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Abstract

A long-standing open question in computational learning theory is to prove NP-hardness of
learning efficient programs, the setting of which is in between proper learning and improper
learning. Ko (COLT’90, SICOMP’91) explicitly raised this open question and demonstrated
its difficulty by proving that there exists no relativizing proof of NP-hardness of learning pro-
grams. In this paper, we overcome Ko’s relativization barrier and prove NP-hardness of learning
programs under randomized polynomial-time many-one reductions. Our result is provably non-
relativizing, and comes somewhat close to the parameter range of improper learning: We observe
that mildly improving our inapproximability factor is sufficient to exclude Heuristica, i.e., show
the equivalence between average-case and worst-case complexities of NP.

We also make progress on another long-standing open question of showing NP-hardness of
the Minimum Circuit Size Problem (MCSP). We prove NP-hardness of the partial function
variant of MCSP as well as other meta-computational problems, such as the problems MKTP∗

and MINKT∗ of computing the time-bounded Kolmogorov complexity of a given partial string,
under randomized polynomial-time reductions.

Our proofs are algorithmic information (a.k.a. Kolmogorov complexity) theoretic. We utilize
black-box pseudorandom generator constructions, such as the Nisan–Wigderson generator, as a
one-time encryption scheme secure against a program which “does not know” a random function.
Our key technical contribution is to quantify the “knowledge” of a program by using conditional
Kolmogorov complexity and show that no small program can know many random functions.
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1 Introduction

The two main results of this paper are NP-hardness of MINLT [Ko91] and the partial function
variant of MCSP [KC00], both of which are of central importance in computational learning theory
and meta-complexity theory. In the following two subsections, we present the background of the
two theories as well as our results, respectively.

1.1 PAC Learning

Ever since Valiant [Val84] introduced the notion of PAC learning, classifying the complexity of
PAC learning has been a fundamental and central question in computational learning theory. The
task of PAC learning is parameterized by a concept class C and a hypothesis class H. Informally,
a class C is said to be PAC learnable by H if there exists an efficient algorithm L such that
for every distribution D and for every concept c ∈ C, given sufficiently many random samples
(x1, c(x1)), . . . , (xm, c(xm)), where each xi is drawn from D independently, the learning algorithm
L outputs a hypothesis h ∈ H such that Prx∼D[h(x) = c(x)] ≥ 1 − δ for a given parameter δ. A
fundamental theorem of computational learning theory [BEHW87; BP92; Sch90] shows that, for a
sufficiently large hypothesis class H, PAC learning is equivalent to Occam learning, the latter of
which can be formulated as a search problem in NP.1 An outstanding open question is to prove NP-
hardness of PAC learning of linear-sized circuits by polynomial-sized circuits, which would classify
the complexity of PAC learning as “NP-complete”.

NP-hardness of PAC learning has been proved in the case of proper learning, i.e., the case
when C = H. Pitt and Valiant [PV88] showed NP-hardness of learning k-term DNF by k-term
DNF. This was extended to NP-hardness of learning linear-sized DNF formulas by the polynomial-
sized disjunction of halfspaces [ABFKP08]; i.e., C = {DNF formulas} and H = OR ◦ {halfspaces}.
Note that, as the hypothesis class H becomes larger, it becomes increasingly harder to prove NP-
hardness. Consider, for example, the class NC1 of fan-in-2 circuits of logarithmic depth. Intuitively,
PAC learning of NC1 by NC1 appears to be much harder than PAC learning of DNFs by DNFs,
since NC1 is larger than the class of DNF formulas. Despite this intuition, NP-hardness of learning
linear-sized NC1 by polynomial-sized NC1 is unknown.

The opposite of proper learning is called improper learning, in which there is no restriction on
the hypothesis class H, except that H must be evaluated in polynomial time. As already noted
in the seminal work of Valiant [Val84], it is possible to prove hardness of improper PAC learning
under cryptographic assumptions. A recent exciting line of research (e.g., [DS16; Vad17; DV21])
starting from Daniely, Linial, and Shalev-Shwartz [DLS14] shows that specific average-case hard-
ness assumptions of NP already imply hardness of improper PAC learning. However, there is a
fundamental obstacle that prevents us from proving NP-hardness of improper PAC learning. Ap-
plebaum, Barak, and Xiao [ABX08] showed that NP-hardness of improper PAC learning cannot be
proved by nonadaptive reductions unless the polynomial hierarchy collapses. They also proved that
NP-hardness of improper PAC learning excludes Pessiland [Imp95] from Impagliazzo’s five worlds,
i.e., shows the equivalence between the existence of one-way functions and average-case hardness
of NP. Moreover, a partial converse to [DLS14] was recently proved by Hirahara and Nanashima
[HN21]: PAC learning with respect to distributions samplable by polynomial-size circuits is fea-
sible under the assumption that NP is easy on average. Thus, the complexity of improper PAC

1The task of Occam learning is to output a short description of a hypothesis that is consistent with given samples
(x1, c(x1)), . . . , (xm, c(xm)) for an unknown concept c.
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learning is intimately related to average-case complexity of NP. In particular, proving NP-hardness
of PAC learning (with respect to P/poly samplable distributions) also excludes Heuristica from
Impagliazzo’s five worlds [Imp95], i.e., shows the equivalence between worst-case and average-case
complexities of NP. These previous works indicate the importance and, at the same time, the
difficulty of proving NP-hardness of improper PAC learning.

Ko [Ko91] raised the question of classifying the complexity of learning efficient programs, i.e.,
PAC learning by H, where the hypothesis class H is the class of efficient programs. Arguably,
this is the most general hypothesis class: By the fundamental principle of Kolmogorov complexity
[Kol65], the Kolmogorov complexity of a string x, i.e., the length of a shortest program that prints
x, is a lower bound on the length of any decodable encoding of the string x up to an O(1) additive
term. Similarly, Ko observed that representing a function by a program is the most succinct way
of representing a function by any algorithm up to an O(1) additive term. In particular, programs
can represent a function more succinctly than circuits.

Ko formulated the task of learning efficient programs by introducing a problem called MINLT,
which is a decision version of Occam learning for efficient programs. The input of MINLT consists of
((x1, b1), . . . , (xm, bm); 1t, 1s), where xi ∈ {0, 1}n and bi ∈ {0, 1} for some n ∈ N, and the objective
is to decide whether there exists a t-time program M of size s that is consistent with the given
samples (x1, b1), . . . , (xm, bm), i.e., M(xi) = bi for every i. Since the complexity of MINLT “appears
very difficult to classify precisely” [Ko91], Ko gave a formal evidence for this statement, by proving
that there exists no relativizing proof that shows NP-hardness of MINLT. A relativizing proof,
the notion of which was introduced by Baker, Gill, and Solovay [BGS75] to argue the difficulty of
resolving the P versus NP question, refers to a proof of a complexity-theoretic statement that can
be generalized to the statements in the presence of arbitrary oracles. Although there are several
non-relativizing proof techniques (see, e.g., [BFT98; AW09]), vast majority of complexity-theoretic
proofs are relativizing; thus, proving a non-relativizing statement is highly challenging and of major
importance in complexity theory. Indeed, we are not aware of any previous non-relativizing result
in complexity theory for which relativization barriers were presented three decades ago.2

In this work, we overcome Ko’s relativization barrier and resolve the long-standing open problem
of proving NP-hardness of MINLT.

Theorem 1.1. Under randomized polynomial-time one-query reductions, it is NP-hard to distin-
guish the following cases, given as input a size parameter s ∈ N and a distribution E such that
supp(E) ⊆ {0, 1}n × {0, 1} for some n ∈ N.3

Yes: There exists a polynomial-time program M of size s such that

Pr
(x,b)∼E

[M(x) = b] = 1.

Moreover, M computes a linear function over GF(2).

2As discussed in [AW09, Section 9], there are several non-relativizing statements that exploit the subtleties in
defining oracle access mechanism. Those include statements on small depth circuits and bounded-space Turing
machines. It is controversial whether such results are “truly” non-relativizing. By contrast, Theorem 1.1 can be
naturally relativized by using the standard definition of oracle Turing machines.

3A distribution E is represented by a circuit C such that the output C(r) of C over a uniformly random string
r ∼ {0, 1}|C| is identical to E . The support of E is denoted by supp(E).
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No: For any program M of size s · nε,

Pr
(x,b)∼E

[M(x) = b] ≤ 1

2
+ 2−n

1−δ

Here, δ > 0 is an arbitrary constant and ε = 1/(log log n)O(1).

A couple of remarks are in order. First, the problem considered in Theorem 1.1 can be reduced
to MINLT by drawing m samples (x1, b1), . . . , (xm, bm) from the distribution E for m = O(s);
thus, it also shows NP-hardness of MINLT under randomized reductions as an immediate corollary.
Our result is provably non-relativizing. Although Ko [Ko91] stated his relativization barrier for
deterministic reductions, it can be extended to randomized reductions. See Appendix B for the
details. Second, Theorem 1.1 refers to the decision version of PAC learning of a concept class C
by a hypothesis class H, where C is the class of efficient programs of size s (that compute a linear
function) and H is the class of time-unbounded programs of size s · nε. Note that the decision
version is reducible to the standard search version, as long as H can be evaluated in polynomial
time; thus, another corollary of Theorem 1.1 is NP-hardness of PAC learning of C by H′, where
H′ ⊆ H is the class of polynomial-time programs of size s · nε. Let us emphasize that, in the
No case, even time-unbounded programs fail to output b on input x for a random sample (x, b)
drawn from E . Note that finding one hypothesis that is consistent with E is easy by using Gaussian
elimination; Theorem 1.1 shows that deciding whether such a hypothesis can be compressed as
a small time-unbounded program is NP-hard. Third, the probability 1

2 + 2−n
1−δ

in the No case
is close to the optimal, as a trivial hypothesis that always outputs either 0 or 1 agrees with the
samples from E with probability at least 1

2 . Although there have been many works on NP-hardness
of learning with large error (e.g., [ABFKP08; KS08; GKS10; KS11; FGKP09; FGRW12]), most
results show NP-hardness of learning with error 1

2 − ε for a constant ε > 0; we are not aware of any

previous result that achieves the exponentially small correlation bound of 2−n
1−δ

.
Theorem 1.1 comes somewhat close to the range of parameters for which proof techniques on

improper PAC learning can be applied. For example, using the proof techniques of [HN21], we
observe that improving the inapproximability factor nε to 1.01n is sufficient to exclude Heuristica;
see Appendix A for the details.

1.2 Meta-Complexity

A problem closely related to PAC learning is the Minimum Circuit Size Problem [KC00] (MCSP).
The problem MCSP is, given a Boolean function f : {0, 1}n → {0, 1} represented as the truth table
of length 2n as well as a size parameter s ∈ N, to decide whether there exists a circuit of size s that
computes f . The study of MCSP is said to date back to as early as 1960s [Tra84]. Although it is
easy to see that MCSP ∈ NP, it is a long-standing open problem to prove NP-hardness of MCSP;
indeed, it is reported in [AKRR11] that Levin [Lev73] delayed the publication of his seminal work
on the theory of NP-completeness because he hoped to prove NP-completeness of MCSP.

More generally, MCSP is an example of meta-computational problems. Meta-complexity refers to
the computational complexity of problems that themselves ask for complexity. The aforementioned
work of Ko [Ko91] introduced the problem MINKT of deciding whether a given string x can be
printed by a t-time program of size s, given (x, 1t, 1s) as input. Similarly, MKTP is the problem
of deciding whether each bit of a given string x can be computed by a t-time program of size s

3



for some (t, s) such that t + s ≤ θ, given (x, θ) as input [ABKMR06]. All of these problems are
meta-computational: MCSP asks the circuit complexity of a given string; MINKT asks the time
complexity of printing a given string (i.e., time-bounded Kolmogorov complexity); MKTP asks the
trade-off between the time complexity and the size complexity of printing a given string. Technically,
MKTP is often considered as a convenient surrogate of MCSP for which many theorems that are not
known to hold for MCSP can be proved (e.g., [HS17; AH19]). Meta-complexity has recently received
significant attention because of its connection to diverse areas of theoretical computer science,
including learning theory [CIKK16; HN21], average-case complexity [Hir18; Hir21], cryptography
[IL90; San20; LP20], and circuit lower bounds [OS18; CHOPRS20]; see the survey of Allender
[All21] for a broad overview.

Although none of the meta-computational problems mentioned above is shown to be NP-hard,
there has been recent substantial progress on NP-hardness of meta-computational problems. For
restricted circuit classes C ∈

{
DNF,DNF ◦XOR,AC0 formulas

}
, the corresponding versions of

MCSP (denoted by C-MCSP) were shown to be NP-hard [Mas79; AHMPS08; HOS18; Ila20b]. More
recently, Ilango [Ila21] proved that the formula variant of MCSP is hard under the Exponential-
Time Hypothesis (ETH) [IPZ01].

A well-trodden path in the proofs of NP-hardness of variants of MCSP consists of two steps:
The first step is to prove NP-hardness of the partial function variants of MCSP, which are often
denoted by MCSP∗. The input of MCSP∗ consists of a partial function f : {0, 1}n → {0, 1, ∗}
(encoded as a string of length 2O(n)) and a size parameter s ∈ N, and the task is to decide whether
there exists a circuit of size s that computes f(x) on input x such that f(x) 6= ∗. The second step
is to present a reduction from the the partial variants of MCSP to MCSP. For example, the proof
of NP-hardness of DNF-MCSP presented in [AHMPS08] is given by composing two reductions, a
reduction from NP to DNF-MCSP∗ and a reduction from DNF-MCSP∗ to DNF-MCSP. Other
works [HOS18; Ila21] follow the same paradigm. Thus, proving NP-hardness of partial variants
of meta-computational problems serves as a milestone toward NP-hardness of the total versions of
meta-computational problems. In fact, Levin’s seminal paper [Lev73] presented six NP-complete
problems; the second problem shown to be NP-complete was DNF-MCSP∗. Since the introduction
of the theory of NP-completeness [Coo71; Lev73], it has been a long-standing open problem to
extend Levin’s NP-completeness result to MCSP∗.

Why is it difficult to prove NP-hardness of meta-computational problems? The difficulty of
proving NP-hardness of MCSP is closely related to the inability of proving explicit circuit lower
bounds. Kabanets and Cai [KC00] showed that if MCSP is NP-hard under deterministic “natural”
reductions, then EXP 6⊆ P/poly.4 Their proof techniques are applicable to MCSP∗ as well. Since
EXP 6⊆ P/poly is a major open question in complexity theory, this suggests that proving NP-
hardness of MCSP∗ would be quite difficult, at least under deterministic reductions. A subsequent
line of work improved this barrier result of [KC00] to more general types of reductions, such as “non-
natural” reductions [MW17], nonadaptive deterministic reductions [HP15], adaptive deterministic
reductions [HW16; SS20]. The intuition behind all of these results is that if there is a many-one
reduction from SAT to MCSP∗, then the reduction, given an unsatisfiable formula as input, must
produce the truth table of a function f with high circuit complexity, which implies a circuit lower
bound for EXP.

To avoid this barrier, one may be tempted to consider randomized reductions. A randomized

4A natural reduction to MCSP is a reduction such that the size parameter in the output of the reduction depends
only on the input length.
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reduction can easily produce a function with high circuit complexity, as a random function has
high circuit complexity with high probability; thus, the barriers mentioned above do not apply
to randomized reductions. Unfortunately, Hirahara and Watanabe [HW16] present evidence that
suggests the difficulty of proving NP-hardness of MCSP even under randomized reductions: They
observed that most reductions to MCSP are oracle-independent, i.e., they can be generalized to
the Minimum A-Oracle Circuit Size Problem (denoted by MCSPA) for every oracle A. Then, they
showed that there is no one-query randomized polynomial-time reduction from NP to MCSPA for
some oracle A unless the polynomial hierarchy collapses.

Yet another approach for bypassing the barriers is to use exponential-time reductions. Ilango
[Ila20b] recently bypassed the barrier of [KC00] and proved ETH-hardness of MCSP∗ under deter-
ministic reductions. The intuition behind this result is that lower bounds against O(n)-size circuits
can be proved using gate elimination techniques; since it is already known that there exists an ex-
plicit function that cannot be computed by a circuit of size cn for a constant c, the barrier of [KC00]
does not apply. Such proof techniques of using deterministic reductions, however, are unlikely to
be extended to NP-hardness of MCSP∗, as the barriers of [KC00] come into play. We also note that
it would be extremely difficult to prove NP-hardness of MKTP∗ and MINKT∗ under deterministic
reductions, as there are few proof techniques of showing a lower bound of the time-bounded Kol-
mogorov complexity of an explicit string. Here, MKTP∗ and MINKT∗ are the partial variants of
MKTP and MINKT, which ask the minimum of the time-bounded Kolmogorov complexity of y
over all the strings y ∈ {0, 1}∗ that are consistent with5 a given partial string x ∈ {0, 1, ∗}∗ (see
Definition 8.4 for the formal definitions).

Using our proof techniques of showing NP-hardness of PAC learning, we circumvent the barrier
of [KC00] by means of randomized reductions and prove NP-hardness of partial variants of several
meta-computational problems.

Theorem 1.2. Under randomized polynomial-time one-query reductions, it is NP-hard to distin-
guish the following two cases, given a partial function f : {0, 1}n → {0, 1, ∗} (encoded as a string
over {0, 1, ∗} of length 2n), a size parameter s ∈ N, and a distribution D over f−1({0, 1}):

Yes: There exist an s-time6 program M of size s and a circuit C of size s
log s and depth O(log s)

such that
Pr
x∼D

[M(x) = f(x)] = 1 and Pr
x∼D

[C(x) = f(x)] = 1.

No: For every program M of size s · nε and for every circuit C of size s
log s · n

ε,

Pr
x∼D

[M(x) = f(x)] ≤ 1

2
+ n−ε and Pr

x∼D
[C(x) = f(x)] ≤ 1

2
+ n−ε.

Here, ε > 0 is a universal constant. In particular, MCSP∗, NC1-MCSP∗, MKTP∗, and MINKT∗

are NP-hard under randomized polynomial-time reductions. Moreover, these problems are NP-hard
to approximate within a factor of (logN)ε on inputs of length N .

5We say that a string y ∈ {0, 1}n is consistent with a partial string x ∈ {0, 1, ∗}n if every bit of x is equal to either
∗ or the bit of y at the corresponding position.

6Here, the time complexity of M is measured as in KT-complexity; that is, we assume that a program is given
oracle access to the description of M ; see Definition 4.1.
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Our proofs are inspired by a line of research [AHMPS08; HOS18; Ila20a; ILO20; ACMTV21;
LP22; Hir22], which developed “top-down” approaches toward showing NP-hardness of MCSP.7

Theorem 1.2 is proved by fundamentally different proof techniques from the previous result of
[Ila20b] and significantly improves it in the following perspectives: (1) The time complexity of a
reduction is improved from exponential to polynomial. (2) We prove hardness of approximation,
whereas [Ila20a] does not. (3) We prove NP-hardness of MKTP∗ and MINKT∗. (4) In addition, by
slightly modifying the NP-hardness reduction of MCSP∗,8 we also prove NP-hardness of the average-
case variant of MCSP called AveMCSP [San20], which asks the average-case circuit complexity of
a given total function f : {0, 1}n → {0, 1} with respect to the uniform distribution.

The size parameter s in Theorem 1.2 is exponential in the input length n (i.e, s = 2Θ(n)),
which is inevitable unless NP can be solved in randomized sub-exponential time.9 One would be
surprised at the strong circuit lower bound of the No case: It shows that no circuit of exponential
size can compute the function f . Given our poor knowledge on circuit lower bounds for explicit
functions,10 how can one prove such a strong circuit lower bound? Of course, the function f is not
explicit, but naively, one would expect that any proof of NP-hardness of MCSP∗ would require a
complicated analysis on exponential-size circuits. This is indeed the main difficulty that prevented
researchers from proving NP-hardness of MCSP∗ (and formalized as the barrier of [KC00] in the
case of deterministic reductions). Surprisingly, we prove the circuit lower bound by using almost
nothing about circuits: The circuit lower bound simply follows from the fact that no program of
size s can approximate f . Since a circuit of size s′ can be encoded as a binary string of length
O(s′ log s′), we obtain a circuit lower bound of s′ ≥ Ω(s/ log s). By contrast, the construction of
the circuit C in the Yes case is more complicated.

All the previous NP-hardness results for C-MCSP are proved by different reductions for each
circuit class C. Ideally, one would like to prove NP-hardness of C-MCSP for any sufficiently large
circuit class C by a single reduction. Unfortunately, this is not possible: The aforementioned work
of [HW16] shows that MCSP is not reducible to MCSPA for some oracle A (unless MCSP is easy),
despite that A-oracle circuits are more powerful than circuits. Surprisingly, Theorem 1.2 indicates
that the same is not true for partial variants of MCSP. Our reduction is in fact oracle-independent
in the sense that our reduction also shows NP-hardness of MKTP∗A for every oracle A.11 This
indicates that the negative result of [HW16] for MCSP is unlikely to be extended to the partial
variant MCSP∗, despite that the negative result of [KC00] can be easily extended to MCSP∗.

The proof of Theorem 1.2 is obtained by optimizing the reduction of Theorem 1.1. Note that
the NP-hardness reduction of Theorem 1.2 takes an NP instance of length N and produces the
truth table of a partial function f : {0, 1}n → {0, 1, ∗}, which is of length 2O(n), in time NO(1);
thus, we must have n = O(logN). A high-level idea of the proof of Theorem 1.2 is that the input
length n of the distribution E in Theorem 1.1 can be optimized to be as small as O(logN).

7In more detail, based on his NP-hardness result of a conditional variant of MCSP, Ilango [Ila20a] proposed an
approach of showing hardness of MCSP “from above”, as opposed to “bottom-up” approaches of [AHMPS08; HOS18;
Ila20b; Ila21], which try to show NP-hardness of C-MCSP for larger and larger classes C. Theorem 1.2 realizes such
a top-down approach successfully.

8Specifically, we replace f(x) = ∗ with a uniformly random bit f(x) ∼ {0, 1} in the NP-hardness proof of MCSP∗.
See Theorem 8.7 for the details.

9This follows from the fact that MCSP∗ with size parameter s(n) can be solved in time 2O(s(n) log s(n)) by a
brute-force search.

10For example, it is a central open problem to prove ENP 6⊆ SIZE(O(n)). A function f ∈ ENP is said to be explicit.
11For a technical reason, our reduction may not prove NP-hardness of MCSP∗A.
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2 An Overview of Our Proofs

In this section, we outline our proofs. At a very high level, our technical contribution is to develop
an algorithmic information (Kolmogorov complexity) theoretic proof technique for showing lower
bounds of the size of programs. We assume familiarity with the notion of Kolmogorov complexity
and secret sharing scheme; we encourage the readers unfamiliar with these notions to read Section 4
first.

Notation [n] denotes {1, . . . , n}. For s1, . . . , sn and a subset T ⊆ [n], let sT denote (si1 , . . . , sim),
where T = {i1 < · · · < im}.

2.1 NP-Hardness of Learning Programs

We present an overview of the proof of Theorem 1.1, which shows NP-hardness of learning programs.
We reduce the Minimum Monotone Satisfying Assignment (MMSA) problem [ABMP01] to the
problem of learning programs. The input of MMSA consists of a monotone formula ϕ on n variables
and a parameter θ ∈ N. The task is to decide whether there exists a satisfying assignment α : [n]→
{0, 1} of ϕ such that

∑n
i=1 α(i) ≤ θ. It is known to be NP-hard to approximate MMSA to within

a factor of n1/(log logn)O(1)
[DS04; DHK15].

To reduce MMSA to the learning problem, we use a secret sharing scheme (Share(ϕ, -),Rec(ϕ, -))
for a monotone formula ϕ. We say that a subset T ⊆ [n] is authorized if the characteristic function
χT : [n] → {0, 1} of T satisfies the formula ϕ. The secret sharing scheme allows us to share a
secret b ∈ {0, 1} among n parties so that any authorized set of parties can reconstruct the secret,
whereas no unauthorized set of parties can obtain any information of the secret. At a high level,
our reduction produces a distribution E , from which (x, b) is sampled as follows: A random secret
b ∼ {0, 1} is shared as Share(ϕ, b) =: (s1, . . . , sn), where each si is the share given to the i-th party,
and then each share si is “hidden” in an input x. Our main technical contribution is to develop a
way of hiding the shares in an input x so that large programs can read the hidden shares from x,
whereas small programs cannot read many hidden shares.

A key tool for hiding shares in an input is a (black-box) pseudorandom generator construction
[TV07]. There are many pseudorandom generator constructions in the literature, such as the Nisan–
Wigderson pseudorandom generator [NW94]. Although most pseudorandom generator construc-
tions can be used for our purpose,12 for the sake of simplicity, we use a simple pseudorandom gen-
erator construction called a k-wise direct product generator DPk : {0, 1}λ × {0, 1}λ×k → {0, 1}λk+k

[Hir20b], which is defined as follows. Given a string f ∈ {0, 1}λ (regarded as a row vector over
GF(2)) and a λ × k matrix z over GF(2), the output DPk(f ; z) is defined to be (z, f · z), where
f · z denotes the multiplication of a vector f and a matrix z over GF(2). The pseudorandom gen-
erator construction DPk satisfies the following “reconstruction” property [Hir20a]: If there exists
a function D that ε-distinguishes the output distribution DPk(f ; -) from the uniform distribution,
i.e., ∣∣∣∣ Pr

z∼{0,1}λk
[D(DPk(f ; z)) = 1]− Pr

w∼{0,1}λk+k
[D(w) = 1]

∣∣∣∣ ≥ ε,
12One property of a pseudorandom generator that is required for our reduction is seed-extending [KMS12], i.e., a

pseudorandom generator is secure even if the seed is included in the output. This property is used in the proof of
the completeness of our reduction.
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then we have
KD(f) ≤ k +O(log(λk/ε)). (1)

In other words, DPk(f ; -) : {0, 1}λk → {0, 1}λk+k is a pseudorandom generator secure against an
algorithm D if f is a “hard” function in the sense that f cannot be described using approximately k
bits of information and oracle access to D. We can think of the pseudorandom generator DPk(f ; -)
as a one-time encryption scheme secure against any algorithm D that “does not know” f in the
sense that KD(f) � k. Besides its simplicity, a useful property of DPk(f ; -) is that DPk(f ; -) is a
linear function for any fixed f , which enables us to show the linearity property of the Yes case in
Theorem 1.1.

We now present the details of the reduction from MMSA to the learning problem. Let (ϕ, θ)
be an instance of MMSA. We choose n strings f1, . . . , fn ∼ {0, 1}λ uniformly at random. Each
string fi is associated with the i-th variable of ϕ. Using the strings f1, . . . , fn, we define an example
distribution E = E(f1, . . . , fn) as follows. To sample an example (x, b) ∈ {0, 1}m×{0, 1} distributed
according to E , we choose a secret b ∼ {0, 1} randomly. We share the secret b among n parties using
the secret sharing scheme for ϕ; let (s1, . . . , sn) := Share(ϕ, b) be the set of shares and let k ∈ N
be the length of each share. The idea is to hide these shares in the input x so that any algorithm
that “knows” fi can read the i-th share, whereas any algorithm that “does not know” fi cannot
read the i-th share. To this end, we let ξi := (zi, (fi · zi) ⊕ si) = DPk(fi; zi) ⊕ (0λk, si) for every
i ∈ [n], where zi ∼ {0, 1}λk. Here, “⊕” denotes the bitwise XOR. Then, we define x := (ξ1, . . . , ξn).
This completes the description of how to sample (x, b) from the example distribution E . In fact,
this is a complete description of the reduction of Theorem 1.1. The difficulty lies in the proof of
the correctness of the reduction, which we sketch below.

It is not hard to see the completeness of the reduction. Assume that there exists a satisfying
assingment α of ϕ such that

∑n
i=1 α(i) ≤ θ. Let T denote the set of indices i ∈ [n] such that

α(i) = 1. The fact that the set T is authorized motivates us to define the following program
M : The program M takes {fi | i ∈ T} as hard-wired input. Given an input x = (ξ1, . . . , ξn),
the program M lets (zi, ηi) := ξi, defines si := (fi · zi) ⊕ ηi, reconstructs the secret b using the
reconstruction procedure Rec(ϕ, -) for the shares {si | i ∈ T}, and outputs b ∈ {0, 1}. Since T is
authorized, it is guaranteed that the secret b ∈ {0, 1} can be reconstructed in this way. The size of
M is approximately at most

∑
i∈T |fi| = |T | · λ ≤ θλ.

To see the soundness of the reduction, we first clarify the condition under which the randomized
reduction is successful. The condition is that K(fT ) & |T | ·λ for every T , which happens with high
probability over the random choice of f1, . . . , fn by a simple counting argument. (Throughout
this section, an approximate inequality a . b can be understood as a ≤ (1 + o(1)) · b, where o(1)
approaches to 0 as the parameter λ increases.) Now, assuming that there exists no authorized set
T of size θ, we claim that no program M of size θλ/2 can output b on input x with high probability
over (x, b) ∼ E . Our key technical lemma, which we call an algorithmic information extraction
lemma, is informally stated as follows.

Lemma 2.1 (informal; see Lemma 6.1). Let f1, . . . , fn ∈ {0, 1}λ be strings such that K(fT ) & |T |·λ
for every T ⊆ [n], where λ is sufficiently large. Let M be a program of size |M |. Then, there exists
a set B ⊆ [n] such that |B| . |M |/λ and

Pr
[
M(XB, U[n]\B) = 1

]
≈ Pr

[
M(XB, X[n]\B) = 1

]
,

where Xi is the random variable identical to DPk(fi; zi) for a random choice of zi ∼ {0, 1}nk and
Ui is identical to the uniform distribution over {0, 1}λk+k.

8



This lemma shows that one can “extract” a small set B from a program M such that DPk(fi; -)
looks pseudorandom against M for every i ∈ [n] \ B. In particular, for every i ∈ [n] \ B, the
program M cannot read si from ξi = DPk(fi; zi)⊕s′i, where s′i denotes (0λk, si). Moreover, we have
|B| . |M |/λ ≤ θ/2, which implies that B is not authorized. By the privacy of the secret sharing
scheme, the shares sB and the secret b ∼ {0, 1} are statistically independent; thus, we obtain

Pr
[
M(XB ⊕ s′B, U[n]\B ⊕ s′[n]\B) = b

]
= Pr

[
M(XB ⊕ s′B, U[n]\B) = b

]
=

1

2
.

It follows from the algorithmic information extraction lemma that13

Pr
(x,b)∼E

[M(x) = b] = Pr
[
M(XB ⊕ s′B, X[n]\B ⊕ s′[n]\B) = b

]
≈ Pr

[
M(XB ⊕ s′B, U[n]\B ⊕ s′[n]\B) = b

]
=

1

2
,

as desired.
It remains to prove the algorithmic information extraction lemma. We formalize the notion

that M “knows” fi by using conditional Kolmogorov complexity: We say that M knows fi if

K(fi |M) ≤ θ

for a threshold θ := 2nk. The intuition behind this definition is that if M contains a lot of
information about fi, it should be possible to describe fi using a few bits of information.14 Now,
we define B to be the set of indices i ∈ [n] such that M knows fi. It can be shown that |B| is small:

|B| · λ− |M | . K(fB)− |M | . K(fB |M) .
∑
i∈B

K(fi |M) ≤ |B| · θ, (2)

where the first inequality is due to the assumption, the second inequality holds by the definition
of conditional Kolmogorov complexity, the third inequality holds because fB = (fi | i ∈ B) can be
described by programs describing fi for all i ∈ B, and the last inequality holds by the definition of
B. If we choose a sufficiently large λ so that θ = o(λ) (e.g., λ := θ2), we obtain

|B| · λ · (1− o(1)) . |M |,

which implies |B| . |M |/λ, as desired. We now prove that M cannot distinguish Xi = DPk(fi; zi)
from Ui for every i ∈ [n] \B. This can be proved by a standard (but careful) hybrid argument. To
illustrate the idea, let us assume that B = {2} and n = 2. In this case, we show

Pr
z1,z2

[M(DPk(f1; z1),DPk(f2; z2)) = 1] ≈ Pr
U1,z2

[M(U1,DPk(f2; z2)) = 1].

Assume, toward a contradiction, that this approximate equality fails. Our goal is to prove
K(f1 |M) ≤ θ, which contradicts that M does not know f1 (i.e., 1 6∈ B). We use the reconstruction

13The argument is not precise, especially because we need to argue that the set B does not depend on the secret b
and the shares s[n]. To address this issue, the algorithmic information extraction lemma will be stated for a program
that takes an advice string α, which includes the information about the secret and the shares; see Lemma 6.1 for
details.

14In terms of the mutual information I(fi : M) := K(fi) − K(fi | M) between fi and M , the condition that M
knows fi means that I(fi : M) ≈ K(fi).
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property of DPk. However, it is problematic to apply the property of Eq. (1) naively: Applying
Eq. (1), we would get KD(f1) . k, where D is a function that outputs M(w,DPk(f2; z2)) on input
w and random bits z2. Since D can be simulated using M and f2, we get

K(f1 |M,f2) . KD(f1) . k.

We need to get rid of f2 from the condition of K(f1 |M,f2). To this end, we observe that D is in fact
a randomized algorithm that takes an a-bit advice string that depends on randomness for some small
a ∈ N (independent of λ); the notion of such advice is introduced by Trevisan and Vadhan [TV07].
Specifically, D takes w and random bits z2 and outputs M(w,DPk(f2; z2)) = M(w, (z2, f2 · z2));
the key insight is that this function can be computed with the k-bit advice string f2 · z2 ∈ {0, 1}k;
we do not need the full description of f2 ∈ {0, 1}λ to compute D. Using a pseudorandom generator
(computable by an exhaustive search), we observe that the reconstruction property of Eq. (1)
actually shows

K(f1 |M) . k + a

for any randomized algorithm M that takes a bits of Trevisan–Vadhan advice. In our case, we have
a ≤ (n − 1) · k; thus, we can show K(f1 | M) . nk ≤ θ/2. This implies that M knows f1, which
contradicts 1 6∈ B.

2.2 NP-Hardness of Partial Variants of Meta-computatioal Problems

We now update the proof above to a proof of Theorem 1.2, i.e., NP-hardness of the partial function
variants of meta-computational problems, such as NC1-MCSP∗,MCSP∗,MKTP∗, and MINKT∗.
Specifically, our goal is to reduce an instance of an NP-complete problem to an example distribution
E such that supp(E) ⊆ {0, 1}O(logn)×{0, 1}, where n is the length of an instance of the origianl NP-
complete problem. Enumerating all the elements in the support supp(E) of the distribution E , we
obtain a partial function f : {0, 1}O(logn) → {0, 1, ∗}, which yields a reduction to partial variants of
meta-computational problems. Note that the reduction of Theorem 1.1 produces a partial function
f : {0, 1}nO(1) → {0, 1, ∗}. We need to exponentially reduce the input length of f .

We start by inspecting the NP-hardness reduction to the MMSA problem. Dinur and Safra
[DS04] showed a generic approximation-preserving reduction from any MaxCSP (Constraint Sat-
isfaction Problem) to MMSA. An instance of MaxCSP consists of the set Ψ = {C1, . . . , Cm} of
constraints over n variables taking a value in an alphabet Σ. Each constraint Cj depends on D
variables, where D = O(1). The reduction of [DS04] reduces such an instance to a depth-3 mono-
tone formula ϕ such that ϕ =

∧
j∈[m] ϕj , where each depth-2 subformula ϕj “checks” that the

constraint Cj is satisfied. Since each constraint Cj depends on a constant number D of variables,
each subformula ϕj also depend on a small number of variables. The main idea of reducing the
input length in our reduction is to exploit this “locality” of ϕj .

We introduce the Collective Minimum (Weight) Monotone Satisfying Assignment (CMMSA)
problem, which generalizes the MMSA problem. An instance of CMMSA consists of a collection
Φ = {ϕ1, . . . , ϕm} of monotone DNF formulas over n variables, a weight function w : [n]→ N, and
a threshold θ. The task is to distinguish (1) the Yes case in which there exists an assignment
α : [n]→ {0, 1} such that the weight

∑n
i=1 α(i) ·w(i) is at most θ and Prϕ∼Φ[ϕ(α) = 1] = 1 from (2)

the No case in which for every assignment of weight ∆ε · θ, it holds that Prϕ∼Φ[ϕ(α) = 1] < ∆−ε,
where ε > 0 is a constant and ∆ is a parameter such that the number of literals in the DNF formula
ϕj is at most ∆ for every j ∈ [m]. Using a PCP system [DFKRS11] developed in the research line
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on the Sliding Scale Conjecture [BGLR94], we observe that CMMSA is NP-hard for some constant
ε > 0 and for a parameter ∆ := (log n)1/2, by applying the reduction of [DS04]. We note that the
weight function w in CMMSA is used for a technical reason; thus, for the purpose of simplicity, we
assume that w ≡ 1 in this proof overview.

Now, our goal is to reduce CMMSA to MINKT∗. To this end, we exploit the “locality” of
CMMSA: Each formula ϕj in Φ depends on at most ∆ variables out of n variables. The reduction
is simliar to the reduction of Theorem 1.1. We choose f1, . . . , fn ∼ {0, 1}λ randomly. We define
a distribution E = E(f1, . . . , fn) as follows: Choose a secret b ∼ {0, 1} and ϕj ∼ Φ randomly.
Using the secret sharing scheme for ϕj , we share b among at most ∆ parties v1, . . . , v∆ ∈ [n]. Let
(s1, . . . , s∆) = Share(ϕj , b) be the shares distributed to the parties v1, . . . , v∆, respectively. We
define an input x to be (j,DPk(fv1 ; z1) ⊕ s′1, . . . ,DPk(fv∆ ; z∆) ⊕ s′∆), where s′i := (0λk, si). The
output of the distribution E is defined to be (x, b). Just as in the proof of Theorem 1.1, it is possible
to prove the following: If there is an assignment α : [n] → {0, 1} that satisfies all the formulas ϕj
in Φ, then there exists a program of size .

∑n
i=1 α(i) · λ (that takes {fi | α(i) = 1} as hard-wired

input) that computes b on input x for every (x, b) ∈ supp(E). If there is no assignment of small
weight that satisfies a ∆−ε-fraction of Φ, then there is no small program that computes b on input
x with probability 1/2 + 2∆−ε over a random choice of (x, b) ∼ E .

The only issue is that the length of the seeds z1, . . . , z∆ is large, which prevents us from getting
|x| = O(log n). The length of each zi is λk, which is always greater than the length of fi. This
comes from the fact that DPk is instantiated with the Hadamard encoding, which maps a string fi
of length λ to a string of length 2λ. Instead, if we instantiate a k-wise direct product generator with
an error correcting code that maps a string of length λ to a string of length λO(1), we can reduce
the length of seed zi to k · O(log λ) (as in [Hir20b]). This optimization is not still sufficient to get
|x| = O(log n), as the seeds z1, . . . , z∆ are independent. To further reduce the seed length, we use
the Nisan–Wigderson pseudorandom generator construction [NW94]. Nisan and Wigderson [NW94]
developed a way of generating correlated seeds zS1 , . . . , zS∆

from a short seed z; they used it to
construct a pseudorandom generator with short seed length based on an average-case hard function.
Using the Nisan–Wigderson pseudorandom generator construction NW, we construct the input x
as (j, z,NW(Enc(fv1); zS1)⊕ s1, . . . ,NW(Enc(fv∆); zS∆

)⊕ s∆), where Enc: {0, 1}λ → {0, 1}λO(1)
is

an error-correcting code. It can be shown that the input length |x| is O(log n). This completes an
overview of the proof of NP-hardness of MINKT∗.

Showing NP-hardness of MCSP∗ requires additional ideas. We need to argue that there is a
small circuit C that takes x = (j, z,NW(Enc(fv1); zS1)⊕s1, . . . ,NW(Enc(fv∆); zS∆

)⊕s∆) as input,
reads shares from the input, and reconstructs a secret. This can be done by a poly(λ)-time algorithm
by computing Enc(fvi) from a hard-wired input fvi . However, this is not necessarily possible for a
circuit. The string fvi ∈ {0, 1}λ must be hard-wired in a circuit using O(λ/ log λ) gates. Then, the
bits of Enc(fvi) specified by zSi must be computed from such embedded gates using O(λ/ log λ)
gates. This does not seem to be possible, as each bit of Enc(fvi) depends on almost all bits of fvi
in order for Enc to be a good error-correcting code; thus, just reading such bits amounts to O(λ)
gates, which is too large. One may be tempted to let Enc be the identity function to avoid such a
computation, but this does not work because it significantly weakens the reconstruction property
of NW. In general, there are two conflicting requirements on Enc(-):

1. We need to ensure that each bit of Enc(f) can be computed by reading a small number of
bits from f .

2. Enc(-) must be a good list-decodable error-correcting code: Given a string that agrees with
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Enc(f) on a (1/2 + ε)-fraction of bits for a small parameter ε > 0, f must be identified with
a small number of advice bits.

In other words, we need a “locally-encodable and list-decodable” error-correcting code. We observe
that the derandomized hardness amplification theorem of Impagliazzo and Wigderson [IW97] can
be seen as such a code: They showed that any function f : {0, 1}log λ → {0, 1} can be converted into
a function f̂ : {0, 1}O(log λ) → {0, 1} so that given a small circuit that computes f̂ on a (1/2 + ε)-
fraction of inputs, there exists a small circuit that computes f on almost all inputs. Letting Enc(f)
be f̂ , we observe that the two properties are satisfied. This enables us to prove NP-hardness of
MKTP∗.

Proving NP-hardness of MCSP∗ requires an additional (and the last) ingredient. We need to
ensure that f̂ can be computed by a circuit of size O(λ/ log λ) for a random function f : {0, 1}log λ →
{0, 1}. To this end, we employ the theorem of Uhlig [Uhl74; Uhl92], which shows that for any func-
tion f : {0, 1}log λ → {0, 1}, the r-wise direct product f r :

(
{0, 1}log λ

)r → {0, 1}r can be computed

by a circuit of size O(λ/ log λ) for r = λo(1/ log log λ). Since f̂ can be locally computed by using the
output of f on at most r inputs, we obtain a circuit of size O(λ/ log λ) that computes f̂ .

3 Open Problems

We expect that our results open up several fruitful research directions, which we mention below.

MCSP A major open problem is to prove NP-hardness of MCSP. Following the two-step
paradigm of showing NP-hardness of variants of MCSP, it suffices to present a reduction from
MCSP∗ to MCSP. We expect that this task now becomes much easier than it was previously,
because the reduction of Theorem 1.2 creates a large gap between the Yes instances and the No
instances. It would be a promising research direction to reduce the approximate and partial variant
of MCSP of Theorem 1.2 to MCSP.

It is also interesting to see if MCSP∗ for AC0 circuits is NP-hard. In general, our results do
not necessarily prove NP-hardness of MCSP∗ for circuit classes with unbounded-fan-in gates. The
reason is that an O(1)-fan-in circuit of size s can be encoded as a binary string of O(s log s), whereas
the binary encoding of an unbounded-fan-in circuit of size s can be as large as s2. It is an interesting
open question to broaden the applicability of our results to unbounded-fan-in circuits.

Heuristica Another major open question is to improve the inapproximability factor nε of The-
orem 1.1 to 1.01n. As is demonstrated in Appendix A, this will have a significant consequence
on Impagliazzo’s five worlds; in particular, it excludes Heuristica. We expect that this requires
a “non-black-box” reduction technique that exploits the efficiency of a program in the No case.
Indeed, the literature on the limits of black-box reductions [FF93; BT06b; AGGM06; BB15; HW20]
suggests that no nonadaptive randomized reduction can reduce NP to a black-box oracle that solves
NP on average. Our proof techniques are algorithmic information theoretic and do not exploit the
efficiency of programs in the No case; thus, we expect that our reduction techniques are subject to
such a barrier.

We note, however, that excluding Heuristica is in principle achievable by a combination of cur-
rent proof techniques: Hirahara [Hir18; Hir21] developed non-black-box but relativizing reduction
techniques (thus subject to the relativization barrier of Impagliazzo [Imp11]; see also [HN21]); we
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developed black-box but non-relativizing reduction techniques. What remains is to combine these
proof techniques to simultaneously overcome black-box and relativization barriers. One way to do
this is to reduce the approximate problem of MINKT∗ (Theorem 1.2) to an approximate problem
GapMINKT of MINKT, which is known to be in P in Heuristica [Hir18; Hir20a].

A less challenging but intriguing open problem is to improve the inapproximability factor nε

to n1−o(1), which could be achievable by combining sophisticated PCP machinery with the proof
techniques developed in this paper.

Computational Learning Theory Our proof techniques would have applications to the prob-
lem of learning parities, which is one of central research topics in computational learning theory
(see, e.g., [KMV08; BGGS16] and references therein). Learning k-sparse parities by k-juntas is
known to be W[1]-hard [BGGS16]. We strongly conjecture that Theorem 1.1 can be improved to

NP-hardness of learning s-sparse parities by programs of size s ·n1/(log logn)O(1)
, which would signif-

icantly improve [BGGS16]. In fact, the only missing piece is the following question on PCPs: Can
the PCP system of Dinur, Harsha, and Kindler [DHK15] be made smooth in the sense that every
coordinate of a proof is queried equally likely?15 We expect that the proof techniques developed in,
e.g., [BHPT20], that make PCP systems smooth can be used to affirmatively resolve this question.

More broadly, our results open up the possibility of showing NP-hardness of PAC learning of
various concept classes by small programs. There are many non-proper PAC learner in the literature
(e.g., [KMV08; LMN93; CIKK16], to name a few). Can we give evidence that such PAC learners
cannot produce small programs, using our proof techniques of showing NP-hardness?

Organization The remainder of this paper is organized as follows. In Section 4, we review
the notion of Kolmogorov complexity and secret sharing scheme. Section 5 proves NP-hardness
of the Collective Minimum Weight Monotone Satisfying Assignment problem. Section 6 proves
algorithmic information extraction lemmas. Sections 7 and 8 complete the proofs of Theorems 1.1
and 1.2, respectively. Appendix A presents the connection to excluding Heuristica. Appendix B
extends Ko’s relativization barrier to randomized reductions. In Appendix C, we mention a folklore
result of NP-hardness of learning size-s circuits by size-s circuits.

4 Preliminaries

We review the notion of Kolmogorov complexity and secret sharing scheme.

4.1 Kolmogorov Complexity

In order to show NP-hardness of MKTP∗, we define time-bounded Kolmogorov complexity in such
a way that it is meaningful even for sublinear-time bounds, following [ABKMR06]: A program is
given random access to the data hard-wired in the program. For a string x ∈ {0, 1}n and an integer
i ∈ [n+ 1], let xi denote the i-th bit of x if i ≤ |x| and xi := ⊥ otherwise. A program for describing
x is required to compute xi for each input i. In this way, we may define the KT-complexity of
a string x, which is polynomially related to the circuit complexity of x, i.e., the minimum size of

15In fact, it suffices to have |Ψ(x)| � n1/(log logn)O(1)

in the notation of Theorem 5.2. We suspect that the original
construction of [DHK15] might already satisfy this weak condition.
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circuits that compute xi on input i. More formally, we fix an efficient universal Turing machine U .
The time-bounded Kolmogorov complexity is defined as follows.

Definition 4.1 (Time-bounded Kolmogorov complexity). For strings x, y ∈ {0, 1}∗, a time bound
t ∈ N ∪ {∞}, and an oracle A, the A-oracle t-time-bounded Kolmogorov complexity of x given y is
defined as

Kt,A(x | y) := min
{
|d|
∣∣∣ UA,d,y outputs xi on input i ∈ [|x|+ 1] in time t

}
.

Here, UA,d,y indicates that U is given oracle access to A and random access to d and y. We omit
the superscript A if A = ∅, the superscript t if t =∞, and “ | y” if y is the empty string. We define

KT(x) := min
{
s+ t

∣∣ Kt(x) ≤ s
}
.

A simple counting argument implies the following basic fact of Kolmogorov-randomness.

Fact 4.2. For any integer s ≥ 1 and any string y ∈ {0, 1}∗, the number of strings x ∈ {0, 1}∗ such
that K(x | y) < s is less than 2s.

Proof. The number of programs of length less than s is at most
∑s−1

i=0 2i < 2s.

4.2 Secret Sharing Scheme

A secret sharing scheme, independently introduced by Shamir [Sha79] and Blakley [Bla79], enables
sharing a secret among n parties so that an “authorized” set of parties can reconstruct the secret,
whereas any unauthorized set of parties obtains no information about the secret. Formally, whether
a set of parties is authorized or not is represented by an access structure.

Definition 4.3 (Access Structure). An access structure A ⊆ 2[n] is a “monotone” collection of
subsets of [n]; that is, for every T ⊇ S ∈ A, we have T ∈ A. A monotone function f : {0, 1}n →
{0, 1} is said to represent A if f(χT ) = 1 ⇔ T ∈ A for every subset T ⊆ [n], where χT ∈ {0, 1}n
is the characteristic vector of T . A subset T ∈ A is said to be authorized (with respect to A);
otherwise, it is said to be unauthorized.

A secret sharing scheme consists of a randomized “sharing” algorithm Share and a deterministic
“reconstruction” algorithm Rec. Given a secret b ∈ {0, 1}, the algorithm Share(b) outputs n shares
s1, . . . , sn; the i-th share is given to the i-th party.16 A secret sharing scheme must satisfies two
properties, correctness and privacy:

Definition 4.4 (Secret Sharing Scheme [Bei11]). A secret sharing scheme for A ⊆ 2[n] is a pair
(Share,Rec) of a randomized algorithm Share and a deterministic algorithm Rec with the following
properties:

Correctness: For every authorized set T ∈ A and for every bit b ∈ {0, 1}, the output of Share(b)
is a sequence (s1, . . . , sn) of n strings that satisfies Rec(T, sT ) = b with probability 1 over the
internal randomness of Share(b).

16Although a secret sharing scheme can share a string instead of one bit b in general, this is sufficient for our
purpose.
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Privacy: For every unauthorized set T 6∈ A and for every random variable b on {0, 1}, the random
variables b and Share(b)T are statistically independent.

It is known that there exists an “efficient” secret sharing scheme for the access structures
represented by monotone formulas.

Lemma 4.5 (Ito, Saio, and Nishizeki [ISN93] and Benaloh and Leichter [BL88]). Let A = {Aϕ}ϕ
be the family of access structures Aϕ represented by monotone formulas ϕ. Then, there exists a pair
of a randomized polynomial-time algorithm Share and a deterministic polynomial-time algorithm
Rec such that for every monotone formula ϕ, the pair (Share(ϕ, -),Rec(ϕ, -)) is a secret sharing
scheme for the access structure Aϕ. Moreover, the length |si| of each share si is at most the number
|ϕ| of the literals in the formula ϕ. For each fixed ϕ and T , the reconstruction algorithm Rec(ϕ, T, -)
computes a linear function of sT over GF(2).

We refer the reader to the survey of Beimel [Bei11] for a broad overview of secret sharing
scheme.

5 Collective Minimum Monotone Satisfying Assignment Problem

We introduce a variant of the Minimum Monotone Satisfying Assignment problem [ABMP01;
DS04], which we call the Collective Minimum (Weight) Monotone Satisfying Assignment (CMMSA)
problem. The original problem asks to compute the minimum Hamming weight of an assignment
that satisfies a given monotone formula. Here, we generalize the problem to a weighted version in
which each variable has its own weight and a collective version in which the goal is to find the min-
imum weight of an assignment that satisfies as many as formulas in a given collection of monotone
formulas.

To formally define the problem, we prepare some notation. For a monotone formula ϕ on n
variables and a function w : [n] → N, the weight of an assignment α : [n] → {0, 1} with respect to
w is defined to be

∑n
i=1 α(i) · w(i) and is denoted by w(α). Let ϕ(α) ∈ {0, 1} denote the output

of ϕ when the variables are assigned by α. For a subset T ⊆ [n], let w(T ) :=
∑

i∈T w(i). Now, we
present the formal definition of CMMSA.

Definition 5.1. The Collective Minimum (Weight) Satisfying Assignment problem (CMMSA)
with gap g ∈ N and soundness ε > 0 is the following problem. The input consists of a collection
Φ = {ϕ1, . . . , ϕm} of monotone formulas over the set [n] of input variables, the weight function
w : [n] → N represented in unary, and a threshold parameter s ∈ N. The task is to distinguish the
following two cases.

Yes: There exists an assignment α : [n]→ {0, 1} such that

w(α) ≤ s and Pr
ϕ∼Φ

[ϕ(α) = 1] = 1.

No: For every assignment α : [n]→ {0, 1}, if w(α) ≤ g · s, then

Pr
ϕ∼Φ

[ϕ(α) = 1] < ε.

The degree of Φ is defined to be maxϕ∈Φ |ϕ|, where |ϕ| denotes the number of the literals in the
formula ϕ. The size of an instance of CMMSA is measured by the number n of input variables.
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Dinur and Safra [DS04] showed NP-hardness of the MMSA problem. We apply their reduction
to CMMSA.

Theorem 5.2. For any constant β > 0, there exists a constant α > 0 such that for every pa-
rameter ∆: N → N such that ω(1) ≤ ∆(n) ≤ 2(logn)1−β

for all large n ∈ N, it is NP-hard un-
der polynomial-time many-one reductions to compute CMMSA with gap ∆(n)α, degree ∆(n), and
soundness ∆(n)−α on a collection Φ of monotone DNF formulas over n variables.

We will use this result for ∆(n) := (log n)1/2. For our applications, it is important to maximize
the gap ∆(n)α for a fixed degree ∆(n) because in the NP-hardness reductions of learning, the input
length of a target function is determined by the degree ∆(n), and the inapproximability factor is
determined by the gap ∆(n)α. To obtain the large gap in Theorem 5.2, we employ PCP systems
from the literature on the Sliding Scale Conjecture. The Sliding Scale Conjecture [BGLR94] states
that for every parameter δ such that 1

poly(n) ≤ δ < 1, every language in NP has a PCP verifier that

tosses O(log n) random coins, makes O(1) queries into a proof over an alphabet Σ of size poly(1/δ),
has perfect completeness, and soundness error δ. This conjecture was resolved for any sufficiently
large soundness error δ ≥ 2−(logn)1−β

for a constant β > 0.

Lemma 5.3 ([DFKRS11; DHK15]). Let β > 0 be a constant and δ : N→ [0, 1] be a function such

that δ(n) ≥ 2−(logn)1−β
for all large n ∈ N. Then, every language L ∈ NP admits an O(1/β)-query

PCP system over an alphabet size poly(1/δ(n)) with randomness complexity O(log n), soundness
error δ, and perfect completeness on inputs of length n.

This was originally proved by Dinur, Fischer, Kindler, Raz, and Safra [DFKRS11]. Although

the main result of [DFKRS11] is stated only for δ(n) = 2−(logn)1−β
for an arbitrary constant

β ∈ (0, 1), the subsequent work of Dinur, Harsha, and Kindler [DHK15] gave a streamlined proof

of [DFKRS11], from which a PCP system with larger soundness error δ(n) ≥ 2−(logn)1−β
can be

obtained.
Using this PCP system, we present a proof of Theorem 5.2.

Proof of Theorem 5.2. The PCP theorem of Lemma 5.3 can be stated in terms of MaxCSP as
follows: Let Ψ = {C1, . . . , Cm} be the set of constraints over n variables on the alphabet Σ. Here,
for any internal randomness j ∈ {0, 1}O(logn) of the PCP verifier of Lemma 5.3, there is a constraint
Cj . Each constraint Cj depends on exactly D = O(1/β) variables. The size of the alphabet Σ is
at most poly(1/δ). Let C−1

j (1) denote the set of assignments to the variables in Cj that cause
Cj to accept. Here, an assignment r to the variables in Cj is a function r : dom(r) → Σ, where
dom(r) ⊆ [n] denotes the set of variables in Cj .

Given the MaxCSP instance Ψ over Σ, we reduce it to an instance (Φ,w : [n]× Σ→ N, s ∈ N)
of CMMSA as follows: Each variable of Φ is indexed by (x, a) ∈ [n] × Σ and is denoted by Lx,a.
Informally, Lx,a = 1 indicates that the variable x in the original CSP instance Ψ is assigned to
a ∈ Σ. For each j ∈ [m], construct a monotone DNF formula ϕj defined as

ϕj(L) :=
∨

r∈C−1
j (1)

∧
x∈dom(r)

Lx,r(x).

We define the weight w(x, a) of Lx,a to be |Ψ(x)|, where Ψ(x) is the set of indices j ∈ [n] such that
Cj contains x as a variable. We define s := mD.
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We prove the correctness of the reduction. Assume that the CSP instance Ψ is satisfied by an
assignment α : [n] → Σ. Then, we set Lx,α(x) := 1 and Lx,y := 0 for every y ∈ Σ \ {α(x)}. Since
w(x, α(x)) = |Ψ(x)|, the weight of the assignment L : [n]× Σ→ {0, 1} is

w(L) =
∑
x∈[n]

|Ψ(x)| = |{(x, j) ∈ [n]× [m] | j ∈ Ψ(x)}| = mD.

Here, we used that each constraint Cj depends on exactly D variables. For every j ∈ [m], we have
Cj(α) = 1; thus, ϕj(L) = 1. This implies that (Φ,w, s) is a Yes instance of CMMSA.

Next, assume that any assignment to Ψ can satisfy at most a δ-fraction of constraints in Ψ,
where δ is a soundness parameter of Lemma 5.3 chosen later depending on a given parameter ∆.
Assume that there exists an assignment L : [n]× Σ→ {0, 1} such that w(L) = g ·mD and

Pr
j∼[m]

[ϕj(L) = 1] ≥ ε, (3)

where ε > 0 is a parameter to be chosen later. We claim that g must be large. For each variable
x ∈ [n] of Ψ, let A(x) := {a ∈ Σ | Lx,a = 1}. By the definition of the weight function w(-), we have

w(L) =
∑
x

|Ψ(x)| · |A(x)| ≤ g ·mD. (4)

Consider the distribution D on the set [n] of variables defined by the following sampling procedure:
Choose Cj ∼ Ψ uniformly and randomly, choose a variable x from the variables of Cj uniformly
and randomly, and output x. Each variable x is chosen with probability |Ψ(x)|/mD; thus, Eq. (4)
is equivalent to

E
x∼D

[|A(x)|] ≤ g.

Therefore, we obtain

ε

2D
≥ ε

2gD
· E
x∼D

[|A(x)|]

≥ Pr
x∼D

[
|A(x)| ≥ 2gD

ε

]
(by Markov’s inequality)

≥ Pr
C∼Ψ

[
|A(x)| ≥ 2gD

ε
for some variable x in C

]
· 1

D
. (since C contains D variables)

Combining this inequality with Eq. (3), we get

Pr
C∼Ψ

[
∃r ∈ C−1(1), ∀x ∈ dom(r), |A(x)| ≤ 2gD

ε
and r(x) ∈ A(x)

]
≥ ε− ε

2
=
ε

2
.

Now, we construct a random assignment α : [n]→ Σ as follows: For each x ∈ [n], pick a ∼ A(x) ⊆ Σ
uniformly and randomly and define α(x) := a. Under the event that r ∈ C−1(1), |A(x)| ≤ 2gD

ε ,
and r(x) ∈ A(x) for every x ∈ dom(r), we have C(α) = 1 if α(x) = r(x) for every x ∈ dom(r),

which happens with probability at least
(

ε
2gD

)D
. It follows that

Pr
C∼Ψ
α

[C(α) = 1] ≥ ε

2
·
(

ε

2gD

)D
.
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By an averaging argument, there exists an assignment α : [n]→ Σ that satisfies a ε
2 ·
(

ε
2gD

)D
-fraction

of constraints in Ψ. By the assumption on Ψ, we have

ε

2
·
(

ε

2gD

)D
≤ δ,

which implies that

g ≥
( ε

2

)1+ 1
D · δ−

1
D · 1

D
≥ Ω

(
ε2 · δ−

1
D

)
.

Setting ε := δ
1

4D , we obtain

g ≥ Ω
(
δ−

1
2D

)
.

The number of the literals in ϕj ∈ Φ is at most |C−1
j (1)| · D ≤ |Σ|D · D ≤ δ−O(D). Given a

parameter ∆, we choose δ := ∆−Ω(1/D) so that the degree of Φ is at most ∆. Then, the gap g is at

least Ω
(
δ−

1
2D

)
≥ ∆Ω(1/D2). Moreover, the soundness ε is at least δ

1
4D ≥ ∆−Ω(1/D2).

Remark 5.4. Dinur and Safra [DS04] showed that the unweighted version of CMMSA (in which
w ≡ 1) is NP-hard. The output of their reduction is a depth-3 formula ϕ :=

∧
Φ, where Φ is

the collection of monotone DNF formulas in the proof of Theorem 5.2. They made the instance
unweighted by replacing each variable Lx,a with

∧
i∈[w(x,a)] T

i
x,a, where T ix,a is a fresh variable for

each i. Note that Lx,a can be set to 1 if and only if T ix,a = 1 for every i ∈ [w(x, a)]. In this
way, one can transform a weighted version into a unweighted version. However, this transformation
potentially increases the degree of Φ; thus, we chose to present the reduction for a weighted version.

For the proof of Theorem 1.1, we use NP-hardness of approximating MMSA.

Lemma 5.5 ([DS04; DHK15]; see also [Hir22]). It is NP-hard to compute CMMSA with gap

g = n1/(log logn)O(1)
on inputs Φ = {ϕ}, where ϕ is a depth-3 monotone formula over n variables.

Proof Sketch. Dinur, Harsha, and Kindler [DHK15] showed a weak variant of the Sliding Scale
Conjecture in which the number of queries is relaxed to be D = (log log n)O(1) and for the soundness
error δ(n) = 1/poly(n). Combining this with the reduction of [DS04], we obtain NP-hardness of

approximating MMSA to within a factor of n1/(log logn)O(1)
.

6 Algorithmic Information Extraction Lemmas

In this section, we present algorithmic information extraction lemmas. In the case of the k-wise
direct product generator, the lemma can be formally stated as follows.

Lemma 6.1. Let a, k, ε−1 ∈ N, f1, . . . , fm ∈ {0, 1}λ, and D : {0, 1}a ×
(
{0, 1}λk+k

)m → {0, 1} be a
function. Then, there exists a set B ⊆ [m] such that

KD(fB) ≤ |B| · (mk + a+O(log(mλka/ε)))

and for every α ∈ {0, 1}a,∣∣Pr[D(α,X1, . . . , Xm) = 1]− Pr
[
D(α,X ′1, . . . , X

′
m) = 1

]∣∣ ≤ ε.
Here, Xi is the random variable identical to DPk(fi; zi) for a random choice of zi ∼ {0, 1}λk. X ′i
is identical to Xi if i ∈ B and to the uniform distribution if i ∈ [m] \B.
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This lemma shows that one can extract the set B of indices such that D “knows” fi for all
i ∈ B and D “does not know” fi for all i 6∈ B. The first condition ensures that the set B is small
(by a calculation similar to Eq. (2)). The second condition shows that D cannot distinguish the
output distribution of DPk(fi; -) from the uniform distribution for every i 6∈ B. For some technical
reason, we supply an advice string α to D; this will be used in order to provide the information on
a secret sharing scheme without affecting the choice of B.

For the purpose of showing NP-hardness of MCSP∗, we use the Nisan–Wigderson pseudorandom
generator construction. We will state an algorithmic extraction lemma for the Nisan–Wigderson
generator and prove Lemma 6.1 as a special case. We recall the notion of design and the definition
of the Nisan–Wigderson generator.

Proposition 6.2 ([NW94; Tre01]). For any sufficiently large parameters `,m, ρ ∈ N with m ≤ 2`,
there exists a “design” S1, . . . , Sm ⊆ [d] such that for every i ∈ [m],

1. |Si| = `, d = O(exp(`/ρ) · `2/ρ), and

2. |Si ∩ Sj | ≤ ρ for every j ∈ [m] \ {i}

Moreover, such a family can be constructed in time poly(2d,m).

Definition 6.3 (The Nisan–Wigderson pseudorandom generator construction [NW94]). Let S =
(S1, . . . , Sm) be a family of `-sized subsets of [d]. We define a function

NWS : {0, 1}2` × {0, 1}d → {0, 1}m

as
NWS(f ; z) := (f(zS1), . . . , f(zSm)) ∈ {0, 1}m,

where we identify a string f ∈ {0, 1}2` with a Boolean function f : {0, 1}` → {0, 1} and zSi ∈ {0, 1}`
denotes the string obtained by concatenating all the bits of z indexed by Si.

Nisan and Wigderson [NW94] showed that if any small circuit fails to compute f on a (1/2 −
o(1))-fraction of inputs, then NWS(f ; z) is a pseudorandom generator secure against small circuits.
To state this reconstruction property formally, we recall an average-case version of Kolmogorov
complexity.

Definition 6.4 ([ISW06; FLV06]). For any δ < 1
2 , any string x ∈ {0, 1}∗, and any oracle A ⊆

{0, 1}∗, let KA
δ (x) denote the minimum of KA(y) over all strings y ∈ {0, 1}|x| with Hamming

distance at most δ|y| from x.

Although reconstruction properties of pseudorandom generator constructions are usually given
by randomized algorithms, it is possible to derandomize the algorithms by using a pseudorandom
generator.

Fact 6.5. Let A ⊆ {0, 1}∗ be an oracle and t : N→ N be a computable function. Then, there exists
a pseudorandom generator

G =
{
Gn : {0, 1}O(logn) → {0, 1}n

}
n∈N

secure against A-oracle t(n)-time programs of length n. The pseudorandom generator can be com-
puted in finite steps given oracle access to A.
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Proof Sketch. We claim the existence of a pseudorandom generator Gn : {0, 1}s(n) → {0, 1}n. Let
Gn be a uniformly random function. Fix any A-oracle n-input program MA of size n. Let ε := 1/n.
By Hoeffding’s inequality, we have

Pr
Gn

[∣∣∣∣ E
z∼{0,1}s(n)

[
MA(Gn(z))

]
− E
w∼{0,1}n

[
MA(w)

]
≥ ε
∣∣∣∣] ≤ 2 exp

(
−2ε22s(n)

)
.

By taking a union bound over all programs of size n, the probability that there exists a program of
size n that can distinguish Gn(-) from the uniform distribution is at most 2O(n) · exp

(
−2ε22s(n)

)
.

For a sufficiently large s(n) = O(log(n/ε)), this probability is bounded above by 1
2 . In particular,

there exists a pseudorandom generator Gn : {0, 1}s(n) → {0, 1}n secure against linear-sized A-oracle
programs. Such a pseudorandom generator can be found by an exhaustive search.

We are now ready to state and prove the algorithmic information extraction lemma for the
Nisan–Wigderson pseudorandom generator, which generalizes Lemma 6.1.

Lemma 6.6. Let a, `, d,m, ε−1 ∈ N. Let S = (S1, . . . , Sm) be a family of `-sized subsets of [d]. Let
f1, . . . , fm : {0, 1}` → {0, 1} and D : {0, 1}a × {0, 1}d × {0, 1}m → {0, 1} be functions. Then, there
exists a subset B ⊆ [m] such that for every i ∈ B,

KD
1
2
− ε

2m′
(fi) ≤

∑
j∈[m]\{i}

2|Si∩Sj | + a+O(log(mad`′/ε))

and for every α ∈ {0, 1}a,∣∣Pr[D(α,Z,X1, . . . , Xm) = 1]− Pr
[
D(α,Z,X ′1, . . . , X

′
m) = 1

]∣∣ ≤ ε.
Here, Z ∼ {0, 1}d, Xi is the random variable identical to fi(ZSi), and X ′i is the random variable
identical to Xi if i ∈ B and to a uniformly random bit X ′i ∼ {0, 1} if i ∈ [m] \B. We define m′ to
be the maximum, over all α, of the number of i ∈ [m] such that D(α, -, -) depends on Xi. We also

define `′ to be maxi∈[m] K2O(`)
(fi).

Proof. For each i ∈ [m], let θi :=
∑

j∈[m]\{i} 2|Si∩Sj | + a + O(log(mad`′/ε)) and let δ := 1
2 −

ε
2m′ .

We define a set B ⊆ [m] as
B :=

{
i ∈ [m]

∣∣ KD
δ (fi) ≤ θi

}
.

We prove that the function D cannot distinguish the distribution (α,Z,X1, . . . , Xm) from
(α,Z,X ′1, . . . , X

′
m). At a high level, this can be proved as follows: For any i ∈ B, the random

variables Xi and X ′i are identical. For any i ∈ [m] \ B, the bit Xi is one bit fi(ZSi) of the output
of the Nisan–Wigderson pseudorandom generator, which is indistinguishable from the uniformly
random bit X ′i ∼ {0, 1}; otherwise, fi can be approximated by using θi bits of an advice string and
the distinguisher D, which contradicts i 6∈ B, i.e., KD

δ (fi) > θi.
To formalize this argument, we use a standard hybrid argument [Vad12]. Fix any α ∈ {0, 1}a.

Let I ⊆ [m] be the set of indices i such that D(α, -, -) depends on Xi. Assume, toward a contra-
diction, that17

Pr[D(α,Z,X1, . . . , Xm) = 1]− Pr
[
D(α,Z,X ′1, . . . , X

′
m) = 1

]
≥ ε.

17Without loss of generality, we can drop the absolute value in this inequality.
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For each i ∈ {0, . . . ,m}, let Hi denote the random variable (X1, . . . , Xi, X
′
i+1, . . . , X

′
m). Since Hm

is identical to (X1, . . . , Xm) and H0 is identical to (X ′1, . . . , X
′
m), we have

Pr[D(α,Z,Hm) = 1]− Pr[D(α,Z,H0) = 1] ≥ ε.

Note that Hi−1 is identical to Hi if i 6∈ I. Thus, there exists an index i ∈ I such that

Pr[D(α,Z,Hi) = 1]− Pr[D(α,Z,Hi−1) = 1] ≥ ε

m′
,

where we used that |I| ≤ m′. Moreover, Hi−1 is identical to Hi if i ∈ B by the definition of X ′i;
thus, we have i 6∈ B. Our goal is to prove i ∈ B, which leads to a contradiction. By using Yao’s
next-bit predictor [Yao82], we obtain a randomized linear-sized D-oracle circuit PD such that

Pr
[
PD(α,Z,X1, . . . , Xi−1, X

′
i+1, . . . , X

′
m) = Xi

]
≥ 1

2
+

ε

m′
.

Now, we pick Z[d]\Si randomly, uniform bits in X ′i+1, . . . , X
′
m, and the internal randomness of PD.

Then, by an averaging argument, with probability at least ε
2m′ over such a random choice, it holds

that

Pr
ZSi

[
PD(α,Z,X1, . . . , Xi−1, X

′
i+1, . . . , X

′
m) = Xi

]
≥ 1

2
+

ε

2m′
= 1− δ.

Here, the probability is taken over only ZSi ∼ {0, 1}Si and the other random choices are fixed.
Let A be an advice function defined as follows: Each bit of the output of A is indexed by the set
Ii :=

{
(j, zSi∩Sj ) ∈ ([m] \ {i})× {0, 1}|Si∩Sj |

}
. For each (j, zSi∩Sj ) ∈ Ii and a given z[d]\Si , we write

down fj(zSj ) as one bit of the output of A. That is, A(i, z, f1, . . . , fm) :=
(
fj(zSj )

∣∣ (j, zSi∩Sj ) ∈ Ii
)
.

Observe that a′i := |Ii| =
∑

j∈[m]\{i} 2|Si∩Sj |. Note that (X1, . . . , Xi−1, X
′
i+1, . . . , X

′
m) can be com-

puted from i, Z, and the advice string A(i, Z, f1, . . . , fm). Moreover, since Xi = fi(ZSi), the circuit
PD can be used to approximate fi. Let RD be a randomized circuit that takes α, i, Z, and an
advice string β ∈ {0, 1}a′i and outputs the output bits of PD over all strings ZSi ∈ {0, 1}`. Then,
we have

Pr
[
dist(fi, R

D(α, i, Z,A(i, Z, f1, . . . , fm))) ≤ δ
]
≥ ε

2m′
, (5)

where dist(f, g) denotes the fractional Hamming distance between f and g and the probability is
taken over Z and the internal randomness of RD. Now, we derandomize this random choice using a
pseudorandom generator G : {0, 1}O(logN) → {0, 1}N secure against D-oracle linear-sized programs.
Note that the condition that fi is δ-close to RD(α, i, Z,A(i, Z, f1, . . . , fm)) can be checked by a D-
oracle program of size N = poly(`′,m, d, a, 1/ε) because we assumed that each fi has Kolmogorov
complexity at most `′. Using the pseudorandom generator G of Fact 6.5, there exists a seed of
length O(logN) such that the randomness used in Eq. (5) can be replaced while the probability
remains to be at least ε

2m′ −
1
N > 0. In particular, there exists a seed of length O(logN) such

that the reconstruction procedure RD prints a string δ-close to fi. Now, we are ready to describe
a D-oracle program MD that approximately describes fi: The program MD takes a seed of G,
i ∈ [m], α ∈ {0, 1}a, an advice string β ∈ {0, 1}a′i (which is supposed to be A(i, Z, f1, . . . , fm)),
generates Z and the internal randomness of RD by using G, and outputs RD(α, i, Z, β). Since this
program approximates fi, we obtain

Kf
δ (fi) ≤ a′i + a+O(logmad`′/ε) ≤ θi,

which implies i ∈ B. However, this contradicts the fact that i 6∈ B.
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The version of an algorithmic information extraction lemma for the k-wise direct product gen-
erator is an immediate corollary of Lemma 6.6.

Proof of Lemma 6.1. We apply Lemma 6.6 to the Hadamard encoding of f1, . . . , fm and a disjoint
family S = (S1, . . . , Smk). Let S = (S1, . . . , Smk) be a disjoint family of λ-sized subsets of [λkm].
For each i ∈ [m], let f̂i : {0, 1}λ → {0, 1} denote the function that takes x ∈ {0, 1}λ and outputs
the inner product 〈x, fi〉 :=

∑λ
j=1 xjfij mod 2. Let f ′(i−1)·k+j := f̂i for any j ∈ [k]. By applying

Lemma 6.6 to f ′1, . . . , f
′
mk and S1, . . . , Smk, we obtain a set B ⊆ [m] such that for every i ∈ B,

KD
1
2
− ε

2mk

(f̂i) ≤ m− 1 + a+O(log(mλak/ε)),

where we used that Si ∩ Sj = ∅ for every distinct pair (i, j) and that `′ = maxi K2O(λ)
(f̂i) ≤ O(λ).

Using the list-decoding algorithm of the Hadamard code [GL89], we obtain

KD(fi) ≤ m+ a+O(log(mλak/ε)).

Since fB can be described by programs of length KD(fi) that print fi for each i ∈ B, we have

KD(fB) ≤
∑
i∈B

KD(fi) +O(log λ) ≤ |B| · (m+ a+O(log(mλak/ε))).

This completes the proof of the first property.
Let z = (z1, . . . , zm) ∈

(
{0, 1}λk

)m
be a seed. The second property is immediate from Lemma 6.6

because X(i−1)·k+j of Lemma 6.6 is identical to the j-th bit of fi · zi ∈ {0, 1}k for every i ∈ [m] and
every j ∈ [k] (Recall that DPk(fi; zi) = (zi, fi · zi)).

7 NP-Hardness of Learning Programs

Using the tools developed in the previous two sections, we now present a proof of NP-hardness of
learning programs.

We formally define the problem of learning programs. For a distribution E , we say that E
is represented by a circuit S if the output S(r) of the circuit S over a uniformly random string
r ∼ {0, 1}|S| is identical to the distribution E .

Definition 7.1 (Learning Programs). Let t : N → N, g : N → N, and ε : N → (0, 1] be functions.
We define Gapt,g,εLearn to be the following promise problem: The input consists of a size parameter

s ≥ nΩ(1) represented in unary and a distribution E represented by a circuit such that supp(E) ⊆
{0, 1}n × {0, 1} for some n ∈ N.18 The task is to distinguish the following two cases:

Yes: There exists a t(n)-time program M of size s such that

Pr
(x,b)∼E

[M(x) = b] = 1.

No: For any program M of size s · g(n),

Pr
(x,b)∼E

[M(x) = b] <
1

2
+
ε(n)

2
.

18The lower bound on s is to make sure that the relativization barrier, which is applicable to additive approximation
versions, of Proposition B.1 holds. Note that this restriction makes NP-hardness stronger.
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Theorem 7.2 (Restatement of Theorem 1.1). For every constant δ > 0, there exist a polyno-

mial t and a function g(n) = n1/(log logn)O(1)
such that Gapt,g,εLearn is NP-hard under randomized

polynomial-time many-one reductions, where ε(n) := 2−n
1−δ

. Moreover, in the Yes case, there
exists a program M of size s that computes some linear function over x ∈ {0, 1}n that outputs b for
every (x, b) ∈ supp(E).

Proof. By Lemma 5.5, it suffices to present a randomized reduction R from the MMSA problem to
Gapt,g,εLearn. Let (ϕ, θ) be an instance of MMSA, where ϕ is a monotone formula over n variables

and θ ∈ N is a threshold parameter. The reduction R picks fi ∼ {0, 1}λ randomly for each i ∈ [n].
Then, R outputs a distribution E = E(f1, . . . , fn) from which one can sample (x, b) as follows: Pick
a secret b ∼ {0, 1} randomly. Using Lemma 4.5, share the secret b among n parties; that is, let
(s1, . . . , sn) := Share(ϕ, b), where each si is the share given to the i-th party. We may assume
without loss of generality that the length of si is exactly equal to k for every i ∈ [n]. The input x
is defined to be

(DPk(f1; z1)⊕ s′1, . . . ,DPk(fn; zn)⊕ s′n) = ((z1, f1 · z1 ⊕ s1), . . . , (zn, fn · zn ⊕ sn)),

where s′i := (0λk, si). Here, we define λ := max{(2nk)2/δ, |ϕ|2}. Note that the length of the input
x is n · (λk + k) ≤ 2nkλ; thus, we have |x| ≤ λ1+δ/2.

We prove the completeness of the reduction R. Assume that there exists an assignment α : [n]→
{0, 1} such that

∑n
i=1 α(i) ≤ θ. Let T := {i ∈ [n] | α(i) = 1}. We claim that there exists an efficient

program M of size (1 + o(1)) · θλ that computes b on input x for every (x, b) ∈ supp(E). The
program M takes ϕ, T , and {fi | i ∈ T} as hard-wired input and x = (ξ1, . . . , ξn) as input, defines
(zi, ξ

′
i) := ξi, computes si := (fi · zi) ⊕ ξ′i for each i ∈ T , and outputs b = Rec(ϕ, T, sT ). Since T

is an authorized set with respect to the access structure Aϕ represented by ϕ, the correctness of
this algorithm follows from the correctness of the secret sharing scheme. The running time of M is
clearly bounded by some polynomial t(n) in n. The size of M is at most

O(|ϕ| log |ϕ|) + |T | ·O(log n) +
∑
i∈T
|fi| ≤ (1 + o(1)) · λθ,

where we used |ϕ| log |ϕ| = o(λ) in the last inequality. The “moreover” part follows from the fact
that Rec(ϕ, T, -) is a linear function of sT and that sT is a linear function of the input x.

Now, we prove the soundness of the reduction R. Assume that there exists no assignment of
weight 2θ that satisfies ϕ. We first clarify the condition that the reduction R is successful.

Claim 7.3. With probability at least 1− o(1) over a random choice of f1, . . . , fn, it holds that

K(fB |M) ≥ |B| · λ− 2n (6)

for every B ⊆ [n].

Proof. Fix any B ⊆ [n]. By Fact 4.2, we have K(fB | M) ≥ |B| · λ − 2n with probability at least
1− 2−2n. By a union bound, with probability at least 1− 2−n, we obtain K(fB |M) ≥ |B| · λ− 2n
for every B ⊆ [n]. �

In what follows, we assume Eq. (6) and prove the soundness of R. Let M be a program
of size θλ. Let D be a Boolean function that takes an advice string α = (b, s1, . . . , sn) and
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((Z1, Y1), . . . , (Zn, Yn)) as input and outputs 1 if and only if M((Z1, Y1⊕s1), . . . , (Zn, Yn⊕sn)) = b.

Applying Lemma 6.1 for ε := 2−λ
1−δ/2

, there exists a set B ⊆ [n] such that

KD(fB) ≤ |B| · (nk + a+O(log(nkaλ/ε))), (7)

where a := |α| = O(nk), and for every α ∈ {0, 1}a,∣∣Pr[D(α, (Z1, Y1), . . . , (Zn, Yn)) = 1]− Pr
[
D(α, (Z1, Y

′
1), . . . , (Zn, Y

′
n)) = 1

]∣∣ ≤ ε,
where Yi = fi · Zi and Y ′i := Yi if i ∈ B and Y ′i ∼ {0, 1}k otherwise. Observe that

KD(fB) +O(log n) ≥ K(fB |M) +O(1) ≥ K(fB)− |M | ≥ |B| · λ− |M | − 2n,

where the first inequality holds because D can be computed if the program M is given19 and the
last inequality is due to Eq. (6). Combining this inequality with Eq. (7), we obtain

|B| · λ · (1− o(1)) ≤ |M |,

where we used that nk+a+O(log(nkaλ/ε)) = o(λ). Since |M | ≤ θλ, we obtain |B| ≤ (1+o(1))·θ <
2θ ≤ minT∈Aϕ |T |; thus, we obtain that B 6∈ Aϕ, i.e., B is not authorized. This implies that

Pr
[
D(α, (Z1, Y

′
1), . . . , (Zn, Y

′
n)) = 1

]
= Pr

[
M((Z1, Y

′
1 ⊕ s1), . . . , (Zn, Y

′
n ⊕ sn)) = b

]
=

1

2

by the privacy of the secret sharing scheme. Specifically, Y ′[n]\B is uniformly random bits; thus,

the input to M depends on only sB, which is statistically independent of a secret b ∼ {0, 1}. We
conclude that

Pr
(x,b)∼E

[M(x) = b] = Pr[M((Z1, Y1 ⊕ s1), . . . , (Zn, Yn ⊕ sn)) = b]

≤ 1

2
+ ε ≤ 1

2
+ 2−|x|

1−δ
.

8 NP-Hardness of Partial MCSP

In order to prove NP-hardness of MCSP∗, we need two additional ingredients. First, using the
derandomized XOR lemma of Impagliazzo and Wigderson [IW97], we construct a locally-encodable
list-decodable error-correcting code.

Lemma 8.1. For any constant γ > 0, there exist a constant c ∈ N and a procedure Amp that
takes a function f : {0, 1}n → {0, 1} and parameters ε, δ ∈ (0, 1/2), ` ≥ cn as input, and returns a

function Ampf = Ampfε,δ,` : {0, 1}
` → {0, 1} that satisfies the following properties:

List-decodability: K(f) ≤ K 1
2
−ε(Ampf ) + 2γn · poly(1/εδ) + 2n · H2(δ) + O(`), where H2 is the

binary entropy function.

19For simplicity, we assume that M is total, i.e., halts in finite steps on every input. This assumption can be
removed by considering Kolmogorov complexity relative to the Halting problem KHALT(-) instead of K(-).
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Local encodability: There is a nonadaptive f -oracle circuit of size poly(n/εδ) and depth O(log(n/εδ))
that computes Ampf by making O(1/εδ) queries to f .

Efficient computability: Ampf can be computed in time poly(2n, n/εδ) given the truth table of
f and the parameters as input.

Proof. In order to make sure that Ampf can be computed by an f -oracle NC1 circuit, we instantiate
the construction of the hardness amplification procedure of [IW97] with a pairwise-independent
hitter. Let S1, . . . , Sk ⊆ [d] be the design of Proposition 6.2, where |Si| = n for each i ∈ [k], ρ := γn
(which bounds the size of the intersection of two distinct subsets Si, Sj), and d = O(exp(n/ρ) ·
n2/ρ) = O(n).20 Let c ∈ N be the constant such that d = (c − 3) · n. Let f̂ : {0, 1}cn → {0, 1} be
the function such that

f̂(z, r) := f(zS1 ⊕H(r)1)⊕ · · · ⊕ f(zSk ⊕H(r)k),

where z ∈ {0, 1}d, r ∈ {0, 1}3n, and H : {0, 1}3n → ({0, 1}d)k is the pairwise-independent hitter
constructed by using Toeplitz matrices [Gol11]. The hitter satisfies the following property: For
k := 1/εδ, for every X ⊆ {0, 1}d such that |X| ≥ 2d · δ, with probability at least 1 − ε over
r ∼ {0, 1}3n, there exists i ∈ [k] such that H(r)i ∈ X.

Now, we define Ampf : {0, 1}` → {0, 1} by “extending” the function f̂ . Specifically, we define
Ampf (z, r, x) := f̂(z, r) for z ∈ {0, 1}d, r ∈ {0, 1}3n, and x ∈ {0, 1}`−cn; in other words, the last
`− cn bits of the input are ignored in Ampf . Note that for any ε′ > 0,

Kε′(f̂) ≤ Kε′(Ampf ) +O(`) (8)

because for a function g : {0, 1}` → {0, 1} that agrees with Ampf on a (1 − ε′)-fraction of inputs,
there exists x ∈ {0, 1}`−cn such that g(-, x) agrees with f̂ on a (1− ε′)-fraction of inputs. It is easy
to see the efficient computability of Ampf .

To see the local encodability, observe that for each i ∈ [k], each bit of H(r)i ∈ {0, 1}d can be
computed in NC1 on input r ∈ {0, 1}3n. Thus, there exists a nonadaptive f -oracle circuit of size
poly(nk) and depth O(log nk) that computes Ampf .

To see the list-decodability, we use the property of the hardness amplification procedure of
Impagliazzo and Wigderson [IW97]. They showed that for every function g : {0, 1}n → {0, 1} that
agrees with f̂ on a (1/2+ε)-fraction of inputs, there exists a g-oracle program of size 2γn ·poly(1/εδ)
that agrees with f on a (1 − δ)-fraction of inputs (see also [HVV06; Hir20a] for an exposition).
Thus, given a program that describes at least a (1/2 + ε)-fraction of f̂ , we can construct a program
that describes at least a (1− δ)-fraction of f and obtain that

Kδ(f) ≤ K 1
2
−ε(f̂) + 2γn · poly(1/εδ). (9)

Let h be the program of size Kδ(f) that agrees with f on a (1 − δ)-fraction of inputs. Since the
Hamming weight of the truth table of f ⊕ h is at most δ2n, we have

K(f ⊕ h) ≤ log

(
δ2n∑
i=0

(
2n

i

))
+O(log n) ≤ 2n ·H2(δ) +O(log n).

20We may assume without loss of generality that k := 1/εδ ≤ 2n, as otherwise the upper bound in the list-
decodability is trivial.
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Since f can be described by h and f ⊕ h, we obtain that

K(f) ≤ Kδ(f) + 2n ·H2(δ) +O(n). (10)

The property of the list-decodability follows from Eqs. (8) to (10).

Second, we use Uhlig’s theorem to ensure that Ampf can be computed by a circuit of size
O(2n/n) for any function f : {0, 1}n → {0, 1}.

Lemma 8.2 (Uhlig [Uhl74; Uhl92]; see also [Weg87]). Let r : N → N be a function such that
r(n) = 2o(n/ logn). Then, for all large n ∈ N, for any function f : {0, 1}n → {0, 1}, there exists a
circuit of size (1+o(1))·2n/n and of depth (1+o(1))·n that computes f r(n) : ({0, 1}n)r(n) → {0, 1}r(n),
i.e., the r(n)-wise direct product of f .

We now present a reduction that will be used to prove NP-hardness of MCSP∗.

Lemma 8.3. There exists a randomized polynomial-time reduction R that takes a CMMSA instance
(Φ,w, θ) of size n and degree ∆ and a parameter ε0 > 0 such that ε0/∆ ≤ no(1/ log logn) as input
and outputs a distribution E (represented by a circuit) and s ∈ N with the following properties:

Completeness: If there exists an assignment of weight θ that satisfies all the formulas in Φ, then
there exist an O(s)-time program M of size O(s) and a circuit C of size O( s

log s) and depth
O(log s) such that

Pr
(x,b)∼E

[M(x) = b] = 1 and Pr
(x,b)∼E

[C(x) = b] = 1.

Soundness: If every assignment of weight θ satisfies at most an ε0-fraction of the formulas in Φ,
then with probability 1 − o(1) over the internal randomness of R, for every program of size
s/2,

Pr
(x,b)∼E

[M(x) = b] ≤ 1

2
+ 2ε0.

Moreover, we have |x| = O(log n+ ∆2), and all the elements in supp(E) can be enumerated in time
2O(|x|).

Proof. Let (Φ,w, θ) be an instance of CMMSA, where Φ = {ϕ1, . . . , ϕν} is a degree-∆ collection
of monotone formulas over the set [n] of input variables and w : [n]→ N is a weight function. For

each j ∈ [ν], let Vj denote the set
{
vj1 < · · · < vjm

}
⊆ [n] of the variables of ϕj . Here, m ≤ ∆ is

the number of variables on which ϕj depends for every j ∈ [ν].21

Let Amp be the hardness amplification procedure of Lemma 8.1 for γ := 1/2, δ := 1/ log n,
ε := ε0/2∆2, and let c ≥ 1 be the constant of Lemma 8.1. Let λ ∈ N be a sufficiently large
parameter; specifically, we may define

λ := max
{
m∆, (nµ)2, θ, (n∆wmax)4

}
,

21We may assume without loss of generality that the number of variables in ϕj is the same for all j ∈ [ν].
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where wmax := max{w(k) | k ∈ [n]} ≥ 1. We also define

` := c · dlog(wmaxλ)e.

The reduction R operates as follows. For each k ∈ [n], the reduction R picks fk ∼ {0, 1}w(k)·λ

randomly. We identify the string fk ∈ {0, 1}w(k)·λ with a function fk : {0, 1}dlog |fk|e → {0, 1}; let
f̂k := Ampfk : {0, 1}` → {0, 1} denote the hardness-amplified version of the function fk. Then, it
constructs a distribution E = E(f1, . . . , fn) from which one can sample (x, b) as follows: Choose a
formula ϕj ∼ Φ randomly. Choose a secret b ∼ {0, 1} randomly. Using Lemma 4.5, we share the
secret b among m parties; that is, let (s1, . . . , sm) := Share(ϕj , b). We may assume without loss of
generality that the length of each share si is ∆ because |ϕj | ≤ ∆. Let S = (S1, . . . , Sm∆) be the
collection of `-sized subsets of [d] from Proposition 6.2, where d = O(`) and ρ := `/2c. Here, we
used that m∆ ≤ λ ≤ 2`. Let Si := (S(i−1)∆+1, . . . , S(i−1)∆+∆) for every i ∈ [m]. Define a string

x ∈ {0, 1}O(log ν) × {0, 1}d × ({0, 1}∆)m to be(
j, z,NWS1

(
f̂
vj1

; z
)
⊕ s1, . . . ,NWSm

(
f̂
vjm

; z
)
⊕ sm

)
.

Here, “u ⊕ v” denotes the bit-wise XOR. The output of the distribution E is defined to be (x, b).
The output of the reduction R is defined to be the circuit that represents E and the parameter
s := θ · λ. Observe that |x| = O(log ν + d + ∆m) = O(log n + ∆2). In what follows, we prove the
correctness of the reduction R.

To see the completeness of the reduction R, assume that there exists an assignment α : [n] →
{0, 1} such that Prϕ∼Φ[ϕ(α) = 1] = 1 and w(α) ≤ θ. Let T = {i ∈ [n] | α(i) = 1}. We construct
a small program M that correctly computes b given x as input for every (x, b) ∈ supp(E). We
hard-wire the sets T , {fk | k ∈ T} and {(j, Vj) | j ∈ [ν]} into M . The program M takes x =

(j, z, ξ1, . . . , ξm) as input, lets si := NWSi

(
f̂
vji

; z
)
⊕ ξi for each vji ∈ Vj ∩ T , and reconstructs and

outputs the secret b := Rec(ϕj , Vj ∩ T, sVj∩T ). Since ϕj(χVj∩T ) = ϕj(χT ) = ϕj(α) = 1, the set
Vj ∩ T is authorized with respect to the access structure represented by ϕj . The correctness of the
secret sharing scheme (Share(ϕj , -),Rec(ϕj , -)) implies the correctness of M , i.e.,

Pr
(x,b)∼E

[M(x) = b] = 1.

The bottleneck of the running time of M is the computation of f̂k given oracle access to fk, which
takes at most poly(`/εδ) ≤ λo(1) � s time by Lemma 8.1. (Here, we measure the running time of
M in the sense of KT-complexity; i.e, we assume that M is given oracle access to the hard-wired
inputs.) Overall, M runs in time O(s). Moreover, the size |M | of the program M is at most

|T | ·O(log n) +
∑
k∈T
|fk|+ νn ≤ w(T ) · λ+ o(λ) ≤ (1 + o(1)) · s.

We now construct a circuit C. The construction is similar to M , except that we need to carefully
hard-wire a circuit that computes the ∆-wise direct product of f̂k in C. Let x = (j, z, ξ1, . . . , ξm)

be an input to C. First, for each k ∈ T , the circuit C computes strings (yk1 , . . . , y
k
∆) ∈

(
{0, 1}`

)∆
such that if there exists i ∈ [m] such that k = vji , then ykp = zS(i−1)∆+p

for every p ∈ [∆]. Then, for

each k ∈ T , the circuit C computes (f̂k(y
k
1 ), . . . , f̂k(y

k
∆)) from (yk1 , . . . , y

k
∆). By Lemma 8.1, each
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f̂k(y
k
p) can be computed by O(1/εδ) nonadaptive queries to f ; thus, the tuple

(
f̂k(y

k
p)
∣∣∣ p ∈ [∆]

)
can be computed by O(∆/εδ) nonadaptive queries to fk. By Lemma 8.2, the O(∆/εδ) nonadaptive
queries to fk can be simulated by a circuit of size O(2log |fk|/ log |fk|), as long as ∆/εδ ≤ λo(1/ log log λ),

which is satisfied under our assumption. Overall, the tuple
(
f̂k(y

k
p)
∣∣∣ p ∈ [∆]

)
can be computed by

a circuit of size

O(2log |fk|/ log |fk|) + poly(∆ log |fk|/εδ) ≤ O(w(k) · λ/ log λ)

Here, we used that poly(∆ log(wmaxλ)/εδ) ≤ λo(1) and w(k) ≥ 1. Finally, C computes si :=
(f̂k(y

k
1 ), . . . , f̂k(y

k
∆)) ⊕ ξi for every k and i such that k = vji . Then, C outputs b = Rec(ϕj , Vj ∩

T, sVj∩T ). The bottleneck of the circuit size of C is the computation of the ∆-wise direct product

of f̂k; overall, the circuit size is at most∑
k∈T

O(w(k) · λ/ log λ) ≤ O(w(T )λ/ log λ) ≤ O(θλ/ log λ) ≤ O(s/ log s),

where we used that s = θλ ≤ λ2 in the last inequality. The depth of C is at most O(log s).
To see the soundness of the reduction R, we clarify the condition that the reduction R succeeds.

The condition is that K(f[n]) ≥ λ ·w([n])− log n, which happens with probability at least 1− 1
n by

Fact 4.2. Note that under this condition, we also have

λ · w(T ) ≤ K(fT ) +O(|T | · log n) (11)

for every T ⊆ [n] because K(f[n]) ≤ K(fT ) + λ · w([n] \ T ) + O(|T | · log n). In what follows, we
assume Eq. (11) and prove the soundness of the reduction R.

Consider an arbitrary program M of size at most s
2 . We claim that M fails to compute b on

input x with probability ≈ 1
2 over a random choice of (x, b) ∼ E . We define D to be a function

that checks whether M succeeds to compute b on input x; specifically, the function D takes an
advice string α = (b, j, s1, . . . , sm, Vj), a seed Z ∈ {0, 1}d, and (Y1, . . . , Yn) ∈ ({0, 1}∆)n, and
outputs 1 if and only if M(j, Z, Y

vj1
⊕ s1, . . . , Yvjm ⊕ sm) = b. Applying Lemma 6.6 to ∆n strings

(f̂1, . . . , f̂1), . . . , (f̂n, . . . , f̂n), where each f̂k is repeated ∆ times, we obtain a subset B ⊆ [n] such
that for any α, ∣∣Pr[D(α,Z, Y1, . . . , Yn) = 1]− Pr

[
D(α,Z, Y ′1 , . . . , Y

′
n) = 1

]∣∣ ≤ ε0, (12)

where Z ∼ {0, 1}d, Yk is identical to NWSk(f̂k;Z) and Y ′k is identical to Yk if k ∈ B and to the
uniform distribution over {0, 1}∆ if k ∈ [n] \ B. Moreover, since D(α, -) depends on at most m∆
of the bits of Y1, . . . , Yn, for every k ∈ B, it holds that

KD
1
2
− ε0

2m∆

(f̂k) ≤ n∆ · 2ρ + |α|+O(log(2`∆n|α|d/ε0)) ≤ n∆ · 2dlog(wmax·λ)e/2 + o(λ) ≤ o(λ).

Here, we used that the length of the advice string α is at most O(log ν) + d + m∆ + n ≤ o(λ) in
the second inequality, and that (n∆wmax)4 ≤ λ in the last inequality. By Lemma 8.1, we also have

KD(fk) ≤ KD
1
2
−ε(f̂k) + |fk|1/2 · poly(1/εδ) + H2(δ) · |fk|+O(`) ≤ KD

1
2
− ε0

2m∆

(f̂k) + o(w(k) · λ)

because poly(1/εδ) ≤ λo(1) and H2(δ) ≤ o(1). Combining the two inequalities above, we obtain

KD(fk) ≤ o(λ · w(k))

28



for every k ∈ B. By summing this inequality over all k ∈ B, we get

KD(fB) ≤ o(λ · w(B)).

Since the function D can be computed using M , we have

K(fB)− |M | ≤ K(fB |M) +O(1) ≤ KD(fB) +O(1) ≤ o(λ · w(B)).

Using Eq. (11), we conclude that

(1− o(1)) · λ · w(B) ≤ |M | ≤ s

2
=
θλ

2
,

which implies w(B) < θ. It follows from the assumption that χB satisfies at most an ε0-fraction of
the formulas in Φ; that is,

Pr
ϕ∼Φ

[ϕ(χB) = 1] ≤ ε0.

By Eq. (12) and the definition of D, we have∣∣∣Pr
[
M(j, Z, Y

vj1
⊕ s1, . . . , Yvjm ⊕ sm) = b

]
− Pr

[
M(j, Z, Y ′

vj1
⊕ s1, . . . , Y

′
vjm
⊕ sm) = b

]∣∣∣ ≤ ε0
for every j ∈ [ν], every (s1, . . . , sm) ∈

(
{0, 1}∆

)m
, and every b ∈ {0, 1}. The distribution of the first

term is equivalent to the distribution of the input x if we take an average over j ∼ [ν], b ∼ {0, 1},
and (s1, . . . , sm) = Share(ϕj , b). In the second term, the share si can be “removed” for every i ∈ [m]

such that vji ∈ [n] \ B, as Y ′
vji
⊕ si is statistically identical to the uniform distribution; thus, M

takes as input only the shares sB∩Vj , which is statistically independent of the secret b ∼ {0, 1} if
ϕj(χB∩Vj ) = 0 because of the privacy of the secret sharing scheme. Since ϕj(χB) = ϕj(χB∩Vj ), if
ϕj(χB) = 0, we obtain

Pr
[
M(j, Z, Y ′

vj1
⊕ s1, . . . , Y

′
vjm
⊕ sm) = b

]
=

1

2
.

We conclude that

Pr
(x,b)∼E

[M(x) = b]

≤ Pr
ϕ∼Φ

[ϕ(χB) = 1] + Pr
[
M(j, Z, Y

vj1
⊕ s1, . . . , Yvjm ⊕ sm) = b

∣∣∣ ϕj(χB) = 0
]

≤ ε0 +
1

2
+ ε0,

which completes the proof of the soundness.

We give a formal definition of meta-computational problems. We regard a function f : {0, 1}n →
{0, 1, ∗} as a partial function such that f is undefined on any input x ∈ {0, 1}n such that f(x) = ∗.
The truth table of a (partial) function f is the string (over {0, 1, ∗}) obtained by concatenating
f(x) over all inputs x ∈ {0, 1}n in the lexicographical order. We often identify a function with
its truth table. We say that a function g : {0, 1}n → {0, 1} is consistent with a partial function
f : {0, 1}n → {0, 1, ∗} if g(x) = f(x) for every x ∈ f−1({0, 1}). A string over {0, 1, ∗} is said to be
partial. The notion of the consistency between a function and a partial function naturally extends
to the notion of the consistency between a string and a partial string.
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Definition 8.4 (Partial variants of meta-computational problems).

• Let MCSP∗ denote the language consisting of pairs (f, 1s) such that there exists a circuit of
size s that computes some function consistent with the partial function f : {0, 1}n → {0, 1, ∗}.

• Let NC1-MCSP∗ denote the language identical to MCSP∗, except that the depth of size-s
circuits is restricted to be c · log s, where c is a sufficiently large universal constant.22

• Let MKTP∗ denote the language consisting of pairs (x, 1s) such that x ∈ {0, 1, ∗}n for some
n ∈ N and there exists a string y ∈ {0, 1}n consistent with x and KT(y) ≤ s.

• Let MINKT∗ denote the language consisting of pairs (x, 1t, 1s) such that x ∈ {0, 1, ∗}n for
some n ∈ N and there exists a string y ∈ {0, 1}n consistent with x and Kt(y) ≤ s.

Theorem 8.5. MCSP∗, NC1-MCSP∗, MKTP∗, and MINKT∗ are NP-hard under randomized
polynomial-time many-one reductions. Moreover, it is NP-hard to approximate these problems
within a factor of (logN)α on inputs of length N for some constant α > 0.

Proof. Let L be an arbitrary language in NP. Combining NP-hardness of CMMSA (Theorem 5.2)
for the parameter ∆(n) := (log n)1/2 with the reduction of Lemma 8.3, we obtain a reduction R from
L ∈ NP. On inputs of length n, the combined reduction R outputs a distribution E and a parameter
s ∈ N such that supp(E) can be enumerated in polynomial time and supp(E) ⊆ {0, 1}logN × {0, 1}
for some N = nO(1). Using E , we construct a partial Boolean function f : {0, 1}logN → {0, 1, ∗} as
follows: f(x) := b if there exists (x, b) ∈ supp(E) and f(x) := ∗ otherwise.23 The output of the
reduction to a meta-computational problem P ∈

{
MCSP∗,NC1-MCSP∗,MKTP∗

}
is defined to be

(f, 1sP ), where we identify f with a string f ∈ {0, 1, ∗}N . (The proof for P = MINKT∗ is similar
and thus omitted.) Here, we define sMCSP∗ = sNC1-MCSP∗ := O(s/ log s) and sMKTP∗ := O(s). Let
R′ denote the randomized polynomial-time reduction that takes an instance of L and produces the
instance (f, 1sP ).

In what follows, we prove the correctness of the reduction R′. To prove the completeness of
the reduction, let ϕ be a Yes instance of L and let (f, 1sP ) be the instance produced by the
reduction R′ on input ϕ. By the completeness property of Lemma 8.3, there exists a circuit C
of size O(s/ log s) ≤ sNC1-MCSP∗ and depth O(log s) ≤ c · log sNC1-MCSP∗ , where c is a universal
constant, such that the function computed by C is consistent with f . Thus, (f, 1sNC1-MCSP∗ ) is a Yes
instance of MCSP∗ and NC1-MCSP∗. Similarly, there exists a program M of size O(s) ≤ sMKTP∗

such that the function computed by M is consistent with f , which implies that (f, 1sMKTP∗ ) is a
Yes instance of MKTP∗.

We now prove the soundness of the reduction R′. Assume that ϕ 6∈ L and R outputs a distri-
bution E on input ϕ. By the soundness property of Lemma 8.3 and the gap of CMMSA, for every
program M of size s · g, where g = ∆(n)α = (log n)α/2 for some constant α > 0, we have

Pr
(x,b)∼E

[M(x) = b] ≤ 1

2
+ 2(log n)−α/2.

In particular, for every y ∈ {0, 1}N consistent with f , we obtain K(y) ≥ s · g. This completes the
proof of NP-hardness of MKTP∗ and MINKT∗.

22We prove NP-hardness of NC1-MCSP∗ for a sufficiently large universal constant c.
23If there exist two conflicting samples (x, 0), (x, 1) ∈ supp(E), then it is impossible to satisfy the perfect complete-

ness; thus, such an instance can be immediately rejected.

30



It remains to argue the case of MCSP∗ and NC1-MCSP∗. Assume that there exists a circuit C
of size s′ such that the function computed by C is consistent with f . Let y be the truth table of
C. Since C can be described by using O(s′ log s′) bits, we obtain

s · g ≤ K(y) ≤ O(s′ log s′),

which implies that s′ ≥ Ω(sg/ log s′) ≥ Ω(g · s/ log s) ≥ Ω(g) · sNC1-MCSP∗ . This means that
NC1-MCSP∗ and MCSP∗ are NP-hard to approximate within a factor of Ω(g) = (log n)Ω(1).

Theorem 1.2 can be proved in the same way with Theorem 8.5.
Finally, we prove NP-hardness of AveMCSP, i.e., the average-case variant of MCSP with respect

to the uniform distribution. The proof of Theorem 8.5 shows that another average-case varinat of
MCSP∗, which takes a distribution E as input and asks the average-case circuit complexity of f
with respect to the distribution E , is also NP-hard. We show that the distribution can be made
uniform.

Definition 8.6 ([San20]). AveMCSP is the language consisting of the truth table of a function
f : {0, 1}n → {0, 1}, parameters s ∈ N and δ ∈ {i · 2−n | i ∈ N} such that there exists a circuit C of
size s such that

Pr
x∼{0,1}n

[C(x) 6= f(x)] ≤ δ.

Theorem 8.7. AveMCSP is NP-hard under randomized polynomial-time many-one reductions.
Similarly, it is NP-hard (under randomized reductions) to compute the average-case time-bounded
Kolmogorov complexity Kt

δ(x) on input (x, t, δ).

Proof. The idea is to replace f(x) = ∗ with a uniformly random bit f(x) ∼ {0, 1} in the proof of
NP-hardness of MCSP∗.

Let R be the reduction of Theorem 8.5 that shows NP-hardness of MCSP∗. Given an instance
of CMMSA, the reduction R outputs a partial function f : {0, 1}n → {0, 1, ∗} and a size parameter
s. Let D := f−1({0, 1}) be the domain of f and let D := {0, 1}n \D. Define β := 2−∆2−3, where
∆ is the degree of the CMMSA instance. Inspecting the proofs of Lemma 8.3 and Theorem 8.5,
one can observe that the following properties are satisfied.

1. β · 2n+3 ≤ |D| ≤ 2n−1.

2. s log s ≤ o(β2 · 2n).

3. The distribution E of Lemma 8.3 is identical to the distribution of (X, f(X)), where X is the
uniform distribution over D.

Let f ′ : {0, 1}n → {0, 1} be a random function such that f ′(x) := f(x) if x ∈ D and otherwise
f ′(x) ∼ {0, 1} is defined to be a uniformly random bit. The NP-hardness reduction for AveMCSP
outputs the truth table of f ′ and the parameters s and δ := 1

2 − |D| · 2
−n−2.

We prove the correctness of the reduction. In the Yes case, there exists a circuit C of size s
such that

Pr
x∼D

[C(x) = f(x)] = 1.
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For every x ∈ D, let Ix ∈ {0, 1} denote the random variable that takes 1 if and only if f ′(x) = C(x).
Note that E[Ix] = 1

2 . Since

Pr
x∼D

[
C(x) = f ′(x)

]
=

1

2n − |D|
∑
x∈D

Ix,

by the Chernoff bound, with probability at least 1− o(1) over the random choice of f ′, we obtain

Pr
x∼D

[
C(x) = f ′(x)

]
≥ 1

2
− β.

Under this event, we have

Pr
x∼{0,1}n

[
C(x) = f ′(x)

]
≥ Pr

x∼{0,1}n
[x ∈ D] · 1 + Pr

x∼{0,1}n

[
x ∈ D

]
·
(

1

2
− β

)
≥ 1

2
+ |D| · 2−n−1 − β ≥ 1− δ.

This shows that (f ′, s, δ) is a Yes instance of AveMCSP.
Now, consider the No case. In this case, for every circuit of size s′ := s ·∆α,

Pr
x∼D

[C(x) = f(x)] ≤ 1

2
+ ∆−α <

1

2
+ 2−3.

By the Chernoff bound, with probability at least 1− exp(−Ω(β22n)) over the random choice of f ′,
it holds that

Pr
x∼D

[
C(x) = f ′(x)

]
≤ 1

2
+ β.

By taking a union bound over all the circuits of size s ≤ s′, with probability at least 1 −
exp(−Ω(β22n) +O(s log s)) ≥ 1− o(1) over f ′, it holds that for every circuit C of size s,

Pr
x∼D

[
C(x) = f ′(x)

]
≤ 1

2
+ β.

Under this event, we have

Pr
x∼{0,1}n

[
C(x) = f ′(x)

]
< Pr

x∼{0,1}n
[x ∈ D] ·

(
1

2
+ 2−3

)
+ Pr
x∼{0,1}n

[
x ∈ D

]
·
(

1

2
+ β

)
≤ 1

2
+ |D| · 2−n−3 + β ≤ 1− δ.

This shows that (f ′, s, δ) is a No instance of AveMCSP.
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A Weak Learning by Small Hypotheses in Heuristica

Hirahara and Nanashima [HN21] showed the feasibility of strong agnostic learning from average-
case easiness of NP. Applying their proof techniques to weak learning, we observe that size-s
programs on n inputs can be weakly learned by hypotheses of size s·1.01n. Consequently, extending
the inapproximability factor nε of Theorem 1.1 to 1.01n is sufficient to exclude Heuristica. This
indicates that our NP-hardness result comes somewhat close to the setting of improper learning.

For some technical reason, we impose a mild restriction on the type of NP-hardness reductions.
We consider a reduction R that outputs a distribution E and a size parameter s, as in Theorem 1.1.
We say that R is size-expanding if R outputs (E , 1s) on input ϕ such that s = ω(|ϕ|). That is,
we require that the size parameter is much larger than the length of inputs. All the NP-hardness
reductions in this paper are size-expanding. We now state the main result of this section.

Proposition A.1. Assume that for some polynomial t1, for any polynomial t2, there exists a
randomized polynomial-time size-expanding reduction from an NP-complete problem to the following
promise problem: The input consists of a size parameter s represented in unary and a distribution
E represented by a circuit such that supp(E) ⊆ {0, 1}n × {0, 1} for some n ∈ N. The task is to
distinguish the following two cases:

Yes: There exists a t1(n)-time program M of size s such that

Pr
(x,b)∼E

[M(x) = b] = 1.

No: For any t2(n)-time program M of size s · 1.01n,

Pr
(x,b)∼E

[M(x) = b] <
1

2
+

1

5s
.

Then, Heuristica does not exist: i.e., P 6= NP if and only if DistNP 6⊆ AvgP.

Here, DistNP ⊆ AvgP means that for every problem in NP and for every polynomial-time
samplable distribution over instances, there exists an average-case polynomial-time algorithm. See
[BT06a; Hir21] for background on average-case complexity.

Recall the notion of sampling depth.

Definition A.2 ([HN21]). For parameters t,m ∈ N, the sampling depth of a distribution E is

sdtm(E) := E
∀i, (xi,bi)∼E

[
Kt(x1, . . . , xm)−K(x1, . . . , xm)

]
.

Hirahara and Nanashima [HN21] showed that any distribution with small sampling depth can be
efficiently learned. We prove that there exists a weak learning algorithm that produces a hypothesis
of size (1 + o(1)) · sn, provided that sdtm(E) = o(s). This assumption will be justified later.

Lemma A.3. If DistNP ⊆ AvgP, then there exist a polynomial-time algorithm M and a polynomial
p such that, on input (E , 1t, 1s), where E is a distribution represented by a circuit, M decides the
following two cases:
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Yes: There exists a t-time program M of size s such that

Pr
(x,b)∼E

[M(x) = b] = 1.

No: For any p(t,m)-time program M of size mn+m+O(log ts),

Pr
(x,b)∼E

[M(x) = b] <
1

2
+

1

5m
,

where m is an arbitrary parameter such that m ≥ s+ 2sdtm(E) +O(logmnt).

Proof. Under the assumption that DistNP ⊆ AvgP, Hirahara [Hir18; Hir20a] showed that there
exist a polynomial-time algorithm K̃ and a polynomial p such that

Kp(t)(x)− log p(t) ≤ K̃(x; 1t) ≤ Kt(x)

for every x ∈ {0, 1}∗ and every t ≥ |x|.
We present a randomized polynomial-time algorithm V , which can be derandomized using the

theorem of Buhrman, Fortnow, and Pavan [BFP05]. On input (E , 1t, 1s), the algorithm V draws m
samples (x1, b1), . . . , (xm, bm) from E independently and outputs 1 if and only if

K̃(x1, . . . , xm, b1, . . . , bm; 1t1) ≤ K̃(x1, . . . , xm; 1t) + s+O(log(ts)),

where m and t1 are parameters chosen later.
We claim the correctness of V . Assume that there exists a t-time program M of size s such

that M(x) = b for every (x, b) ∈ supp(E). In this case, the string (x1, . . . , xm, b1, . . . , bm) can be
described by using M and a program that prints (x1, . . . , xm); thus, we obtain

Kpoly(t,m)(x1, . . . , xm, b1, . . . , bm) ≤ Kp(t)(x1, . . . , xm) + s+O(log s).

It follows that

K̃
(
x1, . . . , xm, b1, . . . , bm; 1t1

)
≤Kt1(x1, . . . , xm, b1, . . . , bm)

≤Kp(t)(x1, . . . , xm) + s+O(log s)

≤ K̃
(
x1, . . . , xm; 1t

)
+O(log t) + s+O(log s).

Here, the second inequality holds by choosing t1 = poly(t,m). Thus, V accepts with probability 1.
Next, consider uniform random bits u1, . . . , um ∼ {0, 1}. By symmetry of information for

Kolmogorov complexity [ZL70], we have

K(x1, . . . , xm, u1, . . . , um)

≥K(x1, . . . , xm) + K(u1, . . . , um | x1, . . . , xm)−O(log nm)

≥K(x1, . . . , xm) +m−O(log nm),

where the last inequality holds with probability at least 1−o(1) by Fact 4.2. By Markov’s inequality,
we also have

Pr
∀i, (xi,bi)∼E

[
Kt(x1, . . . , xm)−K(x1, . . . , xm) ≥ 2sdtm(E)

]
≤ 1

2
.
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Thus, with probability at least 1
2 − o(1), it holds that

K̃(x1, . . . , xm, u1, . . . , um; 1t1)− K̃(x1, . . . , xm; 1t)

≥K(x1, . . . , xm, u1, . . . , um)− log p(t1)−Kt(x1, . . . , xm)

≥m− 2sdtm(E)− log p(t1)−O(log nm).

≥ s+O(log st). (13)

We now assume that the randomized algorithm V outputs 1 with probability at least 3
4 on input

(E , 1t, 1s). We claim that the instance (E , 1t, 1s) is not a No instance. Let D be a program that,
on input (x1, . . . , xm, b1, . . . , bm), outputs 1 if and only if

K̃(x1, . . . , xm, b1, . . . , bm; 1t1)− K̃(x1, . . . , xm; 1t) ≤ s+O(log(ts)).

On one hand, by the assumption, we have

Pr
∀i, (xi,bi)∼E

[D(x1, . . . , xm, b1, . . . , bm) = 1] ≥ 3

4
.

On the other hand, by Eq. (13), we have

Pr[D(x1, . . . , xm, u1, . . . , um) = 1] ≤ 1

2
+ o(1).

Using Yao’s next-bit predictor, there exists a D-oracle program MD such that

Pr
(x,b)∼E

[
MD(x) = b

]
≥ 1

2
+

1

5m
.

Here, D is polynomial-time computable, so we get a polynomial-time program M ′ := MD. The
program M ′ takes x1, . . . , xm, b1, . . . , bi, ui+1 . . . , um as hard-wired input for some i. Thus, the
size of M ′ is at most mn + m + O(log ts). This shows that the instance (E , 1t, 1s) is not a No
instance.

We now justify the assumption that sdtm(E) is small. We show that any efficient procedure
cannot produce a distribution with large sampling depth.

Lemma A.4. Assume DistNP ⊆ AvgP. Let R be a randomized polynomial-time reduction. Then,
there exists a polynomial t such that for every input ϕ ∈ {0, 1}∗, with probability at least 3

4 over the
internal randomness of R, the reduction R(ϕ) outputs (E , s) such that

sdt(|x|)m (E) ≤ O(|ϕ|),

where m = m(s, |ϕ|) is an arbitrary function.

Proof Sketch. Hirahara and Nanashima [HN21] showed that under the assumption that DistNP ⊆
AvgP, any samplable distribution with a bits of advice has sampling depth at most O(a). Consider
the following sampling procedure: Let E := R(ϕ), sample x1, . . . , xm ∼ E , and output x1, . . . , xm.
Since the sampling depth of this procedure is at most O(|ϕ|), by Markov’s inequality, we obtain
that with high probability over the internal randomness of R, the sampling depth of E is at most
O(|ϕ|).

Proposition A.1 follows from the two lemmas above.
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B MINLT and Ko’s Relativization Barrier

In this section, we extend Ko’s relativization barrier to randomized reductions. Along the way, we
also clarify the relationship between MINLT and our learning problem.

Proposition B.1. Let t be any polynomial and ε ∈ (0, 1) be any constant. Then, there exists an
oracle A such that Gapt,2,εLearnA ∈ BPPA and NPA 6⊆ BPPA.

This result shows that Theorem 7.2 is non-relativizing. To prove it, we first observe that
GapLearn is reducible to MINLT, which is formally defined as follows.

Definition B.2 ([Ko91]). For a function g : N→ N and an oracle A, the problem GapgMINLTA is
defined as follows: The input consists of 1t, 1s, and the set S = {(x1, b1), . . . , (xm, bm)} of samples,
where (xi, bi) ∈ {0, 1}n×{0, 1} for some n ∈ N. We say that an A-oracle program MA is consistent
with S if MA(x) = b for every (x, b) ∈ S. The task is to distinguish the following cases:

Yes: There exists an A-oracle t-time program of size s consistent with S.

No: No A-oracle program of size s+ g(t) is consistent with S.24

We define MINLTA to be the language consisting of (S, 1t, 1s) such that there exists an A-oracle
t-time program of size s consistent with S.

Fact B.3. Let t, ε be as in Proposition B.1. Let g be any function such that g(t) = to(1). Then,
Gapt,2,εLearn is reducible to GapgMINLT under polynomial-time randomized reductions. Moreover,
this statement can be relativized.

Proof. Consider a reduction R that operates as follows: Let m be a parameter chosen later. Let
(E , 1s) be an instance of GapLearn such that supp(E) ⊆ {0, 1}n × {0, 1}. The reduction R picks
m samples (x1, b1), . . . , (xm, bm) ∼ E independently, and outputs S = {(x1, b1), . . . , (xm, bm)} and
parameters (1t(n), 1s) as an instance of GapMINLT.

The reduction clearly maps a Yes instance of GapLearn to a Yes instance of GapMINLT.
To see that a No instance (E , 1s) of GapLearn is mapped to a No instance of MINLT with high
probability, consider any program M of size s+g(t(n)). By the definition of Gapt,2,εLearn, we have

s ≥ nΩ(1) ≥ t(n)Ω(1) ≥ g(t(n)) and thus s + g(t(n)) ≤ 2s. The probability that M(x) = b over a
random choice of (x, b) ∼ E is at most 1

2 + ε
2 =: 1− δ. Thus, the probability that M(xi) = bi for all

i ∈ [m] is at most
(1− δ)m ≤ exp(−δm) ≤ 2−2s−2,

where the last inequality holds by choosing a large m = O(s/δ). By taking a union bound over all
programs of size 2s, the probability that there exists a program M of size s + g(t(n)) ≤ 2s such
that M(xi) = bi for all i ∈ [m] is at most 1

4 . Thus, with probability at least 3
4 , the instance S is a

No instance of GapgMINLT.

Lemma B.4. There exists an oracle O such that GapgMINLTO ∈ PO and NPO 6⊆ BPPO, where

g(t) := log4 t.

Observe that Proposition B.1 immediately follows from Fact B.3 and Lemma B.4. It remains
to prove Lemma B.4.

24For simplicity, we do not impose any time bound in the No case.
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Proof of Lemma B.4. For an oracle A ⊆ {0, 1}∗ and a bit b ∈ {0, 1}, let bA denote {bx | x ∈ A}.
We construct two oracles A ⊆ {0, 1}∗ and B ⊆ {0, 1}∗. The final oracle O is defined to be
A + B := 0A ∪ 1B. The idea of the oracle construction is as follows: We construct an oracle A
that encodes MINLTA, which ensures MINLTA ∈ PA. Then we add a “sparse” oracle B so that
NPA+B 6⊆ BPPA+B. Finally, we argue that MINLTA ∈ PA implies GapMINLTA+B ∈ PA+B.

We construct A so that GapMINLTO is easy. Let f : {0, 1}∗ → {0, 1}∗ be the function that
maps x = (S, 1t, 1s) to f(x) := x01t. We define A so that

x ∈ MINLTA ⇐⇒ f(x) ∈ A.

This is well defined: Since any t-time A-oracle program cannot query a string of length > t, whether
x ∈ MINLTA or not is determined by {x ∈ A | |x| ≤ t}; in particular, it does not depend on f(x)
because |f(x)| > t. Thus, such an oracle A can be inductively defined.

Now, we construct an oracle B so that no BPPO algorithm can decide NPO. For every oracle B,
let LB := {1n | {0, 1}n ∩B 6= ∅}. Clearly, LB ∈ NPO. Enumerate all the randomized polynomial-
time machines M0,M1,M2, . . ., where Me runs in time nlogn on inputs of length n. We construct
an oracle B in stages; at stage e, we construct Be+1; the final oracle B is defined to be

⋃
e∈NBe+1.

Let B0 := ∅, n0 := 2. At stage e ∈ N, let n = ne+1 be a power of 2 such that n > (ne)
logne and

4nlogn < 2n. We consider two cases.

1. If Pr
[
MA+Be
e (1n) = 1

]
≥ 1

2 , then let Be+1 := Be and go to the next stage. In the later stages,
we do not add any string of length less than nlogn to Be; thus, we have

Pr
[
MA+B
e (1n) 6= LB(1n)

]
= Pr

[
MA+Be
e (1n) 6= 0

]
≥ 1

2
,

which implies that MA+B
e does not decide LB on input 1n.

2. Otherwise, let x ∈ {0, 1}n be the lexicographically first string such that the probability that
x is queried by the Be-oracle machine MA+Be

e on input 1n is at most 1
4 . Since the number

of strings that can be queried by Me is at most nlogn, there exists such a string x because
4nlogn < 2n. Then, we define Be+1 := Be ∪ {x}. Note that

Pr
[
MA+B
e (1n) = LB(1n)

]
= Pr

[
MA+Be+1
e (1n) = 1

]
≤ 1

2
+

1

4
=

3

4
,

which implies that MA+B
e does not decide LB on input 1n.

This completes the construction of B. By the construction, we have LB 6∈ BPPA+B. We also note
that B is sparse: for every n ∈ N, the number of strings x such that x ∈ B and |x| ≤ n is at most
O(log n). Moreover, any string x ∈ B of length n satisfies KO(n)(x) ≤ log(4nlogn + 1) + O(1) ≤
O(log2 n). In particular, {x ∈ B | |x| ≤ n} can be efficiently described by O(log n) ·O(log2 n) bits.

It remains to prove that GapMINLTA+B ∈ PA+B. Consider an (A+B)-oracle algorithm V A+B

that accepts an instance (S, 1t, 1s) if and only if f(S, 1t
′
, 1s+O(log3 t)) ∈ A, where t′ = poly(t) is a

parameter chosen later. We claim that V A+B decides GapMINLTA+B. Consider a Yes instance
(S, 1t, 1s) of GapMINLTA+B. Let MA+B be a t-time program of size s consistent with S. Since
the set {q ∈ B | |q| ≤ t} can be efficiently described using O(log3 t) bits, the program MA+B can
be simulated by an A-oracle t′-time program of size O(log3 t) for some t′ = poly(t). We obtain

(S, 1t
′
, 1s+O(log3 t)) ∈ MINLTA, which implies that f(S, 1t

′
, 1s+O(log3 t)) ∈ A, as desired. Next,
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consider a No instance (S, 1t, 1s) of GapMINLTA+B. In this case, there exists no (A + B)-oracle
program MA+B of size s+ g(t) consistent with S. In particular, there exists no A-oracle program
MA of size s + g(t) − O(1) consistent with S. Since s + g(t) − O(1) ≥ s + O(log3 t), we obtain

(S, 1t
′
, 1s+O(log3 t)) 6∈ MINLTA.

C NP-Hardness of Learning Small Circuits

In this appendix, we mention a folklore result of NP-hardness of properly learning small circuits
[HJLT96; ABFKP08; ILO20].

Proposition C.1. Given a distribution D represented by a circuit and a size parameter s ∈ N, it
is NP-hard to distinguish the following cases:

Yes: There exists a circuit C of size s such that Pr(x,b)∼D[C(x) = b] = 1.

No: For any circuit C of size s, Pr(x,b)∼D[C(x) = b] < 1.

The result easily follows from NP-hardness of learning s-juntas [HJLT96; ABFKP08]. For
completeness, we present a proof.

Proof. We reduce the hitting set problem (which is equivalent to the set cover problem). The
input of the hitting set problem consists of a family S ⊆ 2[n] of subsets of [n]. The goal is to find
a minimum set H ⊆ [n] such that H ∩ S 6= ∅ for every S ∈ S. We reduce the instance S to a
distribution D such that supp(D) consists of (0n, 0) and (χS , 1) for every S ∈ S, where χS ∈ {0, 1}n
is the characteristic vector of S. We claim that there exists a hitting set H of size s if and only if
there exists a circuit of size s − 1 such that C(x) = b for every (C, b) ∈ supp(D). If there exists a
hitting set H = {h1, . . . , hs} ⊆ [n] of size s, then the circuit xh1 ∨ · · · ∨ xhs is a circuit of size s− 1
that is consistent with supp(D). Here, x1, . . . , xn denote the input variables of C, and the size of a
circuit is measured by the number of AND and OR gates. Conversely, if there exists a circuit C of
size s− 1 that is consistent with supp(D), then the circuit C is an s-junta, i.e., depends on at most
s inputs. Since C(0n) = 0 and C(χS) = 1 for every S ∈ S, the circuit C must depend on xi for
some i ∈ S. Thus, the set of the input variables on which C depends is a hitting set of size s.

Although this folklore result might look superficially similar to Theorem 1.1, there are significant
differences:

1. The size s of an optimal circuit must be always smaller than the input length |x|. In particular,
it is not possible to make |x| = O(log n) as in Theorem 1.2 and prove NP-hardness of MCSP∗.

2. It is unknown to us whether the relativization barrier of Appendix B is applicable to circuits.
Moreover, the definition of A-oracle circuits may be controversial; the size of A-oracle circuits
can be defined as the number of wires or the number of gates, etc.

3. The hardness of approximation is weak, as the hitting set problem can be approximated
within a factor of O(log n) by a greedy algorithm.

4. The results of Appendix A would be significantly weaker for circuits.
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