
On Matrix Multiplication and Polynomial Identity Testing

Robert Andrews∗

August 1, 2022

Abstract

We show that lower bounds on the border rank of matrix multiplication can be used to
non-trivially derandomize polynomial identity testing for small algebraic circuits. Letting R(n)
denote the border rank of n× n× n matrix multiplication, we construct a hitting set generator
with seed length O(

√
n ·R−1(s)) that hits n-variate circuits of multiplicative complexity s. If the

matrix multiplication exponent ω is not 2, our generator has seed length O(n1−ε) and hits circuits
of size O(n1+δ) for sufficiently small ε, δ > 0. Surprisingly, the fact that R(n) > n2 already yields
new, non-trivial hitting set generators for circuits of sublinear multiplicative complexity.

1 Introduction

Matrix multiplication is a fundamental algorithmic problem in theoretical computer science. Starting
with the work of Strassen [Str69], who gave an algorithm to multiply two n×n matrices in O(nlog2 7)
time, a long line of work [Pan78; BCRL79; Pan80; Sch81; Rom82; CW82; Str87; CW90; DS13; Vas12;
Le 14; CU03; CKSU05; CU13] has produced faster algorithms to multiply matrices. Progress on
this task is usually measured by ω, the exponent of matrix multiplication, which is the smallest real
number such that matrix multiplication can be performed using O(nω+ε) arithmetic operations for
any positive constant ε > 0. It is evident that 2 6 ω 6 3. Strassen’s [Str69] result can be rephrased
as a proof that ω 6 log2 7. The present state-of-the-art algorithm for matrix multiplication is due to
Alman and Vassilevska Williams [AV21], who proved ω < 2.37286. It is a major open question to
determine whether or not ω = 2.

The complexity of matrix multiplication governs (and in many cases, is equivalent to) the
complexity of numerous problems in linear algebra, including computing the determinant and solving
systems of linear equations [Str69], boolean matrix multiplication [FM71], QR decomposition [Sch73],
LUP decomposition [BH74], and computing the coefficients of the characteristic polynomial of a
matrix [Kel85]. Fast matrix multiplication has also been used to design algorithms for a host of
problems in other areas; examples include recognizing context-free languages [Val75], detecting
k-cliques [NP85], and solving linear programs [CLS21; vdBra20; JSWZ21].

While it is popularly conjectured that ω = 2, progress on obtaining improved upper bounds on
ω has slowed over time. In the three decades since Coppersmith and Winograd [CW90] showed
ω < 2.3755, the best-known bound on ω has improved by only ≈ 0.00264. The improvements
obtained since then [DS13; Vas12; Le 14; AV21] apply Strassen’s so-called laser method [Str87] to
powers of the Coppersmith–Winograd tensor. Recent work [AFL15; BCC+17; BCCGU17; AV18a;
AV18b; Alm21; CVZ19; CLLZ20] has shown that this slow progress is no coincidence: there are
∗Department of Computer Science, University of Illinois Urbana-Champaign. Email: rgandre2@illinois.edu.

Supported by NSF grant CAREER 20-47310.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 111 (2022)

unconditional barriers to obtaining improved bounds on ω using generalizations of this and related
techniques.

There is a dual line of work concerned with proving lower bounds on the complexity of matrix
multiplication. This usually proceeds by proving lower bounds on the rank or border rank of matrix
multiplication, which essentially correspond to the number of multiplications one needs to perform
in order to compute a matrix product. It is known that ω = 2 if and only if the rank (or border
rank) of matrix multiplication is bounded from above by n2+o(1). The best-known lower bound on
the rank of matrix multiplication is 5

2n
2 − 3n by Bläser [Blä99], with an improvement over finite

fields due to Shpilka [Shp03]. For border rank, an approximate version of rank, the current record
is a lower bound of 2n2 − log2(n) − 1, due to Landsberg and Michałek [LM18]. In a somewhat
different vein, Raz [Raz03] showed that any bounded-coefficient circuit computing n× n× n matrix
multiplication must be of size Ω(n2 log n).

Naturally, if ω = 2, one obtains extremely fast algorithms for matrix multiplication, leading to
improved algorithms for a variety of problems. However, it is not clear if there is a useful algorithmic
consequence of the hypothesis ω > 2. The main contribution of this work is an application of the
assumption ω > 2 to the design of algorithms. Specifically, we show that if ω > 2, then one can
non-trivially derandomize polynomial identity testing for small circuits.

Polynomial identity testing (PIT) is the problem of testing whether an algebraic circuit computes
the zero polynomial. There is a simple, fast randomized algorithm for PIT [Sch80; Zip79], but no
non-trivial deterministic algorithm is known. Designing a deterministic polynomial-time algorithm
for PIT is a major goal of algebraic complexity. Typically, this is done by constructing a hitting set
generator, the analogue of a pseudorandom generator in this setting. There has been considerable
success in derandomizing PIT for restricted classes of circuits (see, e.g., Shpilka and Yehudayoff
[SY10] and Saxena [Sax09; Sax14]). For strong models of computation, like formulas and circuits,
only conditional results in the form of hardness-to-pseudorandomness results are known [KI04;
DSY09; CKS19; GKSS22; And20; AF22] (see also [KS19]).

1.1 Our Results

We now describe our result in more detail. We construct a hitting set generator for algebraic circuits
that have a small number of multiplication gates.

Theorem (see Theorem 4.1). Let R(n) denote the border rank of n× n× n matrix multiplication.
There is an explicit hitting set generator of seed length O(

√
nR−1(s)) that hits n-variate circuits with

s multiplication gates.

In terms of the matrix multiplication exponent ω, our generator has seed length O(
√
ns1/ω).

Thus, if ω > 2, we obtain a generator of seed length O(n1−ε) that hits circuits of size O(n1+δ) for
sufficiently small ε, δ > 0. Alternatively, one can phrase this as a win-win result: either ω = 2, giving
us fast algorithms for a large collection of problems; or ω > 2, in which case we obtain a non-trivial
deterministic algorithm for testing identities given by small circuits.

As R(n) > (2− o(1))n2 [LM18], this also yields an unconditional construction of a hitting set
generator with seed length O(

√
ns), which is non-trivial as long as s 6 εn for sufficiently small

ε > 0. It may seem strange to consider circuits of complexity much less than n; for many circuit
classes, such circuits are not even capable of reading their entire input. However, circuits with
few multiplication gates are capable of computing non-trivial polynomials, mainly through the use
of repeated squaring. For example, the polynomial (x1 + · · · + xn)d can be computed using only
O(log d) multiplication gates.

2

To the best of our knowledge, nothing is known about derandomizing PIT for circuits with few
product gates. For very small s, one can obtain non-trivial algorithms by bounding the sparsity of the
computed polynomial and using the Klivans–Spielman generator [KS01]. This strategy breaks down
when s > Ω(log n), as the resulting sparsity bound becomes too large. In contrast, our construction
gives a non-trivial algorithm even when s = εn for ε < 1

192 .
Our result comes within a logarithmic factor of converting all known unconditional hardness

for algebraic circuits into pseudorandomness. The state-of-the-art in explicit lower bounds on
multiplicative complexity dates back to Baur and Strassen [BS83], who showed that the polynomial
xd1 + · · · + xdn requires Ω(n log d) multiplications to compute. If one could construct an explicit
generator whose seed length remains non-trivial for multiplicative complexity s > ω(n log n), then
this would provide an explicit family of n-variate multilinear polynomials of multiplicative complexity
ω(n log n). Of course, it remains a possibility that our generator could be improved to hit circuits of
multiplicative complexity O(n log n) without requiring a breakthrough in circuit lower bounds.

As mentioned earlier, there is a collection of works on the hardness-randomness phenomenon
in algebraic complexity [KI04; DSY09; CKS19; GKSS22; And20; AF22]. Because the assumption
ω > 2 is inherently a circuit lower bound, it seems reasonable to expect that one could instantiate
the hardness-randomness connection in order to directly obtain our result. Though this is the spirit
of our approach, we remark that the known hardness-randomness framework typically incurs some
polynomial overhead in translating a circuit lower bound into a hitting set generator. In particular,
for a weak lower bound of the form Ω(n1+ε) (like what is implied by ω > 2), these techniques fail to
imply any kind of non-trivial derandomization. We note that work by Dutta, Saxena, and Thierauf
[DST21] showed that for a particular class of constant-variate circuits, weak lower bounds can in
fact be used to derandomize PIT. For more on algebraic hardness versus randomness, see the survey
of Kumar and Saptharishi [KS19].

1.2 Our Techniques

We briefly describe our generator and the proof of its correctness. Throughout, we consider n-variate
circuits as taking as input a matrix X of size

√
n×
√
n. Let R(n) be the border rank of n× n× n

matrix multiplication. To construct our generator, we will show that the set of matrices of rank
O(R−1(s)) are a hitting set for circuits with s multiplication gates. This will imply that such a
circuit cannot vanish on the product of an

√
n×O(R−1(s)) matrix and an O(R−1(s))×

√
n matrix,

which yields our generator. Thus, we are faced with the task of showing that no small circuit can
vanish on the set of all matrices of rank O(R−1(s)).

Let r ∈ N and let Ir ⊆ F[X] be the ideal of F[X] generated by the r × r minors of the matrix X.
It is well-known that when the field F is algebraically closed, the ideal Ir consists exactly of those
polynomials that vanish on matrices of rank less than r. Rephrasing our goal, we need to prove
a lower bound of Ω(R(r)) on the number of multiplication gates needed to compute any nonzero
polynomial in the ideal Ir.

Using an observation due to Baur and Strassen [BS83, Corollary 6], a lower bound on the border
rank of matrix multiplication lifts to a lower bound on the border multiplicative complexity of the
polynomial tr(XY Z), where X, Y , and Z are n×n matrices. Results of Andrews and Forbes [AF22]
allow us to further lift this lower bound to the ideal Ir where r is the size of the smallest algebraic
branching program computing tr(XY Z). Because tr(XY Z) can be computed by an algebraic
branching program with O(n2) vertices, we obtain a lower bound of Ω(R(

√
r)) on the multiplicative

complexity of Ir. This suffices to obtain a hitting set generator of seed length O(
√
nR−1(s2)) for

circuits with s product gates. However, such a construction cannot hope to obtain seed length o(n)
for circuits with O(n0.6) product gates, even if the best-known upper bound on ω is tight.

3

To improve the dependence on s in the seed length, we instead lift the lower bound to the ideal Ir
where r is the size of the smallest trace algebraic branching program that computes tr(XY Z). This
polynomial can naturally be computed by a trace ABP of size O(n), which leads to the improved
lower bound of Ω(R(r)) on the multiplicative complexity of Ir. This immediately translates into the
improved seed length of O(

√
nR−1(s)) for our hitting set generator.

To perform this improved lifting step, we essentially need to show that trace ABPs of size s can
be expressed as a determinant of size O(s). We do this using the interpretation of the determinant
as a sum of weighted cycle covers in an ABP, following Valiant [Val79].

2 Preliminaries

Throughout this work, we take F to be a field of characteristic zero. For n ∈ N a natural number,
we write [n] := {1, 2, . . . , n}. We denote by x = (x1, . . . , xn) and X = (xi,j)i∈[n],j∈[m] a vector of
variables and an n×m matrix of variables, respectively. We write F[x] for the polynomial ring in
the variables x. We use Idetn,m,r to denote the ideal of F[X] generated by the r × r minors of a matrix
of variables X. For an n ×m matrix A and subsets R ⊆ [n] and C ⊆ [m], we write AR,C for the
submatrix of A obtained by selecting the rows indexed by R and the columns indexed by C.

2.1 Algebraic Circuits

We briefly recall the notions of algebraic circuits, algebraic branching programs, and trace algebraic
branching programs. For a more thorough treatment of algebraic circuit complexity, we refer the
reader to Shpilka and Yehudayoff [SY10] and Saptharishi [Sap19]. We begin with the definition of
an algebraic circuit.

Definition 2.1. An algebraic circuit is a directed acyclic graph in which every vertex has in-degree
zero or two. Vertices of in-degree zero are called input gates and are labeled by either a field
constant or a variable xi,j . Vertices of in-degree two are called internal gates and are labeled either
as addition or multiplication gates. The gates of the circuit compute polynomials in F[X] in the
natural way. We allow each edge e of the circuit to be labeled by a field constant αe ∈ F, which
has the effect of multiplying the value carried by that edge by αe. We measure the size of a circuit
by the number of gates appearing in the circuit. The multiplicative complexity of a circuit is the
number of multiplication gates appearing in the circuit. ♦

We will also require the notions of algebraic branching programs (ABPs) and trace algebraic
branching programs (trace ABPs).

Definition 2.2. A (single-source, single-sink) algebraic branching program (ABP) is a layered
directed acyclic graph G = (V,E) with a single source vertex s and a single sink vertex t. By layered,
we mean that there is a partition V = V0tV1t · · ·tVd such that V0 = {s}, Vd = {t}, and every edge
in G goes from layer Vi−1 to Vi for some i ∈ [d]. Every edge e of G is labeled by a linear polynomial
`e(x) ∈ F[x]. Let Ps,t be the set of s-t paths in G. The ABP computes the polynomial given by∑

P∈Ps,t

∏
e∈P

`e(x).

The size of the ABP is |V |, the number of vertices in G. The width of the ABP is maxi∈[d] |Vi|.
Equivalently, an ABP is given by a collection of matrices M1(x), . . . ,Md(x) whose entries are

linear polynomials in F[x]. The polynomial computed by the ABP is the (1, 1) entry of the matrix
product M1(x) · · ·Md(x), where the dimensions of the matrices Mi(x) are such that the resulting
product is defined. ♦

4

A trace ABP endows an ABP with multiple sources s1, . . . , sm and sinks t1, . . . , tm. Whereas
an ABP computes a sum over all source-to-sink paths, a trace ABP sums over all si-ti paths for
all choices of i ∈ [m], allowing the ABP to reuse intermediate vertices for these different sums.
Alternatively, when viewing an ABP as a matrix product, a trace ABP corresponds to taking the
trace of the resulting matrix product instead of extracting the (1, 1) entry.

Definition 2.3. A trace algebraic branching program (trace ABP) is a layered directed acyclic graph
G = (V,E) with source vertices s1, . . . , sm and sink vertices t1, . . . , tm. By layered, we mean that
there is a partition V = V0 t V1 t · · · t Vd such that V0 = {s1, . . . , sm}, Vd = {t1, . . . , tm}, and every
edge in G goes from layer Vi−1 to Vi for some i ∈ [d]. Every edge e of G is labeled by a linear
polynomial `e(x) ∈ F[x]. Let Psi,ti be the set of si-ti paths in G. The trace ABP computes the
polynomial given by

m∑
i=1

∑
P∈Psi,ti

∏
e∈P

`e(x).

The size of the ABP is |V |, the number of vertices in G. The width of the ABP is maxi∈[d] |Vi|.
Equivalently, a trace ABP is given by a collection of matrices M1(x), . . . ,Md(x) whose entries

are linear polynomials in F[x]. The polynomial computed by the trace ABP is the trace of the matrix
product M1(x) · · ·Md(x), where the dimensions of the matrices Mi(x) are such that the resulting
product is defined. ♦

It is clear that any polynomial computed by an ABP can be computed by a trace ABP of the
same size and width. Conversely, one can transform a trace ABP into a single-source, single-sink
ABP by duplicating the trace ABP m times, deleting all but one pair of source and sink vertices in
each copy, and identifying the source vertices and sink vertices in the resulting copies. To the best of
our knowledge, this is the best-known simulation of trace ABPs by single-source, single-sink ABPs.

Lemma 2.4. Let f(x) ∈ F[x] be a polynomial computed by a trace ABP of size s and width w. Then
f(x) can be computed by a single-source, single-sink ABP of size ws and width w2.

We will make use of the following result of Baur and Strassen [BS83] that transforms a circuit
that computes a polynomial f(x) into one that computes all first-order partial derivatives of f(x)
while increasing the circuit size by only a constant factor. We state the version of their result for
multiplicative complexity, although an analogous statement holds for circuit size. Note that by
taking F = K(ε) where K is a field, this lemma extends to the setting of border complexity (defined
in Subsection 2.2).

Lemma 2.5 ([BS83]). Let f(x) ∈ F[x] be a polynomial computed by an algebraic circuit of multi-
plicative complexity s. Then there is a multi-output algebraic circuit of multiplicative complexity 3s

that computes
{
f(x), ∂f∂x1 (x), . . . ∂f∂xn (x)

}
.

2.2 Border Complexity

We will crucially make use of border complexity, which is an approximative version of algebraic
computation.

Definition 2.6. Let F be a field and ε be an indeterminate. Let f(x) ∈ F[x] be a polynomial. We
say that a circuit Φ over the field F(ε) border computes f(x) if Φ computes a polynomial of the form

f(x) + ε · g(x, ε),

where g(x, ε) ∈ F[x, ε]. We frequently abbreviate this by saying that Φ computes f(x) +O(ε). ♦

5

Over fields of characteristic zero, one can think of border computation as computing a polynomial
f up to an arbitrarily small error ε. The definition above extends to fields of positive characteristic,
although this will not be relevant for our work. Naturally, one can consider the notion of border
complexity for restricted classes of circuits, like formulas or branching programs.

If C is a class of circuits, we define the closure of C to be the set of polynomials that can be
border computed by a C-circuit. For example, if C is the class of size-s circuits, the closure of C
consists of all polynomials f(x) such that f(x) +O(ε) can be computed by a size-s circuit over F(ε).

In the course of our work, we will prove lower bounds by constructing oracle circuits. The
following lemma says that in the setting of border complexity, one can replace an exact oracle with
an approximate oracle without incurring an increase in circuit size. This makes our job easier, as we
only need to reason about circuits using exact oracles. This lemma is a straightforward consequence
of [Bür04, Lemma 2.3(1)]; for a proof, see, e.g., [AF22, Lemma 2.3].

Lemma 2.7. Let f(x), g(x) ∈ F[x] be polynomials. Suppose f(x)+O(ε) can be computed by a circuit
of size s with g-oracle gates. Let h(x, δ) ∈ FJδK[x] be a polynomial such that h(x, δ) = g(x) +O(δ).
Then there is some N ∈ N such that f(x) + O(ε) can be computed by a circuit of size s with
h(x, εN)-oracle gates.

2.3 Polynomial Identity Testing

We will design polynomial identity testing algorithms that operate on circuits in a black-box manner;
that is, our algorithms will only evaluate the circuit and will not examine the internal structure
of the circuit. This is equivalent to giving an explicit construction of a hitting set for the class of
circuits under consideration.

Definition 2.8. Let C ⊆ F[x] be a set of polynomials. A set H ⊆ Fn is a hitting set for C if for
every nonzero f ∈ C, there is some α ∈ H such that f(α) 6= 0. ♦

Equivalently, one can attempt to construct a hitting set generator, which is analogous to a
pseudorandom generator in this setting.

Definition 2.9. Let C ⊆ F[x] be a set of polynomials. A polynomial map G : F` → Fn is a hitting
set generator for C if for every nonzero f ∈ C, we have f(G(y)) 6= 0. We call ` the seed length of the
generator. The degree of the generator, denoted by deg(G), is given by maxi∈[n] deg(Gi). ♦

One can translate between hitting sets and hitting set generators using the Schwartz–Zippel
lemma [Sch80; Zip79] and polynomial interpolation. We note that if C ⊆ F[X] is a set of degree-d
polynomials and G : F` → Fn is a hitting set generator for C, one obtains a hitting set of size
(d · deg(G) + 1)`. In contrast, one can always construct a hitting set of size (d+ 1)n. Note that a
generator with deg(G) 6 dO(1) and ` 6 o(n) corresponds to a hitting set of size do(n), which is a
super-polynomial improvement over the trivial hitting set of size (d+ 1)n.

2.4 Determinantal Ideals and Matrix Rank

Let X be an n ×m matrix of variables. We denote by Idetn,m,r ⊆ F[X] the ideal of F[X] generated
by the r × r minors of X. We make use the following proposition of Andrews and Forbes [AF22],
which reduces the task of proving lower bounds on all polynomials in Idetn,m,r to the task of proving
lower bounds on products of minors. We note that the polynomial (Kσ|Kσ)(X) appearing in the
statement of [AF22, Proposition 3.5] is exactly the same as the product of determinants that appears
in the proposition below. However, we give a more direct statement of this proposition to avoid the
language of bitableaux and bideterminants, which is unnecessary for the results of this work.

6

Proposition 2.10 ([AF22, Proposition 3.5]). Let f(X) ∈ Idetn,m,r be nonzero. There is a collection of
nm linearly independent linear functions `i,j(X, ε) ∈ F(ε)[X] indexed by (i, j) ∈ [n]× [m], an integer
q ∈ Z, a nonzero α ∈ F, and natural numbers σ1, . . . , σp with σ1 > r such that

f(`1,1(X, ε), . . . , `n,m(X, ε)) = εqα

p∏
i=1

detσi(X[σi],[σi]) +O(εq+1).

It is well-known that when the underlying field F is algebraically closed, the ideal Idetn,m,r consists
exactly of those polynomials which vanish on all matrices of rank less than r. In particular, proving
a lower bound of s on the complexity of all nonzero polynomials in Idetn,m,r equates to proving that
every polynomial of complexity less than s cannot vanish on all matrices of rank less than r. There
is a natural hitting set generator whose image contains all low-rank matrices.

Construction 2.11. Let n,m, r ∈ N with r 6 min(n,m). Define the map Gn,m,r : Fn×r × Fr×m →
Fn×m via

Gn,m,r(Y,Z)i,j := (Y Z)i,j .

It is evident from its definition that the generator of Construction 2.11 contains in its image all
n ×m matrices of rank at most r. The connection between matrix rank and the ideal Idetn,m,r can
be used to prove the following lemma. For the sake of completeness, we provide a proof (the same
proof can be found in the discussion preceding [AF22, Lemma 2.10]).

Lemma 2.12. Let F be any field and let n,m, r ∈ N with r 6 min(n,m). Let Idetn,m,r ⊆ F[X] denote
the ideal of F[X] generated by the r × r minors of a generic n×m matrix X and let f(X) ∈ F[X].
Then f(Gn,m,r−1(Y,Z)) = 0 if and only if f(X) ∈ Idetn,m,r.

Proof. If f(X) ∈ Idetn,m,r, then we can write f as f(X) =
∑N

i=1 gi(X)hi(X) where the polynomials
{g1, . . . , gN} are the r × r minors of X. Because the image of Gn,m,r−1(Y,Z) is necessarily a matrix
of rank at most r− 1, each r× r minor of Gn,m,r−1(Y, Z) vanishes, i.e., gi(Gn,m,r−1(Y, Z)) = 0 for all
i ∈ [N]. This implies f(Gn,m,r−1(Y,Z)) = 0.

To prove the converse direction, we first work under the assumption that the field F is algebraically
closed. Suppose that f(Gn,m,r−1(Y, Z)) = 0. Let Jn,m,r−1 ⊆ F[X] be the ideal of F[X] consisting
of polynomials that vanish on the set of matrices of rank at most r − 1. Because the image of
Gn,m,r−1(Y, Z) contains all matrices of rank at most r − 1, we have f ∈ Jn,m,r−1. To show that
f ∈ Idetn,m,r, we will prove the equality Idetn,m,r = Jn,m,r−1.

The inclusion Idetn,m,r ⊆ Jn,m,r−1 is immediate, as the r× r minors vanish on matrices of rank less
than r. For the inclusion in the reverse direction, we use the correspondence between ideals and
varieties. Recall that for an ideal I ⊆ F [X], we denote by V (I) ⊆ Fn×m the variety of I, defined as

V (I) := {A ∈ Fn×m : ∀h(X) ∈ I, h(A) = 0}.

Let V (Idetn,m,r) be the variety over F defined by the ideal Idetn,m,r and let A ∈ V (Idetn,m,r) be a point
in this variety. By definition, each r × r minor of A vanishes, so rank(A) 6 r − 1, which implies
A ∈ V (Jn,m,r−1). This shows V (Idetn,m,r) ⊆ V (Jn,m,r−1). By Hilbert’s Nullstellensatz, this implies√
Jn,m,r−1 ⊆

√
Idetn,m,r, where

√
I denotes the radical of an ideal I. The ideal Idetn,m,r is radical (see,

e.g., [BV88, Theorem 2.10 and Remark 2.12]), so we have the desired inclusion

Jn,m,r−1 ⊆
√
Jn,m,r−1 ⊆

√
Idetn,m,r = Idetn,m,r.

7

This proves Jn,m,r−1 = Idetn,m,r, hence f(X) ∈ Idetn,m,r as claimed.
If F is not algebraically closed, we can still consider f(X) as a polynomial over the algebraic

closure F. If f(Gn,m,r−1(Y,Z)) = 0, the previous argument implies that f ∈ Idetn,m,r when Idetn,m,r is
considered as an ideal over F. Letting IF and IF denote Idetn,m,r when considered as an ideal over F
and F, respectively, we have f ∈ IF ∩ F[x]. Lemma 2.13 below shows that IF ∩ F[x] = IF, so we in
fact have f ∈ IF as desired.

The following is an elementary lemma used in the proof of Lemma 2.12 in the case where F is
not algebraically closed. In the spirit of keeping this work self-contained, we provide a proof.

Lemma 2.13. Let F be a field and let K ⊇ F be an extension of F. Let {g1, . . . , gm} ⊆ F[x] be a set
of polynomials. Let IF and IK be the ideals generated by {g1, . . . , gm} over F[x] and K[x], respectively.
Then IF = IK ∩ F[x].

Proof. The inclusion IF ⊆ IK ∩F[X] is immediate. For the other direction, let {v1, v2, . . .} be a basis
of K as a vector space over F with the additional property that v1 spans F. Consider the linear
projection π : K→ F that sends v1 to itself and vi to zero for i > 2. We extend π to a projection
π : K[X] → F[X] by applying the projection from K to F coefficient-wise. Let f(X) ∈ IK ∩ F[X]
be given by f(X) =

∑N
i=1 gi(X)hi(X). We claim that f(X) =

∑N
i=1 gi(X)π(hi(X)), which proves

f(X) ∈ IF as desired.
To see this, let m be a monomial and consider the coefficient Coeffm(f) of m in f . Because

Coeffm(f) ∈ F[X], we have π(Coeffm(f)) = Coeffm(f). Using the fact that π is F-linear, this implies

Coeffm(f) = π(Coeffm(f))

=
N∑
i=1

π(Coeffm(gihi))

=
N∑
i=1

∑
m=m1m2

π(Coeffm1(gi) Coeffm2(hi))

=
N∑
i=1

∑
m=m1m2

Coeffm1(gi)π(Coeffm2(hi))

=
N∑
i=1

Coeffm(giπ(hi)),

where the inner sum is over all monomials m1 and m2 whose product is m. The equality

π(Coeffm1(gi) Coeffm2(hi)) = Coeffm1(gi)π(Coeffm2(hi))

follows from the fact that π is F-linear and Coeffm1(gi) ∈ F. Thus, f(X) =
∑N

i=1 gi(X)π(hi(X)).

One can use Lemma 2.12 to design PIT algorithms for circuit classes C that are too weak to
efficiently compute a nonzero element of Idetn,m,r. If every small C-circuit cannot compute a nonzero
element of Idetn,m,r, then Lemma 2.12 implies that the map Gn,m,r−1(Y,Z) of Construction 2.11 is a
hitting set generator for the class of small C-circuits.

8

2.5 Complexity of Matrix Multiplication

This subsection introduces the language of tensors and their relationship with the complexity of
matrix multiplication. For a more thorough treatment of tensors and matrix multiplication, we refer
the reader to Bürgisser, Clausen, and Shokrollahi [BCS97, Chapters 14 and 15] and Bläser [Blä13].

For our purposes, a tensor T of order d is a set-multilinear polynomial in d disjoint sets of
variables X(1), . . . , X(d). The fact that T is set-multilinear means that every monomial appearing
in T is a product of d variables, where exactly one of these variables is taken from each of the sets
X(1), . . . , X(d). That is, we can write T as

T (X(1), . . . , X(d)) =

n1∑
i1=1

· · ·
nd∑
id=1

ti1,...,idx
(1)
i1
· · ·x(d)id .

We say that a tensor is rank-one if there are linear forms `1(X(1)), . . . , `d(X
(d)) such that

T (X(1), . . . , X(d)) = `1(X
(1)) · · · `d(X(d)).

The rank of T , written as R(T), is the minimal r such that T can be written as a sum of rank-one
tensors. The border rank of T , denoted by R(T), is the minimal r such that T can be obtained as
a limit of rank-r tensors. More explicitly, a tensor T has border rank r if there are linear forms
`i,j(X

(i), ε) ∈ F(ε)[X(i)] such that

r∑
j=1

d∏
i=1

`i,j(X
(i), ε) = T (X(1), . . . , X(d)) +O(ε)

and there is no such expression for T +O(ε) involving fewer than r rank-one tensors.
We denote by 〈n,m, p〉 the order-3 tensor

〈n,m, p〉 :=

n∑
i=1

m∑
j=1

p∑
k=1

xi,jyj,kzi,k,

which corresponds to the multiplication of an n × m matrix with an m × p matrix. Note that
〈n,m, p〉 = tr(XY Z>), a fact that we will use later on.

The complexity of n× n× n matrix multiplication is captured by the rank of the tensor 〈n, n, n〉
(see, e.g., [BCS97, Proposition 15.1]). We now define ω, the exponent of matrix multiplication.

Definition 2.14. ω := inf{τ ∈ R : R(〈n, n, n〉) 6 O(nτ)}. ♦

Bini [Bin80] showed that one can equivalently define ω in terms of the border rank of 〈n, n, n〉.

Lemma 2.15 ([Bin80]). ω = inf{τ ∈ R : R(〈n, n, n〉) 6 O(nτ)}.

As mentioned in the introduction, the obvious bounds on ω are 2 6 ω 6 3. The best-known
upper bound on ω is due to Alman and Vassilevska Williams [AV21].

Theorem 2.16 ([AV21]). ω < 2.37286.

It is popularly conjectured that ω = 2. There has been some progress on lower bounds for
R(〈n, n, n〉), with the best-known lower bound due to Landsberg and Michałek [LM18].

Theorem 2.17 ([LM18]). R(〈n, n, n〉) > 2n2 − log2 n− 1.

9

One can also consider the multiplicative complexity of matrix multiplication, where we do
not restrict ourselves to computing variable-disjoint products of the form `1(X)`2(Y), but instead
consider products `1(X,Y)`2(X,Y) of arbitrary linear polynomials. The following lemma shows
that for matrix multiplication, border rank and border multiplicative complexity differ by at most
a factor of 2. In the case of (exact) rank and multiplicative complexity, this is a well-known fact
(see, e.g., [BCS97, Eqn. 14.8] and the discussion preceding it). The proof for the case of border
computation is nearly identical.

Lemma 2.18 (cf. [BCS97, Eqn. 14.8]). Let L(n) denote the border multiplicative complexity of
n× n× n matrix multiplication. Then L(n) 6 R(〈n, n, n〉) 6 2 L(n).

3 Lifting Border Rank Lower Bounds to Determinantal Ideals

In this section, we will show that lower bounds on the border rank of matrix multiplication can be
lifted to lower bounds on the border multiplicative complexity of any nonzero polynomial in the ideal
Idetn,m,r ⊆ F[X]. Letting R(n) := R(〈n, n, n〉) be the border rank of n× n× n matrix multiplication,
our goal will be to prove a lower bound of order R(r) on the border multiplicative complexity of the
ideal Idetn,m,r. To do this, we make use of tools recently developed by Andrews and Forbes [AF22] to
prove lower bounds on the complexity of polynomials in this ideal.

We now state and prove our main technical lemma, which is an analogue of [AF22, Lemma 3.6]
for trace ABPs.

Lemma 3.1. Let F be a field of characteristic zero. Let X(1), . . . , X(m) be matrices of variables,
where X(i) is an ni × ni+1 matrix and n1 = nm+1. Let N :=

∑m+1
i=1 ni. Let σ = (σ1, . . . , σp)

be a non-increasing sequence of natural numbers with σ1 > N . Then there is a matrix M ∈
F(ε)[X(1), . . . , X(m)]σ1×σ1 where each entry Mi,j is either a constant or a scalar multiple of a
variable and we have

p∏
i=1

det(M[σi],[σi]) = 1 + ε tr(X(1) · · ·X(m)) +O(ε2).

Proof. Without loss of generality, it suffices to consider the case where σ1 = N . If instead σ1 > N ,
we extend the matrix M to a σ1 × σ1 matrix by placing ones along the main diagonal and zeroes
elsewhere.

Let G be the underlying directed graph of the trace ABP that computes tr(X(1) · · ·X(m)). We
modify G as follows:

• Add a self-loop of weight 1 to every vertex of G.

• Let s1, . . . , sn1 denote the sources of G and t1, . . . , tn1 the corresponding sinks. Add an edge
of weight ε from ti to si for every i ∈ [n1].

Let G′ denote the resulting graph and let M ′ be the adjacency matrix of G′, i.e.,

M ′ :=

In1 X(1) 0 0 · · · 0 0

0 In2 X(2) 0 · · · 0 0

0 0 In3 X(3) · · · 0 0
0 0 0 In4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · Inm−1 X(m)

εIn1 0 0 0 · · · 0 Inm

.

10

We will first determine
∏p
i=1 det(M ′[σi],[σi]), after which we will modify M ′ to obtain the desired

matrix M .
Fix some k ∈ [N]. If k 6

∑m−1
i=1 ni, then it is clear that det(M ′[k],[k]) = 1, as M ′[k],[k] is an upper

triangular matrix with ones along the diagonal. For k in the range N − nm < k 6 N , we compute
det(M ′[k],[k]) using the cycle cover interpretation of the determinant.

Let G′k denote the graph whose adjacency matrix is M ′[k],[k]. Recall that det(M ′[k],[k]) can be
computed as

det(M ′[k],[k]) =
∑

C∈C (G′k)

(−1)even(C)π(C),

where C (G′k) is the set of all cycle covers in G′k, even(C) is the number of even cycles in C, and
π(C) is the product of the weights on the edges appearing in the cycle cover C. We partition the
set of cycle covers of G′k into three sets: those containing no edges of weight ε, those containing
exactly one edge of weight ε, and those containing two or more edges of weight ε. In each case, we
determine the contribution of these cycle covers to det(M ′[k],[k]).

• Suppose C is a cycle cover with no edges of weight ε. The construction of G′k implies that
C must be the cycle cover consisting entirely of self-loops. This cycle cover contributes 1 to
det(M ′[k],[k]).

• Let C be a cycle cover containing exactly one edge labeled ε. By the construction of G′k, the
cycle in C containing the edge labeled ε must correspond to a path from si to ti in G for some
i ∈ [k − (N − nm)] together with the ε edge from ti to si. Because every non-trivial cycle
in G′k must use an edge labeled ε, the remaining cycles in C consist of self-loops. Thus, C
contributes a term of the form

(−1)m+1εX
(1)
i,i2
X

(2)
i2,i3
· · ·X(m−1)

im−1,im
X

(m)
im,i

.

to det(M ′[k],[k]), where the factor of (−1)m+1 accounts for the parity of the length of the
non-trivial cycle. There is exactly one such cycle cover for every i ∈ [k − (N − nm)] and every
path from si to ti in Gk. This implies that the set of all cycle covers containing exactly one
edge of weight ε contributes

(−1)m+1ε

N−nm+k∑
i1=1

∑
i2,...,im

X
(1)
i1,i2

X
(2)
i2,i3
· · ·X(m)

im,i1

= (−1)m+1ε tr((X(1) · · ·X(m))[k−(N−nm)],[k−(N−nm)])

to det(M ′[k],[k]).

• Finally, consider the case when C is a cycle cover containing two or more edges labeled by ε.
By definition, this cycle cover contributes an O(ε2) term to det(M ′[k],[k]), which we consider
negligible.

In summary, we have

det(M ′[k],[k]) = 1 + (−1)m+1ε tr((X(1) · · ·X(m))[k−(N−nm)],[k−(N−nm)]) +O(ε2).

11

Using this, we now determine
∏p
i=1 det(M ′[σi],[σi]). Let ai := |{j ∈ [p] : σj = i}| count the number of

elements of σ equal to i. The analysis above implies

p∏
i=1

det(M ′[σi],[σi]) =
N∏
k=1

det(M ′[k],[k])
ak

=

nm∏
`=1

det(M ′[N−nm+`],[N−nm+`])
aN−nm+`

=

nm∏
`=1

(
1 + (−1)m+1ε tr((X(1) · · ·X(m))[`],[`]) +O(ε2)

)aN−nm+`

=

nm∏
`=1

(
1 + (−1)m+1εaN−nm+` tr((X(1) · · ·X(m))[`],[`]) +O(ε2)

)
= 1 + (−1)m+1ε

nm∑
`=1

aN−nm+` tr((X(1) · · ·X(m))[`],[`]) +O(ε2)

= 1 + (−1)m+1ε

nm∑
i=1

[(
nm∑
`=i

aN−nm+`

)
(X(1) · · ·X(m))i,i

]
+O(ε2).

We now perform a change of variables to transform the matrix M ′ into the desired matrix M .
Let A be the diagonal matrix given by

Ai,i =
1∑nm

`=i aN−nm+`
.

(Note that the entries of A are well-defined, since aN > 1 and ai > 0 for all i ∈ [N].) Let M be the
image of M ′ under the change of variables X(1) 7→ (−1)m+1AX(1). Then we have

p∏
i=1

det(M[σi],[σi]) = 1 + (−1)m+1ε

nm∑
i=1

[(
nm∑
`=i

aN−nm+`

)
((−1)m+1AX(1) · · ·X(m))i,i

]
+O(ε2)

= 1 + ε

nm∑
i=1

[
A−1i,i Ai,i(X

(1) · · ·X(m))i,i

]
+O(ε2)

= 1 + ε

nm∑
i=1

(X(1) · · ·X(m))i,i +O(ε2)

= 1 + ε tr(X(1) · · ·X(m)) +O(ε2).

Remark 3.2. In the proof of the preceding lemma, suppose we were to add edges of weight 1 from
ti to si for each i and add self-loops of weight 1 to all vertices. To compute tr(X(1) · · ·X(d)) using
the cycle cover interpretation of the determinant, we want to restrict ourselves to only count cycle
covers containing a single edge ti-si edge. We accomplish this by multiplying the weight of each such
edge by a factor of ε, which guarantees that the linear term of the determinant of the adjacency
matrix corresponds to cycle covers using exactly one ti-si edge. In fact, we get more: the coefficient
of εk in the determinant of the adjacency matrix corresponds to cycle covers using exactly k such
edges.

A similar idea is used in algorithms for “exact” problems in combinatorial optimization. For
example, the algorithms of Barahona and Pulleyblank [BP87] for counting exact arborescences and

12

exact perfect matchings in planar graphs modify the edge weights of the graph in a manner similar
to what we do in the proof of Lemma 3.1. By exploiting the notion of border complexity, we avoid
an interpolation step used in these combinatorial algorithms. ♦

Using the preceding lemma, we establish an analogue of [AF22, Theorem 3.8] for trace ABPs.

Proposition 3.3. Let F be a field of characteristic zero. Let f(X) ∈ Idetn,m,r be a nonzero polynomial
and let h(X, ε) ∈ FJεK[X] be any polynomial such that h(X, ε) = f(X) +O(ε). Let g(y) ∈ F[y] be a
polynomial in the border of layered trace algebraic branching programs with at most r vertices. Then
there is a depth-three h-oracle circuit Φ defined over F(ε) such that the following hold.

1. Φ has nm addition gates at the bottom layer, a single h-oracle gate in the middle layer, and a
single addition gate at the top layer.

2. Φ computes g(y) +O(ε).

Proof. By Lemma 2.7, it is sufficient to consider the case where the oracle gates compute f(X) exactly.
Using Proposition 2.10, there are nm linear functions {`i,j(X, ε) ∈ F(ε)[X] : (i, j) ∈ [n]× [m]}, an
integer q ∈ Z, a nonzero α ∈ F, and a sequence σ = (σ1, . . . , σp) of natural numbers with σ1 > r
such that

f(`1,1(X, ε), . . . , `n,m(X, ε)) = εqα

p∏
i=1

det(X[σi],[σi]) +O(εq+1).

By assumption, there is a polynomial g̃(y, ε) ∈ F(ε)[y] such that g̃(y, ε) = g(y) +O(ε) and that
g̃(y, ε) can be computed by a layered trace ABP on s vertices for some s 6 r. That is, there are
matrices of variables Z(1), . . . , Z(m), where Z(i) is an ni × ni+1 matrix, we have n1 = nm+1, and∑m+1

i=1 = s, along with a projection ϕ : Z(1)∪· · ·∪Z(m) → y∪F(ε) such that tr(ϕ(Z(1)) · · ·ϕ(Z(m))) =
g̃(y, ε).

Applying Lemma 3.1 to the matrices Z(1), . . . , Z(m) and the sequence (σ1, . . . , σp), we obtain a
matrix M(Z, ε) ∈ F(ε)[Z(1), . . . , Z(m)]r×r such that

p∏
i=1

det(M(Z, ε)[σi],[σi]) = 1 + ε tr(Z(1) · · ·Z(m)) +O(ε2).

We now compose f(X), the linear functions `i,j(X, ε), the matrix M(Z, ε), and the projection
ϕ : Z → y ∪ F(ε). Let

h(y, ε, δ) := f(`1,1(M(ϕ(Z), δ), ε), . . . , `n,m(M(ϕ(Z), δ), ε)).

The preceding discussion implies

h(y, ε, δ) = εqα ·
p∏
i=1

det(M(ϕ(Z), δ)[σi],[σi]) +O(εq+1)

= εqα ·
(

1 + δ tr(ϕ(Z(1)) · · ·ϕ(Z(m))) +O(δ2)
)

+O(εq+1)

= εqα+ εqδαg̃(y, ε) +O(εqδ2) +O(εq+1).

Performing the substitution ε 7→ ε2 and δ 7→ ε, we obtain

h(y, ε2, ε) = ε2qα+ ε2q+1αg̃(y, ε2) +O(ε2q+2)

= ε2qα+ ε2q+1αg(y) +O(ε2q+2).

13

The desired f -oracle circuit is then given by

Φ(y) :=
h(y, ε2, ε)− ε2qα

ε2q+1α
= g(y) +O(ε).

We now use Proposition 3.3 to lift lower bounds on the border rank of matrix multiplication to
lower bounds on the border multiplicative complexity of the ideal Idetn,m,r.

Theorem 3.4. Let F be a field of characteristic zero. The border multiplicative complexity of any
nonzero polynomial in Idetn,m,r is bounded from below by 1

6 R(r/4), where R(n) := R(〈n, n, n〉) is the
border rank of n× n× n matrix multiplication.

Proof. Let Φ be a circuit of border multiplicative complexity s computing a nonzero polynomial in
Idetn,m,r. Let X, Y , and Z be r/4× r/4 matrices of variables. The polynomial tr(XY Z) can naturally
be computed by a layered trace ABP on r vertices. Applying Proposition 3.3 to the circuit Φ yields a
circuit Ψ of multiplicative complexity s that computes tr(XY Z) +O(ε). We then apply Lemma 2.5
to Ψ to obtain a circuit of multiplicative complexity 3s that simultaneously computes all first-order
partial derivatives of tr(XY Z) +O(ε).

Observe that the partial derivative of tr(XY Z) with respect to zj,i is, up to the O(ε) error term,
the (i, j) entry of the matrix product XY . Thus, we have a circuit of multiplicative complexity 3s
that approximates the product of two r/4× r/4 matrices. By Lemma 2.18, this implies that the
border rank of r/4× r/4× r/4 matrix multiplication is bounded from above by 6s. That is, we have
R(r/4) 6 6s. This yields the claimed lower bound on the multiplicative complexity of any nonzero
polynomial in Idetn,m,r.

Combining Theorem 2.17 with Theorem 3.4 yields the following unconditional lower bound on
the border multiplicative complexity of all nonzero polynomials in the ideal Idetn,m,r.

Corollary 3.5. The border multiplicative complexity of any nonzero polynomial in Idetn,m,r is bounded
from below by 1

48r
2 − 1

6 log2 r + 1
6 .

4 Constructing a Hitting Set Generator

In this section, we use Theorem 3.4 to design hitting set generators for the closure of circuits of
small multiplicative complexity. Letting R(n) := R(〈n, n, n〉) be the border rank of n× n× n matrix
multiplication, we will construct a generator with seed length O(

√
nR−1(s)) for n-variate circuits of

multiplicative complexity s. We stress that the correctness of this generator is unconditional.

Theorem 4.1. Let F be a field of characteristic zero. Let R(n) := R(〈n, n, n〉) be the border rank of
n× n× n matrix multiplication. Then there is an explicit degree-two hitting set generator of seed
length 8

√
nR−1(6s+ 1) that hits the closure of n-variate circuits of multiplicative complexity s.

Proof. Let Φ be an n-variate circuit of multiplicative complexity s that computes Φ(x) +O(ε) for
some nonzero polynomial Φ(x). Let r := 4 R−1(6s+ 1). Arrange the input variables of Φ(x) into
a
√
n ×
√
n matrix. Let Gn,m,r(Y,Z) be the generator of Construction 2.11. We claim that the

generator G√n,√n,r−1(Y,Z) hits Φ(x), i.e., that Φ(G√n,√n,r−1(Y,Z)) 6= 0.
To see this, suppose instead that Φ(G√n,√n,r−1(Y, Z)) = 0. Lemma 2.12 implies that Φ(x) ∈

Idet√
n,
√
n,r
\ {0}. As Φ(x) has border multiplicative complexity s, it follows from Theorem 3.4 that

6s > R(r/4). However, our choice of r implies R(r/4) = 6s+ 1 > 6s, a contradiction. Thus, it must
be the case that in fact G√n,√n,r−1(Y,Z) hits Φ(x). Since Φ was an arbitrary n-variate circuit of

14

multiplicative complexity s, we conclude that G√n,√n,r−1(Y, Z) hits all polynomials in the closure of
n-variate circuits of multiplicative complexity s. Finally, note that the definition of G√n,√n,r−1(Y, Z)
immediately implies the claimed bounds on the seed length and degree of the generator.

Combining Theorem 4.1 with Theorem 2.17, we obtain the following corollary. To the best of our
knowledge, this is the first non-trivial hitting set generator for circuits of multiplicative complexity
s 6 o(n).

Corollary 4.2. There is an explicit hitting set generator of seed length (8
√

3 + o(1))
√
ns that hits

the closure of n-variate circuits of multiplicative complexity s.

One can also state Theorem 4.1 as a win-win result: either there are extremely fast algorithms
for n × n × n matrix multiplication, or there is a non-trivial deterministic algorithm for testing
polynomial identities given by small circuits.

Corollary 4.3. Let F be a field of characteristic zero and let ω denote the exponent of matrix
multiplication over F. At least one of the following is true.

1. ω = 2.

2. For any positive constants ε, δ > 0 that satisfy 2ωε+ 2δ < ω − 2, there is an explicit hitting
set generator of seed length O(n1−ε) that hits n-variate algebraic circuits of multiplicative
complexity O(n1+δ). If these circuits are also restricted to have degree nO(1) and size nO(1),
then this yields a deterministic algorithm to test identities given by such circuits that runs in
exp(O(n1−ε log n)) time.

Acknowledgments We thank Shubhang Kulkarni for telling us about the work of Barahona and
Pulleyblank [BP87]. We also thank the anonymous reviewers for comments that helped improve the
presentation of this work.

References

[AF22] Robert Andrews and Michael A. Forbes. “Ideals, Determinants, and Straightening:
Proving and Using Lower Bounds for Polynomial Ideals”. In: Proceedings of the 54th
Annual ACM Symposium on Theory of Computing (STOC 2022). 2022, pp. 389–402
(cit. on pp. 2, 3, 6, 7, 10, 13).

[AFL15] Andris Ambainis, Yuval Filmus, and François Le Gall. “Fast Matrix Multiplication:
Limitations of the Coppersmith-Winograd Method”. In: Proceedings of the 47th Annual
ACM Symposium on Theory of Computing (STOC 2015). Portland, Oregon, USA:
Association for Computing Machinery, 2015, pp. 585–593 (cit. on p. 1).

[Alm21] Josh Alman. “Limits on the Universal Method for Matrix Multiplication”. In: Theory
of Computing 17.1 (2021), pp. 1–30 (cit. on p. 1).

[And20] Robert Andrews. “Algebraic Hardness Versus Randomness in Low Characteristic”.
In: 35th Computational Complexity Conference (CCC 2020). Ed. by Shubhangi Saraf.
Vol. 169. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 37:1–37:32 (cit. on pp. 2, 3).

15

http://dx.doi.org/10.1145/3519935.3520025
http://dx.doi.org/10.1145/3519935.3520025
http://dx.doi.org/10.1145/2746539.2746554
http://dx.doi.org/10.1145/2746539.2746554
http://dx.doi.org/10.4086/toc.2021.v017a001
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.37

[AV18a] Josh Alman and Virginia Vassilevska Williams. “Further Limitations of the Known
Approaches for Matrix Multiplication”. In: 9th Innovations in Theoretical Computer
Science Conference (ITCS 2018). Ed. by Anna R. Karlin. Vol. 94. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, 25:1–25:15 (cit. on p. 1).

[AV18b] Josh Alman and Virginia Vassilevska Williams. “Limits on All Known (and Some
Unknown) Approaches to Matrix Multiplication”. In: Proceedings of the 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2018). 2018, pp. 580–
591 (cit. on p. 1).

[AV21] Josh Alman and Virginia Vassilevska Williams. “A refined laser method and faster
matrix multiplication”. In: Proceedings of the 32nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2021). Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2021, pp. 522–539 (cit. on pp. 1, 9).

[BCC+17] Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, Eric Naslund,
William F. Sawin, and Chris Umans. “On cap sets and the group-theoretic approach
to matrix multiplication”. In: Discrete Anal. 3 (2017) (cit. on p. 1).

[BCCGU17] Jonah Blasiak, Thomas Church, Henry Cohn, Joshua A. Grochow, and Chris Umans.
“Which groups are amenable to proving exponent two for matrix multiplication?” 2017
(cit. on p. 1).

[BCRL79] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia Lotti. “O(n2.7799) com-
plexity for n × n approximate matrix multiplication”. In: Information Processing
Letters 8.5 (1979), pp. 234–235 (cit. on p. 1).

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. “Algebraic complexity
theory”. Vol. 315. Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. With the collaboration of Thomas Lickteig.
Springer-Verlag, Berlin, 1997, pp. xxiv+618 (cit. on pp. 9, 10).

[BH74] James R. Bunch and John E. Hopcroft. “Triangular factorization and inversion by fast
matrix multiplication”. In: Math. Comp. 28 (1974), pp. 231–236 (cit. on p. 1).

[Bin80] Dario Bini. “Relations between exact and approximate bilinear algorithms. Applica-
tions”. In: Calcolo 17 (1980), pp. 87–97 (cit. on p. 9).

[Blä13] Markus Bläser. “Fast Matrix Multiplication”. Graduate Surveys 5. Theory of Comput-
ing Library, 2013, pp. 1–60 (cit. on p. 9).

[Blä99] Markus Bläser. “A 5
2n

2-lower bound for the rank of n× n-matrix multiplication over
arbitrary fields”. In: Proceedings of the 40th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 1999). 1999, pp. 45–50 (cit. on p. 2).

[BP87] Francisco Barahona and William R Pulleyblank. “Exact arborescences, matchings and
cycles”. In: Discrete Applied Mathematics 16.2 (1987), pp. 91–99 (cit. on pp. 12, 15).

[BS83] Walter Baur and Volker Strassen. “The complexity of partial derivatives”. In: Theoret-
ical Computer Science 22.3 (1983), pp. 317–330 (cit. on pp. 3, 5).

[Bür04] Peter Bürgisser. “The complexity of factors of multivariate polynomials”. In: Founda-
tions of Computational Mathematics 4.4 (2004), pp. 369–396 (cit. on p. 6).

[BV88] Winfried Bruns and Udo Vetter. “Determinantal rings”. Vol. 1327. Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1988, pp. viii+236 (cit. on p. 7).

16

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.25
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.25
http://dx.doi.org/10.1109/FOCS.2018.00061
http://dx.doi.org/10.1109/FOCS.2018.00061
http://dx.doi.org/10.1137/1.9781611976465.32
http://dx.doi.org/10.1137/1.9781611976465.32
http://dx.doi.org/10.19086/da.1245
http://dx.doi.org/10.19086/da.1245
http://dx.doi.org/10.48550/ARXIV.1712.02302
http://dx.doi.org/https://doi.org/10.1016/0020-0190(79)90113-3
http://dx.doi.org/https://doi.org/10.1016/0020-0190(79)90113-3
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.2307/2005828
http://dx.doi.org/10.2307/2005828
http://dx.doi.org/10.1007/BF02575865
http://dx.doi.org/10.1007/BF02575865
http://dx.doi.org/10.4086/toc.gs.2013.005
http://dx.doi.org/10.1109/SFFCS.1999.814576
http://dx.doi.org/10.1109/SFFCS.1999.814576
http://dx.doi.org/10.1016/0166-218X(87)90067-9
http://dx.doi.org/10.1016/0166-218X(87)90067-9
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1007/s10208-002-0059-5
http://dx.doi.org/10.1007/BFb0080378

[CKS19] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. “Closure Results for Polynomial
Factorization”. In: Theory of Computing 15.13 (2019). Preliminary version in the 33rd
Annual Computational Complexity Conference (CCC 2018), pp. 1–34 (cit. on pp. 2,
3).

[CKSU05] Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher Umans. “Group-
theoretic algorithms for matrix multiplication”. In: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005). 2005, pp. 379–
388 (cit. on p. 1).

[CLLZ20] Matthias Christandl, François Le Gall, Vladimir Lysikov, and Jeroen Zuiddam. “Bar-
riers for rectangular matrix multiplication”. In: CoRR abs/2003.03019 (2020). arXiv:
2003.03019 (cit. on p. 1).

[CLS21] Michael B. Cohen, Yin Tat Lee, and Zhao Song. “Solving Linear Programs in the
Current Matrix Multiplication Time”. In: J. ACM 68.1 (Jan. 2021) (cit. on p. 1).

[CU03] Henry Cohn and Christopher Umans. “A group-theoretic approach to fast matrix
multiplication”. In: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2003). 2003, pp. 438–449 (cit. on p. 1).

[CU13] Henry Cohn and Christopher Umans. “Fast matrix multiplication using coherent
configurations”. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013). SIAM, Philadelphia, PA, 2013, pp. 1074–1087 (cit. on p. 1).

[CVZ19] Matthias Christandl, Péter Vrana, and Jeroen Zuiddam. “Barriers for Fast Matrix
Multiplication from Irreversibility”. In: Proceedings of the 34th Annual Computa-
tional Complexity Conference (CCC 2019). Ed. by Amir Shpilka. Vol. 137. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 26:1–26:17 (cit. on p. 1).

[CW82] Don Coppersmith and Shmuel Winograd. “On the asymptotic complexity of matrix
multiplication”. In: SIAM J. Comput. 11.3 (1982), pp. 472–492 (cit. on p. 1).

[CW90] Don Coppersmith and Shmuel Winograd. “Matrix multiplication via arithmetic pro-
gressions”. In: J. Symbolic Comput. 9.3 (1990), pp. 251–280 (cit. on p. 1).

[DS13] Alexander M. Davie and Andrew J. Stothers. “Improved bound for complexity of
matrix multiplication”. In: Proc. Roy. Soc. Edinburgh Sect. A 143.2 (2013), pp. 351–369
(cit. on p. 1).

[DST21] Pranjal Dutta, Nitin Saxena, and Thomas Thierauf. “A Largish Sum-Of-Squares
Implies Circuit Hardness and Derandomization”. In: Proceedings of the 12th Annual
Conference on Innovations in Theoretical Computer Science (ICS 2021). Vol. 185.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2021, 23:1–23:21 (cit. on p. 3).

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. “Hardness-Randomness Tradeoffs for
Bounded Depth Arithmetic Circuits”. In: SIAM J. Comput. 39.4 (2009), pp. 1279–1293
(cit. on pp. 2, 3).

[FM71] Michael J. Fischer and Albert R. Meyer. “Boolean matrix multiplication and transitive
closure”. In: 12th Annual Symposium on Switching and Automata Theory (SWAT
1971). 1971, pp. 129–131 (cit. on p. 1).

17

http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.1109/SFCS.2005.39
http://dx.doi.org/10.1109/SFCS.2005.39
http://arxiv.org/abs/2003.03019
http://dx.doi.org/10.1145/3424305
http://dx.doi.org/10.1145/3424305
http://dx.doi.org/10.1109/SFCS.2003.1238217
http://dx.doi.org/10.1109/SFCS.2003.1238217
http://dx.doi.org/10.1137/1.9781611973105.77
http://dx.doi.org/10.1137/1.9781611973105.77
http://dx.doi.org/10.4230/LIPIcs.CCC.2019.26
http://dx.doi.org/10.4230/LIPIcs.CCC.2019.26
http://dx.doi.org/10.1137/0211038
http://dx.doi.org/10.1137/0211038
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.1017/S0308210511001648
http://dx.doi.org/10.1017/S0308210511001648
http://dx.doi.org/10.4230/LIPIcs.ITCS.2021.23
http://dx.doi.org/10.4230/LIPIcs.ITCS.2021.23
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1109/SWAT.1971.4
http://dx.doi.org/10.1109/SWAT.1971.4

[GKSS22] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon. “Derandomiza-
tion from Algebraic Hardness”. In: SIAM Journal on Computing 51.2 (2022), pp. 315–
335 (cit. on pp. 2, 3).

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. “A Faster Algorithm
for Solving General LPs”. In: Proceedings of the 53rd Annual ACM Symposium on
Theory of Computing (STOC 2021). New York, NY, USA: Association for Computing
Machinery, 2021, pp. 823–832 (cit. on p. 1).

[Kel85] Walter Keller-Gehrig. “Fast algorithms for the characteristic polynomial”. In: Theoret.
Comput. Sci. 36.2-3 (1985), pp. 309–317 (cit. on p. 1).

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polynomial Identity
Tests Means Proving Circuit Lower Bounds”. In: Computational Complexity 13.1-2
(2004), pp. 1–46 (cit. on pp. 2, 3).

[KS01] Adam R. Klivans and Daniel Spielman. “Randomness Efficient Identity Testing of
Multivariate Polynomials”. In: Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (STOC 2001). STOC ’01. Hersonissos, Greece: Association for
Computing Machinery, 2001, pp. 216–223 (cit. on p. 3).

[KS19] Mrinal Kumar and Ramprasad Saptharishi. “Hardness-Randomness Tradeoffs for
Algebraic Computation”. In: Bull. Eur. Assoc. Theor. Comput. Sci. 129 (2019), pp. 56–
87 (cit. on pp. 2, 3).

[Le 14] François Le Gall. “Powers of tensors and fast matrix multiplication”. In: Proceedings
of the 2014 International Symposium on Symbolic and Algebraic Computation (ISSAC
2014). ACM, New York, 2014, pp. 296–303 (cit. on p. 1).

[LM18] Joseph M. Landsberg and Mateusz Michałek. “A 2n2 − log2(n)− 1 lower bound for
the border rank of matrix multiplication”. In: Int. Math. Res. Not. IMRN 15 (2018),
pp. 4722–4733 (cit. on pp. 2, 9).

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. “On the complexity of the subgraph problem”.
In: Comment. Math. Univ. Carolin. 26.2 (1985), pp. 415–419 (cit. on p. 1).

[Pan78] Victor Ya. Pan. “Strassen’s algorithm is not optimal. Trilinear technique of aggregating,
uniting and canceling for constructing fast algorithms for matrix operations”. In:
Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 1978). IEEE, Long Beach, Calif., 1978, pp. 166–176 (cit. on p. 1).

[Pan80] Victor Ya. Pan. “New fast algorithms for matrix operations”. In: SIAM J. Comput.
9.2 (1980), pp. 321–342 (cit. on p. 1).

[Raz03] Ran Raz. “On the Complexity of Matrix Product”. In: SIAM Journal on Computing
32.5 (2003), pp. 1356–1369 (cit. on p. 2).

[Rom82] Francesco Romani. “Some properties of disjoint sums of tensors related to matrix
multiplication”. In: SIAM J. Comput. 11.2 (1982), pp. 263–267 (cit. on p. 1).

[Sap19] Ramprasad Saptharishi. “A survey of lower bounds in arithmetic circuit complexity”.
https://github.com/dasarpmar/lowerbounds-survey. 2019 (cit. on p. 4).

[Sax09] Nitin Saxena. “Progress on Polynomial Identity Testing”. In: Bulletin of the EATCS
99 (2009), pp. 49–79 (cit. on p. 2).

[Sax14] Nitin Saxena. “Progress on Polynomial Identity Testing II”. In: Proceedings of the
Workshop celebrating Somenath Biswas’ 60th Birthday. 2014, pp. 131–146 (cit. on
p. 2).

18

http://dx.doi.org/10.1137/20M1347395
http://dx.doi.org/10.1137/20M1347395
http://dx.doi.org/10.1145/3406325.3451058
http://dx.doi.org/10.1145/3406325.3451058
http://dx.doi.org/10.1016/0304-3975(85)90049-0
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1093/imrn/rnx025
http://dx.doi.org/10.1093/imrn/rnx025
http://dx.doi.org/10.1109/SFCS.1978.34
http://dx.doi.org/10.1109/SFCS.1978.34
http://dx.doi.org/10.1137/0209027
http://dx.doi.org/10.1137/S0097539702402147
http://dx.doi.org/10.1137/0211020
http://dx.doi.org/10.1137/0211020
https://github.com/dasarpmar/lowerbounds-survey

[Sch73] Arnold Schönhage. “Unitäre Transformationen grosser Matrizen”. In: Numer. Math.
20 (1973), pp. 409–417 (cit. on p. 1).

[Sch80] Jacob T. Schwartz. “Fast Probabilistic Algorithms for Verification of Polynomial
Identities”. In: J. ACM 27.4 (1980), pp. 701–717 (cit. on pp. 2, 6).

[Sch81] Arnold Schönhage. “Partial and total matrix multiplication”. In: SIAM J. Comput.
10.3 (1981), pp. 434–455 (cit. on p. 1).

[Shp03] Amir Shpilka. “Lower Bounds for Matrix Product”. In: SIAM J. Comput. 32.5 (2003),
pp. 1185–1200 (cit. on p. 2).

[Str69] Volker Strassen. “Gaussian elimination is not optimal”. In: Numerische Mathematik
13 (4 1969), pp. 354–356 (cit. on p. 1).

[Str87] V. Strassen. “Relative bilinear complexity and matrix multiplication”. In: J. Reine
Angew. Math. 375/376 (1987), pp. 406–443 (cit. on p. 1).

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of recent results
and open questions”. In: Foundations and Trends in Theoretical Computer Science
5.3-4 (2010), pp. 207–388 (cit. on pp. 2, 4).

[Val75] Leslie G. Valiant. “General context-free recognition in less than cubic time”. In: J.
Comput. System Sci. 10 (1975), pp. 308–315 (cit. on p. 1).

[Val79] Leslie G. Valiant. “Completeness Classes in Algebra”. In: Proceedings of the 11th
Annual ACM Symposium on Theory of Computing (STOC 1979). Atlanta, Georgia,
USA: Association for Computing Machinery, 1979, pp. 249–261 (cit. on p. 4).

[Vas12] Virginia Vassilevska Williams. “Multiplying matrices faster than Coppersmith-Winograd”.
In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC
2012). ACM, New York, 2012, pp. 887–898 (cit. on p. 1).

[vdBra20] Jan van den Brand. “A Deterministic Linear Program Solver in Current Matrix
Multiplication Time”. In: Proceedings of the 31st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2020). Salt Lake City, Utah: Society for Industrial and
Applied Mathematics, 2020, pp. 259–278 (cit. on p. 1).

[Zip79] Richard Zippel. “Probabilistic algorithms for sparse polynomials”. In: Proceedings of
the International Symposium on Symbolic and Algebraic Computation, EUROSAM
1979. 1979, pp. 216–226 (cit. on pp. 2, 6).

19
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/BF01402563
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1137/0210032
http://dx.doi.org/10.1137/S0097539702405954
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1515/crll.1987.375-376.406
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1145/2213977.2214056
http://dx.doi.org/10.5555/3381089.3381105
http://dx.doi.org/10.5555/3381089.3381105
http://dx.doi.org/10.1007/3-540-09519-5_73

