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Abstract

We prove two results about randomised query complexity R(f). First, we introduce a linearised
complexity measure LR and show that it satisfies an inner-optimal composition theorem: R(f ◦g) ≥
Ω(R(f)LR(g)) for all partial f and g, and moreover, LR is the largest possible measure with this
property. In particular, LR can be polynomially larger than previous measures that satisfy an
inner composition theorem, such as the max-conflict complexity of Gavinsky, Lee, Santha, and
Sanyal (ICALP 2019).

Our second result addresses a question of Yao (FOCS 1977). He asked if ϵ-error expected query
complexity Rϵ(f) admits a distributional characterisation relative to some hard input distribution.
Vereshchagin (TCS 1998) answered this question affirmatively in the bounded-error case. We show
that an analogous theorem fails in the small-bias case ϵ = 1/2− o(1).
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1 Introduction

This paper is motivated by the following basic open problem in boolean function complexity theory.

Conjecture 1. R(f ◦ g) ≥ Ω(R(f)R(g)) for all total boolean functions f, g.

Let us unpack what this conjecture is claiming. The randomised ϵ-error query complexity Rϵ(f) of a
boolean function f : {0, 1}n → {0, 1} is defined (see [BdW02] for the classic reference) as the least number
of queries a randomised algorithm (decision tree) needs to make, on the worst-case input, to the bits xi

of x ∈ {0, 1}n in order to compute f(x) correctly with error at most ϵ. We write R := R1/3 for the bounded-
error case. For functions f and g over n and m bits, their composition f ◦ g is defined over nm bits by

(f ◦ g)(x) := f(g(x1), . . . , g(xn)) where x = (x1, . . . , xn) ∈ ({0, 1}m)n.

In particular, we have R(f ◦ g) ≤ O(R(f)R(g) logR(f)) for all f, g. This holds since we can run an algorithm
for f with query cost R(f) and whenever it queries an input bit, we can run, as a subroutine, an ϵ-error
algorithm for g of cost Rϵ(g). Setting ϵ ≪ 1/R(f) makes sure that the errors made by the subroutines do
not add up. Moreover, we have Rϵ(g) ≤ O(R(g) log(1/ϵ)) = O(R(g) logR(f)) by standard error reduction
techniques. Conjecture 1 thus postulates that a converse inequality always holds (without the log factor).

The analogue of Conjecture 1 has been long resolved for many other well-studied complexity mea-
sures: deterministic query complexity satisfies a perfect multiplicative composition theorem, D(f ◦ g) =
D(f)D(g) [Sav02], quantum query complexity satisfies Q(f ◦ g) = Θ(Q(f)Q(g)) [Rei11, LMR+11], and yet
more examples (degree, certificate complexity, sensitivity, rank) are discussed in [Tal13, GSS16, DM21]. In
the randomised case, however, the conjecture has proved more delicate, exhibiting a far richer, and more
surprising, structure.

Partial counterexamples. Conjecture 1 is known to be false if we relax the requirement that f, g are
total and instead consider partial functions (promise problems), which are undefined on some inputs x,
f(x) = ∗. Indeed, works by Gavinsky, Lee, Santha, and Sanyal [GLSS19] and Ben-David and Blais [BB20b]
have culminated in examples of partial functions f , g such that R(f ◦ g) ≤ o(R(f)R(g)). Motivated by these
counterexamples, we ask: What is the best possible composition theorem one can prove for partial functions?

1.1 A new composition theorem

Our first result is an inner-optimal composition theorem for partial functions. To state this result, we start
by introducing a new linearised complexity measure defined for a partial function f : {0, 1}n → {0, 1, ∗} by

LR(f) := min
R

max
x

cost(R, x)

biasf (R, x)
,

− where R ranges over randomised decision trees;
− x ranges over the domain of f , namely, Dom(f) := f−1({0, 1});
− cost(R, x) denotes the expected number of queries R makes on input x; and
− biasf (R, x) denotes the bias R has of guessing the value f(x) correctly; formally, biasf (R, x) := max{1−

2 errf (R, x), 0} where errf (R, x) := PrR[R(x) ̸= f(x)]. We often omit the subscript f for brevity.

This definition might seem mysterious at first sight. To get better acquainted with it, let us first note that

∀f : Ω(
√
R(f)) ≤ LR(f) ≤ O(R(f)). (1)

Indeed, the second inequality follows by considering a bounded-error decision tree R, with cost(R, x) ≤ R(f)
and bias(R, x) ≥ 1/3. For the first inequality, if we let R be a randomised tree that achieves the minimum
in the definition of LR(f), we can amplify the bias of R, which is possibly tiny, as follows. On input x we
run R(x) repeatedly until we have made a total of LR(f)2 queries, and then output the majority answer over
all runs. We expect this simulation to run R(x) for LR(f)2/ cost(R, x) ≥ 1/bias(R, x)2 many times, which,
by standard Chernoff bounds, is enough to amplify the bias to a constant. This shows R(f) ≤ O(LR(f)2).
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Both extremes in (1) can be realised. First, consider the n-bit parity function Xorn. It is not hard to
see that any randomised tree that achieves bias δ for Xorn needs to query all the n bits with probability
at least δ, resulting in expected query cost at least δn. This shows LR(Xorn) = R(Xorn) = n. Second,
consider the partial n-bit gap-majority function (here |x| denotes the Hamming weight)

GapMajn(x) :=


1 if |x| ≥ n/2 +

√
n,

0 if |x| ≤ n/2−
√
n,

∗ otherwise.

It is well known that R(GapMajn) = Θ(n). By contrast, the algorithm R that queries and outputs a uniform
random bit of x has cost(R, x) = 1 and bias(R, x) ≥ Ω(1/

√
n), which shows LR(GapMajn) ≤ O(

√
n).

Our first main result shows that a multiplicative composition theorem holds when the inner function is
measured according to LR, and moreover, our choice of LR is optimal among all inner complexity measures.
Ultimately, these theorems are what lends naturalness to our definition of LR.

Theorem 1. R(f ◦ g) ≥ Ω(R(f)LR(g)) for all partial boolean functions f, g.

Theorem 2. Theorem 1 is optimal: If M is any complexity measure such that R(f ◦ g) ≥ Ω(R(f)M(g)) for
all partial f, g, then LR(g) ≥ Ω(M(g)) for all partial g.

Additionally, LR itself satisfies a composition theorem as well.

Theorem 3. LR(f ◦ g) ≥ Ω(LR(f)LR(g)) for all partial boolean functions f, g.

1.2 Comparison with previous work

The randomised composition conjecture for general boolean functions was first explicitly raised in [BK16].
Several complexity measures have since been shown to satisfy an inner composition theorem, including:

1. (block-)sensitivity s, bs [ABK16],
2. randomised sabotage complexity RS [BK16],
3. randomised complexity Rδ with small-bias error δ := 1/2− 1/n4 [AGJ+18],
4. max-conflict complexity χ [GLSS19] (also studied in [Li21]).

By our optimality theorem, we have LR(f) ≥ Ω(M(f)) for all M ∈ {s, bs,RS,Rδ, χ} and all f . In fact, we can
show that the largest of the above measures, namely χ, can sometimes be polynomially smaller than LR.1

Lemma 4. There exists a partial f such that LR(f) ≥ Ω(χ(f)1.5).

Previous work has also investigated complexity measures M that admit an outer composition theorem,
that is, R(f ◦ g) ≥ Ω(M(f)R(g)) for all partial f, g. These measures include:

1. sensitivity s [GJPW18] (which was applied in [AKK16]),
2. fractional block sensitivity fbs [BDG+20],
3. noisy randomised complexity noisyR [BB20b] (also studied in [GTW21]).

In particular, noisyR is known to be outer-optimal : if we have R(f ◦ g) ≥ Ω(M(f)R(g)) for all partial f, g,
then noisyR(f) ≥ Ω(M(f)) for all partial f . Our result can be viewed as an inner analogue of this.

Finally, we mention that randomised composition has also been studied in the super-multiplicative regime,
where we have examples of functions f, g with R(f ◦ g) ≥ ω(R(f)R(g)). Tight bounds exist when the outer
function is identity [BB19] (building on [JKS10, BK16]), parity [BKLS20], or majority [BGKW20, GM21].

1Technically, it does not seem to be known in the literature whether Rδ is always at most χ; this doesn’t matter much for
our purposes, as LR is larger than both and it is easy to separate LR from Rδ (for example with the Or function).
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1.3 On small-bias minimax

Our second result addresses a question of Yao [Yao77]. Yao-style minimax theorems are routinely used to
construct and analyse hard input distributions (including in our proof of the new composition theorem). For
example, Rϵ admits a distributional characterisation as

Rϵ(f) = max
µ

min
R∈R(f,ϵ,µ)

depth(R), (2)

where µ ranges over distributions on Dom(f); the set R(f, ϵ, µ) consists of trees R with Ex∼µ[err(R, x)] ≤ ϵ;
and depth(R) is the worst-case cost of R, that is, maximum number of queries over all inputs (and internal
randomness if R is randomised). While the worst-case cost setting is perhaps what is most widely studied up
to this day, Yao’s original paper discussed, in fact, exclusively the expected cost setting. It is the expected cost
setting that is currently undergoing a renaissance as it has proven important in the randomised composition
literature surveyed above (Section 1.2).

Minimax for expected cost. We define the ϵ-error expected query complexity and the ϵ-error distribu-
tional expected query complexity by

Rϵ(f) := min
R∈R(f,ϵ)

max
x

cost(R, x),

Dϵ(f) := max
µ

min
R∈R(f,ϵ,µ)

cost(R,µ),

where R(f, ϵ) is the set of randomised trees R such that err(R, x) ≤ ϵ for all inputs x; and cost(R,µ) :=
Ex∼µ[cost(R, x)] is the expected cost over µ (and internal randomness of R). We note that the set R(f, ϵ, µ)
is sometimes restricted to contain only deterministic algorithms wlog (as can be done in (2)), but in the
expected cost setting this may not necessarily be the case (see Open Problem 4); hence we allow R(f, ϵ, µ)
to contain randomised trees.

Yao showed an exact distributional characterisation for zero-error algorithms, namely, R0(f) = D0(f),
and moreover, the optimal distributional algorithm is deterministic. He asked if a similar characterisation
holds in the case ϵ > 0. He observed that the “easy” direction of minimax, Dϵ(f) ≤ Rϵ(f), certainly holds
(although Yao’s version of this inequality had some loss in parameters as he was restricted to deterministic
algorithms). Vereshchagin [Ver98] proved the “hard” direction with a modest loss in parameters; in summary,

Dϵ(f) ≤ Rϵ(f) ≤ 2Dϵ/2(f).

These bounds give a satisfying distributional characterisation in the bounded-error case. What happens in the
small-bias case ϵ = 1/2−o(1)? Our second result shows that, surprisingly, the distributional characterisation
fails in a particularly strong sense. We write δ̇ = (1− δ)/2 for short.

Theorem 5. There is an n-bit partial function f and a bias δ(n) = o(1) such that Rδ̇(f) ≥ Dδ̇(f)
1+Ω(1).

This theorem says that there is no way to capture Rϵ(f) relative to a single hard distribution. However,
there does exist a distributional characterisation using a pair of distributions, as we explore next.

1.4 Discussion: How are our two results related?

Suppose we want to prove an inner composition theorem. All the previous proofs [BK16, AGJ+18, GLSS19]
revolve around the following high-level idea. Let R be a randomised tree that on input x seeks to com-
pute f(g(x1), . . . , g(xn)). The tree can invest different numbers of queries qi to different components xi,
making q =

∑
i qi queries in total. If we had a complexity measure M(g) that allowed us to bound the bias

the tree has for the i-th component g(xi) as a linear function of qi—say, the bias for g(xi) is at most qi/M(g)—
then, by linearity of expectation, the expected total sum of the biases for all components g(x1), . . . , g(xn) is
at most q/M(g). This would allow us to track the total progress R is making across all the inner functions.

What is the largest such “linearised” measure M? The most natural attempt at a definition (which the
authors of this paper studied for a long time before finding the correct definition of LR) runs as follows. The
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measure should be such that with q := Rδ̇(f) queries one gets bias at most δ ≤ q/M(f). Optimising for M(f)
this suggest the following definition (a competitor for LR)

ULR(f) := min
δ>0

Rδ̇(f)

δ
= min

R
max
x,y

cost(R, x)

bias(R, y)
.

We call it uniform-LR, since the tree R that achieves the minimum has an upper bound on cost(R, x) that
is uniformly the same for all x, and similarly there is a uniform lower bound on bias(R, x) for all x. By
contrast, the definition of LR(f) is non-uniform: a tree R that achieves the minimum for LR(f) has only a
bound on the cost/bias ratio, but the individual cost and bias functions can vary wildly as a function of x.

We clearly have LR(f) ≤ ULR(f) by definition. How about the converse? It is enlightening to compare
the distributional characterisations of these two measures, which can be derived using the recent minimax
theorem for ratios of bilinear functions [BB20a]:

LR(f) := min
R

max
x

cost(R, x)

bias(R, x)
= max

µ
min
R

cost(R,µ)

bias(R,µ)
, (3)

ULR(f) := min
R

max
x,y

cost(R, x)

bias(R, y)
= max

µ,ν
min
R

cost(R,µ)

bias(R, ν)
. (4)

Here, LR is captured using a single hard distribution µ such that both cost and bias are measured against it.
By contrast, ULR needs a pair of distributions µ, ν, one to measure the cost, one to measure the bias. The
upshot is that we are able to show that the two measures are polynomially separated.

Theorem 6. There is an n-bit partial function f such that ULR(f) ≥ Ω(LR(f)5/4) ≥ nΩ(1).

Our optimality theorem thus implies that ULR cannot satisfy an inner composition theorem. This means
that our attempt at finding a “linearised” measure at the start of this section missed a subtlety, namely, Yao’s
question: can we capture our measure relative to a single hard distribution? Our proof of the composition
theorem will rely heavily on the fact that LR admits a single hard distribution. Our separation of LR
and ULR is what allows us to prove the impossibility of capturing Rϵ(f) relative to a single distribution.
Indeed, Theorem 5 can be derived from Theorem 6 simply as follows.

Proof of Theorem 5. Let f be as in Theorem 6 and let R be a randomised tree witnessing LR(f). We may
assume wlog that cost(R, x) ≥ 1 for all x. (If R places a lot of weight on a 0-cost tree, we may re-weight R
without affecting the cost/bias ratio; see Lemma 9 for details.) Thus bias(R, x) ≥ 1/n =: δ for all x. We
show the following inequalities, which would prove Theorem 5.

Rδ̇(f) ≥ δ · ULR(f), (5)

Dδ̇(f) ≤ δ · LR(f), (6)

Indeed, (5) holds since ULR(f) ≤ Rδ̇(f)/δ by the definition of ULR. For (6) consider any input distribution µ.
Define R′ as the randomised tree that with probability λ := δ/bias(R,µ) runs R, and with probability 1− λ
makes no queries and outputs a random 0/1 answer. Then bias(R′, µ) = λbias(R,µ) = δ and cost(R′, µ) =
λ cost(R,µ) = δ cost(R,µ)/bias(R,µ) ≤ δLR(f), as desired.

1.5 Techniques

Composition theorem. Our first result, the inner-optimal composition theorem, is proved in Part I. As
in other composition theorems for randomised algorithms, we start with a randomised algorithm R for the
composition f ◦ g as well as hard distributions µ0 and µ1 for g (corresponding to distributions on g−1(0)
and g−1(1)), and we construct a randomised algorithm R′ for f whose cost is significantly lower than that
of R (we need the cost to decrease by a factor of LR(g)). The algorithm R′ will simulate R, but not every
query that R makes to the large, mn-sized input to f ◦ g will turn into a query to the smaller, n-sized input
to f that R′ has access to. Instead, R′ will attempt to delay making a true query as long as possible, and
instead when R makes a query (i, j) (querying position j inside copy i of an input to g), R′ will return an
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answer that is generated according to µ0 and µ1, so long as these two distributions approximately agree on
the answer to that query.

So far, this is the same strategy employed by several other composition theorems, including in particular
that of [GLSS19]. Our innovation comes from the precise way we choose when to query the bit i versus
when to return an artificially-generated query answer to the query (i, j). Specifically, in Section 3, we prove
the following simulation theorem for decision trees. Suppose we are given two distributions µ0 and µ1, we
are asked to answer online queries to the bits of a string sampled from µb without knowing the value of b;
moreover, suppose we have access to a big red button that, when pressed, provides the value of b ∈ {0, 1}.
Then there is a strategy to answer these online queries with perfect soundness (i.e. with distribution identical
to sampling a string from µb) with the following guarantee: if the decision tree that is making the online
queries is D, then the probability we press the button is at most TV(tran(D,µ0), tran(D,µ1)) (the total
variation distance between the query outputs D receives when run on µ0 and the query outputs D receives
when run on µ1).

This simulation theorem, though somewhat technical, ends up being stronger than the simulation guaran-
tee used by Gavinsky, Lee, Santha, and Sanyal [GLSS19] to provide their composition result for max-conflict
complexity. To get a composition theorem, we need to convert this total variation distance between tran-
scripts into a more natural measure; this can be done via some minimax arguments, and the resulting measure
is LR. We note that a similarly structured argument occurred in [BB20b], but the squared-Hellinger distance
between the transcripts appeared instead of the total variation distance; in that result, the authors showed
that this squared-Hellinger distance between transcripts characterized R(g), but they failed to construct a
randomised algorithm R′ for f , instead constructing only a “noisy” randomised algorithm. This gave them
the result R(f ◦ g) = Ω(noisyR(f)R(g)). In contrast, the total variation distance allows us to get R(f) on the
outside, at the cost of getting only LR(g) on the inside.

The measure LR is arguably more natural than max-conflict complexity, but the real advantage is that
our composition theorem turns out to be the best possible of its type: if R(f ◦ g) = Ω(R(f)M(g)) for all
partial functions f and g, then LR(g) = Ω(M(g)). To show this, we give a characterization of LR(g) in terms
of randomised query complexity: there is a family of partial functions fm such that for all partial functions g,
we have

LR(g) = Θ

(
R(fm ◦ g)
R(fm)

)
,

where m is the input size of g. Once we have this, it clearly follows that R(f ◦ g) = Ω(R(f)M(g)) implies
LR(g) = Ω(M(g)). The function family fm turns out to be the same as the one introduced in [BB20b] (based
on a family of relations introduced in [GLSS19]); the randomised query complexity R(fm) was already
established in that paper, so all we need is an upper bound on R(fm ◦ g) which uses the existence of an
LR-style algorithm for g. The linear dependence on the bias which is built into the definition of LR(g) turns
out to be precisely what is needed to upper bound R(fm ◦ g) (see Section 5 for details).

Failure of small-bias minimax. Our second result, separation of LR and ULR, is proved in Part II. The
function f that witnesses the separation ULR(f) ≥ Ω(LR(f)5/4) is not hard to define. For simplicity, we
denote its input length by N := Bn and think of the input as being composed of B = nc blocks (for some
large constant c) of n bits each. We define f as a composition of MajB as an outer function, and Xorn as
an inner function, where we are able to switch individual Xor-blocks to be easy (requiring O(1) queries) or
hard (requiring n queries). Moreover, we make the following promises about the input. Either

(1) all blocks are easy, and a random block has a value with bias 1/n towards the majority value; or
(2) b := n−3/4 fraction of the blocks are hard, and a random block has bias Ω(b) towards the majority.

We claim that this function is easy for LR, namely, LR(f) = O(n). To see this, consider the algorithm R
that chooses a block at random, computes it, and outputs its value. For inputs x of type (1) we have
cost(R, x) = O(1) and bias(R, x) ≥ 1/n so that cost/bias ratio is O(n). For inputs x of type (2) we have
cost(R, x) = bn+ (1− b)O(1) ≤ O(bn) and bias(R, x) = b so that cost/bias ratio is O(n) again.

The difficult part is to show that ULR(f) ≥ Ω(n5/4). For example, the above algorithm R has ULR-style
measure maxx,y cost(R, x)/bias(R, y) = O(bn)/(1/n) = O(n5/4), and we would like to show that this is
optimal. Intuitively, it is hard to get large bias for inputs of type (1) (although query cost is small here)
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and it is hard to get low query cost for inputs of type (2) (although bias is relatively high here). We first
argue that an algorithm that wants to keep cost(R, x) small uniformly for all x (even those x with high
bias(R, x)) cannot afford to solve hard blocks very often. This is formalised by picking an appropriate pair
of hard distributions for f according to the minimax formulation (4). What remains is the following task:
Show that any algorithm that does not solve hard blocks, has large cost/bias ratio relative to a single hard
distribution, that is, show an LR-style lower bound.

To this end, we develop a suite of techniques to prove lower bounds on the cost/bias trade-off achievable
by decision trees in the small-bias expected cost setting, which has not really been studied in the literature
before. Consequently, we end up having to re-establish some basic facts in the expected-cost setting that
have been long known in the worst-case setting. For example, we show any algorithm forGapMajn (with

√
n

gap promise) can achieve bias at most O(
√
cost /n) (see Section 9). The proof here exploits the “And-trick”

used by Sherstov [She12] to prove a lower bound on the (worst-case) randomised communication complexity
of the gap-Hamming problem. These techniques also come in handy when we separate LR from χ for the
proof of Lemma 4.

1.6 Open questions

The foremost open question is to resolve Conjecture 1. We can equivalently formulate it as follows.

Open Problem 1 (Conjecture 1 rephrased). Does LR(f) = Θ(R(f)) for all total functions f?

One intriguing open problem regarding our new-found measure LR is to show that it is lower-bounded
by quantum query complexity Q. Indeed, the bias of a quantum algorithm can be amplified linearly in the
query cost, so it seems sensible to conjecture this is so. However, quantum query complexity has mostly been
studied in the worst-case setting, and it is unclear how one should even define quantum query complexity in
expectation (in such a way that it supports linear bias amplification).

Open Problem 2. Does it hold that LR(f) ≥ Q(f)?

There is a second reason to care about this question, having to do with the composition limit of randomised
algorithms. Define R∗(f) := limk→∞ R(f◦k)1/k; this is the limit of the k-th root of the randomised query
complexity of the k-fold composition of f . Our results here imply that R∗(f) ≥ Ω(LR(f)) for all (possibly
partial) functions f . Due to the composition theorem for quantum query complexity, it is also known that
R∗(f) ≥ Ω(Q(f)). The above open problem asks whether one of these results dominates the other. More
generally, it would be nice to characterize R∗(f) in terms of a simpler measure (for instance, one which is
efficiently computable given the truth table of the function).

Our inner-optimal composition theorem for LR, together with the outer-optimal composition theorem
for noisyR [BB20b] give a relatively satisfying picture of composition in the case of partial functions. However,
we can still ask whether there remain other incomparable composition theorems.

Open Problem 3. Are there multiplicative composition theorems, stating that R(f ◦ g) ≥ Ω(M1(f)M2(g))
for all partial f, g, that can sometimes prove better lower bounds than Ω(max{R(f)LR(g), noisyR(f)R(g)})?

Regarding the failure of the distributational characterization of Rϵ in the low bias regime (Theorem 5),
one may wonder whether the definition of Dϵ should really involve randomized decision trees instead of
deterministic ones. As hinted in Section 1.3, while considering deterministic trees is the natural choice in
the bounded error regime, we feel it might not be in the regime where ϵ ≈ 1/2. Indeed, while a randomised
decision tree can get cost arbitrarily close to zero for ϵ approaching 1/2 (by taking an appropriate mixture
with the zero-query tree), a deterministic one will get stuck at making one query and thus cost 1. Deciding
whether the two versions are equivalent (up to constant factors and additive terms) is our last open question.

Open Problem 4. Let D
⋆

ϵ (f) := maxµ minD∈D(f,ϵ,µ) cost(D,µ) where D(f, ϵ, µ) is the set of all deterministic
decision trees solving f with error at most ϵ relative to inputs sampled from µ. For any partial f and ϵ, do
we have D

⋆

ϵ (f) ≤ O(Dϵ(f) + 1)?
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2 Preliminaries

2.1 Query complexity notation

Fix a natural number n ∈ N. A total boolean function is a function f : {0, 1}n → {0, 1}. We will consider
several generalizations of total boolean functions: first, there are partial boolean functions, which are defined
on a domain which is a subset of {0, 1}n. We use Dom(f) ⊆ {0, 1}n to denote the domain of such a function.
A further way to generalize boolean functions is to expand the input and output alphabets; that is, for finite
sets ΣI and ΣO, we can consider functions f : Dom(f)→ ΣO with Dom(f) ⊆ Σn

I , which take in input strings
over the alphabet ΣI and output a symbol in ΣO.

A still further way to generalize such functions is to consider relations instead of partial functions. A
relation is a subset of Σn

I × ΣO, or alternatively, it is a function that maps Σn
I to a subset of ΣO. Any

partial function can be viewed as a (total) relation, where on an input x which is not in the domain of the
partial function, the corresponding relation relates all output symbols to x (meaning that if x is the input,
any output symbol is considered valid).

Given a boolean function f (or, more generally, a relation), we will denote its deterministic query com-
plexity by D(f). This is the minimum height of a decision tree D which correctly computes f(x) on any
x ∈ Dom(f); in other words, it is the minimum number of worst-case adaptive queries required by a deter-
ministic algorithm computing f . For a formal definition, see [BdW02].

In this work we will mostly be dealing with randomised algorithms rather than deterministic ones, so
let us more carefully define those. A randomised query algorithm or randomised decision tree will be a
probability distribution over deterministic decision trees. Such deterministic decision trees will have internal
nodes labeled by [n] := {1, 2, . . . , n} (representing the index of the input to query), arcs labeled by ΣI

(representing the symbol we might see after querying an index), and leaves labeled by ΣO (representing
output symbols to return at the end of the algorithm). We will assume that no internal node shares a label
with an ancestor, meaning that a deterministic algorithm does not query the same index twice.

For such a randomised algorithm R and for an input x ∈ Σn
I , we denote by R(x) the random variable

we get by sampling a deterministic tree D from R, and returning D(x) (the label of the leaf of D reached
after starting from the root and taking the path determined by x). For a function f , we write errf (R, x) :=
PrR[R(x) ̸= f(x)] (or PrR[R(x) /∈ f(x)] if f is a relation), and we write bias±f (R, x) := 1 − 2 errf (R, x),

biasf (R, x) := max{bias±f (R, x), 0}; we omit the subscript f when it is clear from context.
For a deterministic tree D, let cost(D,x) be the number of queries D makes on input x; this is the

height of the leaf of D that is reached when D is run on x. For a randomised algorithm R, we then define
cost(R, x) := ED∼R[cost(D,x)] (this is the expected number of queries R makes when run on x).

We extend both of the above to distributions µ over Σn
I instead of just inputs x; that is, define

bias±f (R,µ) := Ex∼µ[bias
±
f (R, x)] = Ex∼µED∼R[bias

±
f (D,x)],

cost(R,µ) := Ex∼µ[cost(R, x)] = Ex∼µED∼R[cost(D,x)],

with biasf (R,µ) := max{bias±f (R,µ), 0}. We also define tran(R,µ) to be the random variable we get by
sampling a decision tree D from R, a string x from µ, and returning the pair (D, ℓ), where ℓ is the leaf of D
reached when D is run on x. Intuitively, tran(R,µ) is the “transcript” when R is run on an input sampled
from µ, and such a transcript records all information that an agent running R knows about the input x at
the end of the algorithm. We will use TV(µ, ν) := 1

2

∑
x∈X |µ[x]−ν[x]| to denote the total variation distance

between distributions µ and ν over set X . Most often, we will employ it with respect to the transcript of R
on two different distributions as a way to quantify the extent to which R can tell these distributions apart.

We say that a randomised algorithm R computes f to error ϵ if errf (R, x) ≤ ϵ for all x ∈ Dom(f).
We then let Rϵ(f) the minimum possible value of maxx cost(R, x) over randomised algorithms R satisfying
errf (R, x) ≤ ϵ for all x ∈ Dom(f). We also use Rϵ(f) to denote the minimum number T such that there is a
randomised algorithm R with errf (R, x) ≤ ϵ for all x ∈ Dom(f) such that all decision trees in the support
of R have height at most T . The difference between Rϵ(f) and Rϵ(f) is that the former measures the worst-
case cost of an algorithm computing f to error ϵ (maximizing over both the input string and the internal
randomness), while the latter measures the expected worst-case cost of the algorithm computing f to error
ϵ (this still maximizes over the input strings x, but takes an expectation over the internal randomness of the
algorithm R).
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It is easy to see that Rϵ(f) ≤ Rϵ(f) for all f . The other direction also holds if we tolerate a constant-factor
loss, as well as an additive constant loss in ϵ; to see this, note that if we cut off the Rϵ(f) algorithm after it
makes 10 times more queries than it is expected to, then the probability of reaching such a cutoff is at most
1/10 by Markov’s inequality, and hence the error probability of the algorithm increases by at most 1/10; this
converts an Rϵ(f) algorithm into a Rϵ(f) algorithm.

Standard error reduction techniques imply that for a boolean function f , Rϵ(f) is related to Rϵ′(f) by
a constant factor that depends only on ϵ and ϵ′, so long as both are in (0, 1/2). For this reason, the value
of ϵ does not matter when ϵ is a constant in (0, 1/2) (so long as we ignore constant factors and so long as
the function is boolean), so we omit ϵ when ϵ = 1/3. The same error reduction property holds for Rϵ(f).
Combined with the Markov inequality argument above, both R(f) and R(f) are the same measure (up to
constant factors) for a boolean function and for constant values of ϵ.

We warn that these equivalences break if f is not boolean (especially if f is a relation) or if the value of
ϵ is not constant; in particular, when ϵ = 1/n or when ϵ = 1/2 − 1/n, the values of Rϵ(f) and Rϵ(f) may
differ by more than a constant factor.

2.2 Linearised R

For a (possibly partial) boolean function f on n bits, we define

LR(f) := min
R

max
x

cost(R, x)

bias(R, x)
.

Here R ranges over randomised decision trees and x ranges over the domain of f , and we treat 0/0 as ∞.
We call this measure linearised randomised query complexity. The name comes from the linear dependence

on the bias achieved by the algorithm. Note that if we wanted to amplify bias γ to constant bias, we would,
in general, have to repeat the algorithm Θ(1/γ2) times to do so. In some sense, then, the measure R(f)
charges 1/γ2 for an algorithm that achieves bias γ instead of achieving constant bias. The measure LR(f),
in contrast, charges only 1/γ for such an algorithm, so it can be up to quadratically smaller than R(f).

A minimax theorem for ratios such as [BB20a] (Theorem 2.18) can show that

LR(f) = max
µ

min
D

cost(D,µ)

bias(D,µ)
, (7)

where D ranges over deterministic decision trees and µ ranges over probability distributions over Dom(f).
It is not hard to see that the maximizing distribution µ above will place equal weight on 0 and 1 inputs.

This is because otherwise, we could take D to be a decision tree that makes 0 queries, and then cost(D,µ)
would be 0 while bias(D,µ) would be positive.

If µ is balanced over 0 and 1 inputs, we may express it as µ := µ0/2 + µ1/2 and it is not hard to show
that for the best possible choice of leaf labels for an unlabeled decision tree D, we have

bias(D,µ)± = bias(D,µ) = TV(tran(D,µ0), tran(D,µ1)). (8)

This follows, for example, from [BB20a] (Lemma 3.9); to see this intuitively, recall that tran(D,µ) is the
random variable for the leaf of D reached when D is run on µ, and note that the best choice of leaf
label if D reaches a leaf ℓ is 0 if the probability of D reaching ℓ is higher when run on µ0 than on µ1,
and it is 1 otherwise. Therefore, the bias for the best choice of leaf labels is the sum, over leaves ℓ of
D, of 2max{Prµ0

[ℓ],Prµ1
[ℓ]} − 1, which is easily seen to be the total variation distance between the two

distributions over leaves.
Given (8), we can also write

LR(f) = max
µ0,µ1

min
D

cost(D, µ0+µ1

2 )

TV(tran(D,µ0), tran(D,µ1))
,

where µ0 ranges over probability distributions with support f−1(0) and µ1 ranges over probability distri-
butions with support f−1(1). Observe that neither the top nor the bottom depend on the leaf labels of D,
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so we can now assume D is an unlabeled decision tree if we wish. Note also that cost(D,µ) is linear in the
second argument, so we can write

LR(f) = max
µ0,µ1

min
D

cost(D,µ0) + cost(D,µ1)

2TV(tran(D,µ0), tran(D,µ1))
.

We clearly have

LR(f) ≥ max
µ0,µ1

min
D

min{cost(D,µ0), cost(D,µ1)}
TV(tran(D,µ0), tran(D,µ1))

.

Lemma 7. For any fixed µ0 and µ1, we have

min
D

cost(D,µ1)

TV(tran(D,µ0), tran(D,µ1))
≤ 6min

D

cost(D,µ0)

TV(tran(D,µ0), tran(D,µ1))
.

Proof. Let D minimize the right-hand side. Suppose by contradiction that D makes a lot more queries
against µ1 than it does against µ0. The idea is to cut off paths in D that are too long, since in those paths
we essentially already know we are running on µ1 instead of µ0. The new truncated tree D′ will still have
roughly the same total variation distance between the transcripts when run on µ0 and µ1, but it won’t make
too many more queries on µ1 than D made on µ0.

Formally, we define D′ to be the same tree D except that we cut off an internal node u of D (making it
a leaf in D′) if Prµ1 [u]/Prµ0 [u] > 3. The new tree D′ makes fewer queries on every input than D did, so
we clearly have cost(D′, µb) ≤ cost(D,µb) for b = 0, 1. Moreover, note that cost(D,µ) is the sum, over all
internal nodes of D, of the probability that D reaches that node when run on µ. Now, for all internal nodes
of D′, we know that Prµ1

[u] ≤ 3Prµ0
[u], and hence we have cost(D′, µ1) ≤ 3 cost(D′, µ0) ≤ 3 cost(D,µ0).

We next want to show that the distance TV(tran(D′, µ0), tran(D
′, µ1)) is not much smaller than the

distance TV(tran(D,µ0), tran(D,µ1)). To see this, let V be the set of all leaves in D′ that are also leaves in
D, and let ∗ denote the event that a cutoff occurred in D′. Then

TV(tran(D,µ0), tran(D,µ1)) =
1

2

∑
v

| Pr
D,µ0

[v]− Pr
D,µ1

[v]|

≤ 1

2

∑
v∈V
| Pr
D,µ0

[v]− Pr
D,µ1

[v]|+ 1

2

∑
v/∈V

max{ Pr
D,µ0

[v], Pr
D,µ1

[v]}

≤ 1

2

∑
v∈V
| Pr
D,µ0

[v]− Pr
D,µ1

[v]|+ PrD,µ0
[∗] + PrD,µ1

[∗]
2

,

while

TV(tran(D′, µ0), tran(D
′, µ1)) =

1

2

∑
v

| Pr
D′,µ0

[v]− Pr
D′,µ1

[v]|

=
1

2

∑
v∈V
| Pr
D,µ0

[v]− Pr
D,µ1

[v]|+ 1

2

∑
v/∈V

PrD,µ1
[v]− PrD,µ0

[v]

PrD,µ1
[v] + PrD,µ0

[v]
· ( Pr

D,µ1

[v] + Pr
D,µ0

[v])

≥ 1

2

∑
v∈V
| Pr
D,µ0

[v]− Pr
D,µ1

[v]|+ 1

4

∑
v/∈V

Pr
D,µ1

[v] + Pr
D,µ0

[v]

=
1

2

∑
v∈V
| Pr
D,µ0

[v]− Pr
D,µ1

[v]|+ PrD,µ0
[∗] + PrD,µ1

[∗]
4

.

Hence the worst possible ratio between them is 1/2, and the greatest possible ratio between the left-hand
side and right-hand side of the original lemma is 6, completing the proof.

Corollary 8.

max
µ0,µ1

min
D

min{cost(D,µ0), cost(D,µ1)}
TV(tran(D,µ0), tran(D,µ1))

≤ LR(f) ≤ 6 max
µ0,µ1

min
D

min{cost(D,µ0), cost(D,µ1)}
TV(tran(D,µ0), tran(D,µ1))

.
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One useful property of LR complexity is that up to a multiplicative factor of 2, we can consider only
randomised decision trees that always query at least one bit of their input.

Lemma 9. For every non-constant partial function g, there is a randomised decision tree A that always
queries at least one bit of g’s input and satisfies, for every x,

cost(A, x)

bias(A, x)
≤ 2 · LR(g).

Proof. Let R be a randomised tree that achieves the minimum for LR(g). Write R = λ0T0 + λ1T1 + λ2R≥1,
λ0 + λ1 + λ2 = 1, λi ≥ 0, where Ti is the cost-0 deterministic tree that makes no queries and outputs i, and
where R≥1 is a randomised tree that always makes at least 1 query. Note that λ0, λ1 < 1/2 as otherwise
the tree would answer incorrectly with probability ≥ 1/2 on some input. Let us assume wlog that λ0 ≤ λ1.
Re-weight R by defining a new randomised tree R′ := λ′1T1 + λ′2R≥1 where λ′1 := (λ1 − λ0)/(1 − 2λ0)
and λ′2 := λ2/(1− 2λ0). Then, for all x, using cost((T0 + T1)/2, x) = bias((T0 + T1)/2, x) = 0,

cost(R, x)

bias(R, x)
=

2λ0 cost((T0 + T1)/2, x) + (1− 2λ0) cost(λ
′
1T1 + λ′2R≥1, x)

2λ0bias((T0 + T1)/2, x) + (1− 2λ0)bias(λ′1T1 + λ′2R≥1, x)
=

cost(R′, x)

bias(R′, x)
.

Note that λ′1 < 1/2 and thus cost(R′, x) ≥ 1/2. Consider finally the tree A := λ′1T
′
1 + λ′2R≥1 where T ′1

is the cost-1 tree that makes one (arbitrary) query and then outputs 1. We have cost(A, x)/bias(A, x) ≤
(cost(R′, x) + 1/2)/bias(R′, x) ≤ 2 cost(R′, x)/bias(R′, x) = 2 · LR(g).

As a corollary, we obtain a universal lower bound on the LR complexity of every non-constant function.

Corollary 10. For every non-constant partial function g, LR(g) ≥ 1
2 .

Proof. By Lemma 9, there exists a randomised decision tree A that always queries at least one bit of its
input and satisfies cost(A, x)/bias(A, x) ≤ 2 · LR(g) for all x in the domain of g. But since A always makes
at least one query, cost(A, x) ≥ 1. And by definition, bias(A, x) ≤ 1, so the cost-bias ratio of A is always
bounded below by 1.

Part I

Composition Theorem
In this Part I, we prove our inner-optimal composition theorem, Theorems 1 and 2 restated below, along
with related results.

Theorem 1. R(f ◦ g) ≥ Ω(R(f)LR(g)) for all partial boolean functions f, g.

Theorem 2. Theorem 1 is optimal: If M is any complexity measure such that R(f ◦ g) ≥ Ω(R(f)M(g)) for
all partial f, g, then LR(g) ≥ Ω(M(g)) for all partial g.

The heart of the proof of Theorem 1 is a simulation theorem showing that for any two distributions µ0

and µ1 and any decision tree T , it is possible to simulate T on inputs drawn from µb for some initially
unknown b ∈ {0, 1} while querying the actual value of b with probability bounded by the total variation
distance between the two distributions µ0 and µ1. This result, Theorem 11, is established in Section 3.

In Section 4, we use the simulation theorem to complete the proof of the main composition theorem,
Theorem 13, a slightly more general version of Theorem 1. We also use the simulation theorem to establish
the perfect composition for LR complexity, Theorem 3, in this section.

The proof of Theorem 2 is completed in Section 5. Finally, in Section 6, we establish the separation
between LR complexity and max-conflict complexity of Lemma 4.
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3 Decision tree simulation theorem

An online decision tree simulator is a randomised algorithm that is given two distributions µ0 and µ1 on
inputs {0, 1}n, oracle access to a bit b ∈ {0, 1}, and a stream of queries i1, . . . , ik ∈ [n] that represent the
queries made by a decision tree T that is not known to the algorithm. The goal of an online decision tree
simulator is to answer the queries according to the distribution µb while querying the value of b itself with
as small probability as possible. We think of this protocol as having a big red button that gives b, and it
tries to pretend to have a sample from µb without pressing the button for as long as possible.

Theorem 11. There exists an online decision tree simulator that simulates the queries of T on µb while
querying the value of b with probability TV

(
tran(T, µ0), tran(T, µ1)

)
.

The algorithm that satisfies the theorem is stated below. In the algorithm, x ∈ {0, ∗, 1}n is a partially
defined boolean string: the coordinates labelled with ∗ are undefined. Given a string x ∈ {0, ∗, 1}n, an index
i ∈ [n], and a value a ∈ {0, 1}, the notation x(i←a) denotes the string y which equals x on all coordinates
except i, where it takes the value yi = a.

Algorithm 1: OnlineQuerySimulator(µ0, µ1)

for all x ∈ {0, ∗, 1}n do
µmin(x)← min{µ0(x), µ1(x)};

x← ∗n;
b← ∗;
while more queries remain do

i← NextQuery;

u← µmin(x
(i←0)) + µmin(x

(i←1));

if b = ∗ then
With probability 1− u/µmin(x), query the value of b;

if b = ∗ then
xi ← Ber

(
µmin(x

(i←1))/u
)
;

else

xi ← Ber
(

µb(x
(i←1))−µmin(x

(i←1))
µb(x)−u

)
;

Note that each vertex in a decision tree T corresponds to the partial string x ∈ {0, 1, ∗}n of the values
revealed on the path to that vertex in T . Our main task is to show that each vertex in T (including each
leaf) is reached with probability µb(x) in the algorithm and that the probability that we reach x and don’t
reveal b along the way is µmin(x).

Lemma 12. For every x ∈ {0, 1, ∗}n, when we run the OnlineQuerySimulator, then

1. We reach the vertex x with probability µb(x), and
2. We reach the vertex x and don’t query the value b on the way to x with probability µmin(x).

Proof. We prove the claim by induction on the number of defined coordinates on x. The base case corresponds
to x = ∗n, which trivially satisfies both conditions of the claim.

Consider now any x ̸= ∗n. Let z be the parent of x in the decision tree T , and let i denote the coordinate
where zi = ∗ and xi ̸= ∗. Define also y to be x’s sibling in T . Let us assume that xi = 1. (The case where
xi = 0 is essentially identical.)

By the induction hypothesis, the probability that we reach z and don’t query the value b is µmin(z). With
probability

(
µmin(x) + µmin(y)

)
/µmin(z), we don’t query the value of b while processing the query i either.

And when this occurs the algorithm next reaches x with probability µmin(x)/
(
µmin(x) + µmin(y)

)
. So the

overall probability that we reach x without querying b along the way is

µmin(z) ·
µmin(x) + µmin(y)

µmin(z)
· µmin(x)

µmin(x) + µmin(y)
= µmin(x).
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Next, by the induction hypothesis again the probability that we query the value of b either on the way
to z or while processing the query i is

(µb(z)− µmin(z)) + µmin(z) ·
(
1− µmin(x) + µmin(y)

µmin(z)

)
= µb(z)−

(
µmin(x) + µmin(y)

)
.

Then the probability we output x conditioned on having revealed b is

µb(x)− µmin(x)

µb(z)− (µmin(x) + µmin(y))
,

so that the overall probability that we reach x and reveal b along the way is µb(x)−µmin(x). Therefore, the
overall probability that we reach x is µb(x).

The proof of Theorem 11 is now essentially complete, as it just requires combining the lemma with a
simple identity on total variation distance.

Proof of Theorem 11. Lemma 12 implies that the OracleQuerySimulator indeed reaches each leaf with the
correct probability µb(x). And the probability that it queries the value of b is 1 −

∑
ℓ∈T min{µ0(ℓ), µ1(ℓ)},

which is the total variation distance between tran(T, µ0) and tran(T, µ1).

4 Composition theorems

The inner-optimal composition theorem, Theorem 1, is established in Section 4.1. In fact, we establish a
slight generalization of that theorem, stated below in Theorem 13. Then the perfect composition theorem
for LR complexity, Theorem 3, is established in Section 4.2.

4.1 Composition for randomised query complexity

For a boolean string y ∈ {0, 1}n and a pair of distributions µ0, µ1, we define y ◦ (µ0, µ1) to be the product
distribution

⊗n
i=1 µyi

. In particular, if µ0 and µ1 are hard distributions for the 0- and 1-inputs of g respec-
tively, and if y is an input to f , then y ◦ (µ0, µ1) will give a distribution over the inputs to the composed
f ◦ g (all of which correspond to the same f -input y).

We prove the following composition theorem, which is a slightly more general version of Theorem 1.

Theorem 13. Let ΣI and ΣO be finite alphabets, and let n,m ∈ N. Let f ⊆ {0, 1}n×ΣO be a (possibly
partial) relation on n bits, and let g : Dom(g)→ {0, 1} be a (possibly partial) boolean function, with Dom(g) ⊆
Σm

I . Let ϵ ∈ [0, 1/2). Then
Rϵ(f ◦ g) ≥ Rϵ(f)LR(g)/6.

Proof. Let µ0 and µ1 be distributions over the 0-inputs and 1-inputs to g, respectively, that maximize the
expression in the right-hand side of Corollary 8. Let Π be the online decision tree simulator from Theorem 11.
Let R be a randomised algorithm that computes f ◦g to error ϵ using Rϵ(f ◦g) expected queries. We describe
a randomised algorithm R′ for computing f on worst-case inputs.

Given input y ∈ {0, 1}n, the algorithm R′ will instantiate n copies of Π, which we denote Π1,Π2, . . . ,Πn,
one for each bit of the input; if protocol Πi presses the button, it gets yi (and this causes R′ to make a real
query to the real input). Each of these copies of Π will assume the distributions to be simulated are µ0 and
µ1. Then R′ will run R, and whenever R makes a query (i, j) (corresponding to querying bit j inside of the
i-th copy of g), the algorithm R′ will ask Πi to give an answer to query j, and it will use that answer to
determine the next query of R.

Note that since the protocols Πi are guaranteed to be sound, the outcome of the simulation of R made by
R′ is precisely the same (in distribution) as the outcome of running R on an input sampled from y ◦ (µ0, µ1).
Therefore, by the correctness guarantee of R, the output will be a valid output for f(y) except with error
probability ϵ. It remains to show that for each y ∈ Dom(f), the expected number of real queries R′ makes
when run on y is at most 6Rϵ(f ◦ g)/LR(g).
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Fix any y ∈ Dom(f). Now, when R′ is run on y, let T be the expected number of fake queries it makes;
in other words, let T = cost(R, y ◦ (µ0, µ1)) ≤ Rϵ(f ◦ g). For each i, let Ti be the expected number of queries
to Πi that R

′ makes when run on y, so that T1 + T2 + · · ·+ Tn = T . Let pi the overall probability that Πi

presses the button when R′ runs on y; the sum q = p1 + p2 + · · · + pn is therefore the expected number of
real queries made by R′ on y. We would like to show that q ≤ 6T/LR(g), or equivalently, T/q ≥ LR(g)/6.

Since T/q = (T1+ · · ·+Tn)/(p1+ · · ·+pn), there must be some i such that T/q ≥ Ti/pi. It will therefore
suffice to show that Ti/pi ≥ LR(g)/6 for all i ∈ [n]. Fix such i, and recall that Ti is the number of (fake)
queries R′ makes to Πi when run on y, and pi is the probability that Πi presses the button when R′ is run
on y. Consider the algorithm Ry,i which takes in an input x in Dom(g), generates n − 1 additional fake
inputs to g from the distributions µyℓ

for ℓ ̸= i, places the real input x as the i-th input among the n inputs
to g, and runs R on this tuple (treating it as an input to f ◦ g). Note that when Ry,i is run on an input
from µyi , its behavior is exactly the same as the behavior of R when run on y ◦ (µ0, µ1); therefore, it makes
Ti expected queries. Consider running Ry,i with query answers generated by Π instead of by making real
queries; then when Π uses the hidden bit yi and simulates the distributions µ0, µ1, the behavior of Ry,i is
the same as when we run it on µyi

, and hence the expected number of queries it makes to Π is Ti and the
probability that Π presses the button is exactly pi.

Now, by Theorem 11, we know that Π presses the button with probability TV(tran(D,µ0), tran(D,µ1))
when simulating a deterministic decision tree D. For a random decision tree such as the one given by Ry,i,
the probability pi of the button being pressed will be the mixture of the values TV(tran(D,µ0), tran(D,µ1))
for the deterministic decision trees D in the support of Ry,i. Also, the expected number of queries Ti

that Ry,i makes is a matching mixture of the expected number of queries made by the decision trees D in
the support of Ry,i; the latter is cost(D,µyi

). Hence to lower bound Ti/pi, it will suffice to lower bound
cost(D,µyi

)

TV(tran(D,µ0),tran(D,µ1))
for all deterministic decision trees D acting on inputs in Dom(g). We now write

cost(D,µyi
)

TV(tran(D,µ0), tran(D,µ1))
≥ min{cost(D,µ0), cost(D,µ1)}

TV(tran(D,µ0), tran(D,µ1))
≥ LR(g)/6

(using Corollary 8). The desired result follows.

4.2 Composition for LR complexity

Theorem 3. LR(f ◦ g) ≥ Ω(LR(f)LR(g)) for all partial boolean functions f, g.

We actually prove the more explicit result LR(f ◦ g) ≥ LR(f)LR(g)/6.

Proof. The proof is similar to that of Theorem 13. We fix hard distributions µ0 and µ1 for LR(g), and we
fix a randomised algorithm R for f ◦ g such that maxz cost(R, z)/bias(R, z) ≤ LR(f ◦ g). We then define
a randomised algorithm R′ for f ; this time, unlike in the proof of Theorem 13, we want R′ to solve f in
the LR(f) sense instead of being a randomised algorithm that solves f to error ϵ. We define R′ as before:
on input y ∈ Dom(f), R′ instantiates n protocols Πi, one for each bit of y; it instantiates each with the
distributions (µ0, µ1), and gives Πi the hidden bit yi if it presses the button. Then R′ will run R, and
whenever R makes a query (i, j) (to the bit j inside the i-th input to g), R′ will ask Πi for bit j.

Note that by the soundness of the protocols Πi, we have bias(R′, y) = bias(R, y ◦ (µ0, µ1)). We will next
show that cost(R′, y) ≤ 6 cost(R, y ◦ (µ0, µ1))/LR(g); This way, we will have

LR(f) = max
y

cost(R′, y)

bias(R′, y)
≤ 6

LR(g)
max

y

cost(R, y ◦ (µ0, µ1))

bias(R, y ◦ (µ0, µ1))
≤ 6

LR(g)
max

z

cost(R, z)

bias(R, z)
≤ 6LR(f ◦ g)

LR(g)
.

Fix any y ∈ Dom(f); it remains to show that cost(R, y ◦ (µ0, µ1))/ cost(R
′, y) ≥ LR(g)/6. For every

i ∈ [n], let Ti be the expected number of queries R makes to the i-th input on y ◦ (µ0, µ1), and let pi be the
probability that R′ queries the i-th bit when run on input y. Let T = T1+ · · ·+Tn, and let q = p1+ · · ·+pn.
We wish to show T/q ≥ LR(g)/6. This precise statement was shown in the proof of Theorem 13, which
completes this proof as well.
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5 Optimality of the composition theorem

We complete the proof of Theorem 2 in this section.

Theorem 2. Theorem 1 is optimal: If M is any complexity measure such that R(f ◦ g) ≥ Ω(R(f)M(g)) for
all partial f, g, then LR(g) ≥ Ω(M(g)) for all partial g.

The proof of Theorem 2 is obtained by a characterization of LR complexity in terms of the complexity

of functions composed with the approximate index partial function ApproxIndexk : {0, 1}k ×{0, 1, 2}2k →
{0, 1, ∗} defined by

ApproxIndexk(a, y) =


ya if ya ∈ {0, 1},

yb = ya for all |b− a| ≤ k
2 − 2

√
k log k, and

yb = 2 for all other b

∗ otherwise.

The randomised query complexity of the approximate index function is as follows.

Lemma 14 ([BB20b, Lemma 27]). R(ApproxIndexk) = Θ
(√

k log k
)
.

The key to the proof of Theorem 2 is the following characterization of LR complexity in terms of com-
position with the approximate index function.

Lemma 15. For every partial boolean function g : Σm → {0, 1, ∗}, when k ∈ N satisfies k
log k ≥ (36m)2 then

LR(g) = Θ

(
R(ApproxIndexk ◦ g)
R(ApproxIndexk)

)
.

Proof. The lemma trivially holds when g is a constant function. For the rest of the proof, fix g to be any
non-constant partial function. Theorem 1 implies the upper bound

LR(g) = O

(
R(ApproxIndexk ◦ g)
R(ApproxIndexk)

)
.

The goal of the remainder of the proof is to establish a matching lower bound by showing that

R(ApproxIndexk ◦ g) = O
(√

k log k · LR(g)
)
.

This bound suffices to complete the proof because R(f) = Θ(R(f)) for every partial function f .
Let R denote a randomised algorithm that satisfies

cost(R, x) ≤ 2 · LR(g) · bias(R, x)

for all x in the domain of g and always queries at least one bit of its input. Such an algorithm is guaranteed to
exist by Lemma 9. We define a new randomised algorithm A that proceeds as follows: it runs the algorithm
R sequentially on the first instances x1, x2, . . . , xℓ of g which correspond to the initial address bits of the
input to ApproxIndexk. It continues this process until the total number of queries made to the underlying
inputs exceeds 36

√
k log k ·LR(g). By the choice of k and the trivial bound LR(g) ≤ m, this process terminates

when R has computed the first ℓ instances of g with some biases b1, . . . , bℓ for some ℓ ≤ k. The algorithm A
then guesses the value of the remaining k − ℓ bits of the address. It finally computes the value of g on the
instance corresponding to the address obtained with error probability at most 1

9 and returns that value.
Let c1, . . . , cℓ denote the query cost incurred by R when running on the ℓ computed instances of g.

The random variables (Xi)i≤k defined by Xi =
∑

j≤i cj − cost(R, xj) form a discrete-time martingale and
ℓ is the stopping time of this martingale. By the optional stopping theorem, E[Xℓ] = 0. So E[

∑
i≤ℓ ci] =∑

i≤ℓ cost(R, xi). By Markov’s inequality, the probability that the total cost exceeds 6 times the expected
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cost on the same inputs is at most 1/6; let us consider from now on only the case when this does not occur.
In this case,

ℓ∑
i=1

cost(R, xi) ≥
1

6

ℓ∑
i=1

ci ≥ 6
√
k log k · LR(g).

By our choice of R, the biases β1, . . . , βℓ on the values g(x1), . . . , g(xℓ) satisfy
∑ℓ

i=1 βi ≥ 3
√
k log k and so if

we let b ∈ {0, 1}k denote the address computed by the algorithm, we observe that

E
[
|b− a|

]
=

k∑
i=1

Pr[bi ̸= g(xi)] ≤
k

2
− 3
√
k log k.

Furthermore, each of the k events bi ̸= g(xi) are independent. So by Hoeffding’s bound the probability

that more than k
2 − 2

√
k log k of these events occur is at most e−2 log2 k, which is less than 1

9 when k ≥ 3.
When this event does not occur, the address b computed by the algorithm satisfies xb = xa. Since A lastly
computes g(xb) with error at most 1

9 , in total it computes ApproxIndexk ◦ g with error at most 1
3 .

It remains to show that the expected query cost of the algorithm A satisfies the desired bound. The first
round of the algorithm uses at most 36

√
k log k · LR(g) queries plus the number of queries of the instance of

R run on xℓ. In expectation, this additional number of queries is at most cost(R, xℓ) ≤ LR(g). And then
computing g(xb) requires another R(g) ≤ m <

√
k queries. So the overall expected query complexity of A is

at most (36
√
k log k+1) · LR(g) +

√
k. By Corollary 10, LR(g) ≥ 1

2 for every non-constant function g so this
query complexity is bounded above by O

(√
k log k · LR(g)

)
, as required.

The proof of Theorem 2 now follows easily from Lemma 15.

Proof of Theorem 2. Let M be a measure that satisfies the condition of the theorem. Then, choosing f to
be the ApproxIndexk function for a large enough value of k and applying Lemma 15, we obtain

M(g) = O

(
R(ApproxIndexk ◦ g)
R(ApproxIndexk)

)
= O (LR(g)) .

6 Separation from χ

In this section, we exhibit a polynomial separation between LR and χ, the max conflict complexity introduced
by Gavinsky, Lee, Santha and Sanyal in [GLSS19] (see Section 6.1 for a formal definition of χ).

Lemma 4. There exists a partial f such that LR(f) ≥ Ω(χ(f)1.5).

Proof. The function f we build takes input of size n2 +
√
n with format (x1, . . . , xn2 , a1, . . . , a√n). The

function value is given as the parity of GapMaj(x) and Xor(a), i.e.:

f(x1, . . . , xn2 , a1, . . . , a√n) = GapMajn
2

n−1/2(x1, . . . , xn2)⊕Xor√n(a1, . . . , a
√
n)

GapMajn
2

n−1/2(x) is the majority function on n2 bits with promise that |x| /∈ [n2/2 − n3/2, n2/2 + n3/2] so
that returning the value of a random index holds bias at least n−1/2. Thus, f is a partial function whose
domain is constrained by the gap majority instance. Lemma 16 shows that LR(f) ≥ Ω

(
n3/4

)
and Lemma 17

that χ(f) ≤ O(n1/2), as desired.

Lemma 16. LR(F ) ≥ Ω
(
n3/4

)
Proof. To obtain the lower-bound, we define a pair of distributions P 0, P 1 over f−1(0), f−1(1) and use the
minimax theorem for LR (see (7)):

LR(f) = max
µ

min
D

cost(D,µ)

biasf (D,µ)
≥ min

D

cost(D,P )

TV(tran(D,P 0), tran(D,P 1))
where P := (P1 + P2)/2

Let µ0 be the hard distribution for no-instances of GapMaj, i.e µ0 is uniform over all strings of Hamming
weight n2−n3/2. Similarly, we let µ1 be the uniform distribution of all strings of Hamming weight n2+n3/2.
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Define further ν0, respectively ν1 to be the uniform distribution over even-parity, respectively odd-parity
strings of size n1/2. With those base distribution in hand, we define P 0 and P 1:

P 0 :=
µ0 × ν0

2
+

µ1 × ν1

2
and P 1 :=

µ1 × ν0

2
+

µ0 × ν1

2

Fix now any decision tree D and let us argue that cost(D,P )/TV(tran(D,P 0), tran(D,P 1)) ≥ Ω
(
n3/4

)
.

Without loss of generality, we may assume that D has depth bounded by n3/4 (see Lemma 41). Observe
that any leaf ℓ ∈ L(D) can be written as ℓ = ℓx ◦ ℓa where ℓx is exclusively over variables x1, . . . , xn2 and ℓa
over a1, . . . , a√n. We further let Ls := {ℓx ◦ ℓa ∈ L(D) : |ℓa| =

√
n} be the set of leaves that solve the Xor

instance. Observe that for any ℓ /∈ Ls,
∣∣P 0[ℓ]− P 1[ℓ]

∣∣ = 0, indeed ν0[ℓa] = ν1[ℓa] = 1/2 so that:∣∣P 0[ℓ]− P 1[ℓ]
∣∣ = 1

2
·
∣∣µ0[ℓx]ν

0[ℓa] + µ1[ℓx]ν
1[ℓa]− µ1[ℓx]ν

0[ℓa]− µ0[ℓx]ν
1[ℓa]

∣∣ = 0

We can therefore focus on bounding the bias contribution of leaves in Ls. To that end, fix Γ to be the set of
all conjunction of size n1/2 over a1, . . . , a√n and for γ ∈ Γ, fix Lγ to be the set of leaves ℓ over x1, . . . , xn

such that ℓ ◦ γ ∈ L(D) (note that it is possible that Lγ = ∅ for some γ). The bias of D on P can now be
re-expressed as:

TV(tran(D,P 0), tran(D,P 1)) =
1

2

∑
γ∈Γ

∑
ℓ∈Lγ

∣∣P 0[ℓ ◦ γ]− P 1[ℓ ◦ γ]
∣∣ =∑

γ∈Γ
ν[γ]

∑
ℓ∈Lγ

∣∣µ0[ℓ]− µ1[ℓ]
∣∣ (9)

Observe that Lγ can be seen as the leaves of Dγ , the tree which is obtained from compressing D with γ. For
instance if γ1 = 1, we swap any node querying a1 with its children sub-tree corresponding to a1 = 1. The
inner sums can thus be interpreted as the bias Dγ holds in distinguishing µ0 from µ1. To bound those bias,
it is convenient to replace µ (which is hyper-geometric) with a binomial variant µ̃. We let ν̃ := (ν̃0 + ν̃1)/2,
where µ̃0, µ̃1 yield n2 iid Bernoulli(1/2 − n−1/2), respectively Bernoulli(1/2 + n−1/2) random variables.
Because all Dγ have depth ≤ n3/4, we may relate µ to µ̃ and use the hardness of Section 9.2 to get:∑

ℓ∈L(Dγ)

∣∣µ0[ℓ]− µ1[ℓ]
∣∣ =∑

ℓ∈L(Dγ)

∣∣µ̃0[ℓ]− µ0[ℓ]
∣∣+ ∣∣µ̃0[ℓ]− µ̃1[ℓ]

∣∣+ ∣∣µ̃1[ℓ]− µ1[ℓ]
∣∣

≤
∑

ℓ∈L(Dγ)

∣∣µ̃0[ℓ]− µ̃1[ℓ]
∣∣+ 24n−1/2

(
µ̃0[ℓ] + µ̃1[ℓ]

)
(by Lemma 38)

= TV(tran(Dγ , µ̃
0), tran(Dγ , µ̃

1)) + 48n−1/2

≤ O(1) · n−1/2
√

cost(Dγ , µ̃) (by Theorem 22 with b := n−1/2)

≤ O(1) · n−1/2
√

cost(Dγ , µ) (by Lemma 38)

Note that by Lemma 38, we can extend (9) by using this bound and Cauchy-Schwarz inequality:

TV(tran(D,P 0), tran(D,P 1)) ≤ O(1) · n−1/2
∑
γ∈Γ

ν[γ]
√
cost(Dγ , µ)

≤ O(1) · n−1/2
√∑

γ∈Γ
ν[γ]

√∑
γ∈Γ

ν[γ] cost(Dγ , µ)

The cost of D on P is easily lower-bounded by only taking leaves of Ls into account:

cost(D,P ) ≥
∑

γ∈Γ

∑
ℓ∈Lγ

(√
n+ |ℓ|

)
ν[γ]µ[ℓ] =

√
n
∑

γ∈Γ
ν[γ] +

∑
γ∈Γ

ν[γ] cost(Dγ , µ)

Combining both, we get the desired bound on the LR ratio of D:

cost(D,P )

TV(tran(D,P 0), tran(D,P 1))
≥ Ω(1) ·max

 n ·
√∑

γ∈Γ ν[γ]√∑
γ∈Γ ν[γ] cost(Dγ , µ)

,
n1/2 ·

√∑
γ∈Γ ν[γ] cost(Dγ , µ)√∑

γ∈Γ ν[γ]


≥ Ω(n3/4)
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6.1 An upper bound for χ

We recall here the definition of max conflict complexity (but see [GLSS19] for an in-depth treatment of the
measure). Let f be a fixed boolean function, µ0, µ1 a pair of distribution over f−1(0) and f−1(1) respectively
and D a deterministic decision tree solving f . For each node v in D, we let µ0|v, µ1|v be the distributions
conditioned on reaching v and q(v) be the index queried at node v. Furthermore, we associate to each
v ∈ N (D) a number RD

µ (v) inductively. If v is the root of D, we let RD
µ (v) = 1 and if v is the child of w

which is reached when the query answer to q(w) is b ∈ {0, 1}:

RD
µ (v) = RD

µ (w) ·min
{
Prx∼µ0|w [xq(w) = b],Prx∼µ1|w [xq(w) = b]

}
Finally, we define ∆D

µ (v) for each v ∈ N (D) with:

∆D
µ (v) :=

∣∣Prx∼µ0|w [xq(v) = 0]− Prx∼µ1|w [xq(v) = 0]
∣∣

RD
µ (v) can be interpreted as the probability of reaching node v in a random walk that starts at the root

and with probability min{Prx∼µ0|v [xi = 0],Prx∼µ1|v [xi = 0]} moves left, with probability min{Prx∼µ0|v [xi =
1],Prx∼µ1|v [xi = 1]} moves right and with remaining probability ∆D

µ (v) stops. As such, it holds that∑
v∈N (D) ∆

D
µ (v)RD

µ (v) = 1 and that for any partition Γ of {0, 1}n we have
∑

γ∈Γ R
D
µ (γ) ≤ 1. The max

conflict complexity χ(f) is defined as:

χ(f) := max
Q

min
D∈D(f)

E
µ∼Q

[∑
v∈N (D)

|v|∆D
µ (v)RD

µ (v)

]
Where Q ranges over distributions of pairs of distributions over f−1(0) and f−1(1) and D(f) is the set of all
decision tree solving f correctly.

Lemma 17. χ(F ) ≤ O(n1/2)

Proof. Let Q be the witness distribution over pairs of distribution for χ(F ) so that:

χ(F ) = min
D∈D(f)

E
µ∼Q

[∑
v∈N (D)

|v|∆D
µ (v)RD

µ (v)

]
We build a decision tree D ∈ D(F ) and show that it witnesses χ(F ) ≤ O(n1/2). Let Γ be the set of all
conjunction of size n1/2 over a1, . . . , a√n. D starts by querying all the Xor variables a1, . . . , a√n. We then
append to each branch γ ∈ Γ a decision tree Dγ on variables x1, . . . , xn2 depending on Q. For each γ ∈ Γ,
let f |γ be the function f with a set to γ and let us define a distribution Qγ over distributions on f |−1γ (0)
and f |−1γ (1). For each ν ∈ supp(Q), we put the conditioned distribution ν|γ in Qγ and set its probability
mass as:

Qγ [ν|γ ] =
Q[ν]RD

ν (γ)

zγ
where zγ =

∑
ν∈supp(Q)

Q[ν]RD
ν (γ)

While D refers to the whole tree, zγ does not actually depend on the choice of Dγ so that we are still free
to choose it as

Dγ := argmin
D′∈D(f |γ)

E
µ∼Qγ

[∑
v∈N (D′)

|v|∆D′

µ (v)RD′

µ (v)

]
We now show that D witnesses χ(F ) ≤

√
n. Indeed, we have:

χ(F ) ≤ E
µ∼Q

 ∑
v∈N (D)

|v|∆D
µ (v)RD

µ (v)


= E

µ∼Q

 ∑
|v|<
√
n

|v|∆D
µ (v)RD

µ (v) +
∑
γ∈Γ

∑
w∈N (Dγ)

|γ ◦ w|∆D
µ (γ ◦ w)RD

µ (γ ◦ w)
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≤ E
µ∼Q

 ∑
|v|<
√
n

√
n∆D

µ (v)RD
µ (v) +

∑
γ∈Γ

∑
w∈N (Dγ)

(
√
n+ |w|)∆D

µ (γ ◦ w)RD
µ (γ ◦ w)


≤ E

µ∼Q

 ∑
v∈N (D)

√
n∆D

µ (v)RD
µ (v) +

∑
γ∈Γ

∑
w∈N (Dγ)

|w|∆D
µ (γ ◦ w)RD

µ (γ ◦ w)


≤
√
n+

∑
γ∈Γ

E
µ∼Q

 ∑
w∈N (Dγ)

|w|∆D
µ (γ ◦ w)RD

µ (γ ◦ w)


=
√
n+

∑
γ∈Γ

E
µ∼Q

 ∑
w∈N (Dγ)

|w|∆Dγ

µ|γ (w)R
Dγ

µ|γ (w)R
D
µ (γ)


=
√
n+

∑
γ∈Γ

∑
ν∈suppQ

Q[ν]RD
ν (γ)

∑
w∈N (Dγ)

|w|∆Dγ

ν|γ (w)R
Dγ

ν|γ (w)

=
√
n+

∑
γ∈Γ

zγ
∑

ν∈suppQ
Qγ [ν|γ ]

∑
w∈N (Dγ)

|w|∆Dγ

ν|γ (w)R
Dγ

ν|γ (w)

=
√
n+

∑
γ∈Γ

zγ E
µ∼Qγ

 ∑
w∈N (Dγ)

|w|∆Dγ
µ (w)RDγ

µ (w)


Observe that for any γ ∈ Γ, f |γ ∈ {GapMaj,¬GapMaj}, hence following our choice of Dγ , we have:

E
µ∼Qγ

[∑
w∈N (Dγ)

|w|∆Dγ
µ (w)RDγ

µ (w)

]
= min

D′∈D(f |γ)
E

µ∼Qγ

[∑
w∈N (D)

|w|∆D′

µ (w)RD′

µ (w)

]
≤ χ(f |γ)

Finally, note that LR(GapMaj) ≤ O(n1/2), as witnessed by the algorithm that makes one random query and
returns the result. Combining this observation together with Theorem 2 and the fact that χ is inner-optimal
yields χ(f |γ) ≤ O(n1/2) for every γ ∈ Γ so that:

χ(F ) ≤
√
n+

∑
γ∈Γ

zγ E
µ∼Qγ

[∑
w∈N (Dγ)

|w|∆Dγ
µ (w)RDγ

µ (w)

]
≤
√
n+O(

√
n) ·

∑
γ∈Γ

zγ

=
√
n+O(

√
n) ·

∑
γ∈Γ

E
µ∼Q

[
RD

µ (γ)
]

≤ O(
√
n) (Γ partitions the input space)

Part II

Small-Bias Minimax

7 Overview

In this Part II, we prove the separation between LR and ULR in Theorem 6, restated below.

Theorem 6. There is an n-bit partial function f such that ULR(f) ≥ Ω(LR(f)5/4) ≥ nΩ(1).

We start, in this section, by giving an outline of the proof. Without further delay, we define the separating
function f below. For convenience, we use N = nO(1) to denote the input length. It will be easy to show an
upper bound LR(f) ≤ O(n) below in Lemma 19. The hard part is to show a lower bound ULR(f) ≥ Ω(n5/4),
which will occupy us for Sections 8–11.
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7.1 Choice of hard function

Definition 18 (Separating function). We define a partial function f : {0, 1}N → {0, 1, ∗} using parame-
ters n,B and bX ≤ o(bY ) ≤ o(1). The input string is of length N := Bn and we think of it as being composed
of B blocks, each of size n. The “type” of a block (x1, x2, . . . , xn) is determined by x1 ∈ {0, 1}:

− If x1 = 0, we say the block is easy and the value of the block is x2.
− If x1 = 1, we say the block is hard and the value of the block is Xorn−1(x2, . . . , xn).

The value of f is the majority value of the blocks. To make f partial, we promise that the number of hard
block is either 0 or 4BbY . Moreover:

− If there are 0 hard blocks, we guarantee there are at least B/2 +BbX blocks with the same value.
− If there are 4BbY hard blocks, we guarantee there are at least B/2 +BbY blocks with the same value.

We will set bX := n−1, bY := n−3/4, B := 8n9/2, so that effectively N = 8n11/2.

Lemma 19. LR(f) ≤ O(n)

Proof. Let R be the randomised tree that picks one block at random and outputs its value (i.e., easy blocks

take two queries, hard blocks take n). Consider any input x ∈ {0, 1}Bn
. Suppose first that the number of

hard blocks in x is 0. In this case, the number of queries R makes is 2 and the bias is at least bX so that
the cost/bias ratio is O(n). On the other hand, if the number of hard blocks is 4BbY , the bias is at least bY
while the expected query cost is cost(R, x) = n · (4BbY )/B + 2 · (1− (4BbY )/B) ≤ 5bY n.

7.2 Choice of hard input distributions

Our goal is now to prove a lower bound ULR(f) ≥ Ω(n5/4). To this end, we use the following minimax
characterisation, which can be derived using the minimax theorem for ratios of bilinear functions [BB20a]

ULR(f) := min
R

max
x,y

cost(R, x)

bias(R, y)
= max

µ,ν
min
D

cost(D,µ)

bias(D, ν)
. (10)

We are thus faced with the task of finding a pair of hard distributions µ and ν. To do so, we first define
distributions X and Y , over inputs with no hard blocks and with 4BbY hard blocks, respectively. Naturally,
these distributions combine the hard distribution for GapMaj and Xor. Crucially, we define Y as hiding
the correct value of f inside the hard blocks—this way, an algorithm that never bothers to solve hard blocks
would see only block values negatively biased against the correct value of f . Finally, we will define µ and ν
as appropriate mixtures of X and Y .

Specifically, we define X0 as the result of setting all blocks to easy and B/2 + BbX of them have
value 0. The process of picking the B/2 + BbX many 0-blocks is made at uniformly at random (without
replacement). Observe that creating an easy 0-block simply amounts to setting the underlying variables
to 0n. The distribution X1 is defined analogously but with B/2+BbX many 1-blocks. Note that f(X0) = 0
and f(X1) = 1. The definition of Y 0 is more interesting. We first select the location of 4BbY hard blocks
whose values are set to 0 using the hard distribution for Xorn−1 (uniform over Xor−1n−1(0)). The remainder
of the blocks are easy and B/2− 3BbY are set to 0 while B/2−BbY are set to 1. Observe that the values of
the easy blocks are indeed negatively biased toward the right answer: the probability of getting the correct
value by sampling one easy block is (B/2− 3BbY )/(B − 4Bby) ≤ 1/2− bY . The distribution Y 1 is defined
similarly. We now let

X := 1
2X

0 + 1
2X

1,

Y := 1
2Y

0 + 1
2Y

1,

µ := 1
2X + 1

2Y,

ν := (1− λ)X + λY,

where we will set λ := Θ(bX/bY ) = Θ(n−1/4) with a carefully chosen implicit constant (see Section 9.1).
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Intuition. Here is the intuition behind our definition of the hard pair µ, ν. First, hard blocks are much
more likely to be found in µ than in ν. Hence, if an algorithm D wants to keep cost(D,µ) low, it should
not solve hard blocks very often. On the other hand, consider the following algorithm D that solves no hard
blocks: Query a block, if it is easy, output its value; if it is hard, output a random guess. What is the bias of
this algorithm? We have bias(D,X) = bX and bias(D,Y ) = −bY and thus the two biases cancel each other
out: bias(D, ν) = (1 − λ)bX − λbY ≈ 0. The challenge for us will be to rule out every such decision tree
that does not solve hard blocks. However, this analysis will become subtle. For example, if the algorithm
witnesses a hard block (but does not solve it), it still learns that the input comes from Y and it then knows
that the rest of the blocks are negatively biased.

7.3 Lower-bound plan

Now that the hard distributions µ, ν are chosen, our goal is to show for every deterministic tree D,

cost(D,µ)

bias(D, ν)
≥ Ω(n5/4). (11)

We now outline our lower-bound strategy that we will carry out in the upcoming Sections 8–11.

(§8.1) Simplification I. We start by making two simplifications. First, we rule out any decision tree
whose strategy is to solve hard blocks (querying all n bits of a block) with noticeable probability.
Such trees have too high a cost relative to µ (which includes hard blocks with probability 1/2). We
will henceforth assume that a given tree D never solves a hard block. Moreover, we are left with a
challenge of proving an LR-style cost/bias trade-off relative to ν only. (We forget µ from now on.)

(§8.2) Simplification II. Second, we simplify the analysis of decision trees by switching to a infinite-
stream model of computation. Instead of the N -bit input distributions such as X = 1

2X
0 + 1

2X
1

we model them as infinite streams X̃ = 1
2X̃

0 + 1
2X̃

1 that record the values of the blocks, with
the original biases, but with more independence. For example, X̃1 is an infinite sequence of iid
Bernoulli(1/2 + bX). Moreover, each of X̃, Ỹ , ν̃ is a mixture of at most 4 streams of iid symbols.

(§9) Two basic hardness results. At this point, it remains to prove a cost/bias trade-off for stream ν̃.
In preparation for this, we establish some very basic query lower bounds that are well-known in the
worst-case setting, but which have not been yet proved in the expected-cost setting. For example,
every algorithm trying to distinguish between an iid stream of Bernoulli(1/2+b) and an iid stream of
Bernoulli(1/2 + b) must have bias at most O(b

√
cost). Because the cost is measured in expectation,

these basic facts turn out to be somewhat tricky to prove.

(§10) Lower bound for ν-stream. We now have the tools to analyse the cost/bias trade-off for ν̃. The
analysis here is rather intricate, as there are several decision tree strategies that we need to defeat.
Some technical calculations are relegated to Section 11 and Appendix A.

8 Two simplifications

Having chosen two hard pair of distribution µ, ν to be plugged in the minimax characterisation (10) for ULR,
it remains to be shown that cost(D,µ)/biasf (D, ν) ≥ Ω(n5/4) for all decision tree D to prove Theorem 6.
The purpose of this section is to make two simplifying steps (as sketched in Section 7.3) and reduce the
lower-bound task to showing

cost(D, ν̃)

TV(tran(D, ν̃0), tran(D, ν̃1))
≥ Ω(n5/4) for all deterministic decision trees D. (12)

Here D will be a ternary decision tree over {0, 1,h} (where h models a hard block that the algorithm did
not solve) and ν̃ an infinite stream over {0, 1,h} representing ν. The goal of this section is to define and
justify precisely the reduction, leaving the proof of (12) for Section 10.
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8.1 Simplification I: No hard blocks

The first simplification step rules out any decision tree whose strategy is to solve blocks completely. In
that regard, having λ ≪ 1 is critical. Let us say that D solves a hard block on input x, denoted S(D,x),
if the leaf reached by x on D contains all the n bits of some block with first bit equal to 1. Observe
that S(D,x) can only hold when x actually contains a hard block, i.e., when it is coming from Y . Note that
equating “solving” with “querying the whole block” is justified since the value v of a hard block is hidden by
the uniform distribution Xor−1n−1(v), offering zero bias until the very last query. Let ν[S] and Y [S] be the
probability that D solves a hard block when the input is drawn from ν, respectively Y . If ν[S] ≥ bias(t, ν)/3,
the desired bound Ω(n5/4) in (11) is already attained because λ = Θ(bX/bY ) and

cost(D,µ) ≥ 1

2
· cost(D,Y ) ≥ n

2
· Y [S] ≥ n

2λ
· ν[S] ≥ n

6λ
· bias(D, ν) ≥ Ω(bias(D, ν) · n5/4).

Thus we may assume ν[S] ≤ bias(t, ν)/3 henceforth. We let D′ be the copy of D that stops whenever it is
about to solve a hard block, i.e., instead of querying the last remaining bit of a hard block, D′ stops and
outputs the most likely answer. Note that cost(D′, µ) ≤ cost(D,µ), but D′ still enjoys a constant fraction
of the bias that D has against ν:

bias(D′, ν) = 2 Pr
x∼ν

[D′(x) = f(x)]− 1 ≥ 2 Pr
x∼ν

[D′(x) = f(x) and ¬S(D,x)]− 1

= 2 Pr
x∼ν

[¬S(D,x)] Pr
x∼ν

[D(x) = f(x)]− 1

≥ bias(D, ν)/3

As cost(D′, µ) ≥ cost(D′, ν)/2, we have reduced (11) to showing that cost(D, ν)/bias(D, ν) ≥ Ω(n5/4) for
any decision tree D that never solves hard blocks completely. Note that this is an LR-style lower bound
relative to a single hard distribution ν and against a restricted class of algorithms.

We may restrict the class of admissible algorithms even further. Observe first that a decision tree D that does
not solve any hard block can be simulated by a randomised tree R that never queries anything outside the first
two variables {x1, x2} of any given block. Indeed, if a block is easy, the values beyond the two first bits are
fixed to 0n−2 and need not be queried. If a block is hard, then the marginal distribution of any proper subset
of the variables x2, . . . , xn is uniform, and R can simulate this distribution itself with internal randomness.
We may now derandomise such an R back into a deterministic tree: if R has cost(R, ν)/biasf (R, ν) ≤ C, then
there must be a deterministic decision tree D′ in its support that also achieves cost(D′, ν)/biasf (D

′, ν) ≤ C.
After the above simplification, we only need to show that for any tree D that is constrained to read at

most variables {x1, x2} within each block, cost(D, ν)/bias(D, ν) ≥ Ω(n5/4). At the cost of losing a constant
factor in the bound, we may also assume that whenever D queries x2, it first queries x1. Observe that such
a D only sees three types of events: easy 0-block, easy 1-block or hard block with undisclosed value. D
can thus be interpreted as a ternary decision tree over the alphabet {0, 1,h} (where h means hard block
with undisclosed value) trying to solve a ternary analogue f of f against inputs sampled from the ternary

analogue ν of ν. More precisely, f maps {0, 1,h}B → {0, 1, ∗} and ν a distribution over {0, 1,h}B defined
as before but now based on X and Y :

1. X
0
: B/2 +BbX random locations are set to 0, the rest are 1.

2. X
1
: B/2 +BbX random locations are set to 1, the rest are 0.

3. Y
0
: 4BbY locations are set to h, B/2− 3BbY locations to 0 and B/2−BbY locations to 1.

4. Y
1
: 4BbY locations are set to h, B/2− 3BbY locations to 1 and B/2−BbY locations to 0.

Following this discussion, to prove (11), we only need to show:

cost(D, ν)

biasf (D, ν)
≥ Ω(n5/4) for all ternary decision tree D (13)
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Ternary decision tree. We use an intuitive notion of ternary decision tree, where each query node has
three children corresponding to each possible query response in {0, 1,h}. Akin to their binary analogues,
we will see leaves of ternary tree as conjunction over literals with three possible states: positive, negative or
witnessing. This new witnessing literal type amounts to checking whether the variable equals h. Following
this, we will say that a leaf ℓ is witnessing, in short h ∈ ℓ, if it holds a witnessing literal.

8.2 Simplification II: Streaming model

Following Section 8.1, we are left with the task of showing (13). One of the main technical annoyances in

working with ν is that its entries are generated using a hypergeometric distribution, where, even in X
0
,

the bits are not iid. To overcome this issue and simplify the calculations, we propose to replace ν with a
a multinomial variant ν̃. This change requires attention on two counts. First, we need to ensure that D is
shallow enough and B is large enough, thus asserting that the behavior of D on ν̃ is close to the behavior of
D on ν. Second and most importantly, observe that it is possible that ν̃0 yields a 1-input (and ν̃1 a 0-input).
This makes the usual notion of bias moot, but we can still resort to the total-variation distance interpretation
of the bias. Indeed, assuming without loss of generality that D is optimally labelled for distinguishing ν0

from ν1:

biasf ′(D, ν) = TV(tran(D, ν0), tran(D, ν1)) =
1

2
·
∑

ℓ∈L(D)

∣∣ν0[ℓ]− ν1[ℓ]
∣∣

Thus, (13) can actually be re-written swapping TV(tran(D, ν0), tran(D, ν1) in place of biasf ′(T, ν) and this
relaxed formulation opens the floor for the desired multinomial variant. ν̃ is defined analogously to ν, by
mixing appropriately the distributions X̃0, X̃1, Ỹ 0 and Ỹ 1:

− X̃0: B iid Bernoulli(1/2− bX) random variables.
− X̃1: B iid Bernoulli(1/2 + bX) random variables.
− Ỹ 0: B iid random variables taking value 0 with probability 1/2− 3bY , 1 with probability 1/2− bY and

h with remaining probability 4bY .
− Ỹ 1: B iid random variables taking value 0 with probability 1/2− bY , 1 with probability 1/2− 3bY and

h with remaining probability 4bY .

Lemma 20. If cost(D, ν̃)/TV(tran(D, ν̃0), tran(D, ν̃1) ≥ Ω(n5/4) for all D, then (13) holds.

Proof. Fix some ternary decision tree D, and let us show that (13) holds for D. We may assume without
loss of generality that D has depth bounded by n5/4, as else D would essentially already have LR ratio
≥ Ω(n5/4) (see Lemma 41 for details). The claim would also be vacuously true if biasf ′(D, ν) ≤ n−5/4. Fix
now any leaf ℓ ∈ L(D) and let q0, q1 and qh be the number of negative, positive and witnessing literals in ℓ
so that |ℓ| = q0 + q1 + qh. Recalling that B = 8n9/2, we have |ℓ| ≪

√
B, so that using Lemma 38 for X and

Lemma 37 for Y :∣∣∣X̃d[ℓ]−X
d
[ℓ]
∣∣∣ ≤ 12|ℓ|2

B
· X̃d[ℓ] and

∣∣∣Ỹ d[ℓ]− Y
d
[ℓ]
∣∣∣ ≤ 2|ℓ|2

BbY
· Ỹ d ∀d ∈ {0, 1}

In short, |ν̃d[ℓ]− νd[ℓ]| ≤ n−5/4ν̃d[ℓ]/4 and so cost(D, ν) ≥ cost(D, ν̃)/2. Furthermore, both total variation
distance are close:

biasf ′(D, ν) =
∑

ℓ∈L(D)

∣∣ν0[ℓ]− ν1[ℓ]
∣∣ ≤∑

ℓ∈L(D)

∣∣ν0[ℓ]− ν̃0[ℓ]
∣∣+ ∣∣ν̃0[ℓ]− ν̃1[ℓ]

∣∣+ ∣∣ν1[ℓ]− ν̃1[ℓ]
∣∣

≤
∑

ℓ∈L(D)

∣∣ν̃0[ℓ]− ν̃1[ℓ]
∣∣+∑

ℓ∈L(t)
n−5/4ν̃/2

≤ n−5/4/2 +
∑

ℓ∈L(D)

∣∣ν̃0[ℓ]− ν̃1[ℓ]
∣∣

≤ biasf ′(D, ν)/2 +
∑

ℓ∈L(D)

∣∣ν̃0[ℓ]− ν̃1[ℓ]
∣∣

Thus, if cost(D, ν̃)/TV(tran(D, ν̃0), tran(D, ν̃1) ≥ Ω(n5/4) holds for D, we have, as desired:

cost(D, ν)

biasf ′(D, ν)
≥ Ω(1) · cost(D, ν̃)

TV(tran(D, ν̃0), tran(D, ν̃1))
≥ Ω(n5/4)
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As an ultimate simplification, instead of multinomial distributions over {0, 1,h}B , we will see X̃0, X̃1,
Ỹ 0 and Ỹ 1 as infinite iid streams and allow D to be have unbounded length. Because of Lemma 41, this
generalization adds no real power but this stream framework is generally nicer to work with. In particular,
the parameter B is not relevant anymore and as such we will only use bX and bY for later sections. Following
our reduction, proving ULRf ≥ Ω(n5/4) now amounts to proving the following:

cost(D, ν̃)

TV(tran(D, ν̃0), tran(D, ν̃1)
≥ Ω(n5/4) for all infinite ternary decision tree D (14)

8.2.1 Some thoughts on the LR streaming model

Note that by the iid nature of random streams, the indices queried by decision trees do not matter. Actually,
we could even force D to query variable x1 at level 1, x2 at level 2 and so forth. This however doesn’t prevent
D from adopting an adaptive strategy: D can indeed decide when to stop depending on past query answers.
This allows for some wildly unbalanced decision trees that need to be ruled out, and as such it is a challenge
to prove our results in the expected query cost setting.

The lower bound (14) can also be seen as a distribution testing hardness result. Consider the problem
in which a secret φ is sampled amongst (X̃0, X̃1, Ỹ 0, Ỹ 1) with prior (λ/2, λ/2, (1 − λ)/2, (1 − λ)/2) and
one needs to decide whether φ ∈ {X̃0, Ỹ 0} or φ ∈ {X̃1, Ỹ 1} by making repeated queries to the stream φ.
Then, (14) says that any decision tree D accomplishing this task must have LR ratio ≥ Ω(n5/4).

As a technicality, we will need to resort to LR-streaming bounds for randomised decision tree. For this, we
define the total variation distance on transcript distribution naturally with TV(tran(R,P 0), tran(R,P 1)) =
ED∼R[TV(tran(D,P 0), tran(D,P 1))] (where P 0 and P 1 are two distributions). In particular, this is still
consistent with the view that if R is labelled optimally by {P 0, P 1}, then TV(tran(R,P 0), tran(R,P 1)) =
Prx∼P 0 [R(x) = P 0]− Prx∼P 1 [T (x) = P 0]

9 Two basic hardness results

Before tackling the proof of (14) and ultimately showing ULR(f) ≥ Ω(n5/4), we first establish in this section
a couple of basic results in the LR-streaming model. Those self-contained results are a good starting point
to get acquainted with LR-style lower bounds and have the added benefit of being a key component of our
main technical result Theorem 24.

9.1 Source of hardness I: Bernoulli mixtures

As a first step toward bounding the hardness of distinguishing ν̃0 from ν̃1 with a decision tree, we study an
idealized version with no hard blocks. More precisely, for two parameters bX < o(bY ) < o(1), we let X0,
X1, Z0 and Z1 be iid random stream of Bernoulli(1/2− bX), Bernoulli(1/2 + bX), Bernoulli(1/2 + bY ) and
Bernoulli(1/2− bY ) random variables and define the mixtures of random streams M0 and M1 with:

M0 := (1− λ)X0 + λZ0

M1 := (1− λ)X1 + λZ1 where
1− λ

λ
=

ln
(

1+2bY
1−2bY

)
ln
(

1+2bX
1−2bX

) (15)

Finally, we letM := (M0+M1)/2. We will show that TV(tran(D,M0), tran(D,M1)) ≤ O(bXbY cost(D,M))
for any deterministic D. The fine-tuning of λ in (15) will turn out to be a necessary technicality, but
λ = Θ(bX/bY ) as Lemma 43 shows. Following the initial plan, distinguishing M0 from M1 can be interpreted
as distinguishing ν̃0 from ν̃1 with no h, in particular Z carries overall negative bias. This particular source
of hardness will be used to analyse the bias brought by small leaves, whose behavior for ν̃0 versus ν̃1 is close
to M0 versus M1. As a secondary goal, the companion proof exemplifies one of the simplest way to obtain a
LR lower bound, namely finding a hybrid distribution—in this case the uniform distribution U—and apply
a corruption bound.

Theorem 21. For any tree D, we have TV(tran(D,M0), tran(D,M1)) ≤ O(bXbY cost(D,M)).
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Proof. Following Lemma 41, we may assume without loss of generality that D has depth bounded by
1/9bXbY . Let U be the random stream of Bernoulli(1/2) variables and decompose the bias of D as:

2 · TV(tran(D,M0), tran(D,M1)) =
∑

ℓ∈L(D)

∣∣M0[ℓ]−M1[ℓ]
∣∣ ≤ ∑

ℓ∈L(D)

∣∣M0[ℓ]− U [ℓ]
∣∣+ ∑

ℓ∈L(D)

∣∣M1[ℓ]− U [ℓ]
∣∣

We focus on the first sum as the bound on the second follows by a symmetrical argument. The first sum can
be interpreted as the bias held by D in distinguishing U from M0. Letting LU = {ℓ ∈ L(D) : U [ℓ] ≥M0[ℓ]}:∑

ℓ∈L(D)

∣∣M0[ℓ]− U [ℓ]
∣∣ = 2

∑
ℓ∈LU

U [ℓ]−M0[ℓ]

≤ O(1) · bXbY
∑

ℓ∈LU
|ℓ| · U [ℓ] (by Lemma 32)

≤ O(1) · bXbY
∑

ℓ∈LU
|ℓ| ·M0[ℓ] (by Lemma 32 with |ℓ| ≤ 1/9bXbY )

≤ O(1) · bXbY cost(D,M)

9.2 Source of hardness II: Bernoulli with opposite bias

Our second hardness result tackles the problem of distinguishing a random stream B0 of iid Bernoulli(1/2−b)
variables from the symmetric random stream B1 with variables sampled from Bernoulli(1/2 + b), where
b ∈ o(1) is a parameter. This basic result will be employed several times in later section. For instances,
witnessing leaves need to solve the Ỹ 0 versus Ỹ 1, which is essentially B0 versus B1 with b := bY . In what
follows, we let B := (B0 +B1)/2.

Theorem 22. For any randomised decision tree R, TV(tran(R,B0), tran(R,B1)) ≤ O(b
√

cost(R,B))

Note that the theorem statement features a randomised decision tree instead of a deterministic one, a
generalization needed for later use. There are essentially three ways to prove a result similar to the one
of Theorem 22. The first is to use a direct corruption bound, akin to Theorem 21 - but this would only
give the weaker bound TV(tran(R,B0), tran(R,B1)) ≤ O(b cost(R,B))). A second would be to leverage
the machinery of later sections and especially Lemma 34 to get a bias bound per leaf, ultimately yielding
TV(tran(R,B0), tran(R,B1)) ≤ O(b

√
cost(R,B)polylog(cost(R,B))). Even though this is enough to cover

the desired polynomial separation, Theorem 22 is optimal and we believe, interesting on its own. The crux
is to re-use an idea brought by Sherstov [She12] in the context of bounding the communication complexity
of the gap-Hamming function. As a first step, we prove some hardness result in distinguishing B from U .

Lemma 23. For any randomised decision tree R, TV(tran(R,U), tran(R,B)) ≤ 4b2 cost(R,U/2 +B/2).

Proof. We show this for a deterministic D instead of R as the randomised case follows by linearity of
expectation. Let us begin by showing that for any ℓ ∈ L(D), B[ℓ]/U [ℓ] ≥ 1 − 2|ℓ|b2. Let k := |ℓ| and
supposing that ℓ has k/2 +m positive literals (so m ∈ [−k/2, k/2]):

B[ℓ]

U [ℓ]
=

1

2
·
(
1− 4b2

)k/2 · [(1 + 2b

1− 2b

)m

+

(
1− 2b

1 + 2b

)m]
The quantity within the square bracket is a function of m and we find its minimum by setting its derivative
equal to zero, yielding m = 0. Note that this shows that the most separating leaves have as many positive
literals as negative ones. In any case, it holds that B[ℓ]/U [ℓ] ≥ (1− 4b2)k/2 so that by defining LU := {ℓ ∈
L(D) : U [ℓ] ≥ B[ℓ]} and using the approximation of Lemma 44:

TV(tran(D,U), tran(D,B)) =
∑
ℓ∈LU

U [ℓ]−B[ℓ] ≤
∑
ℓ∈LU

U [ℓ] ·
(
1− (1− 4b2)|ℓ|/2

)
≤
∑
ℓ∈LU

U [ℓ] · 2b2|ℓ|

We may finally conclude:

cost(D,U/2 +B/2)

TV(tran(D,U), tran(D,B))
≥ cost(D,U)

4b2 · cost(D,U)
= 1/4b2
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Proof of Theorem 22. As a first step, we prove the claim for deterministic D and extend it to randomised
ones at the end. Following an argument similar to the one of Lemma 41, we may assume that D has depth
bounded by 1/5b2. It will be convenient to see D as having leaves labelled optimally by {B0, B1}. Let
δ := TV(tran(D,B0), tran(D,B1)) = Prx∼B0 [D(x) = B0] − Prx∼B1 [D(x) = D0] be the bias of D in B0

against B1 and note that we can mix D with the trivial tree that always accept (or always reject) to get a
randomised decision tree R with centred acceptance probability:

Prx∼B0 [R(x) = B0] = 1/2 + ξ and Prx∼B1 [R(x) = B0] = 1/2− ξ where ξ ≥ δ/6

The construction of R is detailed in Lemma 42, but R has worst-case depth bounded by 1/5b2 too. We will
use R to build another randomised decision tree R⋆ which can distinguish B from U , effectively reducing
the hardness of B0 versus B1 to distinguishing B from U . Define Rneg as a copy of R with inverted labels,
i.e. leaves labelled with B0 are now labelled with B1 and reciprocally. The tree R⋆ we build will have
TV(tran(R⋆, U), tran(R⋆, B)) ≥ Ω(ξ2) and small cost. The construction of R⋆ depends on the value of
α := Prx∼U [R(x) = B0]− 1/2. If α ∈ [−δ/7, δ/7], we let R⋆ execute R and Rneg in turn on independent bits
and output U if both run output B0 and B else. The independent runs can be performed by off-setting the
query indices of Rneg by a large number, e.g. ⌈1/b2⌉. We have:

Pr
x∼B

[R⋆(x) = U ] =
1

2
· Pr
x∼B0

[R⋆(x) = U ] +
1

2
· Pr
x∼B1

[R⋆(x) = U ]

=
1

2
· Pr
x,x′∼B0

[R(x) = Rneg(x
′) = B0] +

1

2
· Pr
x,x′∼B1

[R(x′) = Rneg(x) = B0]

=

(
1

2
+ ξ

)
·
(
1

2
− ξ

)
≤ 1

4
− δ2

36

On the other hand, Prx∼U [R
⋆(x) = U ] = (1/2 + α) · (1/2 − α) ≥ 1/4 − δ2/49 and hence for this regime of

α, R⋆ achieves bias TV(tran(R⋆, U), tran(R⋆, B)) ≥ 13δ2/1764. Finally, if α ≥ δ/7 we pick R⋆ := R and
since R is centred, Prx∼B [R(x) = U ] = 1/2. On the other hand, we have Prx∼U [R(x) = U ] ≥ 1/2 + ξ/7.
The case α ≤ δ/7 is analogous and requires picking R⋆ := Rneg. In any case, we get a construction R⋆ with
TV(tran(R⋆, U), tran(R⋆, A)) ≥ Ω(δ2) and worst-case depth 2/5b2, implying that for any D′ in the support
of R⋆:

cost(D′, B) =
∑

ℓ∈L(D′)

|ℓ| ·B[ℓ] ≥
∑

ℓ∈L(D′)

|ℓ| · U [ℓ] ·
(
1− 2|ℓ|b2

)
≥ 1

5

∑
ℓ∈L(D′)

|ℓ| · U [ℓ] =
cost(D′, U)

5

The first inequality holds because of the analysis in Lemma 23. Applying linearity of expectation, we have
that cost(R⋆, U/2+B/2) ≤ 3 cost(R⋆, B). Observe that the only non-trivial tree in the support of R⋆ is the
initial D so that cost(D,B) ≥ Ω(cost(R⋆), U/2 +B/2) and hence using Lemma 23:√

cost(D,B)

δ
≥ Ω

(
cost(R⋆, U/2 +B/2)

TV(tran(R⋆, U), tran(R⋆, B))

)1/2

≥ Ω(1/b)

To obtain the claim for randomised decision tree, we resort to Jensen’s inequality:

TV(tran(R,B0), tran(R,B1)) = E
D∼R

[
TV(tran(D,B0), tran(D,B1))

]
≤ O(1) · E

D∼R

[
b
√

cost(D,B)
]

≤ O(1) · b
√

cost(R,B)

10 Lower bound for ν-stream

In this section, we finally prove that ULR(f) ≥ Ω(n5/4). Following Section 8, it suffices to prove (14). To
keep things as general as possible, we will not work with ν̃ directly but with an asymptotically equivalent
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Stream 0 1 h

X0 .5 + bX .5− bX 0

X1 .5− bX .5 + bX 0

Y 0 (.5− bY )(1− ph) (.5 + bY )(1− ph) ph

Y 1 (.5 + bY )(1− ph) (.5− bY )(1− ph) ph

Z0 .5− bY .5 + bY 0

Z1 .5 + bY .5− bY 0

U .5 .5 0

ν0 := (1− λ)X0 + λY 0

ν1 := (1− λ)X1 + λY 1

ν := (ν0 + ν1)/2

M0 := (1− λ)X0 + λZ0

M1 := (1− λ)X1 + λZ1

M := (M0 +M1)/2

Table 1: A summary of the random streams used in this section. It should be read as e.g. the stream Z1

has probability 1/2− bY of producing a 1. The mixture parameter λ is set following (15) with bX and bY so
that λ = Θ(bX/bY ).

version ν and drop the tilde notation which is too heavy, so that e.g. Y is now a random stream over {0, 1,h}
instead of an hyper-geometric distribution over {0, 1}Bn

. All the random streams used for the remainder of
the paper are summarised in Table 1. Note that the stream Y of Table 1 and the stream Ỹ of Section 8 are
indeed asymptotically equivalent, as the proof of Theorem 25 shows. Let us now state our main technical
result and show how to use it to get ULR(f) ≥ Ω(n5/4).

Theorem 24. For any bX < o(bY ) < o(1), ph ∈ [3bY , 4bY ] and deterministic decision tree D,

cost(D, ν)

TV(tran(D, ν0), tran(D, ν1))
≥ Ω(1) ·min

{
1

b
1/2
X bY

,
1

bXb
1/3
Y

}

Theorem 25. ULR(f) ≥ Ω(n5/4)

Proof. Following Section 8, in order to prove ULR(f) ≥ Ω(n5/4), it is sufficient to prove (14). To this end, fix

any deterministic ternary decision tree D and let b̂X and b̂Y be the original parameters of Section 7, which
were set to n−1 and n−3/4 respectively. By setting bX := b̂X , bY := b̂Y /(1 − 4b̂Y ) and ph = 4b̂Y , we have

ν̃ = ν, bY = Θ(b̂Y ) and ph ∈ [3bY , 4bY ] (for n large enough), so that we may apply Theorem 24 directly:

cost(D, ν̃)

TV(tran(D, ν̃0), tran(D, ν̃1))
=

cost(D, ν)

TV(tran(D, ν0), tran(D, ν1))
≥ Ω(1) ·min

{
1

b
1/2
X bY

,
1

bXb
1/3
Y

}

This is Ω(n5/4) for our initial setting of b̂X and b̂Y .

10.1 Bias decomposition

A decision tree trying to distinguish ν0 from ν1 may pick one of several different strategies or even a mixture
of those. To encompass all types of strategy, we will split the bias contribution of each leaf depending on their
length and witnessing qualities. For instance, leaves that witness (i.e. h ∈ ℓ) have to solve the Y 0 versus Y 1

problem, whereas leaves that do not witness have the harder task of distinguishing M0 from M1. This effect
however wears-off with an increasing depth: if some input reaches a very long non-witnessing leaf, then most
likely the distribution was not Y to start with and this leaf can thus focus on distinguishing X0 from X1.
To formalize this idea, let us partition the leaves of a decision tree D with L(D) = Lwit(D)∪Lwit(D) where

Lwit(D) contains all witnessing leaves and Lwit(D) the non-witnessing ones. For a pair of streams P 0 and
P 1, we define the witnessing and non-witnessing bias with:

biaswit(D,P 0, P 1) :=
∑

ℓ∈Lwit(D)

∣∣P 0[ℓ]− P 1[ℓ]
∣∣

biaswit(D,P 0, P 1) :=
∑

ℓ∈Lwit(D)

∣∣P 0[ℓ]− P 1[ℓ]
∣∣
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In particular, 2 · TV(tran(D,P 0), tran(D,P 1)) = biaswit(D,P 0, P 1) + biaswit(D,P 0, P 1). This distinction
between witnessing and non-witnessing leaves allows for a quick proof of Theorem 24, provided that we have
matching hardness result for the witnessing and non-witnessing trade-offs.

Proof of Theorem 24. Using Theorem 26 and Theorem 30 to bound the witnessing and non-witnessing trade-
off,

cost(D, ν)

TV(tran(D, ν0), tran(D, ν1))
≥ min

{
cost(D, ν)

biaswit(D, ν0, ν1)
,

cost(D, ν)

biaswit(D, ν0, ν1)

}

≥ Ω(1) ·min

{
1

b
1/2
X bY

,
1

bXb
1/3
Y

}

In the following sections, it will be convenient to use ∆(ℓ) for the absolute difference between the number
of positive and negative literal in the conjunction ℓ. ∆(ℓ) will be directly related to the distinguishing
qualities of a leaf. For instance, if ∆(ℓ) = 0, then ℓ has no bias in distinguishing X0 from X1.

10.2 Trade-off for witnessing leaves

Since the distribution X0 and X1 never output h, witnessing leaves can only be reached if the distribution is
Y 0 or Y 1. Hence, we can focus on bounding biaswit(D,Y 0, Y 1) as biaswit(D, ν0, ν1) = λ ·biaswit(D,Y 0, Y 1).
The main idea is to bound biaswit(D,Y 0, Y 1) using the hardness of distinguishing B0 from B1 with b := bY ,
with care needed as Y is ternary but B is of binary nature. Note that under Y , we expect to see a h
after about Θ(1/ph) queries and to simplify the argument, we will assume that any leaf witnesses a h if its
length is larger than Θ(1/ph). This relaxed notion of witnessing can be understood as helping the tree: if
it has already made about Θ(1/ph) queries, then we give it a h for free. To express this syntactically, let
Lcut = ⌈1/3ph⌉ and define the set of stopping nodes S(D) ⊆ L(D) as any node which witnesses for the first
time or has not witnessed but is at depth Lcut. Observe that the parent of any stopping node corresponds
to a conjunction with no h and that any witnessing leaf has a unique stopping node as ancestor. For each
s ∈ S(D), let Ds be the decision tree rooted at node s. With this notation in hand, we have:

biaswit(D,Y 0, Y 1) ≤
∑

s∈S(D)

∑
ℓ∈L(Ds)

∣∣Y 0[s ◦ ℓ]− Y 1[s ◦ ℓ]
∣∣ (16)

The inequality instead of strict equality comes from our relaxed notion of witnessing leaf, i.e. some large
non-witnessing leaves are now also accounted for; but this is counterbalanced by the fact that those leaves
tend to contribute greatly toward the expected cost. The connection between cost and bias will be made
through Y [S(D)], the probability that a node from S(D) is reached by an input x ∼ Y . Shallow trees will
tend to have Y [S(D)] close to zero while tall trees will tend to have this probability close to 1. We now state
and prove our bound for the witnessing trade-off.

Theorem 26. For any deterministic decision tree D,

cost(D, ν)

biaswit(D, ν0, ν1)
≥ Ω(1) ·min

{
1

b
1/2
X bY

,
1

bXb
1/3
Y

}

Proof. Using Lemma 27 and Lemma 29, we have:

cost(D, ν)

biaswit(D, ν)
=

cost(D, ν)

λ · biaswit(D,Y )
≥ Ω(1) · max {cost(D,X), λ cost(D,Y ), Y [S(D)]/bY }

λ ·max
{
b
4/3
Y cost(t,X), bY

√
Y [S(D)] · cost(D,Y )

}
If b

4/3
Y cost(D,X) ≥ Y [S(D)] · cost(D,Y ), then we have:

cost(D, ν)

biaswit(D, ν)
≥ Ω(1) · cost(D,X)

λb
4/3
Y cost(D,X)

= Ω

(
1

bXb
1/3
Y

)
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The last inequality holds because λ = Θ(bX/bY ). If the other case holds, then we have:

cost(D, ν)

biaswit(D, ν)
≥ Ω(1) ·max

{√
cost(D,Y )

bY
√

Y [S(D)]
,

√
Y [S(D)]

λb2Y
√
cost(D,Y )

}
≥ Ω

(
1

b
1/2
X bY

)
Lemma 27. For any deterministic decision tree D:

biaswit(D,Y 0, Y 1) ≤ O(1) ·max
{
bY
√
cost(D,Y ) · Y [S(D)], b

4/3
Y cost(D,X)

}
Proof. Continuing on (16), we further split the bias contribution by leaves that are stopping nodes and leaves
which have an ancestor stopping node.

biaswit(D,Y 0, Y 1) ≤
∑

s∈S(D)

∑
ℓ∈L(Ds)

∣∣Y 0[s ◦ ℓ]− Y 1[s ◦ ℓ]
∣∣

=
∑

s∈S(D)

∑
ℓ∈L(Ds)

∣∣Y 0[s]Y 0[ℓ]− Y 1[s]Y 1[ℓ]
∣∣

=
∑

s∈S(D)

∑
ℓ∈L(Ds)

2Y [s]

∣∣∣∣(1

2
+ δ(s)

)
Y 0[ℓ]−

(
1

2
− δ(s)

)
Y 1[ℓ]

∣∣∣∣ δ(s) :=
Y 0[s]− Y 1[s]

4Y [s]

≤
∑

s∈S(D)

∑
ℓ∈L(Ds)

Y [s] ·
∣∣Y 0[ℓ]− Y 1[ℓ]

∣∣+ 2Y [s] · |δ(s)| ·
(
Y 0[ℓ] + Y 1[ℓ]

)
=

∑
s∈S(D)

∑
ℓ∈L(Ds)

Y [s] ·
∣∣Y 0[ℓ]− Y 1[ℓ]

∣∣+∑
s∈S(D)

∣∣Y 0[s]− Y 1[s]
∣∣︸ ︷︷ ︸

cash-out bias bC

Lemma 28 shows that bC ≤ O(1) · b4/3Y cost(D,X) and we now argue that the first sum is bounded by

O(1) · bY
√
cost(D,Y ) · Y [S(D)], thus finishing the claim. To do so, fix some s ∈ S(D) and let us assume

that Ds is optimally labeled with {Y 0, Y 1} so that:∑
ℓ∈L(Ds)

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣ = 2 ·

(
Prx∼Y 0 [Ds(x) = Y 0]− Prx∼Y 1 [Ds(x) = Y 0]

)
Now, Ds can be transformed into a randomised decision tree Rs that solves Z0 versus Z1: Rs runs Ds as
usual and swap a h for query answers in {0, 1} with probability ph. Rs further has Y 0 leaves relabeled by
Z0 and Y 1 leaves by Z1, implying:∑

ℓ∈L(Ds)

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣ = 2 ·

(
Prx∼Z0 [Rs(x) = Z0]− Prx∼Z1 [Rs(x) = Z0]

)
= 2 · TV(tran(Rs, Z

0), tran(Rs, Z
1))

≤ O(1) · bY
√

cost(Rs, Z) (by Theorem 22 with b := bY )

= O(1) · bY
√

cost(Ds, Y )

Applying this bound to each s ∈ S(D), we get the desired bound on the left sum:∑
s∈S(D)

∑
ℓ∈L(Ds)

Y [s] ·
∣∣Y 0[ℓ]− Y 1[ℓ]

∣∣ ≤ O(1) · bY
∑

s∈S(D)

Y [s]
√
cost(Ds, Y )

≤ O(1) · bY
√
Y [S(D)] ·

√ ∑
s∈S(D)

Y [s] · cost(Ds, Y )

≤ O(1) · bY
√
Y [S(D)] ·

√
cost(D,Y )

Where Cauchy-Schwarz inequality was used for the second inequality.

Lemma 28. Following the notation of Lemma 27, bC ≤ O(1) ·b4/3Y cost(D,X) for any deterministic decision
tree D.
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Proof. Without loss of generality, we may assume that D has depth bounded by Lcut as there is no stopping
node with depth greater than that. As a first step, we partition S(D) = Sh ∪ Scut where Sh contains all
the witnessing stopping nodes in D and Scut the nodes that are stopping only because of their length being
Lcut. Note that any s ∈ Sh has parent node p(s) representing a conjunction with no h. Therefore, we may
substitute Z to Y as follows:

bC =
∑

s∈Scut

∣∣Y 0[s]− Y 1[s]
∣∣+∑

s∈Sh

∣∣Y 0[s]− Y 1[s]
∣∣

≤
∑

s∈Scut

∣∣Z0[s]− Z1[s]
∣∣+ ph

∑
s∈Sh

∣∣Z0[p(s)]− Z1[p(s)]
∣∣

The second sum bears a nice interpretation. Indeed, if D′ is a copy of D that stops at depth Lcut−1 and has
all witnessing paths removed then the second sum is equal to

∑
n∈N (D′)

∣∣Z0[n]− Z1[n]
∣∣, i.e. the bias D′ gets

in distinguishing Z0 from Z1 while having the ability to cash-out the current bias it has at each node. Now,
if D′ happens to be close to the complete binary tree, then we may apply the hardness of distinguishing Z0

from Z1 at each level and get a global bound on the cash-out bias. This approach will however fail if the
tree is largely unbalanced and we thus develop a more robust argument, which we re-use in later results. We
first partition Sh =

⋃
Sk where Sk := {s ∈ Sh : |s| = k} for k ∈ [Lcut]. Fix now some k ∈ [Lcut] and observe

that, ∑
s∈Sk

∣∣Z0[p(s)]− Z1[p(s)]
∣∣ ≤ 8bY

∑
s∈Sk

∆(p(s))Z[p(s)] (by Lemma 34)

≤ 16bY k
2/3

∑
∆(s)≤2k2/3

Z[p(s)] + 8bY k
∑

∆(s)≥2k2/3

Z[p(s)]

≤ 16bY k
2/3

∑
∆(s)≤2k2/3

Z[p(s)] + 16bY ke
−k1/3/48 (by Lemma 45)

≤ 16bY k
2/3

∑
ℓ∈L(D):|ℓ|≥k

Z[ℓ] + 16bY ke
−k1/3/48

≤ 16bY k
−1/3 cost(D,Z) + 16bY ke

−k1/3/48 (Markov’s inequality)

≤ O(1) · bY k−1/3 cost(D,Z)

We made the arbitrary choice to split between small and large ∆ with cutoff parameter 2k2/3. Setting it to
the limiting k1/2polylog(n) would have slightly improved the LR ratio against ν but this would ultimately
yield λ = Θ(1/polylog(n)), thus worsening the step in which we reduce to decision trees not solving hard
blocks (see Section 8). Observing that the above chain of inequalities also holds for Scut with level k = Lcut,
we have:

bC ≤
∑

s∈Scut

∣∣Z0[s]− Z1[s]
∣∣+ ph

∑
s∈S∗

∣∣Z0[p(s)]− Z1[p(s)]
∣∣

≤ O(1) · bY L−1/3cut cost(D,Z) +O(1) · p∗bY cost(D,Z)
∑

k∈[Lcut]
k−1/3

≤ O(1) · bY L−1/3cut cost(D,Z) +O(1) · p∗bY Lcut
2/3 cost(D,Z)

≤ O(1) · b4/3Y cost(t, Z) (Lcut = ⌈1/3p∗⌉ and p∗ = Θ(bY ))

≤ O(1) · b4/3Y cost(t,X) (by Lemma 33)

Lemma 29. For any deterministic decision tree D, cost(D, ν) ≥ Ω(Y [S(D)]/ph).

Proof. Without loss of generality, we may assume that D stops whenever it reaches a stopping node. Let
us first argue that cost(D, ν) ≥ Ω(cost(D,Y )). Fix d ∈ {0, 1} and observe that sampling from Y d is the
same as sampling from Zd while salting the query answers by replacing them with a star with independent
probability ph so that:

cost(D,Y d) = E
x∼Zd

[
E
salt

[q(D, salt(x))]

]
≤ E

x∼Zd
[q(D,x)] = cost(D,Zd) ≤ 78 cost(D,X) (17)
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The first inequality stems from the fact that flipping some answer with a star makes the leaf witness and D
thus directly stops. The last one is due by Lemma 33, recalling that D has depth bounded by Lcut. Using
(17) and the definition of ν, we have cost(D, ν) ≥ Ω(cost(D,Y )). Recall that there are two types of stopping
nodes in S(D). The first type are nodes that witnesses for the first time and the second type are nodes that
never witness but have reached depth Lcut. We split Y [S(D)], according to both type:

p1 := Prx∼Y [D stops on h] and p2 := Prx∼Y [D stops because of Lcut]

We may thus write Y [S[D]] = p1+p2, as a simple sanity check, note that it is possible to have Y [S(D)]≪ 1,
e.g. if D has many small non-witnessing leaves. If p2 ≥ p1, then p2 ≥ Y [S(D)]/2 and so:

cost(D,Y ) ≥
∑
|ℓ|=Lcut

|ℓ|Y [ℓ] = p2Lcut ≥ Ω(Y [S(D)]/ph)

Now, if p1 ≥ Y [S(D)], we let D′ be a decision tree that runs D in turn until it witnesses a h in the stream
but for at most ⌈2/p1⌉ times. We ensure that the runs are independent by offsetting the query indices by
a multiple of a large number (e.g. 10Lcut). With that number of runs, D′ has a constant probability of
witnessing:

Prx∼Y [D
′ witnesses] = 1− (1− p1)

⌈2/p1⌉ ≥ 1− e−2 ≥ 3/4

Observe further that D′ never queries after witnessing and that cost(D,Y ) ≥ Ω(cost(D′, Y )Y [S(D)]). Fix
now L1 = {ℓ ∈ L(D′) : h ∈ ℓ and |ℓ| ≤ Lcut} and L2 = {ℓ ∈ L(D′) : h ∈ ℓ and |ℓ| > Lcut} and
note that Y [L1] + Y [L2] ≥ 3/4. Because leaves of D′ can only have a h as their last literal we have
Y [ℓ] = (1− ph)

|ℓ|phZ[p(ℓ)] where p(ℓ) is the parent node of ℓ and hence:

Y [L1] =

Lcut∑
k=1

∑
ℓ∈L1:
|ℓ|=k

Y [ℓ] ≤ 2ph

Lcut∑
k=1

(1− ph)
k−1 = 1− (1− ph)

Lcut ≤ phLcut ≤ 2/3

This shows that Y [L2] ≥ 1/12 and thus:

cost(D,Y ) ≥ Ω(1) · Y [S(D)] cost(D′, Y ) ≥ Ω(1) · Y [S(D)]Y [L2]Lcut ≥ Ω(Y [S(D)/ph])

10.3 Trade-off for non-witnessing leaves

Non-witnessing leaves can be reached both by the X and Y distribution and as such have the harder task
of distinguishing ν0 from ν1, unlike witnessing leaves that only need to solve Y 0 versus Y 1. As previously
noted, this effect wears off following the depth of the tree: if the unknown stream reaches a long leaf with
no h, then most likely the stream is part of {X0, X1} and not {Y 0, Y 1}. To account for this, we will break
the analysis into small and large leaves with cutoff parameter Lcut = ⌈1/bY ⌉. For a decision tree D, let

Lsmall(D) = {ℓ ∈ Lwit(D) : |ℓ| ≤ Lcut} and Llarge(D) = {ℓ ∈ Lwit(D) : |ℓ| > Lcut}. We will argue that the
bias brought by Lsmall(D) is capped by the hardness of the M0 versus M1 problem (see Section 9.1) and that
the bias brought by Llarge(D) can bounded using the B0 versus B1 problem with b := bX (see Section 9.2).

Theorem 30. For any deterministic decision tree D, cost(D, ν)/biaswit(D, ν0, ν1) ≥ Ω(1/bXb
1/3
Y )

Proof. Using the notation introduced above, we can split biaswit(D, ν0, ν1) with:

biaswit(D, ν0, ν1) =
∑

ℓ∈Lsmall

∣∣ν0[ℓ]− ν1[ℓ]
∣∣+ ∑

ℓ∈Llarge

∣∣ν0[ℓ]− ν1[ℓ]
∣∣

≤
∑

ℓ∈Lsmall

∣∣ν0[ℓ]− ν1[ℓ]
∣∣+O(1) ·

∑
ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ b3Y (by Lemma 35)

Lemma 31 shows that the the second sum is bounded by O(cost(D,X)bXb
1/3
Y ) so that we only need to show

that the first sum is also bounded by the same amount, which we do next. To analyse this sum, we may
assume without loss of generality that D is a binary decision tree of maximum depth Lcut. Indeed, Lsmall
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contains small non-witnessing leaves only. This implies that for all ℓ ∈ L(D), Y [ℓ] = (1 − ph)
|ℓ|Z[ℓ] and so

we may further break the sum into the contribution of M0 versus M1 and the one of Z0 versus Z1:∣∣ν0[ℓ]− ν1[ℓ]
∣∣ = ∣∣M0[ℓ]− λZ0[ℓ] + λY 0[ℓ]−M1[ℓ] + λZ1[ℓ]− λY 1[ℓ]

∣∣
≤
∣∣M0[ℓ]−M1[ℓ]

∣∣+ λ ·
∣∣Y 0[ℓ]− Y 1[ℓ]− Z0[ℓ] + Z1[ℓ]

∣∣
=
∣∣M0[ℓ]−M1[ℓ]

∣∣+ λ · (1− (1− ph)
|ℓ|) ·

∣∣Z0[ℓ]− Z1[ℓ]
∣∣

≤
∣∣M0[ℓ]−M1[ℓ]

∣∣+ λph|ℓ| ·
∣∣Z0[ℓ]− Z1[ℓ]

∣∣ (by Lemma 44)

Using this insight, we can finally exploit the hardness of distinguishing M0 from M1:∑
ℓ∈Lsmall

∣∣ν0[ℓ]− ν1[ℓ]
∣∣ ≤ ∑

ℓ∈L(D)

∣∣M0[ℓ]−M1[ℓ]
∣∣+ λph

∑
ℓ∈L(D)

|ℓ| ·
∣∣Z0[ℓ]− Z1[ℓ]

∣∣
= 2 · TV(tran(D,M0), tran(D,M1)) + λph

∑
ℓ∈L(D)

|ℓ| ·
∣∣Z0[ℓ]− Z1[ℓ]

∣∣
≤ O(bXbY cost(D,M)) + λph

∑
ℓ∈L(D)

|ℓ| ·
∣∣Z0[ℓ]− Z1[ℓ]

∣∣ (by Theorem 21)

≤ O(bXbY cost(D,X)) + λph
∑

ℓ∈L(D)
|ℓ| ·

∣∣Z0[ℓ]− Z1[ℓ]
∣∣︸ ︷︷ ︸

weighted bias bW

(by Lemma 33)

Since λ = Θ(bX/bY ) and ph = Θ(bY ), the only thing left to prove is that bW ≤ O(b
1/3
Y cost(D,X)). We

resort to an analysis similar to the one employed in Lemma 28, except that this time we need to take into
account the size of the leaf. To that end, let Lk := {ℓ ∈ L(D) : |ℓ| = k} for k ∈ [Lcut] and let us bound the
bias brought by level k:∑

ℓ∈Lk
k ·
∣∣Z0[ℓ]− Z1[ℓ]

∣∣ ≤ 8bY k
∑

ℓ∈Lk
∆(ℓ)Z[ℓ] (by Lemma 34)

≤ 16bY k
5/3
∑

∆(ℓ)≤2k2/3
Z[ℓ] + 8bY k

2
∑

∆(ℓ)≥2k2/3
Z[ℓ]

≤ 16bY k
5/3
∑

∆(ℓ)≤2k2/3
Z[ℓ] + 16bY k

2e−k
1/3/48 (by Lemma 45)

Recalling that D has depth bounded by Lcut = ⌈1/bY ⌉, we have k5/3 ≤ b
−2/3
Y k and hence:

bW =
∑

k∈[Lcut]

∑
ℓ∈Lk

k ·
∣∣Z0[ℓ]− Z1[ℓ]

∣∣
≤ 16b

1/3
Y

∑
ℓ∈L(t)

|ℓ| · Z[ℓ] + 16bY
∑

k∈[Lcut]
k2e−k

1/3/48

≤ 16b
1/3
Y cost(D,Z) +O(bY ) (by ratio test)

≤ O(1) · b1/3Y cost(D,X) (by Lemma 33)

Lemma 31. For any deterministic decision tree D,
∑

ℓ∈Llarge(D)

∣∣X0[ℓ]−X1[ℓ]
∣∣ ≤ O(1) · bXb

1/3
Y cost(D,X)

Proof. We may assume without loss of generality that D is over {0, 1} only as any witnessing conjunction
ℓ has

∣∣X0[ℓ]−X1[ℓ]
∣∣ = 0. We let C := {c ∈ N (t) : |c| = Lcut} be the set of node at height Lcut and for

each c ∈ C, define Dc to be the sub-tree of D rooted at c. Re-cycling the decomposition used in the proof of
Lemma 27:∑

ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣ ≤∑

c∈C
X[c]

∑
ℓ∈L(Dc)

∣∣X0[ℓ]−X1[ℓ]
∣∣︸ ︷︷ ︸

large leaves bias bL

+
∑

c∈C

∣∣X0[c]−X1[c]
∣∣︸ ︷︷ ︸

cut-off bias bC

We show next that bL, bC ≤ O(bXb
1/3
Y cost(D,X)). To get a bound on bL, observe that for any c ∈ C,∑

ℓ∈L(Dc)

∣∣X0[ℓ]−X1[ℓ]
∣∣ = 2·TV(tran(Dc, X

0), tran(Dc, X
1)) which can be bounded byO(bX

√
cost(Dc, X))
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using Theorem 22 with b := bY so that:

bL ≤ O(1) · bX
∑
c∈C

X[c]
√

cost(Dc, X)

= O(1) · bX
√
X[C] ·

√∑
c∈C

X[c] · cost(Dc, X) (by Cauchy-Schwarz inequality)

≤ O(1) · bXb
1/2
Y

√
cost(D,X) ·

√∑
c∈C

X[c] · cost(Dc, X) (by Markov’s inequality and Lcut = ⌈1/bY ⌉)

≤ O(1) · bXb
1/2
Y cost(D,X)

We can finally bound bC , using the fact that all c ∈ C have length Lcut = ⌈1/bY ⌉.

bC ≤ O(1) · bX
∑

c∈C
∆(c)X[c] (by Lemma 34)

= O(1) · bXL
2/3
cut

∑
∆(c)≤2L2/3

cut

X[c] +O(1) · bXLcut

∑
∆(c)≥2L2/3

cut

X[c]

= O(1) · bXL
2/3
cut

∑
∆(c)≤2L2/3

cut

X[c] +O(1) · bXLcute
−Lcut

1/3/48 (by Lemma 45)

≤ O(1) · 2bXL
2/3
cut

∑
∆(c)≤2L2/3

cut

X[c] +O(1) · bXLcut
−1/3

≤ O(1) · bXLcut
−1/3 cost(D,X) +O(1) · bXLcut

−1/3 (by Markov’s inequality)

≤ O(1) · bXb
1/3
Y cost(D,X)

11 Technical lemmas

11.1 Some corruption bounds

Lemma 32. For any non-witnessing conjunction ℓ, M0[ℓ]/U [ℓ] ≥ 1− 8|ℓ|bXbY

Proof. Fix k := |ℓ| and let ℓ have k/2+ q positive variables for some q ∈ [−k/2, k/2]. As a function of q, the
ratio M0[ℓ]/U [ℓ] can be expressed as:

r(q) := (1− λ)
(
1− 4b2X

)k/2(1− 2bX
1 + 2bX

)q

+ λ
(
1− 4b2Y

)k/2(1 + 2bY
1− 2bY

)q

Using Lemma 39, the minimizer of the ratio (extended to R) is q⋆ ∈ [kbY /7, kbY ], so we may lower-bound
the above with:

min
q∈[−k/2,k/2]

r(q) ≥ (1− λ)
(
1− 4b2X

)k/2(1− 2bX
1 + 2bX

)q⋆

+ λ
(
1− 4b2Y

)k/2(1 + 2bY
1− 2bY

)q⋆

≥ (1− λ)
(
1− 4b2X

)k/2
(1− 4bX)

kbY + λ
(
1− 4b2Y

)k/2
≥ (1− λ)

(
1− 2kb2X

)
(1− 4kbXbY ) + λ

(
1− 2kb2Y

)
≥ (1− λ) (1− 6kbXbY ) + λ

(
1− kb2Y

)
≥ 1− 6kbXbY − λkb2Y

Recalling that λ ≤ 2bX/bY , we get that M0[ℓ]/U [ℓ] ≥ 1− 8|ℓ|bXbY , as desired.

Lemma 33 (Z vs. X). For any non-witnessing conjunction ℓ with |ℓ| ≤ 1/bY , Z
d[ℓ] ≤ 78X[ℓ] for d ∈ {0, 1}.

Proof. We prove the claim for d = 0, the other case being symmetric. Fix some conjunction ℓ and let
L := ⌈1/bY ⌉. We first demonstrate that Z0[ℓ] ≤ 26U [ℓ]:

Z0[ℓ]

U [ℓ]
≤ (1 + 2bY )

L =

L∑
k=0

(
L

k

)
(2bY )

k ≤ 1 +

L∑
k=1

(
2eLbY

k

)k

≤ 1 +

∞∑
k=1

(
2e

k

)k

≤ 26
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Where the first inequality is due to the worst-case consisting of a conjunction with L positive literal and
zero negative ones. We now show that U [ℓ] ≤ 3X[ℓ], thus finishing the claim. Observe that the conjunction
maximizing the ratio X[ℓ]/U [ℓ] has L/2 positive literal and L/2 negative one, hence:

X[ℓ]

U [ℓ]
≥ X1[ℓ]

2U [ℓ]

(b)

≥ (1 + 2bX)
L/2

(1− 2bX)
L/2

2
=

1− 2b2XL

2
≥ 1

3

Lemma 34 (Z0 vs. Z1). For any leaf ℓ,
∣∣Z0[ℓ]− Z1[ℓ]

∣∣ ≤ 8bY ∆(ℓ)Z[ℓ]

Proof. If ℓ is witnessing, the claim is trivially true so let us assume that h /∈ ℓ. By symmetry, we may assume
that ℓ has more negative literals than positive ones so that Z1[ℓ] ≥ Z0[ℓ], thus:∣∣Z0[ℓ]− Z1[ℓ]

∣∣ = Z1[ℓ]− Z0[ℓ] ≤ 2Z[ℓ] ·
(
1− Z0[ℓ]/Z1[ℓ]

)
Now, letting q0, respectively q1 be the number of negative, respectively positive, literals in ℓ and using the
definition of Z0 and Z1, we have:

Z0[ℓ]

Z1[ℓ]
=

(1 + 2bY )
q0(1− 2bY )

q1

(1 + 2bY )q1(1− 2bY )q0
=

(
1− 2bY
1 + 2bY

)∆(ℓ)

≥ (1− 4bY )
∆(ℓ)

Combining both observations, we get:∣∣Z0[ℓ]− Z1[ℓ]
∣∣ ≤ 2Z[ℓ] ·

(
1− (1− 4bY )

∆(ℓ)
)
≤ 8bY ∆(ℓ)Z[ℓ]

11.2 Some bias transfers

Lemma 35 (ν to X bias transfer). Letting Llarge be defined as in Theorem 30, it holds that:∑
ℓ∈Llarge

∣∣ν0[ℓ]− ν1[ℓ]
∣∣ ≤ b2Y +O(1) ·

∑
ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣

Proof. Recall that Llarge only contains non-witnessing leaf of size at least Lcut = ⌈1/bY ⌉. Using the definition
of ν and the triangle inequality, we have:∑

ℓ∈Llarge

∣∣ν0[ℓ]− ν1[ℓ]
∣∣ ≤∑

ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ λ

∑
ℓ∈Llarge

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣

Hence, we need to focus on the second sum only. To bound it, we partition Llarge into balanced and
unbalanced leaves:

Llarge =

∞⋃
k=Lcut

Bk ∪ Uk where
Bk :=

{
ℓ ∈ Llarge : |ℓ| = k and ∆(ℓ) ≤ |ℓ|/2

}
Uk :=

{
ℓ ∈ Llarge : |ℓ| = k and ∆(ℓ) > |ℓ|/2

}
For leaves in Bk, one can apply Lemma 36 to get that λ

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣ ≤ O(1) ·

∣∣X0[ℓ]−X1[ℓ]
∣∣ so that we

have:

λ
∑

ℓ∈Llarge

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣ ≤ O(1) ·

∑
ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ λ

∞∑
k=Lcut

∑
ℓ∈Uk

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣

≤ O(1) ·
∑

ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ ∞∑

k=Lcut

∑
ℓ∈Uk

Y [ℓ]

≤ O(1) ·
∑

ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ ∞∑

k=Lcut

e−k/100 (*)

≤ O(1) ·
∑

ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ 2e−Lcut/100

≤ O(1) ·
∑

ℓ∈Llarge

∣∣X0[ℓ]−X1[ℓ]
∣∣+ b2Y (for bY small enough)

Where (*) is obtained by a slight modification of the proof of Lemma 45.
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Lemma 36. For any non-witnessing leaf ℓ with |ℓ| ≥ 1/bY and ∆(ℓ) ≤ |ℓ|/2,

λ ·
∣∣Y 0[ℓ]− Y 1[ℓ]

∣∣ ≤ O
(∣∣X0[ℓ]−X1[ℓ]

∣∣)
Proof. The rationale behind the statement is that the leaf ℓ maximizing the ratio between

∣∣Y 0[ℓ]− Y 1[ℓ]
∣∣

and
∣∣X0[ℓ]−X1[ℓ]

∣∣ has ∆(ℓ) maximized (e.g. ℓ with 3|ℓ|/4 positive literals). This is however technically
challenging to prove directly. Thus, we will split the proof in two cases: first with ∆(ℓ) ≤ 16/10bY and then
with ∆(ℓ) ≥ 16/10bY . For the second regime, we will actually be able to prove that the most-separating
leaves have ∆(ℓ) = |ℓ|/2. Fix now any non-witnessing leaf ℓ, let k := |ℓ| and q := ∆(ℓ)/2. Since h /∈ ℓ, we
have: ∣∣Y 0[ℓ]− Y 1[ℓ]

∣∣ = (1/4− b2Y
)k/2 · (rqY − r−qY

)
· (1− p∗)

k
where rY :=

1 + 2bY
1− 2bY∣∣X0[ℓ]−X1[ℓ]

∣∣ = (1/4− b2X
)k/2 · (rqX − r−qX

)
where rX :=

1 + 2bX
1− 2bX

As bX ≤ bY , we will ignore the terms
(
1/4− b2Y

)k/2
and

(
1/4− b2X

)k/2
. For the first regime q ≤ 16/10bY ,

we don’t even need the dampening term (1− ph)
k and we simply show that:

rqY − r−qY ≤ 10000

λ
·
(
rqX − r−qX

)
(18)

Using the series representation of the exponential function and Lemma 44 to bound ln(rY ), we have:

rqY − r−qY = 2
∑

t≥0 odd

ln(rY )
tqt

t!
≤ eln(rY )q − 1 ≤ e6bY q − 1

Now, using the fact that λ ≤ 3bX/bY (see Lemma 43), have:

10000

λ
·
(
rqX − r−qX

)
=

20000

λ

∑
t≥0 odd

ln(rX)tqt

t!
≥ 20000

λ
· ln(rX)q ≥ 80000

3
· bY q

Hence, 18 holds if bY q ≤ 1.6 so that the claim holds in the first regime. In the regime where q ≥ 16/10bY ,
we will show that:

λ(1− ph)
kΦ(q) ≤ 3 where Φ(q) :=

rqY
rqX − r−qX

(19)

Since Φ (as a real function over q) is increasing on the interval [16/10bY ,∞) (see Lemma 40), the maximum
of the left-hand side of equation 19 is attained at the boundary of the domain, i.e. for q = k/4. Therefore,
in the second regime:

λ(1− ph)
kΦ(q) ≤ λ(1− ph)

kΦ(k/4) =
λ

r
k/4
X − r

−k/4
X

·
[
(1− ph)

4 · rY
]k/4 ≤ λ

r
k/4
X − r

−k/4
X

The last inequality holds because the quantity in the square bracket is ≤ 1 (recall that ph ∈ [3bY , 4bY ]).
Now, note that µ− µ−1 ≥ λ/3 if µ ≥ 1 + λ/3 but since k ≥ 1/bY and λ ≤ 3bX/bY , we have:

µ := r
k/4
X ≥

(
1 + 2bX
1− 2bX

)k/4

≥ (1 + 4bX)k/4 ≥ 1 + kbX ≥ 1 + λ/3

So that 19 holds.
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A Appendix

A.1 Hypergeometric vs. multinomial

We let H3(Na, Nb, Nc, k) be the hypergeometric distribution where one sample k objects without replacement
where there are Na, Nb and Nc objects of type a, b and c, respectively. This distribution is not independent
and thus hard to work with. However, when k is small enough, the hyper-geometric distribution becomes
very close to the multinomial distribution M(Na/N,Nb/N,Nc/N, k) where N = Na +Nb +Nc.

Lemma 37. If qa, qb, qc ∈ N are such that qa + qb + qc = k, k ≤
√
N/2, qa ≤ Na/2, qb ≤ Nb/2 and

qc ≤ Nc/2, then:(
1− 2q2a

Na
− 2q2b

Nb
− 2q2c

Nc

)
· Pr
M
[qa, qb, qc] ≤ Pr

H3

[qa, qb, qc] ≤
(
1 +

4k2

N

)
· Pr
M
[qa, qb, qc]

Proof. Using the definition of the hyper-geometric distribution, we have:

Pr
H3

[qa, qb, qc] =

(
Na

qa

)(
Nb

qb

)(
Nc

qc

)(
N

qa+qb+qc

) =
k!

qa!qb!qc!
·
qa−1∏
i=0

Na − i

N − i
·
qb−1∏
i=0

Nb − i

N − qa − i
·
qc−1∏
i=0

N1 − i

N − qa − qb − i

Let us denote by P the three products. We proceed by upper-bounding it:

P ≤
(
Na

N

)qa

·
(

Nb

N − qa

)qb

·
(

Nc

N − qa − qb

)qc

≤
(
Na

N

)qa

·
(
Nb

N

)qb

·
(
Nc

N

)qc

·
(

1

1− k/N

)k

Recall that k ≤
√
B/2, hence:(

1

1− k/N

)k

≤
(
1 +

2k

N

)k

≤ e2k
2/N ≤ 1 +

4k2

N

The upper bound therefore follows. We give a lower bound to P as follows:

P ≥
qa−1∏
i=0

Na − i

N
·
qb−1∏
i=0

Nb − i

N
·
qc−1∏
i=0

Nc − i

N

=

(
Na

N

)qa

·
(
Nb

N

)qb

·
(
Nc

N

)qc

·
qa−1∏
i=0

1− i

Na
·
qb−1∏
i=0

1− i

Nc
·
qc−1∏
i=0

1− i

Nc

≥
(
Na

N

)qa

·
(
Nb

N

)qb

·
(
Nc

N

)qc

·
(
1− qa

Na

)qa

·
(
1− qb

Nb

)qb

·
(
1− qc

Nc

)qc

Recalling that qa ≤ Na/2, qb ≤ Nb/2 and qc ≤ Nc/2, we get the desired lower bound:(
1− qa

Na

)qa

·
(
1− qb

Nb

)qb

·
(
1− qc

Nc

)qc

≥ exp

(
−2q2a
Na
− 2

q2b
Nb
− 2q2c

Nc

)
≥ 1− 2q2a

Na
− 2q2b

Nb
− 2q2c

Nc

The same holds in the case were there are two classes of objects. More specifically, we let H2(Na, Nb, k)
be the hyper-geometric distributions which amounts to sampling without replacement from a population
with Na objects of type a and Nb objects of type b and define B(Na/N,Nb/N, k) to be the classical binomial
distribution (with replacement). Again, if k is small enough then the distributions can be interchanged.

Lemma 38. If qa, qb ∈ N are such that qa + qb = k, k ≤
√
N/2, qa ≤ Na/2 and qb ≤ Nb/2, then:(

1− 2q2a
Na
− 2q2b

Nb

)
· Pr
M
[qa, qb] ≤ Pr

H2

[qa, qb] ≤
(
1 +

4k2

N

)
· Pr
M
[qa, qb]

Proof. Similar to the proof of Lemma 37.
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A.2 Properties of some functions

Lemma 39. The function r(q) in the proof of Lemma 32 has minimizer q⋆ ∈ [kbY /7, kbY ].

Proof. Setting ∂r/∂q equal to zero yields an equation for the minima:

(1− λ)
(
1− 4b2X

)k/2
ln

(
1− 2bX
1 + 2bX

)(
1− 2bX
1 + 2bX

)q

a+ λ
(
1− 4b2Y

)k/2
ln

(
1 + 2bY
1− 2bY

)(
1 + 2bY
1− 2bY

)q

= 0

Shuffling around:

(1− λ)
(
1− 4b2X

)k/2
ln

(
1 + 2bX
1− 2bX

)(
1− 2bX
1 + 2bX

)q

= λ
(
1− 4b2Y

)k/2
ln

(
1 + 2bY
1− 2bY

)(
1 + 2bY
1− 2bY

)q

Shuffling around and using the precise definition of λ (see (15)):

(
1 + 2bX
1− 2bX

· 1 + 2bY
1− 2bY

)q

=
(1− λ)

(
1− 4b2X

)k/2
ln
(

1+2bX
1−2bX

)
λ (1− 4b2Y )

k/2
ln
(

1+2bY
1−2bY

) =

(
1− 4b2X
1− 4b2Y

)k/2

This allows to isolate q⋆ and using the bounds of Lemma 44, we have:

q⋆ =
k

2
· ln(1− 4b2X)− ln(1− 4b2Y )

ln
(

1+2bX
1−2bX ·

1+2bY
1−2bY

) =⇒ k

2
· 4b

2
Y − 8b2X

6bX + 6bY
≤ q⋆ ≤ k

2
· 8b

2
Y − 4b2X

4bX + 4bY

Finally, recall that bX ∈ o(bY ) ∈ o(1) so that q⋆ ∈ [kbY /7, kbY ]

Lemma 40. The function Φ(q) of Lemma 36 is increasing for q ∈ [16/10bY ,∞).

Proof. The derivative of Φ is:

∂Φ

∂q
=

ln(rY )r
q
Y

(
rqX − r−qX

)
− ln(rX)rqY

(
rqX + r−qX

)(
rqX + r−qX

)2
Thus, we only need to show that ln(rY )

(
rqX − r−qX

)
≥ ln(rX)

(
rqX + r−qX

)
for q ∈ [16/10bY ,∞). Using the

series representation of the exponential function and various bounds of Lemma 44, we have:

ln(rY )
(
rqX − r−qX

)
≥
∑

t≥0 odd c(t)q
t where c(t) := 8bY ln(rX)t/t!

ln(rX)
(
rqX + r−qX

)
≤
∑

t≥0 even d(t)q
t where d(t) := 12bX ln(rX)t/t!

Observe that under the hypothesis that q ≥ 16/10bY it holds that c(1)q1/2 ≥ d(0)q0. Thus, it only remains
to show that for any t ≥ 1:

c(t− 1)qt−1/2︸ ︷︷ ︸
o1

+ c(t+ 1)qt+1/2︸ ︷︷ ︸
o2

≥ d(t)qt

If o2 ≥ d(t)qt, the claim is already good. If not, then we have: t ≥ bY ln(rX)q/3bX − 1 so that:

o1
d(t)qt

=
tbY

3bX ln(rX)q
≥
(
bY ln(rX)q

3bX
− 1

)
· bY
3bX ln(rX)q

=
b2Y
9b2X

− bY
3bX ln(rX)q

≥ b2Y
144b2X

Where the last inequality is due to the fact that ln(rX) ≥ 2bX and q ≥ 16/10bY . Since bX < o(bY ), we have
o1 ≥ d(t)qt and thus Φ is indeed increasing on [16/10bY ,∞).
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A.3 Properties of trees

Lemma 41. Let P = (P 0 + P 1)/2 be a distribution and D a decision tree together with some L ∈ N. If D′

is the version of D that stops after L queries, then:

cost(D′, P )

TV(tran(D′, P 0), tran(D′, P 1))
≥ L =⇒ cost(D,P )

TV(tran(D,P 0), tran(D,P 1))
≥ L

3

Proof. Define Llarge(D) := {ℓ ∈ L(D) : |ℓ| ≥ L} and let P [Llarge(D)] be the probability that a leaf of Llarge

is reached by x ∼ P in D. Observe that:

P [Llarge(D)] ≥ TV(tran(D,P 0), tran(D,P 1))/3 =⇒ cost(D,P ) ≥ L · TV(tran(D,P 0), tran(D,P 1))/3

Hence, we may assume for the remainder of the proof that P [Llarge(D)] ≤ TV(tran(t, P 0), tran(t, P 1))/3.
If P [Llarge(D)] is small, it must be that D′ holds a constant fraction of the bias of D. Indeed, letting
L0(D) := {ℓ ∈ L(D) : P 0[ℓ] ≥ P 1[ℓ]}:

TV(tran(D′, P 0), tran(D′, P 1)) =
∑

ℓ∈L0(D′)
P 0[ℓ]− P 1[ℓ]

≥
∑

ℓ∈L0(D)
P 0[ℓ]− P 1[ℓ]−

∑
ℓ∈Llarge(D)

P 0[ℓ] + P 1[ℓ]

= TV(tran(D,P 0), tran(D,P 1))− 2 · P [Llarge(D)]

= TV(tran(D,P 0), tran(D,P 1))/3

Finally, as D′ is a truncated copy of D, it holds that cost(D,P ) ≥ cost(D′, P ) and the claim follows.

Lemma 42 (Acceptance centring). If D is a deterministic decision tree over {0, 1}∗ labelled by {B0, B1}
with bias δ = Prx∼B0 [D(x) = B0]−Prx∼B1 [D(x) = B0], then there exists a randomised decision tree R with
cost(R,B) ≤ cost(D,B) and depth(R) ≤ depth(D) such that:

Pr
x∼B0

[R(x) = B0] =
1

2
+ ξ and Pr

x∼B1
[R(x) = B0] =

1

2
− ξ where ξ ≥ δ/6

Proof. Let p := Prx∼B0 [t(x) = B0] and suppose by symmetry that p ≤ 1/2. For some α ∈ [0, 1] that we fix
later, we define R to query nothing and output B0 with probability α and run D with remaining probability
1 − α. As such, Prx∼B0 [R(x) = B0] = α + (1 − α) · p and Prx∼B1 [R(x) = B0] = α + (1 − α) · (p − δ).
Thus, by setting α := 1 − 1/(2 − 2p + δ), we have ξ = δ/(4 − 4p + 2δ) ≥ δ/6 and the desired acceptance
probabilities.

A.4 Some inequalities

Lemma 43. The mixture parameter λ defined in (15) satisfies λ ∈ (bX/bY ) · [2/3, 3].

Proof. Immediate by recalling that bX , bY ∈ o(1) and using inequalities (20) and (22) of Lemma 44.

Lemma 44. For any x ∈ [0, 0.5], y ∈ [0, 1] and k ∈ [0,∞],

x ≤ x

1− x
≤ 2x (20)

−2x ≤ ln(1− x) ≤ −x (21)

2x ≤ ln

(
1 + x

1− x

)
≤ 3x (22)

1− (1− y)k ≤ ky (23)

Proof. Inequality (20) holds by inspection while (23) is proven in Lemma 3 of [BB20a]. The upper bound of
(21) is due to a truncation of the Taylor series whereas the lower bound comes from:

x− ln(1− x) =

∞∑
n=2

xn

n
≤ x ·

∞∑
n=1

xn

n
= −x ln(1− x) ≤ − ln

(
1

2

)
x =⇒ ln(1− x) ≥ −2x
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The lower bound in (22) is again due to a truncation of the Taylor series while the upper bound is a
combination of (21) and the identity 1+x ≤ ex, i.e. ln((1+x)/(1−x)) = ln(1+x)− ln(1−x) ≤ x+2x.

Lemma 45. If D is a decision tree and Uk = {ℓ ∈ L(D) : |ℓ| = k and ∆(ℓ) ≥ 2k2/3} for all k ∈ N, then:∑
ℓ∈Uk

Z[ℓ] ≤ 2e−k
1/3/48 ∀k ≤ 1/64b3Y

Proof. Using the definition of Z, we can recast the sum as a probability:

∑
ℓ∈Uk

Z[ℓ] ≤
∑
ℓ∈Uk

2 ·max
{
Z0[ℓ], Z1[ℓ]

}
≤ 2

k∑
q=k/2+k2/3

(
k

q

)(
1

2
+ bY

)q (
1

2
− bY

)k−q

Now, the last quantity can be interpreted as the probability of having at least k/2 + k2/3 successes in
k independent trials where the success probability is 1/2 + bY . Therefore, we may leverage a standard
Chernoff bound as follows:

∑
ℓ∈Uk

Z[ℓ] ≤ 2Pr

∑
i∈[k]

Bernoulli(1/2 + bY ) ≥ (1 + δ)µ

 where µ =
k

2
+ kbY and δ =

k/2 + k2/3

µ
− 1

Note that under the hypothesis that k ≤ 1/64b3Y , we have that δ ≥ 0 and δ2µ/3 ≥ k1/3/48, thus:

∑
ℓ∈Uk

Z[ℓ] ≤ 2Pr

∑
i∈[k]

Bernoulli(1/2 + bY ) ≥ (1 + δ)µ

 ≤ e−δ
2µ/3 ≤ e−k

1/3/48
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[Sav02] Petr Savický. On determinism versus unambiquous nondeterminism for decision trees. Technical
Report TR02-009, Electronic Colloquium on Computational Complexity (ECCC), 2002. URL:
http://eccc.hpi-web.de/report/2002/009/.

[She12] Alexander A. Sherstov. The communication complexity of gap hamming distance. Theory
of Computing, 8(8):197–208, 2012. URL: http://www.theoryofcomputing.org/articles/v008a008, doi:

10.4086/toc.2012.v008a008.

[Tal13] Avishay Tal. Properties and applications of boolean function composition. In Proceedings of the
4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 441–454, 2013.
doi:10.1145/2422436.2422485.

[Ver98] Nikolai Vereshchagin. Randomized boolean decision trees: Several remarks. Theoretical Com-
puter Science, 207(2):329–342, nov 1998. doi:10.1016/s0304-3975(98)00071-1.

[Yao77] Andrew Yao. Probabilistic computations: Toward a unified measure of complexity. In Proceed-
ings of the 18th Symposium on Foundations of Computer Science (FOCS), pages 222–227, Oct
1977. doi:10.1109/SFCS.1977.24.

40
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il

http://eccc.hpi-web.de/report/2002/009/
http://www.theoryofcomputing.org/articles/v008a008
https://doi.org/10.4086/toc.2012.v008a008
https://doi.org/10.4086/toc.2012.v008a008
https://doi.org/10.1145/2422436.2422485
https://doi.org/10.1016/s0304-3975(98)00071-1
https://doi.org/10.1109/SFCS.1977.24

