1/4. Let I = {i ∈ [k] :

|f(w) − f(w ⊕ zi)| ≥ 2ε}. We have E[|I|] ≥ (1 − 2δ)k ≥ k/2. By averaging, there exists a
choice of y1, . . . , yk so that |I| ≥ k/2. Fix such a choice, and note that it gives

BSε(f) ≥ BSε(f, w) ≥ k/2.
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Claim 3.10. Fix ε ∈ (0, 1/3) and assume FBSε(f) ≥ 2. Then there exists 1 ≤ t ≤ log4 n so
that

FBSε/t(f) ≤
(
FBS3ε/t(f)

)4/3
.

Proof. Shorthand h(i) = FBSε/3i(f) for i ≥ 0. Let m ≥ 0 be maximal so that for every
i ∈ [m] it holds that h(i) ≥ (h(i − 1))4/3. This implies that h(m) ≥ 2(4/3)

m
. On the

other hand, Claim 3.5 implies FBSδ(f) ≤ n for any δ > 0, and hence h(m) ≤ n. Thus
(4/3)m ≤ log n and hence 3m ≤ (log n)log4/3(3) ≤ log4 n. The claim holds for t = 3m.

We now prove Lemma 3.8.

Proof of Lemma 3.8. If FBSε(f) ≤ 2 we are done. Otherwise, apply Claim 3.10 to get

1 ≤ t ≤ log4 n so that FBSε/t(f) ≤
(
FBS3ε/t(f)

)4/3
. Set ε′ = ε/t, where rearranging the

terms gives
FBS3ε′(f)√
FBSε′(f)

≥ FBSε′(f)
1/4.

Applying Lemma 3.9 for ε′ gives

FBS3ε′(f)√
FBSε′(f)

≤ O (Bε′(f)) .

To conclude the proof note that FBSε(f) ≤ FBSε′(f) since ε′ ≤ ε.

4 Small block sensitivity

A corollary of the AA conjecture is that for low degree bounded functions with a large
variance, many inputs have a small sensitive block (as this holds for decision trees). We
show that this also follows from having small fractional certificate complexity.

Definition 4.1 (Small block sensitivity). Let f : {0, 1}n → [0, 1]. A point x ∈ {0, 1}n is
called (r, ε)-sensitive if there exists a block B of size |B| ≤ r such that

|f(x)− f(x⊕B)| ≥ ε.

If no such block exists, we say that x is (r, ε)-insensitive.

Theorem 4.2. Let f : {0, 1}n → [0, 1] and ε > 0, and assume Var[f ] ≥ Ω(ε). Then at least
an ε-fraction of the points x ∈ {0, 1}n are (r, ε)-sensitive for r = O (FCε(f)

2 · log(1/ε)).

The first step towards the proof of Theorem 4.2 is to connect fractional certificate com-
plexity to convex geometry. Let x ∈ {0, 1}n, Y ⊂ {0, 1}n. We denote by conv(Y ) the convex
hull of Y in [0, 1]n. Given a set K ⊂ [0, 1]n and x ∈ {0, 1}n, define their Lp distance as

dp(x,K) = min
y∈K

∥x− y∥p.

We will restrict our attention to two norms: L2 and L∞. We first connect the L∞ norm to
fractional certificate complexity.
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Lemma 4.3. Let f : {0, 1}n → [0, 1], x ∈ {0, 1}n, ε > 0 and Y = {y ∈ {0, 1}n : |f(x) −
f(y)| ≥ ε}. Then

d∞(x, conv(Y )) ≥ 1

FCε(f, x)
.

Proof. Assume FCε(f, x) = k. This means there is a distribution π over [n], such that for
all y ∈ Y ,

Pr
i∼π

[xi ̸= yi] ≥ 1/k.

Let si = (−1)xi . We can rewrite this condition as

Ei∼π[si(yi − xi)] ≥ 1/k.

Let y∗ ∈ conv(Y ) be the point closest to x in L∞. Then by linearity of expectation we have
that

Ei∼π[si(y
∗
i − xi)] ≥ 1/k.

Let p = ∥x − y∗∥∞ = d∞(x, conv(Y )), so that |y∗i − xi| ≤ p for all i. Then we must have
p ≥ 1/k.

We next connect the L2 norm and the L∞ norm via small block sensitivity.

Lemma 4.4. Let f : {0, 1}n → [0, 1], x ∈ {0, 1}n, t ≥ f(x) and ε > 0. Define

Y = {y ∈ {0, 1}n : f(y) ≥ t+ ε}

and
Z = {z ∈ {0, 1}n : f(z) ≥ t+ 2ε and z is (r, ε)-insensitive}.

Then
d2(x, conv(Z)) ≥ d∞(x, conv(Y )) ·

√
r.

Proof. Let p = d∞(x, conv(Y )). Let Br(Z) denote the Hamming ball of radius r around Z:

Br(Z) = {z ⊕B : z ∈ Z,B ⊂ [n], |B| ≤ r}.

Observe first that Br(Z) ⊂ Y . To see that, take z ∈ Z and |B| ≤ r. We need to show that
z ⊕B ∈ Y . Since by assumption z is (r, ε)-insensitive, we have f(z ⊕B) ≥ f(z)− ε ≥ t+ ε
and hence z ⊕B ∈ Y .

For each 0 ≤ ℓ ≤ r let z(ℓ) ∈ conv(Bℓ(Z)) be the closest point to x in L2. The proof will
follow by showing that for all 0 ≤ ℓ ≤ r − 1:

∥x− z(ℓ)∥22 ≥ p2 + ∥x− z(ℓ+1)∥22, (4)

as this implies
d2(x, conv(Z))

2 = ∥x− z(0)∥22 ≥ p2r.
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We next prove Equation (4). Fix ℓ and consider z(ℓ). Since z(ℓ) ∈ conv(Bℓ(Z)) ⊂ conv(Y ),
we must have ∥x − z(ℓ)∥∞ ≥ d∞(x, conv(Y )) = p. Let i ∈ [n] be a coordinate for which

|xi − z
(ℓ)
i | ≥ p. Define w(ℓ) ∈ [0, 1]n as follows: w

(ℓ)
i = xi and w

(ℓ)
j = z

(ℓ)
j for j ̸= i. Then

∥x− z(ℓ)∥22 ≥ p2 + ∥x− w(ℓ)∥22.

To conclude the proof, note that as z(ℓ) ∈ conv(Bℓ(Z)) and w(ℓ) differs from z(ℓ) in at most
one coordinate, then w(ℓ) ∈ conv(Bℓ+1(Z)). This implies that ∥x − z(ℓ+1)∥2 ≤ ∥x − w(ℓ)∥2
which completes the proof.

We would need the following simple claim, showing that a bounded random variable
which does not deviate much from its expectation, must have a small variance.

Claim 4.5. Let X be a random variable taking values in [0, 1]. Assume that for some a, b > 0
we have

Pr[X ≥ E[X] + a] ≤ b.

Then
Var[X] ≤ 2(a+ b).

Proof. Let Y = X − E[X] so that Y takes values in [−1, 1] and E[Y ] = 0. We have

0 = E[Y ] = E[max(Y, 0)]− E[max(−Y, 0)].

Therefore, E[max(Y, 0)] = E[max(−Y, 0)]. By assumption, Pr[Y ≥ a] ≤ b and hence

E[max(Y, 0)] ≤ a+ b

which implies
E[max(−Y, 0)] ≤ a+ b.

Thus
Var[X] = E[Y 2] ≤ E[|Y |] = E[max(Y, 0)] + E[max(−Y, 0)] ≤ 2(a+ b).

The final piece we need is Talagrand’s concentration inequality [20].

Theorem 4.6 (Talagrand [20]). Let X, Y ⊂ {0, 1}n. Assume that for all x ∈ X,

d2(x, conv(Y )) ≥ λ.

Then
|X||Y |
22n

≤ exp(−λ2/4).

We now prove Theorem 4.2.
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Proof of Theorem 4.2. Let t be the average value of {f(x) : x ∈ {0, 1}n}. Define

X = {x ∈ {0, 1}n : f(x) ≤ t},
Y = {y ∈ {0, 1}n : f(y) ≥ t+ ε},
Z = {z ∈ {0, 1}n : f(z) ≥ t+ 2ε},
W = {w ∈ {0, 1}n : f(w) ≥ t+ 2ε and w is (r, ε)-insensitive}.

The assumption Var[f ] ≥ Ω(ε) implies by Claim 4.5 that |X|, |Y |, |Z| ≥ 2ε2n. We will soon
show that |W | ≤ ε2n. This will conclude the proof as all points in Z \W are (r, ε)-sensitive,
and there are at least |Z| − |W | ≥ ε2n such points.

Let k = FCε(f). Lemma 4.3 gives that for all x ∈ X,

d∞(x, conv(Y )) ≥ 1

k
.

Lemma 4.4 then gives that

d2(x, conv(W )) ≥
√
r

k
.

Applying Talagrand’s inequality (Theorem 4.6) to X,W then gives

|X||W |
22n

≤ exp(−r/4k2).

Choosing r = O(k2 log(1/ε)), and recalling that |X| ≥ ε2n, gives that |W | ≤ ε2n. This
concludes the proof.

5 Towards the Aaronson-Ambainis conjecture

In this section we present two potential (but somewhat speculative) directions towards the
Aaronson-Ambainis conjecture. The first is based on stable interpolating sets, and the second
on a conjectured extension of Talagrand’s inequality to the L∞ norm.

Before doing so, it would be convenient for us to recast the AA conjecture in a more
amenable way. Similar to the equivalent formulation of the AA conjecture of f having an
influential variable, we consider the version of an influential small coalition.

Conjecture 5.1 (AA conjecture: equivalent formulation). Let f : {0, 1}n → [0, 1] be
computed by a degree d polynomial, and let ε > 0. Then there is a set B ⊂ [n] of size
|B| ≤ poly(d, 1/ε) and an assignment b ∈ {0, 1}B such that Var[f(x)|xB = b] ≤ ε.

Claim 5.2. Conjecture 1.1 and conjecture 5.1 are equivalent.

Proof. It is clear that Conjecture 5.1 follows from Conjecture 1.1, by considering a leaf in
the decision tree approximating f . The reverse direction also holds by standard techniques:
querying the variables in the block B reduces the average block sensitivity for the function.
For more details, see for example [11, Lemma 6.1], where although their full proof is wrong,
this specific lemma is correct and gives the details for this procedure.
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5.1 Stable interpolating sets

Combining Theorem 2.9 and Theorem 4.2 gives the following corollary:

Corollary 5.3. Let f : {0, 1}n → [0, 1] be computed by a polynomial of degree d, and assume
Var[f ] = Ω(ε). Then at least an ε-fraction of inputs x ∈ {0, 1}n are (r, ε)-sensitive for
r = poly(d, 1/ε, log(n)).

We conjecture that in fact this should hold for all inputs, not just many inputs. We show
that if true, then it implies the AA conjecture. We rephrase this conjecture in the language
of stable interpolating sets for polynomials.

Definition 5.4. A set S ⊂ {0, 1}n is an (ε, δ)-stable interpolating set for degree d bounded
polynomials if it satisfies the following condition. Let f : {0, 1}n → [0, 1] be a degree d
polynomial, and assume |f(x)| ≤ δ for all x ∈ S. Then Ex∈{0,1}n [f(x)

2] ≤ ε.

Note that (0, 0)-stable interpolating sets are exactly the standard definition of interpo-
lating sets. It is known that Hamming balls of radius d are interpolating sets for degree
d polynomials. We conjecture that, by mildly increasing their radius, they are also stable
interpolating sets.

Conjecture 5.5. Let d ≥ 1, ε > 0. Then for some r = poly(d/ε) and δ = poly(ε/d),
Hamming balls of radius r are (ε, δ)-interpolating sets for degree d bounded polynomials.

Note that Conjecture 5.5 is equivalent to the conjecture that if f is a bounded degree d
polynomial with Var[f ] ≥ ε, then all inputs x ∈ {0, 1}n are (r, δ)-sensitive.

Claim 5.6. Conjecture 5.5 implies Conjecture 5.1.

Proof. Take any input x. As long as Var[f ] ≥ ε, there is a block B of size |B| ≤ r = poly(d/ε)
that is δ-sensitive for x, where δ = poly(ε/d). Restrict to the subcube of inputs consistent
with x|B and repeat. This process will end after at most BSδ(f, x) = O(d2/δ) steps, at which
point we get a block satisfying the assumption of Conjecture 5.1.

5.2 Talagrand inequality for L∞

Recall Talagrand’s inequality (Theorem 4.6), and consider replacing the distance from L2 to
L∞. What would change? First, the distance can be at most 1. Second, even if X, Y are
dense sets, their structure plays a part. Consider the following two motivating examples.

Example 5.7 (Subcubes). Let X = {x : x1 = 0}, Y = {x : x1 = 1}. Then |X| = |Y | = 2n−1

and d∞(x, conv(Y )) = 1 for all x ∈ X.

Example 5.8 (Hamming balls). Let X = {x : |x| ≤ n/2−
√
n}, Y = {x : |x| ≥ n/2 +

√
n}

where |x| denotes the Hamming weight of x. Then |X| = |Y | = Ω(2n) and d∞(x, conv(Y )) =
O(1/

√
n) for x on the boundary of X (namely, with |x| = n/2−

√
n).
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We conjecture that the main difference between these two examples is that, in the first
exampleX, Y have a variable with large influence, whereas in the second example all variables
have influence O(1/

√
n). We conjecture that this is a general phenomenon.

Definition 5.9. Let X ⊂ {0, 1}n. The i-th influence of X is the probability that a random
element in X moves outside X when the i-th bit is flipped:

Infi[X] = Pr
x∈X

[x⊕ ei /∈ X].

The maximal influence of X is Inf∞[x] = maxi Infi[X].

Conjecture 5.10 (Talagrand for L∞). Let X, Y ⊂ {0, 1}n. Assume that Inf∞[X], Inf∞[Y ] ≤
τ . Then there exists x ∈ X such that

d∞(x, conv(Y )) ≤ poly(τ).

We show that Conjecture 5.10 also implies the AA conjecture.

Claim 5.11. Conjecture 5.10 implies Conjecture 5.1.

Proof. Let f : {0, 1}n → [0, 1] be computed by a degree d polynomial, and Var[f ] ≥ Ω(ε).
Let t be the average value of {f(x) : x ∈ {0, 1}n}. For α ∈ [ε, 2ε] to be determined soon,
define

X = {x : f(x) ≤ t− α}, Y = {x : f(x) ≥ t+ α}.
The assumption that Var[f ] ≥ Ω(ε) implies by Claim 4.5 that |X|, |Y | ≥ ε2n. Theorem 2.9
gives that for all x ∈ X, d∞(x, conv(Y )) ≥ p where p−1 = poly(d, 1/ε, log n). Conjecture 5.10
then implies that either Inf∞[X] > τ or Inf∞[Y ] > τ where τ−1 = poly(d, 1/ε, log n).

Assume without loss of generality that Inf∞[X] > τ . This means that there is an index
i ∈ [n] such that Infi[X] > τ . In other words, the linear threshold function sign(f(x)− t+α)
has an influential variable xi. We will now show that by a careful choice of α, this implies that
xi is also an influential variable for f . This in turn is sufficient to prove the AA conjecture.

Let β > 0 to be determined later (where we will have β−1 = poly(d, 1/ε, log n)). Say that
a value α is good if Prx∈{0,1}n [0 ≤ f(x)− t+ α ≤ β] ≤ ετ/2. Note that if α is good, then we
get

Ex∈{0,1}n [|f(x⊕ ei)− f(x)|] ≥ ε · Ex∈X [|f(x⊕ ei)− f(x)|]
≥ εβ · Pr

x∈X
[f(x⊕ ei) > t− α + β]

= εβ

(
Pr
x∈X

[f(x⊕ ei) > t− α]− Pr
x∈X

[0 ≤ f(x)− t+ α ≤ β]

)
≥ εβ (Infi[X]− τ/2)

≥ εβτ/2.

This implies that xi is an influential variable in f , with influence poly(d, 1/ε, log(n))−1, as
conjectured.
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To conclude, we need to show that a good value of α exists. Assume not; then for
every α ∈ [ε, 2ε], we have at least a ετ/2 mass of {f(x) : x ∈ {0, 1}n} lying in the interval
[t − α, t − α + β]. This of course is impossible if we set β small enough, concretely β =
O(τε2).
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