Electronic Colloquium on Computational Complexity, Report No. 120 (2022)

On the existence of strong proof complexity
generators

Jan Krajicek

Faculty of Mathematics and Physics
Charles University*

Abstract

The working conjecture from [8] that there is a proof complexity gener-
ator hard for all proof systems can be equivalently formulated (for p-time
generators) without a reference to proof complexity notions as follows:

e There exist a p-time function g extending each input by one bit such
that its range rng(g) intersects all infinite NP sets.

We consider several facets of this conjecture, including its links to bounded
arithmetic (witnessing and independence results) and the range avoidance
problem, to time-bounded Kolmogorov complexity, to feasible disjunction
property of propositional proof systems and to complexity of proof search.
We argue that a specific gadget generator from [10] is a good candidate
for g.

Keywords: proof complexity generators, weak pigeonhole principle, range
avoidance problem, time-bounded Kolmogorov complexity, proof search, fea-
sible disjunction property.

1 Introduction

As pointed out by Cook and Reckhow [3], the NP vs. coNP problem (asking
whether the computational complexity class NP is closed under complemen-
tation) can be equivalently restated as a question whether all propositional
tautologies have fixed-polynomial size proofs in some propositional proof sys-
tem. A propositional proof system (to be abbreviated pps) in their sense is
a p-time decidable binary relation P(z,y) such that JzP(z,y) defines exactly
TAUT, the set of tautologies in the DeMorgan language.

A pps P does not admit such short proofs (i.e. witnesses x) iff there exists
a subset H C TAUT such that for any ¢ > 1, only finitely many 7 € H have
P-proofs of size bounded above by |7|¢; that is, Jz(|z| < |y|¢)P(z,y) is satisfied

*Sokolovska 83, Prague, 186 75, The Czech Republic, krajicek@karlin.mff.cuni.cz

ISSN 1433-8092

by a finite number of elements of H only. Any such set H will be said to be
hard for P.

There are essentially only two classes of formulas known that make plausible
candidates for being hard for strong pps: reflection principles and 7-formulas
coming from proof complexity generators. The former class is a classic topic of
proof complexity and its exposition can be found in [14, Sec.19.2].

The latter formulas are constructed as follows. Take a function ¢ : {0,1}* —
{0,1}* that stretches all size n inputs to size m = m(n) > n (and hence the
complement of its range rng(g) is infinite) and such that its restriction g, to
{0,1}™ is computed by a size m®®) circuit C,,. For each b € {0,1}™ \ rng(g»)
encode naturally (as in the NP-completeness of SAT) the statement

2] = n— Cu() # b

by a size mPM) tautology 7(g)p. Function g is said to hard for P iff the set
U,>117(9)s | b € {0,1}™™) \ rng(g,)} is hard for P, and we speak of function
g as of a proof complexity generator in this context.

We shall actually restrict ourselves here! on the rudimentary case of gen-
erators g computed in wuniform p-time (except the example of function tt j
that is computed in uniform time mo(l)) and, in fact, Lemma 6.3 shows that
non-uniformity is to some extent irrelevant.

The 7(g)p-formulas were defined in [6] and independently and with an appar-
ently different motivation in Alekhnovich et.al. [1]. Unfortunately the authors
of [1] did not pursue the topic?. The theory of proof complexity generators
thus grew out of the motivation for the formulas in [6]: a logic question about
the provability of the dual weak PHP (d{WPHP) for p-time functions in weak
bounded arithmetic theories PV and S3, cf. [6, Problem 7.7]. The dWPHP(f)
says that function f does not map any interval [0,a] onto [0,2a] (the term 2a
can be altered to various other values, e.g. to a? etc., without changing the
logical strength of the principle).

The theory has now several facets connecting it to various parts of logic and
of proof and computational complexity. The interested reader may look at [14,
Sec.19.4-6] or at older [11, Chpts.29-30] for an overview and further references.

Right from the beginning there were two working conjectures:

1. There are generators pseudo-surjective for Extended Frege systems EF,
cf.[6, Conj.7.9, Cor.7.10],[7, Conj.4.1,Cor.4.2].

This conjecture is related to the provability problem mentioned above
(and also to the hardness of function tt, j defined below) and the pseudo-
surjectivity (and related notions of iterability and freeness) implies the
hardness. We shall touch upon it in Section 2, details are in [7, 8].

INote that one can allow that output bits of generator g are computed in non-uniform
NTime(mPM)NcoNTime(mC1)) and still get tautologies of size polynomial in m expressing
that b ¢ rng(gn), cf. [17, Conj.2], [13, Conj.1] and [9, 12]. There are quite a few facts known
about such generators and the interested reader may start with [9, 12, 13].

2With the sole exception of Razborov [17] written in 2002/03.

2. There is a generator hard for all proof systems, cf.[8, Sec.2].

We shall concentrate here on the second conjecture and we shall restrict our
attention to uniform generators having the minimal required stretch m(n) =
n + 1. It is easy to see that truncating any p-time generator to output-size
n+ 1 preserves the hardness (over any pps simulating resolution). It also allows
for a particularly simple formulation of Conjecture 1.1: by [8, Sec.1] (or [14,
L.19.4.1]) the second conjecture can be then restated without any reference to
proof complexity notions as follows.

Conjecture 1.1 ([8, Sec.2])

There ezist a p-time function g extending each input by one bit such that its
range rng(g) intersects all infinite NP sets. That is, the complement of rng(g)
is NP-immune.

Let us remark that the candidate hard generator proposed in [8] had stretch
n + 1 and was in non-uniform p-time: in that case one needs to allow in the
formulation above also NP /poly sets.

With a bit of imagination one can interpret the conjecture as an extension
of the paradigm of the feasible interpolation method from proof complexity (cf.
[14, Chpts.17 and 18]) to all proof systems:

e short proofs (here witnesses to the membership in an infinite NP set A,
i.e. p-size proofs in some proof system)

e imply an upper bound on some computational resource (here a non-trivial
upper bound on compression, using g as decompressing algorithm).

An illuminating example of a possibly strong generator is the truth-table
function tt, ; sending a size s circuit in k inputs to its truth-table (a size 2k
string), cf.[8] or [14, 19.5]. Circuits of size s can be coded by 10slog s bits and
so to make the function stretching we assume that n := 10slogs < m(n) := 2¥
(hence size s circuits are coded by n < m bits). It is computed in (uniform)
time O(sm) = 290 so it is p-time if s = 290,

The 7-formulas determined by this generator state circuit lower bounds for
particular Boolean functions: 7(tts), € TAUT iff the function with truth-table
b has circuit complexity bigger than s. This makes the formulas attractive but
also hard to approach as we know very little about size of general circuits.

It is known that if a pps P admits any pseudo-surjective function (cf. Section
2) then tt, ;. is pseudo-surjective too (the rate of s depends on the rate of lower
bound for P establishing the pseudo-surjectivity) and hence hard for P as well,
cf.[8] or [11, Sec.30.1]. The first working conjecture above thus implies that
the 7-formulas determined by the truth table function are hard for EF. On the
other hand, unless NE N coNE C P/poly, this generator cannot be hard for all
proof systems® and hence it is not a good candidate for Conjecture 1.1, cf. [11,
p.198].

3But to find a pps for which it is not hard is likely to be a hard task itself, cf.[11, 1..29.2.2].

Our second example follows [16, Remark 6.1] and concerns time-bounded
Kolmogorov complexity. Recall that the complexity measure K*(w) is the min-
imal size of a program that prints w in time at most t(Jw|), cf. Allender [2].
The point is that a proof complexity generator with a larger stretch m >> n
produces strings of smaller than maximal K* complexity. For example, if g
stretches n bits to 2n bits and runs in time t(n) = n®®) then for all size 2n
strings w € Rng(gy,) and n >> 0:

K'(w) <n+0(1) <2m/3 .

In fact, as discussed in [16, 6.1], for a fixed polynomial time ¢(n) sufficient for the
computation of g one can consider the universal Turing machine U? underlying
the definition of K? as a generator itself*. Then for any pps P simulating EF, if
some 7(U*?)-formulas have short P-proofs (e.g. by proving tautologies expressing
the lower bound K*(w) > 2m/3) so do some 7(g)-formulas. That is, if there is
any g computable in time ¢ and hard for P then U? must be hard as well.

In this paper we consider first a couple of ways how one could try to dis-
prove (or at least limit possible g in) Conjecture 1.1: finding a feasible way to
witness that the complement of rng(g) is non-empty (Section 2) or reducing
the question of possible stretch to the task to prove lower bounds on time-
bounded Kolmogorov complexity (Section 3). We argue that known results
imply that neither of these approaches is likely to work without proving first
super-polynomial lower bounds for (uniform and non-uniform) computations.
We also indicate in Section 4 how to modify the notion of a generator (and the
conjecture and results in Sections 2 and 3) to address the hardness of proof
search instead of lengths-of-proofs.

In Section 5 we discuss a new definition of hardness, the \/-hardness, that
strengthens (presumably) the hardness as defined above but is weaker (also
presumably) than notions of pseudo-surjectivity and iterability. The reason
for introducing the new notion is that a particular generator from the class
of gadget generators introduced in [10] is the \/-hardest® among all generators
but (presumably) not under the hardness as defined above: in [10] we used for
this result the iterability as it was at hand but that is not good for Conjecture
1.1. Namely, it is known (cf. [8]) that if there is any iterable (or even pseudo-
surjective) map then tt, is iterable (or pseudo-surjective) too and hence hard.
But by the remark above tt j is unlikely to be hard for all proof systems.

This new notion of \/-hardness is equivalent to the hardness as defined above
for a class of pps satisfying the strong feasible disjunction property (Section
5). This class has the property that all pps not in it are automatically not
p-bounded. In Section 6 we put forward a specific uniform gadget generator
computed in sub-quadratic time. In Section 7 we discuss two ways how to
scale the conjecture and we show, under a hypothesis, that Conjecture 1.1 holds

4A similar observation was made recently in Ren, Santhanam and Wang [18].
5Ren, Santhanam and Wang [18] speak informally about the hardest proof complexity
generator but what they define is formally an infinite family of generators.

relative to all feasibly infinite NP sets: sets for which there is a p-time function
picking arbitrarily large elements of the set. The paper is concluded by a remark
in Section 8.

Basic proof complexity background can be found in [14, Chpt.1], the topic of
hard formulas (including a brief introduction to the theory of proof complexity
generators) is in [14, Chpt.19]. When we use some proof complexity notions and
facts in formal statement we define them first (and give a reference). But we
also use proof complexity background in various informal remarks and there we
only refer to the original source and/or to a place in [14] where it can be found.

2 Witnessing the dWPHP aka the range avoid-
ance problem

The dWPHP for function g extending n bits to m = m(n) bits is formalized by
the formula

V1 3y (|y| = m)Va(jz| = n) g(z) #y -

To witness this formula means to find a witness y for the existential quantifier
given as input 1("). This task became known recently as the range avoidance
problemS.

Witnessing is a classic notion of proof theory” and, in particular, many fun-
damental results in bounded arithmetic are formulated as follows: if theory T'
proves a formula of syntactic complexity S then it can be witnessed (i.e. its
leading 3 can be witnessed) by a function from computational class C. Such
statements are known® for many basic bounded arithmetic theories, many nat-
ural syntactic classes of formulas and computational classes of functions.

Unprovability results are generally very difficult and usually conditional, and
we shall use one below. But in the relativised set-up (in our situation this would
mean that g is given by an oracle) many unconditional unprovability results are
known and they are usually derived by showing that a principle at hand cannot
be witnessed by a function in some class C' (for AWPHP see the end of this
section).

We now give an application of the conditional unprovability result of [15].
Consider theory Tpy, whose language has a k-ary function symbol fy; attached
to every p-time clocked machine M with k inputs, all £k > 1. Symbol fy; is
naturally interpreted on N by the function M computes. The axioms of Tpy,
are all universal sentence in the language true in N under this interpretation.

6That problem deals with functions computed by non-uniform circuits but that is included
in the formulation above as g can have parameters (not shown in the notation).

"In particular, witnessing of dAWPHP is discussed in [8, Sec.7].

8There are many precise statements about the (mutual) provability of combinatorial princi-
ples of various complexities in bounded arithmetic theories in terms of witnessing, reducibilities
among them (corresponding to provability over various weak theories) and complete problems
in such classes. For reasons that I do not quite understand complexity theorists prefer to ig-
nore this knowledge and rediscover some of it again in a language avoiding but still simulating
logic concepts.

The hypothesis used in the unprovability result is this.

Hypothesis (H):
There exists constant d > 1 such that every language in P can be decided by
circuits of size O(n?): P C Size(n?).

The possibility that (H) is true with d = 1 is attributed to Kolmogorov
but it is not a hypothesis accepted by mainstream complexity theory. However,
there are no technical results supporting the skepticism and, in fact, (H) has
a number of great consequences (as is P # NP, see [15] for further, including
proof complexity).

We shall use g := tts; with s = 2 for a fixed 0 < € < 1 for our p-time
function®.

Theorem 2.1 ([15])
Assume hypothesis (H). Then for every 0 < ¢ < 1 and s = s(k) := 2°* the
theory Tpy, does not prove the sentence

V1™ (m = 2% > 1)Jy € {0,1}™Va € {0,1}", tt(z) #y (1)
expressing the dWPHP for tt, ., where n := 10slog s.

The reason why this rules out witnessing dAWPHP in p-time is that the
property that f witnesses AWPHP is itself a universal statement

V1OVa(|ja| = n) [F(1™)] = m A g(e) # F(1)

and hence already an axiom of Tpy,. In fact, we can consider an interactive
model of witnessing via constant round Student - Teacher computation and
it still cannot witness dWPHP. In this computation p-time student .S, given
1| produces his candidate solution b; € {0,1}™. Computationally unlim-
ited teacher T either acknowledges the correctness or she produces a counter-
example: 1 € {0,1}" s.t. g(x1) = by. S then produces his second candidate
solution b using also x1, T either accepts it or gives counter-example x5 etc.
The requirement is that within a given bound ¢ on the number of rounds S
always succeeds. This can be written in a universal way as

g(z1) # 5™ v g(xs) # SA™, a1) V... Vg(e,) #SA™, 21, 1) - (2)

Let us remark that S-T protocol with polynomially many rounds ¢t = m©®

corresponds to the notion of pseudo-surjectivity mentioned in the Introduction'®
while O(1) rounds correspond to the notion of freeness: the universal statement
(2) can be represented by an infinite family of p-size tautologies and the two
hardness notions require that these tautologies do not have short proofs, cf.[7, 8]
for details.

Let us state the conclusion of this discussion formally.

9 As pointed out in [15], the theorem holds for the gadget generator (cf. Section 6) too.
10Tterability further restricts possible S.

Theorem 2.2

Assume hypothesis (H). Then dWPHP for function ttsj, with parameters as
in Theorem 2.1 can be witnessed neither by a p-time function nor by a Student-
Teacher computation with p-time Student and constantly many rounds.

Hence to disprove the conjecture by witnessing feasibly the non-emptiness of
the complement of rng(g) for all p-time g would imply super-polynomial lower
bounds for circuits.

If we manage to extend the unprovability to theory Tpy U S then we would
rule out witnessing by S-T computation with polynomially many rounds. Ex-
tending it further to theory Tpy U T3 (or equivalently to Tpy U S3) would
rule out witnessing by p-time machines accessing an NP oracle. All these result
need to be conditional as they imply (unconditionally) that P differs from NP:
if P = NP then this is implied by a true universal statement in the language of
Tpy (saying that a particular p-time algorithm solves SAT) and hence all true
universal closures of bounded formulas are equivalent over Tpy; to universal
statements and hence in Tpy;.

Further note that in the relativised world we have a number of unconditional
results about the impossibility to witness dAWPHP. As an example let us mention
that we cannot witness by non-uniform p-time machine with an access to an
NP® oracle where R is the graph of g that g is not a bijection between [0, d]
and [0,2a]. Another example is that even if we have oracle access to g and to
another function f we cannot witness by a PLS problem with base data defined
by p-time machines with oracle access to f, g that g is not a bijection between
[0,a] and [0,2a] with f being its inverse map. The interested reader can find
these results (and all background) in [5, Secs.11.2-3] and in references given
there.

3 Stretch and the Kt-complexity

The main aim of proof complexity generators is to provide hard examples and
for this purpose the stretch n + 1 of g in Conjecture 1.1 suffices (and it yields
the shortest 7-formulas). A larger stretch is of interest in a connection!! with
the truth-table function tt, ; discusses earlier.

We may try to limit possible stretch of generators via some considerations in-
volving time-bounded Kolmogorov complexity as we touched upon in the Intro-
duction. We shall use Levin’s measure Kt(w): the minimum value of |d|+logt,
where program d prints w in time ¢, cf. Allender [2]. Its advantage over K*
is that it does not require to fix the time in advance. Although statement like
Kt(w) > 2m/3 cannot be presumably expressed by a p-size (in m) tautology
if we had an NP set A all of which members w € A satisfy Kt(w) > 2|w|/3
then certificates for the membership of w in A can be interpreted as proofs of
Kt(w) > 2m/3.

11n fact, the need for larger stretch even in this connection seems to be eliminated by the
notion of iterability, cf. [8].

Let us consider a function with an extreme stretch: tt; ; with s = 100k. This
generator sends n = 10slogs < O(logmloglogm) bits to m = 2* bits and is
computed in time t = O(sm) < m?®/2. Hence both K* (here t(n) = n?/? suffices)
and Kt are bounded above on rng(tts) N {0,1}™ by O(logmloglogm).

Notation (Allender [2]):
For any set A C {0,1}* define function Kta : NT — NT by

Kta(m) = min{Kt(w) | we {0,1}"" N A}

if the right-hand side is non-empty, and we leave Kta(m) undefined otherwise.

Hence we could limit the extreme stretch as above if we could find an infinite
NP set A such that Kta(m) > w(logm). Unfortunately the next theorem
suggests that this is likely not an easy task. Following Allender [2] we define
an NE search problem to be a binary relation R(x,y) such that R implicitly
bounds |y| by 2° for |z| = n and which is decidable in time 29 (think of
y as an accepting computation of an NE machine on input z). The search task
is: given z, find y such that R(z,y), if it exists. As an example related to our
situation consider R(z,y) defined by:

Jy(lyl=zAyeA
where A € NP.

Theorem 3.1 (Allender [2, Cor.7,Thm.8])
There exists an infinite NP set A s.t. Kta(m) = w(logm) iff there exists an
NE search problem s.t.:

o JyR(x,y) is satisfied for infinitely many x,

e cvery algorithm running in time 2°(") solves the search problem for a finite
number of inputs x only.

Hence ruling out generators with even very large stretch means likely to prove
significant computational lower bounds. The following seems to be a natural
test question whether anything can be proved via this approach at all.

Problem 3.2
Is it true that any infinite NP set A contains a string w € A with Kt(w) <
|w|? That is, is it true that the set {w | Kt(w) > |w|} is NP-immune?

The negative answer to the problem would rule out generators g in Conjec-
ture 1.1 stretching n bits to n + w(logn) bits. We would rather like to see the
affirmative answer as it is in the spirit of the remark after Conjecture 1.1.

4 A modification for proof search hardness

Proof complexity generators, and Conjecture 1.1 in particular, aim primarily at
the problem to establish lengths-of-proofs lower bounds. It is easy to modify
the concept to aim at time complexity of proof search. Essentially this means
to replace everywhere in the previous sections NP sets by P sets. To give a
little more detail we shall use the definition of a proof search algorithm from
[16]: it is a pair (A, P) such that A is a deterministic algorithm that finds for
every tautology its P-proof. How much time any algorithm (A, P) has to use
on a particular tautology is measured by the information efficiency function
ip : TAUT — NT; it is an inherently algorithmic information concepts. For
each pps P there is a time-optimal (Ap, P) which is also information-optimal.
The reader can find definitions and proofs of these facts in [16].

Define a set S C TAUT to be search-hard for P iff for any ¢ > 1 algorithm
Ap finds a proof of ¢ in time bounded above by |o|¢ for finitely many formulas
o € S only. Then analogously with the definition of hardness we define g (in
the format as in Conjecture 1.1, i.e. p-time stretching each input by one bit)
to be search-hard for P iff the complement of rng(g) is search-hard for P. It
is easy to see that the conjecture that there is a uniform generator search-hard
for all pps is then equivalent to

Conjecture 4.1 (proof search version of Conjecture 1.1)

There exist a p-time function g extending each input by one bit such that its
range rng(g) intersects all infinite P sets. That is, the complement of rng(g) is
P-immune.

There are some more facts known about Kt4 measure for sets in P. We
mention two.

Theorem 4.2

1. (Allender [2, Thms.6,8])

For time t(n), there exists A € P s.t. Kta(m) > w(logt(m®WM) iff there
exists an NE search problem R(x,y) satisfied for infinitely many x s.t. any
algorithm running in time t(QO(”)) solves it for a finitely many inputs x
only.

In particular, Kta(m) = w(logm) for a set A € P iff there exists an NE
search problem that is satisfied for infinitely many x but every algorithm
running in time 29 solves the search problem for a finite number of
mputs x only.

2. (Hirara [4, Thm.3.11])

There exists a (time-constructible) function s(n) < n —w(logn) s.t. the
set
{w [Kt(w) = s(|w])}

is P-immune iff there exists a SAT algorithm for each P-uniform sequence
of circuits that runs in time 2" /n®().

(This is a special case of [4, Thm.3.11] only.)

5 Feasible disjunction property and V-hardness

We shall propose in this section a notion of hardness that is preserved by more
constructions (and, in particularly, by the construction underlying gadget gen-
erators in Section 6) than is the original hardness but is presumably weaker than
the notion of iterability used in [10], as it was discussed in the Introduction.

Definition 5.1

A function g : {0,1}* — {0,1}* that stretches all size n inputs to size
m :=m(n) > n and is computed by size mCY) circuits is \/-hard for a pps P
s for any ¢ > 1, only finitely many disjunctions

T(gn)ln V...V T(gn)br ’
n > 1 and all b; € {0,1}™, have P-proof of size at most m°.

A pps P has the feasible disjunction property (abbreviated fdp) iff when-
ever a disjunction ag V aq of two formulas having no atoms in common has a
P-proof of size s then one of ; has a P-proof of size s°(!). The strong fdp
is defined in the same way but the starting disjunction can have any arity r:
Vi<, The strong fdp property plays a role in analysis of a proof complex-
ity generator in [12], see also [14, Subsec.17.9.2]. It is an open problem ([14,
Prob.17.9.1]) whether, for example, Frege or Extended Frege systems have the
(strong) fdp. It does not seem likely but a pps P proving shortly its own reflec-
tion principles (as Frege and Extended Frege systems do) and having the fdp
has the remarkable property that for any tautology «, P either proves shortly
« or it proves shortly that it does not prove shortly «.

Lemma 5.2 Assume a pps P has the strong fdp. Then any generator hard for
P is also \/-hard for P.

A strategic choice: use \/-hardness

As it was pointed out in [12], for the purpose of proving lengths-of-proofs
lower bounds for some pps P we may assume w.l.o.g. that P satisfies the strong
fdp property: otherwise it is not p-bounded and we are done. This observa-
tion, together with Lemma 5.2, justifies the use of \/-hardness rather than mere
hardness.

The reader skeptical to the choice may interpret the statements contra-
positively as sufficient conditions refuting the strong fdp for a particular pps,
cf. Lemma 6.4. In particular, it may happen that no strong pps has the strong
fdp: but then we can celebrate as NP # coNP.

10

Let us conclude this section by noticing that the fdp property can be natu-
rally modified for proof search as well: time Ap needs on ag or oy is bounded
above by a polynomial in time it needs on ag V «1. However, such a property
implies the usual feasible interpolation property. Namely, if 7 is a P-proof of a
disjunction

’VO(:'CV y) N 71(587 Z)

(the disjuncts are not required to have disjoint sets of variables this time) con-
sider disjunction 8V (y9 V 1) where § is the conjunctions of 0 with all bits
of m. Then Ap when given this disjunction reads m and hence proves vy V v1
and thus also 8V (70 V 71). By the search-version of fdp Ap must find in time
polynomial in |7| a proof of 9 V 1 (as 3 is false) and thus also of any instance
Yo(a,y) V v1(a,z) (this requires that P-proofs are in some sense closed under
substitution of constants). By the new property again algorithm Ap, for each a
succeeds on either yg(a,y) or on v;(a, z) in time polynomial in |r|. That yields
feasible interpolation. This observation means that the proof search variant of
fdp cannot hold for any strong proof systems and is subject to same limitations
as is feasible interpolation and, in particular, cannot hold for any strong proof
systems unless some standard cryptographic assumptions fail. The reader can
find all background in [14].

6 The gadget generator

The class of gadget generators was introduced in [10] and it is defined as follows.
Given any p-time function

{0, 1} x {0,1}* — {0,1}+*!
define a gadget generator based on f
Gady : {0,1}" — {0,1}™

where
n:=~+k(l+1) and m:=n+1

as follows:

1. The input T € {0,1}" is interpreted as £+ 2 strings

where v € {0,1}* and u' € {0,1}* for all i.
2. The output § = Gads(T) is the concatenation of ¢ + 1 strings w® €

{0, 1}*+1 where we put
w® = f(v,u’) .

11

Clearly we may fix f w.l.o.g. to be the circuit value function CVy (v, u)
which from a size £ description v of a circuit (denoted also v) with k inputs and
k + 1 outputs and from u € {0, 1}* computes the value of v on u, an element of
{0, 1}++1,

It was shown in [10] (see also [14, L.19.4.6]) that if we replace the hardness
of a generator by a stronger condition then it suffices to consider circuits v of
size < k'€, any fixed € > 0. The proof of this fact in [10] used the notion of
iterability mentioned earlier, as it was at hand. However, the same argument
gives Theorem 6.1 using a presumably weaker notion of \/-hardness from Section
5; we shall not repeat the argument.

Theorem 6.1

Assume that there exists a p-time function g : {0,1}* — {0, 1}* that stretches
all size n inputs to size m := m(n) > n that is \/-hard for a pps P.

Then the gadget generator based on CVyz i, is \/-hard (and hence also hard)
for P as well.

Notation:
In the rest of the note we shall ease on the notation and we will denote the
gadget generator Gady based on f = CVj2 j, by Gadgg.

Note that a circuit of size s can be encoded by 10slog s bits so Gad,, uses as
gadgets circuits of size little bit less than quadratic. Observe also the following
simple statement.

Lemma 6.2 Gad,, is computed in time smaller than n®/?.

The next statement shows that non-uniformity is irrelevant in the presence
of strong fdp. It is proved by taking for gadgets circuits of the size needed to
compute the generator.

Lemma 6.3 Assume a pps P admits a \/-hard proof complezity generator com-
puted in non-uniform p-time (i.e. by p-size circuits). Then Gadsy is \/-hard for
P.

Let us consider the stretch of gadget generators. By default it was taken in
the definition to be the minimal required stretch but there are other options.
One could use as gadgets circuits that map k bits to k' bits where k' >> k; for
example, k' = 2k or k' = k? (allowing accordingly a bigger size of gadgets, still
polynomial in k). The resulting generator would send n bits to approximately
(k' /k)n bits which is about n!*¢ for some € > 0.

However, we want to be conservative with requirements on gadgets. Note
that the stretch of gadget generators can be influenced also by taking more
strings u’ in the construction of Gady than is the minimal number needed, i.e.
more than ¢ + 1. In particular, assume we perform the construction of Gady
but taking ¢ > ¢ string ' and w’. We still want to maintain, as in Theorem 6.1,

12

that the generator is the hardest \/-hard generator; hence we still allow only ¢
polynomial in k.
Then
n:=~0+kt and m:= (k+ 1)t .

For ¢ < kW) (as in Gad,,) and taking ¢ := k¢ for very large ¢ > 1 we can
arrange that
m > n+nt"¢

for as small € > 0 as wanted. Denote the generator which extends the definition
of Gad,, in this way simply Gadsg,.

Lemma 6.4
Assume that there is an infinite NP set A such that for some § > 0:

K'Y(m)>m— m'=0

where t(n) = n3/2. Assume further that Conjecture 1.1 is true.
Then there is a pps P such that no pps Q simulating P has the strong fdp.

Proof :
Choose ¢ > 1 so large that the stretch of Gadgq is n!1=¢ where

Pl >> ml=8 = (n 4 nl=)1—s

for n >> 0 (taking ¢ > 1 such that § < € < 1 suffices).

Given an infinite NP set A satisfying the hypothesis define a pps P to be,
say, resolution but accepting also witnesses to the membership of b € A as proofs
of 7(Gadg,)s-

If Conjecture 1.1 was true for any) simulating this P and @ would satisfy
the strong fdp, it would follow by Theorem 6.1 (modified trivially for Gads,)
that Gadg, is hard for Q. That is a contradiction with how P was defined.

q.e.d.

It is known that gadget generators (and Gads, in particular) are hard for
many proof systems for which we know any super-polynomial lower bound,
cf.[14]. Informally, the advantage of working with Gad,, is that instead of
proving hardness for specific gadget it suffices to show that it cannot be shortly
disproved that a hard gadget exists.

Our working hypothesis is that generator Gads, satisfies Conjecture 1.1.
But when working with the generator we encounter the same difficulty as in
the case of the truth-table generator tt, ,: we know nothing non-trivial about
circuits of sub-quadratic size. Furthermore, the experience with lengths-of-
proofs lower bounds we have so far suggests that it is instrumental to have hard
examples with some clear combinatorial structure. Hence to study the hardness

13

of Gady, it may be advantageous to consider gadgets (i.e. sub-quadratic circuits)
of a special form (technically that would be a substitution instance of Gadsg).
One such specific generator was defined in [14, pp.431-2] and denoted nwy, .
there; its gadget is essentially a slightly over-determined system of sparse equa-
tions for a generic function. Namely, gadget consists of k41 sets Ji, ..., Jgr1 C
{z1,...,2}, each of size 1 < ¢ <logk, together with 2¢ bits defining truth ta-
ble of a Boolean function f with ¢ inputs. Given gadget u and v € {0,1}*,
f(u,v) € {0,1}¥*1 are the k + 1 values f computes on values that v gives to
variables in sets Ji,..., Jy+1. This generator for one fixed, non-uniform gadget
was the original suggestion for Conjecture 1.1 in [8] but the gadget generator
construction allows to leave the non-uniformity and consider generic case.

7 Scaling the conjecture

As mentioned in the introduction, Conjecture 1.1 for g is equivalent to the
statement that ¢ is hard for all pps P. A natural scaling of the conjecture
is thus by considering it for specific pps P. In the language of Conjecture
1.1 this amounts to restricting to NP sets A from the class of those for which
P can shortly prove (the tautologies expressing for all lengths n > 1) that
Anrng(g) = 0. This class is the resultant Res!” as defined in [8] and the reader
can find details there.

However, there is another scaling possible. Given a sound theory T (whose
language extends that of Tpy; for convenience) consider the class of all NP sets
A such that the infinitude of A:

Infa = Vadyly>z Ay €A

can be proved in 7. Formula y € A can be written as a bounded existential
formula in the language of Tpy; and Infa is thus an V3-sentence.

Knowing that a particular T proves Inf4 yields, in principle, a non-trivial
information about A. For example, if Tpy; proves the sentence then by Her-
brand’s theorem there is a p-time function f witnessing it. That is, f finds
elements of A:

Ve(f(x) >z A f(z) € A) .

We shall call sets A for which such p-time function f exists feasibly infinite.
This remains true (by Buss’s theorem) if Tpy; is augmented by S3. If Tpy is
extended by some stronger bounded arithmetic theory then In f4 will be witness
be a specific NP search problem attached to the theory. For example, if we add
to Tpy induction axioms for NP sets (theory T}) then Infs is witnessed by
a PLS problem (by the Buss-K. theorem). The reader can find the bounded
arithmetic background in [5].

It is easy to see that Problem 3.2 has the affirmative answer for feasibly
infinite NP sets. For the conjecture we need to work a bit.

Theorem 7.1

14

Assume hypothesis (H) from Section 2. Then Conjecture 1.1 holds relative
to the class of feasibly infinite NP sets: there is a gemerator g whose range
intersects every feasibly infinite NP set.

Proof :

The proof is a special case of the construction from [15]. We shall show that
generator tt, ; with s = s(k) := 2%/2 satisfies the statement.

Let A be a feasibly infinite NP set as it is witnessed by a p-time function f.
Let d > 1 be the constant from (H) and put m/ := m'/G% where m := |f(1")|
and n >> 1, and put also k := logm.

Define the function f that has m’ + k variables and on inputs 1™ and
i € {0,1}* computes the i-th bit of f(1"); it is a p-time function.

Take a circuit C’(z, 1) that computes f of size guaranteed by hypothesis (H)
and define new circuit C' by substituting 1™ for z in €' and leaving only the k
variables for bits of 4. Note that C has size O((m’ + k)%) < 2¥/2. Further, by
its definition, tt, ,(C) = f(1™); i.e. rng(tts) N A # 0.

q.e.d.

8 Concluding remarks

I think that it is fundamental for further development of the theory to make
a progress on the original problem!? of the unprovability of dWPHP for p-
time functions discussed in the Introduction. For a start we may try to show
the unprovability in Tpy; (or some of its extension as mentioned at the end of
Section 2) under a more mainstream hypothesis than is (H).

However, real progress will result only from unconditional results. For rea-
sons discussed at the end of Section 2 to have a chance to succeed we need to
leave theory Tpy; aside and work with theories PV or S3. This implies that an
argument cannot rely just on witnessing theorems as they do not change if Tpy,
is added. The problem becomes essentially propositional and it is exactly this
what led to notions of freeness and pseudo-surjectivity (mentioned in Section 2)
of generators in EF in [7, 8]: to show that a p-time generator has this property
is essentially equivalent to the unprovability of dAWPHP for it in the theory (PV
or S3, resp.), cf. [7, Sec.6] and [8].

Acknowledgments: I thank Igor C. Oliveira (Warwick U.) and Jan Pich
(Oxford U.) for discussions about the topic.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson,
Pseudorandom generators in propositional proof complexity, SIAM J. on
Computing, 34(1), (2004), pp.67-88.

12The problem in [6] asked, in fact, a more precise question about Ell’-conservativity after
adding dAWPHP.

15

2]

E. Allender, Applications of Time-Bounded Kolmogorov Complexity in
Complexity Theory, in: Kolmogorov Complexity and Computational Com-
plexity, ed.O.Watanabe, Monographs in Theoretical Computer Science,
EATCS Ser., Springer-Verlag, (1992), pp.4-22.

S. A. Cook and R. A. Reckhow, The relative efficiency of propositional
proof systems, J. Symbolic Logic, 44(1), (1979), pp.36-50.

S.Hirara, Unexpected Hardness Results for Kolmogorov Complexity Under
Uniform Reductions, in: Proc. of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC), June 2020, pp.1038-1051.

J. Krajicek, Bounded arithmetic, propositional logic, and complexity theory,
Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge
University Press, (1995).

J. Krajicek, On the weak pigeonhole principle, Fundamenta Mathematicae,
Vol.170(1-3), (2001), pp.123-140.

J. Krajicek, Tautologies from pseudo-random generators, Bulletin of Sym-
bolic Logic, 7(2), (2001), pp.197-212.

J. Krajicek, Dual weak pigeonhole principle, pseudo-surjective functions,
and provability of circuit lower bounds, J. of Symbolic Logic, 69(1), (2004),
PP-265-286.

J. Krajicek, Diagonalization in proof complexity, Fundamenta Mathemati-
cae, 182, (2004), pp.181-192.

J. Krajicek, A proof complexity generator, in: Proc. from the 13th Int.
Congress of Logic, Methodology and Philosophy of Science (Beijing, Au-
gust 2007), King’s College Publications, London, ser. Studies in Logic
and the Foundations of Mathematics. Eds. C.Glymour, W.Wang, and
D.Westerstahl, (2009), pp.185-190.

J. Krajicek, Forcing with random wvariables and proof complezity, London
Mathematical Society Lecture Note Series, No. 382, Cambridge University
Press, (2011).

J. Krajicek, On the proof complexity of the Nisan-Wigderson generator
based on a hard NP N coNP function, J. of Mathematical Logic, 11(1),
(2011), pp.11-27.

J. Krajicek, On the computational complexity of finding hard tautologies,
Bulletin of the London Mathematical Society, 46(1), (2014), pp.111-125.

J. Krajicek, Proof complexity, Encyclopedia of Mathematics and Its Appli-
cations, Vol. 170, Cambridge University Press, (2019).

16

[15] J. Krajicek, Small circuits and dual weak PHP in the universal theory of p-
time algorithms, ACM Transactions on Computational Logic, 22, 2, Article
11 (May 2021).

[16] J. Krajicek, Information in propositional proofs and algorithmic proof
search, J. of Symbolic Logic, vol.87, nb.2, (June 2022), pp.852-869.

[17] A. A. Razborov, Pseudorandom generators hard for k-DNF resolution poly-
nomial calculus resolution, Annals of Mathematics, 181(2), (2015), pp.415-
472.

[18] H.Ren, R.Santhanam and Z.Wang, On the Range Avoidance Problem for
Circuits, ECCC Report nb.48, (2022).

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

