
Efficient Linearization Implies the Multiphase Conjecture

Young Kun Ko*

*Department of Computer Science and Engineering, Penn State

August 29, 2022

Abstract

The main motivation for studying linear data structures and circuits is the intuition that
non-linear advice cannot help in computing a linear operator. Jukna and Schnitger [JS11, Juk12]
formalized this as a conjecture which states that all circuits computing a linear operator can be
“linearized,” with only a constant size blow-up. We show that if we assume strengthening of this
intuition to data structures (to some field F), then this implies Pătraşcu’s Multiphase Conjec-
ture [Pat10] for such F. Furthermore, we show that this conjecture is an intermediate conjecture
between NOF-Multiphase Conjecture [Pat10] and the Multiphase Conjecture, formalizing why
Pătraşcu’s original approach to the Multiphase Conjecture is hard.

Our main technical ingredient is proving unconditional space-time tradeoff for the following
static data structure problem for any given field F: Let M ∈ Fm×n be fixed. Data structure
preprocesses input X ∈ Fn using s-cells (dependant on M), each of which can store an arbitrary
element in F. When i ∈ [m] is revealed, the data structure can output 〈Mi, X〉 using tq probes.
We show that there exists M ∈ {0, 1}m×n such that if the functions used by the data structure
are all linear and s ≤ õ(m) then tq ≥ Ω̃(n).

As a corollary, we show that Pătraşcu’s Multiphase Conjecture [Pat10] when restricted to
dynamic linear data structure holds (with unlimited preprocessing) over any field F. This
exhibits an explicit dynamic data structure which requires polynomial update time tu ≥ Ω̃(n)
or query time tq ≥ Ω̃(n). This also improves upon the breakthrough work of Larsen [Lar14]
which showed a polynomial lower bound for dynamic data structure under the weaker group
model.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 122 (2022)

1 Introduction

We study the following concrete static data structure problem of computing a linear operator over
a given field F:

Problem 1.1. Fix some M ∈ Fm×n. Let x ∈ Fn be given as an input. Preprocess x into h ∈ Fs,
so that for any given i ∈ [n], one can output 〈Mi, x〉 using t-probes (adaptively) into x and h.1

This remarkably simple problem, which addresses the complexity of computing a linear operator
x 7→ Mx (or matrix-vector multiplication) (with preprocessing) is in the crossroad of Circuit
Complexity [Val77, Val92], Static and Dynamic Data Structure Lower Bound [Pat10, DGW19,
KW19], Index Coding [BYBJK11] and Cryptoanalysis [CGK19]. Yet we do not fully understand
the optimal trade-off between h and the required probe t.

There are two naive solutions on two extremes: (a) Precompute all answers to Q = [m] using
|Q| additional space. Any query then can be answered using just a single probe into the data
structure (t = 1); (b) just store the input s = n with no preprocessing. Then for any query i ∈ Q,
read the whole input x to compute the answer 〈Mi, x〉 to the given query thus t ≥ n. As example
(a) and (b) illustrate, there is a trade-off between space s and time t. The goal of static2 data
structure lower bound is to prove unconditional lower bound in this trade-off.

The main tool for proving such a lower bound is the cell-probe model introduced by Yao [Yao81].
Here, a data structure is simply a table of s-memory cells each with w-words. Query time is only
measured for probing memory cells. Computations are free-of-charge. Intuitively, this measures
how much information one must need to read to answer the query. (or it is an information-theoretic
lower bound)

Though the model is unrealistically powerful, this implies that a cell-probe lower bound must
be a lower bound in any reasonable model. In fact, this is the only setting where we can prove
an unconditional data structure lower bound – we do not have any other technique to give an
unconditional computational lower bound. Yet mainly due to its unrealistic power, the state-of-
the-art explicit cell-probe lower bound stands at

t ≥ Ω

(
log(|Q|/n)

log(s/n)

)
(1)

for any explicit data structure problem. In the regime of interest, |Q| = poly(n) and s = O(n), this
is only logarithmic. Proving any unconditional super-logarithmic lower bound for query time
for static data structure, where the data structure does not change over time and only answers
query, is a major open problem [Pat08] in data structure.

Dynamic Data Structure Lower Bound Unlike in static data structure, where we only con-
sider the trade-off between the storage space s and query time t, in the dynamic data structure,
we want the data structure to support a sequence of queries and updates. And depending on the
sequence of updates, the answers to the queries are allowed to change.

For example, consider a data structure that answers s-t connectivity query over a graph. In a
static data structure, the graph stays unchanged, therefore if the query asks for the same s and t
in any sequence of operations, it will return the same answer. But in the dynamic data structure,
it must support the addition and deletion of the edges in the graph. Therefore depending on which
edges are added and removed, the answer to the query must change accordingly as well.

1With a single probe, you can read a single element of F therefore a single coordinate in x or h. Computations
are free-of-charge

2This is static since input does not change after preprocessing

2

Since the data structure changes over time, in the dynamic data structure, we focus on the
trade-off between update time tu and query time tq. Unlike in static data structure, a recent
breakthrough shows that we can prove super-logarithmic (max{tu, tq} ≥ Ω̃(log1.5 n)) cell probe
lower bound [Lar12a, LWY18]. Yet, a major open problem is if we can prove max{tu, tq} ≥ nε for
some constant ε > 0. That is, can we prove a polynomial lower bound?

Pătraşcu [Pat10, Tho13] introduced the so-called Multiphase Problem as a candidate dynamic
problem with a polynomial lower bound. The problem proceeds in three stages.

1. (Pre-processing Phase) Pre-process a matrix M ∈ {0, 1}m×n where m = poly(n)

2. (Update Phase) A vector X ∈ {0, 1}n is revealed and data structure updates its memory
using tu · n time.

3. (Query Phase) A query index i ∈ [m] is revealed and the data structure must output
DISJ(Mi, X) after tq time.

Pătraşcu’s Multiphase Conjecture then states that there exists some c > 1 where if m = nc and
tu · n < o(m), then it must be the case that tq > nε for some constant ε > 0.

Despite its importance, there has not been much progress in completely resolving the conjecture,
even if one wants to compute 〈Mi, X〉 instead of DISJ(Mi, X) which is a seemingly harder problem.
For general data structure, the only known lower bound is merely constant [GGL15]. To achieve any
super-constant lower bound, only lower bounds on a restricted class of data structures are known.
Polynomial lower bounds are known for some non-adaptive data structures [CEEP12, BL15] and
“semi-adaptive” data structures [KW19, DL20] which is the current state-of-the-art.

Data Structure Lower Bounds for Restrictive Models There have also been works to
bypass the strength of the cell-probe model via limiting the possible pre-processing or update
function respectively for static and dynamic data structure lower bound. Unlike the cell probe
model, these models restrict the class of functions that are computed by the data structure. For
example, in the linear model that we consider, a cell is only allowed to store some linear function
(or weighted sum) of the updated input. That is there exists some linear function Pj(X) for each
cell address j where X is the input of size n, or entry of j-th cell can be written as

Pj(X) = αj,0 +
n∑
i=1

αj,i ·Xi

for some αj,0, αj,1, . . . , αj,n ∈ F. In a more restrictive group model, αj,0 = 0 and αj,i’s are bounded
to some precomputed elements from the field, and therefore are not allowed to be an arbitrary
element from F.

The main intuition with studying these models is that non-linear bits cannot help with com-
puting a linear operator, as also observed in the context of circuit complexity. This was explicitly
stated in [JS11, Juk12] in terms of circuits with arbitrary gates. It is worth noting that circuits
with arbitrary gates are equivalent to data structures with non-adaptive probes [Vio18]. Therefore
static data structures with adaptive probes are stronger than circuits with arbitrary gates.

Conjecture 1.2 ([JS11] informal). If there exists a (Boolean) circuit with non-linear gates comput-
ing x 7→Mx with w wires (and depth d) then there exists a linear (Boolean) circuit that computes
x 7→Mx with O(w) wires (and depth O(d))

Under this intuition, can we prove a polynomial lower bound for a more restricted model
such as a group model or linear model, which encompasses almost all known upper bounds for
computational geometry and spatial databases [Mat94, Aga17]?

3

For static data structure lower bound, it is known that even under the above restriction, if
one insists on finding an explicit M , the problem remains hard due to its connection to circuit
lower bound [DGW19]. While for a more restrictive group model, a recent result by Golovnev et
al. [GPRW20] proves an explicit polynomial lower bound t ≥ nΩ(1). This suggests that proving a
lower bound in the linear model is a more daunting task than in the group model.

Restriction to group model led to many fruitful lower bounds for dynamic data structure as
well [AE99, Pat07]. A breakthrough work by Larsen [Lar14] shows that we can prove a lower
bound of tutq ≥ n1−O(1) for group model which gives a polynomial bound on update and query
time simultaneously (that is max{tu, tq} ≥ n1/2−O(1))

Derandomizing Hard Instance The main challenge of proving cell-probe lower bound for
static data structure comes from the fact that you can write anything in the pre-processing stage.
From a counting perspective, there are simply doubly exponentially many possible choices for pre-
processing. Even so, a straightforward counting argument by Miltersen [Mil93] shows that “most”
data structure problems where each q ∈ Q is a Boolean valued function (each of which requires
exponential bits of randomness to describe) must have either s ≥ |Q|0.99 or t ≥ n0.99. Yet we
have no explicit instance that achieves t = ω(log n) if s = O(n) with |Q| = poly(n), and any
breakthrough will lead to a circuit lower bound [DGW19].

Now suppose we want to describe a hard instance using a few random bits (say poly(n)), which
we call the semi-explicit regime. Then can we beat the bound of (1)? This is an open problem
raised in [DGW19].

1.1 Our Result

We show that for any given field F, there exists 0/1 matrices that are hard to compute with a small
hint s. Specifically, we show the following unconditional trade-off.

• The linear operator M ∈ Fm×n is publicly known.

• X1, . . . , Xn ∈ F is given as input.

• Preprocess M and X1, . . . , Xn to hint H ·X = h ∈ Fs using s extra space using some linear
operator H ∈ Fs×n.

• Given any i ∈ [m] as query, the querier can output 〈Mi, X〉 using t adaptive probes into h
and X1, . . . , Xn.

Problem 1: Computing 〈Mi, X〉 for any i ∈ [m]

We show the following trade-off between s and t for Problem 1. First, we show a random matrix
is hard via straightforward counting.

Theorem 1.3 (Informal). There exists some M ∈ Fm×nq such that if the length of the linear hint

s < o(m) then t ≥ Ω̃(n).

Since M is random over Fm×nq , total number of random bits used is mn log q. This dependence
on |F| can be removed at the small cost of s.

Theorem 1.4 (Informal). There exists some M ∈ {0, 1}m×n such that if the length of the hint
s < õ(m) then t ≥ Ω̃(n).

4

Now suppose we make the following adjustment of Conjecture 1.2, which extends non-adaptive
probe of the circuits to adaptive probes of the data structure.

Conjecture 1.5. There exists Fq such that for every collection M ⊂ Fm×nq of density 1 − o(1),
there exists M ∈ M such that if there exists a static data structure using s space that outputs
〈Mi, x〉 with t (adaptive) probes, then there exists a linear data structure using O(s) space that
outputs 〈Mi, x〉 using O(t) (adaptive) probes.

The conjecture states that for every dense M ⊂ Fm×nq we take, we will be able to find some
M which is efficiently linearizable. Note that the conjecture is weaker than stating that all M ’s
are linearizable (as in Conjecture 1.2). Similarly, we can also pose an analogous conjecture over
M ∈ {0, 1}m×n, which we denote as Boolean variant of Conjecture 1.5.

We remark that the only linear operator M that we know of with a non-trivial non-linear data
structure is Vandermonde matrix [KU08, KU11]. We do not yet know if the data structure for
the Vandermonde matrix is linearizable or not.

The theorems (along with the conjecture) have the following consequences in the data structure
lower bound.

Static Data Structure Lower Bound If one is willing to believe in this conjecture, then this
directly implies a hard semi-explicit static data structure problem. Notice that the only part where
randomness is used to describe the problem is the description of M . From Theorem 1.4, we know
that this is exactly mn bits. Setting m = poly(n), and the space used as m0.99, we can fit our
result in the following table.

Random Bits Used Query Time Lower Bound

2Ω(n) Ω(n0.99) [Mil93]

poly(n) Assuming Conjecture 1.5, Ω̃(n) (This work)

0
Ω(log n) [Pat08, PTW10, Lar12b]
Improvement implies Circuit LB [DGW19]

Table 1: Summary of Known Results for Number of Random Bits used

Dynamic Data Structure Lower Bound A more interesting consequence of Conjecture 1.5
is in dynamic data structure lower bound. Consider the following generalized Multiphase problem
over any given field F.

1. (Pre-processing Phase) The linear operator M ∈ Fm×n is given and preprocessed.

2. (Update Phase) X1, . . . , Xn ∈ F is revealed and updated (in time tu · n)

3. (Query Phase) Given any i ∈ [m] as query, the data structure must output 〈Mi, X〉 using tq
adaptive probes.

Problem 2: Generalized Multiphase Problem

Here, we remark that this is an explicit dynamic data structure problem, while its static coun-
terpart was a semi-explicit problem. We show that the static data structure lower bound implies
the lower bound for Problem 2.

5

Corollary 1.6. Let m = poly(n). For any finite field F = Fq, any linear data structure for Problem
2 must have max{tu, tq} ≥ Ω̃(n).

If one does not assume Conjecture 1.5, this is a polynomial lower bound on both update and
query time in the linear model over an explicit problem, improving over [Lar14] with the group
model. We can fit our result in the following table.

Static Dynamic

Group Model Ω(nε) [GPRW20] Ω(n1/2) [Lar14]

Linear Model
Ω(log n) [Pat08, PTW10, Lar12b]
Improvement implies Circuit LB [DGW19]

Ω̃(n) (This work)

General Model Same as above Ω̃(log2 n) [LWY18]

Table 2: Summary of Known Results for Restrictive Models

We also remark that as observed by [DGW19] and [GPRW20], there is a fundamental difference
between proving a lower bound in the linear model as opposed to the group model.

Furthermore, if we assume Conjecture 1.5, then this immediately implies that Problem 2 must
have max{tu, tq} ≥ Ω̃(n), thereby showing a polynomial lower bound for dynamic data structure.

Remark 1.7. Here we remark that Brody and Larsen [BL15] also consider the “linear” update
model where F = F2 and the query must be non-adaptive. We consider any general finite field Fq
and we do not impose any restriction on the query. Furthermore, in our model, linear coefficients
of each cell αj,0, . . . , αj,n are allowed to depend arbitrarily on the pre-processed matrix M , which is
not the case for the “linear” model considered by Brody and Larsen.

Intermediate Conjecture between NOF-Multiphase and Multiphase Another view of
our result is formalizing and understanding why Pătraşcu’s original approach towards the Multi-
phase Conjecture remained elusive. Pătraşcu [Pat10] proposed the NOF-Multiphase Conjecture
as an avenue of attack on the Multiphase Conjecture. In particular, he proposed the following
communication problem.

1. Alice has access to M and i ∈ [m], Bob has access to X and i ∈ [m], Charlie has access to M
and X.

2. Charlie sends message h to Bob.

3. Alice and Bob communicate t-bits to output 〈Mi, X〉.

Problem 3: NOF Multiphase Problem

NOF-Multiphase Conjecture states that (say on average over some random M and X) if h =
o(m) then t ≥ Ω(n), intuitively saying that since h contains very little information per copy of
i ∈ [m], it cannot help much in computing 〈Mi, X〉. Pătraşcu then showed that NOF-Multiphase
Conjecture implies the Multiphase Conjecture.

One can show that NOF-Multiphase implies Conjecture 1.5 using the reduction given in [KW19].
The NOF communication model in Problem 3 can simulate the static data structure computing M .
We attach the proof in Section B. And Conjecture 1.5 implies the Multiphase Conjecture from the
connection to the dynamic data structure. This establishes the Conjecture 1.5 as the intermediate
conjecture between the NOF-Multiphase and the Multiphase Conjecture.

6

This gives the following consequence: If we are to attack the Multiphase Conjecture, with-
out having consequences in linear vs non-linear circuits/data structures, we need to fine-tune the
communication model, extracting further properties of the underlying dynamic data structure.

1.2 Technical Overview

First, we reduce dynamic data structure lower bound to static data structure lower bound over any
given field. Then we reduce static data structure lower bound to some linear combinatorial problem
over a given field regardless of the query being adaptive or non-adaptive. Finally, we resolve the
combinatorial problem over the desired field.

Reducing to Static Data Structure Lower Bound First, we show that the dynamic data
structure lower bound for Problem 2 reduces to showing a static data structure lower bound for
Problem 5, which corresponds to Section 2 of the proof.

More specifically, we show that if Multiphase Problem over F can be computed by a data
structure with tu update time and tq query time for some collection of matrices M ⊆ Fm×n, then
any M ∈M can be computed by a static data structure using tu · n space and tq probes.

t-span Lower Bound Next to derive a contradiction, suppose there exists an efficient data
structure that can compute any 〈Mi, X〉 using s-space and t-probes. (or in abbreviation, there
exists a (s, t)-data structure)

From the linearity assumption, we know that all pre-processing functions for the data structure
P1, . . . , Ps : Fn → F are all some linear functions. Then regardless of the probe being adaptive or
not, if Pi’s are restricted to be linear, and setting P := span{∇P1, . . . ,∇Ps} where ∇Pi refers to
the vector of coefficients of the linear function, Mi can be formed by using at most t terms in P.
More formally speaking, for an integer t and set of points S ⊆ Fn, let tS denote t-span of S that is

tS =

{
t∑

`=1

w`s` : w` ∈ F, s` ∈ S

}
.

Using this notation, we know that M1, . . . ,Mm ∈ tP.
Next, we introduce the following definition.

Definition 1.8 (Sumset evasive). For integer s and t, a set M is (s, t)-sumset evasive if for any
set S ⊆ Fn of size |S| = s, it holds that

M * tS.

The question is if there exists a m × n matrix M ∈ Fm×n that is (s, t)-sumset evasive? We
answer this combinatorial question affirmatively, first from a naive counting argument. Then we
remove the dependence on |F| by showing that actually there exists M ∈ {0, 1}m×n using a counting
argument due to a generalization of classic Theorem of Warren [War68, RBG01] with s = õ(m)
and t = Ω̃(n).

Overall, combined with previous reduction, we know that such M cannot be computed by
(õ(m), Ω̃(n))-data structure. Setting m = n2, we obtain that there must exists some M ∈ {0, 1}m×n
such that if tu < õ(n) then tq > Ω̃(n).

7

2 Static Lower Bound implies Dynamic Lower Bound

First, we show that static data structure lower bound for Problem 1 implies a lower bound for
dynamic data structure, which might be of independent interest related to the Multiphase Conjec-
ture. Recall that we want to give a lower bound on the trade-off between the update time tu and
the query time tq for the following dynamic data structure problem.

1. (Pre-processing Phase) Pre-process a matrix M ∈ Fm×n where m = poly(n)

2. (Update Phase) A vector X ∈ Fn is revealed and data structure updates its memory using
tu · n time.

3. (Query Phase) A query index i ∈ [m] is revealed and the data structure must output 〈Mi, X〉
after tq probes.

Problem 4: Multiphase Problem over F

Here, both M and X are part of the input to the data structure, therefore this is an explicit
dynamic data structure problem. While M is revealed in stage 1, X is revealed in stage 2, the
update stage. Therefore the data structure is dynamic in the sense that it must be able to update
its contents depending on the second input X.

Now we show that exhibiting a lower bound for Problem 1 is a harder task than for Problem 4.
Formally, we show that a lower bound for Problem 5 implies a lower bound for Problem 4.

Lemma 2.1 (Translation between static vs. dynamic). Suppose there exists data structure for
Problem 4 with update time tu and query time tq. Then there exists a a static data structure for
Problem 1 using tu · n space and tq probe for any fixed M .

Proof. Fix the data structure for Problem 4. Now denote the set of updated cells (and its contents)
as U . From our assumption on update time, we know that the number of updated cells |U | ≤ tu ·n.

Then consider the following data structure for Problem 1. Take U as the pre-processed cells.
Then in the query stage, we can simulate the query algorithm from the data structure for Problem
4. For the query to pre-processed cells (i.e. cells processed in stage 1), these are given for free in
Problem 1 since M is publicly given. For the query to updated cells, these cells are written as tu ·n
extra cells. The number of probes to those cells is at most tq.

Now the contrapositive of Lemma 2.1 shows that a lower bound for Problem 1 implies a lower
bound for Problem 4. Here also note that the reduction is not dependent on the underlying field
F. Furthermore, if the data structure for Problem 4 were of the linear model, that is content of
each updated cell j is a linear function Pj(X), then the corresponding data structure is of the linear
model as well. Therefore formally we get the following lemma for the linear model.

Lemma 2.2 (Linear Translation). Suppose there exists a linear data structure for Problem 4 with
update time tu and query time tq. Then there exists a static linear data structure for Problem 1
using tu · n space and tq probe for any fixed M .

3 Static Lower Bound

Recall that we want to prove a lower bound for the following static data structure problem for any
field F.

8

• The linear operator M ∈ Fm×n is publicly known.

• X1, . . . , Xn ∈ F is given as input.

• Preprocess M and X1, . . . , Xn to hint P ·X = h ∈ Fs using s extra space using some linear
operator P ∈ Fs×n.

• Given any i ∈ [m] as query, the querier can output 〈Mi, X〉 using t adaptive probes into h
and X1, . . . , Xn.

Problem 5: Computing 〈Mi, X〉 for any i ∈ [m]

We prove a weaker but straightforward theorem with a dependence on |F|,

Theorem 3.1 (Formal version of Theorem 1.3). There exists M ∈ Fm×n such that any linear data
structure for Problem 1 with M must have t = Ω(n) if s = O(m).

and the stronger theorem with no dependence.

Theorem 3.2 (Formal version of Theorem 1.4). There exists M ∈ {0, 1}m×n such that any linear
data structure for Problem 1 with M must have t = Ω(n/ log2 n) if s = m/ log n.

3.1 Reduction to Outer Dimension

We first show that even if decoding functions are not linear functions, as long as the preprocessing
functions P1, . . . , Ps are linear, M must be in tP. We remark that an analogous lemma for the
circuit was proved in [JS11]. The main difference here is that t-probes are allowed to be adaptive
in contrast to the circuit where probes are non-adaptive. Formally, we show the following lemma,
the proof of which we append in the appendix.

Lemma 3.3. Suppose we make t adaptive probes to linear data structure which computes 〈Mi, X〉
for any given i ∈ [m]. Let the answer to the t adaptive probes be 〈α1, X〉 , . . . , 〈αt, X〉. Then it must
be the case Mi ∈ span{α1, . . . , αt}

From the correctness assumption of the data structure, we know that Lemma 3.3 must hold for
all i. Therefore, as a corollary we get

Corollary 3.4. Suppose there exists a static linear data structure for Problem 5 for M with pa-
rameters s and t. Then there exists some P ⊂ Fn with |P| = s such that for all i ∈ [m], Mi ∈ tP.

So if there is a good static data structure for M , M must be a t-span of some s-sized subset.

3.2 Outer Dimension Lower Bounds

In the previous section, we have shown the connection between a good possibly adaptive data
structure for M and t-span of P. In other words, if M is computed by a data structure, then
M cannot be (s, t)-sumset evasive, that is all the rows in M can be represented as t-sum of some
elements in P of size s. This has a connection with the notion considered in the outer dimension
introduced in [PP06].

Definition 3.5 (Outer Dimension of a matrix [PP06]). Let V ⊆ Fm be a subspace, and t a sparsity
parameter. Then the outer dimension of V , denoted as DV (t) is

DV (t) := min
U
{dim(U) : V ⊆ U,U is t-sparse}

9

Without loss of generality, we denote the outer dimension of a matrix M ∈ Fm×n as DM (t) for
the column space of M . Then we have the following lemma from [DGW19].

Lemma 3.6 ([DGW19]). Let M ⊆ Fn be a subset of size m. Without loss of generality let M be
the matrix formed by setting the vectors in M as rows. The following are equivalent.

• DM (t) ≤ s;
• M is not (s, t)-sumset evasive.

Now we have reduced the problem to finding a matrix M that has a large outer dimension. If
we do not care about dependence on |F|, a straightforward counting gives the following lemma.

Lemma 3.7 ([PP06, Lok09]). A random n-dimensional subspace V of Fm where |F| = q has

DV (t) ≥ m ·
(

1−
t logqm

n

)
with high probability. Therefore there exists some matrix M ∈ Fm×nq such that DM (t) ≥ m ·(

1− t logqm

n

)
.

Lemma 3.7 combined with Lemma 3.6 and Corollary 3.4 will imply Theorem 3.1 which we will
show in Section 3.3. Here, note that the number of random bits required to express a hard M has
a dependence on |F|. We can remove this dependency with better counting.

Lemma 3.8. There exists a matrix M ∈ {0, 1}m×n with DM (t) ≥ s where t = Ω(n
(log s)·(logn)) and

s = m
logn .

At a high level, we show that the total number of 0/1-matrix M with DM (t) ≤ s is less than
2mn which is less than the total number of Boolean m × n matrix. Therefore there must exists
M with DM (t) ≥ s. A key ingredient here is bound on the number of zero-patterns of a sequence
of polynomials whose proof can be found in [RBG01]. Consider the following definition of zero
patterns of a sequence of functions.

Definition 3.9 (Zero Pattern). A set of zero patterns of sequence of functions (f1, . . . , fm) over
some field F with n variables is defined as

ZF((f1, . . . , fm)) = {(δ(f1(X)), . . . , δ(fm(X))) : X ∈ Fn}

where the function δ is defined as

δ(a) =

{
0 if a = 0

∗ otherwise

Now if we view each Mij as a function, and view M as a sequence of Mij , the size of zero
patterns of all possible 0/1 matrices M would be exactly 2mn. We will use the following bound on
the size of zero patterns.

Theorem 3.10 ([RBG01]). Consider (f1, . . . , fm), a sequence of m polynomials in n variables
x1, . . . , xn over F of degree at most d. Then the number of zero patterns of f is less than

|ZF((f1, . . . , fm))| ≤
(
emd

n

)n
.

10

Proof of Lemma 3.8. We count the number of M ∈ {0, 1}m×n with DM (t) ≤ s using Theorem
3.10. Now if M has DM (t) ≤ s, there must exist a t-sparse subspace U which contains M . In other
words, there exist vectors u1, . . . , us ∈ Fm which are the basis of the subspace U and when written
as a column of a m× s matrix U ,

U =
[
u1 | · · · | us

]
each row of U is t-sparse.

This induces the following parameterization of any entry Mij as a polynomial over the following
set of variables.

Parameterizing U First, we use the sparsity of U to parameterize U . We createmt log s variables
ζ11, . . . , ζmt ∈ [s] = {0, 1}log s where ζk` denotes `-th non-zero index of k-th row in U . Then create
mt variables α11, . . . , αmt where αk` denotes `-th non-zero entry of k-th row in U . Then we show
that each entry Uij can be written as a degree log s + 1 polynomial over these variables. For any
fixed row k and ` ∈ [t], we consider the following (degree log s) polynomial

qk,s(ζk`) =

{
1 if s = ζk`

0 otherwise but ζk` ∈ {0, 1}log s

Then for each entry Uij , given that all ζk` ∈ {0, 1}log s, we can write it as

Uij =
t∑

`=1

αi` · qi,j(ζi`)

which is then a degree log s+1 polynomial. Therefore, we can first parameterize U by mt log s+mt
variables using degree log s + 1 polynomials, where variables ζk`’s are restricted to be of binary
form (binary string representation of [s]).

Parameterizing M Next, we express each entry Mij using the parameterization of U and ad-
ditional ns variables γ11, . . . , γns ∈ F. From the definition of the outer dimension of the matrix,
M ⊆ U . Thus, we know that each column of M , say m1, . . . ,mn must be inside U . Therefore using
the additional variables, we can write each mj as

mj =

s∑
t=1

γjt · ut

Therefore we can write each entry Mij as

Mij = pij(~α,~γ, ~ζ) =

s∑
τ=1

γjτ · Uiτ =

s∑
τ=1

t∑
`=1

γjτ · αi` · qi,τ (ζi`)

where pij is then a degree log s+ 2 polynomial over mt log s+mt+ ns variables.
Now since each Mij ∈ {0, 1}, the zero pattern of pij uniquely determines the entry of Mij . Note

that ζ variables are restricted to be of binary form. But the restriction can only lower the number
of possible zero patterns. Thus from Theorem 3.10, the number of possible zero patterns for such
pij ’s (therefore the number of matrices M with DM (t) ≤ s) is at most(

emn(t log s+ 2)

mt log s+mt+ ns

)mt log s+mt+ns

≤ (en)mt log s+mt+ns ≤ 2(mt log s+ns)·logn.

11

given that t ≥ 2.
Setting t log s ≤ 0.1n/ log n and s ≤ 0.1m/ log n, then we get that the number of zero patterns

for pij ’s or the number of matrices M with DM (t) ≤ s is at most 20.5mn. But we know that the
number of possible Boolean M ’s is 2mn. Therefore there must exist some M (with high probability)
with DM (t) ≥ s under such parameter. �

3.3 Combining Everything Together

Now, we are ready to combine all the lemmas for the proof of the main theorems. First, we combine
Lemma 3.7, Lemma 3.6 and Corollary 3.4 to imply Theorem 3.1.

Proof of Theorem 3.1. Suppose we set s = m/2 and t < n log q
2 logm . Under such parameters, from

Lemma 3.7 we know that there are M ’s with DM (t) > s.
But from Lemma 3.6 and Corollary 3.4, we know that any M that can be computed by s-space

t-probe linear data structure must have DM (t) ≤ s. Thus such M cannot be computed by s-space
t-probe linear data structure. �

Similarly, we can combine Lemma 3.8, Lemma 3.6 and Corollary 3.4 to imply Theorem 3.2

Proof of Theorem 3.2. Suppose we set s = m/ log n and t < o(n
log s·logn). Under such parameters,

from Lemma 3.8 we know that there are 0/1 M ’s with DM (t) > s. But again from Lemma 3.6 and
Corollary 3.4, such M cannot be computed by s-space t-probe linear data structure. �

If one believes that non-linear advice cannot help in computing a linear operator (i.e. Conjecture
1.5), these theorems hold for all possible data structures. Number of random bits required for M
is equal to mn = poly(n), with near-optimal (up to logarithmic factors) for s and t, implying
derandomization of hard-instances of static data structure.

In addition, from reductions in Section 2, these imply explicit dynamic linear data structure
lower bound, which we explicitly state here.

Corollary 3.11. For any field F, any linear data structure for Problem 2 must have max{tu, tq} ≥
Ω̃(n). Furthermore, if we assume Conjecture 1.5, any data structure for Problem 2 must have
max{tu, tq} ≥ Ω̃(n)

Proof. Set m > n2. Lemma 2.2 with Theorem 3.2 shows a lower bound of tu = s/n = n/ log n and
tq = Ω(n/ log2 n) for linear data structure.

Suppose we assume Conjecture 1.5, then Lemma 2.1 shows an analogous lower bound for all
possible dynamic data structure.

12

References

[AE99] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives.
Contemp. Math., 223:1–56, 1999.

[Aga17] Pankaj K. Agarwal. Simplex Range Searching and Its Variants: A Review. In Martin
Loebl, Jaroslav Nešetřil, and Robin Thomas, editors, A Journey Through Discrete
Mathematics, pages 1–30. Springer International Publishing, Cham, 2017.

[BL15] Joshua Brody and Kasper Gren Larsen. Adapt or Die: Polynomial Lower Bounds for
Non-Adaptive Dynamic Data Structures. THEORY OF COMPUTING, 11:19, 2015.

[BYBJK11] Ziv Bar-Yossef, Yitzhak Birk, T. S. Jayram, and Tomer Kol. Index Coding With
Side Information. IEEE Transactions on Information Theory, 57(3):1479–1494, March
2011.

[CEEP12] Arkadev Chattopadhyay, Jeff Edmonds, Faith Ellen, and Toniann Pitassi. A Little
Advice Can Be Very Helpful. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 615–625. Society for Industrial and Applied
Mathematics, January 2012.

[CGK19] Henry Corrigan-Gibbs and Dmitry Kogan. The Function-Inversion Problem: Barriers
and Opportunities. Technical Report 1046, 2019.

[DGW19] Zeev Dvir, Alexander Golovnev, and Omri Weinstein. Static data structure lower
bounds imply rigidity. In Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, pages 967–978, Phoenix, AZ, USA, June 2019.
Association for Computing Machinery.

[DL20] Pavel Dvorák and Bruno Loff. Lower Bounds for Semi-adaptive Data Structures via
Corruption. CoRR, abs/2005.02238, 2020. eprint: 2005.02238.

[GGL15] R. C. A. Gronlund, A. Grønlund, and K. G. Larsen. New Unconditional Hardness
Results for Dynamic and Online Problems. In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 1089–1107, October 2015.

[GPRW20] Alexander Golovnev, Gleb Posobin, Oded Regev, and Omri Weinstein. Polynomial
Data Structure Lower Bounds in the Group Model. Technical Report 057, 2020.

[JS11] Stasys Jukna and Georg Schnitger. Min-rank conjecture for log-depth circuits. J.
Comput. Syst. Sci., 77(6):1023–1038, 2011.

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27.
Springer Science & Business Media, 2012.

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast Modular Composition in any Charac-
teristic. In Proc. 49th, pages 146–155, 2008.

[KU11] Kiran S. Kedlaya and Christopher Umans. Fast Polynomial Factorization and Modular
Composition. SIAM J. Comput., 40(6):1767–1802, 2011.

[KW19] Young Kun Ko and Omri Weinstein. An Adaptive Step Toward the Multiphase Con-
jecture. FOCS 2020 (to appear), October 2019. arXiv: 1910.13543.

13

[Lar12a] Kasper Green Larsen. The Cell Probe Complexity of Dynamic Range Counting. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing,
STOC ’12, pages 85–94, New York, NY, USA, 2012. ACM. event-place: New York,
New York, USA.

[Lar12b] Kasper Green Larsen. Higher Cell Probe Lower Bounds for Evaluating Polynomials.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
pages 293–301, 2012.

[Lar14] Kasper Green Larsen. On Range Searching in the Group Model and Combinatorial
Discrepancy. SIAM J. Comput., 43(2):673–686, 2014.

[Lok09] Satyanarayana V. Lokam. Complexity Lower Bounds using Linear Algebra. Found.
Trends Theor. Comput. Sci., 4(1-2):1–155, 2009.

[LWY18] Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the Logarithmic
Barrier for Dynamic Boolean Data Structure Lower Bounds. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
978–989, New York, NY, USA, 2018. ACM. event-place: Los Angeles, CA, USA.

[Mat94] Jǐŕı Matoušek. Geometric range searching. ACM Computing Surveys (CSUR),
26(4):422–461, December 1994.

[Mil93] Peter Bro Miltersen. The Bit Probe Complexity Measure Revisited. In STACS 1993,
pages 662–671, 1993.

[Pat07] Mihai Patrascu. Lower Bounds for 2-dimensional Range Counting. In Proceedings of
the Thirty-ninth Annual ACM Symposium on Theory of Computing, STOC ’07, pages
40–46, New York, NY, USA, 2007. ACM. event-place: San Diego, California, USA.

[Pat08] Mihai Patrascu. Lower Bound Techniques for Data Structures. 2008.

[Pat10] Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In
Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory
of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages
603–610. ACM, 2010.

[PP06] Ramamohan Paturi and Pavel Pudlák. Circuit lower bounds and linear codes. J. Math.
Sci., 134(5):2425–2434, 2006.

[PTW10] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower Bounds on Near Neighbor
Search via Metric Expansion. In FOCS 2010, pages 805–814, 2010.

[RBG01] Lajos Rónyai, László Babai, and Murali K. Ganapathy. On The Number Of Zero-
Patterns Of A Sequence Of Polynomials. Journal of the American Mathematical So-
ciety, 14(03):717–736, July 2001.

[Tho13] Mikkel Thorup. Mihai PǎTraşCu: Obituary and Open Problems. SIGACT News,
44(1):110–114, March 2013.

[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In G. Goos,
J. Hartmanis, P. Brinch Hansen, D. Gries, C. Moler, G. Seegmüller, J. Stoer, N. Wirth,
and Jozef Gruska, editors, Mathematical Foundations of Computer Science 1977, vol-
ume 53, pages 162–176. Springer Berlin Heidelberg, Berlin, Heidelberg, 1977.

14

[Val92] Leslie G. Valiant. Why is Boolean Complexity Theory Difficult? In Poceedings of
the London Mathematical Society Symposium on Boolean Function Complexity, pages
84–94, New York, NY, USA, 1992. Cambridge University Press. event-place: London,
United Kingdom.

[Vio18] Emanuele Viola. Lower bounds for data structures with space close to maximum imply
circuit lower bounds. In ECCC, volume 25, 2018.

[War68] Hugh E. Warren. Lower bounds for approximation by nonlinear manifolds. Transac-
tions of the American Mathematical Society, 133(1):167–167, January 1968.

[Yao81] Andrew Chi-Chih Yao. Should Tables Be Sorted? J. ACM, 28(3):615–628, July 1981.

A Missing Proof from Section 3.1

Towards showing Lemma 3.3, first, we show the following simple combinatorial lemma on an affine
linear subspace of Fnq .

Lemma A.1. Let Q1, . . . , Qd ∈ Fnq be linearly independent vectors. Then consider uniform distri-
bution U over X ∈ Fnq . For any a1, . . . , ad ∈ Fq,

Pr
X∼U

[〈Qd, X〉 = ad| 〈Q1, X〉 = a1, . . . , 〈Qd−1, X〉 = ad−1] =
1

q
.

Towards the proof of Lemma A.1, we show the following claim about the property of random
inner product with any vector α ∈ Fdq when q = pk for some prime number p and a natural number
k.

Claim A.2. For any d ∈ N and any α ∈ Fdq with α 6= 0

Pr
X∼U

[〈α,X〉 = β] =
1

q

for any β ∈ Fq.

Proof. We prove by induction on d. Suppose d = 1 and α 6= 0. Since Fq is a field, the inverse of α,
α−1 is well-defined and unique. Furthermore for any α ∈ Fq, x 7→ α−1 · x as a mapping from Fq to
Fq is a bijection. Therefore we have

Pr
X∼U

[αX = β] = Pr
X∼U

[
X = α−1 · β

]
=

1

q
.

For inductive step, suppose it were true when d = `. We want to show this is true for `+ 1 as
well. We divide into two cases: (i) α`+1 = 0; and (ii) α`+1 6= 0.

If α`+1 = 0, for any β ∈ Fp we have that

Pr
X∼U

[〈α,X〉 = β] = Pr
X∼U

[∑̀
i=1

αiXi = β

]
=

1

q
(2)

where the first equality holds since α`+1 = 0 and the second equality holds from induction hypoth-
esis.

15

Otherwise, if α`+1 6= 0, we have that for any β′, β ∈ Fq,

Pr
X∼U

[
〈α,X〉 = β

∣∣∣∣∣ ∑̀
i=1

αiXi = β′

]
= Pr

X∼U

[
α`+1 ·X`+1 = β − β′

∣∣∣∣∣ ∑̀
i=1

αiXi = β′

]

= Pr
X∼U

[
α`+1 ·X`+1 = β − β′

]
= Pr

X∼U

[
X`+1 = α−1

`+1(β − β′)
]

=
1

q
.

Then we can write the probability as

Pr
X∼U

[〈α,X〉 = β] =
∑
β′

Pr

[
〈α,X〉 = β

∣∣∣∣∣ ∑̀
i=1

αiXi = β′

]
· Pr

[∑̀
i=1

αiXi = β′

]

=
1

q

∑
β′

Pr

[∑̀
i=1

αiXi = β′

]
=

1

q
.

Now we are ready to prove Lemma A.1 using Claim A.2.

Proof of Lemma A.1.
Let V be the affine subspace with the constraints 〈Q1, X〉 = a1, . . . , 〈Qd−1, X〉 = ad−1. Since it

is an affine subspace, there exists basis v0, v1, . . . , vn−(d−1) ∈ V such that V can be written as

V =
{
v0 +

∑
βivi

∣∣∣ β1, . . . , βn−(d−1) ∈ Fq
}
.

Now a uniform distribution over such V is equivalent to a uniform distribution over β with the
basis, since different β corresponds to different point. Also by the property of inner product, for
any w ∈ V , note that we have

〈Qd, w〉 =
〈
Qd,

(
v0 +

∑
βivi

)〉
= 〈Qd, v0〉+

∑
βi 〈Qd, vi〉 (3)

If we write each αi := 〈Qd, vi〉, we can rewrite the probability term as

Pr [〈Qd, X〉 = ad| 〈Q1, X〉 = a1, . . . , 〈Qd−1, X〉 = ad−1]

= Pr
β∼U

[
α0 +

∑
βiαi = ad

]
= Pr

β∼U

[∑
βiαi = ad − α0

]
=

1

q

where the last equality holds from Claim A.2. �
We are now ready to prove the main lemma of this section using an information-theoretic

argument.

Proof of Lemma 3.3. Suppose otherwise. Suppose Mi /∈ span{α1, . . . , αt}. For concise notation,
we introduce the following notation for the answers to the probes. ΠMi denote the final answer,
that is 〈Mi, X〉. Each Πi denotes answer to the i-th probe, that is 〈αi, X〉.

Without loss of generality, assume that α1, . . . , αt are linearly independent. If not, then the
data structure could have removed linearly dependent query αt, and terminate the probes after
t− 1 steps. Now using the property of entropy, we can write the total entropy of the probes as

H(Π1, . . . ,Πt) =
t∑

τ=1

H(Πτ |Π<τ) (4)

16

Now consider each H(Πτ |Π<τ). Under any fixed Π<τ , we know that the distribution of Πτ is
uniform due to Lemma A.1. Therefore we get that H(Πτ |Π<τ) = log q. Then we can rewrite (4) as

H(Π1, . . . ,Πt) = t log q. (5)

Now since we assumed α1, . . . , αt are linearly independent andMi /∈ span{α1, . . . , αt}, Mi, α1, . . . , αt
are linearly independent. Therefore Lemma A.1 also implies that H(ΠMi |Π1, . . . ,Πt) = log q. We
then get from (5)

H(ΠMi ,Π1, . . . ,Πt) = H(ΠMi |Π1, . . . ,Πt) +H(Π1, . . . ,Πt) = (t+ 1) log q > t log q (6)

But recall that one must know 〈Mi, X〉 from Π1, . . . ,Πt. Therefore the correctness of the
protocol implies that H(ΠMi |Π1, . . . ,Πt) = 0.

H(ΠMi ,Π1, . . . ,Πt) = H(Π1, . . . ,Πt) +H(ΠMi |Π1, . . . ,Πt) = t log q

which is a contradiction.
�

B NOF-Multiphase Conjecture implies Conjecture 1.5

In this section, we show that NOF-Multiphase Conjecture implies Conjecture 1.5 using the reduction
given in [KW19].

Lemma B.1. NOF-Multiphase Conjecture implies Conjecture 1.5.

Proof. Suppose Conjecture 1.5 does not hold. Then we know that there exists some M ⊂ Fm×n
of density 1− o(1), that has much better non-linear data structure than linear data structure. We
also know that for 1 − o(1)-fraction of M any linear data structure using õ(m) space must have
Ω̃(n) probes from Theorem 3.1 and Theorem 3.2. Taking the intersection of those two, we get M′
of density 1− o(1) where any M ∈ M′ has no linear data structure but non-linear data structure
using õ(m)-space and õ(n)-probes.

But this refutes NOF-Multiphase Conjecture due to the following reduction in [KW19]. Charlie
sends h as what is written in data structure of size s to Bob; Alice simulates the query algorithm,
Bob answers based on s received from Charlie. Therefore, for any M ∈ M′, we get an efficient
communication protocol. But NOF-Multiphase Conjecture states that this is impossible for such
parameters of s and t.

17
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

