Hardness Self-Amplification from Feasible Hard-Core Sets

Shuichi Hirahara * and Nobutaka Shimizu †

July 16, 2022

Abstract

We consider the question of hardness self-amplification: Given a Boolean function \(f \) that is hard to compute on a \(o(1) \)-fraction of inputs drawn from some distribution, can we prove that \(f \) is hard to compute on a \(\left(\frac{1}{2} - o(1) \right) \)-fraction of inputs drawn from the same distribution? We prove hardness self-amplification results for natural distributional problems studied in fine-grained average-case complexity, such as the problem of counting the number of the triangles modulo 2 in a random tripartite graph and the online vector-matrix-vector multiplication problem over \(\mathbb{F}_2 \). More generally, we show that any problem that can be decomposed into “computationally disjoint” subsets of inputs admits hardness self-amplification. This is proved by generalizing the security proof of the Nisan–Wigderson pseudorandom generator, in which case nearly disjoint subsets of inputs are considered.

At the core of our proof techniques is a new notion of feasible hard-core set, which generalizes Impagliazzo’s hard-core set [Impagliazzo, FOCS’95]. We show that any weak average-case hard function \(f \) has a feasible hard-core set \(H \): any small \(H \)-oracle circuit (that is allowed to make queries \(q \) to \(H \) if \(f(q) \) can be computed without the oracle) fails to compute \(f \) on a \(\left(\frac{1}{2} - o(1) \right) \)-fraction of inputs in \(H \).

*National Institute of Informatics. Email: s.hirahara@nii.ac.jp
†Tokyo Institute of Technology Email: shimizu.n.ah@titech.ac.jp
Contents

1 Introduction 1
 1.1 Our Results .. 1
 1.2 A General Framework of Hardness (Self-)Amplification 4

2 Proof Overview 6
 2.1 A Review of Derandomized Hardness Amplification 6
 2.2 An Extension to Computational Designs 8
 2.3 The Existence of a Feasible Hard-core Set 10
 2.4 Conclusion and Open Problems 11
 2.5 Organization .. 11

3 Related Work 12
 3.1 Relation to Coding Theory 12
 3.2 Subgraph Counting on Random Graphs 12
 3.3 Fine-grained Average-case Complexity 13
 3.4 Other Natural Problems 13

4 Preliminaries 14

5 Feasible Hard-core Set 14
 5.1 Feasible Hard-core Lemma 15
 5.2 Does Nisan’s Proof Work? 17

6 Nearly Disjoint Generator and Computational Design 18

7 Hardness Amplification 20
 7.1 Information-Theoretical Hardness of $\oplus_k \circ f^k_M \circ NW_S$ 20
 7.2 Next-Bit Predictor 21
 7.3 Putting All Together 22

8 Triangle Parity on Random Tripartite Graph 23
 8.1 Can We Extend to k-Clique Counting? 25

9 Online Vector-Matrix-Vector Multiplication Problem 25
 9.1 Framework ... 25
 9.2 Hardness Amplification for Static Data Structure Problems ... 25
 9.3 Hardness Amplification for OuMv 27
 9.4 Hardness Amplification for OuMv$_k$ over \mathbb{F}_2 29

A Balancedness of TriParity$_n$ 35

B Local Decoding over Grids 36
1 Introduction

Average-case complexity quantifies the hardness of a function in terms of the difficulty of evaluating it on a certain fraction of inputs. Depending on the fraction of hard inputs, we obtain two different notions, weak average-case hardness and strong average-case hardness: A function \(f \) is said to be weakly average-case hard if any efficient algorithm fails to solve \(f \) on a \(\delta \)-fraction of inputs, where \(\delta > 0 \) is a small parameter. A Boolean function \(f \) is said to be strongly average-case hard if any efficient algorithm fails to solve \(f \) on a \((1/2 - \epsilon)\)-fraction of inputs for a small \(\epsilon > 0 \). The average-case complexity of a function depends greatly on whether we use strong or weak average-case notions, as any biased function cannot be strongly average-case hard.\(^1\) The theory of average-case complexity [BT06] would become very robust if there is a general proof technique that connects weak average-case hardness of \(f \) and strong average-case hardness of \(f \), ideally for natural problems \(f \) of practical interest.

There are general proof techniques, called hardness amplification, that transform any weakly average-case hard function \(f \) into a strongly average-case hard function \(g \). For example, Yao’s XOR lemma [Yao82; GNW11] states that if a Boolean function \(f \) cannot be computed by small circuits on a \(\delta \)-fraction of inputs, then the function \(g := f^\otimes k \) defined as \(f^\otimes k(x_1, \ldots, x_k) := f(x_1) \oplus \cdots \oplus f(x_k) \) cannot be computed by small circuits on a \((1/2 - \epsilon) \)-fraction of inputs for small parameters \(\delta \) and \(\epsilon > 0 \). Hardness amplification theorems have had fundamental impacts on the theory of computation, especially on cryptography [Yao82] and derandomization [Imp95; IW97]. The proof techniques developed in these lines of research are geared to obtaining better parameters (e.g., trade-offs between the parameters \(k, \epsilon, \) and \(\delta \) [GNW11]), a small input length of \(g \) [Imp95; IW97], small advice complexity [IJKW10], the monotonicity of \(g \) with respect to \(f \) [ODo04; Tre05; HVV06]); consequently, hardness-amplified functions \(g \) tend to be highly artificial.

In this paper, we broaden the applicability of the proof techniques of hardness amplification, by developing a general framework that enables us to show hardness amplification for natural problems \(f \) and \(g \) over natural distributions over instances of \(f \) and \(g \). Our framework, in fact, allows us to show hardness self-amplification: The problem \(f \) and the hardness-amplified problem \(g \) (as well as the input distributions) are identical. We prove that several natural problems studied in fine-grained complexity admit hardness self-amplification.

1.1 Our Results

Before presenting our general framework, we provide examples of hardness self-amplification results that follow from the framework, while reviewing literature. For a finite set \(S \), we write \(x \sim S \) to denote that \(x \) is sampled uniformly at random from \(S \). Throughout this paper, we use circuits as a computational model.\(^2\)

Parity of Triangles (Shown in Section 8). We consider the problem of counting the number of triangles modulo 2 in a random tripartite graph. A graph \(G = (V_1 \cup V_2 \cup V_3, E) \) is tripartite if every edge \(e \in E \) lies between \(V_i \) and \(V_j \) for \(i \neq j \). A triple of vertices \(v_1, v_2, v_3 \) forms a partite triangle in \(G \) if \(\{v_i, v_j\} \in E \) for every \(i \neq j \) and \(v_i \in V_i \) for every \(i \in [3] \).\(^3\) Suppose \(n = |V_1| = |V_2| = |V_3| \). For every \(n \in \mathbb{N} \), let \(\text{TriParity}_n : \{0,1\}^{3n^2} \rightarrow \{0,1\} \) be the parity of the number of partite triangles.

\(^1\)We say that a function \(f : \{0,1\}^n \rightarrow \{0,1\} \) is biased if \(\Pr_{x \sim \{0,1\}^n}[f(x) = 1] \neq \frac{1}{2} \). Otherwise, \(f \) is said to be nearly balanced.

\(^2\)It is important for our results that a computational model is non-uniform. Whether our results can be extended to uniform computational models is an important open question.

\(^3\)We write \([m] := \{1, \ldots, m\} \) for \(m \in \mathbb{N} \).
the following error-tolerant worst-case-to-average-case reduction for TriParity where \(\delta, \epsilon > O \)
then there is a circuit of size

\[
\]
\(k \)
contained in the input graph, formally defined as

\[
\text{Theorem 1.1.}
\]
\[
\text{cliques modulo 2: If there is a}
\]
\(T \)
indicators. It is not hard to observe that
\(f \)
that counts
\(k \)
that computing
\(k \)
the parity of
\(k \)
the worst-case-to-average-case reductions; for example, the reduction
\(s \)
where we identify the input
\(x \in \{0,1\}^{3n^2} \)
with the tripartite graph by regarding
\(x \)
as the edge indicator. It is not hard to observe that
\(\text{TriParity}_n \)
can be computed by an \(O(n^\omega) \)
time algorithm where \(\omega < 2.37286 \) is the square matrix multiplication exponent [AW21]. The running time of this algorithm is deemed to be optimal: The \(k \)-clique hypothesis [LWW18] asserts that detecting a \(k \)-clique in a given \(n \)-vertex graph requires \(n^{\omega k/3 - o(1)} \)
time in worst-case. This hypothesis implies that computing \(\text{TriParity}_n \)
requires \(n^{\omega - o(1)} \)
time in worst-case, as the \(k \)-clique subgraph detection problem can be efficiently reduced to the problem of computing the parity of the number of \(k \)-clique subgraphs in the worst case (see, e.g., [BBB21, Lemma A.1]). We consider the average-case complexity of computing \(\text{TriParity}_n(x) \)
where the input
\(x \sim \{0,1\}^{3n^2} \)
is drawn uniformly at random. In other words, the input is a random tripartite graph where all possible edges occur with probability
\(1/2 \)

Worst-case-to-average-case reductions for subgraph counting problems on Erdős–Rényi random graphs and its variants have recently attracted much attention [GR18; BBB21; Gol20; DLW20; HS21]. Boix-Adserà, Brennan, and Bresler [BBB21] showed that if there is a \(T(n) \)-time algorithm that counts \(k \)-clique subgraphs in a \((1 - 1/\text{polylog}(n))\)-fraction of Erdős–Rényi random graphs, then there is a \(T(n) \cdot \text{polylog}(n) \)-time randomized algorithm that counts \(k \)-cliques in every \(n \)-vertex graph. Goldreich [Gol20] presented a simplified reduction of [BBB21] in the case of counting \(k \)-cliques modulo 2: If there is a \(T(n) \)-time algorithm that computes the parity of \(k \)-cliques in a \((1 - 2^{-k})\)-fraction of graphs, then there is a randomized \(O(T(n)) \)-time algorithm that computes the parity of \(k \)-cliques in every graph. An important open question, raised in [BBB21; Gol20], is to improve the error tolerance of the worst-case-to-average-case reductions; for example, the reduction of [Gol20] can tolerate an error \(2^{-k^2} \) of an average-case solver.

Why is it difficult to make the reductions error-tolerant? Goldreich [Gol20] noted that it is non-trivial to prove even the fact that the parity of the number of \(k \)-cliques in an Erdős–Rényi random graph is nearly balanced. Although this fact follows from a general result of Kolaitis and Kopparty [KK13], any connection from worst-case hardness to strong average-case hardness for a function \(f \) must prove the property of being balanced implicitly: If a function \(f \) is not nearly balanced (i.e., the probability that \(f(x) = 1 \) over a random input \(x \) is not close to 1/2), then a trivial algorithm that always outputs either 0 or 1 succeeds with probability \(\gg 1/2 \), which can be combined with an error-tolerant worst-case-to-average-case reduction for \(f \). Thus, any worst-case-to-average-case reduction for \(f \) that can tolerate an error \(\approx 1/2 \) can be seen as a “computational proof” of the fact that the function \(f \) is nearly balanced. The fact that \(\text{TriParity}_n(x) \) is 1 with probability \(1/2 \pm 2^{-\Omega(n)} \) over a uniformly random \(x \) follows from the “statistical” result of [KK13].

As an application of our general framework, we prove that \(\text{TriParity}_n \) admits hardness self-amplification: If there is a circuit of size \(s \) that computes \(\text{TriParity}_n \) on a \((1/2 + \delta)\)-fraction of inputs, then there is a circuit of size \(O(s + n^2) \) that computes \(\text{TriParity}_n \) on a \((1 - \epsilon)\)-fraction of inputs, where \(\delta, \epsilon > 0 \) are arbitrary small constants. By combining this with [BBB21; Gol20], we obtain the following error-tolerant worst-case-to-average-case reduction for \(\text{TriParity}_n \).

Theorem 1.1. For any constant \(\delta > 0 \), if there exists a circuit \(C \) of size \(s \) satisfying

\[
\Pr_{x \sim \{0,1\}^{3n^2}} [C(x) = \text{TriParity}_n(x)] \geq \frac{1}{2} + \delta,
\]

\footnote{For completeness, we present a proof in Appendix A.}
then there exists a randomized circuit C' of size $O(n^2 + s)$ satisfying

$$\Pr_{C'}[C'(x) = \text{TriParity}_n(x)] \geq \frac{2}{3}$$

for every $x \in \{0, 1\}^{3n^2}$.

Note that the success probability $1/2 + \delta$ in Theorem 1.1 is nearly optimal since a random guess achieves the success probability $1/2$. In other words, Theorem 1.1 indicates that one cannot do better than the random guess unless the parity of triangle subgraphs can be efficiently solved in the worst case. The success probability $2/3$ in the conclusion of Theorem 1.1 can be amplified to any constant less than 1, as the success probability of any randomized algorithm can be easily amplified by repetition.

Online Vector-Matrix-Vector Problem (Shown in Section 9).

In the Online Vector-Matrix-Vector Multiplication (OuMv) introduced by Henzinger, Krinninger, Nanongkai, and Saranurak [HKNS15], we are initially given a matrix M and each query consists of a pair of vectors u_i, v_i. Our task is to compute $u_i^\top M v_i$ one by one, where the multiplications are over Boolean semiring. It is conjectured that solving OuMv for n queries requires $n^{3-o(1)}$ time. Henzinger et al. [HKNS15] established fine-grained complexity of several dynamic problems based on this conjecture. OuMv has been well studied in the context of fine-grained complexity of dynamic problems. Several lower bounds for OuMv and related problems have been known for cell-probe model [CKLM18; CKL18; LW17] in which the computational costs are measured by the size of the data structure and the number of cells probed by the algorithm answering a given query (in other words, we do not care the cost of the time for constructing the data structure and for answering the query).

Here, we focus on OuMv over F_2 on a uniformly random matrix and vectors. There is a randomized reduction from OuMv over Boolean semiring to OuMv over F_2, which exploits the well-known isolation technique [HLS22, Lemma 2.1]. We identify the OuMv problem over F_2 with the function $\text{OuMv}_n: \{0, 1\}^{n \times n} \times \{0, 1\}^{2n} \rightarrow \{0, 1\}$ defined as

$$\text{OuMv}_n(M, u, v) = u^\top M v,$$

(2)

where the operations are over F_2. Here, the matrix M is given at the preprocess stage and a pair of vectors u, v are given as a query.

Henzinger, Lincoln, and Saha [HLS22] presented a uniform worst-case-to-average-case reduction for OuMv over F_2: If an average-case data structure computes OuMv_n for $(1-\epsilon)$-fraction of inputs, then there is a randomized worst-case data structure that computes OuMv_n with probability $1-8\epsilon$ for all inputs.

Very recently, Asadi, Golovnev, Gur, and Shinkar [AGGS22] developed a different framework based on additive combinatorics and proved that the Online Matrix-Vector Multiplication problem (OMv), which is closely related to OuMv, admits an error-tolerant worst-case-to-average-case reduction for uniform computational model. Their framework is applicable to multi-output problems, but may not be applicable to decision problems, such as OuMv.\footnote{The framework of [AGGS22] relies on the fact that OMv admits an efficient verifier that checks the correctness of the computation. Such a verifier can be constructed for multi-output problems, such as the matrix multiplication and OMv.} Our framework is applicable to decision problems and enables us to present such a reduction for OuMv in a nonuniform model of circuits.

Specifically, we consider the following nonuniform model for static data structure problems: Let $\mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$ be the class of circuits consists of preprocess part of size s_{pre}, data structure of length s_{ans}.\footnote{The framework of [AGGS22] relies on the fact that OMv admits an efficient verifier that checks the correctness of the computation. Such a verifier can be constructed for multi-output problems, such as the matrix multiplication and OMv.}
For any constant \(\delta > 0 \), if there exists a circuit \(C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}}) \) satisfying
\[
\Pr_{(M, u, v) \sim \{0,1\}^{n^2 + 2n}}[C(M; u, v) = \text{OuMv}_n(M, u, v)] \geq 1/2 + \delta,
\]
then there exists a randomized circuit \(C' \in \mathcal{C}(O(s_{\text{pre}}), O(\ell), O(n + s_{\text{ans}})) \) satisfying
\[
\Pr_{C'}[[C'(M; u, v) = \text{OuMv}_n(M, u, v)] \geq 2/3
\]
for every \((M, u, v) \in \{0,1\}^{n \times n} \times \{0,1\}^{2n}\).

Generalized OuMv (Shown in Section 9). Jin and Xu [JX22] introduced the OuMv hypothesis, which is an extension of the OuMv hypothesis to rank-\(k \) tensors. In OuMv\(_k\), we are given a rank-\(k \) tensor \(M \in \{0,1\}^{n^k} \) at the preprocessing stage. Each query consists of \(k \) vectors \(x_1, \ldots, x_k \in \{0,1\}^k \). Our task is to compute
\[
\text{OuMv}_n^{(k)}(M, x_1, \ldots, x_k) := \sum_{i_1 \in [n], \ldots, i_k \in [n]} M(i_1, \ldots, i_k)x_1(i_1)\cdots x_k(i_k),
\]
where the operations are over \(\mathbb{F}_2 \). Note that \(\text{OuMv}_n = \text{OuMv}_n^{(k)} \) for \(k = 2 \). Jin and Xu [JX22] considered OuMv\(_k\) over Boolean semiring and presented various lower bounds based on the conjecture that OuMv\(_k\) requires \(n^{\frac{1}{k} + o(1)} \) time.

In this paper, we consider OuMv\(_k\) over \(\mathbb{F}_2 \). It is easy to see that OuMv\(_k\) over Boolean semiring can be randomizedly reduced to OuMv\(_k\) over \(\mathbb{F}_2 \) by the usual isolating technique as the special case of \(k = 2 \) is shown in [HLS22, Lemma 2.1]. Our technique for proving Theorem 1.2 can be extended to derive the following result.

Theorem 1.3. For any constant \(\delta > 0 \), if there exists a circuit \(C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}}) \) satisfying
\[
\Pr_{(M, u_1, \ldots, u_k) \sim \{0,1\}^{n^k + kn}}[C(M; u_1, \ldots, u_k) = \text{OuMv}_n^{(k)}(M, u_1, \ldots, u_k)] \geq 1/2 + \delta,
\]
then there exists a randomized circuit \(C' \in \mathcal{C}(O(s_{\text{pre}}), O(\ell), O(n^{k-1} + s_{\text{ans}})) \) satisfying
\[
\Pr_{C'}[[C'(M; u_1, \ldots, u_k) = \text{OuMv}_n^{(k)}(M, u_1, \ldots, u_k)] \geq 2/3
\]
for every \((M, u_1, \ldots, u_k) \in \{0,1\}^{n^k} \times \{0,1\}^{kn}\).

1.2 A General Framework of Hardness (Self-)Amplification

More generally, we show that any problem that can be written as the sum of “computationally disjoint” subsets of inputs admits hardness self-amplification. Specifically, for an input \(x \in \{0,1\}^n \) and a subset \(S \subseteq [n] \), let \(x|_S \in \{0,1\}^{|S|} \) denote the string obtained by concatenating all the bits of \(x \) indexed by \(S \). Let \(g: \{0,1\}^n \to \{0,1\} \) be a function that can be written as
\[
g(x) = \bigoplus_{i=1}^{k} f(x|_{S_i})
\]
for some function \(f: \{0,1\}^\ell \to \{0,1\} \) and for some subsets \(S_1, \ldots, S_k \) of size \(\ell \). For a size parameter \(s \in \mathbb{N} \), we say that a family of subsets \(S_1, \ldots, S_k \) is a \(s \)-computational design on \(f \) if for every distinct pair \(i \neq j \in [k] \) and for every \(x|_{S_i \setminus S_j} \in \{0,1\}^{|S_i \setminus S_j|} \), there exists a circuit of size \(s \) that computes the function \(f \) restricted by \(x|_{S_i \setminus S_j} \), i.e., one that maps \(x|_{S_i \cap S_j} \) to \(f(x) \). Our general framework of hardness amplification can be stated as follows.
Theorem 1.4 (see also Theorem 7.1). Assume that \(g \) can be written as (4) for some \(s' \)-computational design \(S_1, \ldots, S_k \) on \(f \) such that there are at least \(k' \) disjoint subsets in \(S_1, \ldots, S_k \). If any circuit of size \(s \) fails to compute \(f \) on a \(\delta \)-fraction of inputs, then any circuit of size \(s' \) fails to compute \(g \) on a \((1/2 - \epsilon)\)-fraction of inputs, where

\[
\epsilon = \exp\left(-\delta k'\right) \quad \text{and} \quad s = s' \cdot k^{O(k^2/\epsilon^2)}.
\]

This result generalizes Yao’s XOR lemma, which corresponds to the case when \(S_1, \ldots, S_k \) are disjoint subsets. Our hardness amplification theorem generalizes Yao’s XOR lemma to highly correlated inputs. For example, Theorem 1.1 is proved by applying it to

\[
\text{TriParity}_n(x) = \bigoplus_{m \in [a]^3} \text{TriParity}_{n/a}(x|S_m)
\]

for some family \(\{S_m\}_{m \in [a]^3} \) of subsets. More specifically, we partition each part \(V_i \) of a tripartite graph \(G = (V_1 \cup V_2 \cup V_3, E) \) into a disjoint subsets \(V_i^{(1)}, \ldots, V_i^{(a)} \) of size \(n/a \). For each \(m = (i_1, i_2, i_3) \in [a]^3 \), we define \(S_{i_1,i_2,i_3} \subseteq [3n^2] \) to be the indices of the edges in \(V_i^{(i_1)} \cup V_i^{(i_2)} \cup V_i^{(i_3)} \); see Figure 1. Although the family of the subsets is far from being disjoint (for example, \(|S_{1,1,1} \cap S_{1,1,2}| = n^2 \)), we observe that \(\{S_m\}_{m \in [a]^3} \) is an \(O(n^2) \)-computational design on \(\text{TriParity}_{n/a} \). For any fixed \(x|S_i \setminus S_j \), the function that takes \(x|S_i \cap S_j \) as input and outputs \(\text{TriParity}_{n/a}(x) \) is a linear function, which can be clearly computed by linear-sized circuits. Using this “computational disjointness”, Theorem 1.4 shows that weak average-case hardness of \(\text{TriParity}_{n/a} \) can be amplified to strong average-case hardness of \(\text{TriParity}_n \).

Our proof techniques build on and generalize those developed in the line of research on derandomized hardness amplification theorems. A celebrated theorem of Impagliazzo and Wigderson [IW97], which is a culmination of [Yao82; BM84; NW94; BFNW93; Imp95], states that \(P = BPP \) if \(E = \text{DTIME}(2^{O(n)}) \) cannot be computed by circuits of size \(2^{o(n)} \). The key technical contribution of [IW97] is to prove a derandomized version of Yao’s XOR lemma, which states that if any circuit of size \(2^{o(n)} \) fails to compute a function \(f : \{0,1\}^n \to \{0,1\} \) on a \((1/3)\)-fraction of inputs, then there exists a function \(g : \{0,1\}^{O(n)} \to \{0,1\} \) such that any circuit of size \(2^{o(n)} \) fails to compute \(g \) on a
(1/2 − 2^{−o(n)})-fraction of inputs. Here, the function \(g \) is defined as
\[
g(x, y) = \bigoplus_{m=1}^{k} f(x|S_m \oplus G(y))
\]
for some family of subsets \(S_m \subseteq [O(n)] \) and for some function \(G \).\(^6\) In the literature of derandomized hardness amplification, whether \(g \) is natural or not is not important; the only requirement is that \(g \in E \) if \(f \in E \). Thus, the family \(\{S_m\}_{m \in [k]} \) can be chosen to be nearly disjoint subsets of \([O(n)]\). We say that a family \(\{S_m\}_{m \in [k]} \) of subsets is an \(s\)-combinatorial design if \(|S_i \cap S_j| \leq \log s \) for every distinct pair \(i \neq j \in [k] \). Nisan and Wigderson [NW94] showed that there exists a \(2^{o(n)} \)-combinatorial design that can be efficiently computed. In general, for an \(s\)-combinatorial design \(\{S_m\}_{m \in [k]} \), Impagliazzo and Wigderson [IW97] showed that if \(f \) is weakly average-case hard for circuits of size \(s^{O(1)} \cdot n^{O(1)} \), then \(g \) is strongly average-case hard for circuits of size \(s \).

Theorem 1.4 generalizes such derandomized hardness amplification theorems:\(^7\) whereas previous results are applicable to \(s\)-combinatorial designs, our results are applicable to \(s\)-computational designs on \(f \). Note that any \(s\)-combinatorial design is also an \(s\)-computational design on \(f \) for every function \(f \) because any function on \(\log s \)-bit inputs can be computed by circuits of size \(O(2^{\log s} / \log s) \leq s \); moreover, the converse is not true, as the family of subsets in (5) is an example of an \(O(n^2) \)-computational design on \(\text{TriParity}_{n/4} \) that is not a \(2^{n^2} - 1 \)-combinatorial design.

2 Proof Overview

We now present proof ideas of Theorem 1.4, which generalizes derandomized XOR lemmas from combinatorial designs to computational designs. At the core of our proofs is a new notion of feasible hard-core set, which generalizes Impagliazzo’s hard-core set [Imp95]. In Section 2.1, we review the proof techniques of derandomized hardness amplification. In Section 2.2, we introduce the notion of feasible hard-core set. In Section 2.3, we outline the proof of the existence of a feasible hard-core set for any mildly average-case-hard function.

2.1 A Review of Derandomized Hardness Amplification

Our starting point is an elegant exposition of [IW97] presented by Healy, Vadhan, and Viola [HVV06], which is based on the literature on hardness amplification within \(\text{NP} \) [ODo04; Tre03]. Let \(f : \{0,1\}^n \to \{0,1\} \), \(g : \{0,1\}^m \to \{0,1\} \), and \(\sigma : \{0,1\}^k \to \{0,1\} \) be functions and \(S_1, \ldots, S_k \subseteq [m] \) be subsets of size \(n \). Suppose that for every \(z \in \{0,1\}^m \),
\[
g(z) = \sigma(f(z|S_1), \ldots, f(z|S_k)).
\]
Note that (4) corresponds to the case of \(\sigma(y_1, \ldots, y_k) := \bigoplus_{i=1}^{k} y_i \). Hardness amplification can be proved for every function \(\sigma \) whose expected bias is small; thus, we present such a general proof here. We first assume that the family \(\{S_i\}_{i \in [k]} \) is an \(s\)-combinatorial design for a small parameter \(s \in \mathbb{N} \) and outline a standard proof of derandomized hardness amplification.

Impagliazzo [Imp95] showed that any mildly average-case hard function \(f \) has a dense hard-core set \(H \) on which \(f \) is strongly average-case hard. Specifically, we say that \(f \) is \(\delta \)-hard on \(H \subseteq \{0,1\}^n \)

\(^6\)Theorem 1.4 requires the technical condition that there are \(k' \) disjoint subsets in \(S_1, \ldots, S_k \). This condition is circumvented in [IW97] because of the usage of the function \(G \).

\(^7\)We note that the dependence of the size parameters \(s \) and \(s' \) in Theorem 1.4 is significantly worse than [IW97]. Improving this is an interesting open question.
if any small circuit fails to compute \(f \) on a \(\delta \)-fraction of inputs in \(H \). Impagliazzo’s hard-core lemma states that if \(f \) is \(\delta \)-hard on \(\{0,1\}^n \), then there exists a “hard-core set” \(H \) of size \(\delta 2^n \) such that \(f \) is \((1/2 - \epsilon)\)-hard on \(H \).

Let \(f: \{0,1\}^n \to \{0,1\} \) be a \(\delta \)-hard function on \(\{0,1\}^n \). Let \(f_H \) denote a random function such that \(f_H(x) = f(x) \) if \(x \notin H \) and \(f_H(x) \) is a uniformly random bit if \(x \in H \). Intuitively, \(f_H \) can be thought as an idealized version of \(f \) which is information-theoretically hard on inputs in \(H \). Impagliazzo’s hard-core lemma implies the existence of a large set \(H \) such that \((x, f(x))\) and \((x, f_H(x))\) are computationally indistinguishable, i.e.,

\[
(x, f(x)) \approx_c (x, f_H(x)) \tag{6}
\]

where \(x \sim \{0,1\}^n \). Here, for random variables \(X \) and \(Y \), we denote by \(X \approx_c Y \) that \(X \) and \(Y \) are computationally indistinguishable by small circuits; i.e., for any small circuit \(C \),

\[
|\Pr[C(X) = 1] - \Pr[C(Y) = 1]| \leq \epsilon
\]

for a small parameter \(\epsilon > 0 \).

Using a hybrid argument of Nisan and Wigderson [NW94], (6) implies

\[
(z, f(z|s_1), \ldots, f(z|s_k)) \approx_c (z, f_H(z|s_1), \ldots, f_H(z|s_k)) \tag{7}
\]

for \(z \sim \{0,1\}^m \). Specifically, the contrapositive can be proved as follows. Assume that (7) does not hold. Then, by a triangle inequality, there exists some index \(i \in [k] \) such that

\[
(z, f(z|s_i), \ldots, f(z|s_i), f_H(z|s_k)) \not\approx_c (z, f(z|s_1), \ldots, f_H(z|s_i), f_H(z|s_k)). \tag{8}
\]

By an averaging argument, \(z|_{\left[m\right]\setminus S_i} \) and the randomness in \(f_H(z|s_{i+1}), \ldots, f_H(z|s_k) \) can be fixed. Now, we use the assumption that \(\{S_i\}_{i \in [k]} \) is an \(s \)-combinatorial design, i.e., \(|S_i \cap S_j| \leq \log s \) for every distinct pair \((i, j)\). Since \(z|_{\left[m\right]\setminus S_i} \) is fixed, given \(x := z|_{S_i} \) as input, the output

\[
(f(z|s_1), \ldots, f(z|s_{i-1}), f_H(z|s_{i+1}), \ldots, f_H(z|s_k))
\]

can be computed by a circuit of size \(O(k \cdot 2^{\log s / \log s}) \leq O(ks) \), as any function on \(\log s \)-bit inputs can be computed by a circuit of size \(O(2^{\log s / \log s}) \). By combining this circuit with the circuit that distinguishes the two distributions of (8), we obtain a circuit witnessing \((x, f(x)) \not\approx_c (x, f_H(x))\). This completes a proof sketch of the contrapositive of (6) \(\Rightarrow\) (7). We mention in passing that Nisan and Wigderson [NW94] used the same hybrid argument to construct a pseudorandom generator based on a strongly average-case hard function.

By (7), we obtain

\[
(z, g(z)) = (z, \sigma(f(z|s_1), \ldots, f(z|s_k))) \approx_c (z, \sigma(f_H(z|s_1), \ldots, f_H(z|s_k)))
\]

because applying an efficiently computable function \(\sigma \) preserves computational indistinguishability. Finally, we argue that \((z, \sigma(f_H(z|s_1), \ldots, f_H(z|s_k)))\) is statistically close to \((z, b)\), where \(z \sim \{0,1\}^n \) and \(b \sim \{0,1\}^k \). For simplicity, assume that \(\sigma(y_1, \ldots, y_k) = \bigoplus_{i=1}^k y_i \), in which case if \(z|_{S_i} \in H \) for some \(i \in [k] \), the output of \(\sigma \) is completely uniform. Using the assumption of Theorem 1.4 that there are \(k' \) disjoint subsets in \(S_1, \ldots, S_k \), the probability that there exists no \(i \) such that \(z|_{S_i} \in H \) is bounded by

\[
(1 - \delta)^{k'} \leq \exp(-\delta k').
\]
Thus, the statistical distance between \((z, \sigma(f_H(z|S_1), \ldots, f_H(z|S_k)))\) and \((z, b) \sim \{0, 1\}^n \times \{0, 1\}\) is at most \(\exp(-\delta k')\), which is small. We conclude that

\[(z, g(z)) \approx_c (z, b),\]

which is equivalent to saying that any small circuit \(C\) satisfies

\[
\Pr_{z \sim \{0, 1\}^n} [C(z) = g(z)] \leq \frac{1}{2} + \epsilon
\]

for a small parameter \(\epsilon > 0\). This completes the proof sketch of a derandomized hardness amplification theorem.

2.2 An Extension to Computational Designs

We now wish to extend the proof sketch presented above to the case that \(\{S_i\}_{i \in [k]}\) is an \(s\)-computational design on \(f\). In this case, it is possible that \(|S_i \cap S_j| \geq s\) for some distinct pair \((i, j)\); thus, the proof of (6) \(\Rightarrow\) (7) may blow up the circuit size exponentially in \(s\). We need to revise this proof in order to extend the proof for \(s\)-combinatorial designs to \(s\)-computational designs.

A First Attempt. Let us assume for a moment that \(H\) is efficiently recognizable, i.e., the characteristic function of \(H\) can be computed by a small circuit of size \(s\). In this case, it is easy to observe that the proof of (6) \(\Rightarrow\) (7) is applicable to an \(s\)-computational design on \(f\). Indeed, fix \(z|m\backslash S_i\) and the randomness in \(f_H(z|S_{i+1}), \ldots, f_H(z|S_k)\). Consider a function that takes \(x = z|S_i\) as input and outputs

\[(f(z|S_i), \ldots, f(z|S_{i-1}), f_H(z|S_{i+1}), \ldots, f_H(z|S_k)).\]

We claim that this function can be computed by a circuit of size \(O(sk)\). It is evident that \((f(z|S_i), \ldots, f(z|S_{i-1}))\) can be computed by a circuit of size \(O(sk)\) because of the definition of an \(s\)-computational design. In order to compute \(f_H(z|S_j)\) for every \(j > i\), we use the assumption that the characteristic function of \(H\) can be computed by a circuit of size \(s\). By the definition of \(f_H\), the output of \(f_H(z|S_j)\) is defined to be \(f(z|S_i)\) if \(z|S_j \notin H\) and to be a uniformly random bit if \(z|S_j \in H\). This can be computed by a circuit of size \(O(s)\) if \(H\) is efficiently recognizable.

Can we justifiy the assumption that a hard-core set \(H\) is efficiently recognizable? Unfortunately, Reingold, Trevisan, Tulsiani, and Vadhan [RTTV08] gave the following simple counterexample: Let \(f: \{0, 1\}^n \rightarrow \{0, 1\}\) be a random function that outputs \(f(x) = 1\) with probability \(1 - \delta\) independently for every \(x \in \{0, 1\}^n\). This function is \(\delta\)-hard for any small (say, polynomial-size) circuit. For any set \(H \subseteq \{0, 1\}^n\) with \(|H| \geq \delta 2^n\), we have \(|H \cap f^{-1}(1)|/|H| \approx 1 - \delta\) with probability \(2^{-\Theta(2^n)}\) by the Hoeffding inequality. By taking the union bound over all efficiently recognizable \(H\) (e.g., whose characteristic function can be computed by polynomial-size circuits), we obtain a function \(f\) such that \(f\) is \(\delta\)-hard and \(f\) is biased on every efficiently recognizable \(H\). This counterexample shows that the function \(f\) does not have any efficiently recognizable hard-core set.

A Second Attempt. The counterexample above exploits the definition of a hard-core set \(H\) such that a function \(f\) must be nearly balanced on \(H\) (i.e., \(|H \cap f^{-1}(0)| \approx |H \cap f^{-1}(1)| \approx |H|/2\). Reingold et al. [RTTV08] proved the existence of an efficiently recognizable hardcore set by relaxing the condition of being balanced.
Theorem 2.1 (Restatement of Theorem 3.1 of [RTTV08]). Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a δ-hard function on $\{0,1\}^n$ for circuits of size s. Then, there exists $H \subseteq \{0,1\}^n$ with $|H| \geq \delta 2^n$ such that

$$\Pr_{x \sim H}[C(x) = f(x)] \leq \max \left\{ \frac{|H \cap f^{-1}(0)|}{|H|}, \frac{|H \cap f^{-1}(1)|}{|H|} \right\} + \epsilon$$

for any circuit of size $s' = O(\delta^2 \epsilon s)$ and $\delta/2 \leq |H \cap f^{-1}(0)|/|H| \leq 1 - \delta/2$. Moreover, there exists a circuit of size s that can decide whether $x \in H$ or not on input $x \in \{0,1\}^n$.

Can we use this theorem for our purpose? Unfortunately, this approach does not work for the following two reasons.

1. Since f can be biased on the hard-core set H of Theorem 2.1, it does not necessarily imply that $(x, f(x)) \approx_c (x, f_H(x))$.

2. The circuit size s' is always smaller than the size s of the circuit that decides H. In contrast, to prove (6) \Rightarrow (7), we need to show that if $(z, f(z)) \approx_c (z, f_H(z))$ for circuits of size s', then $(z, f(z|s_1), \ldots, f(z|s_k)) \approx_c (z, f_H(z|s_1), \ldots, f_H(z|s_k))$ for circuits of size s'', where we would like to maximize s''. Using that H is decidable by a circuit of size s, it can be shown that if $(x, f(x)) \approx_c (x, f_H(x))$ for circuits of size s', then $(z, f(z|s_1), \ldots, f(z, |s_k)) \approx_c (z, f_H(z|s_1), \ldots, f_H(z|s_k))$ for circuits of size $s'' = s' - O(sk)$. However, since $s \geq s'$, we have $s'' \leq 0$; thus, the conclusion is meaningless.

Although the first issue could be fixed using [SS93], the second issue appears to be an inherent limitation of this approach.

Our Solution: Feasible Hard-Core Set. Our key technical contribution is to generalize Impagliazzo’s hard-core set to a feasible hard-core set lemma. In the original notion of hard-core set, H is said to be a hard-core set of f for circuits of size s if for every circuit C of size s,

$$\Pr_{x \sim H}[C(x) = f(x)] \leq \frac{1}{2} + \epsilon$$

for a small parameter $\epsilon > 0$. Ideally, we would like to generalize this to H-oracle circuits C^H, i.e.,

$$\Pr_{x \sim H}[C^H(x) = f(x)] \leq \frac{1}{2} + \epsilon.$$

Here, an H-oracle circuit C^H is a circuit with H-oracle gates, which compute the characteristic function of H. It is easy to observe that the proof of (6) \Rightarrow (7) works for H-oracle circuits. Unfortunately, we failed to prove the existence of a hard-core set H for H-oracle circuits. However, by imposing an appropriate restriction on H-oracle circuits, we are able to generalize Impagliazzo’s hard-core lemma and prove the hardness self-amplification theorem.

The restriction on H-oracle circuits C^H is as follows: Informally, we require that C^H can make a query q to an oracle only if C^H can compute $f(q)$. To formalize this idea, it is easier to assume that C^H is a k-query nonadaptive oracle circuit, i.e., there exists a small circuit Q_i that, on input x, outputs the i-th query q_i of C^H for each $i \in [k]$. We say that an oracle circuit C^H of size s is f-trapdoor if for every $i \in [k]$, there exists a circuit of size s that computes $f(Q_i(x)))$ on input x. In other words, an f-trapdoor oracle circuit is allowed to make a query q only if $f(q)$ can be computed without an oracle.
Now, we introduce a new notion of feasible hard-core set. We say that H is a f-feasible $(1/2 - \epsilon)$-hard-core set for k-query circuits of size s if H is a hard-core set for f-feasible k-query H-oracle circuits of size s, i.e., for every f-trapdoor k-query H-oracle circuit C^H of size s,

$$\Pr_{x \sim H}[C^H(x) = f(x)] \leq \frac{1}{2} + \epsilon.$$

It is not hard to observe that the proof of (6) ⇒ (7) works for f-trapdoor k-query H-oracle circuits. Indeed, for all $j \in [k] \setminus \{i\}$, the function $z|_{S_j} \mapsto f(z|_{S_j})$ can be computed by a circuit of size s if $z|_{[m] \setminus S_i}$ is fixed; thus, an f-trapdoor circuit can ask a query $z|_{S_j}$ to an oracle H and can decide whether $z|_{S_j} \in H$ or not, which enables the computation of $f_H(z|_{S_j})$. It remains to prove the existence of a feasible hard-core set.

2.3 The Existence of a Feasible Hard-core Set

We now state the generalization of Impagliazzo’s hard-core lemma to the feasible hard-core lemma.

Lemma 2.2 (feasible hard-core set; see also Lemma 5.4). Let $f : \{0,1\}^n \rightarrow \{0,1\}$ be a δ-hard function on $\{0,1\}^n$ for circuits of size s and suppose $\delta^2 2^n \geq 8 \cdot 10^4$. Then, there exists an f-feasible $(1/2 - \epsilon)$-hard-core set $H \subseteq \{0,1\}^n$ of size $\delta 2^n$ for k-query circuits of size s', where

$$s' = s \cdot \exp \left(- (\delta \epsilon)^{-O(1)} \log k \right) - O \left(n/(\delta \epsilon)^{O(1)} \right).$$

We prove this by generalizing the original proof of Impagliazzo’s hard-core lemma [Imp95], which is based on a boosting algorithm.\(^8\) The proof of the contrapositive of the feasible hard-core set lemma proceeds by constructing hard-core sets H_1, \ldots, H_T inductively. The first hard-core set is $H_1 = \{0,1\}^n$ and H_t is defined by using H_1, \ldots, H_{t-1}. Using the assumption that H_t is not a feasible hard-core set, we obtain some f-trapdoor k-query H_t-oracle circuit C^H_t that computes f on a $(1/2 + \epsilon)$-fraction of inputs in H_t. The proof of Impagliazzo’s hard-core lemma [Imp95] enables us to show that the circuit $C' = \text{majority}(C^{H_1}_t, \ldots, C^{H_{t-1}}_t)$ performs well over the uniform distribution. However, this circuit has oracle access to H_1, \ldots, H_T. To complete the proof, we need to make C' oracle-free. To this end, we make an induction hypothesis that $C^{H_1}_t, \ldots, C^{H_{t-1}}_t$ can be computed by small circuits C'_1, \ldots, C'_{t-1} without any oracle. We claim the existence of a small circuit C'_t that simulates C^H_t without any oracle. Now, we exploit the property that C^H_t is an f-trapdoor circuit. By the property of the f-trapdoor circuit, for any query q of C^H_t, there exists a small circuit that computes $f(q)$ without any oracle. Thus, to simulate C^H_t, it suffices to decide whether $q \in H_t$ using $f(q)$ as advice. In the boosting algorithm, whether $q \in H_t$ depends on the “performance” of previous circuits $C^{H_1}_t(q), \ldots, C^{H_{t-1}}_t(q)$; we need to count the number of indices $i \in \{1, \ldots, t-1\}$ such that $C^H_t(q) = f(q)$. Using the advice $f(q)$ and the induction hypothesis that $C^{H_i}_t$ can be computed by the small circuit C'_i, the number of such indices i can be counted efficiently. Details can be found in Section 5.

We note that the parameters in our feasible hard-core set lemma are significantly worse than standard hard-core lemmas: the dependence on δ and ϵ is exponential. However, for our applications, it suffices to choose $\delta^{-1}, \epsilon^{-1}$ and k to be constants independent of n, in which case the loss in the circuit size s is negligible. Whether the dependence on parameters can be improved is an interesting open question.

\(^8\)Interestingly, the proof based on the minimax theorem does not work; see Section 5.2.
2.4 Conclusion and Open Problems

This paper presents a general framework of hardness amplification for a function that can be written as the sum of “computationally disjoint” components, which extends the nearly-disjoint generator of Nisan and Wigderson [NW94]. This general framework enables us to obtain strong fine-grained average-case hardness of natural problems.

This paper leaves many open questions and intriguing research directions. The first one is to extend our hardness amplification framework to non-Boolean functions. For example, can we amplify the hardness of counting triangles modulo q for $q > 2$? Can we amplify the hardness of the matrix multiplication using our framework? The very recent work of Asadi, Golovnev, Gur, and Shinkar [AGGS22] developed a different framework and showed a hardness-self amplification theorem for the matrix multiplication. Interestingly, the framework of [AGGS22] works well for non-Boolean functions, whereas our framework works well for Boolean functions. It would be an intriguing research direction to generalize both frameworks to obtain a general framework that works in both settings.

The difficulty of extending our framework to non-Boolean functions is that boosting algorithms for proving the hard-core lemma requires a circuit that correctly computes f on at least $(1/2 + \epsilon)$-fraction in any large set H (regardless of whether f is Boolean or not). Although it is possible to encode a multi-output function as a Boolean function using Hadamard encoding or any error-correcting code (as is common in the literature of hardness amplification), the goal of obtaining a natural strongly average-case hard problem prevents us from using such proof techniques.

The second question concerns the range of applications: Can we apply our hardness amplification framework to other famous problems? For example, counting zero-weight triangles and counting t-cliques over Erdős–Rényi random graph $G(n, 1/2)$ have been well studied in the literature of fine-grained average-case complexity. Despite effort, we could not construct computational designs for these problems.

The third direction is to obtain a uniform hardness amplification in order to establish the strong average-case hardness against uniform algorithms. The main obstacle to this goal is the construction of the computational design. Although it is easy to extend the notion of computational design to uniform computational models, we are not aware of a problem that admits such design. For example, in Section 1.2, we exploit the fact that $\text{TriParity}(x)$ becomes a linear function over $O(n^2)$ variables if the input is partially fixed, but the coefficients of the linear function may not be computed by uniform algorithms. There are proof techniques in the literature on derandomization [IW01; TV07] that exploit downward self-reducibility and random self-reducibility to make reductions uniform, which may be useful to investigate this research direction.

2.5 Organization

This paper is organized as follows: In Section 3, we briefly mention related works. In Section 4, we present our notations and definitions. In Section 5, we present the first technical tool: feasible hardcore lemma. In Section 6, we present the second technical tool: computational design. In Section 7, we prove our new hardness amplification result using the technical tools. In Sections 8 and 9, we apply our general result to concrete problems and prove Theorems 1.1 to 1.3.
3 Related Work

3.1 Relation to Coding Theory

A worst-case-to-average-case reduction for a function f can be seen as the following task: Compute $f(x)$ for an input $x \in X$ given a function $C: X \rightarrow Y$ that is ϵ-close\footnote{A function f over X is ϵ-close to a function g over X if $\Pr_{x \sim X} [f(x) \neq g(x)] \leq \epsilon.$} to f as oracle. We usually assume that $f \in \mathcal{F}$ for some class of “tractable” functions. This task is referred to as local decoding for \mathcal{F} within relative distance ϵ. Here, the target function f (i.e., the function in \mathcal{F} that is ϵ-close to the given oracle C) is promised to be unique.

However, in the task of local decoding, the error tolerance ϵ must be so small that the uniqueness condition holds. To obtain reductions for smaller ϵ, consider the following task: Given a function $C: X \rightarrow Y$ as oracle, enumerate all functions $f \in \mathcal{F}$ that are ϵ-close to C. This task is referred to as local list decoding for \mathcal{F} within relative distance ϵ.

Local (list) decoding for $\mathcal{F} = \text{RM}_{n,d,\mathbb{F}_q}$ being the family of degree-d n-variate polynomials over \mathbb{F}_q has been extensively studied for decades [GL89; Sud97; GRS00; STV01; GKZ08; BL15], motivated by a wide range of applications including derandomization, PCP theorems, and cryptography.

One may run a local list decoding algorithm using an average-case solver C as oracle and obtain a worst-case solver C' for f. This idea works if we use local list-decoding in implicit form in the sense that the decoder outputs a list of oracle machines $M^f_1, \ldots, M^f_{\ell}$ one of which computes the target function f (in other words, the correct machine can be seen as a succinct representation of f). Such computational task for $\mathcal{F} = \text{RM}_{n,d,\mathbb{F}_q}$ with large q can be done by the work of [STV01, Theorem 29]. Sudan, Trevisan, and Vadhan [STV01] presented a local list-decoding algorithm for a Reed–Muller code $\mathcal{F} = \text{RM}_{n,d,\mathbb{F}_q}$ with large q and used it to present an alternative proof of the theorem of [IW97] without using XOR lemmas. We note that there are exponentially many polynomials at the distance of 2^{-d} over \mathbb{F}_2 [KLP12]. This means that even list decoding algorithms that enumerate all the polynomials close to a given string in an explicit form cannot be used to give worst-case-to-average-case reductions. To the best of our knowledge, no efficient local list-decoding algorithm for small \mathbb{F}_q is known: The currently known local list-decoders for $\text{RM}_{n,d,\mathbb{F}_q}$ with small q [GKZ08; BL15] recover all coefficients of f, which requires a running time of at least n^d.

There is another line of works that puts a restriction on queries made by the decoder. Bafna, Srinivasan, and Sudan [BSS20] presented a local decoding algorithm for $\text{RM}_{n,d,\mathbb{F}_q}$ within relative distance $2^{-O(qd)}$ that makes at most $2^{O(qd)}$ queries in $\{0,1\}^n$. Decoders in this setting can be used to obtain a worst-case-to-average-case reduction for graph problems. The worst-case-to-average-case reductions of Boix-Adserá, Brennan, and Bresler [BBB21] and subsequent works [DLW20; HS21] can be seen as a local decoder for a specific family $\mathcal{F} \subseteq \text{RM}_{n,d,\mathbb{F}_q}$ (called good low-degree polynomials by Dalirrooyfard, Lincoln, and Williams [DLW20]) that makes queries in $\{0,1\}^n$ within relative distance $1/(\log n)^{O(d)}$. Unfortunately, this decoder has small relative distance (i.e., small error tolerance). Boix-Adserá, Brennan, and Bresler [BBB21] and Goldreich [Gold20] obtained a local decoder for good low-degree polynomials over \mathbb{F}_2 with random constant relative distance. Actually, the decoder of [BSS20] already implies this result (see Appendix B for details).

3.2 Subgraph Counting on Random Graphs

In an H-subgraph counting problem, we are given a graph and asked to count the number of subgraphs that is isomorphic to H. This is a fundamental task of graph algorithms and has been widely investigated for decades.
There is a recent progress on average-case lower bounds for the subgraph counting on random graphs. Goldreich and Rothblum [GR18] presented a worst-case-to-average-case reduction for K_t-subgraph counting for fixed t, where the input is drawn from uniform distribution over some set S of n-vertex graphs. Although their reduction has a large error tolerance of $1 - 1/polylog(n)$, the input distribution of the average-case solver is somewhat artificial due to their reduction steps. Boix-Adserá, Brennan, and Bresler [BBB21] and subsequent works [DLW20; HS21] reduced H-counting and similar problems to that on Erdős–Rényi random graph. Goldreich [Gol20] obtained a simple worst-case-to-average-case reduction for the parity variant of the K_t-counting. Hirahara and Shimizu [HS21] presented the framework of hardness amplification in fine-grained complexity for a variant of H-counting problems and improved the error tolerance, though the input distribution of the average-case solver is somewhat artificial (specifically, it is the disjoint union of $n^{o(1)}$ random bipartite graphs).

3.3 Fine-grained Average-case Complexity

In a pioneering work, Ball, Rosen, Sabin, and Vasudevan [BRSV17] investigated the fine-grained average-case complexity of problems and constructed Proof of Work systems based on them. To this end, they encoded famous problems in fine-grained complexity (e.g., Orthogonal Vectors, All-Pairs Shortest Paths, 3SUM) as low-degree polynomial evaluation and then obtained worst-case-to-average-case reductions for the encoded problems. They hope for constructing a one-way function under a worst-case hardness assumption in fine-grained complexity setting. Motivated by this research direction, LaVigne, Lincoln, and Williams [LLW19] constructed a cryptographic key exchange scheme in the fine-grained complexity setting under the average-case hardness assumption on Zero-k-Clique (the problem of finding a zero-weight k-clique in an edge-weighted graph). In view of this, one might think there is a tremendous gap in average-case complexity between “counting” and “finding” problems: Is counting much harder than finding? Interestingly, this is not the case for some problems: Dalirrooyfard, Lincoln, and Williams [DLW20] reduced the counting zero-k-cliques to finding a zero-k-clique.

3.4 Other Natural Problems

The permanent $\text{perm}(M)$ of a matrix $M \in \mathbb{F}_q^{n \times n}$ is defined by $\text{perm}(M) = \sum_{S_n} \prod_{i \in [n]} M_{i,S(i)}$ where S_n is the set of all permutations over $[n]$. It is widely known that perm admits a worst-case-to-average-case reduction (oftenly referred to as random self-reducibility) [Lip91] and subsequent works [GLR91; GS92; FL92; CPS99] improved the error tolerance. In particular, Cai, Pavan, and Sivakumar [CPS99] proved that if $\text{perm}(M)$ for a $(1/poly(n))$-fraction of $M \sim \mathbb{F}_q^{n \times n}$ over large finite field \mathbb{F}_q can be computed then $\text{perm}(M)$ for any input $M \in \mathbb{F}_q^{n \times n}$ can be computed by a randomized algorithm with a polynomial overhead in running time. A worst-case-to-average-case reduction for computing the permanent over a small finite field is not known (note that the permanent over \mathbb{F}_2 is equal to the determinant and can be computed in polynomial time).

The matrix multiplication over a finite ring R is a classical example that admits a worst-case-to-average-case reduction [BLR93]: Let A be the average-case solver that correctly compute the matrix multiplication for 99% of inputs. For given matrices $M, N \sim \mathbb{F}_q^{n \times n}$, sample two random matrices $S, T \sim R^{n \times n}$ and output $A(M - S, N - T) + A(M - S, T) + A(S, N - T) + A(S, T)$. This algorithm succeeds 96% over the choice of S, T for any inputs by the union bound. Very recently, Asadi, Golovnev, Gur, and Shinkar [AGGS22] improved the error tolerance using additive combinatorics.
4 Preliminaries

For $n \in \mathbb{N}$, let $[n] := \{1, \ldots, n\}$. We denote by U_S the uniform distribution over a finite set S. We use the shorthand notation $U_n = U_{\{0,1\}^n}$. We use $x \sim D$ to denote that x is sampled according to a distribution D. For a finite set S, we use $x \sim S$ for the shorthand of $x \sim U_S$. For a distribution D over $\{0,1\}^n$ and function $h : \{0,1\}^n \to \{0,1\}^m$, let $h(D)$ be the distribution of $h(X)$ for $X \sim D$. A random function is a function that is sampled according to some distribution over a set of functions.

A (random) function $f : \{0,1\}^n \to \{0,1\}$ is δ-hard for size s over a distribution D if $\Pr[C(x) = f(x)] \leq 1 - \delta$ for any size-s circuit C, where the probability is taken over random choices of $x \sim D$ (and f). Two distributions D_1 and D_2 are ϵ-indistinguishable for size s if $|\Pr_{x \sim D_1}[C(x)] - \Pr_{y \sim D_2}[C(y)]| \leq \epsilon$ for any size-s circuit C. We invoke the following well-known results.

Lemma 4.1 ([Yao82]; see, e.g., Lemma 2.3 of [HV06]). If $f : \{0,1\}^n \to \{0,1\}$ is $(1/2 - \epsilon)$-hard over U_n for size s, then the distributions $(x, f(x))$ for $x \sim U_n$ and U_{n+1} are ϵ-indistinguishable for size $s - O(1)$. Conversely, if $(x, f(x))$ for $x \sim U_n$ and U_{n+1} are ϵ-indistinguishable, then f is $(1/2 - \epsilon)$-hard over U_n for size $s - O(1)$.

Lemma 4.2 (folklore). Let $C : \{0,1\}^n \to \{0,1\}$ be a circuit of size s and D_1, D_2 be distributions over $\{0,1\}^n$ that are ϵ-indistinguishable for size s'. Then, $C(D_1)$ and $C(D_2)$ are ϵ-indistinguishable for size $s - s'$.

Proof Sketch. If C' is the distinguisher for $C(D_1)$ and $C(D_2)$ of size $s - s'$, then the circuit $C' \circ C$ has size s and distinguishes D_1 and D_2. \hfill \square

We identify a set $H \subseteq \{0,1\}^n$ with the characteristic function, i.e., for $x \in \{0,1\}^n$, $H(x) = 1$ if $x \in H$ and $H(x) = 0$ otherwise. We say that H is δ-dense if $|H| \geq \delta 2^n$. In an oracle circuit C^H, the circuit C can access to $H(x)$.

A measure is a function $M : \{0,1\}^n \to [0,1]$. The size of M is $|M| := \sum_{x \in \{0,1\}^n} M(x)$ and the relative size of M is $\mu(M) := |M|/2^n$. A measure M is δ-dense if $\mu(M) \geq \delta$. Let U_M be the distribution that assigns $M(a)/|M|$ to each $a \in \{0,1\}^n$. We use $x \sim M$ for the shorthand of $x \sim U_M$. Note that, if $M(x) \in \{0,1\}$ for every $x \in \{0,1\}^n$, then M can be seen as a binary indicator for some subset $H \subseteq \{0,1\}^n$ and we have $|H| = |M|$ and $U_M = U_H$. In this sense, a measure can be seen as a continuous relaxation of a set. For a measure M, an oracle circuit C^M can access $M(q)$ (with sufficient precision, say, $O(\log n)$ bits) for each query $q \in \{0,1\}^n$. Actually, throughout the paper, our circuit uses oracle M to toss a coin with head probability $M(q)$ for a query q.

5 Feasible Hard-core Set

In this section, we define the notion of feasible hard-core set, which is our key ingredient.

Definition 5.1 (Trapdoor Oracle Circuit). Let $f : \{0,1\}^n \to \{0,1\}$ be a function. An f-trapdoor oracle circuit is an oracle circuit C^O such that $C^O(x)$ given x as input makes nonadaptive queries $q_1(x), \ldots, q_k(x)$ such that $f(q_i(x))$ for given x can be computed by a circuit smaller than C^O for all $i \in [k]$ (here, the size of C^O does not take the size of the oracle gate into account).

Definition 5.2 (Feasible Hard-core). Let $f : \{0,1\}^n \to \{0,1\}$, $\epsilon \in (0,1)$, and $k \in \{0\} \cup \mathbb{N}$. A set (measure) H is a feasible ϵ-hard-core set (measure) for size s with k-queries if $\Pr_{x \sim H}[C^H(x) = f(x)] \leq 1/2 + \epsilon$ for any size-s k-query f-trapdoor oracle circuit C^H.

14
Note that the definition above allows the case of $k = 0$ in which the corresponding circuit would be oracle-free. Therefore, the notion of feasible hard-core set is a generalization of the hard-core set of [Imp95].

5.1 Feasible Hard-core Lemma

The original proof of the hard-core lemma by Impagliazzo [Imp95] consists of two steps. The first and intermediate step is the proof of the existence of a hard-core measure M. Then, a standard probabilistic argument shows that the random set H where every $x \in \{0,1\}^n$ belongs to H independently with probability $M(x)$ satisfies $\Pr_H[\forall x \in H | C(x) = f(x)] \approx \Pr_{x \sim M}[C(x) = f(x)] > 0$. This implies that the random set H is indeed the hard-core set with positive probability. Actually, the first step still works for our feasible hard-core setting as we will see in Lemma 5.3, while the second part does not. Though a feasible hardcore measure (Lemma 5.3) suffices to prove our hardness amplification result, we will work on showing the existence of a feasible hardcore set in Lemma 5.4.

Lemma 5.3 (Feasible Hard-core Measure). Let $f : \{0,1\}^n \to \{0,1\}$ be a δ-hard function over U_n for size s. Then, there is a δ-dense feasible $(1/2 - \epsilon)$-hard-core measure M for size s' with k-queries, where $s' = \frac{s}{\epsilon^2 + O(\epsilon)}$ for $t = \delta - 2\epsilon^2$.

Proof. We invoke the proof of the original hard-core lemma by Impagliazzo [Imp95]. We prove the contraposition. Suppose for every δ-dense measure M that there is a size-s k-query f-trapdoor oracle circuit C_M^t satisfying $\Pr_{x \sim M}[C_M^t(x) = f(x)] \geq 1/2 + \epsilon$. We construct an oracle-free circuit C' that satisfies $\Pr_{x \sim U_n}[C'(x) = f(x)] > 1 - \delta$, which contradicts to the hardness of f. Our circuit C' is of the form $C'(x) = \text{maj}(C_1, \ldots, C_t)$ for some $t \leq \epsilon^{-2} \delta^{-2}$ (maj denotes the majority function).

Let $\gamma = \delta \epsilon$. Start with the constant measure $M_0 \equiv 1$ (i.e., uniform distribution over all inputs). For a measure M_i, consider $C_{M_i}^t$. The circuit $C_{M_i}^t$ is an oracle circuit at this point but we will claim that it can be transformed into an oracle-free circuit C_i at a cost of size. Let $R_i(x) = \sum_{j=1}^t [C_j(x) = f(x)]$, where $[Z] = 1$ if Z holds and $[Z] = -1$ otherwise. For $a \in \{0,1\}$, let $m(a) = 1$ if $a \leq 0$, $m(a) = 0$ if $a \geq 1/\gamma$, and $m(a) = 1 - \gamma a$ otherwise. Define the measure M_{i+1} by $M_{i+1}(x) = m(R_i(x))$ for every $x \in \{0,1\}^n$. Terminate this process if $\mu(M_{i+1}) \leq \delta$. Suppose we obtained C_1, \ldots, C_t and let $C' = \text{maj}(C_1, \ldots, C_t)$. If $C'(x) \neq f(x)$ then $R_i(x) \leq 0$ and thus $M_{i+1}(x) = 1$. Therefore, $\Pr_{x \sim U_n}[C'(x) = f(x)] \geq 1 - \mu(M_{i+1}) \geq 1 - \delta$.

We bound t by the same argument in [Imp95]. Let $P_t = \sum_{j \in [t]} \sum_{x \in \{0,1\}^n} M_j(x)[C_j(x) = f(x)]$. First, observe that $P_t = \sum_{j \in [t]} |M_j|(2\Pr_{x \sim D_{M_i}}[C_j(x) = f(x)] - 1) \geq 2^n + 1 \gamma t$. On the other hand, we claim $P_t \leq 2^n(t/2 + 1/\gamma)$. To see this, fix $x \in \{0,1\}^n$ and consider the edge-weighted digraph $G_x = (V, A)$ defined by the vertex set $V := \{R_j(x) : j = 0, \ldots, t\}$ (here we set $R_0(x) = 0$), edge set $A := \{(R_j-1(x), R_j(x)) : j = 1, \ldots, t\}$ where each edge $(R_j-1(x), R_j(x))$ is associated with a weight $M_j(R_j(x) - R_j-1(x))$ where $M_j(x)$ is the weight of edge $(R_j(x) - R_j-1(x))$. Note that G can be seen as a walk visiting $R_0(x), R_1(x), \ldots, R_t(x)$ in this order. Consider the sum of edge-weights in G_x. Suppose G_x contains a pair of edges of the form $(a, a+1)$ and $(a+1, a)$. This pair contributes at most $|m(a) - m(a+1)| \leq \gamma$ to the sum. After removing such (at most $t/2$) pairs, the remaining edges are of the form either $\{(a, a+1), (a + \ell - 1, a + \ell)\}$ or $\{(a-1, a), (a-1, a+1)\}$. The former type has weight $m(a) + \cdots + m(a + \ell - 1) \leq 1/\gamma$, whereas the latter one has $-m(a) - \cdots - m(a + \ell - 1) \leq \gamma$. Thus, the total weight of G_x is at most $t/2 + 1/\gamma$. Since P_t is the sum of total edge weight of G_x over all $x \in \{0,1\}^n$, we have $P_t \leq 2^n(t/2 + 1/\gamma)$. Therefore, $2^n + \gamma t \leq P_t \leq 2^n(t/2 + 1/\gamma)$, which implies $t \leq 2/(3\gamma^2) \leq \delta^{-2} \epsilon^{-2}$.

Finally, we bound the size of C'. Suppose for simplicity that $C_{M_i}^t$ makes exactly k queries for each M_i. Note that the oracle circuit $C_{M_i}^t$ can be a circuit C_i of size s by replacing the oracle gate.
with the constant 1. Suppose that C_j can be transformed into a size-s_j circuit for each $j \in [i]$. We assume $s_1 \leq \cdots \leq s_i$ for simplicity. We transform the size-s oracle circuit C_M^{i+1} into an oracle-free circuit of size s_{i+1}. For given input $x \in \{0,1\}^n$, the circuit C_M^{i+1} runs as follows: First, run its query-making part to construct queries $q_1(x), \ldots, q_k(x)$. Then, access the oracle M_{i+1} to obtain $M_{i+1}(b_1), \ldots, M_{i+1}(b_k)$. Finally, decide the output depending on these responses. The first and last steps can be done by a size-s circuit. Thus, it remains to compute $M_{i+1}(q_j(x))$ without oracle for all $j \in [k]$. By definition, $M_{i+1}(q_j(x)) = m(R_i(x))$ for $R_i(x) = \sum_{x_1 \in \{0,1\}} C_i^0(q_j(x)) = f(q_j(x))$, which can be computed by an oracle-free circuit of size $O(\sum_{x_1 \in \{0,1\}} s_i) = O(ts_i)$ (note that $f(q_j(x))$ can be computed by a size-s circuit). Therefore, C_M^{i+1} can be transformed into a circuit C_{i+1} of size at most $s + O(kt_{2s})$. By solving the recursion $s_{i+1} \leq s + O(kt_{2s})$ and $s_1 = s$, we obtain $s_i \leq (1 + (Lk)\delta^i) s$ for some absolute constant $L > 0$. Therefore, $C' = \text{maj}(C_1, \ldots, C_t)$ has size at most $O(s(t + t^2(L\delta^t)^t))$. The claim follows since $t \leq \delta^{-2} \epsilon^{-2}$.

\textbf{Lemma 5.4 (Feasible Hard-core Set).} Let $f : \{0,1\}^n \to \{0,1\}$ be a δ-hard function over U_n for size s and suppose $\delta^2 2^n \geq 8 \cdot 10^4$. Then, there is a δ-dense feasible $(1/2 - \epsilon)$-hard-core set $H \subseteq \{0,1\}^n$ for size s' with k-queries, where $s' = s - O(nt\log(\delta^{-1} - \epsilon^{-1}))$ for $t = \delta^{-2} \epsilon^{-2}$.

\textbf{Proof.} We prove the contrapositive. Suppose for every δ-dense set H that there is a size-s k-query f-trapdoor oracle circuit C_H^f satisfying $\Pr_{x \sim H}[C_H^f(x) = f(x)] \geq 1/2 + \gamma$. We construct a circuit C' satisfying $\Pr_{x \sim U_n}[C'(x) = f(x)] > 1 - \delta$, which contradicts to the assumption of the lemma. The proof is almost identical to that of Lemma 5.3. The circuit C' is of the form $C'(x) = \text{maj}(C_1, \ldots, C_t)$ for some $t \leq \delta^{-2} \epsilon^{-2}$.

Consider the following randomized procedure that defines a sequence of circuits $(C_i)_{i \in \mathbb{N}}$. Start with the constant measure $M_1 = 1$. For a measure M_i, consider the random set $H_i \subseteq \{0,1\}^n$ defined by $x \in H_i$ with probability $M_i(x)$ for all $x \in \{0,1\}^n$. Here, we assume that the random variables $(H_i(x))_{x \in \{0,1\}^n}$ are pairwise independent for the sake of later argument. If $|H_i| < \delta 2^n$, let C_i be an arbitrary size-s circuit (say, the circuit that always outputs 0). Otherwise, let C_i be the oracle circuit $C_{H_i}^H$. Let $R_i(x) = \sum_{j=1}^i [C_{H_i}^H(x) = f(x)]$. Define the measure M_{i+1} by $M_{i+1}(x) = 1$ if $R_i(x) \leq 0$, $M_{i+1}(x) = 0$ if $R_i(x) \geq 1/\gamma$, and $M_{i+1}(x) = 1 - \gamma R_i(x)$ otherwise, where $\gamma := \delta \epsilon$. Terminate this procedure when $\mu(M_{i+1}) < 1 - 0.1 \delta$.

Suppose we obtained C_1, \ldots, C_t by the procedure above and let $C' = \text{maj}(C_1, \ldots, C_t)$. If $C'(x) \neq f(x)$ then $R_i(x) \leq 0$ and thus $M_{t+1}(x) = 1$. Therefore, $\Pr_{x \sim U_n}[C'(x) = f(x)] \geq 1 - \mu(M_{t+1}) < 1 - 0.1 \delta$.

We claim $t \leq \delta^{-2} \epsilon^{-2}$. Consider the potential $P_i = \sum_{x \in \{0,1\}^n} \sum_{i=1}^t |H_i(x)| C_i(x) = f(x) |$, where we recall that $|Z| = 1$ if Z holds and $|Z| = -1$ otherwise. Note that P_i is a random variable due to the random choice of H_i. On one hand, we have

\[P_i \geq \sum_{i \in [t]} |H_i| \sum_{x \in H_i} C_i(x) = f(x) \]

\[\geq \delta 2^n \cdot \sum_{i \in [t]} |H_i| \cdot (2 \Pr_{x \sim H_i}[C_i(x) = f(x)] - 1) \]

\[\geq \delta 2^{n+1} \cdot \{ \{ i \in [t] : |H_i| \geq \delta 2^n \} \}. \]

In the last inequality, we used the property of C_i. By the pairwise independence of $(H_i(x))_{x \in \{0,1\}^n}$, we have $\text{Var}[|H_i(x)|] = \sum_{x \in \{0,1\}^n} M_i(x)(1 - M_i(x)) \leq 2^n$. From the Chebyshev inequality, we obtain $\Pr[|H_i(x)| \geq \delta 2^n] \geq 1 - \frac{\text{Var}[|H_i|]}{(0.01 \delta 2^n)^2} \geq 1 - \frac{10^4}{\delta 2^{n+2}} \geq 1/2$ by our assumption on δ.

16
On the other hand, fix \(x \in \{0,1\}^n \) and consider the edge-weighted digraph \(G_x = (V,A) \) defined by the vertex set \(V = \{R_j : j = 0,\ldots,t\} \) (here we set \(R_0(x) = 0 \)) and edge set \(A = \{(R_{j-1}(x), R_j(x)) : j \in [t]\} \). An edge \((R_{j-1}(x), R_j(x))\) is associated with a weight \(H_j(x)(R_j(x) - R_{j-1}(x)) \in \{0, \pm 1\} \) (note that the weight is a random variable). Note that \(G \) can be seen as a walk on \(Z \) that visits \(R_0(x), R_1(x), \ldots, R_t(x) \) in this order. Then, the sum of edge weights of \(G \) is equal to \(S := \sum_{i \in [t]} H_i(x)[C_i(x) = f(x)] \). For \(a \in \mathbb{Z} \), let \(m(a) = 0 \) if \(a \leq 0 \), \(m(a) = 1 - \gamma a \) if \(0 < a < 1/\gamma \), and \(m(a) = 1 \) if \(1/\gamma \leq a \). Suppose that \(G \) contains a pair of edges of the form \((a,a+1)\) and \((a+1,a)\). This pair in expectation contributes \(E[H_i(x) - H_j(x)] = m(a) - m(a+1) \leq \gamma \) to \(S \) for some \(i,j \in [t] \). Summing up these contributions over at most \(t/2 \) such pairs, the expected contribution of such pairs in \(G \) to \(S \) is at most \(\gamma t/2 \). If we remove these pairs from \(G \), the remaining part is a directed path visiting a sequence of vertices either \((0,1,\ldots,\ell)\) or \((0,-1,\ldots,-\ell)\) for some \(\ell \in \mathbb{N} \). The former pattern has a total weight at most \(1/\gamma \) since an edge \((b,b+1)\) has weight 0 if \(b > 1/\gamma \). The latter one has a total weight at most 0. Therefore, we have \(E[S] \leq \gamma t/2 + 1/\gamma \) and thus \(E[P_t] \leq 2^n(\gamma t/2 + 1/\gamma) \). Combining the upper and lower bounds of \(P_t \), we obtain

\[
\delta \epsilon 2^n \leq E[P_t] \leq 2^n(\gamma t/2 + 1/\gamma),
\]

which implies \(t = O(\delta^{-2}\epsilon^{-2}) \).

Finally, it suffices to show that we can make \(C' \) oracle-free. This can be done by the same argument as the proof of Lemma 5.3 except for sampling \(H_i \). The key difference is that the circuit \(C_{H_i}^M \) has a table \((H_i(z))_{z \in \{0,1\}^n} \) as oracle and looks at \(H_i(q) \) when it makes a query \(q \), as opposed to the oracle circuit \(C_{M_i}^M \) in Lemma 5.3 that samples \(\text{Ber}(M_i(q)) \) when it makes a query \(q \). For example, if the computations \(C_{H_i}^M(x) \) and \(C_{H_i}^M(y) \) for \(x \neq y \) make a query \(q \), then the response \(H_i(q) \) of the oracle must be the same value, while this consistence does not necessarily hold in the oracle circuit \(C_{M_i}^M \). To ensure this consistency efficiently, the circuit \(C_i \) first samples a random function \(h \in \mathcal{H} \) from a pairwise independent hash family \(\mathcal{H} \) and then use \(h \) to sample \(H_i(q) \) for every query \(q \). Note that \(M_i(q) \) is represented by some \(B = O(t\log \gamma^{-1}) \) bits. Let \(W = \{0,\ldots,2B - 1\} \). Then, it suffices to sample pairwise independent random variables \((X_z)_{z \in \{0,1\}^n}\) such that each marginal distribution is \(U_W \). Sample \(r_0 \sim U_W \) and \(r = (r_1,\ldots,r_n) \sim U_W^n \). Let \(h : \{0,1\}^n \rightarrow V \) be the random function defined as \(h(x) = \left(r_0 + \sum_{i \in [n]} x_ir_i\right) \text{ mod } 2B \). Then, the family \((h(x))_{x \in \{0,1\}^n}\) are pairwise independent over the random choice of \(h \) and thus has the desired property. The construction of \(h \) can be done using \(O(nB) = O(nt\log \gamma^{-1}) \) random bits. Suppose that \(C_{H_i}^M \) can transformed to an oracle-free circuit of size \(s_i \). By the argument in the proof of Lemma 5.3 combined with the size for sampling \(h \), we have \(s_{i+1} \leq s + O(kt_i) + nt \log \gamma^{-1} \) and \(s_1 = s \). Therefore, \(C' = \text{maj}(C_1,\ldots,C_t) \) has size at most \(O((s + nt \log(\delta^{-1}\epsilon^{-1}))(t + t^2(Lk)^t)) \) for some constant \(L > 0 \). \(\square \)

5.2 Does Nisan’s Proof Work?

Another well-known approach to the proof of the hard-core lemma exploits the minimax theorem of Neumann, presented by Nisan [Imp95]. We briefly outline the argument and explain why this approach fails to prove the feasible hard-core lemma.

Let \(f : \{0,1\}^n \rightarrow \{0,1\} \) be a function and consider the following two-player zero-sum game. Player 1 chooses a \(\delta \)-dense set \(H \) and Player 2 chooses a size-\(s' \) oracle circuit \(C \). Let \(P(H, C) = \Pr_{x \sim H}[C^H(x) = f(x)] \) be the outcome of the game. The objective of Player 1 (Player 2) is to obtain the small (resp., large) outcome of the game. Two players can take mixed strategy; Player 1 chooses a distribution \(\mathcal{H} \) over all \(\delta \)-dense sets and then samples a set \(H \sim \mathcal{H} \). Similarly, Player 2 decides a distribution \(\mathcal{C} \) over size-\(s' \) oracle circuits and then samples a circuit \(C \sim \mathcal{C} \). The expected
outcome of the game is \(c(H,C) := E_{H \sim H, C \sim C}[P(H,C)] \). Then, the minimax theorem implies

\[
\min_H \max_C c(H,C) = \max_C \min_H c(H,C).
\]

Therefore, one of the following cases holds.

Case 1. \(\min_H \max_C c(H,C) < 1/2 + \epsilon \). Let \(H \) be the distribution that attains the minimum. Then, it holds that \(\max_C E_{H \sim H}[Pr_{x \sim H}[C^H(x) = f(x)]] < 1/2 + \epsilon \). Note that sampling \(x \sim H \) for \(H \sim H \) yields a distribution \(D_H \) of \(x \) over \(\{0,1\}^n \). Let \(M(x) = \delta 2^n D_H(x) \) be a measure.

If \(C \) is oracle-free, then the event \(C^H(x) = f(x) \) does not depends on \(H \). Therefore, we would have \(E_{H \sim H}[Pr_{x \sim H}[C(x) = f(x)]] = Pr_{x \sim M}[C(x) = f(x)] \) and thus the measure \(M \) is the hard-core measure since the event \(C^H(x) = f(x) \) depends on the choice of \(H \), that is, we cannot obtain the equality of the form \(E_{H \sim H}[Pr_{x \sim H}[C^H(x) = f(x)]] = Pr_{x \sim M}[C^H(x) = f(x)] \).

Case 2. \(\max_C \min_H c(H,C) \geq 1/2 + \epsilon \). Let \(C \) be the distribution of circuits that attains the maximum. In the oracle-free setting, the well-known proof in [Imp95] claims that \(C' = \text{maj}(C_1, \ldots, C_t) \) for i.i.d. random circuits \(C_1, \ldots, C_t \sim C \) approximates \(f \) well on \(U_n \). In the feasible hard-core setting, there arise two questions: the way of defining \(C' \) (note that \(C \) is the distribution of oracle circuits but \(C' \) must be oracle-free) and the proof of the performance of \(C' \) on \(U_n \). Indeed, the proof of the performance of \(C' \) on approximating \(f \) crucially depends on the fact that \(C' \) is independent of \(H \).

6 Nearly Disjoint Generator and Computational Design

A \((k,n,\ell)-\text{collection}\) is a family \(S = \{S_1, \ldots, S_k\} \) of subsets such that \(S_i \in \binom{[\ell]}{n} \) for all \(i \in [k] \). Let \(f: \{0,1\}^n \to \{0,1\} \) be a function and \((A,B)\) be a partition of \([n] \). For \(z \in \{0,1\}^B \), we denote by \(f(\cdot|z): \{0,1\}^A \to \{0,1\} \) the function defined by \(f(y|z) = f(y,z) \). Intuitively speaking, computing \(f(y|z) \) is the task of computing \(f(x) \) given a partial input \(z = x|_A \in \{0,1\}^A \) in advance.

Definition 6.1 (Computational Design). Let \(f: \{0,1\}^n \to \{0,1\} \) and \(S = \{S_1, \ldots, S_k\} \) be a \((k,n,\ell)-\text{collection}\). We say that \(S \) is a \(s\)-computational design for \(f: \{0,1\}^n \to \{0,1\} \) if, for every \(i \neq j \) and every \(z \in \{0,1\}^{S \setminus S_i} \), \(f(\cdot|z) \) can be computed by a size-\(s \) circuit \(C_z \).

For example, suppose that a \((k,n,\ell)-\text{collection}\) \(S = \{S_1, \ldots, S_k\} \) satisfies \(|S_i \cap S_j| \leq d \) for any \(i \neq j \). Then, \(S \) is a \(2^{O(d)}\)-computational design for any function.

For a function \(f \) and measure \(M \), define \(f_M: \{0,1\}^n \to \{0,1\} \) as the random function where each \(f_M(x) \) is the output of the following procedure: Toss a coin with head probability \(M(x) \). If the coin is head, then output a uniform random bit \(U_1 \). Otherwise, output \(f(x) \). Let \(f_M^k: \{0,1\}^{n \ell} \to \{0,1\}^k \) be the direct product of \(k \) independent copies of \(f_M \). For a \((k,n,\ell)-\text{collection}\) \(S \), define the function \(\text{ND}_S: \{0,1\}^\ell \to \{0,1\}^{n \ell} \) by

\[
\text{ND}_S(\sigma) = (\sigma|_{S_1}, \ldots, \sigma|_{S_k}).
\]

Recall that, for a function \(f: \{0,1\}^n \to \{0,1\} \),

\[
f^k \circ \text{ND}_S(\sigma) = (f(\sigma|_{S_1}), \ldots, f(\sigma|_{S_k})).
\]
Lemma 6.2. Let $k, \ell \in \mathbb{N}$ be parameters. Let $M : \{0, 1\}^n \to [0,1]$ be any measure and S be a (k, n, ℓ)-collection that is an s-computational design for $f : \{0, 1\}^n \to \{0, 1\}$. Suppose there is a circuit D of size s_D satisfying
\[
\mathbb{E}_{\sigma \sim U_i} [D(\sigma, f^k \circ ND_S(\sigma))] - \mathbb{E}_{\sigma \sim U_i} [D(\sigma, f_M^k \circ ND_S(\sigma))] > \epsilon.
\]
Then there exists a randomized size-$O(sk + s_D)$ k-query f-trapdoor oracle circuit C^M satisfying
\[
\mathbb{E}_{x \sim U_i} [C^M(x, f(x))] - \mathbb{E}_{x \sim U_i} [C^M(x, f_M(x))] > \frac{\epsilon}{k}.
\]

Proof. For every $i = 0, 1, \ldots, k$, let
\[
H_i(\sigma) = (\sigma, f_M(x_1), \ldots, f_M(x_i), f(x_{i+1}), \ldots, f(x_k)),
\]
be the hybrid distribution for $\sigma \sim \{0, 1\}^\ell$ and $(x_1, \ldots, x_k) = ND_S(\sigma)$. Note that $H_0(\sigma) = (\sigma, f^k \circ ND_S(\sigma))$ and $H_k(\sigma) = (\sigma, f_M^k \circ ND_S(\sigma))$. Since the circuit D distinguishes the distributions H_0 and H_k, we have
\[
\epsilon < \mathbb{E}_{y \sim H_0(U_i)}[D(y) = 1] - \mathbb{E}_{y \sim H_k(U_i)}[D(y) = 1] = \sum_{i=1}^{k} \left(\mathbb{E}_{y \sim H_{i-1}(U_i)}[D(y) = 1] - \mathbb{E}_{y \sim H_i(U_i)}[D(y) = 1] \right).
\]
Therefore, $\mathbb{E}_{i \sim [k]} \mathbb{E}_{y \sim H_{i-1}(U_i)}[D(y)] - \mathbb{E}_{y \sim H_i(U_i)}[D(y)] > \epsilon/k$. For $i \in [k]$, partition the random seed $\sigma \sim U_i$ into $\sigma = (x, z)$ for $x := \sigma|_{S_i} \sim \{0, 1\}^n$ and $z := \sigma|_{\ell \setminus S_i} \sim \{0, 1\}^{\ell - n}$ so that the distinguishing property of D can be rewritten as
\[
\mathbb{E}_{i \sim [k]} \mathbb{E}_{(x, z) \sim \{0, 1\}^\ell} \left[\mathbb{E}_{H_{i-1}}[D(H_{i-1}(x, z))] - \mathbb{E}_{H_i}[D(H_i(x, z))] \right] > \epsilon/k.
\]
Here, the probability takes the randomness of the probabilistic function f_M inside H_i and H_{i-1} into account. By averaging, we can fix $i \in [k]$ and $z \in \{0, 1\}^{\ell - n}$ satisfying
\[
\mathbb{E}_{x \sim U_i} [D(H_{i-1}(x, z))] - \mathbb{E}_{x \sim U_i} [D(H_i(x, z))] > \frac{\epsilon}{k}.
\]
For each $j \in [k] \setminus \{i\}$, let $E_j : \{0, 1\}^{S_j} \to \{0, 1\}$ be the probabilistic function defined by
\[
E_j(x) = \begin{cases} f_M(x|_{S_i \cap S_j}, z|_{S_j \setminus S_i}) & \text{if } j < i, \\ f(x|_{S_i \cap S_j}, z|_{S_j \setminus S_i}) & \text{if } j > i. \end{cases}
\]
Note that $E_j(x)$ depends only on $x|_{S_i \cap S_j}$ and the distribution $E_j(U_{S_i})$ coincides with the j-th component of the input drawn from $H_i(U_{S_i}, z)$. By the definition of H_i, the inequality (10) can be rewritten as
\[
\mathbb{E}_{x \sim U_i} [D(x, z, E_1(x), \ldots, E_{i-1}(x), f(x), E_{i+1}(x), \ldots, E_k(x))] - \mathbb{E}_{x \sim U_i} [D(x, z, E_1(x), \ldots, E_{i-1}(x), f_M(x), E_{i+1}(x), \ldots, E_k(x))] > \frac{\epsilon}{k}. \quad (11)
\]
Let C^M be the oracle circuit that, for given input $(x, b) \in \{0,1\}^{n+1}$,

$$C^M(x, b) = D(x, z, E_1(x), \ldots, E_{i-1}(x), b, E_{i+1}(x), \ldots, E_k(x)).$$

The circuit C^M uses the oracle access to M to compute $E_j(x) = f_M(x|S_j \cap S_i, z|S_j \setminus S_i)$ for $j < i$ (Note that $f(x|S_j \cap S_i, z|S_j \setminus S_i)$ can be computed by a size-s circuit since z is fixed and S is an s-computational design for f). Therefore, C^M is a size-$O(ks + sD)$ k-query f-trapdoor oracle circuit. Moreover, C^M has the desired distinguishing property from (11).

\section{Hardness Amplification}

The intersection graph G_S of a (k,n,ℓ)-collection S is the graph on vertex set $[k]$ where a pair of vertices $i,j \in [k]$ forms an edge if and only if $S_i \cap S_j \neq \emptyset$.

\begin{theorem}
Let $n,k,\ell \in \mathbb{N}$ and $\delta \in (0,1)$ be arbitrary. Let $f: \{0,1\}^n \rightarrow \{0,1\}$. Let S be a (k,n,ℓ)-collection that is a size-s computational design for f. Let d_{max} be the maximum degree of the intersection graph of S. Let $g = \oplus_k f_k \circ \text{ND}_S$.

If f is δ-hard for size s_f, then g is $(1/2 - \epsilon)$-hard for size s_g, where ϵ, s_f and s_g satisfy

$$\epsilon \geq \exp\left(-\frac{\delta k}{d_{\text{max}} + 1}\right),$$

$$s_f \leq (sk + s_g)k^{O(k^2/\epsilon^2)}.$$

\end{theorem}

\subsection{Information-Theoretical Hardness of $\oplus_k f_k \circ \text{ND}_S$}

\begin{definition}
For a binary random variable X, let $\text{Bias}[X] := |\Pr[X = 1] - \Pr[X = 0]|$ be the bias of X. For a probabilistic function $h: \{0,1\}^n \rightarrow \{0,1\}$, let $\text{ExpBias}[h] := \mathbb{E}_{x \sim U_n}[\text{Bias}[h(x)]]$. Here, Bias concerns the randomness inside $h(x)$ for every fixed x.

\end{definition}

\begin{lemma} \textup{(e.g., [HV06]).}
Any random function f is $(1/2 - \text{ExpBias}[f]/2)$-hard for any size.
\end{lemma}

\begin{lemma}
Let S be a (k,n,ℓ)-collection and $\alpha(G_S)$ be the size of the maximum independent set of G_S. Let M be a measure of density δ. Then, for any $k > 0$ and $f: \{0,1\}^n \rightarrow \{0,1\}$,

$$\text{ExpBias}[\oplus_k f_k \circ \text{ND}_S] \leq \exp(-\delta \alpha(G_S)).$$

\end{lemma}

\begin{proof}
Fix arbitrary $x_1, \ldots, x_k \in \{0,1\}^n$ and let $\lambda := \prod_{i \in [k]} (1 - M(x_i))$. Then, we can write the distribution of $\bigoplus_{i \in [k]} f_M(x_i)$ (over the random choice of all $f_M(x_i)$) as the convex combination $\bigoplus_{i \in [k]} f_M(x_i) = \lambda 1_A + (1 - \lambda)U_1$, where 1_A denotes the Dirac measure on $A := \bigoplus_{i \in [k]} f(x_i)$. Identifying a distribution over $\{0,1\}$ as a vector $[0,1]^2$, we have

$$\text{ExpBias}[\oplus_k f_k \circ \text{ND}_S] = \mathbb{E}_{(x_1,\ldots,x_k) \sim \text{ND}_S(U_\ell)}[\text{Bias}[\|\lambda 1_A + (1 - \lambda)U_1 - U_1\|_1]]$$

$$= \mathbb{E}_{x_1,\ldots,x_k} [\lambda\|1_A - U_1\|_1]$$

$$\leq 2 \mathbb{E}_{x_1,\ldots,x_k} \left[\prod_{i=1}^m (1 - M(x_i)) \right].$$

Here, $\| \cdot \|_1$ denotes the ℓ^1-norm.

\end{proof}
Let \(U \subseteq [k] \) be an independent set of \(G_S \) of size \(\alpha(G_S) \). For a random seed \(\sigma \in \{0,1\}^\ell \), let \((x_1, \ldots, x_k) = \text{ND}_S(\sigma) \). Note that, if \(\sigma \sim U_\ell \), the random variables \((x_i)_{i \in U} \) are mutually independent and \(x_i \sim U_n \) for every \(i \in U \). Therefore, we obtain

\[
\mathbb{E}_{x_1, \ldots, x_k}[\prod_{i \in [k]}(1 - M(x_i))] \leq \prod_{i \in U} \mathbb{E}_{x \sim U_n}[1 - M(x)] = (1 - \delta)^{|U|} \leq \exp(-|U|\delta).
\]

Corollary 7.5. Under the assumption of Lemma 7.4, the function \(\bigoplus_k f_M^k \circ \text{ND}_S \) is \((1/2 - \exp(-\delta k/(d_{\text{max}} + 1)))\)-hard for any size, where \(d_{\text{max}} \) is the maximum degree of the intersection graph \(G_S \).

Proof. Since any \(k \)-vertex graph with maximum degree \(d_{\text{max}} \) has an independent set of size at least \(k/d_{\text{max}} \), the claim follows from Lemmas 7.3 and 7.4 \(\square \)

7.2 Next-Bit Predictor

We prove that an efficient distinguisher \(D \) for the distributions \((x, f(x))\) and \((x, f_M(x))\) yields a small circuit that computes \(f(x) \) for \(x \sim M \). The proof is identical to the argument of Yao’s next-bit predictor [Yao82].

Lemma 7.6. Let \(M: \{0,1\}^n \rightarrow [0,1] \) be any \(\delta \)-dense measure. Suppose that there exists a randomized oracle circuit \(D^M \) satisfying

\[
\Pr_{x \sim U_n, D^M}[D^M(x, f(x)) = 1] - \Pr_{x \sim U_n, D_M^f}[D^M(x, f_M(x)) = 1] \geq \epsilon.
\]

Then, the randomized oracle circuit \(P^M(x) := 1 \oplus c \oplus D^M(x, c) \) for \(c \sim U_1 \) satisfies

\[
\Pr_{x \sim P^M}[P^M(x) = f(x)] \geq \frac{1}{2} + \frac{\epsilon}{\delta}.
\]

Proof. Note that \(P^M(x) \) outputs \(c \) whenever \(D^M(x, c) = 1 \). Since \(c = f(x) \) with probability \(1/2 \), we have

\[
\Pr_{x \sim P^M}[P^M(x) = f(x)] = \frac{1}{2}\Pr[D^M(x, f(x)) = 1] + \frac{1}{2}\Pr[D^M(x, 1 - f(x)) = 0]
\]

\[
= \frac{1}{2} + \frac{1}{2} \mathbb{E}[D^M(x, f(x)) - D^M(x, 1 - f(x))]
\]

Therefore, it suffices to show \(\mathbb{E}_{x \sim M, D^M}[D^M(x, f(x)) - D^M(x, 1 - f(x))] \geq \frac{2\epsilon}{\delta} \).

For \(x \in \{0,1\}^n \), let \(b_x \sim \text{Ber}(M(x)) \). Consider the distribution \((x, b_x)\) for \(x \sim U_n \). Note that the distribution of \(x \) conditioned on \(b_x = 1 \) is \(M \). To see this, for any fixed \(a \in \{0,1\}^n \), note that

\[
\Pr_{x \sim U_n}[x = a|b_x = 1] = \frac{\Pr[b_x = 1|x = a]\Pr[x = a]}{\Pr_{x \sim U_n}[b_x = 1]} = \frac{M(a)}{\delta 2^n}.
\]
On the other hand, from Corollary 7.5, there is a circuit D making k queries and satisfies $g \leq kC$. From Lemma 6.2, there exists a randomized admissible oracle circuit g and D from Lemma 4.2, there is a circuit g and thus we have

$$
\epsilon \leq \mathbb{E}_{x \sim U_n, D^M}[D^M(x, f(x)) - D^M(x, f_M(x))] = \Pr[b_x = 1] \mathbb{E}_{c \sim U_1, x \sim U_n} [D^M(x, f(x)) - D^M(x, c)|b_x = 1]
$$

$$
= \delta \cdot \mathbb{E}_{x \sim M, c \sim U_1, D^M} [D^M(x, f(x)) - D^M(x, c)]
$$

$$
= \frac{\delta}{2} \mathbb{E}_{x \sim M, D^M} [D(x, f(x)) - D(x, 1 - f(x))].
$$

This completes the proof. \square

7.3 Putting All Together

We combine Lemmas 5.3, 6.2, 7.4 and 7.6 to prove Theorem 7.1.

Proof of Theorem 7.1. Let M be any δ-dense measure and S be a (k, n, ℓ)-collection that is a s-computational design for f. Let d_{max} be the maximum degree of the graph G_S. Let $g = \oplus_k f^k \circ \text{ND}_S$ and $g' = \oplus_k f^k \circ \text{ND}_S$.

We prove the contraposition. Suppose g is not $(1/2 - \epsilon)$-hard for size s_g. From Lemma 4.1, there is a circuit D of size $s_g + O(1)$ satisfying

$$
\mathbb{E}_{\sigma \sim U_n} [D(\sigma, g(\sigma))] - \mathbb{E}_{\sigma \sim U_n, b \sim U_1} [D(\sigma, b)] > \epsilon
$$

On the other hand, from Corollary 7.5, g' is $\left(\frac{1}{2} - \frac{1}{2} \exp \left(- \frac{\delta k}{d_{\text{max}} + 1} \right) \right)$-hard for any size. Hence, the circuit D satisfies

$$
\mathbb{E}_{\sigma \sim U_n} [D(\sigma, g'(\sigma))] - \mathbb{E}_{\sigma \sim U_n, b \sim U_1} [D(\sigma, b)] < \frac{1}{2} \exp \left(- \frac{\delta k}{d_{\text{max}} + 1} \right).
$$

and thus we have $\mathbb{E}_{\sigma \sim U_n} [D(\sigma, g(\sigma))] - \mathbb{E}_{\sigma \sim U_n} [D(\sigma, g'(\sigma))] > \epsilon' := \epsilon - \frac{1}{2} \exp \left(- \frac{\delta k}{d_{\text{max}} + 1} \right)$. From Lemma 4.2, there is a circuit D' of size $s_g + O(k)$ satisfying

$$
\mathbb{E}_{\sigma \sim U_n} \left[D'(\sigma, k \circ \text{ND}_S(\sigma)) \right] - \mathbb{E}_{\sigma \sim U_n} \left[D'(\sigma, f^k_M \circ \text{ND}_S(\sigma)) \right] > \epsilon'.
$$

From Lemma 6.2, there exists a randomized admissible oracle circuit C^M of size $O(sk + s_g)$ that makes k queries and satisfies

$$
\mathbb{E}_{x \sim U_n, C^M} [C^M(x, f(x))] - \mathbb{E}_{x \sim U_n, C^M} [C^M(x, f_M(x))] \geq \epsilon' / k.
$$

From Lemma 7.6, there exists a randomized size-$O(sk + s_g)$ k-query f-trapdoor oracle circuit P^M satisfying

$$
\Pr_{x \sim U_n} [P^M(x) = f(x)] \geq \frac{1}{2} + \frac{\epsilon'}{\delta k}.
$$

22
Finally, from (the contrapositive of) Lemma 5.3, there exists a size \((sk + s_g) \cdot k^{O(k^2/\epsilon^2)}\) circuit \(C\) satisfying \(\Pr_{x \sim U_n}[C(x) = f(x)] \geq 1 - \delta\). Note that, if \(\epsilon \geq \exp\left(-\frac{\delta k}{\sigma_{\text{max}} + 1}\right)\), then \(\epsilon' \geq \frac{\epsilon}{2}\). This implies Theorem 7.1.

8 Triangle Parity on Random Tripartite Graph

We consider the hardness of computing \(\text{TriParity}_n(x)\) defined by (1) for \(x \sim \{0, 1\}^{3n^2}\). Previous works [BSS20; BBB21; Gol20] proves the following worst-case-to-average-case reduction for triangle counting\(^{10}\).

Theorem 8.1 (Worst-case-to-average-case Reduction). There exists an absolute constant \(\epsilon_0 > 0\) satisfying the following: If there exists a \(T(n)\)-time algorithm \(A\) satisfying

\[
\Pr_{x \sim \{0, 1\}^{3n^2}}[A(x) = \text{TriParity}_n(x)] \geq 1 - \epsilon_0
\]

for all \(n\), then, there exists an \(O(T(n))\)-time randomized algorithm \(A'\) such that, for any \(n\) and any input \(x \in \{0, 1\}^{3n^2}\),

\[
\Pr_{A'}[A'(x) = \text{TriParity}_n(x)] \geq 2/3.
\]

This section is devoted to proving the following result.

Theorem 8.2 (Hardness Self Amplification for Triangle Parity). For any \(\delta, \epsilon > 0\), there exists \(a = O(\sqrt{\log(1/\epsilon)/\delta})\) satisfying the following: Suppose that there exists a size-\(s\) circuit \(C\) satisfying

\[
\Pr_{x \sim \{0, 1\}^{3n^2}}[C(x) = \text{TriParity}_n(x)] \geq \frac{1}{2} + \delta.
\]

Then there exists a circuit \(C'\) of size \((n^2 + s) a^{O(a^6/\epsilon^2)}\) such that

\[
\Pr_{x \sim \{0, 1\}^{3(n/a)^2}}[D(x) = \text{TriParity}_{n/a}(x)] \geq 1 - \epsilon.
\]

Proof. We rewrite \(\text{TriParity}_n\) as \(\text{TriParity}_n = \oplus_k \circ \text{TriParity}_{n'}^k \circ \text{ND}_S\) for a \(O(n^2)\)-computational design \(S\) for \(\text{TriParity}_{n'}\), where \(k = a^3\) and \(n' = n/a\). Then we apply Theorem 7.1.

Let \(a = a(\delta, \epsilon) > 0\) be sufficiently large parameter that will be specified later. We assume \(a\) divides \(n\) for simplicity. For each \(i \in [3]\), divide \(V_i\) into \(a\) disjoint subsets \(V_i^{(1)}, \ldots, V_i^{(a)} \subseteq V_i\) each of size \(n/a\). For each \(i_1, i_2, i_3 \in [a]\), let \(S_{i_1, i_2, i_3} \subseteq \{3n^2\}\) be the subset such that the restriction \(x|_{S_{i_1, i_2, i_3}} \in \{0, 1\}^{3(n/a)^2}\) for input \(x\) denotes the edge indicator vector of the induced subgraph of \(x\) induced by \(V_i^{(i_1)} \cup V_i^{(i_2)} \cup V_i^{(i_3)}\) (see Figure 1). Then we can rewrite \(\text{TriParity}_n\) as

\[
\text{TriParity}_n(x) = \bigoplus_{i_1, i_2, i_3 \in [a]} \bigoplus_{v_1 \in V_i^{(i_1)}} \prod_{1 \leq a < b \leq 3} x[v_a, v_b]
\]

\[
= \bigoplus_{i_1, i_2, i_3 \in [a]} \text{TriParity}_{n/a}(x|_{S_{i_1, i_2, i_3}})
\]

\[
= \oplus a^3 \circ \text{TriParity}_{n/a}^3 \circ \text{ND}_S,
\]

\(^{10}\)Actually, the results of [BBB21; Gol20] concern an Erdős–Rényi random graph \(G(n, 1/2)\) but the same technique works for random tripartite graph. For completeness, we prove Theorem 8.1 in Appendix B using the general local-decoding algorithm of [BSS20]
where $S := (s_{i_1,i_2,i_3})_{i_1,i_2,i_3 \in [a]}$.

We claim that S is an $O(n^2)$-computational design for $\text{TriParity}_{n/\alpha}$. Fix different triple of
indices $(i_1, i_2, i_3), (j_1, j_2, j_3) \in [a]^3$ with $(i_1, i_2, i_3) \neq (j_1, j_2, j_3)$ and fix $z \in \{0, 1\}^{S_{i_1,i_2,i_3} \setminus S_{j_1,j_2,j_3}}$. Consider the function $\text{TriParity}_{n/\alpha}(w, z)$ for
for $w \in \{0, 1\}^{S_{i_1,i_2,i_3} \cap S_{j_1,j_2,j_3}}$, where we recall that $\text{TriParity}_{n/\alpha}(w, z) \equiv w \mapsto \text{TriParity}_{n/\alpha}(w, z)$. Note that the string $(w, z) \in \{0, 1\}^{S_{i_1,i_2,i_3}}$ represents
the subgraph of x induced by $V_{i_1} \cup V_{i_2} \cup V_{i_3}$. Thus the function $\text{TriParity}_{n/\alpha}(w, z)$ equals to the parity
of the number of triangle subgraphs contained in the induced subgraph given by S_{i_1,i_2,i_3} but edges
inside S_{j_1,j_2,j_3} are fixed.

Suppose that $i_c \neq j_c$ for all $c \in [3]$. Then, $S_{i_1,i_2,i_3} \cap S_{j_1,j_2,j_3} = \emptyset$ and thus $\text{TriParity}_{n/\alpha}(w, z)$ is a
constant function. Similarly, $S_{i_1,i_2,i_3} \cap S_{j_1,j_2,j_3} = \emptyset$ if $i_1 = j_1, i_2 \neq j_2,$ and $i_3 \neq j_3$. In both cases,
$\text{TriParity}_{n/\alpha}(w, z)$ can be computed by a constant size circuit.

Suppose that $i_1 = j_1, i_2 = j_2,$ but $i_3 \neq j_3$. In this case, the input w denotes edges in
$E(V_{1}^{(i_1)}, V_{2}^{(i_2)})$ and the fixed string z denotes edges in $E(V_{1}^{(i_1)}, V_{3}^{(i_3)}) \cup E(V_{3}^{(i_3)}, V_{2}^{(i_2)})$, where $E(S, T)$
is the set of edges lying between S and T. Therefore, $\text{TriParity}_{n/\alpha}(w, z)$ is a linear function, i.e.,
\[
\text{TriParity}_{n/\alpha}(w, z) = \bigoplus_{u \in V_{i_1}, v \in V_{i_2}} A_{uv} w[u, v]
\]
where $A_{uv} \in \{0, 1\}$ is a constant that depends on the fixed string z (specifically, A_{uv} is the parity
of the number of uv-paths that passes through a vertex in V_3). Therefore, $\text{TriParity}_{n/\alpha}(w, z)$ can be
computed by a size $O(n^2)$ circuit and S is the desired computational design.

Consider the intersection graph G of S. Two vertices $S_{i_1,i_2,i_3}, S_{j_1,j_2,j_3} \in S$ forms an edge in
G if their intersection is nonempty. This occurs if $|\{i_1, i_2, i_3\} \cap \{j_1, j_2, j_3\}| \geq 2$. Therefore, the
maximum degree d_{max} of G is at most $3a$.

Finally, we apply Theorem 7.1. For any $\delta, \epsilon > 0$, take $a = a(\delta, \epsilon) = O(\sqrt{\log(1/\epsilon)} / \delta)$ such that
$\epsilon \geq \exp(-\delta a^3/(3a + 1))$ holds. Then, from the contrapositive of Theorem 7.1, if TriParity_n can be
solved by a size s_g circuit with success probability $1/2 + \epsilon$, then $\text{TriParity}_{n/\alpha}$ can be solved by a size
s_f circuit with success probability $1 - \delta$, where $s_f \leq (n^2 a^3 + s_g) \cdot a^{O(a^2/\epsilon^2)} = (n^2 + s_g) a^{O(a^2/\epsilon^2)}$. □

Combining Theorems 8.1 and 8.2, we immediately obtain Theorem 1.1.

Theorem 8.3 (Reminder of Theorem 1.1). For any constant $\delta > 0$, there exists a constant $a = a(\delta) > 0$ satisfying the following: If there exists a size-s circuit C satisfying $\Pr_{x \sim \{0, 1\}^{3n^2}}[C(x) = \text{TriParity}_n(x)] \geq 1/2 + \delta$, then there exists a randomized circuit C' of size $O(n^2 + s)$ satisfying $\Pr_{C'}[C'(x) = \text{TriParity}_n(x)] \geq 2/3$ for every $x \in \{0, 1\}^{3n^2}$.

Proof. Let C be the size-s circuit satisfying $\Pr_{x \sim \{0, 1\}^{3n^2}}[C(x) = \text{TriParity}_n(x)] \geq 1/2 + \delta$ and $\epsilon_0 > 0$
be the constant mentioned in Theorem 8.1. Then, from Theorem 8.2 with letting $\epsilon = \epsilon_0$, we have a
randomized circuit C_1 of size $O(n^2 + s)$ satisfying $\Pr_{C_1, x \sim \{0, 1\}^{3n^2}}[C_1(x) = \text{TriParity}_{n/\alpha}(x)] \geq 1 - \epsilon_0$
(note that $a = a(\delta, \epsilon)$ is a constant). Then, from Theorem 8.1, we have a circuit C_2 of size
$O(n^2 + s)$ satisfying $\Pr_{C_2}[C_2(x) = \text{TriParity}_{n/\alpha}(x)] \geq 2/3$. By running C'' for many times (without
independent random seeds) and taking majority, we can increase this success probability from $2/3$
to $1 - 1/(3a^3)$. Finally, we reduce TriParity_n to $\text{TriParity}_{n/\alpha}$ using (12). Let C' be the circuit defined
by $C'(x) = \oplus_{i_1, i_2, i_3 \in [a]} C_2(x|s_{i_1,i_2,i_3}),$ where s_{i_1,i_2,i_3} is defined in the proof of Theorem 8.2. By
the union bound, it holds with probability $2/3$ that $C_2(x|s_{i_1,i_2,i_3}) = \text{TriParity}_{n/\alpha}(x|s_{i_1,i_2,i_3})$ for all
$i_1, i_2, i_3 \in [a]$. Therefore, from (12), we have $\Pr_{C'}[C'(x) = \text{TriParity}_n(x)] \geq 2/3$. □
8.1 Can We Extend to k-Clique Counting?

It is known by [BBB21; Gol20] that Theorem 8.1 can be extend to the parity of k-Clique subgraphs in a random k-partite graph (indeed, the result of [BSS20] immediately implies a worst-case-to-average-case reduction for any small subgraph on Erdős–Rényi random graph $G(n, 1/2)$ with a constant error tolerance!). In view of this, it is natural to ask for an extension of Theorem 8.2 to the parity of k-clique or more general graphs.

Unfortunately this is a nontrivial task for our framework. The most difficult part is to construct a computational design. Recall that the proof of Theorem 8.2 is obtained by first constructing a computational design S and then applying Theorem 7.1. The important property of counting triangle subgraphs is that the function f counting the number of triangles in a tripartite graph becomes linear function if edges are partially fixed, which ensures a computational design. We are not aware of whether we can apply the same argument for counting k-clique subgraphs.

9 Online Vector-Matrix-Vector Multiplication Problem

9.1 Framework

We introduce a formal framework for computational complexity of static data structure problems. A (decision) static data structure problem is specified by a function $f : \{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\}$, where the first m bits of input correspond to the static data and the rest n bits correspond to the query. We write $f(x; q)$ to specify the static data x and query q. A circuit $C : \{0, 1\}^{m+n} \rightarrow \{0, 1\}$ has preprocess size s_{pre}, data structure size ℓ, and answer size s_{ans} if there exist circuits $C_{\text{pre}} : \{0, 1\}^m \rightarrow \{0, 1\}^\ell$ of size s_{pre} and $C_{\text{ans}} : \{0, 1\}^m \times \{0, 1\}^\ell \rightarrow \{0, 1\}$ of size s_{ans} such that $C(x; q) := C_{\text{ans}}(C_{\text{pre}}(x), q)$ for all $x \in \{0, 1\}^m, q \in \{0, 1\}^n$. The class of such circuits is denoted by $\mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$. The circuit $C_{\text{pre}}(x)$ can be seen as a preprocess in the sense that C_{pre} outputs a string representing a data structure for given offline input x. Then, C_{ans} receives a query q and the data structure $C_{\text{pre}}(x)$ to compute $f(x; q)$. Note that we do not care update and therefore our framework do not capture dynamic problems. Any circuit $C : \{0, 1\}^{m+n} \rightarrow \{0, 1\}$ of size s has preprocess size m, data structure size m, and answer size s by setting $C_{\text{pre}}(x) = x$ and $C_{\text{ans}}(x) = C(x)$. This corresponds to the case that each query is dealt with an offline algorithm (circuit).

Lemma 9.1. For any $C_1, \ldots, C_t \in (s_{\text{pre}}, \ell, s_{\text{ans}})$ and any circuit $D : \{0, 1\}^\ell \rightarrow \{0, 1\}$ of size s_D, the function $(x, q) \mapsto D(C_1(x; q), \ldots, C_t(x; q))$ can be computed by a circuit $D' \in \mathcal{C}(ts_{\text{pre}}, t\ell, ts_{\text{ans}} + s_D)$.

Proof. Write $C_t(x; q) = C_{\text{ans}}^t(C_{\text{pre}}^t(x), q)$ for two circuits C_{pre} and C_{ans}. Consider $D'_{\text{pre}}(x) := (C_{\text{pre}}^1(x), \ldots, C_{\text{pre}}^t(x)) \in \{0, 1\}^t\ell$ and $D_{\text{ans}}(y_1, \ldots, y_t, q) = D(C_{\text{ans}}^1(y_1, q), \ldots, C_{\text{ans}}^t(y_t, q))$. Then, the circuit $D'(x; q) = D_{\text{ans}}(D'_{\text{pre}}(x), q) \in \mathcal{C}(ts_{\text{pre}}, t\ell, ts_{\text{ans}} + s_D)$ satisfies the claim.

9.2 Hardness Amplification for Static Data Structure Problems

Consider a function $f : \{0, 1\}^m \times \{0, 1\}^n \rightarrow \{0, 1\}$. Let $D_{\text{pre}}, D_{\text{ans}}$ be distributions over $\{0, 1\}^m$ and $\{0, 1\}^n$, respectively. We say that f is δ-hard for $C(s_{\text{pre}}, \ell, s_{\text{ans}})$ over $(D_{\text{pre}}, D_{\text{ans}})$ if, for $C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$, $\Pr_{x \sim D_{\text{pre}}, q \sim D_{\text{ans}}}[C(x; q) = f(x; q)] \leq 1 - \delta$. Unless otherwise noted, D_{pre} and D_{ans} are uniform distributions if we just say that f is δ-hard.

Our hardness amplification result (Theorem 7.1) holds against circuits in $\mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$ since the class is closed under taking majority with a slight blow-up of size due to Lemma 9.1. Let
\(f: \{0, 1\}^{m+n} \to \{0, 1\} \) and \(g: \{0, 1\}^{m'+n'} \to \{0, 1\} \) be functions satisfying
\[
g(x; q) = \oplus_k f^k \circ \text{ND}_S(x; q) = \bigoplus_{i \in [k]} f \left(x |_{S'_i}; q |_{S'_{i'}} \right),
\]
where \(S = (S_i)_{i \in [k]} \) is a \((k, n + m, n' + m')\)-collection, \(S'_i = S_i \cap [m'] \) and \(S'_{i'} = S_i \cap ([m' + n'] \setminus [m']) \) satisfy \(|S_i| = m\) and \(|S'_i| = n\).

Recall that \(S = (S'_i \cup S''_i)_{i \in [k]} \) is a \(s\)-computational design for \(f \) if, for every \(i \neq j \) and every fixed \(w \in \{0, 1\}^{S'_i \setminus S'_j}, z \in \{0, 1\}^{S''_i \setminus S''_j} \), the function \(f \left(x |_{S'_i \setminus S'_j}, w; q |_{S'_i \setminus S'_j}, z \right) : \{0, 1\}^{S'_i \setminus S'_j} \times \{0, 1\}^{S''_i \setminus S''_j} \to \{0, 1\} \) can be computed by a circuit \(C_{w, z} \) of size \(s \). (Note that the circuit \(C_{w, z} \) does not necessarily belong to the class \(C(s_{\text{pre}}, \ell, s_{\text{ans}}) \).)

Theorem 9.2. Let \(n, k \in \mathbb{N} \) and \(\delta \in (0, 1] \) be arbitrary. Let \(f: \{0, 1\}^{n+m} \to \{0, 1\} \). Let \(S \) be a \((k, n + m, n' + m')\)-collection that is a \(s\)-computational design for \(f \). Let \(d_{\text{max}} \) be the maximum degree of the intersection graph of \(S \). Let \(g = \oplus_k f^k \circ \text{ND}_S \).

If \(f \) is \(\delta \)-hard for \(C(s_{\text{pre}}, \ell, s_{\text{ans}}) \), then \(g \) is \((1/2 - \epsilon)\)-hard for size \(C(s'_{\text{pre}}, \ell', s'_{\text{ans}}) \) for some \(s'_{\text{pre}}, \ell', s'_{\text{ans}} \), where the parameters satisfy
\[
\epsilon \geq \exp \left(-\frac{\delta k}{d_{\text{max}} + 1} \right),
\]
\[
s_{\text{pre}} = O(\delta^{-2} \epsilon^{-2} s'_{\text{pre}}),
\]
\[
\ell = O(\delta^{-2} \epsilon^{-2} \ell'),
\]
\[
s_{\text{ans}} = (sk + s'_{\text{ans}} k) \exp(k^2 \epsilon^{-2}).
\]

Proof Sketch. Since the proof is identical to that of Theorem 7.1 (see Section 7.3) we outline only the sketch here.

Suppose that \(g \) is not \((1/2 - \epsilon)\)-hard for \(C(s'_{\text{pre}}, \ell', s'_{\text{ans}}) \). Then, by a slight modification of Lemma 4.1, we obtain a circuit \(D \in C(s'_{\text{pre}}, \ell', s'_{\text{ans}} + O(1)) \) satisfying
\[
\mathbb{E}_{\sigma \sim U_{n'+m'}} [D(\sigma, g(\sigma))] - \mathbb{E}_{\sigma \sim U_{n'+m'}, b \sim U_1} [D(\sigma, b)] > \epsilon.
\]
Here, for the input \(\sigma = (x; q) \in \{0, 1\}^{n'+m'} \) and \(b \in \{0, 1\} \), the circuit \(D \) can be written as
\(D(x; q, b) = D_{\text{ans}}(D_{\text{pre}}(x), q, b) \). Specifically, the circuit \(D(x; q, b) \) outputs 1 if \(g(x; q) = b \) and the uniform random bit otherwise.

For a \(\delta \)-dense measure \(M: \{0, 1\}^{n+m} \to \{0, 1\} \), let \(g'(x; q) \) be the function defined by \(g'(x; q) := \oplus_k f^k \circ \text{ND}_S \in \bigoplus_{i \in [k]} f_M \left(x |_{S'_i}; q |_{S'_{i'}} \right) \), where \(f_M \) is the random function defined by \(f_M(a; b) = f(a; b) \) with probability \(1 - M(a, b) \) and \(f_M(a; b) = U_1 \) with probability \(M(a, b) \) (recall that \(U_1 \) denotes the uniform random bit). Then, by the information-theoretical bound, the function \(g' \) is \(\left(\frac{1}{2} - \frac{1}{2} \exp \left(-\frac{\delta k}{d_{\text{max}} + 1} \right) \right) \)-hard for any size. Therefore, the circuit \(D \) distinguishes \(g(\sigma) \) and \(g'(\sigma) \), i.e.,
\[
\mathbb{E}_{\sigma} [D(\sigma, g(\sigma))] - \mathbb{E}_{\sigma} [D(\sigma, g'(\sigma))] > \epsilon := \epsilon - \frac{1}{2} \exp \left(-\frac{\delta k}{d_{\text{max}} + 1} \right).
\]

Then, by Lemma 4.2, we obtain a circuit \(D' \in C(s'_{\text{pre}}, \ell, s'_{\text{ans}} + O(k)) \) satisfying
\[
\mathbb{E}_{\sigma} [D'(\sigma, f^k \circ \text{ND}_S)] - \mathbb{E}_{\sigma} [D'(\sigma, f_M^k \circ \text{ND}_S)] > \frac{\epsilon}{2},
\]

26
where D' is of the form $D'(x; q, b_j, \ldots, b_k) = D'_{\text{ans}}(D'_{\text{pre}}(x), q, b_j, \ldots, b_k)$.

From the proof of Lemma 6.2, we have a trapdoor oracle circuit $C^M \in \mathcal{C}(s'_{\text{pre}}, \ell, s'_{\text{ans}} + O(ks))$ that makes at most k queries and satisfies

$$\mathbb{E}_{(x:q) \sim U_{n+m}} [C^M(x; q, f(x, q))] - \mathbb{E}_{(x:q) \sim U_{n+m}} [C^M(x; q, f_M(x, q))] > \frac{\epsilon'}{k}.$$

Note that, in the proof of Lemma 6.2, the circuit C^M is of the form

$$C^M(x; q, b) = D'(x; q, C_1(x; q), \ldots, C_{i-1}(x; q), b, C_{i+1}(x; q), \ldots, C_k(x; q)) = D'_{\text{ans}}(D'_{\text{pre}}(x), q, C_1(x; q), \ldots, C_{i-1}(x; q), b, C_{i+1}(x; q), \ldots, C_k(x; q)).$$

where C_i are size-s circuits (since S is a computational design). This construction blows up only the “answer” part.

From Lemma 7.6, we have a randomized trapdoor oracle circuit $P^M \in \mathcal{C}(s'_{\text{pre}}, \ell, s'_{\text{ans}} + O(ks))$ satisfying

$$\Pr_{(x:q) \sim M} [P^M(x; q) = f(x; q)] \geq \frac{1}{2} + \frac{\epsilon'}{\delta k}.$$

Finally, from the proof of Lemma 5.3, there exists a circuit $C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$ that approximates f well over the uniform distribution, where

$$s_{\text{pre}} = O(t s'_{\text{pre}}),$$
$$\ell = O(t' \ell'),$$
$$s_{\text{ans}} = (s k + s'_{\text{ans}} k) \cdot k^{O(t)}$$

for some $t = O(k^2 \epsilon^{-2})$. Note that, in the proof of Lemma 5.3, we claimed that the circuit $C' = \text{maj}(C_1, \ldots, C_t)$ performs well where C_1, \ldots, C_t are circuits chosen by a suitable way. If $C_1, \ldots, C_t \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$, then $C' \in \mathcal{C}(ts_{\text{pre}}, t\ell, ts_{\text{ans}} + O(t))$ from Lemma 9.1.

9.3 Hardness Amplification for OuMv

Let OuMv_n be the function defined by (2). With this notation, the (circuit) OuMv Conjecture can be stated as follows: Any circuit $C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$ of $C(M; u, v) = \text{OuMv}_n(M, u, v)$ satisfies $s_{\text{pre}} + n s_{\text{ans}} = n^{3-o(1)}$.

We consider the average-case complexity of computing OuMv_n where the matrix $M \sim \{0, 1\}^{n \times n}$ and vectors $u, v \sim \{0, 1\}^n$ are uniformly at random.

For completeness, we prove the following worst-case-to-average-case reduction (on uniform computational model) for this problem that was already given by Henzinger et al. [HLS22]. The argument is essentially based on [BLR93].

Theorem 9.3. Suppose that there is a pair $(A_{\text{pre}}, A_{\text{ans}})$ of algorithms runs in time $T_{\text{pre}}(n)$ and $T_{\text{ans}}(n)$ respectively satisfying

$$\Pr_{M \sim \{0, 1\}^{n \times n}, u, v \sim \{0, 1\}^n} [A_{\text{ans}}(A_{\text{pre}}(M), u, v) = \text{OuMv}_n(M, u, v)] \geq 1 - \epsilon$$

27
for all $n \in \mathbb{N}$. Then there is a pair $A' = (A'_{\text{pre}}, A'_{\text{ans}})$ of randomized algorithms runs in time $O(T_{\text{pre}}(n))$ and $O(T_{\text{ans}}(n))$ respectively satisfying

$$\Pr_{A'_{\text{pre}}, A'_{\text{ans}}}[A'_{\text{ans}}(A'_{\text{pre}}(M), u, v) = \text{OuM}_n(M, u, v)] \geq 1 - 8\epsilon$$

for all $n \in \mathbb{N}$ and $M \in \{0, 1\}^{n \times n}$, $u, v \in \{0, 1\}^n$.

Moreover, if the output of A_{pre} has length at most $\ell(n)$, then that of A'_{pre} is at most $2\ell(n)$.

Proof. Let $A_{\text{pre}}, A_{\text{ans}}$ be the algorithms satisfying the assumption. The randomized algorithm $A'_{\text{pre}}(M)$ given input M runs as follows: Sample $R_1 \sim \{0, 1\}^{n \times n}$ and let $R_2 = M - R_1$ and output $(A_{\text{pre}}(R_1), A_{\text{pre}}(R_2))$. The randomized algorithm $A'_{\text{ans}}(u, v)$ given input $u, v \in \{0, 1\}^n$ runs as follows: Sample $r_1, r'_1 \sim \{0, 1\}^n$ independently and let $r_2 = u - r_1$ and $r'_2 = v - r'_1$. Then, output $\sum_{i,j \in [2], k \in [2]} A_{\text{ans}}(A_{\text{pre}}(R_i), r_j, r'_k)$. By the union bound, with probability $1 - 8\epsilon$, we have $A_{\text{ans}}(A_{\text{pre}}(R_i), r_j, r'_k) = \text{OuM}_n(R_i, r_j, r'_k)$ for all $i, j, k \in [2]$. If this holds, we have $A_{\text{ans}}(A'_{\text{pre}}(M), u, v) = \sum_{i,j,k \in [2]} \text{OuM}_n(R_i, r_j, r'_k) = \text{OuM}_n(M, u, v).$}

\[\square\]

Theorem 9.4. For any $\delta, \epsilon > 0$, there exists $a = a(\delta, \epsilon)$ satisfying the following: Suppose there exists a circuit $C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$ such that

$$\Pr_{M,u,v}[C(M; u, v) = \text{OuM}_n(M, u, v)] \geq \frac{1}{2} + \delta.$$

Then, there exists a circuit $C' \in \mathcal{C}(s'_{\text{pre}}, \ell', s'_{\text{ans}})$ such that

$$\Pr_{M,u,v \sim \{0, 1\}^{n/a}}[C'(M; u, v) = \text{OuM}_{n/a}(M, u, v)] \geq 1 - \epsilon,$$

where $s'_{\text{pre}} = O(a^4 \epsilon^{-2} s_{\text{pre}})$, $\ell' = O(a^4 \epsilon^{-2} \ell)$, and $s'_{\text{ans}} = O(n + s_{\text{ans}})a^O(a^4 \epsilon^2)$.

Proof. We rewrite OuM_n as $\text{OuM}_n = \oplus_k \circ (\text{OuM}_{n'})^k \circ \text{ND}_S$ for an $O(n)$-computational design S for $\text{OuM}_{n'}$, where $k = a^2$ and $n' = n/a$. Then we apply Theorem 9.2.

Let $a = a(\delta, \epsilon)$ be a sufficiently large parameter that will be specified later. We assume a divides n for simplicity. Let R, C denote the row and column set of the given matrix M. Then, we have $u \in \{0, 1\}^R$, $v \in \{0, 1\}^C$, and $M \in \{0, 1\}^{R \times C}$. Let R_1, \ldots, R_a and C_1, \ldots, C_a be a partition of R and C such that each R_i and C_i has the same size n/a, respectively. Let $M_{i,j} = M|_{R_i \times C_j} \in \{0, 1\}^{R_i \times C_j}$ be the submatrix of M given by $R_i \times C_j$. Similarly, for given vectors $u \in \{0, 1\}^R$ and $v \in \{0, 1\}^C$, let $u_i = u|_{R_i} \in \{0, 1\}^{R_i}$ and $v_j = v|_{C_j} \in \{0, 1\}^{C_j}$ be the restriction of u on R_i and v on C_j, respectively. Then, we have

$$\text{OuM}_n(M, u, v) = \bigoplus_{i,j \in [a]} \text{OuM}_{n/a}(M_{i,j}, u_i, v_j) = \oplus_k \circ \text{OuM}_{n/a}^k \circ \text{ND}_S,$$

where $S = (S_{i,j})_{i,j \in [a]}$ for $S_{i,j} = (R_i \times C_j) \cup R_i \cup C_j \subseteq (R \times C) \cup R \cup C$.

We claim that S defined above is an $O(n)$-computational design for $\text{OuM}_{n'}$. Fix distinct $S_{i,j}, S_{i',j'} \in S$. Our task is to compute $\text{OuM}_{n/a}(M_{i,j}, u_i, v_j) = u_i^T M_{i,j} v_j$ by an $O(n)$-size circuit where the input is partially hardwired. If $i \neq i'$ and $j \neq j'$, then $S_{i,j} \cap S_{i',j'} = \emptyset$ and thus the input is completely hardwired. If $i = i'$ and $j \neq j'$, then $M_{i,j}$ and v_j are hardwired. In this case, the function $\text{OuM}_{n/a}(M_{i,j}, u_i, v_j) = u_i^T w$ for a fixed w is a linear function and thus computed by an $O(n)$-size circuit. Therefore, S is the desired computational design.
Consider the intersection graph G_S of S. Two distinct vertices $S_{i,j}, S'_{i',j'}$ form an edge if $i = i'$ or $j = j'$. Therefore, G_S has maximum degree at most $2a$.

Finally, we apply Theorem 9.2. For any $\delta, \epsilon > 0$, take $a = a(\delta, \epsilon) = O(\delta^{-1} \log(1/\epsilon))$ such that $\epsilon > \exp(-\delta a^2/(2a + 1))$ holds. Then, from the contrapositive of Theorem 9.2, we obtain the claim.

Combining Theorems 9.3 and 9.4, we obtain Theorem 1.2.

Theorem 9.5 (Reminder of Theorem 1.2). For any constant $\delta > 0$, there exists a constant $a = a(\delta) > 0$ satisfying the following: If there exists a circuit $C \in C(s_{pre}, \ell, s_{ans})$ satisfying $\Pr_{(M,u,v) \sim (0,1)^{n^2+2n}}[C(M; u, v) = \ OuMv_n(M, u, v)] \geq 1/2 + \delta$, then there exists a randomized circuit $C' \in C(O(s_{pre}), O(\ell), O(n + s_{ans}))$ satisfying $\Pr_{C'}[C(M; u, v) = \ OuMv_n(M, u, v)] \geq 2/3$ for every $(M, u, v) \in \{0,1\}^{n \times n} \times \{0,1\}^{2n}$.

Proof. Let $C \in C(s_{pre}, \ell, s_{ans})$ be the circuit of the assumption, i.e., $\Pr_{(M,u,v) \sim U_{n^2+2n}}[C(M; u, v) = \ OuMv_n(M, u, v)] \geq 1/2 + \delta$. Then, from Theorem 9.4 with letting $\epsilon = 0.01$, we have a circuit $C_1 \in C(O(s_{pre}), O(\ell), O(n + s_{ans}))$ satisfying $\Pr_{(M,u,v)}[C_1(M; u, v) = \ OuMv_n(M, u, v)] \geq 99$, where $M \sim \{0,1\}^{(n/a) \times (n/a)}$ and $u, v \sim \{0,1\}^{n/a}$ (note that $a = a(\delta, \epsilon)$ is a constant). Finally, from Theorem 9.3, we have a circuit C_2 such that $\Pr_{C_2}[C_2(M; u, v) = \ OuMv_n(M, u, v)] \geq 2/3$ for any input $(M, u, v) \in \{0,1\}^{(n/a) \times (n/a)} \times \{0,1\}^{2(n/a)}$. By repetition, we can amplify this success probability and thus we may assume that the success probability of C_2 is $1 - 1/(3a^2)$. Note that this repetition occurs a linear-blows in size parameters s_{pre}, ℓ, s_{ans} by Lemma 9.1. Let C' be the circuit defined by $C'(M; u, v) = \oplus_{i,j \in [a]} C_2(M_{i,j}; u_{i,j})$. By the union bound and (13), we have $\Pr_{C'}[C'(M; u, v) = \ OuMv_n(M, u, v)] \geq 2/3$ for any input M, u, v.

9.4 Hardness Amplification for $OuMv_k$ over \mathbb{F}_2

Let $OuMv^{(k)}$ be the function defined by (3). We consider the average-case complexity of computing $OuMv^{(k)}$ for random tensor $M \sim \{0,1\}^{n^k}$ and vectors $u_1, \ldots, u_k \sim \{0,1\}^n$.

The following worst-case-to-average-case reduction is an immediate extension of Theorem 9.3.

Theorem 9.6. Suppose that there is a pair (A_{pre}, A_{ans}) of algorithms runs in time $T_{pre}(n)$ and $T_{ans}(n)$ respectively satisfying

$$\Pr_{M \sim \{0,1\}^{n^k}, u_1, \ldots, u_k \sim \{0,1\}^n} [A_{ans}(A_{pre}(M), u_1, \ldots, u_k) = OuMv_n^{(k)}(M, u_1, \ldots, u_k)] \geq 1 - \epsilon$$

for all $n \in \mathbb{N}$. Then there is a pair $A' = (A'_{pre}, A'_{ans})$ of randomized algorithms runs in time $O(2^{kT_{pre}(n)})$ and $O(2^{kT_{ans}(n)})$ respectively satisfying

$$\Pr_{A'_{pre}, A'_{ans}} [A'_{ans}(A'_{pre}(M), u_1, \ldots, u_k) = OuMv_n(M, u_1, \ldots, u_k)] \geq 1 - 2^{k+1}\epsilon$$

for all $n \in \mathbb{N}$ and $M \in \{0,1\}^{n^k}, u_1, \ldots, u_k \in \{0,1\}^n$.

Moreover, if the output of A_{pre} has length at most $\ell(n)$, then that of A'_{pre} is at most $2\ell(n)$.

Proof. Let A_{pre}, A_{ans} be the algorithms satisfying the assumption. The randomized algorithm $A'_{pre}(M)$ given input M runs as follows: Sample $R_0 \sim \{0,1\}^{n^k}$ and let $R_1 = M - R_0$ and output $(A_{pre}(R_0), A_{pre}(R_1))$. The randomized algorithm $A'_{ans}(u, v)$ given input $u_1, \ldots, u_k \in \{0,1\}^n$ runs as follows: Sample $r_0^{(1)}, \ldots, r_0^{(k)} \sim \{0,1\}^n$ independently and let $r_1^{(i)} = u_i - r_0^{(i)}$. Then, output
Theorem 9.7. For any $\delta, \epsilon > 0$, there exists $a = a(\delta, \epsilon)$ satisfying the following: Suppose there exists a circuit $C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}})$ such that

$$\Pr_{M, u_1, \ldots, u_k} \left[C(M; u_1, \ldots, u_k) = \text{OuMV}_n(k)(M, u_1, \ldots, u_k) \right] \geq \frac{1}{2} + \delta.$$

Then, there exists a circuit $C' \in \mathcal{C}(s'_{\text{pre}}, \ell', s'_{\text{ans}})$ such that

$$\Pr_{M \sim \{0,1\}^{n/a}} \left[C'(M; u_1, \ldots, u_k) = \text{OuMV}_n(k)(M, u_1, \ldots, u_k) \right] \geq 1 - \epsilon,$$

where $s'_{\text{pre}} = O(a^4 \epsilon^{-2} s_{\text{pre}})$, $\ell' = O(a^4 \epsilon^{-2} \ell)$, and $s'_{\text{ans}} = O(n^{k-1} + s_{\text{ans}}) a^{O(a^4 \epsilon^2)}$.

Proof. The proof is almost identical to that of Theorem 9.4. We rewrite $\text{OuMV}_n(k)$ as $\text{OuMV}_n(k) = \oplus_{a^k} \circ (\text{OuMV}_{n'}(k))^{a^k} \circ \text{ND}_S$ for an $O(n^{k-1})$-computational design S for $\text{OuMV}_{n'}(k)$. Then we apply Theorem 9.2.

Let $a = a(\delta, \epsilon)$ be a sufficiently large parameter that will be specified later. We assume a divides n for simplicity. Let $I_1 \times \cdots \times I_k$ denote the index set of the given matrix M. Thus we have $M \in \{0,1\}^{I_1 \times \cdots \times I_k}$, $u_i \in \{0,1\}^{I_i}$ for $i \in [k]$. Divide each I_i into $I_{i,1}, \ldots, I_{i,a}$ each of size n/a. For each $j = (j_1, \ldots, j_k) \in [a]^k$, let $M_j = M|_{I_{j_1} \times \cdots \times I_{j_k}} \in \{0,1\}^{I_{j_1} \times \cdots \times I_{j_k}}$ be the subtensor of M induced by $I_{j_1} \times \cdots \times I_{j_k}$. Similarly, for given vectors $u_i \in \{0,1\}^{I_i}$ and $j \in [a]$, let $u_{i,j} = u_i|_{I_{i,j}} \in \{0,1\}^{I_{i,j}}$ the restriction of u_i on $I_{i,j}$. Then, we have

$$\text{OuMV}_n(k)(M, u_1, \ldots, u_k) = \bigoplus_{j=(j_1,\ldots,j_k)\in[a]^k} \text{OuMV}_n(k)(M_j, u_{1,j_1}, \ldots, u_{k,j_k}),$$

where $S = (S_j)_{j\in[a]^k}$ such that $S_{j_1,\ldots,j_k} = (I_{j_1} \times \cdots \times I_{j_k,j_k}) \cup I_{j_1,j_1} \cup \cdots \cup I_{j_k,j_k}$. We claim that S defined above is an $O(n^{k-1})$-computational design for OuMV_n. Fix distinct $S_{j}, S_{j'} \in S$. We claim that $\text{OuMV}_{n/a}(M_j, u_{1,j_1}, \ldots, u_{k,j_k})$ can be computed by an $O(n^{k-1})$-size circuit if the bits indexed by $S_{j} \setminus S_{j'}$ of the input is hardwired. In this setting, M_j is hardwired since $j \neq j'$. Moreover, there is an index $l \in [k]$ satisfying $j_l \neq j'_l$. For simplicity, suppose $l = k$ for simplicity (the case of other l can be dealt with the same way). Then, $u_{k,j_k} \in \{0,1\}^{n/a}$ is hardwired. Let $W \in \{0,1\}^{(n/a)^{k-1}}$ be the rank-$(k-1)$ tensor satisfying $W(i_1, \ldots, i_{k-1}) = \sum_{i\in[n/a]} M_j(i_1, \ldots, i_{k-1}, x) u_{k,j_k}(i)$. Note that W can be hardwired with $(n/a)^{k-1} = O(n^{k-1})$ bits and thus

$$\text{OuMV}_{n/a}(M_j, u_{1,j_1}, \ldots, u_{k,j_k}) = \bigoplus_{(i_1,\ldots,i_{k-1})\in[n/a]^{k-1}} W(i_1,\ldots,i_{k-1}) \prod_{s\in[k-1]} u_{s,j_s}$$

can be computed by an $O(n^{k-1})$-size circuit. Therefore, S is the desired computational design.

Consider the intersection graph G_S of S. Two distinct vertices $S_j, S_{j'}$ form an edge if and only if $j_i = j'_i$ for some $i \in [k]$. Therefore, G_S has maximum degree at most ka.

Finally, we apply Theorem 9.2. For any $\delta, \epsilon > 0$, take $a = a(\delta, \epsilon)$ such that $\epsilon > \exp(-\delta a^k/(ka + 1))$ holds. Then, from the contrapositive of Theorem 9.2, we obtain the claim. \qed
Theorem 9.8 (Reminder of Theorem 1.3). Let \(\delta > 0 \) be any constant. Suppose that there exists a circuit \(C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}}) \) satisfying

\[
\Pr_{(M,u_1,\ldots,u_k)\sim\{0,1\}^{n^k+kn}}[C(M;u_1,\ldots,u_k) = \text{OuMV}_n^{(k)}(M,u_1,\ldots,u_k)] \geq 1/2 + \delta.
\]

Then, there exists a randomized circuit \(C' \in \mathcal{C}(O(s_{\text{pre}}), O(\ell), O(n^{k-1} + s_{\text{ans}})) \) satisfying

\[
\Pr_{C}[C'(M;u_1,\ldots,u_k) = \text{OuMV}_n^{(k)}(M,u_1,\ldots,u_k)] \geq 2/3
\]

for every \((M,u_1,\ldots,u_k) \in \{0,1\}^{n^k} \times \{0,1\}^{kn} \).

Proof. Let \(C \in \mathcal{C}(s_{\text{pre}}, \ell, s_{\text{ans}}) \) be the circuit of the assumption. From Theorem 9.7 with \(\epsilon = 0.1 \times 2^{-k-1} \), we have a circuit \(C_1 \in \mathcal{C}(O(s_{\text{pre}}, O(\ell), O(n^{k-1} + s_{\text{ans}})) \) satisfying \(\Pr_{(M,u)}[C_1(M;u) = \text{OuMV}_{n/a}^{(k)}(M,u)] \geq 1 - 0.1 \times 2^{-k-1} \), where \(M \sim \{0,1\}^{(n/a)^k} \) and \(u = (u_1,\ldots,u_k) \sim \{0,1\}^{k(n/a)} \) (note that \(a = a(\delta, \epsilon) \) is a constant). From Theorem 9.6, we have a circuit \(C_2 \in \mathcal{C}(O(s_{\text{pre}}, O(\ell), O(n^{k-1} + s_{\text{ans}})) \) satisfying \(\Pr_{C_2}[C_2(M;u) = \text{OuMV}_{n/a}^{(k)}(M,u)] \geq 0.9 \) for any input \((M,u) \in \{0,1\}^{(n/a)^k} \times \{0,1\}^{k(n/a)} \). By repetition, we can amplify this success probability and thus we may assume that the success probability of \(C_2 \) is \(1 - 1/(3a^k) \). Note that this repetition occurs a linear-blows in size parameters \(s_{\text{pre}}, \ell, s_{\text{ans}} \) by Lemma 9.1. Let \(C' \) be the circuit defined by \(C'(M;u) = \oplus_{j \in [a]^k} C_2(M;u_1,j_1,\ldots,u_k,j_k) \). By the union bound over \(j \in [a]^k \) and (13), we have \(\Pr_{C'}[C'(M;u) = \text{OuMV}_{n/a}^{(k)}(M,u)] \geq 2/3 \) for any input \(M,u \).

References

A Balancedness of TriParity

Recall that $\text{TriParity}_n : \{0, 1\}^{3n^2} \to \{0, 1\}$ is the number of triangles modulo 2 contained in the tripartite graph given by x (see (1) for definition). In this section, we prove that $\text{TriParity}(x)$ for $x \sim \{0, 1\}^{3n^2}$ is nearly balanced using the technique of Kolaitis and Kopparty [KK13], who proved that the number of arbitrary fixed subgraphs in an Erdős-Rényi random graph $G(n, p)$ with any constant $p > 0$ modulo a fixed constant is nearly balanced. We first recall the following result that is a special case of [KK13, Lemma 3.3].

Lemma A.1. Let $Z_1, \ldots, Z_m \in \{0, 1\}$ be i.i.d. random variables such that $E[Z_1] = p \in (0, 1)$. Consider the random variable $Q(Z_1, \ldots, Z_m)$, where $Q \in \mathbb{F}_2[z_1, \ldots, z_m]$ is a multivariate degree-d polynomial written as

$$Q(z_1, \ldots, z_m) = \sum_{F \in \mathcal{F}} \prod_{i \in F} z_i$$

for $\mathcal{F} \subseteq \binom{[m]}{d}$.

Suppose that there exists $\mathcal{E} = \{E_1, \ldots, E_r\} \subseteq \mathcal{F}$ satisfying (i) $E_i \cap E_j = \emptyset$ for all $i \neq j$, and (ii) $|F \cap (\bigcup_{i \in [r]} E_i)| < d$ for every $F \in \mathcal{F} \setminus \mathcal{E}$. Then, $|E[(-1)^{\text{TriParity}_n(x)}]| \leq 2^{-\Omega(n)}$, where the hidden constant in $\Omega(\cdot)$ depends on p and d.

Proposition A.2. For $x \sim \{0, 1\}^{3n^2}$, $\text{TriParity}_n(x) = 1$ with probability $\frac{1}{2} + 2^{-\Omega(n)}$.

Proof. We apply Lemma A.1. Note that $\text{TriParity}_n(x)$ can be written as the degree-3 polynomial over i.i.d. binary random variables $(x_i)_{i \in [3n^2]}$. Specifically, write

$$\text{TriParity}_n(x) = \sum_{u \in U, v \in V, w \in W} x_{uv} x_{uw} x_{wu} = \sum_{F \in \mathcal{F}} \prod_{\varepsilon \in F} x_\varepsilon,$$

where U, V, W are the partite vertex set with $|U| = |V| = |W| = n$ and $\mathcal{F} = \{uv, vw, wu \cup \{u \in U, v \in V, w \in W\} \text{ is the set of all possible triangles (here, we identify } uv \text{ with the edge } \{u, v\} \}$. Write $U = \{u_1, \ldots, u_n\}$, $V = \{v_1, \ldots, v_n\}$, and $W = \{w_1, \ldots, w_n\}$. Let $\mathcal{E} = \{u_i v_i, v_i w_i, w_i u_i : i \in [n]\}$ be the set of n vertex-disjoint triangles. Note that for any disjoint $E, E' \in \mathcal{E}$, $E \cap E' = \emptyset$ and for any $F \in \mathcal{F} \setminus \mathcal{E}$, $|F \cap \bigcup_{\varepsilon \in \mathcal{E}} E| \leq 2$. Therefore, from Lemma A.1, we have

$$|\Pr[\text{TriParity}_n(x) = 1] - \Pr[\text{TriParity}_n(x) = 0]| = |E[(-1)^{\text{TriParity}_n(x)}]| \leq 2^{-\Omega(n)}.$$

\Box
B Local Decoding over Grids

In this section, we prove Theorem 8.1 using the following local decoder of $\text{RM}_{n,d,\mathbb{F}_q}$ ([BSS20, Theorem 5.4]) of Bafna, Srinivasan, and Sudan. Note that we can obtain the worst-case-to-average-case reduction for the parity of t-clique subgraphs over $G(n,1/2)$ of [BBB21; Gol20] by the same way.

Lemma B.1. For a finite field \mathbb{F} of characteristic q, let $f: \{0,1\}^n \rightarrow \mathbb{F}$ be a n-variate degree-d polynomial. Then, there are an integer $k = k(d,q) \leq qd$ and an $O\left(\left(\frac{2k}{k}\right)^{n}\right)$-time randomized oracle algorithm A^O that makes at most $(\frac{2k}{k})$ nonadaptive queries and, if the oracle O satisfies $\Pr_x[O(x) = f(x)] \geq 1 - 1/\left(3 \times \left(\frac{2k}{k}\right)\right)$, then $\Pr[A^O(x) = f(x)] \geq 2/3$ for any $x \in \{0,1\}^n$ where the probability is taken for the randomness of A^O.

Proof Sketch. For given input $x \in \{0,1\}^n$, the algorithm A^O runs as follows: Let $k = k(q,d)$ be the smallest power of q that is strictly greater than d. Let $h: [n] \rightarrow [2k]$ be a uniform random map (each $h(j)$ is independently chosen uniformly at random from $[2k]$). For $y \in \{0,1\}^{2k}$, define $z = z(y) \in \{0,1\}^n$ by $z_i = y_{h(i)} \oplus x_j$. Then, output $(\frac{d+k}{k})^{-1} \sum_{y \in B} O(z(y))$ (the operations are over \mathbb{F}), where $B \subseteq \{0,1\}^{2k}$ is the set of binary vector y that is balanced (i.e., exactly k elements of y is one) and the last $k-d$ bits are zero. Note that A^O makes at most $|B| \leq \left(\frac{2k}{k}\right)$ nonadaptive queries.

To see the correctness, consider the function $g(y_1,\ldots,y_{2k}) := f(z_1,\ldots,z_n)$. Note that $g(y) = f(z) = O(z)$ with probability $1 - \left(3 \times \left(\frac{2k}{k}\right)\right)$ for each $y \in B$ (over the choice of h) since h is a uniformly random and y is balanced. Therefore, by the union bound, the output $A^O(x)$ is equal to $(\frac{d+k}{k})^{-1} \sum_{y \in B} g(y)$ with probability at least $2/3$. We refer the proof of the fact that $(\frac{d+k}{k})^{-1} \sum_{y \in B} g(y) = g(0) = f(x)$ to the proof of [BSS20, Lemma 5.1].

Theorem B.2 (Reminder of Theorem 8.1). There exists an absolute constant $\epsilon_0 > 0$ satisfying the following: If there exists a $T(n)$-time algorithm A satisfying

$$\Pr_{x \sim \{0,1\}^{3n^2}}[A(x) = \text{TriParity}_n(x)] \geq 1 - \epsilon_0$$

for all n, then, there exists an $O(T(n))$-time randomized algorithm A' such that, for any n and any input $x \in \{0,1\}^{3n^2},$

$$\Pr_{x \sim A'}[A'(x) = \text{TriParity}_n(x)] \geq 2/3.$$

Proof. The oracle algorithm obtained by applying Lemma B.1 with f being TriParity_n and O being the average-case solver A is the worst-case solver. \hfill \Box