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Abstract

In this paper, we prove a strong XOR lemma for bounded-round two-player randomized communica-
tion. For a function f : X×Y → {0, 1}, the n-fold XOR function f⊕n : Xn×Yn → {0, 1}maps n input
pairs (X1, . . . , Xn, Y1, . . . , Yn) to the XOR of the n output bits f(X1, Y1)⊕· · ·⊕f(Xn, Yn). We prove
that if every r-round communication protocols that computes f with probability 2/3 uses at least C bits
of communication, then any r-round protocol that computes f⊕n with probability 1/2 + exp(−O(n))
must use n ·

(
r−O(r) · C − 1

)
bits. When r is a constant and C is sufficiently large, this is Ω(n ·C) bits.

It matches the communication cost and the success probability of the trivial protocol that computes the
n bits f(Xi, Yi) independently and outputs their XOR, up to a constant factor in n.

A similar XOR lemma has been proved for f whose communication lower bound can be obtained
via bounding the discrepancy [Sha03]. By the equivalence between the discrepancy and the correlation
with 2-bit communication protocols [VW08], our new XOR lemma implies the previous result.
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1 Introduction

In computational complexity, XOR lemmas study the relation between the complexity of a {0, 1}-valued
function f(x) and the complexity of the n-fold XOR function f⊕n where

f⊕n(x1, . . . , xn) = f(x1)⊕ · · · ⊕ f(xn)

and ⊕ is the XOR. A classic example is Yao’s XOR lemma for circuits [Yao82], which states if f cannot
be computed with probability 2/3 on a random input by size-s circuits, then f⊕n cannot be computed with
probability 1/2 + exp(−Ω(n)) on a random input by size-s′ circuits for some s′ < s (and small n). Such
lemmas can be used to create very hard functions in a blackbox way, which can only be computed barely
better than random guessing, from functions that are “just” hard to compute with constant probability. This
approach of hardness amplification has been used in one-way functions [Yao82, Lev87], pseudorandom
generators [Imp95, IW97], and more recently, streaming lower bounds [AN21, CKP+21].

In general, suppose computing a function f with probability 2/3 requires resource s in some model of
computation (e.g., circuit size, running time, query complexity, communication cost, etc). Then the trivial
way to compute f⊕n is to compute each f(xi) using resource s independently, and output their XOR. It uses
resource n · s in total, and each instance is correct with probability 2/3, hence, their XOR is correct with
probability 1/2 + exp(−Θ(n)): For two independent random bits b1, b2, if Pr[b1 = 0] = 1/2 + α1/2 and
Pr[b2 = 0] = 1/2 + α2/2, then

Pr[b1 ⊕ b2 = 0] = (1/2 + α1/2)(1/2 + α2/2) + (1/2− α1/2)(1/2− α2/2) = 1/2 + α1α2/2;

let bi = 0 if and only if f(xi) is computed correctly, applying the above calculation inductively gives the
claimed probability. A strong XOR lemma asserts that to achieve 1/2 + exp(−O(n)) success probability,
one must use Ω(n · s) resource — the trivial solution is essentially optimal.

Now suppose that we are given n · s/2 resource in total, and we want to compute f⊕n. If we try to
solve the n copies independently, then no matter how we distribute the resource among the n copies, at
least half of them will get no more than s. The function f⊕ is computed correctly with probability at
most 1/2 + exp(−Ω(n)). Of course, since all n inputs (x1, . . . , xn) are given together, we can potentially
process them jointly. This may correlate the n copies, and in particular, it may correlate the correctness of
computing each f(xi). Hence, one difficulty in proving the strong XOR lemma from the technical point
of view is that in the above calculation of the probability of XOR of two independent bits, the linear terms
perfectly cancel only because b1 and b2 are independent; when they are not independent, we may get a
linear term remaining, and do not reduce the probability bias as desired. In computational models where
one cannot expect the independence between the copies throughout the computation, a success probability
lower bound of 1/2 + exp(−Ω(n)) (hence, a strong XOR lemma) is generally difficult to prove.

In this paper, we prove a strong XOR lemma for the two-player randomized communication complex-
ity with bounded rounds: Alice and Bob receive X and Y respectively, they alternatively send a total of r
messages to each other with the goal of computing f(X,Y ). For f⊕n, Alice receives (X1, . . . , Xn) and
Bob receives (Y1, . . . , Yn), and they wish to compute f(X1, Y1)⊕ · · · ⊕ f(Xn, Yn) after r rounds of com-
munication. Each player has half of the inputs for all copies, and can send messages that arbitrarily depend
on them, which can nontrivially correlate the n instances. Nevertheless, we show that one cannot do much
better than simply solving all n copies in parallel.

Let R(r)
p (f) be the minimum number of bits of communication needed in r messages in order to compute

f(X,Y ) correctly with probability p. We prove the following theorem.
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Theorem 1. For any {0, 1}-valued function f , we have

R
(r)
1/2+2−n(f

⊕n) ≥ n ·
(
r−O(r) ·R(r)

2/3(f)− 1
)
.

In particular, when r is a constant, it implies that R(r)
1/2+2−n(f

⊕n) ≥ Ω
(
n ·
(
R

(r)
2/3(f)−O(1)

))
.1

To the best of our knowledge, such an XOR lemma was not known even for one-way communication and
without the factor of n.

As pointed in [BBCR13], the “−O(1)” term is needed. This is because for f(X,Y ) = X ⊕ Y , we
have R

(r)
2/3(f) = 2. On the other hand, f⊕n can also be computed with 2 bits of communication by simply

(locally) computing
⊕n

i=1Xi and
⊕n

i=1 Yi and exchanging the values.
We obtain Theorem 1 via the following distributional strong XOR lemma. Let sucµ(f ;CA, CB, r) be

the maximum success probability of an r-round protocol π computing f(X,Y ) where
• Alice sends at most CA bits in every odd round,
• Bob sends at most CB bits in every even round, and
• (X,Y ) is sampled from µ.

Theorem 2. Let c > 0 be a sufficiently large constant. Fix α ∈ (0, r−cr) and CA, CB ≥ 2c log(r/α). Let
f : X × Y → {0, 1} be a function, and µ be a distribution over X × Y . Suppose f satisfies

sucµ(f ;CA, CB, r) ≤ 1/2 + α/2,

then for any integer n ≥ 2, we have

sucµn(f⊕n; 2−8r−1n · CA, 2
−8r−1n · CB, r) ≤

1

2
+

α2−12n

2
.

This distributional strong XOR lemma states that for any fixed input distribution µ and function f , to
compute f⊕n when the n inputs are sampled independently from µ, either the advantage is exponentially
small in Ω(n), or one of the players need to communicate at least Ω(n/r) times more than one copy. This
also gives a strong XOR lemma in the asymmetric communication, where we separately count how many
bits Alice and Bob send.

It is worth noting that Shaltiel [Sha03] proved a similar strong XOR lemma for functions whose com-
munication lower bound can be obtained via bounding the discrepancy. By the equivalence between the dis-
crepancy and the correlation with 2-bit protocols [VW08], Theorem 2 implies their result. See Appendix A
for a more detailed argument.

Note that a simple argument shows that Theorem 2 implies Theorem 1 (see also Section 4). Therefore,
we will focus on the distributional version, and assume that the n input pairs are sampled independently
from some distribution µ.

Our proof of the distributional version is inspired by the information complexity [CSWY01]. We de-
fine a new complexity measure for protocols, the χ2-cost, which is related to the internal information
cost [BJKS04, BBCR13]. Roughly speaking, it replaces the KL-divergence in the internal information
cost with the χ2-divergence, which can be viewed as the “exponential” version of KL. This provides bet-
ter concentration, which is needed in our argument. Throughout the proof, we will also work with dis-
tributions that are “close to” communication protocols, i.e., the speaker’s message may slightly depend
on the receiver’s input. Such distributions have also been studied in the proof of direct product theo-
rems [JPY12, BRWY13a, BRWY13b]. We will provide more details in Section 2.

1Observe that since R
(r)
0.51(f) ≤ R

(r)
0.99(f) ≤ O(R

(r)
0.51(f)), the constant 2/3 does not matter as long as it is in (1/2, 1). Our

proof will also show that the base in 2−n can be any constant.
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1.1 Related work

As we mentioned earlier, Shaltiel [Sha03] proved a strong XOR lemma for functions whose communica-
tion lower bound can be obtained via bounding the discrepancy. Sherstov [She11] extended this bound to
generalized discrepancy and quantum communication complexity.

Barak, Braverman, Chen and Rao [BBCR13] obtained an XOR lemma for the information complexity
and then an XOR lemma for communication (with worst parameters) via information compression. How-
ever, their XOR lemma does not give exponentially small advantage. They proved that if f is hard to
compute with information cost C, then f⊕n is hard to compute with information cost O(n · C). In fact, the
starting point of our proof is an alternative view of their argument, which we will outline in Section 2.1.

Viola and Wigderson [VW08] proved a strong XOR lemma for multi-player c-bit communication for
small c. As pointed out in their paper, it implies the XOR lemma by Shaltiel [Sha03]. XOR lemmas have
also been proved in circuit complexity [Yao82, Lev87, Imp95, IW97, GNW11], query complexity [Sha03,
She11, Dru12, BKLS20], streaming [AN21] and for low degree polynomials [VW08].

Direct product and direct sum theorems, which are results of similar types, have also been studied in
the literature. They ask to return the outputs of all n copies instead of their XOR. Direct sum theorems
state that the problem cannot be solved with the same probability unless Ω(n) times more resource is used,
while direct product theorems state that the problem can only be solved with probability exponentially small
in Ω(n) unless Ω(n) times more resource is used. The direct sum theorem for information complexity is
known [CSWY01, BJKS04, BBCR13]. A direct sum theorem for communication complexity with sub-
optimal parameters can be obtained via information compression [BBCR13]. A direct sum theorem for
bounded-round communication has been proved [BR11], and we use a similar argument in one component
of the proof (see Section 2.6 and Section 7). Direct product theorems for communication complexity (with
suboptimal parameters via information compression), bounded-round communication and from information
complexity to communication complexity have also been studied [JPY12, BRWY13b, BW15].

2 Technical Overview

2.1 An alternative view of [BBCR13]

The starting point of our proof is an alternative view of the XOR lemma in [BBCR13] for information
complexity, which does not give an exponentially small advantage. Running a protocol on an input pair
sampled from some fixed input distribution defines a joint distribution over the input pairs and the transcripts.
Information complexity studies that in this joint distribution, how much information the transcript reveals
about the inputs. The (internal) information cost is defined as

I(X;M | Y,M0) + I(Y ;M | X,M0),

where M = (M0,M1, . . . ,Mr) is the transcript and M0 is the public random bits.2 We assume that Alice
sends all the odd Mi and Bob sends all the even Mi. The internal information cost of a protocol is always
at most its communication cost. It is also known that for bounded-round communication, the internal in-
formation complexity is roughly equal to the communication complexity [BR11] (up to some additive error
probability).

2In the usual definition, the public random string is not part of the transcript. We add it for simplicity of notations. This does
not change the values of the mutual information terms as it is already in the condition.
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X

Y

(a) Protocol π<k

X

Y

(b) Protocol πk

Figure 1: Decomposition of π: is the inputs, is sampled publicly, is sampled privately.

For the XOR lemma for information complexity, we consider input pair X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) sampled from µn. Suppose there is a protocol π computing f⊕n with information cost I , we
want to show that f can be computed with information cost ≈ I/n.

To this end, we show that π can be “decomposed” into a protocol π<n computing f⊕n−1 with informa-
tion cost I1 and a protocol πn computing f with information cost I2 such that I1 + I2 ≈ I , as follows (see
also Figure 1).

• For π<n, given n − 1 input pairs, the players view them as X<n and Y<n as part of the inputs for
π, where X<n denotes (X1, . . . , Xn−1) and Y<n denotes (Y1, . . . , Yn−1); then the players publicly
sample Xn ∼ µX , and Bob privately samples Yn conditioned on Xn; the players run π to compute
f⊕n(X,Y ); Bob sends one extra bit indicating f(Xn, Yn).

• For πn, given one input pair, the players view it as Xn and Yn; then the players publicly sample
Y<n ∼ µn−1

Y , and Alice privately samples X<n conditioned on Y<n; the players run π to compute
f⊕n(X,Y ); Alice sends one extra bit indicating ⊕n−1

i=1 f(Xi, Yi).

If π computes f⊕n correctly, then the two protocols compute f⊕n−1 and f correctly respectively. For
the information cost of π<n (if we exclude the last bit indicating f(Xn, Yn)), the first term is equal to
I(X<n;M | Y<n, Xn,M0), since Xn is sampled using public random bits. It is also equal to I(X<n;M |
Y,Xn,M0) due to the rectangle property of communication protocols. For the information cost of πn (if we
exclude the last bit), the first term is equal to I(Xn;M | Y,M0) since Y<n is sampled using public random
bits. Therefore, the first terms sum up to exactly I(X;M | Y,M0), the first term in the information cost of
π, by the chain rule of mutual information. Similarly, the second terms sum up to I(Y ;M | X,M0), the
second term in the information cost of π.

Hence, including the last bits in the protocols, we have I1+I2 ≤ I+O(1). Thus, by repeatedly applying
this argument, we obtain a protocol for f with information cost I/n + O(1), as desired. Note that in this
decomposition, the players do not need to sample the private parts explicitly. As long as they can send the
messages from the same distribution (e.g., by directly sampling the messages conditioned on the previous
messages and their own inputs), the information costs and correctness are not affected.

The original paper proves the same result by explicitly writing out the protocol for f obtained after
applying the above decomposition i times for a random i ∈ [n], and proving the expected cost is as claimed.
The two proofs are essentially equivalent for this statement.3 However, as we will see later, our new view is
more flexible, allowing for more sophisticated manipulations when doing the decomposition.

2.2 Obtaining exponentially small advantage

The above decomposition preserves the success probability. However, if we start from a protocol for f⊕n

with exponentially small advantage, then we will not be able to obtain a protocol for f with success proba-
3The orginal proof embeds the input to f into a random coordinate i of f⊕n, and samples X>i and Y<i using public random

bits.
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X

Y

(a) Bob’s view in π<k

X

Y

(b) Alice’s view in πk

Figure 2: Decomposition of π: is unknown inputs, is known.

bility 2/3, which is required in order to prove the strong XOR lemma.4

Let adv(f(X,Y ) | R) denote the advantage for f(X,Y ) conditioned on R, which is defined as

|2Pr[f(X,Y ) = 1 | R]− 1| ,

i.e., the advantage is α if the conditional probability is either 1/2 + α/2 or 1/2− α/2.
Now let us take a closer look at the two protocols π<n and πn (see Figure 2). For π<n, in Bob’s view

at the end of the communication, he knows his input Y<n, the publicly sampled Xn and the transcript M.
Hence, he is able to predict f⊕n−1(X<n, Y<n) with advantage adv(f⊕n−1(X<n, Y<n) | Xn, Y<n,M). By
letting Bob send one extra bit indicating his prediction, the advantage of the protocol achieves the same. For
πn, in Alice’s view at the end of the communication, she knows her input Xn, the publicly sampled Y<n and
the transcript M. Hence, she is able to predict f(Xn, Yn) with advantage adv(f(Xn, Yn) | Xn, Y<n,M).
By letting Alice send one extra bit indicating her prediction, the advantage of the protocol achieves the same.

Now an important observation is that X<n and Yn are independent conditioned on (Xn, Y<n,M), by
the rectangle property of communication protocols. Hence, f⊕n−1(X<n, Y<n) and f(Xn, Yn) are also
independent conditioned on (Xn, Y<n,M). Since f⊕n(X,Y ) = f⊕n−1(X<n, Y<n) ⊕ f(Xn, Yn), by the
probability of XOR of two independent bits, we have

adv(f⊕n(X,Y ) | Xn, Y<n,M) = adv(f⊕n−1(X<n, Y<n) | Xn, Y<n,M)

× adv(f(Xn, Yn) | Xn, Y<n,M).
(1)

This suggests the following strategy for the decomposition:

• if the information cost of πn is large, then the information cost of π<n must be much smaller than that
of π;

• if the information cost of πn is small and its advantage for f is large, then we have obtained a good
protocol for f ;

• if the information cost of πn is small and its advantage for f is small, then by (1), the advantage of
π<n must be larger than that of π by some factor.

Hence, in each decomposition, if we don’t already obtain a good protocol for f , then when decrementing
n to n − 1, we must either significantly decrease the information cost, or increase the advantage by a
multiplicative factor. If we start with a protocol with a low cost and a mild-exponentially small advantage
for f⊕n, then we must obtain a good protocol for f by applying this decomposition iteratively.

4In fact, this is inherent for information complexity, since the strong XOR lemma for information complexity does not hold.
This is because the information complexity is an average measure, and it is at most the expected communication. A protocol can
choose to compute all f(Xi, Yi) with probability ε and output a random bit otherwise, which achieves success probability 1/2+ ε
and expected communication εn times the one-copy cost. However, the reader is encouraged to continue reading this subsection
pretending that they do not know about this counterexample.
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It turns out that the main difficulty in applying the above strategy is to formalize the last bullet point.
Note that the expected advantage of πn (after Alice sending the one extra bit indicating her prediction)
is E [adv(f(Xn, Yn) | Xn, Y<n,M)], the expected advantage of π<n (after Bob sending the one extra bit
indicating his prediction) is E

[
adv(f⊕n−1(X<n, Y<n) | Xn, Y<n,M)

]
, and the expected advantage of π is

E [adv(f⊕n(X,Y ) |M)], which is at most E [adv(f⊕n(X,Y ) | Xn, Y<n,M)].
When we say that the advantage of πn for f is small in the last bullet point, we can only guarantee

that this expectation is small. Equation (1), which is a pointwise equality, does not directly give any use-
ful bounds on the expectations. For example, it is possible that both E [adv(f(Xn, Yn) | Xn, Y<n,M)]
and E

[
adv(f⊕n−1(X<n, Y<n) | Xn, Y<n,M)

]
are very small, but adv(f(Xn, Yn) | Xn, Y<n,M) and

adv(f⊕n−1(X<n, Y<n) | Xn, Y<n,M) are always equal to zero or one at the same time, both concentrated
on a small probability set. Then we have E[adv(f⊕n(X,Y ) | Xn, Y<n,M)] = E[adv(f⊕n−1(X<n, Y<n) |
Xn, Y<n,M)], the advantage may not increase at all. In this case, the advantage adv(f⊕n(X,Y ) | Xn, Y<n,M)
is also concentrated on the same small probability set.

On the other hand, observe that if adv(f⊕n(X,Y ) | Xn, Y<n,M) takes roughly the same value (say, ε)
most of the time, then we do obtain an advantage increase:

E[adv(f⊕n−1(X<n, Y<n) | Xn, Y<n,M)]

= E[ε/adv(f(Xn, Yn) | Xn, Y<n,M)]

≥ ε/E[adv(f(Xn, Yn) | Xn, Y<n,M)]

by the convexity of 1/x.
This motivates us to consider the following two extreme cases:

1. adv(f⊕n(X,Y ) | Xn, Y<n,M) is roughly uniformly distributed among all (Xn, Y<n,M);

2. adv(f⊕n(X,Y ) | Xn, Y<n,M) is concentrated on a tiny fraction of the triples (Xn, Y<n,M).

Basically following what we just argued, the above strategy directly applies in the first case. The second
case is related to the direct product theorems, where we also want to analyze protocols that is correct with
exponentially small probability. This is because one possible strategy for the players is to compute all
f(Xi, Yi) correctly with some probability ε and output a random bit otherwise. We must at least show that
in this case, ε ≤ exp(−Ω(n)).

2.3 Generalized protocols

For the second case above, we follow one strategy for direct product theorems [BRWY13b]. When the
advantage adv(f⊕n(X,Y ) | Xn, Y<n,M) is concentrated on a small set U of triples (Xn, Y<n,M), we
restrict our attention to U by conditioning π on U . However, this immediately creates two issues.

The first issue is that although π | U is a well-defined distribution, it is not necessarily a protocol, since
conditioning on an arbitrary event may break the independence between a message and the receiver’s input,
e.g., M1 may no longer be independent of Y conditioned on X .5

This issue was also encountered in the direct product theorem proofs. Instead of studying standard
protocols, we focus on generalized protocols, where we allow each message to depend on both player’s

5Conditioning on an event also distorts the input distribution, which needs to be handled. But for simplicity, we omit it in the
overview.
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inputs, and we wish to restrict the correlation between the odd Mi and Bob’s input and the correlation
between the even Mi and Alice’s input. In the previous work, it bounds

θ(π) :=
∑
odd i

I(Mi;Y | X,M<i) +
∑
even i

I(Mi;X | Y,M<i),

the mutual information between the message and the receiver’s input.
Intuitively, the θ-value measures how close to a standard protocol a generalized protocol is. It turns out

that the θ-value of a standard protocol conditioned on a not-too-small probability event is small; on the other
hand, when the θ-value is small, it is statistically close to a standard protocol. Furthermore, an important
feature of θ(π) is that the decomposition of π into π<n and πn also satisfies that θ(π) = θ(π<n) + θ(πn).
Hence, when doing the decomposition, we can hope to obtain a generalized protocol for f that is very close
to a standard protocol.

The second issue is that conditioning on a small probability event U could greatly increase the infor-
mation cost, from I to Ω(I/Pr[U ]). Since I is close to the communication cost, such a multiplicative loss
in each step of decomposition is unaffordable. Such a loss occurs because the mutual information is an av-
erage measure (an expectation), which does not provide any concentration (also recall the counterexample
in footnote 4 where the communication cost and the advantage are both concentrated on an ε-probability
event, when we condition on this event, both the expected communication cost and the advantage increase
by a factor of 1/ε). More specifically, consider the first term in the information cost, I(X;M | Y ) (omit the
public random bits for now). For standard protocols, it is equal to∑

x,y,m

π(x, y,m) · log
(
π(x |m, y)

π(x | y)

)
= E

π

[
log

(
π(X |M, Y )

π(X | Y )

)]
= E

π

[
log

(
π(X |M, Y )

µ(X | Y )

)]
.

If we only have a bound on this expectation, then inevitably its value can greatly increase after condi-
tioning on a small probability event, not to say that the logarithm inside the expectation is not nonnegative,
so it can get worse than what Markov’s inequality gives.

We also note that the argument in the previous subsections crucially uses the rectangle property of the
communication protocols, which does not necessarily hold for generalized protocols. This turns out not to
be a real issue, since throughout the argument, we will maintain the rectangle property at all leaves, which
is sufficient for the argument to go through (see also Section 2.6).

2.4 θ-cost and χ2-costs

Our novel solution to the second issue above is to focus on the “exponential version” of the information
cost, i.e., for the first term,

χ2
µ,A(π) := E

π

[
π(X |M, Y )

µ(X | Y )

]
,

which we call the χ2-cost by Alice. The χ2-cost by Bob, χ2
µ,B(π), is defined similarly for the second term

in the information cost (see Definition 15).
This notion of the cost has the following benefits.

• For a (deterministic) standard protocol with C bits of communication, χ2
µ,A(π) ≤ 2C . Hence, it

corresponds to the exponential of the communication cost.
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• When conditioning on a small probability event U , we can essentially ensure that it increases by a
factor of O(1/π(U)) (Lemma 37 gives a more generalized statement). Effectively, this only adds
log(1/π(U)) to the communication cost, which becomes affordable.

Note that the mutual information is the expected KL-divergence, and the χ2-cost is the expected χ2-
divergence (plus one). Similarly, we also define an “exponential version” of θ(π), which we call the θ-cost
of π (see Definition 12). It also ensures that the value does not increase significantly when conditioning on
a small probability event.

On the other hand, going from mutual information to its “exponential version” loses many of its good
properties, most importantly, the chain rule. The next crucial observation is that the chain rule for mutual
information in fact holds pointwisely, which enables us to work with the χ2-costs.

More specifically, let X,Y, Z be three random variables with joint distribution π, the chain rules says
I(X;Y,Z) = I(X;Y ) + I(X;Z | Y ). By writing the mutual information as an expectation, this is

E
[
log

(
π(Y, Z | X)

π(Y,Z)

)]
= E

[
log

(
π(Y | X)

π(Y )

)]
+ E

[
log

(
π(Z | X,Y )

π(Z | Y )

)]
.

This equality holds pointwisely in the sense that for any concrete values (x, y, z), the equality holds for the
logarithms inside the expectation

log

(
π(y, z | x)
π(y, z)

)
= log

(
π(y | x)
π(y)

)
+ log

(
π(z | x, y)
π(z | y)

)
by the definition of conditional probability.

Therefore, the “exponential version” also holds pointwisely:

π(y, z | x)
π(y, z)

=
π(y | x)
π(y)

· π(z | x, y)
π(z | y)

.

This is what we use in replacement of the chain rule for mutual information. See the next subsection for
more details.

2.5 Proof outline

We now give an outline of the proof of the following statement: Given an r-round standard protocol π for
f⊕n with communication cost o(n · C) that succeeds with advantage αo(n) on the inputs sampled from µn,
we can obtain an r-round generalized protocol ρ for f with χ2-costs ≈ 2C , θ-cost ≈ 1/α and advantage
≈ α. We will then discuss how to convert such a generalized protocol to a standard protocol with low
communication cost in the next subsection.

We first show that π is also a generalized protocol with χ2-cost 2o(nC) and θ-cost 1 (in the proof of
Lemma 25). Next, we decompose π into π<n for f⊕n−1 and πn for f , and prove that the product of the
θ-cost [resp. χ2-costs] of π<n and πn is that of π pointwisely (Section 5). Now if the advantage of π is
not roughly evenly distributed, we will identify an event U such that the advantage conditioned on U is
much higher than the average advantage, and more importantly, the advantage within U becomes roughly
evenly distributed (not concentrated on any small probability event in U ) (Section 6.1). Conditioning on U
increases the advantage while also increases the θ-cost and χ2-costs, it turns out that they all increase by
about the same factor. Next, we partition the sample space of π into Shigh-cost, Slow-cost and Slow-prob such
that
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• in Shigh-cost, πn has high θ-cost or high χ2-cost (excluding some corner cases), say ≥ 1/α for θ-cost
or ≥ 2C for χ2-cost,

• in Slow-cost, πn has low θ-cost and low χ2-cost (also excluding some corner cases),

• Slow-prob is the rest, which will happen with very low probability.

Since the advantage is not concentrated on any small probability in U , then (at least) one of Shigh-cost or
Slow-cost will have advantage about as high as the advantage of U . If Shigh-cost has the advantage as high as
U , then we prove that by the pointwise equality for the costs, π<n | Shigh-cost must have a much smaller
cost than π | U , while they have roughly the same advantage (Section 6.2). If Slow-cost has the advantage as
high as U , then if πn | Slow-cost has high advantage, then we obtain a desired generalized protocol for f with
low costs and high advantage; otherwise we prove that π<n | Slow-cost has a much higher advantage than
π | U (as the advantage of π is roughly evenly distribution within U ), while they have roughly the same
costs (Section 6.3).

To summarize the above argument, if we don’t already find a desired generalized protocol for f , then
when decrementing n to n− 1, we first condition on an event U , increasing costs and advantage simultane-
ously by about the same (while arbitrary) factor, then either we reduce the θ-cost by a factor of ≥ 1/α, or
we reduce the χ2-costs by a factor of ≥ 2C , or we increase the advantage by a factor of ≥ 1/α. Since we
start with χ2-costs 2o(nC), θ-cost 1 and advantage αo(n), we cannot repeat this for n steps without finding
a desired protocol for f . More formally, we will measure the progress by using a potential function that
depends on the costs and advantage of the current protocol, and show that each time we decrement from k
to k − 1, how much the potential must decrease (Section 4).

2.6 Convert a generalized protocol to a standard protocol

Finally, we need to show that the existence of a good generalized protocol implies the existence of a good
standard protocol. We prove that if an r-round generalized protocol ρ has χ2-costs 2C , θ-cost 1/α and
advantage α, then there is an r-round standard protocol τ with communication cost ≈ C and advantage
≈ α3. Together with what we summarized in the last subsection, we obtain the strong XOR lemma for
r-round communication.

[BR11] converts a standard protocol ρ with constant rounds to a standard protocol with communication
matching the internal information cost of ρ. Using a similar argument, we can convert ρ to a standard
protocol with communication ≈ C. By the convexity of 2x, χ2-cost of 2C implies internal information cost
of at most C. It turns out that the (almost) same argument applies in our case, for generalized protocol ρ.

Then the next crucial observation is that we can ensure the generalized protocol ρ that we obtain from
the arguments in the previous subsection has the rectangle property with respect to µ. Roughly speaking, it
means that for all transcripts M, if we look at the ratio of the probabilities ρ(X,Y |M)

µ(X,Y ) , it is a product function
of X and Y , i.e., it is equal to gA(X) · gB(Y ) for some functions gA, gB that may depend on M. Note
that a standard protocol has the rectangle property, since each message depends only on either X or Y , and
the same property holds even conditioned on any prefix of the transcript M<i. A generalized protocol may
not have this property in general, but we can ensure that the protocol we obtain has this product structure
conditioned on any complete transcript M.

After generating a transcript M using [BR11], the rectangle property allows the players to locally “re-
adjust” the probabilities (via rejection sampling) so that after the readjustment, the probability of a triple
(X,Y,M) is proportional to the “right” probability ρ(X,Y,M), which in turn, gives the advantage propor-
tional to that of ρ.
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The probability that is sacrificed in the rejection sampling depends on how far ρ is from a standard
protocol, i.e., the θ-cost of ρ. It turns out that the above argument gives an overall advantage of at least α2

divided by the θ-cost of ρ. See Section 7 for the formal proof.

3 Notations and Definitions for Generalized Protocols

3.1 Notations and standard probabilities

Throughout the paper, all logarithms have base 2. We use [n] to denote the set {1, . . . , n}. Let f : X ×Y →
{0, 1} be a binary-valued function. We use f⊕n to denote the function f⊕n : X n × Yn → {0, 1} such that

f⊕n(X1, . . . , Xn, Y1, . . . , Yn) =
n⊕

i=1

f(Xi, Yi),

where ⊕ is the XOR operation.
Let X be a vector (X1, . . . , Xn). We denote the prefix (X1, . . . , Xi) by X≤i. Similarly, X<i denotes

(X1, . . . , Xi−1) and X>i denotes (Xi+1, . . . , Xn). For vectors X where we start the index from 0, X≤i

denotes (X0, . . . , Xi).

Let π be a distribution over triples (X,Y,M) ∈ X ×Y ×M, where M = (M0, . . . ,Mr). For an event
W ⊆ X × Y ×M, we use π(W ) to denote its probability. For a random variable M, we use π(M) to
denote the probability of M in distribution π, which by itself is a random variable that depends on the value
of M. It is similar for multiple variables, e.g., π(X,M<i) denotes the probability of (X,M<i).

Let S be a set of possible values of several variables, say, S is a set of possible values of (X,M<i). We
use π(S) to denote the probability that (X,M<i) ∈ S, i.e., π(S) = Prπ [(X,M<i) ∈ S] = π({(X,Y,M) :
(X,M<i) ∈ S}). When there is no ambiguity, we may abuse the notation, and use S to denote the event
that (X,M<i) ∈ S, which is the set {(X,Y,M) : (X,M<i) ∈ S}, e.g., if T is a set of possible values
of (Y,M<j), then S ∩ T is the event that (X,M<i) ∈ S ∧ (Y,M<j) ∈ T , which is the set {(X,Y,M) :
(X,M<i) ∈ S ∧ (Y,M<j) ∈ T}.

The χ2-divergence of two distributions is defined as follows.

Definition 3 (χ2-divergence). Let P and Q be two distributions over a sample space X . The χ2-divergence
from Q to P is

Dχ2(P ∥Q) =
∑
x∈X

P (x)2

Q(x)
− 1 = E

x∼P

[
P (x)

Q(x)

]
− 1.

The KL-divergence of two distributions is defined as follows.

Definition 4 (KL-divergence). Let P and Q be two distributions over a sample spaceX . The KL-divergence
from Q to P is

DKL(P ∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
= E

x∼P

[
log

(
P (x)

Q(x)

)]
.

A simple calculation gives the following proposition.

Proposition 5. Let R1, R2 ∈ {0, 1} be two independent random variables such that Pr[R1 = 0] = 1
2 + σ1

2
and Pr[R2 = 0] = 1

2 + σ2
2 . Then Pr[R1 ⊕R2 = 0] = 1

2 + σ1σ2
2 .
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3.2 Generalized communication protocols

For most standard communication protocols discussed in this paper, we pair it with an input distribution,
and study the joint distribution.

Definition 6 (standard protocols). An r-round standard protocol π for input distribution µ is a distribution
over triples

(X,Y,M) ∈ X × Y ×M,

where the transcript M = (M0, . . . ,Mr), and each Mi is chosen from a prefix-free set of strings that only
depends on M<i. Moreover, (X,Y ) ∼ µ; the public random string M0 is independent of (X,Y ); for odd
i ≥ 1, Mi (a message by Alice) is independent of Y conditioned on X and M<i; for even i ≥ 1, Mi (a
message by Bob) is independent of X conditioned on Y and M<i. The output of π is a function of M.

Now we define sucµ(f ;CA, CB, r) to be the maximum success probability of a protocol computing f
under the communication cost constraints.

Definition 7. Let f : X ×Y → {0, 1} be a function, and µ be a distribution overX ×Y . For CA, CB, r ≥ 1,
let

sucµ(f ;CA, CB, r)

be the supremum over all r-round standard protocols π where Alice sends at most CA bits and Bob sends
at most CB bits in a round, the probability that the output of π is equal to f(X,Y ) when (X,Y ) is sampled
from µ.

Remark. Without loss of generality, we may assume that Mr ∈ {0, 1}. This is because the output of the
protocol is a function of M. Instead of Mr, we could always let Bob send the output, which has only one
bit.

Next, we define generalized protocols.

Definition 8 (generalized protocols). An r-round generalized protocol π is a distribution over triples

(X,Y,M) ∈ X × Y ×M,

where M = (M0,M1, . . . ,Mr), and each Mi is chosen from a prefix-free set of strings that only depends
on M<i.

In this paper, we also only consider generalized protocols with Mr ∈ {0, 1}.
Clearly, a standard protocol is also a generalized protocol. One still should think M0 as the public

random bits, and think Mi as a message sent by Alice if i is odd, and sent by Bob if i is even. The messages
and public random bits are allowed to be arbitrarily correlated with both players’ inputs.

We do not explicitly define the output of a generalized protocol in this paper. When we study the cor-
rectness of a generalized protocol when computing some function f , we characterize it using the advantage.

Definition 9 (advantage). Let π be a generalized protocol, and f be a binary-valued random variable (e.g.,
f = f(X,Y ) for f : X × Y → {0, 1}). The advantage of π for f conditioned on W is

advπ(f |W ) := |2π(f = 0 |W )− 1| = |2π(f = 1 |W )− 1| .

We may omit the subscript π when there is no ambiguity.
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Note that fixing π and f , advπ(f |W ) is a function of W . For a standard protocol with input distribution
µ, the larges probability that the output can equal f when the transcript is M is

1

2
+

1

2
· advπ(f(X,Y ) |M).

Thus, the overall success probability is always at most

1

2
+

1

2
· E
M∼π

[advπ(f(X,Y ) |M)] .

For general protocols, we will also use EM∼π [advπ(f(X,Y ) |M)] to characterize the success probability.
The (conditional) advantage is superadditive when weighted by the probability of the condition.

Lemma 10. Let W1,W2 be disjoint events and R be a set of random variables, then

π(W1 ∪W2) · E
π|W1∪W2

[adv(f(X,Y ) | R,W1 ∪W2)]

≤ π(W1) · E
π|W1

[adv(f(X,Y ) | R,W1)] + π(W2) · E
π|W2

[adv(f(X,Y ) | R,W2)] .

Proof. By definition, we have

π(W1) · E
π|W1

[adv(f(X,Y ) | R,W1)] + π(W2) · E
π|W2

[adv(f(X,Y ) | R,W2)]

= π(W1) ·
∑
R

π(R |W1) · |2π(f(X,Y ) = 1 | R,W1)− 1|

+ π(W2) ·
∑
R

π(R |W2) · |2π(f(X,Y ) = 1 | R,W2)− 1|

=
∑
R

|2π(f(X,Y ) = 1,R,W1)− π(R,W1)|+
∑
R

|2π(f(X,Y ) = 1,R,W2)− π(R,W2)|

which by the fact that W1 and W2 are disjoint, is

≥
∑
R

|2π(f(X,Y ) = 1,R,W1 ∪W2)− π(R,W1 ∪W2)|

= π(W1 ∪W2) · E
π|W1∪W2

[adv(f(X,Y ) | R,W1 ∪W2)] .

The following proposition states that knowing more could only increase the expected advantage.

Proposition 11. Let R1,R2 be two random variables, then

E
R1∼π

[adv(f | R1)] ≤ E
R1,R2∼π

[adv(f | R1,R2)] .

Proof. We have

E
R1,R2∼π

[adv(f | R1,R2)]
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=
∑

R1,R2

π(R1,R2) · |2π(f = 1 | R1,R2)− 1|

=
∑
R1

π(R1)
∑
R2

π(R2 | R1) · |2π(f = 1 | R1,R2)− 1|

≥
∑
R1

π(R1) ·

∣∣∣∣∣∣
∑
R2

π(R2 | R1) · 2π(f = 1 | R1,R2)−
∑
R2

π(R2 | R1)

∣∣∣∣∣∣
=
∑
R1

π(R1) · |2π(f = 1 | R1)− 1|

= E
R1∼π

[adv(f | R1)] .

3.3 The θ-cost and χ2-costs

In a standard protocol, Alice’s message must be independent of Bob’s input conditioned on Alice’s input
and the previous messages, and vice versa, while we allow arbitrary correlation in a generalized protocol.
The θ-cost of a generalized protocol measures this correlation.

Definition 12 (θ-cost). The θ-cost of π with respect to µ at (X,Y,M) is

θµ(π@X,Y,M) :=
π(X,Y |M0)

µ(X,Y )
·
∏

odd i∈[r]

π(Mi | X,Y,M<i)

π(Mi | X,M<i)
·
∏

even i∈[r]

π(Mi | X,Y,M<i)

π(Mi | Y,M<i)

=
π(X,Y,M)

π(M0) · µ(X,Y ) ·
∏

odd i∈[r] π(Mi | X,M<i) ·
∏

even i∈[r] π(Mi | Y,M<i)
.

The θ-cost of π with respect to µ is

θµ(π) := E
(X,Y,M)∼π

[θµ(π@X,Y,M)] .

For an event W , the θ-cost of π respect to µ conditioned on W is

θµ(π |W ) := E
(X,Y,M)∼π|W

[θµ(π@X,Y,M)] .

Remark. We emphasize that θµ(π | W ) is different from θµ(πW ) for πW being the distribution of π con-
ditioned on W . According to the definitions, although (X,Y,M) is sampled from π | W in both cases,
the quantity inside the expectation is different. For θµ(π | W ), we still measure the θ-cost at (X,Y,M)
according to distribution π, while for θµ(πW ), we measure the θ-cost at (X,Y,M) according to πW .

Remark. Let τ be the protocol obtained by “making π standard.” That is, τ(X,Y ) is equal to µ(X,Y );
τ(M0) is π(M0), independent of (X,Y ). Each odd Mi is sampled according to π(Mi | X,M<i) inde-
pendent of Y , and each even Mi is sampled according to π(Mi | Y,M<i) independent of X . Then τ is a
standard protocol such that

τ(X,Y,M) = π(M0) · µ(X,Y ) ·
∏

odd i∈[r]

π(Mi | X,M<i) ·
∏

even i∈[r]

π(Mi | Y,M<i).

The θ-cost of π is simply the χ2-divergence from τ to π plus one.
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By the above connection to χ2-divergence, we have the following proposition.

Proposition 13. For any protocol π, we have

E
π

[
θµ(π@X,Y,M)−1

]
= 1.

Proof. Let τ be the protocol by making π standard as described in the remark above. Then we have

θµ(π@X,Y,M) =
π(X,Y,M)

τ(X,Y,M)
.

Therefore,

E
π

[
θµ(π@X,Y,M)−1

]
=

∑
(X,Y,M)

π(X,Y,M) · τ(X,Y,M)

π(X,Y,M)
= 1.

By standard bounds on conditional probabilities, we have the following bound on the conditional cost.

Proposition 14. For events W1,W2, we have

θµ(π |W1 ∩W2) ≤
θµ(π |W1)

π(W2 |W1)
.

Proof. Since θµ(π@X,Y,M) is nonnegative, we have

θµ(π |W1 ∩W2) = E
(X,Y,M)∼π|W1∩W2

[θµ(π@X,Y,M)]

=
∑

(X,Y,M)

π(X,Y,M |W1 ∩W2) · θµ(π@X,Y,M)

≤
∑

(X,Y,M)

π(X,Y,M |W1)

π(W2 |W1)
· θµ(π@X,Y,M)

=
θµ(π |W1)

π(W2 |W1)
.

Next, the χ2-cost measures the “communication cost” of a protocol: how different Alice’s input becomes
in Bob’s view at the end of the communication compared to that in the input distribution.

Definition 15 (χ2-cost). Let π be a generalized protocol, and µ be a distribution over the inputs. The χ2-cost
of π by Alice with respect to µ at (X,Y,M) is

χ2
µ,A(π@X,Y,M) :=

π(X |M, Y )

µ(X | Y )
;

the χ2-cost of π by Bob with respect to µ at (X,Y,M) is

χ2
µ,B(π@X,Y,M) :=

π(Y |M, X)

µ(Y | X)
.
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The χ2-costs of π with respect to µ are

χ2
µ,A(π) := E

(X,Y,M)∼π

[
χ2
µ,A(π@X,Y,M)

]
,

χ2
µ,B(π) := E

(X,Y,M)∼π

[
χ2
µ,B(π@X,Y,M)

]
.

For an event W , the χ2-costs of π with respect to µ conditioned on W are

χ2
µ,A(π |W ) := E

(X,Y,M)∼π|W

[
χ2
µ,A(π@X,Y,M)

]
,

χ2
µ,B(π |W ) := E

(X,Y,M)∼π|W

[
χ2
µ,B(π@X,Y,M)

]
.

Remark. Similar to the θ-cost, χ2
µ,A(π | W ) is also different from χ2

µ,A(πW ). The χ2-cost of π by Alice
is the expected χ2-divergence from µX|Y to πX|Y,M plus one. Similarly, the χ2-cost of π by Bob is the
expected χ2-divergence from µY |X to πY |X,M plus one. Observe that for standard protocols, if we measure
the expected KL-divergence instead of the χ2-divergence, then we obtain the internal information costs:∑

odd i

I(X;Mi | Y,M<i) and
∑
even i

I(Y ;Mi | X,M<i).

Similar proofs to Proposition 13 and Proposition 14 give us the following two propositions.

Proposition 16. For any protocol π, we have

E
π

[
χ2
µ,A(π@X,Y,M)−1

]
= 1,

and
E
π

[
χ2
µ,B(π@X,Y,M)−1

]
= 1.

Proposition 17. For any events W1,W2, we have

χ2
µ,A(π |W1 ∩W2) ≤

χ2
µ,A(π |W1)

π(W2 |W1)
,

and

χ2
µ,B(π |W1 ∩W2) ≤

χ2
µ,B(π |W1)

π(W2 |W1)
.

3.4 Rectangle properties in generalized protocols

We will maintain the rectangle property for the generalized protocols throughout the proof.

Definition 18 (Rectangle property). A generalized protocol π has the rectangle property with respect to µ,
if there exists nonnegative functions g1 : X ×M→ R, g2 : Y ×M→ R such that

π(X,Y,M) = µ(X,Y ) · g1(X,M) · g2(Y,M).

Let W be an event, (π |W ) has the rectangle property with respect to µ if there exists nonnegative functions
g1 : X ×M→ R, g2 : Y ×M→ R such that

π(X,Y,M |W ) = µ(X,Y ) · g1(X,M) · g2(Y,M).
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Equivalently, π has the rectangle property if for every transcript M, the posterior distribution πX,Y |M
is equal to µ rescaled by some product function with one factor depending only on X and another factor
depending only on Y . Note that this property holds for any standard protocol, since each message Mi

conditioned on M<i only depends on one of X and Y . Hence, for standard protocols, we have such product
structure even conditioned on any prefix M<i.

When decomposing a protocol for k instances, we need the following definition of the partial rectangle
property.

Definition 19 (Partial rectangle property). Let π be a generalized protocol such that X = (X1, . . . , Xk) and
Y = (Y1, . . . , Yk). π satisfies the partial rectangle property with respect to µk if there exists nonnegative
functions g1, g2, g3 such that

π(X,Y,M) = µk(X,Y ) · g1(X,M) · g2(Y,M) · g3(Xk, Y<k,M).

Let W be an event, (π | W ) has the partial rectangle property with respect to µk if there exists nonnegative
functions g1, g2, g3 such that

π(X,Y,M |W ) = µk(X,Y ) · g1(X,M) · g2(Y,M) · g3(Xk, Y<k,M).

Proposition 20. If π has the partial rectangle property, then X<k and Yk are independent conditioned on
Xk, Y<k,M; If π |W has the partial rectangle property, then X<k and Yk are independent conditioned on
Xk, Y<k,M,W .

Proof. If π has the partial rectangle property, then

π(X<k, Yk | Xk, Y<k,M)

= µk(X,Y ) · g1(X,M) · g2(Y,M) · g3(Xk, Y<k,M) · π(Xk, Y<k,M)−1

=
(
µk−1(X<k, Y<k) · g1(X,M)

)
·
(
µ(Xk, Yk) · g2(Y,M) · g3(Xk, Y<k,M) · π(Xk, Y<k,M)−1

)
.

Note that given (Xk, Y<k,M), the first factor only depends on X<k, and the second factor only depends on
Yk. By normalizing the two factors, we obtain that

π(X<k, Yk | Xk, Y<k,M) = π(X<k | Xk, Y<k,M) · π(Yk | Xk, Y<k,M).

The proof for π |W is almost identical. We omit the details.

For a protocol π, we define the follow sets that are related to the rectangle property and the partial
rectangle property.

Definition 21. Let UX,M (π) be the set consisting of all possible pairs (X,M). Let UY,M (π) be the set
consisting of all possible pairs (Y,M). Let UXk,Y<k,M (π) be the set consisting of all possible triples
(Xk, Y<k,M).

Let Srec(π) be the collection of all possible events S such that there exist SX,M ⊆ UX,M , SY,M ⊆ UY,M ,
and

S = {(X,Y,M) : (X,M) ∈ SX,M ∧ (Y,M) ∈ SY,M}.
Let Spt(π) be the collection of all possible events S such that there exist SX,M ⊆ UX,M , SY,M ⊆

UY,M , SXk,Y<k,M ⊆ UXk,Y<k,M , and

S = {(X,Y,M) : (X,M) ∈ SX,M ∧ (Y,M) ∈ SY,M ∧ (Xk, Y<k,M) ∈ SXk,Y<k,M}.

We may omit π and use Srec, Spt when there is no ambiguity.
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Intuitively, Srec(π) is the collection of events conditioned on which, π remains to have the rectangle
property. Similarly, Spt(π) is the collection of events conditioned on which, π remains to have the partial
rectangle property.

Proposition 22. We have the following properties about Srec and Spt:

(i) if π has the rectangle property, then for any S ∈ Srec, (π | S) has the rectangle property;

(ii) if π has the partial rectangle property, then for any S ∈ Spt, (π | S) has the partial rectangle property;

(iii) Srec ⊆ Spt;

(iv) both Srec and Spt are closed under intersection.

Proof. For (i), suppose S = {(X,Y,M) : (X,M) ∈ SX,M ∧ (Y,M) ∈ SY,M}. Then

π(X,Y,M | S) = π(X,Y,M) · 1SX,M
(X,M) · 1SY,M

(Y,M) · π(S)−1.

Thus, if π has the rectangle property, then (π | S) has the rectangle property.
Similarly for (ii), suppose

S = {(X,Y,M) : (X,M) ∈ SX,M ∧ (Y,M) ∈ SY,M ∧ (Xk, Y<k,M) ∈ SXk,Y<k,M}.

Then

π(X,Y,M | S) = π(X,Y,M) · 1SX,M
(X,M) · 1SY,M

(Y,M) · 1SXk,Y<k,M
(Xk, Y<k,M) · π(S)−1.

Thus, if π has the partial rectangle property, then (π | S) has the partial rectangle property.
(iii) and (iv) follow from the definitions.

4 Main Setup

In this section, we set up the main framework for proving our main theorems.

Theorem 1 (restated). For any {0, 1}-valued function f , we have

R
(r)
1/2+2−n(f

⊕n) ≥ n ·
(
r−O(r) ·R(r)

2/3(f)− 1
)
.

Theorem 2 (restated). Let c > 0 be a sufficiently large constant. Fix α ∈ (0, r−cr) and CA, CB ≥
2c log(r/α). Let f : X ×Y → {0, 1} be a function, and µ be a distribution over X ×Y . Suppose f satisfies

sucµ(f ;CA, CB, r) ≤ 1/2 + α/2,

then for any integer n ≥ 2, we have

sucµn(f⊕n; 2−8r−1n · CA, 2
−8r−1n · CB, r) ≤

1

2
+

α2−12n

2
.

We first show that Theorem 2 implies Theorem 1.
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Proof of Theorem 1. Fix a function f , suppose there is an r-round protocol π for f⊕n with communication
cost T and success probability 1/2 + 2−n. Let α = r−2cr for a sufficiently large c, then π has success
probability more than 1/2 + α2−12n/2. By setting CA = CB = 28r · T/n + 2c log(r/α) = O(r · T/n +
r log r), Theorem 2 implies sucµ(f ;CA, CB, r) > 1/2 + α/2, i.e., for distribution µ, there is an r-round
protocol with communication cost at most O(r · T/n + r log r) in each round and success probability at
least 1/2 + r−O(r).

Since this holds for any µ, by Yao’s minimax lemma, there is an r-round randomized protocol with
O(r · T/n + r log r) communication in each round and success probability at least 1/2 + r−O(r) for all
inputs. By simply running such a protocol rO(r) times in parallel and outputting the majority, we obtain an
r-round protocol with rO(r) · (T/n+ 1) total communication and success probability 2/3. Thus, we obtain
R

(r)
2/3(f) ≤ rO(r) · (R1/2+2−n(f⊕n)/n+ 1). Rearranging the terms gives Theorem 1.

In the rest of the paper, we will focus on proving Theorem 2. Let us fix a sufficiently large constant
c > 0, parameters CA, CB, r, α, function f and input distribution µ satisfying its premises. As mentioned
in Section 2, we will first define a potential function based on the costs and advantage, and then show that
the potential function value decreases as we decrement n.

Definition 23 (Potential functions). For an r-round generalized protocol π for f⊕n and an event W , we
define the potential function ϕn(π |W ) (and ϕcost

n , ϕadv
n ) as follows:

ϕn(π |W ) = log θµn(π |W ) +
log(1/α)

CA − c log(r/α)
· logχ2

µ,A(π |W ) +
log(1/α)

CB − c log(r/α)
· logχ2

µ,B(π |W )︸ ︷︷ ︸
ϕcost
n (π|W )

+ 32 log

(
E

π|W

[
advπ(f

⊕n(X,Y ) |M,W )
]−1

)
︸ ︷︷ ︸

ϕadv
n (π|W )

.

We also define ϕn,pt(π |W ) (and ϕadv
n,pt) as follows:

ϕn,pt(π |W ) = log θµn(π |W ) +
log(1/α)

CA − c log(r/α)
· logχ2

µ,A(π |W ) +
log(1/α)

CB − c log(r/α)
· logχ2

µ,B(π |W )

+ 32 log

(
E

π|W

[
advπ(f

⊕n(X,Y ) | Xn, Y<n,M,W )
]−1

)
︸ ︷︷ ︸

ϕadv
n,pt(π|W )

.

When W is the whole sample space, we may simply write ϕn(π) or ϕn,pt(π).

The first three terms in both potential functions ϕcost
n are the (normalized) costs of π. They are small

if π has low θ-cost and low χ2-costs. The last term in both potential functions depends on the expected
advantage. ϕn uses the standard advantage, while ϕn,pt uses the advantage conditioned not only on the
transcript, but also Xn and Y<n. As we will see later, it is used when decomposing π. The last term is small
if the protocol has high advantage. By Proposition 11, knowing more could only increase the expected
advantage. Hence, ϕn,pt(π) is always at most ϕn(π).

We have the following lower bound on the potential of π conditioned on W . In particular, when W is
the whole sample space, the potential function is nonnegative.
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Lemma 24. For any π, event W and any n ≥ 1, we must have

ϕn(π |W ) ≥ −3 log(1/π(W )).

Proof. For the θ-cost, by the convexity of 1/x, we have

θµn(π |W )−1 = E
π|W

[θµn(π@X,Y,M)]−1

≤ E
π|W

[
θµn(π@X,Y,M)−1

]
which by the fact that θµn(π@X,Y,M) is nonnegative, is

≤ π(W )−1 · E
π

[
θµn(π@X,Y,M)−1

]
which by Proposition 13, is

= π(W )−1.

Hence, log θµn(π | W ) ≥ − log(1/π(W )). Similarly, we also have logχ2
µn,A(π | W ) ≥ − log(1/π(W )),

and logχ2
µn,B(π | W ) ≥ − log(1/π(W )). By the fact that log(1/α) ≤ CA − c log(r/α) and log(1/α) ≤

CB − c log(r/α), we have
ϕadv
n (π |W ) ≥ −3 log(1/π(W )).

The advantage is always at most 1. Therefore, the last term is nonnegative. Hence, ϕn(π | W ) ≥
−3 log(1/π(W )).

The following lemma shows an upper bound on the potential of a deterministic standard protocol π
computing f⊕n.

Lemma 25. Let π be a deterministic standard protocol where Alice sends at most TA bits in each (odd)
round and Bob sends at most TB bits in each (even) round. If it computes f⊕n with probability 1

2 +
σ
2 under

input distribution µn, then

ϕn(π) ≤ ⌈r/2⌉ ·
TA · log(1/α)

CA − c log(r/α)
+ ⌊r/2⌋ · TB · log(1/α)

CB − c log(r/α)
+ 32 log(1/σ).

Proof. By the property of a standard protocol, θµn(π@X,Y,M) = 1 for any X,Y,M in the support of π.
Hence, log θµn(π) = 0.

For the χ2-cost by Alice, we have

χ2
µn,A(π) = E

(X,Y,M)∼π

[
π(X |M, Y )

µn(X | Y )

]
= E

(X,Y,M)∼π

[
π(X |M, Y )

π(X | Y )

]
=

∑
(X,Y,M)

π(X,Y,M)π(X |M, Y )

π(X | Y )
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=
∑

(X,Y,M)

π(M | X,Y )π(X | Y,M)π(Y ).

Since π is a deterministic standard protocol, M0 is fixed. All even messages (M2,M4, . . .) are sent by
Bob such that each Mi is determined by M<i and Y . Therefore, (M2,M4, . . .) are determined by all odd
messages (M1,M3, . . .) and Y . Denote (M2,M4, . . .) by Meven and (M1,M3, . . .) by Modd , we have∑

(X,Y,M)

π(M | X,Y )π(X | Y,M)π(Y )

=
∑

(X,Y,M)

π(Meven | X,Y,Modd )π(Modd | X,Y )π(X | Y,Modd ,Meven )π(Y )

=
∑

(X,Y,M)

π(Meven | X,Y,Modd )π(Modd | X,Y )π(X | Y,Modd )π(Y )

=
∑

(X,Y,M)

π(Modd | X,Y )π(X,Meven | Y,Modd )π(Y )

≤
∑

(X,Y,M)

π(X,Meven | Y,Modd )π(Y )

=
∑

(Y,Modd )

π(Y )

=
∑
Modd

1

≤ 2⌈r/2⌉TA ,

where the last inequality uses the fact that Alice’s messages have at most TA bits in each (odd) round.
Similarly, we have χ2

π(µ,B) ≤ 2⌊r/2⌋TB .
Finally, by the connection between advantage and success probability, Eπ [advπ(f

⊕n(X,Y ) |M)] ≥ σ.
Hence,

ϕn(π) ≤ ⌈r/2⌉ ·
TA · log(1/α)

CA − c log(r/α)
+ ⌊r/2⌋ · TB · log(1/α)

CB − c log(r/α)
+ 32 log(1/σ).

In the rest of the paper, we will prove the following lemma, which shows that given a protocol for f⊕k,
we can construct a protocol for f⊕k−1 with a lower potential.

Lemma 26. For k ≥ 2,
if there is a generalized protocol π for f⊕k with the rectangle property with respect to µk and an event

V ∈ Srec(π) such that π(V ) ≥ 2−12,
then there is a generalized protocol πnew for f⊕k−1 with the rectangle property with respect to µk−1

and an event Vnew ∈ Srec(πnew) such that πnew(Vnew) ≥ 2−12, and

ϕk−1(πnew | Vnew) ≤ ϕk(π | V )− 1

16
log(1/α).

Our main theorem is a direct corollary of Lemma 24, 25 and 26.
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Proof of Theorem 2. Since CA, CB ≥ 2c log(r/α), CA/2 ≤ CA−c log(r/α) and CB/2 ≤ CB−c log(r/α).
Suppose there exists an r-round protocol π(n) where Alice sends at most

2−8r−1n · CA ≤ 2−7r−1n(CA − c log(r/α))

bits in each round and Bob sends at most

2−8r−1n · CB ≤ 2−7r−1n(CB − c log(r/α))

in each round, which computes f⊕n correctly with probability 1/2 + σ/2 when the input is sampled from
µn. By fixing the randomness, we may assume that π(n) is deterministic. Then by Lemma 25, we have

ϕn(π
(n)) ≤ 2−7n log(1/α) + 32 log(1/σ).

Now we set V (n) to be the whole sample space of π(n). Clearly, π(n) and V (n) satisfy the premise of
Lemma 26. By inductively applying Lemma 26 a total of n − 1 times, we obtain a protocol π(1) for f and
event V (1) such that π(1)(V (1)) ≥ 2−12 and

ϕ1(π
(1) | V (1)) ≤ ϕn(π

(n))− n− 1

16
· log(1/α).

On the other hand, Lemma 24 implies that the LHS is at least −3 log(1/π(1)(V (1))) ≥ −36, implying
that

ϕn(π
(n)) ≥ n− 1

16
· log(1/α)− 36 ≥ 2−6n log(1/α),

since n ≥ 2 and α < r−cr for a sufficiently large c.
Combining the above upper and lower bounds on ϕn(π

(n)), we obtain

2−7n log(1/α) + 32 log(1/σ) ≥ 2−6n log(1/α),

implying that log(1/σ) ≥ 2−12n log(1/α), i.e.,

σ ≤ α2−12n.

This proves the theorem.

5 Decomposition of Generalized Protocols

To prove Lemma 26, we will decompose a generalized protocol π for f⊕k into a protocol π<k for f⊕k−1 and
a protocol πk for f such that the costs of π<k and πk “add up” to the costs of π pointwisely. For simplicity
of notations, we will assume that r is even from now on, the case of odd r is similar.

5.1 Definition of π<k and πk

Fix a generalized protocol π with the rectangle property with respect to µk. Let (X,Y,M) ∼ π. We view
the following tuple as the r-round generalized protocol π<k on inputs (X<k, Y<k)

(X<k, Y<k, (M0 ◦Xk,M1,M2, . . . ,Mr−1,Mr)) ,
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where we append Xk to M0. We view the following tuple as the r-round generalized protocol πk on inputs
(Xk, Yk)

(Xk, Yk, (M0, Y<k ◦M1,M2, . . . ,Mr−1,Mr)) ,

where we prepend Y<k to M1.
It is useful to think that π<k, πk and π are the same distribution over the same sample space, only

their inputs and transcripts are defined in different ways. Therefore, we may use π<k(W ), πk(W ), π(W )
interchangeably when measuring the probability of an event W .

For simplicity of notations, we use M(π<k) to denote (M0 ◦Xk,M1,M2, . . . ,Mr), the transcript of
π<k, and use M(πk) to denote (M0, Y<k ◦M1,M2, . . . ,Mr), the transcript of πk. M

(π<k)
i and M

(πk)
i are

defined similarly. Since (X,Y,M) determines (X<k, Y<k,M
(π<k)), we define θ-cost of π<k at (X,Y,M)

as
θµk−1(π<k @X,Y,M) := θµk−1(π<k @X<k, Y<k,M

(π<k)),

where (X<k, Y<k,M
(π<k)) is the triple determined by (X,Y,M). Note that this cost does not depend on

Yk given the other parts of (X,Y,M). The χ2-costs of π<k and the costs of πk at (X,Y,M) are defined
similarly.

In the remainder of this section, we will analyze π<k and πk. First, we observe that the partial rectangle
property of π implies the rectangle properties of π<k and πk.

Proposition 27. Let W be an event such that π | W has the partial rectangle property with respect to µk.
Then π<k |W has the rectangle property with respect to µk−1, and πk |W has the rectangle property with
respect to µ.

Proof. Since π |W has the partial rectangle property, there exists g1, g2, g3 such that

π(X,Y,M |W ) = µk(X,Y ) · g1(X,M) · g2(Y,M) · g3(Xk, Y<k,M).

Thus,

π<k(X<k, Y<k,M
(π<k) |W ) = π(X,Y<k,M |W )

=
∑
Yk

µk(X,Y ) · g1(X,M) · g2(Y,M) · g3(Xk, Y<k,M)

= µk−1(X<k, Y<k) · g1(X,M) ·

∑
Yk

µ(Xk, Yk) · g2(Y,M) · g3(Xk, Y<k,M)

 .

Note that the second factor is a function of only X<k and M(π<k), the third factor is a function of only Y<k

and M(π<k).
For πk, we have

πk(Xk, Yk,M
(πk) |W ) = π(Xk, Y,M |W )

=
∑
X<k

µk(X,Y ) · g1(X,M) · g2(Y,M) · g3(Xk, Y<k,M)

= µ(Xk, Yk) ·

∑
X<k

g1(X,M) · g3(Xk, Y<k,M)

 · g2(Y,M).
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The second factor depends only on Xk and M(πk), and the third factor depends only on Yk and M(πk). This
proves the lemma.

Similarly, we have the following relation between Srec(π<k),Srec(πk) and Spt(π).

Proposition 28. We have Srec(π<k) ⊆ Spt(π) and Srec(πk) ⊆ Spt(π).

Proof. Let S ∈ Srec(π<k) be an event such that

S = {(X,Y,M) : (X<k,M
(π<k)) ∈ SX,M ∧ (Y<k,M

(π<k)) ∈ SY,M},

for sets SX,M ∈ UX,M (π<k) and SY,M ∈ UY,M (π<k). Hence,

S = {(X,Y,M) : (X,M) ∈ SX,M ∧ (Xk, Y<k,M) ∈ SY,M}

is a set in Spt(π).
The proof of Srec(πk) ⊆ Spt(π) is similar, and we omit the details.

5.2 Decomposition of the costs

Below is the first main lemma of the decomposition, stating that the product of θ-costs of π<k and πk is
equal to that of π pointwisely.

Lemma 29. The product of the θ-costs of π<k and πk at (X,Y,M) is θ-cost of π at (X,Y,M),

θµk−1(π<k @X,Y,M) · θµ(πk @X,Y,M) = θµk(π@X,Y,M).

Proof. By definition, we have

θµk−1(π<k @X,Y,M)

=
π<k(X<k, Y<k,M

(π<k) |M (π<k)
0 )

µk−1(X<k, Y<k)
·
∏

odd i∈[r]

1

π<k(M
(π<k)
i | X<k,M

(π<k)
<i )

·
∏

even i∈[r]

1

π<k(M
(π<k)
i | Y<k,M

(π<k)
<i )

=
π(X,Y<k,M | Xk,M0)

µk−1(X<k, Y<k)
·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Xk, Y<k,M<i)

=
π(X<k, Y<k,M | Xk,M0)

µk−1(X<k, Y<k)
·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Xk, Y<k,M<i)
. (2)

Similarly,

θµ(πk @X,Y,M)

=
πk(Xk, Yk,M

(πk) |M (πk)
0 )

µ(Xk, Yk)
·
∏

odd i∈[r]

1

πk(M
(πk)
i | Xk,M

(πk)
<i )

·
∏

even i∈[r]

1

πk(M
(πk)
i | Yk,M

(πk)
<i )

=
π(Xk, Y,M |M0)

µ(Xk, Yk)
· 1

π(Y<k,M1 | Xk,M0)
·

∏
odd i∈[3,r]

1

π(Mi | Xk, Y<k,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,M<i)

=
π(Xk, Y,M |M0)

µ(Xk, Yk) · π(Y<k | Xk,M0)
·
∏

odd i∈[r]

1

π(Mi | Xk, Y<k,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,M<i)
. (3)
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Combining Equation (2) and (3), we have

θµk−1(π<k @X,Y,M) · θµ(πk @X,Y,M)

=
π(X<k, Y<k,M | Xk,M0)

µk−1(X<k, Y<k)
·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Xk, Y<k,M<i)

· π(Xk, Y,M |M0)

µ(Xk, Yk) · π(Y<k | Xk,M0)
·
∏

odd i∈[r]

1

π(Mi | Xk, Y<k,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,M<i)

=
π(X<k, Y<k,M | Xk,M0)π(Xk, Y,M |M0)

µk(X,Y )π(Y<k | Xk,M0)
· 1

π(M | Xk, Y<k,M0)

·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,Mi)

=
π(X<k | Xk, Y<k,M)π(Xk, Y,M |M0)

µk(X,Y )
·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,M<i)
.

Then by the rectangle property of π and Proposition 20, Yk is independent of X<k conditioned on (Xk, Y<k,M).
It is equal to

π(X<k | Xk, Y,M)π(Xk, Y,M |M0)

µk(X,Y )
·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,M<i)

=
π(X,Y,M |M0)

µk(X,Y )
·
∏

odd i∈[r]

1

π(Mi | X,M<i)
·
∏

even i∈[r]

1

π(Mi | Y,M<i)

= θµk(π@X,Y,M).

This proves the lemma.

The second main lemma of the decomposition states that the product of the χ2-costs of π<k and πk is
also equal to that of π pointwisely.

Lemma 30. The product of the χ2-costs of π<k and πk at (X,Y,M) is the χ2-cost of π at (X,Y,M) by
Alice and Bob respectively,

χ2
µk−1,A(π<k @X,Y,M) · χ2

µ,A(πk @X,Y,M) = χ2
µk,A(π@X,Y,M),

χ2
µk−1,B(π<k @X,Y,M) · χ2

µ,B(πk @X,Y,M) = χ2
µk,B(π@X,Y,M).

Proof. For the χ2-cost by Alice, by definition, we have

χ2
µk−1,A(π<k @X,Y,M) =

π<k(X<k | Y<k,M
(π<k))

µk−1(X<k | Y<k)

=
π(X<k | Xk, Y<k,M)

µk−1(X<k | Y<k)
,

and

χ2
µ,A(πk @X,Y,M) =

πk(Xk | Yk,M(πk))

µ(Xk | Yk)
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=
π(Xk | Y,M)

µ(Xk | Yk)
.

Hence, by partial rectangle property of π and Proposition 20, their product is equal to

χ2
µk−1,A(π<k @X,Y,M) · χ2

µ,A(πk @X,Y,M)

=
π(X<k | Xk, Y<k,M)

µk−1(X<k | Y<k)
· π(Xk | Y,M)

µ(Xk | Yk)

=
π(X<k | Xk, Y,M) · π(Xk | Y,M)

µk(X | Y )

=
π(X | Y,M)

µk(X | Y )

= χ2
µk,A(π@X,Y,M).

The χ2-cost for Bob is similar,

χ2
µk−1,B(π<k @X,Y,M) · χ2

µ,B(πk @X,Y,M)

=
π(Y<k | X,M)

µk−1(Y<k | X<k)
· π(Yk | Xk, Y<k,M)

µ(Yk | Xk)

=
π(Y<k | X,M) · π(Yk | X,Y<k,M)

µk(Y | X)

= χ2
µk,B(π@X,Y,M).

This proves the lemma.

6 Induction: Proof of Lemma 26

In this section, we will use the decomposition of π to prove Lemma 26.

6.1 Identify event U

As we mentioned in Section 2, to obtain a new protocol for f⊕k−1 from π, we first identify an event U such
that the advantage of π is not concentrated on any S for S ∈ Spt(π) and S ⊆ U .

Let U ∈ Spt(π) and U ⊆ V be an event that maximizes

π(U)1/2 · E
π|U

[
adv(f⊕k(X,Y ) | Xk, Y<k,M, U)

]
. (4)

Since Spt(π) is a discrete set, such U exists. If there is a tie, we fix U to be any maximizer. We first show
that conditioning on U reduces the potential function value, and the reduction is large when the probability
U is small.

Lemma 31. π | U has the partial rectangle property with respect to µk, and

ϕk,pt(π | U) ≤ ϕk(π | V )− 13 log(1/π(U | V )).
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Proof. By definition, we have

ϕk,pt(π | U) = log θµk(π | U) +
log(1/α)

CA − c log(r/α)
· logχ2

µk,A(π | U) +
log(1/α)

CB − c log(r/α)
· logχ2

µk,B(π | U)

+ 32 log

(
E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]−1
)
.

By Proposition 14, Proposition 17 and the fact that U ⊆ V , we have

log θµk(π | U) ≤ log θµk(π | V ) + log(1/π(U | V ))

logχ2
µk,A(π | U) ≤ logχ2

µk,A(π | V ) + log(1/π(U | V ))

logχ2
µk,B(π | U) ≤ logχ2

µk,B(π | V ) + log(1/π(U | V )).

Then since U is the maximizer of Equation (4) and V ∈ Srec(π) ⊆ Spt(π),

E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]

≥ π(U)−1/2 · π(V )1/2 · E
π|V

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, V )
]

= π(U | V )−1/2 · E
π|V

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, V )
]
.

Since knowing less could only decrease the advantage (Proposition 11),

E
π|V

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, V )
]
≥ E

π|V

[
advπ(f

⊕k(X,Y ) |M, V )
]
.

Combining the inequalities and using the fact that log(1/α) < CA − c log(r/a) and log(1/α) < CB −
c log(r/a), we have

ϕk,pt(π | U) ≤ log θµk(π | V ) +
log(1/α)

CA − c log(r/α)
· logχ2

µk,A(π | V ) +
log(1/α)

CB − c log(r/α)
· logχ2

µk,B(π | V )

+ 32 log

(
E
π|V

[
f⊕k(X,Y ) |M, V

]−1
)

+ 3 log(1/π(U | V ))− 16 log(1/π(U | V ))

= ϕk(π | V )− 13 log(1/π(U | V )).

This proves the lemma.

We need the following proposition in the later proof.

Proposition 32. We have the following:

(i) for any S ∈ Spt(π) and S ⊆ U , we have

π(S) · E
π|S

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S)
]

≤ π(S | U)1/2 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]
.
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(ii) for any S ∈ Spt(π) and S ⊆ U , if

π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]

≤ s · π(S) · E
π|S

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S)
]
,

for some s ≥ 1, then for any t ≤ 32, we have

ϕadv
k,pt(π | U) + t log(1/π(U)) ≥ ϕadv

k,pt(π | S) + t log(1/π(S))− 32 log s.

Proof. (i) Since U is the maximizer of Equation (4), S ∈ Spt(π) and S ⊆ U , we have

π(S) · E
π|S

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S)
]

≤ π(S)1/2 · π(U)1/2 · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]

= π(S | U)1/2 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]
.

(ii) By taking the logarithm on both sides of the premise, we have

log

(
E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
]−1
)

+ log(1/π(U))

≥ log

(
E
π|S

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S)
]−1
)

+ log(1/π(S))− log s,

i.e., (recall Definition 23)

ϕadv
k,pt(π | U) + 32 log(1/π(U)) ≥ ϕadv

k,pt(π | S) + 32 log(1/π(S))− 32 log s.

Since π(U) ≥ π(S), for any t ≤ 32,

ϕadv
k,pt(π | U) + t log(1/π(U)) ≥ ϕadv

k,pt(π | S) + t log(1/π(S))− 32 log s.

Now we will divide the set of all (Xk, Y<k,M) with nonzero probability under π into subsets based
on the costs and the advantages of π<k and πk. Then we show that for each subset, there is a way to
construct a generalized protocol for f⊕k−1 such that at least one of the protocols satisfies the requirements
of Lemma 26. To analyze the costs of these protocols, which we will construct later in this section, we need
the following two lemmas.

Lemma 33. Fix a set S of triples (Xk, Y<k,M) and a parameter η > 0. If for all (Xk, Y<k,M) ∈ S,

E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
]
≥ η,

then we have
log θµk−1(π<k | S ∩ U) ≤ log θµk(π | U) + log(1/π(S | U))− log η,

where we abused the notation to let S also denote the set {(X,Y,M) : (Xk, Y<k,M) ∈ S}.
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Proof. By Lemma 29, we have

θµk(π | S ∩ U)

= E
π

[
θµk(π@X,Y,M) | S ∩ U

]
= E

π

[
θµk−1(π<k @X,Y,M) · θµ(πk @X,Y,M) | S ∩ U

]
.

By the construction of π<k and πk, θµk−1(π<k @X,Y,M) is a function of (X,Y<k,M) and does not depend
on Yk, and θµ(πk @Xk, Y,M) is a function of (Xk, Y,M) does not depend on X<k. Thus, it is equal to

E
π

[
θµk−1(π<k @X,Y<k,M) · θµ(πk @Xk, Y,M) | S ∩ U

]
.

Since Spt is closed under intersection and S ∈ Spt by definition, we have that S∩U ∈ Spt. Hence, π | S∩U
has the partial rectangle property by Proposition 22(ii). Then X<k and Yk are independent conditioned on
(Xk, Y<k,M, S ∩ U) by Proposition 20. Hence, it is equal to

E
(Xk,Y<k,M)∼π|S∩U

[
E

X<k∼π|Xk,Y<k,M,S∩U
[θµk−1(π<k @X,Y<k,M)] · E

Yk∼π|Xk,Y<k,M,S∩U
[θµ(πk @Xk, Y,M)]

]

= E
(Xk,Y<k,M)∼π|S∩U

[
E

X<k∼π|Xk,Y<k,M,S∩U
[θµk−1(π<k @X<k, Y<k,M

(π<k))]

× E
Yk∼π|Xk,Y<k,M,S∩U

[θµ(πk @Xk, Yk,M
(πk))]

]
.

Since S is a set of triples (Xk, Y<k,M), (π | Xk, Y<k,M, S ∩ U) is the same as (π | Xk, Y<k,M, U) (for
(Xk, Y<k,M) ∈ S). It is equal to

E
(Xk,Y<k,M)∼π|S∩U

[
E

X<k∼π|Xk,Y<k,M,S∩U
[θµk−1(π<k @X<k, Y<k,M

(π<k))]

× E
Yk∼π|Xk,Y<k,M,U

[θµ(πk @Xk, Yk,M
(πk))]

]

≥ E
(Xk,Y<k,M)∼π|S∩U

[
E

X<k∼π|Xk,Y<k,M,S∩U
[θµk−1(π<k @X<k, Y<k,M

(π<k))] · η

]
= θµk−1(π<k | S ∩ U) · η.

Finally, by Proposition 14,

θµk(π | S ∩ U) ≤
θµk(π | U)

π(S | U)
.

Hence, we have

log θµk−1(π<k | S ∩ U) ≤ log θµk(π | U) + log(1/π(S | U))− log η.

This proves the lemma.
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Next, by applying Lemma 30 and Proposition 17 instead of Lemma 29 and Proposition 14, the same
proof gives the following lemma for the χ2-costs.

Lemma 34. Fix a set S of triples (Xk, Y<k,M) and a parameter η > 0. If for all (Xk, Y<k,M) ∈ S,

E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
≥ η,

then we have

logχ2
µk−1,A(π<k | S ∩ U) ≤ logχ2

µk,A(π | U) + log(1/π(S | U))− log η;

similarly, if for all (Xk, Y<k,M) ∈ S,

E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
≥ η,

then we have

logχ2
µk−1,B(π<k | S ∩ U) ≤ logχ2

µk,B(π | U) + log(1/π(S | U))− log η.

We will also need the following lemma to relate the advantage for f⊕k−1 to the advantage for f⊕k.

Lemma 35. Fix a set S ∈ Spt(π) such that π(S ∩ U) > 0. Suppose there exists b ∈ {0, 1} such that for
any (Xk, Y<k,M) with π(Xk, Y<k,M, S ∩ U) > 0, we have

π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U) ≥ 1/2.

Then we have

E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), S ∩ U)
]
≥ E

π|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]
.

Moreover, if we further have

E
π|S∩U

[advπ(f(Xk, Yk) | Xk, Y<k,M, S ∩ U)] ≤ η,

for

η1/4 ≤ 1

2
·
π(S ∩ U)1/2 · Eπ|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]

π(U)1/2 · Eπ|U [advπ(f⊕k(X,Y ) | Xk, Y<k,M, U)]
,

then we have

E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), S ∩ U)
]

≥ 1

2
η−1/2 · E

π|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]
.

The first condition π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U) ≥ 1/2 is used to ensure that the
expected advantage conditioned on (M(π<k), S ∩ U) is the same as the expected advantage conditioned on
(Y<k,M

(π<k), S ∩ U).
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Proof. We have

advπ(f
⊕k−1(X<k, Y<k) |M(π<k), S ∩ U)

= advπ(f
⊕k−1(X<k, Y<k) | Xk,M, S ∩ U)

=
∣∣∣2π(f⊕k−1(X<k, Y<k) = b | Xk,M, S ∩ U)− 1

∣∣∣
=

∣∣∣∣∣∣2
∑
Y<k

π(Y<k | Xk,M, S ∩ U) · π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U)− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
Y<k

π(Y<k | Xk,M, S ∩ U) · (2π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U)− 1)

∣∣∣∣∣∣ .
By the assumption that π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U) ≥ 1/2, the absolute value of the
sum is equal to the sum of absolute values:∣∣∣∣∣∣

∑
Y<k

π(Y<k | Xk,M, S ∩ U) · (2π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U)− 1)

∣∣∣∣∣∣
=
∑
Y<k

π(Y<k | Xk,M, S ∩ U) ·
∣∣∣2π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, S ∩ U)− 1

∣∣∣
= E

Y<k∼π|Xk,M,S∩U

[
advπ(f

⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U)
]
.

By taking the expectation over (Xk,M) conditioned on S ∩ U , we obtain

E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), S ∩ U)
]

= E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U)
]
. (5)

Since S,U ∈ Spt(π), we have S ∩ U ∈ Spt(π). Therefore, X<k and Yk are independent conditioned
on (Xk, Y<k,M, S ∩ U) by Proposition 22(ii) and Proposition 20. In particular, f⊕k−1(X<k, Y<k) and
f(Xk, Yk) are independent conditioned on (Xk, Y<k,M, S∩U). By the fact that f(X,Y ) = f⊕k−1(X<k, Y<k)⊕
f(Xk, Yk) and Proposition 5, we have

advπ(f
⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)

= advπ(f
⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U) · advπ(f(X,Y ) | Xk, Y<k,M, S ∩ U) (6)

≤ advπ(f
⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U).

Thus, the expected advantage is at least

E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), S ∩ U)
]

≥ E
π|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]
.

30



This proves the first part of the lemma.

For the second part, let T be the set of all triples (Xk, Y<k,M) such that

π(Xk, Y<k,M, S ∩ U) > 0

and
advπ(f(Xk, Yk) | Xk, Y<k,M, S ∩ U) ≥ η1/2.

Then by Markov’s inequality, if we have

E
π|S∩U

[advπ(f(Xk, Yk) | Xk, Y<k,M, S ∩ U)] ≤ η,

then π(T | S ∩ U) ≤ η1/2.
Hence, for (Xk, Y<k,M) /∈ T and π(Xk, Y<k,M, S ∩ U) > 0, Equation (6) implies that

advπ(f
⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)

≤ η1/2 · advπ(f⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U).

Hence, we have

E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U)
]

≥
∑

(Xk,Y<k,M)/∈T

π(Xk, Y<k,M | S ∩ U) · advπ(f⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U)

≥ η−1/2 ·
∑

(Xk,Y<k,M)/∈T

π(Xk, Y<k,M | S ∩ U) · advπ(f⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)

≥ η−1/2 · E
π|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]

− η−1/2 · π(T | S ∩ U) · E
π|T∩S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]
.

Next we show that (the absolute value of) the second term is at most half of the first term. First since T is a
set of (Xk, Y<k,M), we have

advπ(f
⊕k(X,Y ) | Xk, Y<k,M, S ∩ U) = advπ(f

⊕k(X,Y ) | Xk, Y<k,M, T ∩ S ∩ U)

for any (Xk, Y<k,M) ∈ T . Hence, by the fact that T ∩S ∩U ∈ Spt(π) and U maximizes Equation (4), we
have that

π(T | S ∩ U) · E
π|T∩S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]

= π(S ∩ U)−1/2 · π(T | S ∩ U)1/2 ·

(
π(T ∩ S ∩ U)1/2 · E

π|T∩S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, T ∩ S ∩ U)
])

≤ π(S ∩ U)−1/2 · η1/4 ·

(
π(U)1/2 · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U)
])

,

31



which by the bound on η, is at most

1

2
· E
π|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]
.

Thus, we have

E
π|S∩U

[
advπ(f

⊕k−1(X<k, Y<k) | Xk, Y<k,M, S ∩ U)
]

≥ 1

2
η−1/2 · E

π|S∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, S ∩ U)
]
.

Combining it with Equation (5) proves the lemma.

6.2 High costs

We first consider all (Xk, Y<k,M) at which πk has high costs. We will show that it leads to significant
lower ϕcost

k−1.

High θ-cost. The first set of triples consists of all (Xk, Y<k,M) such that

α−1/2 ≤ E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
]
,

2−2−5(CA−c log(r/α)) · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
,

2−2−5(CB−c log(r/α)) · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
.

This is the set of triples at which πk has high θ-cost and not-too-low χ2-costs.
Note that θµ(πk @Xk, Yk,M

(πk)), χ2
µ,A(πk @Xk, Yk,M

(πk)) and χ2
µ,B(πk @Xk, Yk,M

(πk)) are func-
tions of (Xk, Y,M), hence, they do not depend on X<k. Denote this set of (Xk, Y<k,M) by Shigh-θ. We
will also abuse the notation, and use Shigh-θ to denote the set {(X,Y,M) : (Xk, Y<k,M) ∈ Shigh-θ}, which
can also be treated as an event.

By applying Lemma 33 and Lemma 34 to Shigh-θ and the corresponding η, we obtain the following
bounds on the costs of π<k conditioned on Shigh-θ∩U :

log θµk−1(π<k | Shigh-θ ∩ U) ≤ log θµk(π | U) + log(1/π(Shigh-θ | U))− 1

2
log(1/α),

logχ2
µk−1,A(π<k | Shigh-θ ∩ U) ≤ logχ2

µk,A(π | U) + log(1/π(Shigh-θ | U))

+ 2−5(CA − c log(r/α)) + log(1/π(U)),

logχ2
µk−1,B(π<k | Shigh-θ ∩ U) ≤ logχ2

µk,B(π | U) + log(1/π(Shigh-θ | U))

+ 2−5(CB − c log(r/α)) + log(1/π(U)).

Thus, it implies that (recall Definition 23)

ϕcost
k−1(π<k | Shigh-θ ∩ U) ≤ ϕcost

k (π | U) + 3 log(1/π(Shigh-θ | U)) + 2 log(1/π(U))− 1

4
log(1/α), (7)

where we used the assumption that CA − c log(r/α) > log(1/α), CB − c log(r/α) > log(1/α).
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High χ2-cost by Alice. The next set consists of all (Xk, Y<k,M) such that

α2−5 · π(U) ≤ E
Yk|Xk,Y<k,M∼π|U

[
θµ(πk @Xk, Yk,M

(πk))
]
< α−1/2,

2CA−c log(r/α) ≤ E
Yk|Xk,Y<k,M∼π|U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
,

2−2−5(CB−c log(r/α)) · π(U) ≤ E
Yk|Xk,Y<k,M∼π|U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
.

This is the set of triples at which πk has high χ2-cost by Alice and not-too-low θ-cost and χ2-cost by
Bob. Denote this set of (Xk, Y<k,M) by Shigh-χ2-A. The upper bound on the θ-cost ensures that it is
disjoint from Shigh-θ. Similarly, we also abuse the notation to let Shigh-χ2-A also denote the set {(X,Y,M) :
(Xk, Y<k,M) ∈ Shigh-χ2-A}.

By applying Lemma 33 and Lemma 34 to Shigh-χ2-A and the corresponding η, we have the following
bounds:

log θµk−1(π<k | Shigh-χ2-A ∩ U) ≤ log θµk(π | U) + log(1/π(Shigh-χ2-A | U))

+ 2−5 log(1/α) + log(1/π(U)),

logχ2
µk−1,A(π<k | Shigh-χ2-A ∩ U) ≤ logχ2

µk,A(π | U) + log(1/π(Shigh-χ2-A | U))

− (CA − c log(r/α)),

logχ2
µk−1,B(π<k | Shigh-χ2-A ∩ U) ≤ logχ2

µk,B(π | U) + log(1/π(Shigh-χ2-A | U))

+ 2−5(CB − c log(r/α)) + log(1/π(U)),

which also implies

ϕcost
k−1(π<k | Shigh-χ2-A∩U) ≤ ϕcost

k (π | U)+3 log(1/π(Shigh-χ2-A | U))+2 log(1/π(U))−1

4
log(1/α). (8)

High χ2-cost by Bob. The third case consists of all (Xk, Y<k,M) such that

α2−5 · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
]
< α−1/2,

2−2−5(CA−c log(r/α)) · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
< 2CA−c·log(r/α),

2CB−c log(r/α) ≤ E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
.

This is the set of triples at which πk has high χ2-cost by Bob and not-too-low θ-cost and χ2-cost by Alice.
Denote this set of (Xk, Y<k,M) by Shigh-χ2-B. It is disjoint from Shigh-θ and Shigh-χ2-A. Similarly, we also
use Shigh-χ2-B to denote the set {(X,Y,M) : (Xk, Y<k,M) ∈ Shigh-χ2-B}.

By applying Lemma 33 and Lemma 34 to Shigh-χ2-B and the appropriate η, we have the following bounds:

log θµk−1(π<k | Shigh-χ2-B ∩ U) ≤ log θµk(π | U) + log(1/π(Shigh-χ2-B | U))

+ 2−5 log(1/α) + log(1/π(U)),

logχ2
µk−1,A(π<k | Shigh-χ2-B ∩ U) ≤ logχ2

µk,A(π | U) + log(1/π(Shigh-χ2-B | U))
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+ 2−5(CA − c log(r/α)) + log(1/π(U)),

logχ2
µk−1,B(π<k | Shigh-χ2-B ∩ U) ≤ logχ2

µk,B(π | U) + log(1/π(Shigh-χ2-B | U))

− (CB − c log(r/α)),

which also implies that

ϕcost
k−1(π<k | Shigh-χ2-B∩U) ≤ ϕcost

k (π | U)+3 log(1/π(Shigh-χ2-B | U))+2 log(1/π(U))−1

4
log(1/α). (9)

Equation (7), (8) and (9) implies that for β ∈ {high-θ, high-χ2-A, high-χ2-B}, we all have

ϕcost
k−1(π<k | Sβ ∩ U) ≤ ϕcost

k (π | U) + 3 log(1/π(Sβ | U)) + 2 log(1/π(U))− 1

4
log(1/α)

≤ ϕcost
k (π | U) + 3 log(1/π(Sβ ∩ U))− 1

4
log(1/α). (10)

The main lemma of this subsection is the following, stating that if the above three sets contribute a
nontrival amount of total advantage in U (weighted by the probability), then we can construct a protocol for
f⊕k−1 satisfying the requirements of Lemma 26 (by conditioning π<k on a carefully chosen event).

Lemma 36. Let Shigh-cost be the union Shigh-θ ∪ Shigh-χ2-A ∪ Shigh-χ2-B. If we have

π(Shigh-cost ∩ U) · E
π|Shigh-cost∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Shigh-cost ∩ U)
]

≥ 1

3
· π(U) · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

then Lemma 26 holds.

Protocol π<k and event Sβ ∩U may be one potential choice for πnew and Vnew in Lemma 26. However,
Lemma 26 requires the probability of Vnew to be Ω(1), which is not necessarily true for any β, since U may
have very small probability. On the other hand, we could also consider setting πnew to the distribution of
π<k conditioned on Sβ ∩U and Vnew to the entire sample space, but this protocol may have very large costs.

To resolve this issue, we will use the following lemma, which turns (π<k | Sβ ∩ U) into a protocol
(π<k)G with bounded costs for some event G ≈ Sβ ∩ U . Moreover, by dividing G into G0 ∪G1 according
to whether the function value is more likely to be 0 or 1 conditioned on Y and M, the lemma guarantees
that the costs conditioned on Gb are also bounded (for b = 0, 1). This will allow us to apply Lemma 35 later
to lower bound the advantage.

Lemma 37. Fix any γ ∈ (0, 1/2). Let ρ be an r-round generalized protocol over X × Y ×M, W be an
event, ν be an input distribution and h : X × Y → {0, 1} be a function of the inputs. Then there exists a
partition of W into three events G,B0, B1 and a partition of Y ×M into E0, E1 such that the following
holds:

1. all three events G, B0, B1 have the form W ∩ S for some S ∈ Srec(ρ);

2. ρ(B0 ∪B1 |W ) ≤ γ;
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3. let ρG be the protocol (ρ | G), G0 = G ∩ E0 and G1 = G ∩ E1, then for b = 0, 1,

log θν(ρG | Gb) ≤ log θν(ρ |W ) + (r + 1) log ((r + 3)/γ) + log (1/((1− γ)ρ(Gb))) ,

logχ2
ν,A(ρG | Gb) ≤ logχ2

ν,A(ρ |W ) + log((r + 3)/γ) + log(1/((1− γ)ρ(Gb))),

logχ2
ν,B(ρG | Gb) ≤ logχ2

ν,B(ρ |W ) + log((r + 3)/γ) + log(1/((1− γ)ρ(Gb)));

4. for b = 0, 1, and all (Y,M) such that ρ(Y,M | Gb) > 0,

ρ(h(X,Y ) = b | Y,M, Gb) ≥ 1/2.

Note that we upper bound the costs of ρG conditioned on Gb by the costs of ρ conditioned on W (plus
some small quantity). Thus, for ρ = π<k and W = Sβ ∩ U , the costs are bounded due to Equation (10).
To focus on our main proof, we will defer the proof of Lemma 37 to Section 6.5. Now we use it to prove
Lemma 36.

Proof of Lemma 36. We first fix some β ∈ {high-θ, high-χ2-A, high-χ2-B}. By applying Lemma 37 to
protocol ρ = π<k, event W = Sβ ∩ U , input distribution ν = µk−1 and function h = f⊕k−1 for γ = 2−12,
we obtain sets Gβ, Bβ,0, Bβ,1, Eβ,0, Eβ,1. Let Gβ,0 = Gβ ∩ Eβ,0, Gβ,1 = Gβ ∩ Eβ,1, and (π<k)Gβ

be the distribution π<k conditioned on Gβ . The lemma guarantees that Gβ, Bβ,0, Bβ,1 all have the form
Sβ ∩ U ∩ S for some S ∈ Srec(π<k) ⊆ Spt(π) (Proposition 28). Since Sβ ∩ U ∈ Spt(π), we have that
Gβ, Bβ,0, Bβ,1 ∈ Spt(π). Since Eβ,0, Eβ,1 ∈ Srec(π<k), we also have Gβ,0, Gβ,1 ∈ Spt(π).

For each β, since Gβ ∈ Spt(π), Proposition 22(ii) implies that (π | Gβ) has the partial rectangle property
with respect to µk. Then Proposition 27 implies that (π<k | Gβ), i.e., (π<k)Gβ

, has the rectangle property
with respect to µk−1. For each β, b, since Eβ,b ∈ Srec(π<k) = Srec((π<k)Gβ

), the protocol (π<k)Gβ
and

the event Eβ,b are one candidate for πnew and Vnew in Lemma 26. We will prove the following sufficient
condition for them to satisfy the requirements of Lemma 26.

Claim 38. If we have

π(Gβ,b) · E
π|Gβ,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Gβ,b))
]

≥ 2−6 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

(11)

then (π<k)Gβ
and event Eβ,b satisfy the requirements of Lemma 26 for πnew and Vnew.

Before proving the claim, we first show that it implies Lemma 36. If Equation (11) holds for any
β ∈ {high-θ, high-χ2-A, high-χ2-B} and b ∈ {0, 1}, then the lemma holds. Otherwise we must have for
every β and b,

π(Gβ,b) · E
π|Gβ,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Gβ,b))
]

< 2−6 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
.
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On the other hand, since Bβ,b ∈ Spt(π), Bβ,b ⊆ Sβ ∩ U and π(Bβ,b | U) ≤ π(Bβ,b | Sβ ∩ U) ≤ 2−12, by
Proposition 32(i), we also have

π(Bβ,b) · E
π|Bβ,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Bβ,b))
]

≤ 2−6 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
.

Since Gβ,0 ∪Gβ,1 ∪Bβ,0 ∪Bβ,1 = Sβ ∩ U , Shigh-cost = Shigh-θ ∪ Shigh-χ2-A ∪ Shigh-χ2-B, and all 12 sets are
disjoint, by summing up the above inequalities for all Bβ,b and Gβ,b and applying Lemma 10, we have

π(Shigh-cost ∩ U) · E
π|Shigh-cost∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Shigh-cost ∩ U))
]

<
1

3
· π(U) · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

contradicting with the lemma premise.

Now it suffices to prove the claim. We first observe that by Proposition 32(i), Equation (11) also implies
that π (Gβ,b | U)1/2 ≥ 2−6, which in turn, implies that π(Eβ,b | Gβ) = π(Gβ,b | Gβ) ≥ 2−12, i.e., the
probability of Eβ,b in the distribution (π<k)Gβ

is at least 2−12, as required by Lemma 26. In the following,
we show that the bound on ϕk−1

(
(π<k)Gβ

| Eβ,b

)
= ϕk−1

(
(π<k)Gβ

| Gβ,b

)
also holds.

Bounding ϕcost
k−1((π<k)Gβ

| Gβ,b). We first bound its ϕcost
k−1 value. By Lemma 37 and the fact that

log(1/α) < CA − c log(r/α) and log(1/α) < CB − c log(r/α), we have

ϕcost
k−1((π<k)Gβ

| Gβ,b)

= log θµk−1((π<k)Gβ
| Gβ,b) +

log(1/α)

CA − c log(r/α)
· logχ2

µk−1,A((π<k)Gβ
| Gβ,b)

+
log(1/α)

CB − c log(r/α)
· logχ2

µk−1,B((π<k)Gβ
| Gβ,b)

≤ log θµk−1(π<k | Sβ ∩ U) +
log(1/α)

CA − c log(r/α)
· logχ2

µk−1,A(π<k | Sβ ∩ U)

+
log(1/α)

CB − c log(r/α)
· logχ2

µk−1,B(π<k | Sβ ∩ U)

+ (r + 3) log ((r + 3)/γ) + 3 log(1/ ((1− γ)π<k(Gβ,b)))

= ϕcost
k−1(π<k | Sβ ∩ U) + (r + 3) log ((r + 3)/γ) + 3 log(1/ ((1− γ)π<k(Gβ,b)))

which by Equation (10), is at most

≤ ϕcost
k (π | U) +O(r log r) + 3 log(1/π<k(Gβ,b)) + 3 log(1/π(Sβ ∩ U))− 1

4
log(1/α)

≤ ϕcost
k (π | U) + 6 log(1/π(Gβ,b))−

1

8
log(1/α), (12)

where we used the assumption that log(1/α) > cr log r for a sufficiently large c, and the fact that π(Sβ ∩
U) ≥ π(Gβ,b), and the fact that Gβ,b can also be viewed as an event in π.
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Bounding ϕadv
k−1((π<k)Gβ

| Gβ,b). Next we bound its ϕadv
k−1 value. Lemma 37 also guarantees that for all

(Xk, Y<k,M) such that π(Xk, Y<k,M | Gβ,b) > 0 (recall that M(π<k) = (Xk,M)), we have

π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, Gβ,b) ≥ 1/2.

This allows us to bound its advantage by applying the first part of Lemma 35 for S = Gβ,b ∈ Spt(π) (note
that Gβ,b ⊆ U ). Thus, it implies

E
π|Gβ,b

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), Gβ,b)
]

≥ E
π|Gβ,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Gβ,b)
]
.

Note that the LHS is exactly the expected advantage of protocol (π<k)Gβ
conditioned on Gβ,b:

E
π|Gβ,b

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), Gβ,b)
]

= E
(π<k)|Gβ ,Gβ,b

[
advπ<k

(f⊕k−1(X<k, Y<k) |M(π<k), Gβ, Gβ,b)
]

= E
(π<k)Gβ

|Gβ,b

[
adv(π<k)Gβ

(f⊕k−1(X<k, Y<k) |M
((π<k)Gβ

)
, Gβ,b)

]
.

Thus, by definition, that is
ϕadv
k−1((π<k)Gβ

| Gβ,b) ≤ ϕadv
k,pt(π | Gβ,b). (13)

Bounding ϕk−1((π<k)Gβ
| Gβ,b). Now we sum up the two parts of the potential function. By Equa-

tion (12) and (13), we have

ϕk−1((π<k)Gβ
| Gβ,b)

= ϕcost
k−1((π<k)Gβ

| Gβ,b) + ϕadv
k−1((π<k)Gβ

| Gβ,b)

≤ ϕcost
k (π | U) + ϕadv

k,pt(π | Gβ,b) + 6 log(1/π(Gβ,b))−
1

8
log(1/α)

= ϕk,pt(π | U)− ϕadv
k,pt(π | U) +

(
ϕadv
k,pt(π | Gβ,b) + 6 log(1/π(Gβ,b))

)
− 1

8
log(1/α)

which by Lemma 31, is

≤ ϕk(π | V )− 13 log(1/π(U | V ))− ϕadv
k,pt(π | U) +

(
ϕadv
k,pt(π | Gβ,b) + 6 log(1/π(Gβ,b))

)
− 1

8
log(1/α)

which by the fact that log(1/π(U | V )) ≥ 0 and π(V ) ≥ 2−12, is

≤ ϕk(π | V )− 6(log(1/π(U))− log(1/π(V )))− ϕadv
k,pt(π | U) +

(
ϕadv
k,pt(π | Gβ,b) + 6 log(1/π(Gβ,b))

)
− 1

8
log(1/α)

≤ ϕk(π | V )−
(
ϕadv
k,pt(π | U) + 6 log(1/π(U))

)
+
(
ϕadv
k,pt(π | Gβ,b) + 6 log(1/π(Gβ,b))

)
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− 1

8
log(1/α) + 72. (14)

Finally, by Equation (11) and Proposition 32(ii) (for s = 26 and t = 6), we have(
ϕadv
k,pt(π | U) + 6 log(1/π(U))

)
≥
(
ϕadv
k,pt(π | Gβ,b) + 6 log(1/π(Gβ,b))

)
− 192.

Plugging it into Equation (14), we obtain

ϕk−1((π<k)Gβ
| Gβ,b) ≤ ϕk(π | V )− 1

16
log(1/α),

since α ≤ r−cr for a sufficiently large constant c. Hence, (π<k)Gβ
and Eβ,b satisfy the requirements of

Lemma 26. This proves the claim, completing the proof of Lemma 36.

6.3 Low costs

Now we consider the case where πk has low costs. It consists of all (Xk, Y<k,M) such that

α2−5 · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
]
< α−1/2,

2−2−5(CA−c log(r/α)) · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
< 2CA−c log(r/α),

2−2−5(CB−c log(r/α)) · π(U) ≤ E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
< 2CB−c log(r/α).

This is the set of triples at which the costs of πk are not high, nor too low. Denote this set of (Xk, Y<k,M) by
Slow-cost. By definition, it is disjoint from Shigh-cost. Similarly, we also use Slow-cost to denote set {(X,Y,M) :
(Xk, Y<k,M) ∈ Slow-cost}.

By applying Lemma 33 and Lemma 34 to Slow-cost with the appropriate η, we have the following bounds:

log θµk−1(π<k | Slow-cost ∩ U) ≤ log θµk(π | U) + log(1/π(Slow-cost | U))

+ 2−5 log(1/α) + log(1/π(U)),

logχ2
µk−1,A(π<k | Slow-cost ∩ U) ≤ logχ2

µk,A(π | U) + log(1/π(Slow-cost | U))

+ 2−5(CA − c log(r/α)) + log(1/π(U)),

logχ2
µk−1,B(π<k | Slow-cost ∩ U) ≤ logχ2

µk,B(π | U) + log(1/π(Slow-cost | U))

+ 2−5(CB − c log(r/α)) + log(1/π(U)).

Therefore, we have

ϕcost
k−1(π<k | Slow-cost ∩ U) ≤ ϕcost

k (π | U) + 3 log(1/π(Slow-cost | U)) + 3 log(1/π(U)) + 3 · 2−5 log(1/α)

= ϕcost
k (π | U) + 3 log(1/π(Slow-cost ∩ U)) + 3 · 2−5 log(1/α). (15)

The main lemma of this subsection is the following, stating that if Slow-cost contributes a nontrival
amount of total advantage in U , then we can construct a protocol for f⊕k−1 satisfying the requirements
of Lemma 26.
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Lemma 39. If we have

π(Slow-cost ∩ U) · E
π|Slow-cost∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Slow-cost ∩ U)
]

≥ 1

3
· π(U) · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

then Lemma 26 holds.

The proof will use the following lemma that converts a generalized protocol with low costs to a standard
protocol with low communication.

Lemma 40. Let δ1, δ2 ∈ (0, 1/2) be any fixed parameter. Let ρ be an r-round generalized protocol and
let W be an event such that (ρ | W ) has the rectangle property with respect to µ. Then for any function
f : X × Y → {0, 1}, there is an r-round standard protocol τ such that

• in odd rounds of τ , Alice sends a message of at most logχ2
µ,A(ρ |W )+O(log(r/δ1δ2)+log log θµ(ρ |

W )) bits;

• in even rounds of τ , Bob sends a message of at most logχ2
µ,B(ρ |W ) +O(log(r/δ1δ2)) bits;

• τ computes f correctly under input distribution µ with probability at least

1

2
+

δ1
32θµ(ρ |W )

(
ρ(W ) · E

ρ|W
[advρ(f(X,Y ) | X,M,W )]− 6δ1

)
− 2rδ2.

To focus on the main proof, we will defer the proof of Lemma 40 to Section 7.

Proof of Lemma 39. Similar to the proof of Lemma 36, we first apply Lemma 37 to ρ = π<k, event
W = Slow-cost ∩ U , input distribution ν = µk−1 and function h = f⊕k−1 for γ = 2−12. We obtain sets
Glow-cost, Blow-cost,0, Blow-cost,1 and Elow-cost,0, Elow-cost,1. Let Glow-cost,0 = Glow-cost∩Elow-cost,0, Glow-cost,1 =
Glow-cost ∩ Elow-cost,1, and (π<k)Glow-cost be π<k conditioned on Glow-cost. Again, we have that Glow-cost,0,
Glow-cost,1, Blow-cost,0, Blow-cost,1 and Glow-cost ∈ Spt(π), (π<k)Glow-cost has the rectangle property with re-
spect to µk−1 and for b = 0, 1, Elow-cost,b ∈ Srec((π<k)Glow-cost).

Thus, the protocol (π<k)Glow-cost and the event Elow-cost,b are one possible candidate for Lemma 26. We
will prove the following sufficient condition for them to satisfy the requirements of Lemma 26.

Claim 41. If we have

π(Glow-cost,b) · E
π|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b))
]

≥ 2−6 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

(16)

then (π<k)Glow-cost and Elow-cost,b satisfy the requirements of Lemma 26 for πnew and Vnew.

Similar to the proof of Lemma 36, before proving the claim, we first show that it implies the lemma. If
Equation (16) holds for either b = 0 or b = 1, then the lemma holds. Otherwise, we have

π(Glow-cost,b) · E
π|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b))
]
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< 2−6 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

for b = 0, 1. Lemma 37 guarantees that π(Blow-cost,b | U) ≤ π(Blow-cost,b | Slow-cost ∩ U) ≤ 2−12. By
Proposition 32(i), we also have

π(Blow-cost,b) · E
π|Blow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Blow-cost,b))
]

≤ 2−6 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
.

By summing up the inequalities and applying Lemma 10, we obtain

π(Slow-cost ∩ U) · E
π|Slow-cost∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Slow-cost ∩ U))
]

< 2−4 · π(U) · E
π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
,

contracting with the lemma premise.

Now it suffices to prove the claim. By Proposition 32(i), Equation (16) implies that π(Glow-cost,b |
U) ≥ 2−12. Therefore, the probability of Elow-cost,b in the distribution (π<k)Glow-cost is at least 2−12 as
required by Lemma 26. In the following, we show that the bound on ϕk−1((π<k)Glow-cost | Elow-cost,b) =
ϕk−1((π<k)Glow-cost | Glow-cost,b) holds.

Bounding ϕcost
k−1((π<k)Glow-cost | Glow-cost,b). We first bound its ϕcost

k−1 value. Similar to the proof of Lemma 36,
Lemma 37 guarantees that

ϕcost
k−1((π<k)Glow-cost | Glow-cost,b)

≤ ϕcost
k−1(π<k | Slow-cost ∩ U) +O(r log r) + 3 log(1/π(Glow-cost,b))

which by Equation (15), is

≤ ϕcost
k (π | U) +O(r log r) + 3 log(1/π(Glow-cost,b)) + 3 log(1/π(Slow-cost ∩ U)) + 3 · 2−5 log(1/α)

≤ ϕcost
k (π | U) + 6 log(1/π(Glow-cost,b)) + 2−3 log(1/α), (17)

where we use the fact that α > rcr for a sufficiently c, and π(Glow-cost,b) ≤ π(Slow-cost ∩ U).

To bound its ϕadv
k−1 and then ϕk−1, we will consider two cases: π(U) ≤ α1/8 and π(U) > α1/8.

Bounding ϕadv
k−1((π<k)Glow-cost | Glow-cost,b) when π(U) ≤ α1/8. We first bound its ϕadv

k−1 when π(U) ≤
α1/8. Similar to the proof of Lemma 36, Lemma 37 implies that

π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, Glow-cost,b) ≥ 1/2.

Thus, the first part of Lemma 35 for S = Glow-cost,b implies that

E
π|Glow-cost,b

[
advπ(f

⊕k−1(X<k, Y<k) | Xk,M, Glow-cost,b)
]

≥ E
π|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b)
]
.

That is,
ϕadv
k−1((π<k)Glow-cost | Glow-cost,b) ≤ ϕadv

k,pt(π | Glow-cost,b). (18)
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Bounding ϕk−1((π<k)Glow-cost | Glow-cost,b) when π(U) ≤ α1/8. By Equation (17) and (18), we have

ϕk−1((π<k)Glow-cost | Glow-cost,b)

= ϕcost
k−1((π<k)Glow-cost | Glow-cost,b) + ϕadv

k−1((π<k)Glow-cost | Glow-cost,b)

≤ ϕcost
k (π | U) + ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b)) + 2−3 log(1/α)

= ϕk,pt(π | U)− ϕadv
k,pt(π | U) + ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b)) + 2−3 log(1/α)

which by Lemma 31, is

≤ ϕk(π | V )− (ϕadv
k,pt(π | U) + 6 log(1/π(U))) + (ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b)))

+ 2−3 log(1/α)− 7 log(1/π(U)) + 13 log(1/π(V ))

which by the assumption that π(U) ≤ α1/8 and π(V ) ≥ 2−12, is

≤ ϕk(π | V )− (ϕadv
k,pt(π | U) + 6 log(1/π(U))) + (ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b)))

− 3

4
log(1/α) + 156.

By Proposition 32(ii), Equation (16) implies that

ϕadv
k,pt(π | U) + 6 log(1/π(U)) ≥ ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b))− 192.

Thus, ϕk−1((π<k)Glow-cost | Glow-cost,b) ≤ ϕk(π | V ) − 1
4 log(1/α), as α < rcr for a large c. This proves

Claim 41 when π(U) ≤ α1/8.

Bounding ϕadv
k−1((π<k)Glow-cost | Glow-cost,b) when π(U) > α1/8. Next we consider the case where π(U) >

α1/8. To bound ϕadv
k−1((π<k)Glow-cost | Glow-cost,b) in this case, we will apply the second part of Lemma 35. To

this end, we will first upper bound the advantage of πk for computing f(Xk, Yk) by applying Lemma 40 to
ρ = πk and W = Glow-cost,b and using the assumption on the communication complexity of f .

To verify the premises of Lemma 40 are satisfied, note that Glow-cost,b is in Spt(π), hence, (π | Glow-cost,b)
has the partial rectangle property with respect to µk by Proposition 22(ii). Hence, (πk | Glow-cost,b) has
the rectangle property with respect to µ by Proposition 27. To bound the costs of πk conditioned on
Glow-cost,b, note that since Slow-cost ∩ U ∈ Spt(π), we have Yk and X<k are independent conditioned on
(Xk, Y<k,M, Slow-cost ∩ U) by Proposition 20. Note that Glow-cost,b ⊆ Slow-cost ∩ U , and note that whether
the event Glow-cost,b happens is determined by (X<k, Y<k, (Xk,M), Slow-cost ∩ U), and whether Slow-cost
happens is determined by (Xk, Y<k,M, U). Therefore, when π(X,Y<k,M, Glow-cost,b) > 0, the distri-
bution of Yk conditioned on (X,Y<k,M, Glow-cost,b) is the same as the distribution of Yk conditioned on
(Xk, Y<k,M, U), because

π(Yk = yk | X,Y<k,M, Glow-cost,b)

= π(Yk = yk | X,Y<k,M, Slow-cost ∩ U,Glow-cost,b) (Glow-cost,b ⊆ Slow-cost ∩ U )

= π(Yk = yk | X,Y<k,M, Slow-cost ∩ U) (Glow-cost,b implied by (X,Y<k,M, Slow-cost ∩ U))

= π(Yk = yk | Xk, Y<k,M, Slow-cost ∩ U) (X<k⊥Yk given (Xk, Y<k,M, Slow-cost ∩ U))

= π(Yk = yk | Xk, Y<k,M, U, Slow-cost ∩ U) (Slow-cost ∩ U ⊆ U )
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= π(Yk = yk | Xk, Y<k,M, U) (Slow-cost implied by (Xk, Y<k,M)).

Thus, the θ-cost of πk conditioned on Glow-cost,b is at most

θµ(πk | Glow-cost,b)

= E
(X,Y,M)∼π|Glow-cost,b

[θµ(πk @X,Y,M)]

= E
(X,Y<k,M)∼π|Glow-cost,b

[
E

Yk∼π|(X,Y<k,M,Glow-cost,b)
[θµ(πk @X,Y,M)]

]

= E
(X,Y<k,M)∼π|Glow-cost,b

[
E

Yk∼π|(Xk,Y<k,M,U)
[θµ(πk @X,Y,M)]

]
< E

(X,Y<k,M)∼π|Glow-cost,b

[
α−1/2

]
= α−1/2.

For the same reason, its χ2-cost by Alice is at most 2CA−c log(r/α), and its χ2-cost by Bob is at most
2CB−c log(r/α). By applying Lemma 40 to ρ = πk and event W = Glow-cost,b for δ1 = α1/4 and δ2 = α ·r−1,
we obtain a standard r-round protocol τ . Since c is a sufficiently large constant, we have that in τ ,

• Alice sends at most

CA − c · log(r/α) +O(log(r/δ1δ2) + log log θµ(πk | Glow-cost,b)) ≤ CA

bits in every odd round;

• Bob sends at most
CB − c · log(r/α) +O(log(r/δ1δ2)) ≤ CB

bits in every even round;

• τ computes f correctly under input distribution µ with probability at least

1

2
+

δ1
32θµ(πk | Glow-cost,b)

·

(
πk(Glow-cost,b) · E

πk|Glow-cost,b

[
advπk

(f(Xk, Yk) | Xk,M
(πk), Glow-cost,b)

]
− 6δ1

)
−2rδ2.

By the our assumption on the communication complexity of f , the expected advantage of τ must be at
most α:

δ1
16θµ(πk | Glow-cost,b)

·

(
πk(Glow-cost,b) · E

πk|Glow-cost,b

[
advπk

(f(Xk, Yk) | Xk,M
(πk), Glow-cost,b)

]
− 6δ1

)
−4rδ2 ≤ α.

It implies that

πk(Glow-cost,b) · E
πk|Glow-cost,b

[advπk
(f(Xk, Yk) | Xk, Y<k,M, Glow-cost,b)]

≤ (α+ 4rδ2) ·
16θµ(πk | Glow-cost,b)

δ1
+ 6δ1
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≤ (α+ 4α) · 16α
−1/2

α1/4
+ 6α1/4

= 86α1/4.

Since Glow-cost,b ⊆ U , we apply the second part of Lemma 35 for S = Glow-cost,b and

η = 86α1/4 · π(Glow-cost,b)
−1.

The premises of Lemma 35 are satisfied, because

(a) Lemma 37 gives that

π(f⊕k−1(X<k, Y<k) = b | Xk, Y<k,M, Glow-cost,b) ≥ 1/2;

(b) by Proposition 32(i), Equation (16) implies that π(Glow-cost,b | U)1/2 ≥ 2−6, hence,

π(Glow-cost,b) ≥ 2−12 · π(U) ≥ 2−12 · α1/8;

(c) then we have

η1/4 =
(
86α1/4 · π(Glow-cost,b)

−1
)1/4

≤
(
220α1/8

)1/4
= 25α1/32;

(d) Equation (16) implies

1

2
·
π(Glow-cost,b)

1/2 · Eπ|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b)
]

π(U)1/2 · Eπ|U [advπ(f⊕k(X,Y ) | Xk, Y<k,M, U)]

=
1

2 · π(Glow-cost,b | U)1/2
·
π(Glow-cost,b) · Eπ|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b)
]

π(U) · Eπ|U [advπ(f⊕k(X,Y ) | Xk, Y<k,M, U)]

≥ 1

2 · π(Glow-cost,b | U)1/2
· 2−6

≥ 2−7,

which is at least η1/4 by the upper bound on η1/4 in (c) and the fact that α is sufficiently small.

Hence, we obtain the following by the second part of Lemma 35,

E
π|Glow-cost,b

[
advπ(f

⊕k−1(X<k, Y<k) |M(π<k), Glow-cost,b)
]

≥ 1

2
· η−1/2 · E

π|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b)
]

which by the above upper bound on η1/4 in (c), is

≥ 2−11 · α−1/16 · E
π|Glow-cost,b

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Glow-cost,b)
]

i.e.,
ϕadv
k−1((π<k)Glow-cost | Glow-cost,b) ≤ ϕadv

k,pt(π | Glow-cost,b)− 2 log(1/α) + 352. (19)
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Bounding ϕk−1((π<k)Glow-cost | Glow-cost,b) when π(U) > α1/8. Combining Equation (17) and (19), we
have

ϕk−1((π<k)Glow-cost | Glow-cost,b)

= ϕcost
k−1((π<k)Glow-cost | Glow-cost,b) + ϕadv

k−1((π<k)Glow-cost | Glow-cost,b)

≤ ϕcost
k (π | U) + ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b)) + 2−3 log(1/α)− 2 log(1/α) + 352

= ϕk,pt(π | U)− ϕadv
k,pt(π | U) + ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b))−
15

8
log(1/α) + 352

which by Lemma 31 and the fact that log(1/π(U | V )) ≥ 0, is

≤ ϕk(π | V )− (ϕadv
k,pt(π | U) + 6 log(1/π(U))) + (ϕadv

k,pt(π | Glow-cost,b) + 6 log(1/π(Glow-cost,b)))

− 15

8
log(1/α) + 352 + 6 log(1/π(V ))

which by Proposition 32(ii) and the fact that π(V ) ≥ 2−12 and α is sufficiently small, is

≤ ϕk(π | V )− log(1/α).

This proves Claim 41 when π(U) > α1/8, and completes the proof of Lemma 39.

6.4 Putting together

Now we are ready to prove Lemma 26. The two main lemmas in the previous two subsections show that if
either Shigh-cost or Slow-cost contributes a nontrivial advantage in U , then Lemma 26 holds. We will show that
the complement of their union has very low probability, hence contributes a small amount of advantage by
Proposition 32(i). Then the superadditivity of weighted advantage implies the lemma.

Lemma 26 (restated). For k ≥ 2,
if there is a generalized protocol π for f⊕k with the rectangle property with respect to µk and an event

V ∈ Srec(π) such that π(V ) ≥ 2−12,
then there is a generalized protocol πnew for f⊕k−1 with the rectangle property with respect to µk−1

and an event Vnew ∈ Srec(πnew) such that πnew(Vnew) ≥ 2−12, and

ϕk−1(πnew | Vnew) ≤ ϕk(π | V )− 1

16
log(1/α).

Proof. If the premise of Lemma 36 or Lemma 39 holds, then Lemma 26 holds.
Otherwise, we have that

π(Shigh-cost ∩ U) · E
π|Shigh-cost∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Shigh-cost ∩ U)
]

<
1

3
· π(U) · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
, (20)

and

π(Slow-cost ∩ U) · E
π|Slow-cost∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Slow-cost ∩ U)
]
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<
1

3
· π(U) · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
. (21)

On the other hand, by construction, the complement of Shigh-cost ∪ Slow-cost is the set of all triples
(Xk, Y<k,M) such that either

E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
]
< α2−5 · π(U), or

E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
< 2−2−5(CA−c log(r/α)) · π(U), or

E
Yk∼π|Xk,Y<k,M,U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
< 2−2−5(CB−c log(r/α)) · π(U).

Denote this set by Slow-prob. Clearly, we also have Slow-prob ∩ U ∈ Spt(π).
However, by Proposition 13, we have

E
π|U

[
θµ(πk @Xk, Yk,M

(πk))−1
]
≤ π(U)−1 · E

π

[
θµ(πk @Xk, Yk,M

(πk))−1
]
= π(U)−1.

Since θµ(πk @Xk, Yk,M
(πk)) is a function of (Xk, Y,M), by the convexity of x−1, we also have(

E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
])−1

≤ E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))−1
]
,

and hence,

E
(Xk,Y<k,M)∼π|U

( E
Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
])−1

 ≤ π(U)−1.

By Markov’s inequality, we obtain

Pr
(Xk,Y<k,M)∼π|U

[
E

Yk∼π|Xk,Y<k,M,U

[
θµ(πk @Xk, Yk,M

(πk))
]
< α2−5 · π(U)

]
< α2−5

.

Similarly, by invoking Proposition 16, we have

Pr
(Xk,Y<k,M)∼π|U

[
E

Yk∼π|Xk,Y<k,M,U

[
χ2
µ,A(πk @Xk, Yk,M

(πk))
]
< 2−2−5(CA−c log(r/α)) · π(U)

]
< 2−2−5(CA−c log(r/α)),

and

Pr
(Xk,Y<k,M)∼π|U

[
E

Yk∼π|Xk,Y<k,M,U

[
χ2
µ,B(πk @Xk, Yk,M

(πk))
]
< 2−2−5(CB−c log(r/α)) · π(U)

]
< 2−2−5(CB−c log(r/α)).

Thus, by union bound, we have

π(Slow-prob | U) < α2−5
+ 2−2−5(CA−c log(r/α)) + 2−2−5(CB−c log(r/α)) < 1/9,

45



since α < rcr, CA, CB > 2c log(r/α) for a sufficiently large c. By applying Proposition 32(i) on Slow-prob∩
U , we obtain

π(Slow-prob ∩ U) · E
π|Slow-prob∩U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, Slow-prob ∩ U)
]

<
1

3
· π(U) · E

π|U

[
advπ(f

⊕k(X,Y ) | Xk, Y<k,M, U))
]
. (22)

By summing up Equation (20), (21) and (22), we get a contradiction with Lemma 10. This completes the
proof of Lemma 26.

6.5 Proof of Lemma 37

In this subsection, we prove Lemma 37, which lets us convert a protocol conditioned on an event to a
generalized protocol with bounded costs.

Lemma 37 (restated). Fix any γ ∈ (0, 1/2). Let ρ be an r-round generalized protocol overX ×Y×M, W
be an event, ν be an input distribution and h : X ×Y → {0, 1} be a function of the inputs. Then there exists
a partition of W into three events G,B0, B1 and a partition of Y ×M into E0, E1 such that the following
holds:

1. all three events G, B0, B1 have the form W ∩ S for some S ∈ Srec(ρ);

2. ρ(B0 ∪B1 |W ) ≤ γ;

3. let ρG be the protocol (ρ | G), G0 = G ∩ E0 and G1 = G ∩ E1, then for b = 0, 1,

log θν(ρG | Gb) ≤ log θν(ρ |W ) + (r + 1) log ((r + 3)/γ) + log (1/((1− γ)ρ(Gb))) ,

logχ2
ν,A(ρG | Gb) ≤ logχ2

ν,A(ρ |W ) + log((r + 3)/γ) + log(1/((1− γ)ρ(Gb))),

logχ2
ν,B(ρG | Gb) ≤ logχ2

ν,B(ρ |W ) + log((r + 3)/γ) + log(1/((1− γ)ρ(Gb)));

4. for b = 0, 1, and all (Y,M) such that ρ(Y,M | Gb) > 0,

ρ(h(X,Y ) = b | Y,M, Gb) ≥ 1/2.

Proof. Ideally, we could simply let G0 be the intersection of W and all (Y,M) such that ρ(h(X,Y ) = 0 |
Y,M,W ) ≥ 1/2, and G1 be the intersection of W and all other (Y,M). In this way, the last line of the
lemma holds, since Gb is a set that depends only on (Y,M,W ) and is a subset of W ,

ρ(h(X,Y ) = b | Y,M, Gb) = ρ(h(X,Y ) = b | Y,M,W,Gb) = ρ(h(X,Y ) = b | Y,M,W ).

However, the new protocol ρG (for G = W in this case) may not have low costs, since the denominators in
the definitions may become arbitrarily small (recall Definition 12 and Definition 15). To ensure that the costs
of the new protocol ρG are bounded, we will identify all (X,M) and (Y,M) at which the denominators in
the definition of θ-cost and χ2-costs becomes much smaller, and repeatedly remove such pairs from the
support.

More specifically, we repeatedly remove from the support of ρ, all M0 whose probability becomes much
smaller after conditioning on G, we also remove pairs (X,M) [resp. (Y,M)] such that either ρ(X,M) or
for some odd i, ρ(Mi | X,M<i) [resp. ρ(Y,M) or for some even i, ρ(Mi | Y,M<i)] becomes much smaller
after conditioning.

Formally, consider the following process:6

6Note that W may not necessarily be a subset of X × Y ×M, it could be any event.
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1. Wtmp ←W // the current W
2. BX,M ← ∅ // the bad (X,M) pairs
3. BY,M ← ∅ // the bad (Y,M) pairs
4. repeat
5. if ∃m0 such that 0 < ρ(m0 |Wtmp) <

γ
r+3 · ρ(m0)

6. BX,M ← BX,M ∪ (X × {M : M0 = m0})
7. Wtmp ←Wtmp \ (X × Y × {M : M0 = m0})
8. if ∃x,m such that 0 < ρ(x,m |Wtmp) <

γ
r+3 · ρ(x,m)

9. BX,M ← BX,M ∪ {(x,m)}
10. Wtmp ←Wtmp \ ({x} × Y × {m})
11. if ∃y,m such that 0 < ρ(y,m |Wtmp) <

γ
r+3 · ρ(y,m)

12. BY,M ← BY,M ∪ {(y,m)}
13. Wtmp ←Wtmp \ (X × {y} × {m})
14. if ∃x, odd i ∈ [r],m≤i such that 0 < ρ(mi | x,m<i,Wtmp) <

γ
r+3 · ρ(mi | x,m<i)

15. BX,M ← BX,M ∪ ({x} × {M : M≤i = m≤i})
16. Wtmp ←Wtmp \ ({x} × Y × {M : M≤i = m≤i})
17. if ∃y, even i ∈ [r],m≤i such that 0 < ρ(mi | y,m<i,Wtmp) <

γ
r+3 · ρ(mi | y,m<i)

18. BY,M ← BY,M ∪ ({y} × {M : M≤i = m≤i})
19. Wtmp ←Wtmp \ (X × {y} × {M : M≤i = m≤i})
20. until none of line 5,8,11,14,17 holds
21. G←Wtmp

22. E0 ← {(Y,M) : ρ(Y,M | G) = 0 ∨ ρ(h = 0 | Y,M, G) ≥ 1/2}
23. E1 ← {(Y,M) : ρ(Y,M | G) > 0 ∧ ρ(h = 1 | Y,M, G) > 1/2}
24. G0 ← G ∩ E0

25. G1 ← G ∩ E1

26. B0 ←W ∩ {(X,Y,M) : (X,M) ∈ BX,M}
27. B1 ←W ∩ {(X,Y,M) : (X,M) /∈ BX,M , (Y,M) ∈ BY,M}
28. return (G,B0, B1, E0, E1)

By construction, (G,B0, B1) is a partition of W and (E0, E1) is a partition of Y ×M. To see that
Item 1 holds, note that the set BX,M and its complement are in UX,M , the set BY,M is in UY,M (recall
Definition 21), and note that G is also the set W ∩{(X,Y,M) : (X,M) /∈ BX,M , (Y,M) /∈ BY,M}. Thus,
G,B0, B1 have the form W ∩ S for some S ∈ Srec.

Since for b = 0, 1, for all (Y,M) such that ρ(Y,M | Gb) > 0, we have

ρ(h(X,Y ) = b | Y,M, Gb) = ρ(h(X,Y ) = b | Y,M, G,Gb) = ρ(h(X,Y ) = b | Y,M, G) ≥ 1/2.

Item 4 also holds.
It remains to bound ρ(B0 ∪B1), and bound the costs of ρG conditioned on Gb.

Claim 42. We have ρ(B0 ∪B1) ≤ γ · ρ(W ).

To see this, first observe that by construction, B0 ∪ B1 contains all triples that are “removed from W ”
in the whole process. Let us first focus on step 5-7, and upper bound the total probability of all m0 that are
removed in step 7. Observe that each m0 can only be removed at most once. Each time we remove a m0,
ρ(Wtmp) decreases by ρ(m0,Wtmp) (for the Wtmp at the time of the removal). Since ρ(m0 | Wtmp) <
γ

r+3 · ρ(m0) at the time of the removal, we have

ρ(m0,Wtmp) = ρ(Wtmp) · ρ(m0 |Wtmp)
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≤ ρ(W ) ·
(

γ

r + 3
· ρ(m0)

)
.

Therefore, during the entire process, ρ(Wtmp) can decrease in step 7 by at most

∑
m0

ρ(W ) ·
(

γ

r + 3
· ρ(m0)

)
=

γ

r + 3
· ρ(W ).

Similarly, in step 10 and step 13, ρ(Wtmp) can also decrease by at most γ
r+3 · ρ(W ) respectively.

Next, consider step 14-16, and fix an odd i. Each time we remove a pair (x,m≤i), ρ(Wtmp) decreases
by ρ(x,m≤i,Wtmp). Since ρ(mi | x,m<i,Wtmp) <

γ
r+3 · ρ(mi | x,m<i), we have

ρ(x,m≤i,Wtmp) = ρ(x,m<i,Wtmp) · ρ(mi | x,m<i,Wtmp)

≤ ρ(x,m<i,W ) ·
(

γ

r + 3
· ρ(mi | x,m<i)

)
.

Therefore, during the whole process, the probability ρ(Wtmp) can decrease in step 16 for a fixed i by at
most ∑

(x,m≤i)

ρ(x,m<i,W ) ·
(

γ

r + 3
· ρ(mi | x,m<i)

)
=

γ

r + 3
·
∑

(x,m<i)

ρ(x,m<i,W )

=
γ

r + 3
· ρ(W ).

Similarly, ρ(Wtmp) can decrease in step 19 for a fixed i by at most γ
r+3 · ρ(W ).

Hence, summing over all i for step 16 and 19 and over all steps, ρ(Wtmp) decreases by at most γ ·ρ(W ),
i.e., ρ(B0∪B1) ≤ γ ·ρ(W ), proving Claim 42. Equivalently, ρ(B0∪B1 |W ) ≤ γ, and ρ(G |W ) ≥ 1−γ.
Hence, Item 2 holds.

Finally, it remains to bound the costs of ρG conditioned on Gb for Item 3. Since G is the final Wtmp,
which passes line 20, ρG must satisfy

ρG(M0) ≥
γ

r + 3
· ρ(M0) (23)

for M0 with ρG(M0) > 0,
ρG(X,M) ≥ γ

r + 3
· ρ(X,M) (24)

for (X,M) with ρG(X,M) > 0,
ρG(Y,M) ≥ γ

r + 3
· ρ(Y,M) (25)

for (Y,M) with ρG(Y,M) > 0,

ρG(Mi | X,M<i) ≥
γ

r + 3
· ρ(Mi | X,M<i) (26)
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for all odd i ∈ [r] and (X,M≤i) with ρG(X,M≤i) > 0, and

ρG(Mi | Y,M<i) ≥
γ

r + 3
· ρ(Mi | Y,M<i) (27)

for all even i ∈ [r] and (Y,M≤i) with ρG(Y,M≤i) > 0.
The θ-cost of ρG conditioned on Gb is

log θν(ρG | Gb)

= log E
(X,Y,M)∼ρG|Gb

[
ρG(X,Y,M)

ρG(M0) · ν(X,Y ) ·
∏

odd i∈[r] ρG(Mi | X,M<i) ·
∏

even i∈[r] ρG(Mi | Y,M<i)

]
which by (23), (26) and (27), is

≤ log E
(X,Y,M)∼ρ|Gb

[(
r + 3

γ

)r+1

· ρ(X,Y,M | G)

ρ(M0) · ν(X,Y ) ·
∏

odd i∈[r] ρ(Mi | X,M<i) ·
∏

even i∈[r] ρ(Mi | Y,M<i)

]

≤ log E
(X,Y,M)∼ρ|Gb

[(
r + 3

γ

)r+1

· ρ(X,Y,M)/ρ(G)

ρ(M0) · ν(X,Y ) ·
∏

odd i∈[r] ρ(Mi | X,M<i) ·
∏

even i∈[r] ρ(Mi | Y,M<i)

]
= log E

(X,Y,M)∼ρ|Gb

[θν(ρ@X,Y,M)] + (r + 1) log ((r + 3)/γ) + log (1/ρ(G))

= log θν(ρ | Gb) + (r + 1) log ((r + 3)/γ) + log (1/ρ(G))

which by Proposition 14 and the fact that Gb ⊆W , is

≤ log θν(ρ |W ) + log(1/ρ(Gb |W )) + (r + 1) log ((r + 3)/γ) + log (1/ρ(G))

= log θν(ρ |W ) + (r + 1) log ((r + 3)/γ) + log(1/ρ(Gb)) + log(1/ρ(G |W ))

≤ log θν(ρ |W ) + (r + 1) log ((r + 3)/γ) + log(1/((1− γ)ρ(Gb))).

For the χ2-cost by Alice, we have

logχ2
ν,A(ρG | Gb) = log E

(X,Y,M)∼ρG|Gb

[
ρG(X |M, Y )

ν(X | Y )

]
= log E

(X,Y,M)∼ρ|Gb

[
ρ(X,Y,M | G)

ρG(M, Y )ν(X | Y )

]
which by (25), is

≤ log E
(X,Y,M)∼ρ|Gb

[
ρ(X,Y,M)/ρ(G)

(γ/(r + 3))ρ(M, Y )ν(X | Y )

]
= logχ2

ν,A(ρ | Gb) + log((r + 3)/γ) + log(1/ρ(G))

which by Proposition 17, is

≤ logχ2
ν,A(ρ |W ) + log(1/ρ(Gb |W )) + log((r + 3)/γ) + log(1/ρ(G))

≤ logχ2
ν,A(ρ |W ) + log((r + 3)/γ) + log(1/((1− γ)ρ(Gb))).

Similarly, logχ2
ν,B(ρG) ≤ logχ2

ν,B(ρ | W ) + log((r + 3)/γ) + log(1/((1 − γ)ρ(Gb))). This proves the
lemma.
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7 Compression of Generalized Protocols: Proof of Lemma 40

In this subsection, we design a standard protocol with lower communication from a generalized protocol
with low costs. We will use the following lemma as a subroutine, whose proof is similar to Theorem 4.1
in [BR11]. The lemma lets the players sample from a distribution P with low communication, where only
Alice knows P , and Bob knows a different distribution Q. The success probability depends on how “close”
the two distributions are.

Lemma 43. Let P,Q be two distributions over U , such that Alice knows P and Bob knows Q. For any
C > 0 and δ ∈ (0, 1/2), there is a (standard) one-way communication protocol with shared public random
bits, where Alice sends one message of C + O(log(1/δ)) bits to Bob. Then Alice and Bob simultaneously
output an element in U such that Alice outputs x with probability P (x) for every x ∈ U; conditioned on
Alice outputting x, Bob outputs

• the same x with probability at least min{1, 2C ·Q(x)/P (x)} − δ,

• some different x ∈ U with probability at most δ,

• ⊥ otherwise.

In particular, for each x such that P (x) ≤ 2CQ(x), the players will agree on x with probability at least
(1− δ)P (x).

Proof. Let t = ⌈2 log(2/δ)⌉. Consider the following protocol.

Protocol sample(P ;Q):
Part I: Alice samples x

1. Alice and Bob view the public random bits as a sequence of 2t·|U| uniform samples (xi, pi) in U×[0, 1]
2. Alice finds the first pair (xi, pi) such that pi ≤ P (xi)
3. if such pair does not exist
4. Alice outputs an x ∼ P , and sends “0” to Bob // “0” indicates “fail”
5. upon receiving “0”, Bob outputs ⊥, and the protocol aborts
6. otherwise, Alice outputs xi, and sends 1

(to be cont’d)

So far, the protocol describes how Alice samples x. Now, we show that Alice indeed samples x according
to P . Fix x ∈ U , for each sample (xi, pi), the probability that xi = x and pi ≤ P (x) is

1

|U|
· P (x).

Summing over all possible x, the probability that pi ≤ P (xi) is equal to 1
|U| . The probability that Alice

outputs x is

2t·|U|∑
i=1

(
1− 1

|U|

)i−1

· 1

|U|
· P (x)

= P (x) ·

(
1−

(
1− 1

|U|

)2t·|U|
)
.

Note that (1− 1/ |U|)2t·|U| ≤ e−2 log(2/δ) < δ/2. The probability that Alice finds a pair in step 2 is at least
1− δ/2, and conditioned on finding such a pair, xi is distributed according to P . Next, Alice tries to inform
Bob by hashing the index i.
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Part II: Bob outputs x
7. the players view the remaining public random bits as a uniformly random hash function h : [2t · |U|]→
{0, 1}C+⌈log(2/δ)+log(2t)⌉

8. Alice sends v = h(i) to Bob
9. upon receiving v, Bob finds all i ∈ [2t · |U|] such that h(i) = v and pi ≤ 2C ·Q(xi)

10. if there is only one such i
11. Bob outputs xi

12. else
13. Bob outputs ⊥

It is clear that the communication cost is at most

C + log(1/δ) + log log(1/δ) + 7 ≤ C +O(log(1/δ))

bits.
Conditioned on Alice outputting xi, pi is uniform in [0, P (xi)]. Hence, the correct i will be found in

step 9 with probability min{1, 2C ·Q(xi)/P (xi)}. Next, we bound the probability that Bob finds any other
j ̸= i, conditioned on Alice outputting xi.

For each (xj , pj), if j > i, the probability that pj ≤ 2C ·Q(xj) is min
{
1, 2C ·Q(xj)

}
≤ 2C ·Q(xj). If

j < i, conditioned on Alice outputting xi, pj is uniform in (P (xj), 1]. The probability that pj ≤ 2C ·Q(xj)
is

max{0,min
{
1, 2C ·Q(xj)

}
− P (xj)}

1− P (xj)
≤ 2C ·Q(xj).

Independently, the probability that h(j) = v is equal to 2−(C+⌈log(2/δ)+log(2t)⌉).
Therefore, the probability (xj , pj) satisfies both conditions is at most∑

x

Pr[xj = x] · 2−(C+⌈log(2/δ)+log(2t)⌉) · 2C ·Q(x) <
δ

4t · |U|
.

By union bound, the probability that any other (xj , pj) satisfies both conditions is at most δ/2.
To conclude, Bob outputs the same xi when

• Bob does not output ⊥ in step 5 (with probability ≥ 1− δ/2), and

• Bob finds the correct i in step 9 (with probability min{1, 2C ·Q(xi)/P (xi)}), and

• Bob does not find any other j ̸= i in step 9 (with probability ≥ 1− δ/2).

By union bound, Bob outputs the same xi with probability at least min{1, 2C · Q(xi)/P (xi)} − δ. Bob
outputs some different xi only when

• Bob does not output ⊥ in step 5, and

• Bob does not find the correct i in step 9, and

• Bob find some other j ̸= i (and xj ̸= xi) in step 9 (with probability ≤ δ/2).

Bob outputs some different xi with probability at most δ/2. Otherwise, Bob outputs ⊥. This proves the
lemma.

We will use the above lemma to sample messages Mi given M<i. The next lemma proves that most of
time, in Alice and Bob’s view, the probabilities of Mi are not too different.
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Lemma 44. Let ρ be an r-round generalized protocol and W be an event such that (ρ |W ) has the rectangle
property with respect to µ, and let (X,Y,M) ∼ ρ |W . Then for any T > 1, the probability that

• there exists an odd i ∈ [r] such that

ρ(Mi | X,M<i)

ρ(Mi | Y,M<i)
> T · χ2

µ,A(ρ |W ),

or

• there exists an even i ∈ [r] such that

ρ(Mi | Y,M<i)

ρ(Mi | X,M<i)
> T · χ2

µ,B(ρ |W ),

is at most 6r · T−1/5 · ρ(W )−1.

Proof. We first fix an odd i ∈ [r], and upper bound the probability that ρ(Mi|X,M<i)
ρ(Mi|Y,M<i)

> T · χ2
µ,A(ρ | W ).

Recall that

χ2
µ,A(ρ |W ) = E

ρ|W

[
ρ(X | Y,M)

µ(X | Y )

]
,

and we have

ρ(X | Y,M)

µ(X | Y )
=

ρ(X | Y,M)

ρ(X | Y )
· ρ(X | Y )

µ(X | Y )

=
ρ(M | X,Y )

ρ(M | Y )
· ρ(X | Y )

µ(X | Y )

=
ρ(M<i | X,Y )

ρ(M<i | Y )
· ρ(Mi |M<i, X, Y )

ρ(Mi |M<i, Y )
· ρ(M>i |M≤i, X, Y )

ρ(M>i |M≤i, Y )
· ρ(X | Y )

µ(X | Y )

=
ρ(Mi |M<i, X)

ρ(Mi |M<i, Y )
·
(
ρ(M<i | X,Y )

ρ(M<i | Y )
· ρ(Mi |M<i, X, Y )

ρ(Mi |M<i, X)
· ρ(M>i |M≤i, X, Y )

ρ(M>i |M≤i, Y )
· ρ(X | Y )

µ(X | Y )

)
=:

ρ(Mi |M<i, X)

ρ(Mi |M<i, Y )
· (F1 · F2 · F3 · F4) , (28)

where F1, F2, F3, F4 denote the four fractions in the parenthesis respectively. Note that the fraction outside
the parenthesis is what we want to upper bound. We now show that F1, F2, F3, F4 are all not-too-small with
high probability.

For F1, we have

E
ρ
[1/F1] = E

ρ

[
ρ(M<i | Y )

ρ(M<i | X,Y )

]
=

∑
X,Y,M<i

ρ(X,Y,M<i) ·
ρ(M<i | Y )

ρ(M<i | X,Y )

=
∑

X,Y,M<i

ρ(X,Y ) · ρ(M<i | Y )

=
∑
X,Y

ρ(X,Y )
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= 1.

Similarly, we can show that
E
ρ
[1/F2] = E

ρ
[1/F3] = 1,

and

E
ρ
[1/F4] =

∑
X,Y

ρ(X,Y ) · µ(X | Y )

ρ(X | Y )
=
∑
X,Y

ρ(Y )µ(X | Y ) = 1.

Since F1, F2, F3, F4 are all nonnegative, by Markov’s inequality, we have

Pr
ρ

[
1/Fj ≥ δ−1

]
≤ δ,

for j = 1, 2, 3, 4 and any δ ∈ (0, 1). Thus, Prρ|W
[
1/Fj ≥ δ−1

]
≤ δ/ρ(W ).

By union bound and plugging into (28), we have

Pr
ρ|W

[
ρ(Mi |M<i, X)

ρ(Mi |M<i, Y )
≥ δ−4 · ρ(X | Y,M)

µ(X | Y )

]
≤ 4δ/ρ(W ).

Thus by union bound over all odd i ∈ [r], we have

Pr
ρ|W

[
∃odd i ∈ [r],

ρ(Mi |M<i, X)

ρ(Mi |M<i, Y )
≥ δ−4 · ρ(X | Y,M)

µ(X | Y )

]
≤ 4⌈r/2⌉ · δ/ρ(W ).

By Markov’s inequality again, we have

Pr
ρ|W

[
ρ(X | Y,M)

µ(X | Y )
≥ δ−1 · χ2

µ,A(ρ |W )

]
≤ δ.

Combining the two inequalities, we obtain

Pr
ρ|W

[
∃odd i ∈ [r],

ρ(Mi |M<i, X)

ρ(Mi |M<i, Y )
≥ δ−5 · χ2

µ,A(ρ |W )

]
≤ 4⌈r/2⌉ · δ/ρ(W ) + δ.

Similarly, for even i, we can prove that

Pr
ρ|W

[
∃even i ∈ [r],

ρ(Mi |M<i, Y )

ρ(Mi |M<i, X)
≥ δ−5 · χ2

µ,B(ρ |W )

]
≤ 4⌊r/2⌋ · δ/ρ(W ) + δ.

Finally, by setting δ = T−1/5 and applying a union bound on the odd and the even case, the probability is at
most

4r · T−1/5/ρ(W ) + 2T−1/5 ≤ 6rT−1/5/ρ(W ).

This proves the lemma.

We will also use the following lemma in the proof.
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Lemma 45. Let ρ be an r-round generalized protocol and W be an event such that (ρ |W ) has the rectangle
property with respect to µ, and let (X,Y,M) ∼ ρ |W . Then for any T > 1, the probability that

θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
> T · θµ(ρ |W ),

or

θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
< 1/T,

is at most 2 · T−1 · ρ(W )−1.

Proof. The first half is bounded using an application of Markov’s inequality and the fact that ρ(X,Y,M,W )
ρ(X,Y,M) ≤

1:
Pr
ρ|W

[θµ(ρ@X,Y,M) > T · θµ(ρ |W )] < 1/T,

implying that

Pr
ρ|W

[
θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
> T · θµ(ρ |W )

]
< 1/T.

For the second half, similar to the proof of Lemma 44, we have

E
ρ|W

[
θµ(ρ@X,Y,M)−1 · ρ(X,Y,M)

ρ(X,Y,M,W )

]
=
∑

X,Y,M

ρ(X,Y,M |W ) ·
ρ(M0) · µ(X,Y ) ·

∏
odd i∈[r] ρ(Mi | X,M<i) ·

∏
even i∈[r] ρ(Mi | Y,M<i)

ρ(X,Y,M,W )

=
1

ρ(W )
·
∑

X,Y,M

ρ(M0) · µ(X,Y ) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i)

=
1

ρ(W )
·
∑

X,Y,M<r

ρ(M0) · µ(X,Y ) ·
∏

odd i∈[r−1]

ρ(Mi | X,M<i) ·
∏

even i∈[r−1]

ρ(Mi | Y,M<i)

= · · ·

=
1

ρ(W )
·
∑

X,Y,M0

ρ(M0) · µ(X,Y )

=
1

ρ(W )
.

Hence, by Markov’s inequality,

Pr
ρ

[
θµ(ρ@X,Y,M)−1 · ρ(X,Y,M)

ρ(X,Y,M,W )
> T

]
< T−1 · ρ(W )−1.

We prove the lemma by an application of the union bound.

Finally, we are ready to prove Lemma 40.

Lemma 40 (restated). Let δ1, δ2 ∈ (0, 1/2) be any fixed parameter. Let ρ be an r-round generalized
protocol and let W be an event such that (ρ |W ) has the rectangle property with respect to µ. Then for any
function f : X × Y → {0, 1}, there is an r-round standard protocol τ such that
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• in odd rounds of τ , Alice sends a message of at most logχ2
µ,A(ρ |W )+O(log(r/δ1δ2)+log log θµ(ρ |

W )) bits;

• in even rounds of τ , Bob sends a message of at most logχ2
µ,B(ρ |W ) +O(log(r/δ1δ2)) bits;

• τ computes f correctly under input distribution µ with probability at least

1

2
+

δ1
32θµ(ρ |W )

(
ρ(W ) · E

ρ|W
[advρ(f(X,Y ) | X,M,W )]− 6δ1

)
− 2rδ2.

Proof. Let us first consider the following “ideal protocol” τ∗ that cannot necessarily be implemented in the
standard communication setting. But we can still analyze the probability that τ∗ computes f(X,Y ). Then
we construct a standard protocol τ with low communication and statistically close to τ∗ when (X,Y ) is
sampled from µ.

The ideal protocol consists of two parts: In the first part, the players generate a transcript M given the
inputs (X,Y ); in the second part, they use rejection sampling, and accept M with some carefully chosen
probability (and output a random bit if they reject).

“Ideal protocol” τ∗(X;Y ):
Part I

1. Alice and Bob use public random bits to sample M0 from ρ(M0)
2. for i = 1, . . . , r − 1
3. if i is odd, Alice samples Mi from ρ(Mi | X,M<i) and sends it to Bob
4. if i is even, Bob samples Mi from ρ(Mi | Y,M<i) and sends it to Alice
5. Bob locally samples Mr from ρ(Mr | Y,M<r) // recall that Mr ∈ {0, 1}
6. for j = 0, 1
7. Alice examines the distribution of ρ(f(X,Y ) | X,M,W ) pretending Mr = j
8. Alice sends Bob the more likely value pj ∈ {0, 1} of f(X,Y ) in this conditional distribution

Part II
9. Alice and Bob accept M with probability equal to γ · θρ(µ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
(assuming it is

at most 1), for some fixed parameter γ
10. if the players decide to accept
11. Bob sends pMr

12. else
13. Bob sends a random bit

Success probability of τ∗. Given X,Y , Alice and Bob generate transcript M with probability

ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i),

where Mr is only known to Bob. Then it is accepted with probability γ · θρ(µ@X,Y,M) · ρ(X,Y,W |M)
ρ(X,Y |M) .

Recall that

θµ(ρ@X,Y,M) =
ρ(X,Y,M)

µ(X,Y ) · ρ(M0) ·
∏

odd i∈[r] ρ(Mi | X,M<i) ·
∏

even i∈[r] ρ(Mi | Y,M<i)
.

Hence, for (X,Y ) ∼ µ, the probability that the players generate and accept (X,Y,M) is

µ(X,Y ) · ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i) · γ · θρ(µ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
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= γ · ρ(X,Y,M,W ).

Thus, the probability that τ∗ accepts is γ · ρ(W ). Alice does not know Mr, so she sends the more likely
value pj conditioned on (X,M) for both possibilities of Mr, and Bob outputs this bit when they accept.

Since conditioned on accepting, (X,Y,M) follows the distribution of ρ(X,Y,M | W ), and Alice has
told Bob in advance what is the more like value of f(X,Y ) conditioned on (X,M,W ). Intuitively, this
should imply that the overall advantage should be γ · ρ(W ) · Eρ|W [adv(f(X,Y ) | X,M,W )]. We now
formally prove that this holds. We use τ∗(R) to denote the probability of R in the distribution induced
by running τ∗ on (X,Y ) ∼ µ. Note that the transcript of τ∗ is (M<r, p0, p1, p). The expected overall
advantage of τ∗ is at least∑

M<r,p

τ∗(M<r, p) · |2τ∗(f(X,Y ) = 1 |M<r, p)− 1|

≥
∑

M<r,p

τ∗(M<r, p) · (2τ∗(f(X,Y ) = p |M<r, p)− 1)

= 2
∑

M<r,p

τ∗(f(X,Y ) = p,M<r, p)− 1

=

2
∑

M<r,p

τ∗(f(X,Y ) = p,M<r, p, accept)

+

2
∑

M<r,p

τ∗(f(X,Y ) = p,M<r, p, reject)− 1

 .

The first term is

2
∑

X,Y,M,p=f(X,Y )

τ∗(X,Y,M, pMr = p, accept)

= 2
∑

X,Y,M:pMr=f(X,Y )

γ · ρ(X,Y,M,W )

= 2
∑
X,M

γ · ρ(X,M,W ) · ρ(pMr = f(X,Y ) | X,M,W )

which by the fact that pMr is the more likely value of f(X,Y ) conditioned on (X,M,W ), is

= 2
∑
X,M

γ · ρ(X,M,W ) ·
(
1

2
+

1

2
· advρ(f(X,Y ) | X,M,W )

)
= γ · ρ(W ) + γ · ρ(W ) · E

ρ|W
[advρ(f(X,Y ) | X,M,W )] .

The second term is equal to

2
∑

M<r,p

1

2
· τ∗(f(X,Y ) = p,M<r, reject)− 1

= −τ∗(accept)

= −γ · ρ(W ).

The two terms sum up to γ · ρ(W ) · Eρ|W [advρ(f(X,Y ) | X,M,W )].
Hence, we have proved the following claim.
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Claim 46. If the probability that a protocol generates and accepts a triple (X,Y,M) is equal to γ ·
ρ(X,Y,M,W ), and it outputs a random bit otherwise, then this protocol computes f(X,Y ) correctly with
probability at least

1

2
+

γ

2
· ρ(W ) · E

ρ|W
[advρ(f(X,Y ) | X,M,W )] .

Standard protocol τ . Next, we will construct a standard protocol τ that simulates τ∗. Similar to τ∗,
protocol τ also has two parts: In the first part, the players generate a transcript M; in the second part, they
decide if they will accept M.

For the first part, the players first use public randomness to sample M0. Then for the subsequent mes-
sages Mi, Alice knows the distribution ρ(Mi | X,M<i), and Bob knows the distribution ρ(Mi | Y,M<i).
For odd i, the players use Lemma 43 to sample from ρ(Mi | X,M<i) where Alice sends a message; for
even i, they sample from ρ(Mi | Y,M<i) with Bob sending a message. Finally, Bob locally samples the
last message Mr. We will show that Lemma 44 guarantees that the probability of sampling M is a good
approximation of

ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i).

Protocol τ(X;Y ):
Part I

1. fix parameters δ1, δ2 ∈ (0, 1/2)
2. Alice and Bob use public random bits to sample M0 from ρ(M0)
3. for i = 1, . . . , r − 1
4. for odd i, use Lemma 43 to sample Mi from ρ(Mi | X,M<i) given that Bob only knows ρ(Mi |

Y,M<i), where we set C := C0 = logχ2
µ,A(ρ |W ) + 5 log(6r/δ1) and δ := δ2 // Alice sends one

message
5. for even i, use Lemma 43 to sample Mi from ρ(Mi | Y,M<i) given that Alice only knows

ρ(Mi | X,M<i), where we set C := C1 = logχ2
µ,B(ρ |W ) + 5 log(6r/δ1) and δ := δ2 // Bob

sends one message
6. in Bob’s local memory: acc← 1 // the final value of acc indicates if they will accept
7. if any player outputs ⊥ in any round
8. acc← 0
9. Bob locally samples Mr from ρ(Mr | Y,M<r) (to be cont’d)

Each player will send one extra bit indicating whether they output ⊥ in the previous round. Hence, Bob
knows if any player outputs ⊥ in the first r − 1 rounds (including round r − 1, for which he does not need
to send the extra bit).

Next, we use rejection sampling, and accept M with probability roughly γ·θµ(ρ@X,Y,M)· ρ(X,Y,M,W )
ρ(X,Y,M)

for some carefully chosen γ > 0. The rectangle property of (ρ |W ) ensures that this rejection sampling can
be done approximately using very little communication.

More specifically, by the rectangle property of (ρ |W ) with respect to µ (see Definition 18), there exists
g1, g2 such that ρ(X,Y,M |W ) = µ(X,Y ) · g1(X,M) · g2(Y,M). Hence, θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
can be written as

θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
= gA(X,M) · gB(Y,M),

by letting gA(X,M) := ρ(W )·g1(X,M)∏
odd i∈[r] ρ(Mi|X,M<i)

and gB(Y,M) := g2(Y,M)
ρ(M0)·

∏
even i∈[r] ρ(Mi|Y,M<i)

.
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Suppose we let Alice accept with probability γA · gA(X,M) and Bob accept with probability γB ·
gB(Y,M) for γAγB = γ, then they will be able to accept with the correct probability by sending only
one bit, i.e., whether they accept locally. We will also need to choose γA and γB carefully so that both
probabilities are at most one. This is done by applying Lemma 45, which ensures that most of the time
θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M) is between δ and θµ(ρ | W )/δ for small δ > 0. Thus, they can coordinate
the values of γA and γB by Alice sending a small hash value of some approximation of gA(X,M).

Part II
10. for j = 0, 1, Alice computes gA(X,M) pretending Mr = j, and computes eA,j := ⌊log gA(X,M)⌋

Bob computes gB(Y,M) and eB := ⌊log gB(Y,M)⌋
11. let R := ⌈log(32θµ(ρ |W )/δ21)/δ2⌉, Alice and Bob use public random bits to sample a hash function

h : Z→ [R]
12. for j = 0, 1
13. Alice samples a bit bA,j such that Pr[bA,j = 1] = gA(X,M) · 2−(eA,j+1) pretending Mr = j
14. Alice examines the distribution of ρ(f(X,Y ) | X,M,W ) pretending Mr = j
15. Alice sets pj ∈ {0, 1} to the more likely value of f(X,Y ) in this conditional distribution
16. Alice appends (h(eA,0), h(eA,1), bA,0, bA,1, p0, p1) to her last message Mr−1

17. let L1 := ⌈log(4/δ1)⌉ and L2 := ⌈log(θµ(ρ |W )/δ1)⌉
18. upon receiving (v0, v1, bA,0, bA,1, p0, p1), Bob checks:

if there is one unique integer e′A ∈ [−eB − L1,−eB + L2] such that h(e′A) = vMr

19. Bob samples a bit bB such that Pr[bB = 1] = gB(Y,M) · 2e
′
A−L2−1

20. set acc← 0 if there is no such e′A, or e′A is not unique, or bA,Mr = 0, or bB = 0
21. if acc = 1
22. Bob sends pMr

23. else
24. Bob sends a random bit

Note that Alice’s new messages are sent before Bob starts sending the last message, hence, it is still part of
round r − 1. In step 13, since gA(X,M) < 2eA,j+1 for j = 0, 1, the probability is at most 1. In step 19,
since e′A − L2 − 1 ≤ −(eB + 1), the probability is also at most 1. Hence, the protocol is well-defined.

Communication cost. By Lemma 43, in odd rounds, Alice sends a message of length at most

logχ2
µ,A(ρ |W ) + 5 log(6r/δ1) +O(log(1/δ2)),

in even rounds, Bob sends a message of length at most

logχ2
µ,B(ρ |W ) + 5 log(6r/δ1) +O(log(1/δ2)).

They also send one extra bit indicating if the lemma outputs⊥ in the previous round. In Alice’s last message
(round r−1), Alice further sends two hash values h(eA,0), h(eA,1) and the bits bA,0, bA,1, p0, p1, which takes
at most

2⌈logR⌉+ 4 ≤ O(log log θµ(ρ |W ) + log log(1/δ1) + log(1/δ2))

bits in total. This proves the communication bound of τ we claimed.

The first part of τ . We first analyze the first part of τ and estimate the probability that we generate a triple
(X,Y,M). By Lemma 44, for (X,Y,M) ∼ ρ |W , the probability that (recall the value of C0 in line 4 and
the value of C1 in line 5 of τ )

58



• there exists an odd i ∈ [r] such that

ρ(Mi | X,M<i)

ρ(Mi | Y,M<i)
> 2C0 ,

or

• there exists an even i ∈ [r] such that

ρ(Mi | Y,M<i)

ρ(Mi | X,M<i)
> 2C1 ,

is at most 6r ·
(
25 log(6r/δ1)

)−1/5 · ρ(W )−1 = δ1 · ρ(W )−1. Denote this set of (X,Y,M) by B1, hence,
ρ(B1 |W ) ≤ δ1 · ρ(W )−1.

Now consider any (X,Y,M) /∈ B1, and we estimate the probability that M is generated by the players
given X,Y . By Lemma 43, conditioned on (X,Y,M<i), for odd i ∈ [r], the probability that both players
agree on Mi in step 4 is at least(

min

{
1, 2C0 · ρ(Mi | Y,M<i)

ρ(Mi | X,M<i)

}
− δ2

)
ρ(Mi | X,M<i) ≥ (1− δ2)ρ(Mi | X,M<i),

as ρ(Mi|X,M<i)
ρ(Mi|Y,M<i)

≤ 2C0 for (X,Y,M) /∈ B1. Similarly, for even i ∈ [r], both players agree on Mi in step 5 is
at least

(1− δ2)ρ(Mi | Y,M<i).

Bob generates the last message Mr with probability ρ(Mr | Y,M<r). Thus, conditioned on (X,Y ), the
probability that the players generate and agree on M is at least

(1− (r − 1)δ2)ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i),

where we used the fact that (1− δ2)
r−1 ≥ (1− (r − 1)δ2).

On the other hand, for all (X,Y,M) (not necessarily in B1), the probability that the players agree on Mi

is at most ρ(Mi | X,M<i) for odd i ∈ [r] (since this is the probability that Alice outputs Mi by Lemma 43),
and ρ(Mi | Y,M<i) for even i ∈ [r]. Thus, the probability that they agree on M is at most

ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i).

Also, by Lemma 43 and union bound, the probability that the players do not agree on the same Mi in
some round is at most (r − 1)δ2. Otherwise, some player outputs ⊥, and acc is set to 0. Thus, we obtain
the following claim.

Claim 47. There is a set B1 such that ρ(B1 |W ) ≤ δ1 ·ρ(W )−1, and given (X,Y ), the protocol τ generates
M in Part I of τ with probability at most

ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i);

furthermore, if (X,Y,M) /∈ B1, τ generates M with probability at least

(1− (r − 1)δ2)ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i).

Moreover, the probability that the players do not agree on the same M is at most (r − 1)δ2.
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The second part of τ . Consider a triple (X,Y,M), we analyze the probability that it is accepted in
the second part, conditioned on it being generated in the first part. Alice does not know Mr, but it has
only two possible values. Alice pretends that Mr = j for j = 0, 1, and computes the corresponding
gA(X,M), eA,j , bA,j and pj . She sends both copies (for j = 0, 1) to Bob, and Bob only looks at the copy
corresponding to the actual Mr. In terms of the correctness, this is equivalent to Alice knowing Mr. For
simplicity of notations, we will omit the subscript j, and use gA(X,M), eA, bA, p to denote the copy for the
actual Mr.

If for a triple (X,Y,M), we have −L1 ≤ eA + eB ≤ L2 (note that eA, eB are determined by the triple),
then the probability that there is a unique integer e′A ∈ [−eB − L1,−eB + L2] such that h(e′A) = h(eA) is
equal to

(1− 1/R)L1+L2 ,

and in this case, we must have e′A = eA. Then the probability that bA = 1 is

gA(X,M) · 2−(eA+1),

and the probability that bB = 1 is
gB(Y,M) · 2eA−L2−1.

The players do not set acc to 0 in Part II with probability

(1− 1/R)L1+L2 · gA(X,M) · 2−(eA+1) · gB(Y,M) · 2eA−L2−1

= (1− 1/R)L1+L2 · 2−L2−2 · θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
.

On the other hand, if for a triple (X,Y,M), either eA+eB < −L1 or eA+eB > L2, then the probability
that the players accept it conditioned on it being generated is at most the probability that there exists some
e′A that matches the hash value of eA, which by union bound, is at most

(L1 + L2 + 1)/R = (⌈log(4/δ1)⌉+ ⌈log(θµ(ρ |W )/δ1)⌉+ 1)/⌈log(32θµ(ρ |W )/δ21)/δ2⌉
≤ (log(4θµ(ρ |W )/δ21) + 3)/(log(32θµ(ρ |W )/δ21)/δ2)

= δ2.

We denote the set of (X,Y,M) such that either eA+eB < −L1 or eA+eB > L2 byB2. If eA+eB > L2,
then we have

log

(
θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)

)
= log(gA(X,M)gB(Y,M))

≥ eA + eB

> L2

> log(θµ(ρ |W )/δ1).

If eA + eB < −L1, then we have

log

(
θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)

)
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= log(gA(X,M)gB(Y,M))

< eA + eB + 2

< −L1 + 2

≤ log δ1.

However, by Lemma 45, for (X,Y,M) ∼ ρ |W , the probability that

θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
> θµ(ρ |W )/δ1,

or

θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
< δ1

is at most 2δ1 · ρ(W )−1. This implies that ρ(B2 | W ) ≤ 2δ1 · ρ(W )−1. Hence, we obtain the following
claim.

Claim 48. There is a set B2 such that ρ(B2 |W ) ≤ 2δ1 · ρ(W )−1, and for (X,Y,M) /∈ B2, the probability
that τ accepts (X,Y,M) conditioned on τ generating (X,Y,M) is equal to

(1− 1/R)L1+L2 · 2−L2−2 · θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
,

for (X,Y,M) ∈ B2, the probability that τ accepts (X,Y,M) conditioned on τ generating (X,Y,M) is at
most δ2.

Overall success probability. If all (X,Y,M) were generated in the first part with probability equal to

ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i),

and accepted in the second part with probability equal to

(1− 1/R)L1+L2 · 2−L2−2 · θµ(ρ@X,Y,M) · ρ(X,Y,M,W )

ρ(X,Y,M)
,

then τ would be the ideal protocol in Claim 46 for γ = (1 − 1/R)L1+L2 · 2−L2−2. Hence, to lower bound
the overall success probability, it suffices to compare τ with τ∗, and bound the total probability difference
in generating and accepting a triple (X,Y,M).

By Claim 47 and Claim 48, for (X,Y,M) /∈ B1 ∪ B2, the probability that it is generated and accepted
is at most

(1− 1/R)L1+L2 · 2−L2−2 · ρ(X,Y,M,W ) = γ · ρ(X,Y,M,W ),

and at least

(1− (r − 1)δ2) · (1− 1/R)L1+L2 · 2−L2−2 · ρ(X,Y,M,W ) ≥ (1− (r − 1)δ2)γ · ρ(X,Y,M,W ).

Hence, the total probability difference between τ and τ∗ for these (X,Y,M) is at most∑
(X,Y,M)/∈B1∪B2

(r − 1)δ2γ · ρ(X,Y,M,W ) ≤ (r − 1)δ2γ · ρ(W ). (29)
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For (X,Y,M) ∈ B1 \ B2, the probability that it is generated and accepted is at most

γ · ρ(X,Y,M,W ).

Hence, the total probability difference for these (X,Y,M) is at most∑
(X,Y,M)∈B1\B2

γ · ρ(X,Y,M,W ) ≤ γ · ρ(B1 |W ) · ρ(W ) ≤ γδ1. (30)

For (X,Y,M) ∈ B2, the probability that it is generated and accepted is at most

δ2 · ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i).

Hence, the total probability difference for these (X,Y,M) is at most

∑
(X,Y,M)∈B2

max

δ2 · ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i), γ · ρ(X,Y,M,W )


≤

∑
(X,Y,M)∈B2

δ2 · ρ(M0) ·
∏

odd i∈[r]

ρ(Mi | X,M<i) ·
∏

even i∈[r]

ρ(Mi | Y,M<i) + γ · ρ(X,Y,M,W )


≤ δ2 + γ · ρ(B2 |W ) · ρ(W )

≤ δ2 + 2γδ1. (31)

Finally, the players do not agree on the same M with probability at most (r − 1)δ2.
Summing up Equation (29), (30), (31) and the probability that they do no agree, the statistical distance

between τ and τ∗ is at most 3γδ1 + 2rδ2, where we used the fact that γ ≤ 1 and ρ(W ) ≤ 1. Combining it
with Claim 46, we obtain that τ computes f correctly with probability at least

1

2
+

γ

2
·

(
ρ(W ) · E

ρ|W
[advρ(f(X,Y ) | X,M,W )]− 6δ1

)
− 2rδ2.

Finally, note that if ρ(W ) ·Eρ [advρ(f(X,Y ) | X,M)]− 6δ1 < 0, then the lemma holds trivially by setting
τ to the protocol that outputs a random bit, otherwise, we have

γ = (1− 1/R)L1+L2 · 2−L2−2

≥ (1− (L1 + L2)/R) · 2−L2−2

≥ (1− δ2) ·
1

8θµ(ρ |W )/δ1

≥ δ1
16θµ(ρ |W )

.

Hence, the success probability is as claimed in the statement. This finishes the proof of the lemma.
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A Theorem 2 Implies Shaltiel’s XOR Lemma

Recall that the discrepancy of a function f : X × Y → {−1, 1} is7

disc(f) :=
1

|X | · |Y|
· max
R=X×Y:X⊆X ,Y⊆Y


∣∣∣∣∣∣
∑

x∈X,y∈Y
f(x, y)

∣∣∣∣∣∣
 .

7For {0, 1}-valued functions, we map the value to {−1, 1} then apply this definition.
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Shaltiel’s XOR lemma states that
disc(f⊕n) = O(disc(f))Ω(n).

We show that Theorem 2 implies this bound. First by viewing a protocol with C bits of communication
as a partitioning of X × Y into 2C combinatorial rectangles, any C-bit communication protocol cannot
compute f with probability better than

1

2
+ 2C · disc(f),

when the inputs are sampled from the uniform distribution µ over X ×Y . In particular, it applies to 2-round
protocols, and we obtain that

sucµ

(
f ;

1

4
log(1/disc(f)),

1

4
log(1/disc(f)), 2

)
≤ 1

2
+ disc(f)1/2.

Thus, for disc(f) smaller than a sufficiently small constant (otherwise, the bound holds trivially), Theorem 2
with CA = CB = 1

4 log(1/disc(f)), α = disc(f)1/16c(≥ 2disc(f)1/2) and r = 2 implies that no 2-round
protocol with communication O(n log(1/disc(f))) solves f⊕n with probability

1

2
+ disc(f)Ω(n).

In particular, no protocol with two bits of communication can solve f⊕n with this probability.
Finally, as pointed out in Remark 3.12 in [VW08], the discrepancy of a function is equal to the maximum

advantage over 1/2 that a 2-bit protocol can achieve on the uniform distribution (up to a constant factor).
This proves that disc(f⊕n) = O(disc(f))Ω(n).
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