
Hardness Self-Amplification from Feasible Hard-Core Sets

Shuichi Hirahara ∗ and Nobutaka Shimizu †

July 16, 2022

Abstract

We consider the question of hardness self-amplification: Given a Boolean function f that is
hard to compute on a o(1)-fraction of inputs drawn from some distribution, can we prove that f is
hard to compute on a (1

2 −o(1))-fraction of inputs drawn from the same distribution? We prove
hardness self-amplification results for natural distributional problems studied in fine-grained
average-case complexity, such as the problem of counting the number of the triangles modulo
2 in a random tripartite graph and the online vector-matrix-vector multiplication problem over
F2. More generally, we show that any problem that can be decomposed into “computationally
disjoint” subsets of inputs admits hardness self-amplification. This is proved by generalizing the
security proof of the Nisan–Wigderson pseudorandom generator, in which case nearly disjoint
subsets of inputs are considered.

At the core of our proof techniques is a new notion of feasible hard-core set, which generalizes
Impagliazzo’s hard-core set [Impagliazzo, FOCS’95]. We show that any weak average-case hard
function f has a feasible hard-core set H: any small H-oracle circuit (that is allowed to make
queries q to H if f(q) can be computed without the oracle) fails to compute f on a (1

2 − o(1))-
fraction of inputs in H.

∗National Institute of Informatics. Email: s hirahara@nii.ac.jp
†Tokyo Institute of Technology Email: shimizu.n.ah@m.titech.ac.jp

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 108 (2022)

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 A General Framework of Hardness (Self-)Amplification 4

2 Proof Overview 6
2.1 A Review of Derandomized Hardness Amplification 6
2.2 An Extension to Computational Designs . 8
2.3 The Existence of a Feasible Hard-core Set . 10
2.4 Conclusion and Open Problems . 11
2.5 Organization . 11

3 Related Work 12
3.1 Relation to Coding Theory . 12
3.2 Subgraph Counting on Random Graphs . 12
3.3 Fine-grained Average-case Complexity . 13
3.4 Other Natural Problems . 13

4 Preliminaries 14

5 Feasible Hard-core Set 14
5.1 Feasible Hard-core Lemma . 15
5.2 Does Nisan’s Proof Work? . 17

6 Nearly Disjoint Generator and Computational Design 18

7 Hardness Amplification 20
7.1 Information-Theoretical Hardness of ⊕k ◦ fkM ◦NWS 20
7.2 Next-Bit Predictor . 21
7.3 Putting All Together . 22

8 Triangle Parity on Random Tripartite Graph 23
8.1 Can We Extend to k-Clique Counting? . 25

9 Online Vector-Matrix-Vector Multiplication Problem 25
9.1 Framework . 25
9.2 Hardness Amplification for Static Data Structure Problems 25
9.3 Hardness Amplification for OuMv . 27
9.4 Hardness Amplification for OuMvk over F2 . 29

A Balancedness of TriParityn 35

B Local Decoding over Grids 36

1 Introduction

Average-case complexity quantifies the hardness of a function in terms of the difficulty of evaluating
it on a certain fraction of inputs. Depending on the fraction of hard inputs, we obtain two different
notions, weak average-case hardness and strong average-case hardness: A function f is said to be
weakly average-case hard if any efficient algorithm fails to solve f on a δ-fraction of inputs, where
δ > 0 is a small parameter. A Boolean function f is said to be strongly average-case hard if any
efficient algorithm fails to solve f on a (1/2−ε)-fraction of inputs for a small ε > 0. The average-case
complexity of a function depends greatly on whether we use strong or weak average-case notions, as
any biased function cannot be strongly average-case hard.1 The theory of average-case complexity
[BT06] would become very robust if there is a general proof technique that connects weak average-
case hardness of f and strong average-case hardness of f , ideally for natural problems f of practical
interest.

There are general proof techniques, called hardness amplification, that transform any weakly
average-case hard function f into a strongly average-case hard function g. For example, Yao’s XOR
lemma [Yao82; GNW11] states that if a Boolean function f cannot be computed by small circuits on
a δ-fraction of inputs, then the function g := f⊕k defined as f⊕k(x1, . . . , xk) := f(x1)⊕ · · · ⊕ f(xk)
cannot be computed by small circuits on a (1

2−ε)-fraction of inputs for small parameters δ and ε > 0.
Hardness amplification theorems have had fundamental impacts on the theory of computation,
especially on cryptography [Yao82] and derandomization [Imp95; IW97]. The proof techniques
developed in these lines of research are geared to obtaining better parameters (e.g., trade-offs
between the parameters k, ε, and δ [GNW11], a small input length of g [Imp95; IW97], small
advice complexity [IJKW10], the monotonicity of g with respect to f [ODo04; Tre05; HVV06]);
consequently, hardness-amplified functions g tend to be highly artificial.

In this paper, we broaden the applicability of the proof techniques of hardness amplification,
by developing a general framework that enables us to show hardness amplification for natural
problems f and g over natural distributions over instances of f and g. Our framework, in fact,
allows us to show hardness self-amplification: The problem f and the hardness-amplified problem
g (as well as the input distributions) are identical. We prove that several natural problems studied
in fine-grained complexity admit hardness self-amplification.

1.1 Our Results

Before presenting our general framework, we provide examples of hardness self-amplification results
that follow from the framework, while reviewing literature. For a finite set S, we write x ∼ S to
denote that x is sampled uniformly at random from S. Throughout this paper, we use circuits as
a computational model.2

Parity of Triangles (Shown in Section 8). We consider the problem of counting the number of
triangles modulo 2 in a random tripartite graph. A graph G = (V1∪V2∪V3, E) is tripartite if every
edge e ∈ E lies between Vi and Vj for i 6= j. A triple of vertices v1, v2, v3 forms a partite triangle
in G if {vi, vj} ∈ E for every i 6= j and vi ∈ Vi for every i ∈ [3].3 Suppose n = |V1| = |V2| = |V3|.
For every n ∈ N, let TriParityn : {0, 1}3n2 → {0, 1} be the parity of the number of partite triangles

1We say that a function f : {0, 1}n → {0, 1} is biased if Prx∼{0,1}[f(x) = 1] 6≈ 1
2
. Otherwise, f is said to be nearly

balanced.
2It is important for our results that a computational model is non-uniform. Whether our results can be extended

to uniform computational models is an important open question.
3We write [m] := {1, . . . ,m} for m ∈ N.

1

contained in the input graph, formally defined as

TriParityn(x) :=
⊕
v1∈V1
v2∈V2
v3∈V3

∏
1≤i<j≤3

x[vi, vj], (1)

where we identify the input x ∈ {0, 1}3n2
with the tripartite graph by regarding x as the edge

indicator. It is not hard to observe that TriParityn can be computed by an O(nω)-time algorithm
where ω < 2.37286 is the square matrix multiplication exponent [AW21]. The running time of
this algorithm is deemed to be optimal: The k-clique hypothesis [LWW18] asserts that detecting a
k-clique in a given n-vertex graph requires nωk/3−o(1) time in worst-case. This hypothesis implies
that computing TriParityn requires nω−o(1) time in worst-case, as the k-clique subgraph detection
problem can be efficiently reduced to the problem of computing the parity of the number of k-
clique subgraphs in the worst case (see, e.g., [BBB21, Lemma A.1]). We consider the average-case
complexity of computing TriParityn(x) where the input x ∼ {0, 1}3n2

is drawn uniformly at random.
In other words, the input is a random tripartite graph where all possible edges occur with probability
1/2 independently.

Worst-case-to-average-case reductions for subgraph counting prblems on Erdős–Rényi random
graphs and its variants have recently attracted much attention [GR18; BBB21; Gol20; DLW20;
HS21]. Boix-Adserá, Brennan, and Bresler [BBB21] showed that if there is a T (n)-time algorithm
that counts k-clique subgraphs in a (1 − 1/polylog(n))-fraction of Erdős–Rényi random graphs,
then there is a T (n) ·polylog(n)-time randomized algorithm that counts k-cliques in every n-vertex
graph. Goldreich [Gol20] presented a simplified reduction of [BBB21] in the case of counting k-
cliques modulo 2: If there is a T (n)-time algorithm that computes the parity of k-cliques in a
(1 − 2−k

2
)-fraction of graphs, then there is a randomized O(T (n))-time algorithm that computes

the parity of k-cliques in every graph. An important open question, raised in [BBB21; Gol20], is to
improve the error tolerance of the worst-case-to-average-case reductions; for example, the reduction
of [Gol20] can tolerate an error 2−k

2
of an average-case solver.

Why is it difficult to make the reductions error-tolerant? Goldreich [Gol20] noted that it is non-
trivial to prove even the fact that the parity of the number of k-cliques in an Erdős–Rényi random
graph is nearly balanced. Although this fact follows from a general result of Kolaitis and Kopparty
[KK13], any connection from worst-case hardness to strong average-case hardness for a function f
must prove the property of being balanced implicitly: If a function f is not nearly balanced (i.e.,
the probability that f(x) = 1 over a random input x is not close to 1/2), then a trivial algorithm
that always outputs either 0 or 1 succeeds with probability � 1/2, which can be combined with
an error-tolerant worst-case-to-average-case reduction for f . Thus, any worst-case-to-average-case
reduction for f that can tolerant an error ≈ 1/2 can be seen as a “computational proof” of the fact
that the function f is nearly balanced. The fact that TriParityn(x) is 1 with probability 1/2±2−Ω(n)

over a uniformly random x follows from the “statistical” result of [KK13].4

As an application of our general framework, we prove that TriParityn admits hardness self-
amplification: If there is a circuit of size s that computes TriParityn on a

(
1
2 + δ

)
-fraction of inputs,

then there is a circuit of size O(s + n2) that computes TriParityn on a (1 − ε)-fraction of inputs,
where δ, ε > 0 are arbitrary small constants. By combining this with [BBB21; Gol20], we obtain
the following error-tolerant worst-case-to-average-case reduction for TriParityn.

Theorem 1.1. For any constant δ > 0, if there exists a circuit C of size s satisfying

Pr
x∼{0,1}3n2

[C(x) = TriParityn(x)] ≥ 1

2
+ δ,

4For completeness, we present a proof in Appendix A.

2

then there exists a randomized circuit C ′ of size O(n2 + s) satisfying

Pr
C′

[C ′(x) = TriParityn(x)] ≥ 2

3

for every x ∈ {0, 1}3n2
.

Note that the success probability 1/2+δ in Theorem 1.1 is nearly optimal since a random guess
achieves the success probability 1/2. In other words, Theorem 1.1 indicates that one cannot do
better than the random guess unless the parity of triangle subgraphs can be efficiently solved in the
worst case. The success probability 2/3 in the conclusion of Theorem 1.1 can be amplified to any
constant less than 1, as the success probability of any randomized algorithm can be easily amplified
by repetition.

Online Vector-Matrix-Vector Problem (Shown in Section 9). In the Online Vector-
Matrix-Vector Multiplication (OuMv) introduced by Henzinger, Krinninger, Nanongkai, and Sara-
nurak [HKNS15], we are initially given a matrix M and each query consists of a pair of vectors ui, vi.
Our task is to compute u>i Mvi one by one, where the multiplications are over Boolean semiring.
It is conjectured that solving OuMv for n queries requries n3−o(1) time. Henzinger et al. [HKNS15]
established fine-grained complexity of several dynamic problems based on this conjecture. OuMv
has been well studied in the context of fine-grained complexity of dynamic problems. Several lower
bounds for OuMv and related problems have been known for cell-probe model [CKLM18; CKL18;
LW17] in which the computational costs are measured by the size of the data structure and the
number of cells probed by the algorithm answering a given query (in other words, we do not care
the cost of the time for constructing the data structure and for answering the query).

Here, we focus on OuMv over F2 on a uniformly random matrix and vectors. There is a
randomized reduction from OuMv over Boolean semiring to OuMv over F2, which exploits the
well-known isolation technique [HLS22, Lemma 2.1]. We identify the OuMv problem over F2 with
the function OuMvn : {0, 1}n×n × {0, 1}2n → {0, 1} defined as

OuMvn(M,u, v) = u>Mv, (2)

where the operations are over F2. Here, the matrix M is given at the preprocess stage and a pair
of vectors u, v are given as a query.

Henzinger, Lincoln, and Saha [HLS22] presented a uniform worst-case-to-average-case reduction
for OuMv over F2: If an average-case data structure computes OuMvn for (1− ε)-fraction of inputs,
then there is a randomized worst-case data structure that computes OuMvn with probability 1−8ε
for all inputs.

Very recently, Asadi, Golovnev, Gur, and Shinkar [AGGS22] developed a different framework
based on additive combinatorics and proved that the Online Matrix-Vector Multiplication problem
(OMv), which is closely related to OuMv, admits an error-tolerant worst-case-to-average-case re-
duction for uniform computational model. Their framework is applicable to multi-output problems,
but may not be applicable to decision problems, such as OuMv.5 Our framework is applicable to
decision problems and enables us to present such a reduction for OuMv in a nonuniform model of
circuits.

Specifically, we consider the following nonuniform model for static data structure problems: Let
C(spre, `, sans) be the class of circuits consists of preprocess part of size spre, data structure of length

5The framework of [AGGS22] relies on the fact that OMv admits an efficient verifier that checks the correctness
of the computation. Such a verifier can be constructed for multi-output problems, such as the matrix multiplication
and OMv.

3

`, and query-answer part of size sans. More formally, C ∈ C(spre, `, sans) is a circuit that can be
written as C(x; q) = Cans(Cpre(x), q) for a preprocess circuit Cpre : {0, 1}m → {0, 1}` of size spre

given x ∈ {0, 1}m as a static data and a query-answer circuit Cans : {0, 1}` × {0, 1}n → {0, 1} of
size sans given q ∈ {0, 1}n as a query. Note that ` corresponds to the size of the data structure.

Theorem 1.2. For any constant δ > 0, if there exists a circuit C ∈ C(spre, `, sans) satisfying
Pr

(M,u,v)∼{0,1}n2+2n [C(M ;u, v) = OuMvn(M,u, v)] ≥ 1/2 + δ, then there exists a randomized circuit

C ′ ∈ C(O(spre), O(`), O(n + sans)) satisfying PrC′ [C
′(M ;u, v) = OuMvn(M,u, v)] ≥ 2/3 for every

(M,u, v) ∈ {0, 1}n×n × {0, 1}2n.

Generalized OuMv (Shown in Section 9). Jin and Xu [JX22] introduced the OuMvk hy-
pothesis, which is an extension of the OuMv hypothesis to rank-k tensors. In OuMvk, we are
given a rank-k tensor M ∈ {0, 1}nk

at the preprocessing stage. Each query consists of k vectors
x1, . . . , xk ∈ {0, 1}k. Our task is to compute

OuMv(k)
n (M,x1, . . . , xk) :=

∑
i1∈[n],...,ik∈[n]

M(i1, . . . , ik)x1(i1) · · ·xk(ik), (3)

where the operations are over F2. Note that OuMvn = OuMv
(k)
n for k = 2. Jin and Xu [JX22] con-

sidered OuMvk over Boolean semiring and presented various lower bounds based on the conjecture
that OuMvk for n queries requires n1+k−o(1) time.

In this paper, we consider OuMvk over F2. It is easy to see that OuMvk over Boolean semiring
can be randomizedly reduced to OuMvk over F2 by the usual isolating technique as the special case
of k = 2 is shown in [HLS22, Lemma 2.1]. Our technique for proving Theorem 1.2 can be extended
to derive the following result.

Theorem 1.3. For any constant δ > 0, if there exists a circuit C ∈ C(spre, `, sans) satisfying

Pr
(M,u1,...,uk)∼{0,1}nk+kn [C(M ;u1, . . . , uk) = OuMv

(k)
n (M,u1, . . . , uk)] ≥ 1/2 + δ, then there exists

a randomized circuit C ′ ∈ C(O(spre), O(`), O(nk−1 + sans)) satisfying PrC′ [C
′(M ;u1, . . . , uk) =

OuMv
(k)
n (M,u1, . . . , uk)] ≥ 2/3 for every (M,u1, . . . , uk) ∈ {0, 1}n

k × {0, 1}kn.

1.2 A General Framework of Hardness (Self-)Amplification

More generally, we show that any problem that can be written as the sum of “computationally
disjoint” subsets of inputs admits hardness self-amplification. Specifically, for an input x ∈ {0, 1}n
and a subset S ⊆ [n], let x|S ∈ {0, 1}|S| denote the string obtained by concatenating all the bits of
x indexed by S. Let g : {0, 1}n → {0, 1} be a function that can be written as

g(x) =

k⊕
i=1

f(x|Si) (4)

for some function f : {0, 1}` → {0, 1} and for some subsets S1, . . . , Sk of size `. For a size parameter
s ∈ N, we say that a family of subsets S1, . . . , Sk is a s-computational design on f if for every
distinct pair i 6= j ∈ [k] and for every x|Si\Sj

∈ {0, 1}|Si\Sj |, there exists a circuit of size s that
computes the function f restricted by x|Si\Sj

, i.e., one that maps x|Si∩Sj to f(x). Our general
framework of hardness amplification can be stated as follows.

4

V(i1)1

V(i2)2
V(i3)3

Si1,i2,i3

Figure 1: The indices i1, i2, i3 ∈ [a] specify three vertex sets V
(i1)

1 , V
(i2)

2 , and V
(i3)

3

Theorem 1.4 (see also Theorem 7.1). Assume that g can be written as (4) for some s′-computational
design S1, . . . , Sk on f such that there are at least k′ disjoint subsets in S1, . . . , Sk. If any circuit
of size s fails to compute f on a δ-fraction of inputs, then any circuit of size s′ fails to compute g
on a (1/2− ε)-fraction of inputs, where

ε = exp
(
−δk′

)
and s = s′ · kO(k2/ε2).

This result generalizes Yao’s XOR lemma, which corresponds to the case when S1, . . . , Sk are
disjoint subsets. Our hardness amplification theorem generalizes Yao’s XOR lemma to highly
correlated inputs. For example, Theorem 1.1 is proved by applying it to

TriParityn(x) =
⊕
m∈[a]3

TriParityn/a(x|Sm) (5)

for some family {Sm}m∈[a]3 of subsets. More specifically, we partition each part Vi of a tripartite

graph G = (V1 ∪ V2 ∪ V3, E) into a disjoint subsets V
(1)
i , . . . , V

(a)
i of size n/a. For each m =

(i1, i2, i3) ∈ [a]3, we define Si1,i2,i3 ⊆ [3n2] to be the indices of the edges in V
(i1)

1 ∪ V (i2)
2 ∪ V (i3)

3 ; see
Figure 1. Although the family of the subsets is far from being disjoint (for example, |S1,1,1∩S1,1,2| =
n2), we observe that {Sm}m∈[a]3 is an O(n2)-computational design on TriParityn/a: For any fixed
x|Si\Sj

, the function that takes x|Si∩Sj as input and outputs TriParityn/a(x) is a linear function,
which can be clearly computed by linear-sized circuits. Using this “computational disjointness”,
Theorem 1.4 shows that weak average-case hardness of TriParityn/a can be amplified to strong
average-case hardness of TriParityn.

Our proof techniques build on and generalize those developed in the line of research on de-
randomized hardness amplification theorems. A celebrated theorem of Impagliazzo and Wigderson
[IW97], which is a culmination of [Yao82; BM84; NW94; BFNW93; Imp95], states that P = BPP if
E = DTIME(2O(n)) cannot be computed by circuits of size 2o(n). The key technical contribution of
[IW97] is to prove a derandomized version of Yao’s XOR lemma, which states that if any circuit of
size 2o(n) fails to compute a function f : {0, 1}n → {0, 1} on a (1/3)-fraction of inputs, then there
exists a function g : {0, 1}O(n) → {0, 1} such that any circuit of size 2o(n) fails to compute g on a

5

(1/2− 2−o(n))-fraction of inputs. Here, the function g is defined as

g(x, y) =
k⊕

m=1

f(x|Sm ⊕G(y))

for some family of subsets Sm ⊆ [O(n)] and for some function G.6 In the literature of derandomized
hardness amplification, whether g is natural or not is not important; the only requirement is that
g ∈ E if f ∈ E. Thus, the family {Sm}m∈[k] can be chosen to be nearly disjoint subsets of
[O(n)]. We say that a family {Sm}m∈[k] of subsets is an s-combinatorial design if |Si ∩ Sj | ≤ log s
for every distinct pair i 6= j ∈ [k]. Nisan and Wigderson [NW94] showed that there exists a
2o(n)-combinatorial design that can be efficiently computed. In general, for an s-combinatorial
design {Sm}m∈[k], Impagliazzo and Wigderson [IW97] showed that if f is weakly average-case

hard for circuits of size sO(1) · nO(1), then g is strongly average-case hard for circuits of size s.
Theorem 1.4 generalizes such derandomized hardness amplification theorems:7 whereas previous
results are applicable to s-combinatorial designs, our results are applicable to s-computational
designs on f . Note that any s-combinatorial design is also an s-computational design on f for
every function f because any function on log s-bit inputs can be computed by circuits of size
O(2log s/ log s) ≤ s; moreover, the converse is not true, as the family of subsets in (5) is an example
of an O(n2)-computational design on TriParityn/a that is not a 2n

2−1-combinatorial design.

2 Proof Overview

We now present proof ideas of Theorem 1.4, which generalizes derandomized XOR lemmas from
combinatorial designs to computational designs. At the core of our proofs is a new notion of feasible
hard-core set, which generalizes Impagliazzo’s hard-core set [Imp95]. In Section 2.1, we review the
proof techniques of derandomized hardness amplification. In Section 2.2, we introduce the notion
of feasible hard-core set. In Section 2.3, we outline the proof of the existence of a feasible hard-core
set for any mildly average-case-hard function.

2.1 A Review of Derandomized Hardness Amplification

Our starting point is an elegant exposition of [IW97] presented by Healy, Vadhan, and Viola
[HVV06], which is based on the literature on hardness amplification within NP [ODo04; Tre03]. Let
f : {0, 1}n → {0, 1}, g : {0, 1}m → {0, 1}, and σ : {0, 1}k → {0, 1} be functions and S1, . . . , Sk ⊆ [m]
be subsets of size n. Suppose that for every z ∈ {0, 1}m,

g(z) = σ(f(z|S1), . . . , f(z|Sk
)).

Note that (4) corresponds to the case of σ(y1, . . . , yk) :=
⊕k

i=1 yi. Hardness amplification can be
proved for every function σ whose expected bias is small; thus, we present such a general proof
here. We first assume that the family {Si}i∈[k] is an s-combinatorial design for a small parameter
s ∈ N and outline a standard proof of derandomized hardness amplification.

Impagliazzo [Imp95] showed that any mildly average-case hard function f has a dense hard-core
set H on which f is strongly average-case hard. Specifically, we say that f is δ-hard on H ⊆ {0, 1}n

6Theorem 1.4 requires the technical condition that there are k′ disjoint subsets in S1, . . . , Sk. This condition is
circumvented in [IW97] because of the usage of the function G.

7We note that the dependence of the size parameters s and s′ in Theorem 1.4 is significantly worse than [IW97].
Improving this is an interesting open question.

6

if any small circuit fails to compute f on a δ-fraction of inputs in H. Impagliazzo’s hard-core lemma
states that if f is δ-hard on {0, 1}n, then there exists a “hard-core set” H of size δ2n such that f
is (1/2− ε)-hard on H.

Let f : {0, 1}n → {0, 1} be a δ-hard function on {0, 1}n. Let fH denote a random function
such that fH(x) = f(x) if x 6∈ H and fH(x) is a uniformly random bit if x ∈ H. Intuitively, fH
can be thought as an idealized version of f which is information-theoretically hard on inputs in
H. Impagliazzo’s hard-core lemma implies the existence of a large set H such that (x, f(x)) and
(x, fH(x)) are computationally indistinguishable, i.e.,

(x, f(x)) ≈c (x, fH(x)), (6)

where x ∼ {0, 1}n. Here, for random variables X and Y , we denote by X ≈c Y that X and Y are
computationally indistinguishable by small circuits; i.e., for any small circuit C,

|Pr[C(X) = 1]− Pr[C(Y) = 1]| ≤ ε

for a small parameter ε > 0.
Using a hybrid argument of Nisan and Wigderson [NW94], (6) implies

(z, f(z|S1), . . . , f(z|Sk
)) ≈c (z, fH(z|S1), . . . , fH(z|Sk

)) (7)

for z ∼ {0, 1}m. Specifically, the contrapositive can be proved as follows. Assume that (7) does not
hold. Then, by a triangle inequality, there exists some index i ∈ [k] such that

(z, f(z|S1), . . . , f(z|Si), . . . , fH(z|Sk
)) 6≈c (z, f(z|S1), . . . , fH(z|Si), . . . , fH(z|Sk

)). (8)

By an averaging argument, z|[m]\Si
and the randomness in fH(z|Si+1), . . . , fH(z|Sk

) can be fixed.
Now, we use the assumption that {Si}i∈[k] is an s-combinatorial design, i.e., |Si ∩ Sj | ≤ log s for
every distinct pair (i, j). Since z|[m]\Si

is fixed, given x := z|Si as input, the output

(f(z|S1), . . . , f(z|Si−1), fH(z|Si+1), . . . , fH(z|Sk
))

can be computed by a circuit of size O(k · 2log s/ log s) ≤ O(ks), as any function on log s-bit inputs
can be computed by a circuit of size O(2log s/ log s). By combining this circuit with the circuit that
distinguishes the two distributions of (8), we obtain a circuit witnessing (x, f(x)) 6≈c (x, fH(x)).
This completes a proof sketch of the contrapositive of (6)⇒ (7). We mention in passing that Nisan
and Wigderson [NW94] used the same hybrid argument to construct a pseudorandom generator
based on a strongly average-case hard function.

By (7), we obtain

(z, g(z)) = (z, σ(f(z|S1), . . . , f(z|Sk
))) ≈c (z, σ(fH(z|S1), . . . , fH(z|Sk

)))

because applying an efficiently computable function σ preserves computational indistinguishability.
Finally, we argue that (z, σ(fH(z|S1), . . . , fH(z|Sk

))) is statistically close to (z, b), where z ∼ {0, 1}m
and b ∼ {0, 1}. For simplicity, assume that σ(y1, . . . , yk) =

⊕k
i=1 yi, in which case if z|Si ∈ H for

some i ∈ [k], the output of σ is completely uniform. Using the assumption of Theorem 1.4 that
there are k′ disjoint subsets in S1, . . . , Sk, the probability that there exists no i such that z|Si ∈ H
is bounded by

(1− δ)k′ ≤ exp(−δk′).

7

Thus, the statistical distance between (z, σ(fH(z|S1), . . . , fH(z|Sk
))) and (z, b) ∼ {0, 1}n × {0, 1} is

at most exp(−δk′), which is small. We conclude that

(z, g(z)) ≈c (z, b),

which is equivalent to saying that any small circuit C satisifes

Pr
z∼{0,1}m

[C(z) = g(z)] ≤ 1

2
+ ε

for a small parameter ε > 0. This completes the proof sketch of a derandomized hardness amplifi-
cation theorem.

2.2 An Extension to Computational Designs

We now wish to extend the proof sketch presented above to the case that {Si}i∈[k] is an s-
computational design on f . In this case, it is possible that |Si ∩ Sj | ≥ s for some distinct pair
(i, j); thus, the proof of (6) ⇒ (7) may blow up the circuit size exponentially in s. We need to
revise this proof in order to extend the proof for s-combinatorial designs to s-computational designs.

A First Attempt. Let us assume for a moment that H is efficiently recognizable, i.e., the char-
acteristic function of H can be computed by a small circuit of size s. In this case, it is easy to
observe that the proof of (6) ⇒ (7) is applicable to an s-computational design on f . Indeed, fix
z|[m]\Si

and the randomness in fH(z|Si+1), . . . , fH(z|Sk
). Consider a function that takes x = z|Si as

input and outputs
(f(z|S1), . . . , f(z|Si−1), fH(z|Si+1), . . . , fH(z|Sk

)).

We claim that this function can be computed by a circuit of size O(sk). It is evident that
(f(z|S1), . . . , f(z|Si−1)) can be computed by a circuit of size O(sk) because of the definition of
an s-computational design. In order to compute fH(z|Sj) for every j > i, we use the assumption
that the characteristic function of H can be computed by a circuit of size s. By the definition of
fH , the output of fH(z|Sj) is defined to be f(z|Sj) if z|Sj 6∈ H and to be a uniformly random bit if
z|Sj ∈ H. This can be computed by a circuit of size O(s) if H is efficiently recognizable.

Can we justify the assumption that a hard-core set H is efficiently recognizable? Unfortunately,
Reingold, Trevisan, Tulsiani, and Vadhan [RTTV08] gave the following simple counterexample: Let
f : {0, 1}n → {0, 1} be a random function that outputs f(x) = 1 with probability 1−δ independently
for every x ∈ {0, 1}n. This function is δ-hard for any small (say, polynomial-size) circuit. For any
set H ⊆ {0, 1}n with |H| ≥ δ2n, we have |H ∩ f−1(1)|/|H| ≈ 1− δ with probability 2−Θ(2n) by the
Hoeffding inequality. By taking the union bound over all efficiently recognizable H (e.g., whose
characteristic function can be computed by polynomial-size circuits), we obtain a function f such
that f is δ-hard and f is biased on every efficiently recognizable H. This counterexample shows
that the function f does not have any efficiently recognizable hard-core set.

A Second Attempt. The counterexample above exploits the definition of a hard-core set H
such that a function f must be nearly balanced on H (i.e., |H ∩ f−1(0)| ≈ |H ∩ f−1(1)| ≈ |H|/2).
Reingold et al. [RTTV08] proved the existence of an efficiently recognizable hardcore set by relaxing
the condition of being balanced.

8

Theorem 2.1 (Restatement of Theroem 3.1 of [RTTV08]). Let f : {0, 1}n → {0, 1} be a δ-hard
function on {0, 1}n for circuits of size s. Then, there exists H ⊆ {0, 1}n with |H| ≥ δ2n such that

Pr
x∼H

[C(x) = f(x)] ≤ max

{
|H ∩ f−1(0)|

|H|
,
|H ∩ f−1(1)|

|H|

}
+ ε

for any circuit of size s′ = O(δ2εs) and δ/2 ≤ |H ∩ f−1(0)|/|H| ≤ 1− δ/2. Moreover, there exists
a circuit of size s that can decide whether x ∈ H or not on input x ∈ {0, 1}n.

Can we use this theorem for our purpose? Unfortunately, this approach does not work for the
following two reasons.

1. Since f can be biased on the hard-core set H of Theorem 2.1, it does not necessarily imply
that (x, f(x)) ≈c (x, fH(x)).

2. The circuit size s′ is always smaller than the size s of the circuit that decides H. In contrast,
to prove (6) ⇒ (7), we need to show that if (z, f(z)) ≈c (z, fH(z)) for circuits of size s′,
then (z, f(z|S1), . . . , f(z|Sk

)) ≈c (z, fH(z|S1), . . . , fH(z|Sk
)) for circuits of size s′′, where we

would like to maximize s′′. Using that H is decidable by a circuit of size s, it can be
shown that if (x, f(x)) ≈c (x, fH(x)) for circuits of size s′, then (z, f(z|S1), . . . , f(z, |Sk

)) ≈c
(z, fH(z|S1), . . . , fH(z|Sk

)) for circuits of size s′′ = s′−O(sk). However, since s ≥ s′, we have
s′′ ≤ 0; thus, the conclusion is meaningless.

Although the first issue could be fixed using [SS93], the second issue appears to be an inherent
limitation of this approach.

Our Solution: Feasible Hard-Core Set. Our key technical contribution is to generalize Im-
pagliazzo’s hard-core set to a feasible hard-core set lemma. In the original notion of hard-core set,
H is said to be a hard-core set of f for circuits of size s if for every circuit C of size s,

Pr
x∼H

[C(x) = f(x)] ≤ 1

2
+ ε

for a small parameter ε > 0. Ideally, we would like to generalize this to H-oracle circuits CH , i.e.,

Pr
x∼H

[CH(x) = f(x)] ≤ 1

2
+ ε.

Here, an H-oracle circuit CH is a circuit with H-oracle gates, which compute the characteristic
function of H. It is easy to observe that the proof of (6) ⇒ (7) works for H-oracle circuits.
Unfortunately, we failed to prove the existence of a hard-core set H for H-oracle circuits. However,
by imposing an appropriate restriction on H-oracle circuits, we are able to generalize Impagliazzo’s
hard-core lemma and prove the hardness self-amplification theorem.

The restriction on H-oracle circuits CH is as follows: Informally, we require that CH can make
a query q to an oracle only if CH can compute f(q). To formalize this idea, it is easier to assume
that CH is a k-query nonadaptive oracle circuit, i.e., there exists a small circuit Qi that, on input
x, outputs the i-th query qi of CH for each i ∈ [k]. We say that an oracle circuit CH of size s
is f -trapdoor if for every i ∈ [k], there exists a circuit of size s that computes f(Qi(x))) on input
x. In other words, an f -trapdoor oracle circuit is allowed to make a query q only if f(q) can be
computed without an oracle.

9

Now, we introduce a new notion of feasible hard-core set. We say that H is a f -feasible (1/2−ε)-
hard-core set for k-query circuits of size s if H is a hard-core set for f -feasible k-query H-oracle
circuits of size s, i.e., for every f -trapdoor k-query H-oracle circuit CH of size s,

Pr
x∼H

[CH(x) = f(x)] ≤ 1

2
+ ε.

It is not hard to observe that the proof of (6) ⇒ (7) works for f -trapdoor k-query H-oracle
circuits. Indeed, for all j ∈ [k] \ {i}, the function z|Si 7→ f(z|Sj) can be computed by a circuit of
size s if z|[m]\Si

is fixed; thus, an f -trapdoor circuit can ask a query z|Sj to an oracle H and can
decide whether z|Sj ∈ H or not, which enables the computation of fH(z|Sj). It remains to prove
the existence of a feasible hard-core set.

2.3 The Existence of a Feasible Hard-core Set

We now state the generalization of Impagliazzo’s hard-core lemma to the feasible hard-core lemma.

Lemma 2.2 (feasible hard-core set; see also Lemma 5.4). Let f : {0, 1}n → {0, 1} be a δ-hard
function on {0, 1}n for circuits of size s and suppose δ22n ≥ 8 ·104. Then, there exists an f -feasible
(1/2− ε)-hard-core set H ⊆ {0, 1}n of size δ2n for k-query circuits of size s′, where

s′ = s · exp
(
−(δε)−O(1) · log k

)
−O

(
n/(δε)O(1)

)
.

We prove this by generalizing the original proof of Impagliazzo’s hard-core lemma [Imp95],
which is based on a boosting algorithm.8 The proof of the contrapositive of the feasible hard-core
set lemma proceeds by constructing hard-core sets H1, . . . ,HT inductively. The first hard-core set
is H1 = {0, 1}n and Ht is defined by using H1, . . . ,Ht−1. Using the assumption that Ht is not
a feasible hard-core set, we obtain some f -trapdoor k-query Ht-oracle circuit CHt

t that computes
f on a (1/2 + ε)-fraction of inputs in Ht. The proof of Impagliazzo’s hard-core lemma [Imp95]
enables us to show that the circuit C ′ = majority(CH1

1 , . . . , CHT
T) performs well over the uniform

distribution. However, this circuit has oracle access to H1, . . . ,HT . To complete the proof, we need
to make C ′ oracle-free. To this end, we make an induction hypothesis that CH1

1 , . . . , C
Ht−1

t−1 can
be computed by small circuits C ′1, . . . , C

′
t−1 without any oracle. We claim the existence of a small

circuit C ′t that simulates CHt
t without any oracle. Now, we exploit the property that CHt

t is an
f -trapdoor circuit. By the property of the f -trapdoor circuit, for any query q of CHt

t , there exists
a small circuit that computes f(q) without any oracle. Thus, to simulate CHt

t , it suffices to decide
whether q ∈ Ht using f(q) as advice. In the boosting algorithm, whether q ∈ Ht depends on the

“performance” of previous circuits CH1
1 (q), . . . , C

Ht−1

t−1 (q); we need to count the number of indices

i ∈ {1, . . . , t − 1} such that CHi
i (q) = f(q). Using the advice f(q) and the induction hypothesis

that CHi
i can be computed by the small circuit C ′i, the number of such indices i can be counted

efficiently. Details can be found in Section 5.
We note that the parameters in our feasible hard-core set lemma are significantly worse than

standard hard-core lemmas: the dependence on δ and ε is exponential. However, for our applica-
tions, it suffices to choose δ−1, ε−1 and k to be constants independent of n, in which case the loss
in the circuit size s is negligible. Whether the dependence on parameters can be improved is an
interesting open question.

8Interestingly, the proof based on the minimax theorem does not work; see Section 5.2.

10

2.4 Conclusion and Open Problems

This paper presents a general framework of hardness amplification for a function that can be written
as the sum of “computatuonally disjoint” components, which extends the nearly-disjoint generator
of Nisan and Wigderson [NW94]. This general framework enables us to obtain strong fine-grained
average-case hardness of natural problems.

This paper leaves many open questions and intriguing research directions. The first one is
to extend our hardness amplification framework to non-Boolean functions. For example, can we
amplify the hardness of counting triangles modulo q for q > 2? Can we amplify the hardness of
the matrix multiplication using our framework? The very recent work of Asadi, Golovnev, Gur,
and Shinkar [AGGS22] developed a different framework and showed a hardness-self amplification
theorem for the matrix multiplication. Interestingly, the framework of [AGGS22] works well for
non-Boolean functions, whereas our framework works well for Boolean functions. It would be an
intriguing research direction to generalize both frameworks to obtain a general framework that
works in both settings.

The difficulty of extending our framework to non-Boolean functions is that boosting algorithms
for proving the hard-core lemma requires a circuit that correctly computes f on at least (1/2 + ε)-
fraction in any large set H (regardless of whether f is Boolean or not). Although it is possible
to encode a multi-output function as a Boolean function using Hadamard encoding or any error-
correcting code (as is common in the literature of hardness amplification), the goal of obtaining a
natural strongly average-case hard problem prevents us from using such proof techniques.

The second question concerns the range of applications: Can we apply our hardness ampli-
fication framework to other famous problems? For example, counting zero-weight triangles and
counting t-cliques over Erdős–Rényi random graph G(n, 1/2) have been well studied in the litera-
ture of fine-grained average-case complexity. Despite effort, we could not construct computational
designs for these problems.

The third direction is to obtain a uniform hardness amplification in order to establish the strong
average-case hardness against uniform algorithms. The main obstacle to this goal is the construction
of the computational design. Although it is easy to extend the notion of computational design to
uniform computational models, we are not aware of a problem that admits such design. For example,
in Section 1.2, we exploit the fact that TriParity(x) becomes a linear function over O(n2) variables
if the input is partially fixed, but the coefficients of the linear function may not be computed by
uniform algorithms. There are proof techniques in the literature on derandomization [IW01; TV07]
that exploit downward self-reducibility and random self-reducibility to make reductions uniform,
which may be useful to investigate this research direction.

2.5 Organization

This paper is organized as follows: In Section 3, we briefly mention related works. In Section 4,
we present our notations and definitions. In Section 5, we present the first technical tool: feasible
hardcore lemma. In Section 6, we present the second technical tool: computational design. In
Section 7, we prove our new hardness amplification result using the technical tools. In Sections 8
and 9, we apply our general result to concrete problems and prove Theorems 1.1 to 1.3.

11

3 Related Work

3.1 Relation to Coding Theory

A worst-case-to-average-case reduction for a function f can be seen as the following task: Compute
f(x) for an input x ∈ X given a function C : X → Y that is ε-close9 to f as oracle. We usually
assume that f ∈ F for some class of “tractable” functions. This task is referred to as local decoding
for F within relative distance ε. Here, the target function f (i.e., the function in F that is ε-close
to the given oracle C) is promised to be unique.

However, in the task of local decoding, the error tolerance ε must be so small that the uniqueness
condition holds. To obtain reductions for smaller ε, consider the following task: Given a function
C : X → Y as oracle, enumerate all functions f ∈ F that are ε-close to C. This task is referred to
as local list decoding for F within relative distance ε.

Local (list) decoding for F = RMn,d,Fq being the family of degree-d n-variate polynomials over Fq
has been extensively studied for decades [GL89; Sud97; GRS00; STV01; GKZ08; BL15], motivated
by a wide range of applications including derandomization, PCP theorems, and cryptography.

One may run a local list decoding algorithm using an average-case solver C as oracle and obtain
a worst-case solver C ′ for f . This idea works if we use local list-decoding in implicit form in the
sense that the decoder outputs a list of oracle machines MC

1 , . . . ,M
C
` one of which computes the

target function f (in other words, the correct machine can be seen as a succinct representation of
f). Such computational task for F = RMn,d,Fq with large q can be done by the work of [STV01,
Theorem 29]. Sudan, Trevisan, and Vadhan [STV01] presented a local list-decoding algorithm
for a Reed–Muller code F = RMn,d,Fq with large q and used it to present an alternative proof of
the theorem of [IW97] without using XOR lemmas. We note that there are exponentially many
polynomials at the distance of 2−d over F2 [KLP12]. This means that even list decoding algorithms
that enumerate all the polynomials close to a given string in an explicit form cannot be used to give
worst-case-to-average-case reductions. To the best of our knowledge, no efficient local list-decoding
algorithm for small Fq is known: The currently known local list-decoders for RMn,d,Fq with small
q [GKZ08; BL15] recover all coefficients of f , which requires a running time of at least nd.

There is another line of works that puts a restriction on queries made by the decoder. Bafna,
Srinivasan, and Sudan [BSS20] presented a local decoding algorithm for RMn,d,Fq within relative

distance 2−O(qd) that makes at most 2O(qd) queries in {0, 1}n. Decoders in this setting can be used
to obtain a worst-case-to-average-case reduction for graph problems. The worst-case-to-average-
case reductions of Boix-Adserá, Brennan, and Bresler [BBB21] and subsequent works [DLW20;
HS21] can be seen as a local decoder for a specific family F ⊆ RMn,d,Fq (called good low-degree
polynomials by Dalirrooyfard, Lincoln, and Williams [DLW20]) that makes queries in {0, 1}n within
relative distance 1/(log n)Θ(d). Unfortunately, this decoder has small relative distance (i.e., small
error tolerance). Boix-Adserá, Brennan, and Bresler [BBB21] and Goldreich [Gol20] obtained a
local decoder for good low-degree polynomials over F2 within constant relative distance. Actually,
the decoder of [BSS20] already implies this result (see Appendix B for details).

3.2 Subgraph Counting on Random Graphs

In an H-subgraph counting problem, we are given a graph and asked to count the number of
subgraphs that is isomorphic to H. This is a fundamental task of graph algorithms and has been
widely investigated for decades.

9A function f over X is ε-close to a function g over X if Prx∼X [f(x) 6= g(x)] ≤ ε.

12

There is a recent progress on average-case lower bounds for the subgraph counting on random
graphs. Goldreich and Rothblum [GR18] presented a worst-case-to-average-case reduction for Kt-
subgraph counting for fixed t, where the input is drawn from uniform distribution over some set
S of n-vertex graphs. Although their reduction has a large error tolerance of 1 − 1/ polylog(n),
the input distribution of the average-case solver is somewhat artificial due to their reduction steps.
Boix-Adserá, Brennan, and Bresler [BBB21] and subsequent works [DLW20; HS21] reduced H-
counting and similar problems to that on Erdős–Rńeyi random graph. Goldreich [Gol20] obtained a
simple worst-case-to-average-case reduction for the parity variant of the Kt-counting. Hirahara and
Shimizu [HS21] presented the framework of hardness amplification in fine-grained complexity for a
variant of H-counting problems and improved the error tolerance, though the input distribution of
the average-case solver is somewhat artificial (specifically, it is the disjoint union of no(1) random
bipartite graphs).

3.3 Fine-grained Average-case Complexity

In a pioneering work, Ball, Rosen, Sabin, and Vasudevan [BRSV17] investigated the fine-grained
average-case complexity of problems and constructed Proof of Work systems based on them. To
this end, they encoded famous problems in fine-grained complexity (e.g., Orthogonal Vectors, All-
Pairs Shortest Paths, 3SUM) as low-degree polynomial evaluation and then obtained worst-case-to-
average-case reductions for the encoded problems. They hope for constructing a one-way function
under a worst-case hardness assumption in fine-grained complexity setting. Motivated by this
research direction, LaVigne, Lincoln, and Williams [LLW19] constructed a cryptographic key ex-
change scheme in the fine-grained complexity setting under the average-case hardness assumption
on Zero-k-Clique (the problem of finding a zero-weight k-clique in an edge-weighted graph). In view
of this, one might think there is a tremendous gap in average-case complexity between “counting”
and “finding” problems: Is counting much harder than finding? Interestingly, this is not the case for
some problems: Dalirrooyfard, Lincoln, and Williams [DLW20] reduced the counting zero-k-cliques
to finding a zero-k-clique.

3.4 Other Natural Problems

The permanent perm(M) of a matrix M ∈ Fn×nq is defined by perm(M) =
∑

s∈Sn

∏
i∈[n]Mi,s(i)

where Sn is the set of all permutations over [n]. It is widely known that perm admits a worst-case-
to-average-case reduction (oftenly reffered to as random self-reducibility) [Lip91] and subsequent
works [GLRSW91; GS92; FL92; CPS99] improved the error tolerance. In particular, Cai, Pavan,
and Sivakumar [CPS99] proved that if perm(M) for a (1/poly(n))-fraction of M ∼ Fn×nq over
large finite field Fq can be computed then perm(M) for any input M ∈ Fn×nq can be computed
by a randomized algorithm with a polynomial overhead in running time. A worst-case-to-average-
case reduction for computing the permanent over a small finite field is not known (note that the
permanent over F2 is equal to the determinant and can be computed in polynomial time).

The matrix multiplication over a finite ring R is a classical example that admits a worst-case-
to-average-case reduction [BLR93]: Let A be the average-case solver that correctly compute the
matrix multiplication for 99% of inputs. For given matrices M,N ∼ Fn×nq , sample two random
matrices S, T ∼ Rn×n and output A(M − S,N − T) + A(M − S, T) + A(S,N − T) + A(S, T).
This algorithm succeeds 96% over the choice of S, T for any inputs by the union bound. Very
recently, Asadi, Golovnev, Gur, and Shinkar [AGGS22] improved the error tolerance using additive
combinatorics.

13

4 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We denote by US the uniform distribution over a finite set S. We
use the shorthand notation Un = U{0,1}n . We use x ∼ D to denote that x is sampled according to a
distribution D. For a finite set S, we use x ∼ S for the shorthand of x ∼ US . For a distribution D
over {0, 1}n and function h : {0, 1}n → {0, 1}m, let h(D) be the distribution of h(X) for X ∼ D. A
random function is a function that is sampled according to some distribution over a set of functions.

A (random) function f : {0, 1}n → {0, 1} is δ-hard for size s over a distribution D if Pr[C(x) =
f(x)] ≤ 1 − δ for any size-s circuit C, where the probability is taken over random choices of
x ∼ D (and f). Two distributions D1 and D2 are ε-indistinguishable for size s if |Ex∼D1 [C(x)] −
Ey∼D2 [C(y)]| ≤ ε for any size-s circuit C. We invoke the following well-known results.

Lemma 4.1 ([Yao82]; see, e.g., Lemma 2.3 of [HVV06]). If f : {0, 1}n → {0, 1} is (1/2 − ε)-hard
over Un for size s, then the distributions (x, f(x)) for x ∼ Un and Un+1 are ε-indistinguishable
for size s−O(1). Converesely, if (x, f(x)) for x ∼ Un and Un+1 are ε-indistinguishable, then f is
(1/2− ε)-hard over Un for size s−O(1).

Lemma 4.2 (folklore). Let C : {0, 1}n → {0, 1} be a circuit of size s and D1, D2 be distributions
over {0, 1}n that are ε-indistinguishable for size s′. Then, C(D1) and C(D2) are ε-indistinguishable
for size s− s′.

Proof Sketch. If C ′ is the distinguisher for C(D1) and C(D2) of size s− s′, then the circuit C ′ ◦C
has size s and distinguishes D1 and D2.

We identify a set H ⊆ {0, 1}n with the characteristic function, i.e., for x ∈ {0, 1}n, H(x) = 1 if
x ∈ H and H(x) = 0 otherwise. We say that H is δ-dense if |H| ≥ δ2n. In an oracle circuit CH ,
the circuit C can access to H(x).

A measure is a function M : {0, 1}n → [0, 1]. The size of M is |M | :=
∑

x∈{0,1}n M(x) and
the relative size of M is µ(M) := |M |/2n. A measure M is δ-dense if µ(M) ≥ δ. Let UM be
the distribution that assigns M(a)/|M | to each a ∈ {0, 1}n. We use x ∼ M for the shorthand
of x ∼ UM . Note that, if M(x) ∈ {0, 1} for every x ∈ {0, 1}n, then M can be seen as a binary
indicator for some subset H ⊆ {0, 1}n and we have |H| = |M | and UM = UH . In this sense, a
measure can be seen as a continuous relaxation of a set. For a measure M , an oracle circuit CM

can access M(q) (with sufficient precision, say, O(log n) bits) for each query q ∈ {0, 1}n. Actually,
throughout the paper, our circuit uses oracle M to toss a coin with head probability M(q) for a
query q.

5 Feasible Hard-core Set

In this section, we define the notion of feasible hard-core set, which is our key ingredient.

Definition 5.1 (Trapdoor Oracle Circuit). Let f : {0, 1}n → {0, 1} be a function. An f -trapdoor
oracle circuit is an oracle circuit CO such that CO(x) given x as input makes nonadaptive queries
q1(x), . . . , qk(x) such that f(qi(x)) for given x can be computed by a circuit smaller than CO for all
i ∈ [k] (here, the size of CO does not take the size of the oracle gate into account).

Definition 5.2 (Feasible Hard-core). Let f : {0, 1}n → {0, 1}, ε ∈ (0, 1), and k ∈ {0} ∪ N. A set
(measure) H is a feasible ε-hard-core set (measure) for size s with k-queries if Prx∼H [CH(x) =
f(x)] ≤ 1/2 + ε for any size-s k-query f -trapdoor oracle circuit CH .

14

Note that the definition above allows the case of k = 0 in which the corresponding circuit would
be oracle-free. Therefore, the notion of feasible hard-core set is a generalization of the hard-core
set of [Imp95].

5.1 Feasible Hard-core Lemma

The original proof of the hard-core lemma by Impagliazzo [Imp95] consists of two steps. The first
and ingredient step is the proof of the existence of a hard-core measure M . Then, a standard proba-
bilistic argument shows that the random set H where every x ∈ {0, 1}n belongs to H independently
with probability M(x) satisfies PrH [∀small C,Prx∼H [C(x) = f(x)] ≈ Prx∼M [C(x) = f(x)]] > 0.
This implies that the random set H is indeed the hard-core set with positive probability. Actu-
ally, the first step still works for our feasible hard-core setting as we will see in Lemma 5.3, while
the second part does not. Though a feasible hardcore measure (Lemma 5.3) suffices to prove our
hardness amplification result, we will work on showing the existence of a feasible hardcore set in
Lemma 5.4.

Lemma 5.3 (Feasible Hard-core Measure). Let f : {0, 1}n → {0, 1} be a δ-hard function over Un
for size s. Then, there is a δ-dense feasible (1/2−ε)-hard-core measure M for size s′ with k-queries,
where s′ = s

O(t)+O(kt)t for t = δ−2ε−2.

Proof. We invoke the proof of the original hard-core lemma by Impagliazzo [Imp95]. We prove the
contraposition. Suppose for every δ-dense measure M that there is a size-s k-query f -trapdoor
oracle circuit CMM satisfying Prx∼M [CMM (x) = f(x)] ≥ 1/2 + ε. We construct an oracle-free circuit
C ′ that satisfies Prx∼Un [C ′(x) = f(x)] > 1− δ, which contradicts to the hardness of f . Our circuit
C ′ is of the form C ′(x) = maj(C1, . . . , Ct) for some t ≤ ε−2δ−2 (maj denotes the majority function).

Let γ = δε. Start with the constant measure M1 ≡ 1 (i.e., uniform distribution over all
inputs). For a measure Mi, consider CMi

Mi
. The circuit CMi

Mi
is an oracle circuit at this point

but we will claim that it can be transformed into an oracle-free circuit Ci at a cost of size. Let
Ri(x) =

∑i
j=1[Cj(x) = f(x)], where [Z] = 1 if Z holds and [Z] = −1 otherwise. For a ∈ Z, let

m(a) = 1 if a ≤ 0, m(a) = 0 if a ≥ 1/γ, and m(a) = 1 − γa otherwise. Define the measure Mi+1

by Mi+1(x) = m(Ri(x)) for every x ∈ {0, 1}n. Terminate this process if µ(Mi+1) ≤ δ. Suppose
we obtained C1, . . . , Ct and let C ′ = maj(C1, . . . , Ct). If C ′(x) 6= f(x) then Rt(x) ≤ 0 and thus
Mt+1(x) = 1. Therefore, Prx∼Un [C ′(x) = f(x)] ≥ 1− µ(Mt+1) ≥ 1− δ.

We bound t by the same argument in [Imp95]. Let Pt =
∑

j∈[t]

∑
x∈{0,1}n Mj(x)[Cj(x) = f(x)].

First, observe that Pt =
∑

j∈[t] |Mj |(2 Prx∼DMj
[Cj(x) = f(x)] − 1) ≥ 2n+1γt. On the other hand,

we claim Pt ≤ 2n(tγ/2 + 1/γ). To see this, fix x ∈ {0, 1}n and consider the edge-weighted digraph
Gx = (V,A) defined by the vertex set V := {Rj(x) : j = 0, . . . , t} (here we set R0(x) = 0), edge set
A := {(Rj−1(x), Rj(x)) : j = 1, . . . , t} where each edge (Rj−1(x), Rj(x)) is associated with a weight
Mj(x)(Rj(x)−Rj−1(x)) = m(Rj−1)(Rj(x)−Rj−1(x)). Note that G can be seen as a walk visiting
R0(x), R1(x), . . . , Rt(x) in this order. Consider the sum of edge-weights in Gx. Suppose Gx contains
a pair edges of the form (a, a+1) and (a+1, a). This pair contributes at most |m(a)−m(a+1)| ≤ γ
to the sum. After removing such (at most t/2) pairs, the remaining edges are of the form either
{(a, a+ 1), . . . , (a+ `− 1, a+ `)} or {(a, a− 1), . . . , (a− `+ 1, a− `)}. The former type has weight
m(a) + · · ·+m(a+ `− 1) ≤ 1/γ, whereas the latter one has −m(a)− · · · −m(a− `+ 1) ≤ 0. Thus,
the total weight of Gx is at most tγ/2 + 1/γ. Since Pt is the sum of total edge weight of Gx over all
x ∈ {0, 1}n, we have Pt ≤ 2n(tγ/2 + 1/γ). Therefore, 2n+1γt ≤ Pt ≤ 2n(tγ/2 + 1/γ), which implies
t ≤ 2/(3γ2) ≤ δ−2ε−2.

Finally, we bound the size of C ′. Suppose for simplicity that CMi
Mi

makes exactly k queries for

each Mi. Note that the oracle circuit CM1
M1

can be a circuit C1 of size s by replacing the oracle gate

15

with the constant 1. Suppose that Cj can be transformed into a size-sj circuit for each j ∈ [i]. We

assume s1 ≤ · · · ≤ si for simplicity. We transform the size-s oracle circuit C
Mi+1

Mi+1
into an oracle-free

circuit of size si+1. For given input x ∈ {0, 1}n, the circuit C
Mi+1

Mi+1
runs as follows: First, run its

query-making part to construct queries q1(x), . . . , qk(x). Then, access the oracle Mi+1 to obtain
Mi+1(b1), . . . ,Mi+1(bk). Finally, decide the output depending on these responses. The first and
last steps can be done by a size-s circuit. Thus, it remains to compute Mi+1(qj(x)) without oracle
for all j ∈ [k]. By definition, Mi+1(qj(x)) = m(Ri(x)) for Ri(x) =

∑
`∈[i][C`(qj(x)) = f(qj(x))],

which can be computed by an oracle-free circuit of size O(
∑

`∈[i] s`) = O(tsi) (note that f(qj(x))

can be computed by a size-s circuit). Therefore, C
Mi+1

Mi+1
can be transformed into a circuit Ci+1

of size at most s + O(ktsi). By solving the recursion si+1 ≤ s + O(ktsi) and s1 = s, we obtain
si ≤ (1 + i(Lkt)i) · s for some absolute constant L > 0. Therefore, C ′ = maj(C1, . . . , Ct) has size at
most O(s(t+ t2(Lkt)t)). The claim follows since t ≤ δ−2ε−2.

Lemma 5.4 (Feasible Hard-core Set). Let f : {0, 1}n → {0, 1} be a δ-hard function over Un for size
s and suppose δ22n ≥ 8 · 104. Then, there is a δ-dense feasible (1/2− ε)-hard-core set H ⊆ {0, 1}n

for size s′ with k-queries, where s′ = s−O(nt log(δ−1ε−1))
O(t)+O(kt)t for t = δ−2ε−2.

Proof. We prove the contraposition. Suppose for every δ-dense set H that there is a size-s k-query
f -trapdoor oracle circuit CHH satisfying Prx∼H [CHH (x) = f(x)] ≥ 1/2 +γ. We construct a circuit C ′

satisfying Prx∼Un [C ′(x) = f(x)] > 1 − δ, which contradicts to the assumption of the lemma. The
proof is almost identical to that of Lemma 5.3. The circuit C ′ is of the form C ′(x) = maj(C1, . . . , Ct)
for some t ≤ δ−2ε−2.

Consider the following randomized procedure that defines a sequence of circuits (Ci)i∈N. Start
with the constant measure M1 ≡ 1. For a measure Mi, consider the random set Hi ⊆ {0, 1}n
defined by x ∈ Hi with probability Mi(x) for all x ∈ {0, 1}n. Here, we assume that the random
variables (Hi(x))x∈{0,1}n are pairwise independent for the sake of later argument. If |Hi| < δ2n, let
Ci be an arbitrary size-s circuit (say, the circuit that always outputs 0). Otherwise, let Ci be the
oracle circuit CHi

Hi
. Let Ri(x) =

∑i
j=1[CHi

Hi
(x) = f(x)]. Define the measure Mi+1 by Mi+1(x) = 1

if Ri(x) ≤ 0, Mi+1(x) = 0 if Ri(x) ≥ 1/γ, and Mi+1(x) = 1 − γRi(x) otherwise, where γ := δε.
Terminate this procedure when µ(Mi+1) < 1.01δ.

Suppose we obtained C1, . . . , Ct by the procedure above and let C ′ = maj(C1, . . . , Ct). If
C ′(x) 6= f(x) then Rt(x) ≤ 0 and thus Mt+1(x) = 1. Therefore, Prx∼Un [C ′(x) = f(x)] ≥ 1 −
µ(Mt+1) < 1− 1.01δ.

We claim t ≤ δ−2ε−2. Consider the potential Pt =
∑

x∈{0,1}n
∑t

i=1Hi(x)[Ci(x) = f(x)], where
we recall that [Z] = 1 if Z holds and [Z] = −1 otherwise. Note that Pt is a random variable due to
the random choice of Hi. On one hand, we have

Pt ≥
∑

i∈[t] : |Hi|≥δ2n
|Hi|

∑
x∈Hi

[Ci(x) = f(x)]

≥ δ2n ·
∑

i∈[t] : |Hi|≥δ2n
(2 Pr

x∼Hi

[Ci(x) = f(x)]− 1)

≥ δε2n+1 · |{i ∈ [t] : |Hi| ≥ δ2n}|.

In the last inequality, we used the property of Ci. By the pairwise independence of (Hi(x))x∈{0,1}n ,

we have Var[|Hi(x)|] =
∑

x∈{0,1}n Mi(x)(1 −Mi(x)) ≤ 2n

4 . From the Chebyshev inequality, we

obtain Pr[|Hi(x)| ≥ δ2n] ≥ 1− Var[|Hi|]
(0.01δ2n)2

≥ 1− 104

δ22n+2 ≥ 1
2 by our assumption on δ.

16

On the other hand, fix x ∈ {0, 1}n and consider the edge-weighted digraph Gx = (V,A)
defined by the vertex set V = {Rj : j = 0, . . . , t} (here we set R0(x) = 0) and edge set A =
{(Rj−1(x), Rj(x)) : j ∈ [t]}. An edge (Rj−1(x), Rj(x)) is associated with a weight Hj(x)(Rj(x) −
Rj−1(x)) ∈ {0,±1} (note that the weight is a random variable). Note that G can be seen as a
walk on Z that visits R0(x), R1(x), . . . , Rt(x) in this order. Then, the sum of edge weights of G
is equal to S :=

∑
i∈[t]Hi(x)[Ci(x) = f(x)]. For a ∈ Z, let m(a) = 0 if a ≤ 0, m(a) = 1 − γa if

0 < a < 1/γ, and m(a) = 1 if 1/γ ≤ a. Suppose that G contains a pair of edges of the form (a, a+1)
and (a + 1, a). This pair in expectation contributes E[Hi(x) −Hj(x)] = m(a) −m(a + 1) ≤ γ to
S for some i, j ∈ [t]. Summing up these contributions over at most t/2 such pairs, the expected
contribution of such pairs in G to S is at most γt/2. If we remove these pairs from G, the remaining
part is a directed path visiting a sequence of vertices either (0, 1, . . . , `) or (0,−1, . . . ,−`) for some
` ∈ N. The former pattern has a total weight at most 1/γ since an edge (b, b + 1) has weight 0 if
b > 1/γ. The latter one has a total weight at most 0. Therefore, we have E[S] ≤ γt/2 + 1/γ and
thus E[Pt] ≤ 2n(γt/2 + 1/γ). Combining the upper and lower bounds of Pt, we obtain

δε2n ≤ E[Pt] ≤ 2n(γt/2 + 1/γ),

which implies t = O(δ−2ε−2).
Finally, it suffices to show that we can make C ′ oracle-free. This can be done by the same

argument as the proof of Lemma 5.3 except for sampling Hi. The key difference is that the circuit
CHi
Hi

has a table (Hi(z))z∈{0,1}n as oracle and looks at Hi(q) when it makes a query q, as opposed to

the oracle circuit CMi
Mi

in Lemma 5.3 that samples Ber(Mi(q)) when it makes a query q. For example,

if the computations CHi
Hi

(x) and CHi
Hi

(y) for x 6= y make a query q, then the response Hi(q) of the
oracle must be the same value, while this consistence does not necessarily hold in the oracle circuit
CMi
Mi

. To ensure this consistency efficiently, the circuit Ci first samples a random function h ∈ H
from a pairwise independent hash family H and then use h to sample Hi(q) for every query q. Note
that Mi(q) is represented by some B = O(t log γ−1) bits. Let W = {0, . . . , 2B−1}. Then, it suffices
to sample pairwise independent random variables (Xz)z∈{0,1}n such that each merginal distribution
is UW . Sample r0 ∼ UW and r = (r1, . . . , rn) ∼ UWn . Let h : {0, 1}n → V be the random

function defined as h(x) =
(
r0 +

∑
i∈[n] xiri

)
mod 2B. Then, the family (h(x))x∈{0,1}n are pairwise

independent over the random choice of h and thus has the desired property. The construction of h
can be done using O(nB) = O(nt log γ−1) random bits. Suppose that CHi

Hi
can transformed to an

oracle-free circuit of size si. By the argument in the proof of Lemma 5.3 combined with the size for
sampling h, we have si+1 ≤ s + O(ktsi) + nt log γ−1 and s1 = s. Therefore, C ′ = maj(C1, . . . , Ct)
has size at most O((s+ nt log(δ−1ε−1))(t+ t2(Lkt)t)) for some constant L > 0.

5.2 Does Nisan’s Proof Work?

Another well-known approach to the proof of the hard-core lemma exploits the minimax theorem
of Neumann, presented by Nisan [Imp95]. We briefly outline the argument and explain why this
approach fails to prove the feasible hard-core lemma.

Let f : {0, 1}n → {0, 1} be a function and consider the following two-player zero-sum game.
Player 1 chooses a δ-dense set H and Player 2 chooses a size-s′ oracle circuit C. Let P (H,C) =
Prx∼H [CH(x) = f(x)] be the outcome of the game. The objective of Player 1 (Player 2) is to
obtain the small (resp., large) outcome of the game. Two players can take mixed strategy; Player
1 chooses a distribution H over all δ-dense sets and then samples a set H ∼ H. Similarly, Player 2
decides a distribution C over size-s′ oracle circuits and then samples a circuit C ∼ C. The expected

17

outcome of the game is c(H, C) := EH∼H,C∼C [P (H,C)]. Then, the minimax theorem implies

min
H

max
C

c(H, C) = max
C

min
H

c(H, C).

Therefore, one of the following cases holds.

Case 1. minHmaxC c(H, C) < 1/2 + ε. Let H be the distribution that attains the minimum.
Then, it holds that maxC EH∼H

[
Prx∼H [CH(x) = f(x)]

]
< 1/2 + ε. Note that sampling x ∼ H for

H ∼ H yields a distribution DH of x over {0, 1}n. Let M(x) = δ2nDH(x) be a measure.
If C is oracle-free, then the event CH(x) = f(x) does not depends on H. Therefore, we would

have EH∼H [Prx∼H [C(x) = f(x)]] = Prx∼M [C(x) = f(x)] and thus the measure M is the hard-core
measure against any small oracle-free circuit. However, the same argument does not yield a feasible
hard-core measure since the event CH(x) = f(x) depends on the choice of H, that is, we cannot
obtain the equality of the form EH∼H

[
Prx∼H [CH(x) = f(x)]

]
= Prx∼M [CH(x) = f(x)].

Case 2. maxC minH c(H, C) ≥ 1/2 + ε. Let C be the distribution of circuits that attains the max-
imum. In the oracle-free setting, the well-known proof in [Imp95] claims that C ′ = maj(C1, . . . , Ct)
for i.i.d. random circuits C1, . . . , Ct ∼ C approximates f well on Un. In the feasible hard-core
setting, there arise two questions: the way of defining C ′ (note that C is the distribution of oracle
circuits but C ′ must be oracle-free) and the proof of the performance of C ′ on Un. Indeed, the proof
of the performance of C ′ on approximating f crucially depends on the fact that C ′ is independent
of H.

6 Nearly Disjoint Generator and Computational Design

A (k, n, `)-collection is a family S = {S1, . . . , Sk} of subsets such that Si ∈
(

[`]
n

)
for all i ∈ [k]. Let

f : {0, 1}n → {0, 1} be a function and (A,B) be a partition of [n]. For z ∈ {0, 1}B, we denote by
f(·|z) : {0, 1}A → {0, 1} the function defined by f(y|z) = f(y, z). Intuitively speaking, computing
f(y|z) is the task of computing f(x) given a partial input z = x|A ∈ {0, 1}A in advance.

Definition 6.1 (Computational Design). Let f : {0, 1}n → {0, 1} and S = {S1, . . . , Sk} be a
(k, n, `)-collection. We say that S is a s-computational design for f : {0, 1}n → {0, 1} if, for every
i 6= j and every z ∈ {0, 1}Si\Sj , f(·|z) can be computed by a size-s circuit Cz.

For example, suppose that a (k, n, `)-collection S = {S1, . . . , Sk} satisfies |Si ∩ Sj | ≤ d for any
i 6= j. Then, S is a 2O(d)-computational design for any function.

For a function f and measure M , define fM : {0, 1}n → {0, 1} as the random function where
each fM (x) is the output of the following procedure: Toss a coin with head probability M(x). If the
coin is head, then output a uniform random bit U1. Otherwise, output f(x). Let fkM : ({0, 1}n)k →
{0, 1}k be the direct product of k independent copies of fM . For a (k, n, `)-collection S, define the
function NDS : {0, 1}` → ({0, 1}n)k by

NDS(σ) = (σ|S1 , . . . , σ|Sk
).

Recall that, for a function f : {0, 1}n → {0, 1},

fk ◦NDS(σ) = (f(σ|S1), . . . , f(σ|Sk
)).

18

Lemma 6.2. Let k, ` ∈ N be parameters. Let M : {0, 1}n → [0, 1] be any measure and S be a
(k, n, `)-collection that is an s-computational design for f : {0, 1}n → {0, 1}. Suppose there is a
circuit D of size sD satisfying

E
σ∼U`

[
D(σ, fk ◦NDS(σ))

]
− E
σ∼U`

fkM

[
D(σ, fkM ◦NDS(σ))

]
> ε.

Then there exists a randomized size-O(sk + sD) k-query f -trapdoor oracle circuit CM satisfying

E
x∼Un

CM

[CM (x, f(x))]− E
x∼U`
fM
CM

[CM (x, fM (x))] ≥ ε

k
.

Proof. For every i = 0, 1, . . . , k, let

Hi(σ) = (σ, fM (x1), . . . fM (xi), f(xi+1), . . . f(xk)), (9)

be the hybrid distribution for σ ∼ {0, 1}` and (x1, . . . , xk) = NDS(σ). Note that H0(σ) = (σ, fk ◦
NDS(σ)) and Hk(σ) = (σ, fkM ◦ NDS(σ)). Since the circuit D distinguishes the distributions H0

and Hk, we have

ε < E
y∼H0(Ul)

[D(y) = 1]− E
y∼Hk(U`)

[D(y)] =

k∑
i=1

(
E

y∼Hi−1(U`)
[D(y)]− E

y∼Hi(U`)
[D(y) = 1]

)
.

Therefore, Ei∼[k][Ey∼Hi−1(U`) [D(y)] − Ey∼Hi(U`) [D(y)]] > ε/k. For i ∈ [k], partition the random

seed σ ∼ U` into σ = (x, z) for x := σ|Si ∼ {0, 1}n and z := σ|[`]\Si
∼ {0, 1}`−n so that the

distinguishing property of D can be rewritten as

E
i∼[k]

(x,z)∼{0,1}`

[
E

Hi−1

[D(Hi−1(x, z))]− E
Hi

[D(Hi(x, z))]

]
> ε/k.

Here, the probability takes the randomness of the probabilistic function fM inside Hi and Hi−1

into account. By averaging, we can fix i ∈ [k] and z ∈ {0, 1}[`]\Si satisfying

E
x∼Un
Hi−1

[D(Hi−1(x, z))]− E
x∼Un
Hi

[D(Hi(x, z))] >
ε

k
. (10)

For each j ∈ [k] \ {i}, let Ej : {0, 1}Si → {0, 1} be the probabilistic function defined by

Ej(x) =

{
fM (x|Si∩Sj , z|Sj\Si

) if j < i,

f(x|Si∩Sj , z|Sj\Si
) if j > i.

Note that Ej(x) depends only on x|Si∩Sj and the distribution Ej(USi) coincides with the j-th
component of the input drawn from Hi(USi , z). By the definition of Hi, the inequality (10) can be
rewritten as

E
x∼Un

E1,...,Ei−1

[D(x, z, E1(x), . . . , Ei−1(x), f(x), Ei+1(x), . . . , Ek(x))]

− E
x∼Un

E1,...,Ei−1,fM

[D(x, z, E1(x), . . . , Ei−1(x), fM (x), Ei+1(x), . . . , Ek(x))] >
ε

k
. (11)

19

Let CM be the oracle circuit that, for given input (x, b) ∈ {0, 1}n+1,

CM (x, b) = D(x, z, E1(x), . . . , Ei−1(x), b, Ei+1(x), . . . , Ek(x)).

The circuit CM uses the oracle access to M to compute Ej(x) = fM (x|Sj∩Si , z|Sj\Si
) for j < i

(Note that f(x|Sj∩Si , z|Sj\Si
) can be computed by a size-s circuit since z is fixed and S is an s-

computational design for f). Therefore, CM is a size-O(ks+ sD) k-query f -trapdoor oracle circuit.
Moreover, CM has the desired distinguishing property from (11).

7 Hardness Amplification

The intersection graph GS of a (k, n, `)-collection S is the graph on vertex set [k] where a pair of
vertices i, j ∈ [k] forms an edge if and only if Si ∩ Sj 6= ∅.

Theorem 7.1. Let n, k, ` ∈ N and δ ∈ (0, 1] be arbitrary. Let f : {0, 1}n → {0, 1}. Let S be a
(k, n, `)-collection that is a s-computational design for f . Let dmax be the maximum degree of the
intersection graph of S. Let g = ⊕k ◦ fk ◦NDS .

If f is δ-hard for size sf , then g is (1/2− ε)-hard for size sg, where ε, sf and sg satisfy

ε ≥ exp

(
− δk

dmax + 1

)
,

sf ≤ (sk + sg)k
O(k2/ε2).

7.1 Information-Theoretical Hardness of ⊕k ◦ fkM ◦ NWS

Definition 7.2. For a binary random variable X, let Bias[X] := |Pr[X = 1] − Pr[X = 0]| be the
bias of X. For a probabilistic function h : {0, 1}n → {0, 1}, let ExpBias[h] := Ex∼Un [Bias[h(x)]].
Here, Bias concerns the randomness inside h(x) for every fixed x.

Lemma 7.3 (e.g., [HVV06]). Any random function f is (1/2− ExpBias[f]/2)-hard for any size.

Lemma 7.4. Let S be a (k, n, `)-collection and α(GS) be the size of the maximum independent set
of GS . Let M be a measure of density δ. Then, for any k > 0 and f : {0, 1}n → {0, 1},

ExpBias[⊕k ◦ fkM ◦NDS] ≤ exp(−δα(GS)).

Proof. Fix arbitrary x1, . . . , xk ∈ {0, 1}n and let λ :=
∏
i∈[k](1 −M(xi)). Then, we can write the

distribution of
⊕

i∈[k] fM (xi) (over the random choice of all fM (xi)) as the convex combination⊕
i∈[k] fM (xi) = λ1A + (1 − λ)U1, where 1A denotes the Dirac measure on A :=

⊕
i∈[k] f(xi).

Identifying a distribution over {0, 1} as a vector [0, 1]2, we have

ExpBias[⊕k ◦ fkM ◦NDS] = E
(x1,...,xk)=NDS(U`)

[Bias[‖λ1A + (1− λ)U1 − U1‖1]]

= E
x1,...,xk

[λ‖1A − U1‖1]

≤ 2 E
x1,...,xk

[
m∏
i=1

(1−M(xi))

]
.

Here, ‖ · ‖1 denotes the `1-norm.

20

Let U ⊆ [k] be an independent set of GS of size α(GS). For a random seed σ ∈ {0, 1}`,
let (x1, . . . , xk) = NDS(σ). Note that, if σ ∼ U`, the random variables (xi)i∈U are mutually
indenpendent and xi ∼ Un for every i ∈ U . Therefore, we obtain

E
x1,...,xk

∏
i∈[k]

(1−M(xi))

 ≤ E
x1,...,xk

[∏
i∈U

(1−M(xi))

]

=
∏
i∈U

E
x∼Un

[1−M(x)]

= (1− δ)|U | ≤ exp(−|U |δ).

Corollary 7.5. Under the assumption of Lemma 7.4, the function
⊕

k ◦fkM ◦ NDS is (1/2 −
exp(−δk/(dmax + 1)))-hard for any size, where dmax is the maximum degree of the intersection
graph GS .

Proof. Since any k-vertex graph with maximum degree dmax has an independent set of size at least
k/dmax, the claim follows from Lemmas 7.3 and 7.4

7.2 Next-Bit Predictor

We prove that an efficient distinguisher D for the distributions (x, f(x)) and (x, fM (x)) yields a
small circuit that computes f(x) for x ∼ M . The proof is identical to the argument of Yao’s
next-bit predictor [Yao82].

Lemma 7.6. Let M : {0, 1}n → [0, 1] be any δ-dense measure. Suppose that there exists a random-
ized oracle circuit DM satisfying

Pr
x∼Un

DM

[DM (x, f(x)) = 1]− Pr
x∼Un
fM
DM

[DM (x, fM (x)) = 1] ≥ ε.

Then, the randomized oracle circuit PM (x) := 1⊕ c⊕DM (x, c) for c ∼ U1 satisfies

Pr
x∼M
PM

[PM (x) = f(x)] ≥ 1

2
+
ε

δ
.

Proof. Note that PM (x) outputs c whenewer DM (x, c) = 1. Since c = f(x) with probability 1/2,
we have

Pr
x∼M
PM

[PM (x) = f(x)] =
1

2
Pr[DM (x, f(x)) = 1] +

1

2
Pr[DM (x, 1− f(x)) = 0]

=
1

2
+

1

2
E[DM (x, f(x))−DM (x, 1− f(x))]

Therefore, it suffices to show Ex∼M,DM [DM (x, f(x))−DM (x, 1− f(x))] ≥ 2ε
δ .

For x ∈ {0, 1}n, let bx ∼ Ber(M(x)). Consider the distribution (x, bx) for x ∼ Un. Note that
the distribution of x conditioned on bx = 1 is M . To see this, for any fixed a ∈ {0, 1}n, note that

Pr
x∼Un

[x = a|bx = 1] =
Pr[bx = 1|x = a] Pr[x = a]

Prx∼Un [bx = 1]
=
M(a)

δ2n
.

21

We regard bx as the indicator that fM (x) = U1 and thus rewrite fM (x) = bxc + (1 − bx)f(x) for
c ∼ U1. Note that f(x) = fM (x) whenever bx = 0. From the assumption, we have

ε ≤ E
x∼Un,DM

[DM (x, f(x))−DM (x, fM (x))]

= Pr[bx = 1] E
x∼Un
c∼U1

DM

[DM (x, f(x))−DM (x, c)|bx = 1]

= δ · E
x∼M
c∼U1

DM

[DM (x, f(x))−DM (x, c)]

=
δ

2
E

x∼M
DM

[D(x, f(x))−D(x, 1− f(x))].

This completes the proof.

7.3 Putting All Together

We combine Lemmas 5.3, 6.2, 7.4 and 7.6 to prove Theorem 7.1.

Proof of Theorem 7.1. Let M be any δ-dense measure and S be a (k, n, `)-collection that is a s-
computational design for f . Let dmax be the maximum degree of the graphGS . Let g = ⊕k◦fk◦NDS
and g′ = ⊕k ◦ fkM ◦NDS .

We prove the contraposition. Suppose g is not (1/2 − ε)-hard for size sg. From Lemma 4.1,
there is a circuit D of size sg +O(1) satisfying

E
σ∼U`

[D(σ, g(σ))]− E
σ∼U`
b∼U1

[D(σ, b)] > ε

On the other hand, from Corollary 7.5, g′ is
(

1
2 −

1
2 exp

(
− δk
dmax+1

))
-hard for any size. Hence, the

circuit D satisfies

E
σ∼Un

[D(σ, g′(σ))]− E
σ∼U`
b∼U1

[D(σ, b)] <
1

2
exp

(
− δk

dmax + 1

)
.

and thus we have Eσ∼U`
[D(σ, g(σ))] − Eσ∼U`

[D(σ, g′(σ))] > ε′ := ε − 1
2 exp

(
− δk
dmax+1

)
. From

Lemma 4.2, there is a circuit D′ of size sg +O(k) satisfying

E
σ∼U`

[
D′(σ, fk ◦NDS(σ))

]
− E
σ∼U`

[
D′(σ, fkM ◦NDS(σ))

]
> ε′.

From Lemma 6.2, there exists a randomized admissible oracle circuit CM of size O(sk + sg) that
makes k queries and satisfies

E
x∼Un

CM

[
CM (x, f(x))

]
− E
x∼Un

CM

[
CM (x, fM (x))

]
≥ ε′

k
.

From Lemma 7.6, there exists a randomized size-O(sk + sg) k-query f -trapdoor oracle circuit PM

satisfying

Pr
x∼M
PM

[
PM (x) = f(x)

]
≥ 1

2
+
ε′

δk
.

22

Finally, from (the contraposition of) Lemma 5.3, there exists a size (sk + sg) · kO(k2/ε′2) circuit C

satisfying Prx∼Un [C(x) = f(x)] ≥ 1−δ. Note that, if ε ≥ exp
(
− δk
dmax+1

)
, then ε′ ≥ ε

2 . This implies

Theorem 7.1.

8 Triangle Parity on Random Tripartite Graph

We consider the hardness of computing TriParityn(x) defined by (1) for x ∼ {0, 1}3n2
. Previous

works [BSS20; BBB21; Gol20] proves the following worst-case-to-average-case reduction for triangle
counting10.

Theorem 8.1 (Worst-case-to-average-case Reduction). There exists an absolute constant ε0 > 0
satisfying the following: If there exists a T (n)-time algorithm A satisfying

Pr
x∼{0,1}3n2

[A(x) = TriParityn(x)] ≥ 1− ε0

for all n, then, there exists an O(T (n))-time randomized algorithm A′ such that, for any n and any
input x ∈ {0, 1}3n2

,

Pr
A′

[A′(x) = TriParityn(x)] ≥ 2/3.

This section is devoted to proving the following result.

Theorem 8.2 (Hardness Self Amplification for Triangle Parity). For any δ, ε > 0, there exists
a = O(

√
log(1/ε)/δ) satisfying the following: Suppose that there exists a size-s circuit C satisfying

Pr
x∼{0,1}3n2

[C(x) = TriParityn(x)] ≥ 1

2
+ δ.

Then there exists a circuit C ′ of size (n2 + s)aO(a6/ε2) such that

Pr
x∼{0,1}3(n/a)2

[D(x) = TriParityn/a(x)] ≥ 1− ε.

Proof. We rewrite TriParityn as TriParityn = ⊕k◦TriParitykn′ ◦NDS for a O(n2)-computational design
S for TriParityn′ , where k = a3 and n′ = n/a. Then we apply Theorem 7.1.

Let a = a(δ, ε) > 0 be sufficiently large parameter that will be specified later. We assume a

divides n for simplicity. For each i ∈ [3], divide Vi into a disjoint subsets V
(1)
i , . . . , V

(a)
i ⊆ Vi each

of size n/a. For each i1, i2, i3 ∈ [a], let Si1,i2,i3 ⊆ [3n2] be the subset such that the restriction

x|Si1,i2,i3
∈ {0, 1}3(n/a)2 for input x denotes the edge indicator vector of the induced subgraph of x

induced by V
(i1)

1 ∪ V (i2)
2 ∪ V (i3)

3 (see Figure 1). Then we can rewrite TriParityn as

TriParityn(x) =
⊕

i1,i2,i3∈[a]

⊕
v1∈V

(i1)
1

v2∈V
(i2)
2

v3∈V
(i3)
3

∏
1≤a<b≤3

x[va, vb]

=
⊕

i1,i2,i3∈[a]

TriParityn/a(x|Si1,i2,i3
) (12)

= ⊕a3 ◦ TriParitya
3

n/a ◦NDS ,

10Actually, the results of [BBB21; Gol20] concern an Erdős–Rényi random graph G(n, 1/2) but the same technique
works for random tripartite graph. For completeness, we prove Theorem 8.1 in Appendix B using the general local-
decoding algorithm of [BSS20]

23

where S := (Si1,i2,i3)i1,i2,i3∈[a].
We claim that S is an O(n2)-computational design for TriParityn/a. Fix different triple of

indices (i1, i2, i3), (j1, j2, j3) ∈ [a]3 with (i1, i2, i3) 6= (j1, j2, j3) and fix z ∈ {0, 1}Si1,i2,i3
\Sj1,j2,j3 .

Consider the function TriParityn/a(w|z) for given w ∈ {0, 1}Si1,i2,i3
∩Sj1,j2,j3 , where we recall that

TriParityn/a(·|z) : w 7→ TriParityn/a(w, z)). Note that the string (w, z) ∈ {0, 1}Si1,i2,i3 represents the
subgraph of x induced by Vi1 ∪ Vi2 ∪ Vi3 . Thus the function TriParityn/a(w|z) equals to the parity
of the number of triangle subgraphs contained in the induced subgraph given by Si1,i2,i3 but edges
inside Sj1,j2,j3 are fixed.

Suppose that ic 6= jc for all c ∈ [3]. Then, Si1,i2,i3 ∩ Sj1,j2,j3 = ∅ and thus TriParityn/a(w, z) is a
constant function. Similarly, Si1,i2,i3 ∩ Sj1,j2,j3 = ∅ if i1 = j1, i2 6= j2, and i3 6= j3. In both cases,
TriParityn/a(w|z) can be computed by a constant size circuit.

Suppose that i1 = j1, i2 = j2, but i3 6= j3. In this case, the input w denotes edges in

E(V
(i1)

1 , V
(i2)

2) and the fixed string z denotes edges in E(V
(i1)

1 , V
(i3)

3)∪E(V
(i3)

3 , V
(i2)

2), where E(S, T)
is the set of edges lying between S and T . Therefore, TriParityn/a(w|z) is a linear function, i.e.,

TriParityn/a(w|z) =
⊕

u∈Vi1 ,v∈Vi2

Auvw[u, v]

where Auv ∈ {0, 1} is a constant that depends on the fixed string z (specifically, Auv is the parity
of the number of uv-paths that passes through a vertex in V3). Therefore, TriParityn/a(w|z) can be

computed by a size O(n2) circuit and S is the desired computational design.
Consider the intersection graph G of S. Two vertices Si1,i2,i3 , Sj1,j2,j3 ∈ S forms an edge in

G if their intersection is nonempty. This occurs if |{i1, i2, i3} ∩ {j1, j2, j3}| ≥ 2. Therefore, the
maximum degree dmax of G is at most 3a.

Finally, we apply Theorem 7.1. For any δ, ε > 0, take a = a(δ, ε) = O(
√

log(1/ε)/δ) such that
ε ≥ exp(−δa3/(3a + 1)) holds. Then, from the contrapositive of Theorem 7.1, if TriParityn can be
solved by a size sg circuit with success probability 1/2 + ε, then TriParityn/a can be solved by a size

sf circuit with success probability 1− δ, where sf ≤ (n2a3 + sg) · aO(a6/ε2) = (n2 + sg)a
O(a6/ε2).

Combining Theorems 8.1 and 8.2, we immediately obtain Theorem 1.1.

Theorem 8.3 (Reminder of Theorem 1.1). For any constant δ > 0, there exists a constant a =
a(δ) > 0 satisfying the following: If there exists a size-s circuit C satisfying Pr

x∼{0,1}3n2 [C(x) =

TriParityn(x)] ≥ 1/2 + δ, then there exists a randomized circuit C ′ of size O(n2 + s) satisfying
PrC′ [C

′(x) = TriParityn(x)] ≥ 2/3 for every x ∈ {0, 1}3n2
.

Proof. Let C be the size-s circuit satisfying Pr
x∼{0,1}3n2 [C(x) = TriParityn(x)] ≥ 1/2+δ and ε0 > 0

be the constant mentioned in Theorem 8.1. Then, from Theorem 8.2 with letting ε = ε0, we have a
randomized circuit C1 of size O(n2+s) satisfying Pr

C1,x∼{0,1}3(n/a)2 [C1(x) = TriParityn/a(x)] ≥ 1−ε0
(note that a = a(δ, ε) is a constant). Then, from Theorem 8.1, we have a circuit C2 of size
O(n2 + s) satisfying PrC2 [C2(x) = TriParityn/a(x)] ≥ 2/3. By running C ′′ for many times (with
independent random seeds) and taking majority, we can increase this success probability from 2/3
to 1−1/(3a3). Finally, we reduce TriParityn to TriParityn/a using (12). Let C ′ be the circuit defined
by C ′(x) = ⊕i1,i2,i3∈[a]C2(x|Si1,i2,i3

), where Si1,i2,i3 is defined in the proof of Theorem 8.2. By
the union bound, it holds with probability 2/3 that C2(x|Si1,i2,i3

) = TriParityn/a(x|Si1,i2,i3
) for all

i1, i2, i3 ∈ [a]. Therefore, from (12), we have PrC′ [C
′(x) = TriParityn(x)] ≥ 2/3.

24

8.1 Can We Extend to k-Clique Counting?

It is known by [BBB21; Gol20] that Theorem 8.1 can be extend to the parity of k-Clique subgraphs
in a random k-partite graph (indeed, the result of [BSS20] immediately implies a worst-case-to-
average-case reduction for any small subgraph on Erdős–Rényi random graph G(n, 1/2) with a
constant error tolerance!). In view of this, it is natural to ask for an extension of Theorem 8.2 to
the parity of k-clique or more general graphs.

Unfortunately this is a nontrivial task for our framework. The most difficult part is to construct
a computational design. Recall that the proof of Theorem 8.2 is obtained by first constructing a
computational design S and then applying Theorem 7.1. The important property of counting
triangle subgraphs is that the function f counting the number of trianles in a tripartite graph
becomes linear function if edges are partially fixed, which ensures a computational design. We are
not aware of whether we can apply the same argument for counting k-clique subgraphs.

9 Online Vector-Matrix-Vector Multiplication Problem

9.1 Framework

We introduce a formal framework for computational complexity of static data structure problems.
A (decision) static data structure problem is specified by a function f : {0, 1}m × {0, 1}n → {0, 1},
where the first m bits of input correspond to the static data and the rest n bits correspond to
the query. We write f(x; q) to specify the static data x and query q. A circuit C : {0, 1}m+n →
{0, 1} has preprocess size spre, data structure size `, and answer size sans if there exist circuits
Cpre : {0, 1}m → {0, 1}` of size spre and Cans : {0, 1}m × {0, 1}` → {0, 1} of size sans such that
C(x; q) := Cans(Cpre(x), q) for all x ∈ {0, 1}m, q ∈ {0, 1}n. The class of such circuits is denoted by
C(spre, `, sans). The circuit Cpre(x) can be seen as a preprocess in the sense that Cpre outputs a string
representing a data structure for given offline input x. Then, Cans receives a query q and the data
structure Cpre(x) to compute f(x; q). Note that we do not care update and therefore our framework
do not capture dynamic problems. Any circuit C : {0, 1}m+n → {0, 1} of size s has preprocess size
m, data structure size m, and answer size s by setting Cpre(x) = x and Cans(x) = C(x). This
corresponds to the case that each query is dealt with an offline algorithm (circuit).

Lemma 9.1. For any C1, . . . , Ct ∈ (spre, `, sans) and any circuit D : {0, 1}t → {0, 1} of size sD, the
function (x, q) 7→ D(C1(x; q), . . . , Ct(x; q)) can be computed by a circuit D′ ∈ C(tspre, t`, tsans +sD).

Proof. Write Ci(x; q) = Cians(C
i
pre(x), q) for two circuits Cipre and Cians. Consider D′pre(x) :=

(C1
pre(x), . . . , Ctpre(x)) ∈ {0, 1}t` and D′ans(y1, . . . , yt, q) = D(C1

ans(y1, q), . . . , C
t
ans(yt, q)). Then,

the circuit D′(x; q) = D′ans(D
′
pre(x), q) ∈ C(tspre, t`, tsans + sD) satisfies the claim.

9.2 Hardness Amplification for Static Data Structure Problems

Consider a function f : {0, 1}m × {0, 1}n → {0, 1}. Let Dpre,Dans be distributions over {0, 1}m
and {0, 1}n, respectively. We say that f is δ-hard for C(spre, `, sans) over (Dpre,Dans) if, for C ∈
C(spre, `, sans), Prx∼Dpre,q∼Dans [C(x; q) = f(x; q)] ≤ 1 − δ. Unless otherwise noted, Dpre and Dans

are uniform distributions if we just say that f is δ-hard.
Our hardness amplification result (Theorem 7.1) holds against circuits in C(spre, `, sans) since

the class is closed under taking majority with a slight blow-up of size due to Lemma 9.1. Let

25

f : {0, 1}m+n → {0, 1} and g : {0, 1}m′+n′ → {0, 1} be functions satisfying

g(x; q) = ⊕k ◦ fk ◦NDS(x; q) =
⊕
i∈[k]

f
(
x|S′i ; q|S′′i

)
,

where S = (Si)i∈[k] is a (k, n+m,n′+m′)-collection, S′i = Si ∩ [m′] and S′′i = Si ∩ ([m′+n′] \ [m′])
satisfy |Si| = m and |S′i| = n.

Recall that S = (S′i∪S′′i)i∈[k] is a s-computational design for f if, for every i 6= j and every fixed

w ∈ {0, 1}S
′
i\S′j , z ∈ {0, 1}S

′′
i \S′′j , the function f

(
x|S′i∩S′j , w; q|S′′i ∩S′′j , z

)
: {0, 1}S

′
i∩S′j×{0, 1}S

′′
i ∩S′′j →

{0, 1} can be computed by a circuit Cw,z of size s. (Note that the circuit Cw,z does not necessarily
belong to the class C(spre, `, sans).)

Theorem 9.2. Let n, k ∈ N and δ ∈ (0, 1] be arbitrary. Let f : {0, 1}n+m → {0, 1}. Let S be a
(k, n + m,n′ + m′)-collection that is a s-computational design for f . Let dmax be the maximum
degree of the intersection graph of S. Let g = ⊕k ◦ fk ◦NDS .

If f is δ-hard for C(spre, `, sans), then g is (1/2 − ε)-hard for size C(s′pre, `
′, s′ans) for some

s′pre, `
′, s′ans, where the parameters satisfy

ε ≥ exp

(
− δk

dmax + 1

)
,

spre = O(δ−2ε−2s′pre),

` = O(δ−2ε−2`′),

sans = (sk + s′ansk)kO(k2ε−2).

Proof Sketch. Since the proof is identical to that of Theorem 7.1 (see Section 7.3) we outline only
the sketch here.

Suppose that g is not (1/2 − ε)-hard for C(s′pre, `
′, s′ans). Then, by a slight modification of

Lemma 4.1, we obtain a circuit D ∈ C(s′pre, `
′, s′ans +O(1)) satisfying

E
σ∼Un′+m′

[D(σ, g(σ))]− E
σ∼Un′+m′
b∼U1

[D(σ, b)] > ε.

Here, for the input σ = (x; q) ∈ {0, 1}n′+m′ and b ∈ {0, 1}, the circuit D can be written as
D(x; q, b) = Dans(Dpre(x), q, b). Specifically, the circuit D(x; q, b) outputs 1 if g(x; q) = b and the
uniform random bit otherwise.

For a δ-dense measure M : {0, 1}n+m → [0, 1], let g′(x; q) be the function defined by g′(x; q) :=

⊕k ◦ fkM ◦ NDS =
⊕

i∈[k] fM

(
x|S′i ; q|S′′i

)
, where fM is the random function defined by fM (a; b) =

f(a; b) with probability 1 −M(a, b) and fM (a; b) = U1 with probability M(a, b) (recall that U1

denotes the uniform random bit). Then, by the information-theoretical bound, the function g′ is(
1
2 −

1
2 exp

(
− δk
dmax+1

))
-hard for any size. Therefore, the circuit D distinguishes g(σ) and g′(σ),

i.e.,

E
σ

[D(σ, g(σ)]−E
σ

[D(σ, g′(σ)] > ε′ := ε− 1

2
exp

(
− δk

dmax + 1

)
.

Then, by Lemma 4.2, we obtain a circuit D′ ∈ C(s′pre, `, s
′
ans +O(k)) satisfying

E
σ

[D′(σ, fk ◦NDS(σ)]−E
σ

[D′(σ, fkM ◦NDS(σ)] >
ε

2
,

26

where D′ is of the form D′(x; q, b1, . . . , bk) = D′ans(D
′
pre(x), q, b1, . . . , bk).

From the proof of Lemma 6.2, we have a trapdoor oracle circuit CM ∈ C(s′pre, `, s
′
ans + O(ks))

that makes at most k queries and satisfies

E
(x;q)∼Un+m

CM

[CM (x; q, f(x, q))]− E
(x;q)∼Un+m

CM

[CM (x; q, fM (x, q))] >
ε′

k
.

Note that, in the proof of Lemma 6.2, the circuit CM is of the form

CM (x; q, b) = D′(x; q, C1(x; q), . . . , Ci−1(x; q), b, Ci+1(x; q), . . . , Ck(x; q))

= D′ans(D
′
pre(x), q, C1(x; q), . . . , Ci−1(x; q), b, Ci+1(x; q), . . . , Ck(x; q)).

where Ci are size-s circuits (since S is a computational design). This construction blows up only
the “answer” part.

From Lemma 7.6, we have a randomized trapdoor oracle circuit PM ∈ C(s′pre, `, s
′
ans + O(ks))

satisfying

Pr
(x;q)∼M
PM

[PM (x; q) = f(x; q)] ≥ 1

2
+
ε′

δk
.

Finally, from the proof of Lemma 5.3, there exists a circuit C ∈ C(spre, `, sans) that approximates
f well over the uniform distribution, where

spre = O(ts′pre),

` = O(t`′),

sans = (sk + s′ansk) · kO(t)

for some t = O(k2ε−2). Note that, in the proof of Lemma 5.3, we claimed that the circuit C ′ =
maj(C1, . . . , Ct) performs well where C1, . . . , Ct are circuits chosen by a suitable way. If C1, . . . , Ct ∈
C(spre, `, sans), then C ′ ∈ C(tspre, t`, tsans +O(t)) from Lemma 9.1.

9.3 Hardness Amplification for OuMv

Let OuMvn be the function defined by (2). With this notation, the (circuit) OuMv Conjecture
can be stated as follows: Any circuit C ∈ C(spre, `, sans) of C(M ;u, v) = OuMvn(M,u, v) satisfies
spre + nsans = n3−o(1).

We consider the average-case complexity of computing OuMvn where the matrix M ∼ {0, 1}n×n
and vectors u, v ∼ {0, 1}n are uniformly at random.

For completeness, we prove the following worst-case-to-average-case reduction (on uniform com-
putational model) for this problem that was already given by Henzinger et al. [HLS22]. The argu-
ment is essentially based on [BLR93].

Theorem 9.3. Suppose that there is a pair (Apre, Aans) of algorithms runs in time Tpre(n) and
Tans(n) respectively satisfying

Pr
M∼{0,1}n×n,u,v∼{0,1}n

[Aans(Apre(M), u, v) = OuMvn(M,u, v)] ≥ 1− ε

27

for all n ∈ N. Then there is a pair A′ = (A′pre, A
′
ans) of randomized algorithms runs in time

O(Tpre(n)) and O(Tans(n)) respectively satisfying

Pr
A′pre,A

′
ans

[A′ans(A
′
pre(M), u, v) = OuMvn(M,u, v)] ≥ 1− 8ε

for all n ∈ N and M ∈ {0, 1}n×n, u, v ∈ {0, 1}n.
Moreover, if the output of Apre has length at most `(n), then that of A′pre is at most 2`(n).

Proof. Let Apre, Aans be the algorithms satisfying the assumption. The randomized algorithm
A′pre(M) given input M runs as follows: Sample R1 ∼ {0, 1}n×n and let R2 = M − R1 and
output (Apre(R1), Apre(R2)). The randomized algorithm A′ans(u, v) given input u, v ∈ {0, 1}n
runs as follows: Sample r1, r

′
1 ∼ {0, 1}n independently and let r2 = u − r1 and r′2 = v − r′1.

Then, output
∑

i∈[2],j∈[2],k∈[2]Aans(Apre(Ri), rj , r
′
k). By the union bound, with probability 1 − 8ε,

we have Aans(Apre(Ri), rj , r
′
k) = OuMvn(Ri, rj , r

′
k) for all i, j, k ∈ [2]. If this holds, we have

A′ans(A
′
pre(M), u, v) =

∑
i,j,k∈[2] OuMvn(Ri, rj , r

′
k) = OuMvn(M,u, v).

Theorem 9.4. For any δ, ε > 0, there exists a = a(δ, ε) satisfying the following: Suppose there
exists a circuit C ∈ C(spre, `, sans) such that

Pr
M,u,v

[C(M ;u, v) = OuMvn(M,u, v)] ≥ 1

2
+ δ.

Then, there exists a circuit C ′ ∈ C(s′pre, `
′, s′ans) such that

Pr
M∼{0,1}(n/a)×(n/a)

u,v∼{0,1}n/a

[C ′(M ;u, v) = OuMvn/a(M,u, v)] ≥ 1− ε,

where s′pre = O(a4ε−2spre), `
′ = O(a4ε−2`), and s′ans = O(n+ sans)a

O(a4/ε2).

Proof. We rewrite OuMvn as OuMvn = ⊕k ◦ (OuMvn′)
k ◦NDS for an O(n)-computational design S

for OuMvn′ , where k = a2 and n′ = n/a. Then we apply Theorem 9.2.
Let a = a(δ, ε) be a sufficiently large parameter that will be specified later. We assume a divides

n for simplicity. Let R,C denote the row and column set of the given matrix M . Then, we have
u ∈ {0, 1}R, v ∈ {0, 1}C , and M ∈ {0, 1}R×C . Let R1, . . . , Ra and C1, . . . , Ca be a partition of R and
C such that each Ri and Ci has the same size n/a, respectively. Let Mi,j = M |Ri×Cj ∈ {0, 1}Ri×Cj

be the submatrix of M given by Ri×Cj . Similarly, for given vectors u ∈ {0, 1}R and v ∈ {0, 1}C , let
ui = u|Ri ∈ {0, 1}Ri and vj = v|Cj ∈ {0, 1}Cj be the restriction of u on Ri and v on Cj , respectively.
Then, we have

OuMvn(M,u, v) =
⊕
i,j∈[a]

OuMvn/a(Mi,j , ui, vj) = ⊕k ◦ OuMvkn/a ◦NDS , (13)

where S = (Si,j)i,j∈[a] for Si,j = (Ri × Cj) ∪Ri ∪ Cj ⊆ (R× C) ∪R ∪ C.
We claim that S defined above is an O(n)-computational design for OuMvn′ . Fix distinct

Si,j , Si′,j′ ∈ S. Our task is to compute OuMvn/a(Mi,j , ui, vj) = u>i Mi,jvj by an O(n)-size circuit
where the input is partially hardwired. If i 6= i′ and j 6= j′, then Si,j ∩Si′,j′ = ∅ and thus the input
is completely hardwired. If i = i′ and j 6= j′, then Mi,j and vj are hardwired. In this case, the
function OuMvn/a(Mi,j , ui, vj) = u>i w for a fixed w is a linear function and thus computed by an
O(n)-size circuit. Therefore, S is the desired computational design.

28

Consider the intersection graph GS of S. Two distinct vertices Si,j , Si′,j′ form an edge if i = i′

or j = j′. Therefore, GS has maximum degree at most 2a.
Finally, we apply Theorem 9.2. For any δ, ε > 0, take a = a(δ, ε) = O(δ−1 log(1/ε)) such

that ε > exp(−δa2/(2a + 1)) holds. Then, from the contrapositive of Theorem 9.2, we obtain the
claim.

Combining Theorems 9.3 and 9.4, we obtain Theorem 1.2.

Theorem 9.5 (Reminder of Theorem 1.2). For any constant δ > 0, there exists a constant
a = a(δ) > 0 satisfying the following: If there exists a circuit C ∈ C(spre, `, sans) satisfying
Pr

(M,u,v)∼{0,1}n2+2n [C(M ;u, v) = OuMvn(M,u, v)] ≥ 1/2 + δ, then there exists a randomized circuit

C ′ ∈ C(O(spre), O(`), O(n + sans)) satisfying PrC′ [C(M ;u, v) = OuMvn(M,u, v)] ≥ 2/3 for every
(M,u, v) ∈ {0, 1}n×n × {0, 1}2n.

Proof. Let C ∈ C(spre, `, sans) be the circuit of the assumption, i.e., Pr(M,u,v)∼Un2+2n
[C(M ;u, v) =

OuMvn(M,u, v)] ≥ 1/2 + δ. Then, from Theorem 9.4 with letting ε = 0.01, we have a circuit
C1 ∈ C(O(spre, O(`), O(n + sans)) satisfying Pr(M,u,v)[C1(M ;u, v) = OuMvn/a(M,u, v)] ≥ 0.99,

where M ∼ {0, 1}(n/a)×(n/a) and u, v ∼ {0, 1}n/a (note that a = a(δ, ε) is a constant). Finally,
from Theorem 9.3, we have a circuit C2 such that PrC2 [C2(M ;u, v) = OuMvn/a(M,u, v)] ≥ 2/3

for any input (M,u, v) ∈ {0, 1}(n/a)×(n/a) × {0, 1}2(n/a). By repetition, we can amplify this success
probability and thus we may assume that the success probability of C2 is 1 − 1/(3a2). Note that
this repetition occurs a linear-blows in size parameters spre, `, sans by Lemma 9.1. Let C ′ be the
circuit defined by C ′(M ;u, v) = ⊕i,j∈[a]C2(Mi,j ;ui, vj). By the union bound and (13), we have
PrC′ [C

′(M ;u, v) = OuMvn(M,u, v)] ≥ 2/3 for any input M,u, v.

9.4 Hardness Amplification for OuMvk over F2

Let OuMv(k) be the function defined by (3). We consider the average-case complexity of computing

OuMv(k) for random tensor M ∼ {0, 1}nk
and vectors u1, . . . , uk ∼ {0, 1}n.

The following worst-case-to-average-case reduction is an immediate extension of Theorem 9.3.

Theorem 9.6. Suppose that there is a pair (Apre, Aans) of algorithms runs in time Tpre(n) and
Tans(n) respectively satisfying

Pr
M∼{0,1}nk ,u1,...,uk∼{0,1}n

[Aans(Apre(M), u1, . . . , uk) = OuMv(k)
n (M,u1, . . . , uk)] ≥ 1− ε

for all n ∈ N. Then there is a pair A′ = (A′pre, A
′
ans) of randomized algorithms runs in time

O(2kTpre(n)) and O(2kTans(n)) respectively satisfying

Pr
A′pre,A

′
ans

[A′ans(A
′
pre(M), u1, . . . , uk) = OuMvn(M,u1, . . . , uk)] ≥ 1− 2k+1ε

for all n ∈ N and M ∈ {0, 1}nk
, u1, . . . , uk ∈ {0, 1}n.

Moreover, if the output of Apre has length at most `(n), then that of A′pre is at most 2`(n).

Proof. Let Apre, Aans be the algorithms satisfying the assumption. The randomized algorithm

A′pre(M) given input M runs as follows: Sample R0 ∼ {0, 1}n
k

and let R1 = M − R0 and output
(Apre(R0), Apre(R1)). The randomized algorithm A′ans(u, v) given input u1, . . . , uk ∈ {0, 1}n runs

as follows: Sample r
(1)
0 , . . . , r

(k)
0 ∼ {0, 1}n independently and let r

(i)
1 = ui − r(i)

0 . Then, output

29

∑
(i0,...,ik)∈{0,1}k+1 Aans(Apre(Ri0), r

(1)
i1
, . . . , r

(k)
ik

). By the union bound, with probability at least 1−
2k+1ε, we have Aans(Apre(Ri0), r

(1)
i1
, . . . , r

(k)
ik

) = OuMv
(k)
n (Ri0 , r

(1)
i1
, . . . , r

(k)
ik

) for all (i0, . . . , ik) ∈
{0, 1}k+1. If this holds, the output of A′ans is correct.

Theorem 9.7. For any δ, ε > 0, there exists a = a(δ, ε) satisfying the following: Suppose there
exists a circuit C ∈ C(spre, `, sans) such that

Pr
M,u1,...,uk

[C(M ;u1, . . . , uk) = OuMv(k)
n (M,u1, . . . , uk)] ≥

1

2
+ δ.

Then, there exists a circuit C ′ ∈ C(s′pre, `
′, s′ans) such that

Pr
M∼{0,1}(n/a)k

u1,...,uk∼{0,1}n/a

[C ′(M ;u1, . . . , uk) = OuMv
(k)
n/a(M,u1, . . . , uk)] ≥ 1− ε,

where s′pre = O(a4ε−2spre), `
′ = O(a4ε−2`), and s′ans = O(nk−1 + sans)a

O(a4/ε2).

Proof. The proof is almost identical to that of Theorem 9.4. We rewrite OuMv
(k)
n as OuMv

(k)
n =

⊕ak ◦ (OuMv
(k)
n′)a

k ◦ NDS for an O(nk−1)-computational design S for OuMv
(k)
n′ . Then we apply

Theorem 9.2.
Let a = a(δ, ε) be a sufficiently large parameter that will be specified later. We assume a

divides n for simplicity. Let I1 × · · · × Ik denote the index set of the given matrix M . Thus we
have M ∈ {0, 1}I1×···×Ik , ui ∈ {0, 1}Ii for i ∈ [k]. Divide each Ii into a sets Ii,1, . . . , Ii,a each of
size n/a. For each j = (j1, . . . , jk) ∈ [a]k, let Mj = M |I1,j1×···×Ik,jk ∈ {0, 1}

I1,j1×···×Ik,jk be the

subtensor of M induced by I1,j1 × · · · × Ik,jk . Similarly, for given vectors ui ∈ {0, 1}Ii and j ∈ [a],
let ui,j = ui|Ii,j ∈ {0, 1}Ii,j the restriction of ui on Ii,j . Then, we have

OuMv(k)
n (M,u1, . . . , uk) =

⊕
j=(j1,...,jk)∈[a]k

OuMv
(k)
n/a(Mj, u1,j1 , . . . , uk,jk)

= ⊕ak ◦ (OuMv(k)
n)a

k ◦NDS , (14)

where S = (Sj)j∈[a]k for Sj1,...,jk = (I1,j1 × · · · × Ik,jk) ∪ I1,j1 ∪ · · · ∪ Ik,jk .

We claim that S defined above is an O(nk−1)-computational design for OuMvn. Fix distinct

Sj, Sj′ ∈ S. We claim that OuMv
(k)
n/a(Mj, u1,j1 , . . . , uk,jk) can be computed by an O(nk−1)-size

circuit if the bits indexed by Sj \ Sj′ of the input is hardwired. In this setting, Mj is hardwired
since j 6= j′. Moreover, there is an index l ∈ [k] satisfying jl 6= j′l. For simplicity, suppose
l = k for simplicity (the case of other l can be dealt with the same way). Then, uk,jk ∈ {0, 1}n/a

is hardwired. Let W ∈ {0, 1}(n/a)k−1
be the rank-(k − 1) tensor satisfying W (i1, . . . , ik−1) =∑

i∈[n/a]Mj(i1, . . . , ik−1, x)uk,jk(i). Note that W can be hardwired with (n/a)k−1 = O(nk−1) bits
and thus

OuMv
(k)
n/a(Mj, u1,j1 , . . . , uk,jk) =

⊕
(i1,...,ik−1)∈[n/a]k−1

W (i1, . . . , ik−1)
∏

s∈[k−1]

us,js

can be computed by an O(nk−1)-size circuit. Therefore, S is the desired computational design.
Consider the intersection graph GS of S. Two distinct vertices Sj, Sj′ form an edge if and only

if ji = j′i for some i ∈ [k]. Therefore, GS has maximum degree at most ka.
Finally, we apply Theorem 9.2. For any δ, ε > 0, take a = a(δ, ε) such that ε > exp(−δak/(ka+

1)) holds. Then, from the contrapositive of Theorem 9.2, we obtain the claim.

30

Theorem 9.8 (Reminder of Theorem 1.3). Let δ > 0 be any constant. Suppose that there exists a
circuit C ∈ C(spre, `, sans) satisfying

Pr
(M,u1,...,uk)∼{0,1}nk+kn

[C(M ;u1, . . . , uk) = OuMv(k)
n (M,u1, . . . , uk)] ≥ 1/2 + δ.

Then, there exists a randomized circuit C ′ ∈ C(O(spre), O(`), O(nk−1 + sans)) satisfying

Pr
C′

[C ′(M ;u1, . . . , uk) = OuMv(k)
n (M,u1, . . . , uk)] ≥ 2/3

for every (M,u1, . . . , uk) ∈ {0, 1}n
k × {0, 1}kn.

Proof. Let C ∈ C(spre, `, sans) be the circuit of the assumption. From Theorem 9.7 with ε =
0.1× 2−k−1, we have a circuit C1 ∈ C(O(spre, O(`), O(nk−1 + sans)) satisfying Pr(M,u)[C1(M ; u) =

OuMv
(k)
n/a(M,u)] ≥ 1−0.1×2−k−1, where M ∼ {0, 1}(n/a)k and u = (u1, . . . , uk) ∼ {0, 1}k(n/a) (note

that a = a(δ, ε) is a constant). From Theorem 9.6, we have a circuit C2 ∈ C(O(spre, O(`), O(nk−1 +

sans)) satisfying PrC2 [C2(M ; u) = OuMv
(k)
n/a(M,u)] ≥ 0.9 for any input (M,u) ∈ {0, 1}(n/a)k ×

{0, 1}k(n/a). By repetition, we can amplify this success probability and thus we may assume
that the success probability of C2 is 1 − 1/(3ak). Note that this repetition occurs a linear-
blows in size parameters spre, `, sans by Lemma 9.1. Let C ′ be the circuit defined by C ′(M ; u) =
⊕j∈[a]kC2(Mj;u1,j1 , . . . , uk,jk). By the union bound over j ∈ [a]k and (13), we have PrC′ [C

′(M ; u) =

OuMv
(k)
n (M,u)] ≥ 2/3 for any input M,u.

References

[AGGS22] Vahid R. Asadi, Alexander Golovnev, Tom Gur, and Igor Shinkar. “Worst-Case to
Average-Case Reductions via Additive Combinatorics”. In: arXiv 2202.08996 (to
appear in STOC22) (2022). url: https://arxiv.org/abs/2202.08996.

[AW21] Josh Alman and Virginia Vassilevska Williams. “A Refined Laser Method and Faster
Matrix Multiplication”. In: Proceedings of Symposium on Discrete Algorithms (SODA)
(2021), pp. 522–539. doi: 10.1137/1.9781611976465.32. url: https://epubs.
siam.org/doi/abs/10.1137/1.9781611976465.32.

[BBB21] Enric Boix-Adserá, Matthew Brennan, and Guy Bresler. “The Average-Case Com-
plexity of Counting Cliques in Erdös–Rényi Hypergraphs”. In: SIAM Journal on
Computing (Special Section FOCS2019) (2021), pp. 39–80. issn: 0097-5397. doi:
10.1137/20M1316044.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. “BPP Has Subex-
ponential Time Simulations Unless EXPTIME has Publishable Proofs”. In: Compu-
tational Complexity 3 (1993), pp. 307–318. doi: 10.1007/BF01275486.

[BL15] Abhishek Bhowmick and Shachar Lovett. “The List Decoding Radius of Reed-Muller
Codes over Small Fields”. In: Proceedings of Symposium on Theory of Computing
(STOC) (2015), pp. 277–285. doi: 10.1145/2746539.2746543.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. “Self-testing/correcting with ap-
plications to numerical problems”. In: Journal of Computer and System Sciences 47
(3 1993), pp. 549–595. issn: 00220000. doi: 10.1016/0022-0000(93)90044-W. url:
https://www.sciencedirect.com/science/article/pii/002200009390044W.

31

https://arxiv.org/abs/2202.08996
https://doi.org/10.1137/1.9781611976465.32
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.32
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.32
https://doi.org/10.1137/20M1316044
https://doi.org/10.1007/BF01275486
https://doi.org/10.1145/2746539.2746543
https://doi.org/10.1016/0022-0000(93)90044-W
https://www.sciencedirect.com/science/article/pii/002200009390044W

[BM84] Manuel Blum and Silvio Micali. “How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits”. In: SIAM Journal on Computing 13.4 (1984),
pp. 850–864. doi: 10.1137/0213053.

[BRSV17] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. “Average-
case fine-grained hardness”. In: Proceedings of Symposium on Theory of Computing
(STOC) (2017), pp. 483–496. doi: 10.1145/3055399.3055466.

[BSS20] Mitali Bafna, Srikanth Srinivasan, and Madhu Sudan. “Local decoding and testing of
polynomials over grids”. In: Random Structures & Algorithms 57 (3 2020), pp. 658–
694. issn: 1042-9832. doi: 10.1002/rsa.20933.

[BT06] Andrej Bogdanov and Luca Trevisan. “Average-Case Complexity”. In: Foundations
and Trends in Theoretical Computer Science 2.1 (2006). doi: 10.1561/0400000004.

[CKL18] Diptarka Chakraborty, Lior Kamma, and Kasper Green Larsen. “Tight cell probe
bounds for succinct Boolean matrix-vector multiplication”. In: Proceedings of Sym-
posium on Theory of Computing (STOC) (2018), pp. 1297–1306. doi: 10.1145/

3188745.3188830. url: https://dl.acm.org/doi/10.1145/3188745.3188830.

[CKLM18] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay.
“Simulation beats richness: new data-structure lower bounds”. In: Proceedings of
Symposium on Theory of Computing (STOC) (2018), pp. 1013–1020. doi: 10.1145/
3188745.3188874.

[CPS99] Jin-Yi Cai, A. Pavan, and D. Sivakumar. “On the Hardness of Permanent”. In:
Proceedings of Symposium on Theoretical Aspects of Computer Science (STACS)
(1999), pp. 90–99. doi: 10.1007/3-540-49116-3_8. url: https://link.springer.
com/chapter/10.1007/3-540-49116-3_8.

[DLW20] Mina Dalirrooyfard, Andrea Lincoln, and Virginia Vassilevska Williams. “New Tech-
niques for Proving Fine-Grained Average-Case Hardness”. In: Proceedings of Sym-
posium on Foundations of Computer Science (FOCS) (2020), pp. 774–785. doi: 10.
1109/FOCS46700.2020.00077.

[FL92] Uriel Feige and Carsten Lund. “On the hardness of computing the permanent of
random matrices (extended abstract)”. In: Proceedings of Symposium on Theory of
Computing (STOC) (1992), pp. 643–654. doi: 10.1145/129712.129775.

[GKZ08] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. “List-decoding reed-
muller codes over small fields”. In: Proceedings of Symposium on Theory of Comput-
ing (STOC) (2008), pp. 265–274. doi: 10.1145/1374376.1374417.

[GL89] O. Goldreich and L. A. Levin. “A hard-core predicate for all one-way functions”. In:
Proceedings of Symposium on Theory of Computing (STOC) (1989), pp. 25–32. doi:
10.1145/73007.73010.

[GLRSW91] Peter Gemmell, Richard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigder-
son. “Self-testing/correcting for polynomials and for approximate functions”. In: Pro-
ceedings of Symposium on Theory of Computing (STOC) (1991), pp. 33–42. doi:
10.1145/103418.103429.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. “On Yao’s XOR-Lemma”. In:
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Ran-
domness and Computation (2011), pp. 273–301. doi: 10.1007/978-3-642-22670-
0_23.

32

https://doi.org/10.1137/0213053
https://doi.org/10.1145/3055399.3055466
https://doi.org/10.1002/rsa.20933
https://doi.org/10.1561/0400000004
https://doi.org/10.1145/3188745.3188830
https://doi.org/10.1145/3188745.3188830
https://dl.acm.org/doi/10.1145/3188745.3188830
https://doi.org/10.1145/3188745.3188874
https://doi.org/10.1145/3188745.3188874
https://doi.org/10.1007/3-540-49116-3_8
https://link.springer.com/chapter/10.1007/3-540-49116-3_8
https://link.springer.com/chapter/10.1007/3-540-49116-3_8
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1109/FOCS46700.2020.00077
https://doi.org/10.1145/129712.129775
https://doi.org/10.1145/1374376.1374417
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/103418.103429
https://doi.org/10.1007/978-3-642-22670-0_23
https://doi.org/10.1007/978-3-642-22670-0_23

[Gol20] Oded Goldreich. “On Counting t-Cliques Mod 2”. In: ECCC TR20-104 (2020).

[GR18] Oded Goldreich and Guy Rothblum. “Counting t-Cliques: Worst-Case to Average-
Case Reductions and Direct Interactive Proof Systems”. In: Proceedings of Sympo-
sium on Foundations of Computer Science (FOCS) (2018). doi: 10.1109/FOCS.
2018.00017.

[GRS00] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. “Learning Polynomials with
Queries: The Highly Noisy Case”. In: SIAM Journal on Discrete Mathematics 13 (4
2000), pp. 535–570. issn: 0895-4801. doi: 10.1137/S0895480198344540.

[GS92] Peter Gemmell and Madhu Sudan. “Highly resilient correctors for polynomials”.
In: Information Processing Letters 43 (4 1992), pp. 169–174. issn: 00200190. doi:
10.1016/0020-0190(92)90195-2.

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. “Unifying and Strengthening Hardness for Dynamic Problems via the
Online Matrix-Vector Multiplication Conjecture”. In: Proceedings of Symposium on
Theory of Computing (STOC) (2015), pp. 21–30. doi: 10.1145/2746539.2746609.
url: https://dl.acm.org/doi/10.1145/2746539.2746609.

[HLS22] Monika Henzinger, Andrea Lincoln, and Barna Saha. “The Complexity of Average-
Case Dynamic Subgraph Counting”. In: Proceedings of Symposium on Discrete Al-
gorithms (SODA) (2022), pp. 459–498. doi: 10.1137/1.9781611977073.23.

[HS21] Shuichi Hirahara and Nobutaka Shimizu. “Nearly Optimal Average-Case Complex-
ity of Counting Bicliques Under SETH”. In: Proceedings of Symposium on Discrete
Algorithms (SODA) (2021), pp. 2346–2365. doi: 10.1137/1.9781611976465.140.

[HVV06] Alexander Healy, Salil Vadhan, and Emanuele Viola. “Using Nondeterminism to
Amplify Hardness”. In: SIAM Journal on Computing 35 (4 2006), pp. 903–931. issn:
0097-5397. doi: 10.1137/S0097539705447281. url: https://epubs.siam.org/
doi/abs/10.1137/S0097539705447281?mobileUi=0.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. “Uni-
form Direct Product Theorems: Simplified, Optimized, and Derandomized”. In: SIAM
J. Comput. 39.4 (2010), pp. 1637–1665. doi: 10.1137/080734030.

[Imp95] R. Impagliazzo. “Hard-core distributions for somewhat hard problems”. In: Pro-
ceedings of Foundations of Computer Science (FOCS) (1995), pp. 538–545. doi: 10.
1109/SFCS.1995.492584. url: https://ieeexplore.ieee.org/document/492584.

[IW01] Russell Impagliazzo and Avi Wigderson. “Randomness vs Time: Derandomization
under a Uniform Assumption”. In: J. Comput. Syst. Sci. 63.4 (2001), pp. 672–688.
doi: 10.1006/jcss.2001.1780.

[IW97] Russell Impagliazzo and Avi Wigderson. “¡i¿P = BPP¡/i¿ if ¡i¿E¡/i¿ requires expo-
nential circuits”. In: Proceedings of Symposium on Theory of Computing (STOC)
(1997), pp. 220–229. doi: 10.1145/258533.258590. url: https://dl.acm.org/
doi/10.1145/258533.258590.

[JX22] Ce Jin and Yinzhan Xu. “Tight Dynamic Problem Lower Bounds from Generalized
BMM and OMv”. In: arXiv:2202.11250 (to appear at STOC22) (2022). url: https:
//arxiv.org/abs/2202.11250.

33

https://doi.org/10.1109/FOCS.2018.00017
https://doi.org/10.1109/FOCS.2018.00017
https://doi.org/10.1137/S0895480198344540
https://doi.org/10.1016/0020-0190(92)90195-2
https://doi.org/10.1145/2746539.2746609
https://dl.acm.org/doi/10.1145/2746539.2746609
https://doi.org/10.1137/1.9781611977073.23
https://doi.org/10.1137/1.9781611976465.140
https://doi.org/10.1137/S0097539705447281
https://epubs.siam.org/doi/abs/10.1137/S0097539705447281?mobileUi=0
https://epubs.siam.org/doi/abs/10.1137/S0097539705447281?mobileUi=0
https://doi.org/10.1137/080734030
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1109/SFCS.1995.492584
https://ieeexplore.ieee.org/document/492584
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1145/258533.258590
https://dl.acm.org/doi/10.1145/258533.258590
https://dl.acm.org/doi/10.1145/258533.258590
https://arxiv.org/abs/2202.11250
https://arxiv.org/abs/2202.11250

[KK13] Phokion G. Kolaitis and Swastik Kopparty. “Random graphs and the parity quanti-
fier”. In: Journal of the ACM 60 (5 2013), pp. 1–34. issn: 0004-5411. doi: 10.1145/
2528402.

[KLP12] Tali Kaufman, Shachar Lovett, and Ely Porat. “Weight Distribution and List-Decoding
Size of Reed-Muller Codes”. In: IEEE Trans. Inf. Theory 58.5 (2012), pp. 2689–2696.
doi: 10.1109/TIT.2012.2184841.

[Lip91] Richard Lipton. “New directions in testing”. In: DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science 2 (1991), pp. 191–202.

[LLW19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. “Public-Key Cryp-
tography in the Fine-Grained Setting”. In: Proceedings of Annual International Cryp-
tology Conference (CRYPTO) (2019), pp. 605–635. doi: 10.1007/978- 3- 030-

26954-8_20.

[LW17] Kasper Green Larsen and Ryan Williams. “Faster Online Matrix-Vector Multiplica-
tion”. In: Proceedings of Symposium on Discrete Algorithms (SODA) (2017), pp. 2182–
2189. doi: 10.1137/1.9781611974782.142. url: https://epubs.siam.org/doi/
10.1137/1.9781611974782.142.

[LWW18] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. “Tight Hard-
ness for Shortest Cycles and Paths in Sparse Graphs”. In: Proceedings of Sympo-
sium on Discrete Algorithms (SODA) (2018), pp. 1236–1252. doi: 10.1137/1.

9781611975031.80.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs randomness”. In: Journal of Com-
puter and System Sciences 49.2 (1994), pp. 149–167.

[ODo04] Ryan O’Donnell. “Hardness amplification within NP”. In: J. Comput. Syst. Sci. 69.1
(2004), pp. 68–94. doi: 10.1016/j.jcss.2004.01.001.

[RTTV08] Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. “Dense Subsets
of Pseudorandom Sets”. In: Proceedings of Symposium on Foundations of Computer
Science (FOCS) (2008), pp. 76–85. doi: 10.1109/FOCS.2008.38. url: https:

//ieeexplore.ieee.org/document/4690942.

[SS93] A. W. Schrift and Adi Shamir. “Universal Tests for Nonuniform Distributions”. In:
J. Cryptol. 6.3 (1993), pp. 119–133. doi: 10.1007/BF00198461.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom Generators with-
out the XOR Lemma”. In: Journal of Computer and System Sciences 62 (2 2001),
pp. 236–266. issn: 00220000. doi: 10.1006/jcss.2000.1730.

[Sud97] Madhu Sudan. “Decoding of Reed Solomon Codes beyond the Error-Correction
Bound”. In: Journal of Complexity 13 (1 1997), pp. 180–193. issn: 0885064X. doi:
10.1006/jcom.1997.0439.

[Tre03] Luca Trevisan. “List-Decoding Using The XOR Lemma”. In: Proceedings of the
Symposium on Foundations of Computer Science (FOCS). 2003, pp. 126–135. doi:
10.1109/SFCS.2003.1238187.

[Tre05] Luca Trevisan. “On uniform amplification of hardness in NP”. In: Proceedings of
the Symposium on Theory of Computing (STOC). 2005, pp. 31–38. doi: 10.1145/
1060590.1060595.

34

https://doi.org/10.1145/2528402
https://doi.org/10.1145/2528402
https://doi.org/10.1109/TIT.2012.2184841
https://doi.org/10.1007/978-3-030-26954-8_20
https://doi.org/10.1007/978-3-030-26954-8_20
https://doi.org/10.1137/1.9781611974782.142
https://epubs.siam.org/doi/10.1137/1.9781611974782.142
https://epubs.siam.org/doi/10.1137/1.9781611974782.142
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1016/j.jcss.2004.01.001
https://doi.org/10.1109/FOCS.2008.38
https://ieeexplore.ieee.org/document/4690942
https://ieeexplore.ieee.org/document/4690942
https://doi.org/10.1007/BF00198461
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1109/SFCS.2003.1238187
https://doi.org/10.1145/1060590.1060595
https://doi.org/10.1145/1060590.1060595

[TV07] Luca Trevisan and Salil P. Vadhan. “Pseudorandomness and Average-Case Complex-
ity Via Uniform Reductions”. In: Computational Complexity 16.4 (2007), pp. 331–
364. doi: 10.1007/s00037-007-0233-x.

[Yao82] Andrew Chi-Chih Yao. “Theory and Application of Trapdoor Functions”. In: In Pro-
ceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS) (1982), pp. 80–91.

A Balancedness of TriParityn

Recall that TriParityn : {0, 1}3n2 → {0, 1} is the number of triangles modulo 2 contained in the
tripartite graph given by x (see (1) for definition). In this section, we prove that TriParity(x) for
x ∼ {0, 1}3n2

is nearly balanced using the technique of Kolaitis and Kopparty [KK13], who proved
that the number of arbitrary fixed subgraphs in an Erdős–Rényi random graph G(n, p) with any
constant p > 0 modulo a fixed constant is nearly balanced. We first recall the following result that
is a special case of [KK13, Lemma 3.3].

Lemma A.1. Let Z1, . . . , Zm ∈ {0, 1} be i.i.d. random variables such that E[Z1] = p ∈ (0, 1).
Consider the random variable Q(Z1, . . . , Zm), where Q ∈ F2[z1, . . . , zm] is a multivariate degree-d
polynomial written as

Q(z1, . . . , zm) =
∑
F∈F

∏
i∈F

zi

for F ⊆
([m]
d

)
.

Suppose that there exists E = {E1, . . . , Er} ⊆ F satisfying (i) Ei ∩Ej = ∅ for all i 6= j, and (ii)
|F ∩ (∪i∈[r]Ei)| < d for every F ∈ F \ E. Then,

∣∣E [(−1)TriParityn(x)
]∣∣ ≤ 2−Ω(r), where the hidden

constant in Ω(·) depends on p and d.

Proposition A.2. For x ∼ {0, 1}3n2
, TriParityn(x) = 1 with probability 1

2 ± 2−Ω(n).

Proof. We apply Lemma A.1. Note that TriParityn(x) can be written as the degree-3 polynomial
over i.i.d. binary random variables (xi)i∈[3n2]. Specifically, write

TriParityn(x) =
∑

u∈U,v∈V,w∈W
xuvxvwxwu =

∑
F∈F

∏
e∈F

xe,

where U, V,W are the partite vertex set with |U | = |V | = |W | = n and F = {{uv, vw,wu} : u ∈
U, v ∈ V,w ∈W} is the set of all possible triangles (here, we identify uv with the edge {u, v}). Write
U = {u1, . . . , un}, V = {v1, . . . , vn}, and W = {w1, . . . , wn}. Let E = {{uivi, viwi, wiui} : i ∈ [n]}
be the set of n vertex-disjoint triangles. Note that for any disjoint E,E′ ∈ E , E ∩ E′ = ∅ and for
any F ∈ F \ E , |F ∩

⋃
E∈E E| ≤ 2. Therefore, from Lemma A.1, we have

|Pr[TriParityn(x) = 1]− Pr[TriParityn(x) = 0]| =
∣∣∣E [(−1)TriParityn(x)

]∣∣∣ ≤ 2−Ω(n).

35

https://doi.org/10.1007/s00037-007-0233-x

B Local Decoding over Grids

In this section, we prove Theorem 8.1 using the following local decoder of RMn,d,Fq ([BSS20, Theo-
rem 5.4]) of Bafna, Srinivasan, and Sudan. Note that we can obtain the worst-case-to-average-case
reduction for the parity of t-clique subgraphs over G(n, 1/2) of [BBB21; Gol20] by the same way.

Lemma B.1. For a finite field F of characteristic q, let f : {0, 1}n → F be a n-variate degree-d
polynomial. Then, there are an integer k = k(d, q) ≤ qd and an O(

(
2k
k

)
+ n)-time randomized

oracle algorithm AO that makes at most
(

2k
k

)
nonadaptive queries and, if the oracle O satisfies

Prx∼{0,1}n [O(x) = f(x)] ≥ 1 − 1/
(

3×
(

2k
k

))
, then Pr[AO(x) = f(x)] ≥ 2/3 for any x ∈ {0, 1}n

where the probability is taken for the randomness of AO.

Proof Sketch. For given input x ∈ {0, 1}n, the algorithm AO runs as follows: Let k = k(q, d) be
the smallest power of q that is strictly greater than d. Let h : [n] → [2k] be a uniform random
map (each h(j) is independently chosen uniformly at random from [2k]). For y ∈ {0, 1}2k, define

z = z(y) ∈ {0, 1}n by zi = yh(i)⊕ xj . Then, output
(
d+k
k

)−1∑
y∈B O(z(y)) (the operations are over

F), where B ⊆ {0, 1}2k is the set of binary vector y that is balanced (i.e., exactly k elements of y is
one) and the last k− d bits are zero. Note that AO makes at most |B| ≤

(
2k
k

)
nonadaptive queries.

To see the correctness, consider the function g(y1, . . . , y2k) := f(z1, . . . , zn). Note that g(y) =

f(z) = O(z) with probability 1 −
(

3×
(

2k
k

))
for each y ∈ B (over the choice of h) since h is

a uniformly random and y is balanced. Therefore, by the union bound, the output AO(x) is

equal to
(
d+k
k

)−1∑
y∈B g(y) with probability at least 2/3. We refer the proof of the fact that(

d+k
k

)−1∑
y∈B g(y) = g(0) = f(x) to the proof of [BSS20, Lemma 5.1].

Theorem B.2 (Reminder of Theorem 8.1). There exists an absolute constant ε0 > 0 satisfying the
following: If there exists a T (n)-time algorithm A satisfying

Pr
x∼{0,1}3n2

[A(x) = TriParityn(x)] ≥ 1− ε0

for all n, then, there exists an O(T (n))-time randomized algorithm A′ such that, for any n and any
input x ∈ {0, 1}3n2

,

Pr
A′

[A′(x) = TriParityn(x)] ≥ 2/3.

Proof. The oracle algorithm obtained by applying Lemma B.1 with f being TriParityn and O being
the average-case solver A is the worst-case solver.

36
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

