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Abstract. The approximate degree of a Boolean function f : {0, 1}n → {0, 1}
is the minimum degree of a real polynomial p that approximates f pointwise:
|f(x)− p(x)| 6 1/3 for all x ∈ {0, 1}n. For every δ > 0, we construct CNF and
DNF formulas of polynomial size with approximate degree Ω(n1−δ), essentially
matching the trivial upper bound of n. This improves polynomially on previous
lower bounds and fully resolves the approximate degree of constant-depth cir-
cuits (AC0), a question that has seen extensive research over the past 10 years.
Prior to our work, an Ω(n1−δ) lower bound was known only for AC0 circuits of
depth that grows with 1/δ (Bun and Thaler, FOCS 2017). Furthermore, the
CNF and DNF formulas that we construct are the simplest possible in that
they have constant width. Our result holds even for one-sided approximation:
for any δ > 0, we construct a polynomial-size constant-width CNF formula
with one-sided approximate degree Ω(n1−δ).

Our work has the following consequences.
(i) We essentially settle the communication complexity of AC0 circuits in

the bounded-error quantum model, k-party number-on-the-forehead ran-
domized model, and k-party number-on-the-forehead nondeterministic
model: we prove that for every δ > 0, these models require Ω(n1−δ),
Ω(n/4kk2)1−δ, and Ω(n/4kk2)1−δ, respectively, bits of communication
even for polynomial-size constant-width CNF formulas.

(ii) In particular, we show that the multiparty communication class coNPk
can be separated essentially optimally from NPk and BPPk by a partic-
ularly simple function, a polynomial-size constant-width CNF formula.

(iii) We give an essentially tight separation, of O(1) versus Ω(n1−δ), for the
one-sided versus two-sided approximate degree of a function; and O(1)
versus Ω(n1−δ) for the one-sided approximate degree of a function f

versus its negation ¬f .
Our proof departs significantly from previous approaches and contributes a
novel, number-theoretic method for amplifying approximate degree.
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1. Introduction

Representations of Boolean functions by real polynomials play a central role in
theoretical computer science. Our focus in this paper is on approximate degree, a
particularly natural and useful complexity measure. Formally, the ε-approximate
degree of a Boolean function f : {0, 1}n → {0, 1} is denoted degε(f) and defined as
the minimum degree of a real polynomial p that approximates f within ε pointwise:
|f(x)−p(x)| 6 ε for all x ∈ {0, 1}n. The standard choice of the error parameter is ε =
1/3, which is a largely arbitrary setting that can be replaced by any other constant
in (0, 1/2) without affecting the approximate degree by more than a multiplicative
constant. Since every function f : {0, 1}n → {0, 1} can be computed with zero error
by a polynomial of degree at most n, the ε-approximate degree is always at most n.

The notion of approximate degree originated three decades ago in the pioneering
work of Nisan and Szegedy [31] and has since proved to be a powerful tool in the-
oretical computer science. Upper bounds on approximate degree have algorithmic
applications, whereas lower bounds are a staple in complexity theory. On the algo-
rithmic side, approximate degree underlies many of the strongest results obtained
to date in computational learning, differentially private data release, and algorithm
design in general. In complexity theory, the notion of approximate degree has
produced breakthroughs in quantum query complexity, communication complexity,
and circuit complexity. A detailed bibliographic overview of these applications can
be found in [47, 17].

Approximate degree has been particularly prominent in the study of AC0, the
class of polynomial-size constant-depth circuits with gates ∨,∧,¬ of unbounded fan-
in. The simplest functions in AC0 are conjunctions and disjunctions, which have
depth 1, followed by polynomial-size CNF and DNF formulas, which have depth 2,
followed in turn by higher-depth circuits. Lower bounds on the approximate degree
of AC0 functions have been used to settle the quantum query complexity of Grover
search [8], element distinctness [1], and a host of other problems [14]; resolve the
communication complexity of set disjointness in the two-party quantum model [33,
38] and number-on-the-forehead multiparty model [37, 38, 28, 20, 36, 11, 44, 43];
separate the communication complexity classes PP and UPP [13, 37]; and separate
the polynomial hierarchy in communication complexity from the communication
class UPP [34]. Despite this array of applications and decades of study, our under-
standing of the approximate degree of AC0 has remained surprisingly fragmented
and incomplete. In this paper, we set out to resolve this question in full.

In more detail, previous work on the approximate degree of AC0 started with the
seminal 1994 paper of Nisan and Szegedy [31], who proved that the OR function on
n bits has approximate degree Θ(

√
n). This was the best result until Aaronson and

Shi’s celebrated lower bound of Ω(n2/3) for the element distinctness problem [1]. In
a beautiful paper from 2017, Bun and Thaler [17] showed that AC0 contains func-
tions in n variables with approximate degree Ω(n1−δ), where the constant δ > 0
can be made arbitrarily small at the expense of increasing the depth of the circuit.
In follow-up work, Bun and Thaler [18] proved an Ω(n1−δ) lower bound for approx-
imating AC0 circuits even with error exponentially close to 1/2, where once again
the circuit depth grows with 1/δ. A stronger yet result was obtained by Sherstov
and Wu [49], who showed that AC0 has essentially the maximum possible threshold
degree (defined as the limit of ε-approximate degree as ε ↗ 1/2) and sign-rank (a
generalization of threshold degree to arbitrary bases rather than just the basis of
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monomials). Quantitatively, the authors of [49] proved a lower bound of Ω(n1−δ)
for threshold degree and exp(Ω(n1−δ)) for sign-rank, essentially matching the triv-
ial upper bounds. As before, δ > 0 can be made arbitrarily small at the expense
of increasing the circuit depth. In particular, AC0 requires a polynomial of degree
Ω(n1−δ) even for approximation to error doubly (triply, quadruply, quintuply. . . )
exponentially close to 1/2.

The lower bounds of [17, 18, 49] show that AC0 functions have essentially the
maximum possible complexity—but only if one is willing to look at circuits of arbi-
trarily large constant depth. What happens at small depths has been a wide open
problem, with no techniques to address it. Bun and Thaler observe that their AC0

circuit in [17] with approximate degree Ω(n1−δ) can be flattened to produce a DNF
formula of size exp(logO(log(1/δ)) n), but this is superpolynomial and thus no longer
in AC0. The only progress of which we are aware is an Ω(n3/4−δ) lower bound
obtained for polynomial-size DNF formulas in [14, 29]. This leaves a polynomial
gap in the approximate degree for small depth versus arbitrary constant depth.
Our main contribution is to definitively resolve the approximate degree of AC0 by
constructing, for any constant δ > 0, a polynomial-size DNF formula with approxi-
mate degree Ω(n1−δ). We now describe our main result and its generalizations and
applications.

1.1. Approximate degree of DNF and CNF formulas. Recall that a literal
is a Boolean variable x1, x2, . . . , xn or its negation x1, x2, . . . , xn. A conjunction of
literals is called a term, and a disjunction of literals is called a clause. The width
of a term or clause is the number of literals that it contains. A DNF formula is a
disjunction of terms, and analogously a CNF formula is a conjunction of clauses.
The width of a DNF or CNF formula is the maximum width of a term or clause in it,
respectively. One often refers to DNF and CNF formulas of width k as k-DNF and
k-CNF formulas. The size of a DNF or CNF formula is the total number of terms
or clauses, respectively, that it contains. Thus, AC0 circuits of depth 1 correspond
precisely to clauses and terms, whereas AC0 circuits of depth 2 correspond precisely
to polynomial-size DNF and CNF formulas. Our main result on approximate degree
is as follows.

Theorem 1.1 (Main result). Let δ > 0 be any constant. Then for each n > 1, there
is an (explicitly given) function f : {0, 1}n → {0, 1} that has approximate degree

deg1/3(f) = Ω(n1−δ)

and is computable by a DNF formula of size nO(1) and width O(1).

Theorem 1.1 almost matches the trivial upper bound of n on the approximate degree
of any function. Thus, the theorem shows that AC0 circuits of depth 2 already
achieve essentially the maximum possible approximate degree. This depth cannot
be reduced further because AC0 circuits of depth 1 have approximate degree O(

√
n).

Finally, the DNF formulas constructed in Theorem 1.1 are the simplest possible in
that they have constant width.

Recall that previously, a lower bound of Ω(n1−δ) for AC0 was known only for
circuits of large constant depth that grows with 1/δ. The lack of progress on small-
depth AC0 prior to this paper had experts seriously entertaining [18] the possibility
that AC0 circuits of any given depth d have approximate degree O(n1−δd), for
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some constant δd = δd(d) > 0. Such an upper bound would have far-reaching
consequences in computational learning and circuit complexity. Theorem 1.1 rules
it out.

1.2. Large-error approximation. Any Boolean function can be approximated
pointwise within 1/2 in a trivial manner, by a constant polynomial. Approximation
within 1

2−o(1), on the other hand, is a meaningful and extremely useful notion. We
obtain the following strengthening of our main result, in which the approximation
error is relaxed from 1/3 to an optimal 1

2 −
1

nΘ(1) .

Theorem 1.2 (Main result for large error). Let δ > 0 and C > 1 be any constants.
Then for each n > 1, there is an (explicitly given) function f : {0, 1}n → {0, 1} that
has approximate degree

deg 1
2−

1

nC
(f) = Ω(n1−δ)

and is computable by a DNF formula of size nO(1) and width O(1).

To rephrase Theorem 1.2, polynomial-size DNF formulas require degree Ω(n1−δ)
for approximation not only to constant error but even to error 1

2 −
1
nC
, where

C > 1 is an arbitrarily large constant. The error parameter in Theorem 1.2 cannot
be relaxed further to 1

2 −
1

nω(1) because any DNF formula with m terms can be
approximated to error 1

2 − Ω( 1
m ) by a polynomial of degree O(

√
n logm).

Negating a function has no effect on the approximate degree. Indeed, if f is
approximated to error ε by a polynomial p, then the negated function ¬f = 1−f is
approximated to the same error ε by the polynomial 1− p. With this observation,
Theorems 1.1 and 1.2 carry over to CNF formulas:

Corollary 1.3. Let δ > 0 and C > 1 be any constants. Then for each n > 1, there
is an (explicitly given) function g : {0, 1}n → {0, 1} that has approximate degree

deg 1
2−

1

nC
(g) = Ω(n1−δ)

and is computable by a CNF formula of size nO(1) and width O(1).

1.3. One-sided approximation. There is a natural notion of one-sided approx-
imation for Boolean functions. Specifically, the one-sided ε-approximate degree of a
function f : {0, 1}n → {0, 1} is defined as the minimum degree of a real polynomial
p such that

f(x) = 0 ⇒ p(x) ∈ [−ε, ε],
f(x) = 1 ⇒ p(x) ∈ [1− ε,+∞)

for every x ∈ {0, 1}n. This complexity measure is denoted deg+
ε (f). It plays a

considerable role [23, 15, 40, 16, 45, 44, 43] in the area, both in its own right and
due to its applications to other asymmetric notions of computation such as non-
determinism and Merlin–Arthur protocols. One-sided approximation is meaningful
for any error parameter ε ∈ [0, 1/2), and as before the standard setting is ε = 1/3.
By definition, one-sided approximate degree is always at most n. Observe that
the definitions of ε-approximate degree degε(f) and its one-sided variant deg+

ε (f)
impose the same requirement for inputs x ∈ f−1(0): the approximating polynomial
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must approximate f within ε at each such x. For inputs x ∈ f−1(1), on the other
hand, the definitions of degε(f) and deg+

ε (f) diverge dramatically, with one-sided
ε-approximate degree not requiring any upper bound on the approximating poly-
nomial p. As a result, one always has deg+

ε (f) 6 degε(f), and it is reasonable to
expect a large gap between the two quantities for some f . Moreover, the one-sided
approximate degree of a function is in general not equal to that of its negation:
deg+

ε (f) 6= deg+
ε (¬f). This contrasts with the equality degε(f) = degε(¬f) for

two-sided approximation.
In this light, there are three particularly natural questions to ask about one-sided

approximate degree:

(i) What is the one-sided approximate degree of AC0 circuits?
(ii) What is the largest possible gap between approximate degree and one-sided

approximate degree?
(iii) What is the largest possible gap between the one-sided approximate degree

of a function f and that of its negation ¬f?

In this paper, we resolve all three questions in detail. For question (i), we prove
that polynomial-size CNF formulas achieve essentially the maximum possible one-
sided approximate degree. In fact, our result holds even for approximation to error
vanishingly close to random guessing, 1

2 − o(1):

Theorem 1.4. Let δ > 0 and C > 1 be any constants. Then for each n > 1, there
is an (explicitly given) function g : {0, 1}n → {0, 1} that has one-sided approximate
degree

deg+
1
2−

1

nC
(g) = Ω(n1−δ)

and is computable by a CNF formula of size nO(1) and width O(1).

Theorem 1.4 essentially settles the one-sided approximate degree of AC0. The
theorem is optimal with respect to circuit depth; recall that depth-1 circuits have
approximate degree O(

√
n) and hence also one-sided approximate degree O(

√
n).

Previous work on the one-sided approximate degree of AC0 was suboptimal with
respect to the degree bound and/or circuit depth. Specifically, the best previous
lower bounds were Ω(n/ log n)2/3 due to Bun and Thaler [16] for a polynomial-size
CNF formula, and Ω(n1−δ) due to Sherstov and Wu [49] for AC0 circuits of depth
that grows with 1/δ.

As an application of Theorem 1.4, we resolve questions (ii) and (iii) in full,
establishing a gap of O(1) versus Ω(n1−δ) in each case. Moreover, we prove that
these gaps remain valid well beyond the standard error regime of ε = 1/3. A
detailed statement of our separations follows.

Corollary 1.5. Let δ > 0 and C > 1 be any constants. Then for each n > 1,
there is an (explicitly given) function f : {0, 1}n → {0, 1} with

deg+
0 (f) = O(1) (1.1)
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but

deg 1
2−

1

nC
(f) = Ω(n1−δ), (1.2)

deg+
1
2−

1

nC
(¬f) = Ω(n1−δ). (1.3)

Moreover, f is computable by a DNF formula of size nO(1) and width O(1).

Equations (1.1) and (1.2) in this result give the promised O(1) versus Ω(n1−δ) sep-
aration for question (ii). Analogously, (1.1) and (1.3) give an O(1) versus Ω(n1−δ)
separation for question (iii). Of particular note in both separations is the error
regime: the upper bound remains valid even under the stronger requirement of zero
error, whereas the lower bounds remain valid even under the weaker requirement
of error 1

2 − o(1). Our separations improve on previous work. For question (ii),
the best previous separation was (log n)Oδ(1) versus Ω(n1−δ) for any fixed δ > 0,
implicit in [17]. For the harder question (iii), the best previous separation [16] was
O(log n) versus Ω(n/ log n)2/3, which is polynomially weaker than ours.

The derivation of Corollary 1.5 from Theorem 1.4 is short and illustrative, and
we include it here.

Proof of Corollary 1.5. Let g be the function from Theorem 1.4, and set f = ¬g.
Then (1.3) is immediate. Equation (1.2) follows from (1.3) in light of the basic
relations degε(f) = degε(¬f) > deg+

ε (¬f), valid for all f and ε. Finally, (1.1) can
be seen as follows. Since g is a CNF formula of width O(1), its negation f is a
DNF formula of width O(1). Thus, every term of f can be represented exactly by
a polynomial of degree O(1). Summing these polynomials gives a 0-error one-sided
approximant for f.

We now discuss applications of our results on approximate degree and one-sided
approximate degree to fundamental questions in communication complexity.

1.4. Randomized multiparty communication. We adopt the number-on-the-
forehead model of Chandra, Furst, and Lipton [19], which is the most powerful
formalism of multiparty communication. The model features k communicating
players and a Boolean function F : X1×X2× · · · ×Xk → {0, 1} with k arguments.
An input (x1, x2, . . . , xk) is distributed among the k players by giving the i-th
player the arguments x1, . . . , xi−1, xi+1, . . . , xk but not xi. This arrangement can
be visualized as having the k players seated in a circle with xi written on the i-th
player’s forehead, whence the name of the model. Number-on-the-forehead is the
canonical model in the area because any other way of assigning arguments to players
results in a less powerful model—provided of course that one does not assign all
the arguments to some player, in which case there is never a need to communicate.

The players communicate according to a protocol agreed upon in advance. The
communication occurs in the form of broadcasts, with a message sent by any given
player instantly reaching everyone else. The players’ objective is to compute F on
any given input with minimal communication. To this end, the players have access
to an unbounded supply of shared random bits which they can use in deciding what
message to send at any given point in the protocol. The cost of a protocol is the
total bit length of all the messages broadcast in a worst-case execution. The ε-error
randomized communication complexity Rε(F ) of a given function F is the least cost
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of a protocol that computes F with probability of error at most ε on every input.
As with approximate degree, the standard setting of the error parameter is ε = 1/3.

The number-on-the-forehead communication complexity of constant-depth cir-
cuits is a challenging question that has been the focus of extensive research, e.g., [12,
28, 20, 36, 11, 44, 43, 17]. In contrast to the two-party model, where a lower bound
of Ω(

√
n) for AC0 circuits is straightforward to prove from first principles [4], the

first nΩ(1) multiparty lower bound [44] for AC0 was obtained only in 2012. The
strongest known multiparty lower bounds for AC0 are obtained using the pattern
matrix method of [43], which transforms approximate degree lower bounds in a
black-box manner into communication lower bounds. In the most recent appli-
cation of this method, Bun and Thaler [17] gave a k-party communication prob-
lem F : ({0, 1}n)k → {0, 1} in AC0 with communication complexity Ω(n/4kk2)1−δ,
where the constant δ > 0 can be taken arbitrarily small at the expense of increasing
the depth of the AC0 circuit. This shows that AC0 has essentially the maximum
possible multiparty communication complexity—as long as one is willing to use
circuits of arbitrarily large constant depth. For circuits of small depth, the best
lower bound is polynomially weaker: Ω(n/4kk2)3/4−δ for the k-party communica-
tion complexity of polynomial-size DNF formulas, which can be proved by applying
the pattern matrix method to the approximate degree lower bounds in [14, 29]. This
fragmented state of the art closely parallels that for approximate degree prior to
our work.

We resolve the multiparty communication complexity of AC0 in detail in the
following theorem.

Theorem 1.6. Fix any constants δ ∈ (0, 1] and C > 1. Then for all integers n, k >
2, there is an (explicitly given) k-party communication problem Fn,k : ({0, 1}n)k →
{0, 1} with

R1/3(Fn,k) >
( n

c′4kk2

)1−δ
,

R 1
2−

1

nC
(Fn,k) >

n1−δ

c′4k
,

where c′ > 1 is a constant independent of n and k. Moreover, Fn,k is computable
by a DNF formula of size nc

′
and width c′k.

Theorem 1.6 essentially represents the state of the art for multiparty communication
lower bounds. Indeed, the best communication lower bound to date for any explicit
function F : ({0, 1}n)k → {0, 1}, whether or not F is computable by an AC0 circuit,
is Ω(n/2k) [6]. Theorem 1.6 comes close to matching the trivial upper bound of
n+1 for any communication problem, thereby showing that AC0 circuits of depth 2
achieve nearly the maximum possible communication complexity. Moreover, our
result holds not only for bounded-error communication but also for communication
with error 1

2 −
1
nC

for any C > 1. The error parameter in Theorem 1.6 is optimal
and cannot be further increased to 1

2−
1

nω(1) ; indeed, it is straightforward to see that
any DNF formula with m terms has a communication protocol with error 1

2−Ω( 1
m )

and cost 2 bits. Theorem 1.6 is also optimal with respect to circuit depth because
the multiparty communication complexity of AC0 circuits of depth 1 is at most 2
bits.
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Since randomized communication complexity is invariant under function nega-
tion, Theorem 1.6 remains valid with the word “DNF” replaced with “CNF.”

1.5. Nondeterministic and Merlin–Arthur multiparty communication.
Here again, we adopt the k-party number-on-the-forehead model of Chandra, Furst,
and Lipton [19]. Nondeterministic communication is defined in complete analogy
with computational complexity. Specifically, a nondeterministic protocol starts
with a guess string, whose length counts toward the protocol’s communication cost,
and proceeds deterministically thenceforth. A nondeterministic protocol for a given
communication problem F : X1 ×X2 × · · · ×Xk → {0, 1} is required to output the
correct answer for all guess strings when presented with a negative instance of F,
and for some guess string when presented with a positive instance. We further
consider Merlin–Arthur protocols [3, 5], a communication model that combines the
power of randomization and nondeterminism. As before, a Merlin–Arthur protocol
for a given problem F starts with a guess string, whose length counts toward the
communication cost. From then on, the parties run an ordinary randomized proto-
col. The randomized phase in a Merlin–Arthur protocol must produce the correct
answer with probability at least 2/3 for all guess strings when presented with a
negative instance of F, and for some guess string when presented with a positive
instance. Thus, the cost of a nondeterministic or Merlin–Arthur protocol is the sum
of the costs of the guessing phase and communication phase. The minimum cost of
a valid protocol for F in these models is called the nondeterministic communica-
tion complexity of F , denoted N(F ), and Merlin–Arthur communication complexity
of F, denoted MA1/3(F ). The quantity N(¬F ) is called the co-nondeterministic
communication complexity of F .

Nondeterministic and Merlin–Arthur protocols have been extensively studied
for k = 2 parties but are much less understood in the multiparty setting [10, 23,
44, 43]. Prior to our paper, the best lower bounds in these models for an AC0

circuit F : ({0, 1}n)k → {0, 1} were Ω(
√
n/2kk) for nondeterministic communication

and Ω(
√
n/2kk)1/2 for Merlin–Arthur communication, obtained in [43] for the set

disjointness problem. We give a quadratic improvement on these lower bounds.
In particular, our result for nondeterminism essentially matches the trivial upper
bound. Moreover, we obtain our result for a particularly simple function in AC0,
namely, a polynomial-size CNF formula of constant width. A detailed statement
follows.

Theorem 1.7. Let δ > 0 be arbitrary. Then for all integers n, k > 2, there is an
(explicitly given) k-party communication problem Gn,k : ({0, 1}n)k → {0, 1} with

N(¬Gn,k) 6 c log n

but

N(Gn,k) >
( n

c4kk2

)1−δ
, (1.4)

R1/3(Gn,k) >
( n

c4kk2

)1−δ
, (1.5)

MA1/3(Gn,k) >
( n

c4kk2

) 1−δ
2

, (1.6)
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where c > 1 is a constant independent of n and k. Moreover, Gn,k is computable by
a CNF formula of width ck and size nc.

This result can be viewed as a far-reaching generalization of Theorem 1.6 to non-
deterministic and Merlin–Arthur protocols. To obtain Theorem 1.7, we adapt the
pattern matrix method [43] to be able to transform any lower bound on one-sided
approximate degree into a multiparty communication lower bound in the nondeter-
ministic and Merlin–Arthur models. With this tool in hand, we obtain Theorem 1.7
from our one-sided approximate degree lower bound (Theorem 1.4).

1.6. Multiparty communication classes. Theorem 1.7 sheds new light on com-
munication complexity classes, defined in the seminal work of Babai, Frankl, and
Simon [4]. An infinite family {Fn}∞n=1, where each Fn : ({0, 1}n)k → {0, 1} is a
k-party number-on-the-forehead communication problem, is said to be efficiently
solvable in a given model of communication if Fn has communication complexity
at most logc n in that model, for a large enough constant c > 1 and all n > c.
One defines BPPk, NPk, coNPk, and MAk as the classes of families that are ef-
ficiently solvable in the randomized, nondeterministic, co-nondeterministic, and
Merlin–Arthur models, respectively. In particular, MAk is a superset of NPk and
BPPk. In these definitions, k = k(n) can be any function of n, including constant
functions such as k = 3. The relations among these multiparty classes have been
actively studied over the past decade [9, 28, 20, 22, 11, 10, 23, 44, 43]. It particular,
for k 6 Θ(log n), it is known that coNPk is not contained in BPPk, NPk, or even
MAk. Quantitatively, these results can be summarized as follows.

(i) Prior to our work, the strongest k-party separation of co-nondeterministic
versus randomized communication complexity was O(log n) versus
Ω(
√
n/2kk), proved in [43] for the set disjointness function.

(ii) The best previous k-party separations of co-nondeterministic versus non-
deterministic communication complexity were: O(log n) versus Ω(n),
proved in [43] nonconstructively by the probabilistic method; and O(log n)
versus Ω(

√
n/2kk), proved in [43] for the set disjointness problem.

(iii) The best previous k-party separation of co-nondeterministic versus Mer-
lin–Arthur communication complexity was O(log n) versus Ω(

√
n/2kk)1/2,

proved in [43] for the set disjointness problem.

Theorem 1.7 gives a quadratic improvement on these previous separations, exclud-
ing the nonconstructive separation of coNPk from NPk in [10]. Moreover, our
quadratically improved separations are achieved for a particularly simple func-
tion, namely, the polynomial-size constant-width CNF formula Gn,k. In the regime
k 6 Θ(log n), our separations of coNPk from BPPk and NPk are essentially optimal,
and our separation of coNPk from MAk is within a square of optimal. Recall that
no explicit lower bounds at all are currently known in the regime k > log n, even
for deterministic communication. We state our contributions for communication
complexity classes as a corollary below.

Corollary 1.8. Let k = k(n) be a function with k(n) 6 ( 1
2 − ε) log n for some

constant ε > 0. Then the communication problem Gn,k from Theorem 1.7 satisfies

{Gn,k}∞n=1 ∈ coNPk \ BPPk,
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{Gn,k}∞n=1 ∈ coNPk \ NPk,
{Gn,k}∞n=1 ∈ coNPk \MAk.

Analogously, the communication problem Fn,k from Theorem 1.6 satisfies

{Fn,k}∞n=1 ∈ NPk \ BPPk.

Proof. The claims for Gn,k are immediate from Theorem 1.7 and the definitions
of NPk, coNPk,BPPk,MAk. For the remaining separation, we need only prove the
upper bound N(Fn,k) = O(log n). Recall from Theorem 1.6 that Fn,k is a DNF
formula with nc

′
terms. This gives the desired nondeterministic protocol: the

parties “guess” one of the terms in Fn,k (for a cost of dlog nc
′e bits), evaluate it

(using another 2 bits of communication), and output the result.

1.7. Quantum communication complexity. We adopt the standard model of
quantum communication, where two parties exchange quantum messages according
to an agreed-upon protocol in order to solve a two-party communication problem
F : X ×Y → {0, 1}. As usual, an input (x, y) ∈ X ×Y is split between the parties,
with one party knowing only x and the other party knowing only y. We allow
arbitrary prior entanglement at the start of the communication. A measurement
at the end of the protocol produces a single-bit answer, which is interpreted as the
protocol output. An ε-error protocol for F is required to output, on every input
(x, y) ∈ X × Y, the correct value F (x, y) with probability at least 1 − ε. The cost
of a quantum protocol is the total number of quantum bits exchanged in the worst
case on any input. The ε-error quantum communication complexity of F , denoted
Q∗ε (F ), is the least cost of an ε-error quantum protocol for F. The asterisk in Q∗ε (F )
indicates that the parties share arbitrary prior entanglement. The standard setting
of the error parameter is ε = 1/3, which is as usual without loss of generality. For a
detailed formal description of the quantum model, we refer the reader to [51, 33, 38].

Proving lower bounds for bounded-error quantum communication is significantly
more challenging than for randomized communication. An illustrative example is
the set disjointness problem on n bits. Babai, Frankl, and Simon [4] obtained an
Ω(
√
n) randomized communication lower bound for this function in 1986 using a

short and elementary proof, which was later improved to a tight Ω(n) in [25, 32, 7].
This is in stark contrast with the quantum model, where the best lower bound for
set disjointness was for a long time a trivial Ω(log n) until a tight Ω(

√
n) was proved

by Razborov [33] in 2002.
A completely different proof of the Ω(

√
n) lower bound for set disjointness was

given in [38] by introducing the pattern matrix method. Since then, the method
has produced the strongest known quantum lower bounds for AC0. Of these, the
best lower bound prior to our work was Ω(n1−δ) due to Bun and Thaler [17], where
the constant δ > 0 can be taken arbitrarily small at the expense of circuit depth.
In the following theorem, we resolve the quantum communication complexity of
AC0 in full by proving that polynomial-size DNF formulas achieve near-maximum
communication complexity.

Theorem 1.9. Let δ > 0 and C > 1 be any constants. Then for each n > 1, there is
an (explicitly given) two-party communication problem F : {0, 1}n×{0, 1}n → {0, 1}
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that has quantum communication complexity

Q∗1
2−

1

nC
(F ) = Ω(n1−δ)

and is representable by a DNF formula of size nO(1) and width O(1).

This theorem remains valid for CNF formulas since quantum communication com-
plexity is invariant under function negation. As in all of our results, Theorem 1.9
essentially matches the trivial upper bound, showing that AC0 circuits of depth 2
achieve nearly the maximum possible complexity. Again analogous to our other
results, Theorem 1.9 holds not only for bounded-error communication but also for
communication with error 1

2 −
1
nC

for any C > 1. The error parameter in Theo-
rem 1.9 is optimal and cannot be further increased to 1

2−
1

nω(1) : as remarked above,
any DNF formula with m terms has a classical communication protocol with error
1
2 − Ω( 1

m ) and cost 2 bits. Lastly, Theorem 1.9 is optimal with respect to circuit
depth because AC0 circuits of depth 1 have communication complexity at most 2
bits even in the classical deterministic model.

In our overview so far, we have separately considered the classical multiparty
model and the quantum two-party model. By combining the features of these
models, one arrives at the k-party number-on-the-forehead model with quantum
players. Our results readily generalize to this setting. Specifically, for any constants
δ > 0 and C > 1, we give an explicit DNF formula Fn,k : ({0, 1}n)k → {0, 1} of size
nO(1) and width O(k) such that computing Fn,k in the k-party quantum number-
on-the-forehead model with error 1

2 −
1
nC

requires Ω(n1−δ/4kk) quantum bits. For
more details, see Remark 5.9.

1.8. Previous approaches. In the remainder of the introduction, we sketch our
proof of Theorem 1.1. To properly set the stage for our work, we start by reviewing
the relevant background and previous approaches. The notation that we adopt
below is standard, and we defer its formal review to Section 2.

Dual view of approximation. Let f : X → {0, 1} be a Boolean function of interest,
where X is an arbitrary finite subset of Euclidean space. The approximate degree
of f is defined analogously to functions on the Boolean hypercube: degε(f) is the
minimum degree of a real polynomial p such that |f(x)−p(x)| 6 ε for every x ∈ X.
A valuable tool in the analysis of approximate degree is linear programming duality,
which gives a powerful dual view of approximation [38]. This dual characterization
states that degε(f) > d if and only if there is a function φ : X → R with the following
two properties: 〈φ, f〉 > ε‖φ‖1; and 〈φ, p〉 = 0 for every polynomial p of degree less
than d. Rephrasing, φ must be correlated with f but completely uncorrelated with
any polynomial of degree less than d. Such a function φ is variously referred to in
the literature as a “dual object,” “dual polynomial,” or “witness” for f. The dual
characterization makes it possible to prove any approximate degree lower bound by
constructing the corresponding witness φ. This good news comes with a caveat: for
all but the simplest functions, the construction of φ is very demanding, and linear
programming duality gives no guidance in this regard.

Componentwise composition. The construction of a dual object is more approach-
able for composed functions since one can hope to break them up into constituent
parts, construct a dual object for each, and recombine these results. Formally, define
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the componentwise composition of functions f : {0, 1}n → {0, 1} and g : X → {0, 1}
as the Boolean function f ◦ g : Xn → {0, 1} given by (f ◦ g)(x1, . . . , xn) =
f(g(x1), . . . , g(xn)). To construct a dual object for f ◦ g, one starts by obtaining
dual objects φ and ψ for the constituent functions f and g, respectively, either by
direct construction or by appeal to linear programming duality. They are then com-
bined to yield a dual object Φ for the composed function, using dual componentwise
composition [41, 26]:

Φ(x1, x2, . . . , xn) = φ(I[ψ(x1) > 0], . . . , I[ψ(xn) > 0])

n∏
i=1

|ψ(xi)|. (1.7)

This composed dual object typically requires additional work to ensure strong
enough correlation with the composed function f ◦ g. Among the generic tools
available to assist in this process is a “corrector” object ζ due to Razborov and
Sherstov [34], with the following four properties: (i) ζ is orthogonal to low-degree
polynomials; (ii) ζ takes on 1 at a prescribed point of the hypercube; (iii) ζ is
bounded at inputs of low Hamming weight; and (iv) ζ vanishes at all other points
of the hypercube. Using ζ, suitably shifted and scaled, one can surgically correct
the behavior of a given dual object Φ at a substantial fraction of the inputs with-
out affecting Φ’s orthogonality to low-degree polynomials. This technique played
an important role in previous work, e.g., [17, 14, 18, 49].

Componentwise composition by itself does not allow one to construct hard-to-
approximate functions from easy ones. To see why, consider arbitrary functions
f : {0, 1}n1 → {0, 1} and g : {0, 1}n2 → {0, 1} with approximate degrees at most nα1
and nα2 , respectively, for some 0 < α < 1. It is well-known [42] that the composed
function f ◦g on n1n2 variables has approximate degree O(nα1n

α
2 ) = O(n1n2)α. This

means that relative to the new number of variables, the composed function f ◦ g is
asymptotically no harder to approximate than the constituent functions f and g.
In particular, one cannot use componentwise composition to transform functions
on n bits with 1/3-approximate degree at most nα into functions on N bits with
1/3-approximate degree ω(Nα).

Previous best bound for AC0. In the previous best result on the 1/3-approximate
degree of AC0, Bun and Thaler [17] approached the componentwise composition f◦g
in an ingenious way to amplify the approximate degree for a careful choice of g. Let
f : {0, 1}n → {0, 1} be given, with 1/3-approximate degree nα for some 0 6 α < 1.
Bun and Thaler consider the componentwise composition F = f ◦ (ANDΘ(logm) ◦
ORm), for a small enough parameter m = poly(n). It was shown in earlier work [41,
16] that dual componentwise composition witnesses the lower bound deg1/3(F ) =

Ω(deg1/3(ORm) deg1/3(f)) = Ω(
√
m deg1/3(f)). Bun and Thaler make the crucial

observation that the dual object for ORm has most of its `1 mass on inputs of
Hamming weight O(1), which in view of (1.7) implies that the dual object for F
places most of its `1 mass on inputs of Hamming weight Õ(n). The authors of [17]
then use the Razborov–Sherstov corrector object to transfer the small amount of `1
mass that the dual object for F places on inputs of high Hamming weight, to inputs
of low Hamming weight. The resulting dual object is supported entirely on inputs
of low Hamming weight and therefore witnesses a lower bound on the approximate
degree of the restriction F ′ of F to inputs of low Hamming weight.
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The restriction F ′ takes as input N := Θ(nm logm) variables but is defined only
when its input string has Hamming weight Õ(n). This makes it possible to represent
the input to F ′ more economically, by specifying the locations of the Õ(n) nonzero
bits inside the array of N variables. Since each such location can be specified using
dlogNe bits, the entire input to F ′ can be specified using dlogNe·Õ(n) = Õ(n) bits.
This yields a function F ′′ on Õ(n) variables. A careful calculation shows that this
“input compression” does not hurt the approximate degree. Thus, the approximate
degree of F ′′ is at least the approximate degree of F ′, which as discussed above
is Ω(

√
mdeg1/3(f)). With m set appropriately, the approximate degree of F ′′ is

polynomially larger than that of f.
This passage from f to F ′′ is the desired hardness amplification for approximate

degree. To obtain an Ω(n1−δ) lower bound on the approximate degree of AC0, the
authors of [17] start with a trivial circuit and apply the hardness amplification step
a constant number of times, until approximate degree Ω(n1−δ) is reached.

Limitations of previous approaches to AC0. Bun and Thaler’s hardness amplifica-
tion for approximate degree rests on two pillars. The first is componentwise compo-
sition, whereby the given function f : {0, 1}n → {0, 1} is composed componentwise
with n independent copies of the gadget ANDΘ(logm) ◦ ORm. In this gadget, the
ANDΘ(logm) gate is necessary to control the accumulation of error and to ensure
the correlation property of the dual polynomial. The resulting composed function
F = f ◦(ANDΘ(logm) ◦ORm) is defined on N = Θ(nm logm) variables. The second
pillar of [17] is input compression, where the length-N input to F is represented
compactly as an array of Õ(n) strings of length dlogNe each. The circuitry to
implement these two pillars is expensive, requiring in both cases a polynomial-size
DNF formula of width Θ(log n+ logm). As a result, even a single iteration of the
Bun–Thaler hardness amplification cannot be implemented as a polynomial-size
DNF or CNF formula.

To prove an Ω(n1−δ) approximate degree lower bound for small δ > 0 in the
framework of [17], one needs a number of iterations that grows with 1/δ. Thus,
the overall circuit produced in [17] has a large constant number of alternating
layers of AND and OR gates of logarithmic and polynomial fan-in, respectively,
and in particular cannot be flattened into a polynomial-size DNF or CNF formula.
Proving Theorem 1.1 within this framework would require reducing the fan-in of
the AND gates from Θ(log n+ logm) to O(1), which would completely destroy the
componentwise composition and input compression pillars of [17]. These pillars are
present in all follow-up papers [17, 14, 18, 49] and seem impossible to get around,
prompting the authors of [18, p. 14] to entertain the possibility that the approximate
degree of AC0 at any given depth is much smaller than once conjectured. We show
that this is not the case.

1.9. Our proof. In this paper, we design hardness amplification from first prin-
ciples, without using componentwise composition or input compression. Our ap-
proach efficiently amplifies the approximate degree even for functions with sparse
input, while ensuring that each hardness amplification stage is implementable by
a monotone circuit of constant depth with AND gates of constant fan-in and OR
gates of polynomial fan-in. As a result, repeating our process any constant number
of times produces a polynomial-size DNF formula of constant width.
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Our approach at a high level. Let f : {0, 1}N → {0, 1} be a given function. Let
f |6θ denote the restriction of f to inputs of Hamming weight at most θ, and let
d = deg1/3(f |6θ) be the approximate degree of this restriction. The total number
of variables N can be vastly larger than θ; in the actual proof, we will set N = θC

for a constant C > 1. Since an input y ∈ {0, 1}N to f |6θ is guaranteed to have
Hamming weight at most θ, we can think of y as the disjunction of θ vectors of
Hamming weight at most 1 each:

y = y1 ∨ y2 ∨ · · · ∨ yθ,

where each yi is either the zero vector 0N or a basis vector e1, e2, . . . , eN , and
the disjunction on the right-hand side is applied coordinate-wise. Our approach
centers around encoding each yi as a string of n � N bits so as to make the
decoding difficult for polynomials but easy for circuits. Ideally, we would like a
decoding function h : {0, 1}n → {0, 1}N with the following properties:

(i) the sets h−1(v) for v ∈ {e1, e2, . . . , eN , 0
N} are indistinguishable by poly-

nomials of degree up to D, for some parameter D;
(ii) the sets h−1(v) for v ∈ {e1, e2, . . . , eN , 0

N} contain only strings of Hamming
weight O(1);

(iii) h is computable by a constant-depth monotone circuit with AND gates of
constant fan-in and OR gates of polynomial fan-in.

With such h in hand, define F : ({0, 1}n)θ → {0, 1} by

F (x1, x2, . . . , xθ) = f

(
θ∨
i=1

h(xi)

)
.

Then, one can reasonably expect that approximating F is harder than approx-
imating f |6θ. Indeed, an approximating polynomial has access only to the en-
coded input (x1, x2, . . . , xθ). Decoding this input presumably involves computing
(x1, x2, . . . , xθ) 7→ (h(x1), h(x2), . . . , h(xθ)) one way or another, which by prop-
erty (i) requires a polynomial of degree greater than D. Once the decoded string
h(x1)∨h(x2)∨· · ·∨h(xθ) is available, the polynomial supposedly needs to compute
f on that input, which in and of itself requires degree d. Altogether, we expect F to
have approximate degree on the order of Dd. Moreover, property (ii) ensures that
F is hard to approximate even on inputs of Hamming weight O(θ), putting us in a
strong position for another round of hardness amplification. Finally, property (iii)
guarantees that the result of constantly many rounds of hardness amplification is
computable by a DNF formula of polynomial size and constant width.

Actual implementation. As one might suspect, the above program is too bold and
cannot be implemented literally. Our actual construction of h achieves (i)–(iii)
only approximately. In more detail, let k be a sufficiently large constant. For each
v ∈ {e1, e2, . . . , eN , 0

N}, we construct a probability distribution λv on {0, 1}n that
has all but a vanishing fraction of its mass on inputs of Hamming weight exactly
k, and moreover any two such distributions λv and λv′ are indistinguishable by
polynomials of low degree. We are further able to ensure that an input of Hamming
weight k belongs to the support of at most one of the distributions λv. Thus,
the λv are in essence supported on pairwise disjoint sets of strings of Hamming
weight k, and are pairwise indistinguishable by polynomials of low degree. The
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decoding function h works by taking an input x ∈ {0, 1}n of Hamming weight k
and determining which of the distributions has x in its support—a highly efficient
computation realizable as a monotone k-DNF formula. With small probability, h
will receive as input a string of Hamming weight larger than k, in which case the
decoding may fail.

Construction of the λv. Central to our work is the number-theoretic notion of m-
discrepancy, which is a measure of pseudorandomness or aperiodicity of a given set
of integers modulo m. Formally, the m-discrepancy of a nonempty finite set S ⊆ Z
is defined as

discm(S) = max
k=1,2,...,m−1

∣∣∣∣∣ 1

|S|
∑
s∈S

ξks

∣∣∣∣∣ ,
where ξ is a primitive m-th root of unity. The construction of sparse sets with low
discrepancy is a well-studied problem in combinatorics and theoretical computer
science. By building on previous work [2, 48], we construct a sparse set of integers
with small discrepancy in our regime of interest. For our application, we set the
modulus m = N + 1.

Continuing, let
(

[n]
k

)
denote the family of cardinality-k subsets of [n] =

{1, 2, . . . , n}. To design the distributions λv, we need an explicit coloring γ :
(

[n]
k

)
→

[N + 1] that is balanced, in the sense that for nearly all large enough subsets
A ⊆ {1, 2, . . . , n} and all i ∈ [N + 1], the family γ−1(i) accounts for almost ex-
actly a 1/(N + 1) fraction of all cardinality-k subsets of A. The existence of a
highly balanced coloring follows by the probabilistic method, and we construct one
explicitly using the sparse set of integers with small (N+1)-discrepancy constructed
earlier in the proof.

Our next ingredient is a dual polynomial ω for the OR function, a staple in
approximate degree lower bounds. An important property of ω is that it places a
constant fraction of its `1 mass on the point 0n. Translating ω from 0n to a point
z of slightly larger Hamming weight results in a new dual polynomial, call it ωz.
Analogous to ω, the new dual polynomial has a constant fraction of its `1 mass on
z and the rest on inputs that are greater than or equal to z componentwise.

For notational convenience, let us now rename γ’s range elements 1, 2, . . . , N + 1
to e1, e2, . . . , eN , 0

N , respectively. For v ∈ {e1, e2, . . . , eN , 0
N}, define Φv to be the

average of the dual polynomials ωz where z ranges over all characteristic vectors of
the sets in γ−1(v). Being a convex combination of dual polynomials, each Φv is a
dual object orthogonal to polynomials of low degree. Observe further that each Φv
is supported on inputs of Hamming weight at least k, and any input of Hamming
weight exactly k belongs to the support of exactly one Φv. For inputs x of Hamming
weight greater than k, a remarkable thing happens: Φv(x) is almost the same for
all v. We prove this by exploiting the fact that γ is highly balanced. As a result,
the “common part” of the Φv for inputs of Hamming weight greater than k can be
subtracted out to obtain a function Φ̃v for each v ∈ {e1, e2, . . . , eN , 0

N}. While
these new functions are not dual polynomials, the difference of any two of them is
since Φ̃v − Φ̃v′ = Φv −Φv′ . Put another way, the Φ̃v are pairwise indistinguishable
by low-degree polynomials. By defining the Φ̃v in a somewhat more subtle way, we
further ensure that each Φ̃v is nonnegative. The distribution λv can then be taken to
be the normalized function Φ̃v/‖Φ̃v‖1. This construction ensures all the properties
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that we need: λv has nearly all of its mass on inputs of Hamming weight k; an input
of Hamming weight k belongs to the support of at most one distribution λv; and
any pair of distributions λv, λv′ are indistinguishable by a low-degree polynomial.
Observe that in our construction, λv is close to the uniform probability distribution
on the characteristic vectors of the sets in γ−1(v).

2. Preliminaries

2.1. General notation. For a string x ∈ {0, 1}n and a set S ⊆ {1, 2, . . . , n},
we let x|S denote the restriction of x to the indices in S. In other words, x|S =
xi1xi2 . . . xi|S| , where i1 < i2 < · · · < i|S| are the elements of S. The characteristic
vector 1S of a set S ⊆ {1, 2, . . . , n} is given by

(1S)i =

{
1 if i ∈ S,
0 otherwise.

Given an arbitrary set X and elements x, y ∈ X, the Kronecker delta δx,y is defined
by

δx,y =

{
1 if x = y,

0 otherwise.

For a logical condition C, we use the Iverson bracket

I[C] =

{
1 if C holds,
0 otherwise.

We let N = {0, 1, 2, 3, . . .} denote the set of natural numbers. We use the comparison
operators in a unary capacity to denote one-sided intervals of the real line. Thus,
<a, 6a, >a, >a stand for (−∞, a), (−∞, a], (a,∞), [a,∞), respectively. We let
lnx and log x stand for the natural logarithm of x and the logarithm of x to base
2, respectively. The term Euclidean space refers to Rn for some positive integer n.
We let ei denote the vector whose i-th component is 1 and the others are 0. Thus,
the vectors e1, e2, . . . , en form the standard basis for Rn. For a complex number x,
we denote the real part, imaginary part, and complex conjugate of x as usual by
Re(x), Im(x), and x, respectively. We typeset the imaginary unit i in boldface to
distinguish it from the index variable i. For an arbitrary integer a and a positive
integer m, recall that a mod m denotes the unique element of {0, 1, 2, . . . ,m − 1}
that is congruent to a modulo m.

For a set X, we let RX denote the linear space of real-valued functions on X.
The support of a function f ∈ RX is denoted supp f = {x ∈ X : f(x) 6= 0}.
For real-valued functions with finite support, we adopt the usual norms and inner
product:

‖f‖∞ = max
x∈supp f

|f(x)|,

‖f‖1 =
∑

x∈supp f

|f(x)|,

〈f, g〉 =
∑

x∈supp f ∩ supp g

f(x)g(x).
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This covers as a special case functions on finite sets. Analogous to functions,
we adopt the familiar norms for vectors x ∈ Rn in Euclidean space: ‖x‖∞ =
maxi=1,...,n |xi| and ‖x‖1 =

∑n
i=1 |xi|. The tensor product of f ∈ RX and g ∈ RY is

denoted f ⊗ g ∈ RX×Y and given by (f ⊗ g)(x, y) = f(x)g(y). The tensor product
f ⊗ f ⊗ · · · ⊗ f (n times) is abbreviated f⊗n. We frequently omit the argument
in equations and inequalities involving functions, as in sgn p = (−1)f . Such state-
ments are to be interpreted pointwise. For example, the statement “f > 2|g| on X”
means that f(x) > 2|g(x)| for every x ∈ X. For vectors x and y, the notation x 6 y
means that xi 6 yi for each i.

We adopt the standard notation for function composition, with f ◦ g defined by
(f ◦g)(x) = f(g(x)). In addition, we use the ◦ operator to denote the componentwise
composition of Boolean functions. Formally, the componentwise composition of
f : {0, 1}n → {0, 1} and g : X → {0, 1} is the function f ◦ g : Xn → {0, 1} given by
(f ◦ g)(x1, x2, . . . , xn) = f(g(x1), g(x2), . . . , g(xn)). Componentwise composition is
consistent with standard composition, which in the context of Boolean functions is
only defined for n = 1. Thus, the meaning of f ◦ g is determined by the range of g
and is never in doubt.

For a natural number n, we abbreviate [n] = {1, 2, . . . , n}. For a set S and an
integer k, we let

(
S
k

)
stand for the family of cardinality-k subsets of S:(

S

k

)
= {A ⊆ S : |A| = k}.

Analogously, for any set I, we define(
S

I

)
= {A ⊆ S : |A| ∈ I}.

To illustrate,
(
S
6k

)
denotes the family of subsets of S that have cardinality at most

k. Analogously, we have the symbols
(
S
<k

)
,
(
S
>k

)
,
(
S
>k

)
. Throughout this manuscript,

we use brace notation as in {z1, z2, . . . , zn} to specify multisets rather than sets, the
distinction being that the number of times an element occurs is taken into account.
The cardinality |Z| of a finite multiset Z is defined to be the total number of element
occurrences in Z, with each element counted as many times as it occurs. The
equality and subset relations on multisets are defined analogously, with the number
of element occurrences taken into account. For example, {1, 1, 2} = {1, 2, 1} but
{1, 1, 2} 6= {1, 2}. Similarly, {1, 2} ⊆ {1, 1, 2} but {1, 1, 2} * {1, 2}.

2.2. Boolean strings and functions. We identify the Boolean values “true”
and “false” with 1 and 0, respectively, and view Boolean functions as mappings
X → {0, 1} for a finite set X. The familiar functions ORn : {0, 1}n → {0, 1} and
ANDn : {0, 1}n → {0, 1} are given by ORn(x) =

∨n
i=1 xi and ANDn(x) =

∧n
i=1 xi.

We abbreviate NORn = ¬ORn. For Boolean strings x, y ∈ {0, 1}n, we let x ⊕ y
denote their bitwise XOR. The strings x∧y and x∨y are defined analogously, with
the binary operator applied bitwise.

For a vector v ∈ Nn, we define its weight |v| to be |v| = v1 + v2 + · · · + vn. If
x ∈ {0, 1}n is a Boolean string, then |x| is precisely the Hamming weight of x. For
any sets X ⊆ Nn and W ⊆ R, we define X|W to be the subset of vectors in X
whose weight belongs to W :

X|W = {x ∈ X : |x| ∈W}.
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In the case of a one-element set W = {w}, we further shorten X|{w} to X|w.
For example, Nn|6w denotes the set of vectors whose n components are natural
numbers and sum to at most w, whereas {0, 1}n|w denotes the set of Boolean
strings of length n and Hamming weight exactly w. For a function f : X → R on
a subset X ⊆ {0, 1}n, we let f |W denote the restriction of f to X|W . Thus, f |W
is a function with domain X|W given by f |W (x) = f(x). A typical instance of this
notation would be f |6w for some real number w, corresponding to the restriction
of f to Boolean strings of Hamming weight at most w.

2.3. Concentration of measure. Throughout this manuscript, we view proba-
bility distributions as real functions. This convention makes available the shorthand
notation introduced above. In particular, for probability distributions µ and λ, the
symbol suppµ denotes the support of µ, and µ⊗λ denotes the probability distribu-
tion given by (µ⊗ λ)(x, y) = µ(x)λ(y). We use the notation µ× λ interchangeably
with µ⊗ λ, the former being more standard for probability distributions. If µ is a
probability distribution on X, we consider µ to be defined also on any superset of
X with the understanding that µ = 0 outside X.

We recall the following multiplicative form of the Chernoff bound [21].

Theorem 2.1 (Chernoff bound). Let X1, X2, . . . , Xn ∈ {0, 1} be i.i.d. random vari-
ables with EXi = p. Then for all 0 6 δ 6 1,

P

[∣∣∣∣∣
n∑
i=1

Xi − pn

∣∣∣∣∣ > δpn

]
6 2 exp

(
−δ

2pn

3

)
.

Theorem 2.1 assumes i.i.d. Bernoulli random variables. Hoeffding’s inequality [24],
stated next, is a more general concentration-of-measure result that applies to any
independent bounded random variables.

Theorem 2.2 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent random
variables with Xi ∈ [ai, bi]. Define p =

∑n
i=1 EXi. Then for all δ > 0,

P

[∣∣∣∣∣
n∑
i=1

Xi − p

∣∣∣∣∣ > δ

]
6 2 exp

(
− 2δ2∑n

i=1(bi − ai)2

)
.

The standard version of Hoeffding’s inequality, stated above, requires
X1, X2, . . . , Xn to be independent. Less known are Hoeffding’s results for depen-
dent random variables, which he obtained along with Theorem 2.2 in his original
paper [24]. We will specifically need the following concentration inequality for sam-
pling without replacement [24, Section 6].

Theorem 2.3 (Hoeffding’s sampling without replacement). Let ω1, ω2, . . . , ωN be
given reals, with ωi ∈ [a, b] for all i. Let J1, J2, . . . , Jn ∈ [N ] be uniformly random
integers that are pairwise distinct. Let Xi = ωJi for i = 1, 2, . . . , n, and define
p =

∑n
i=1 EXi. Then for all δ > 0,

P

[∣∣∣∣∣
n∑
i=1

Xi − p

∣∣∣∣∣ > δ

]
6 2 exp

(
− 2δ2

n(b− a)2

)
.
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Hoeffding’s two theorems are clearly incomparable. On the one hand, Theorem 2.2
requires independence and therefore does not apply to sampling without replace-
ment. On the other hand, each random variable Xi in Theorem 2.3 must be uni-
formly distributed on a finite multiset of values, which must further be the same
multiset for all Xi; none of this is assumed in Theorem 2.2.

Finally, we will need a concentration-of-measure result due to Bun and
Thaler [17, Lemma 4.7] for product distributions on Nn.

Lemma 2.4 (cf. Bun and Thaler). Let λ1, λ2, . . . , λn be distributions on N with
finite support such that

λi(t) 6
Cαt

(t+ 1)2
, t ∈ N,

where C > 0 and 0 6 α 6 1. Then for all T > 8Cen(1 + lnn),

P
v∼λ1×λ2×···×λn

[‖v‖1 > T ] 6 αT/2.

Bun and Thaler’s result in [17, Lemma 4.7] differs slightly from the statement
above. The proof of Lemma 2.4 as stated can be found in [49, Lemma 3.6]. By
leveraging Lemma 2.4, we obtain the following concentration result for probability
distributions that are supported on the Boolean hypercube, rather than N, and are
shifted from the origin.

Lemma 2.5. Fix integers B > k > 0. Let λ1, λ2, . . . , λ` be probability distributions
on {0, 1}B with support contained in {0, 1}B |>k. Suppose further that

λi({0, 1}B |t) 6
Cαt−k

(t− k + 1)2
, i ∈ [`], t ∈ {k, k + 1, . . . , B},

where C > 0 and 0 6 α 6 1. Then for all T > 8Ce`(1 + ln `) + `k,

P
(x1,...,x`)∼λ1×···×λ`

[∑̀
i=1

|xi| > T

]
6 α(T−`k)/2.

Proof. For i = 1, 2, . . . , `, consider the distribution µi on {0, 1, . . . , B− k} given by
µi(t) = λi({0, 1}B |t+k). Then

µi(t) 6
Cαt

(t+ 1)2
, i ∈ [`], t > 0. (2.1)

Moreover, the random variable |xi| with xi ∼ λi has the same distribution as the
random variable ui + k for ui ∼ µi. As a result,

P
(x1,...,x`)∼λ1×···×λ`

[∑̀
i=1

|xi| > T

]
= P
u∼µ1×µ2×···×µ`

[∑̀
i=1

(ui + k) > T

]
= P
u∼µ1×µ2×···×µ`

[‖u‖1 > T − k`]

6 α(T−`k)/2,

where the last step uses Lemma 2.4 along with (2.1) and the hypothesis that T >
8Ce`(1 + ln `) + `k.
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2.4. Orthogonal content. For a multivariate polynomial p : Rn → R, we let
deg p denote the total degree of p, i.e., the largest degree of any monomial of p.
We use the terms degree and total degree interchangeably in this paper. It will be
convenient to define the degree of the zero polynomial by deg 0 = −∞. For a real-
valued function φ supported on a finite subset of Rn, the orthogonal content of φ,
denoted orthφ, is the minimum degree of a real polynomial p for which 〈φ, p〉 6= 0.
We adopt the convention that orthφ = ∞ if no such polynomial exists. It is clear
that orthφ ∈ N ∪ {∞}, with the extremal cases orthφ = 0 ⇔ 〈φ, 1〉 6= 0 and
orthφ =∞ ⇔ φ = 0. Additional facts about orthogonal content are given by the
following two propositions.

Proposition 2.6. Let X and Y be nonempty finite subsets of Euclidean space.
Then:

(i) orth(φ+ ψ) > min{orthφ, orthψ} for all φ, ψ : X → R;
(ii) orth(φ⊗ ψ) = orth(φ) + orth(ψ) for all φ : X → R and ψ : Y → R.

A proof of Proposition 2.6 can be found in [49, Proposition 2.1].

Proposition 2.7. Define V = {0N , e1, e2, . . . , eN} ⊆ RN . Fix functions φv : X →
R (v ∈ V ), where X is a finite subset of Euclidean space. Suppose that

orth(φu − φv) > D, u, v ∈ V, (2.2)

where D is a positive integer. Then for every polynomial p : X` → R, the mapping
z 7→ 〈

⊗`
i=1 φzi , p〉 is a polynomial on V ` of degree at most (deg p)/D.

Proof. By linearity, it suffices to consider factored polynomials p(x1, . . . , x`) =∏`
i=1 pi(xi), where each pi is a nonzero polynomial on X. In this setting,〈⊗̀

i=1

φzi , p

〉
=
∏̀
i=1

〈φzi , pi〉 . (2.3)

By (2.2), we have 〈φ0N , pi〉 = 〈φe1 , pi〉 = 〈φe2 , pi〉 = · · · = 〈φeN , pi〉 for any index
i with deg pi < D. As a result, polynomials pi with deg pi < D do not contribute
to the degree of the right-hand side of (2.3) as a function of z. For the other
polynomials pi, the inner product 〈φzi , pi〉 is a linear polynomial in zi, namely,

〈φzi , pi〉 = zi,1〈φe1 , pi〉+ zi,2〈φe2 , pi〉+ · · ·+ zi,N 〈φeN , pi〉

+

1−
N∑
j=1

zi,j

 〈φ0N , pi〉.

Thus, polynomials pi with deg pi > D contribute at most 1 each to the degree.
Summarizing, the right-hand side of (2.3) is a real polynomial in z1, z2, . . . , z` of
degree at most |{i : deg pi > D}| 6 deg p

D .

Proposition 2.7 generalizes an analogous result in [49, Proposition 2.2], where the
special case N = 1 was treated.
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2.5. Polynomial approximation. For a real number ε > 0 and a function
f : X → R on a finite subset X of Euclidean space, the ε-approximate degree of
f is denoted degε(f) and is defined to be the minimum degree of a polynomial p
such that ‖f − p‖∞ 6 ε. For ε < 0, it will be convenient to define degε(f) = +∞
since no polynomial satisfies ‖f − p‖∞ 6 ε in this case. We focus on the approx-
imate degree of Boolean functions f : X → {0, 1}. In this setting, the standard
choice of the error parameter is ε = 1/3. This choice is without loss of gener-
ality since degε(f) = Θ(deg1/3(f)) for every Boolean function f and every con-
stant 0 < ε < 1/2. In what follows, we refer to 1/3-approximate degree simply as
“approximate degree.” The notion of approximate degree has the following dual
characterization [38, 39].

Fact 2.8. Let f : X → R be given, for a finite set X ⊂ Rn. Let d > 0 be an integer
and ε > 0 a real number. Then degε(f) > d if and only if there exists a function
ψ : X → R such that

〈f, ψ〉 > ε‖ψ‖1,
orthψ > d.

This characterization of approximate degree can be verified using linear program-
ming duality, cf. [38, 39]. We now recall a variant of approximate degree for one-
sided approximation. For a Boolean function f : X → {0, 1} and ε > 0, the one-
sided ε-approximate degree of f is denoted deg+

ε (f) and defined to be the minimum
degree of a real polynomial p such that

f(x)− ε 6 p(x) 6 f(x) + ε, x ∈ f−1(0),

f(x)− ε 6 p(x), x ∈ f−1(1).

We refer to any such polynomial as a one-sided approximant for f with error ε. As
usual, the canonical setting of the error parameter is ε = 1/3. In the pathological
case ε < 0, it will be convenient to define deg+

ε (f) = +∞. Observe the asymmetric
treatment of f−1(0) and f−1(1) in this formalism. In particular, the one-sided
approximate degree of Boolean functions is in general not invariant under negation.
One-sided approximate degree enjoys the following dual characterization [16].

Fact 2.9. Let f : X → {0, 1} be given, for a finite set X ⊂ Rn. Let d > 0 be an
integer and ε > 0 a real number. Then deg+

ε (f) > d if and only if there exists a
function ψ : X → R such that

〈f, ψ〉 > ε‖ψ‖1,
orthψ > d,

ψ(x) > 0 whenever f(x) = 1.

2.6. Dual polynomials. Facts 2.8 and 2.9 make it possible to prove lower bounds
on approximate degree in a constructive manner, by exhibiting a dual object ψ that
serves as a witness. This object is referred to as a dual polynomial. Often, a dual
polynomial for a composed function f can be constructed by combining dual objects
for various components of f. Of particular importance in the study of AC0 is the
dual object for the OR function. The first dual polynomial for OR was constructed
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by Špalek [50], with many refinements and generalizations obtained in follow-up
work [15, 45, 46, 17, 14, 49]. We will use the following construction from [49,
Lemma B.2].

Lemma 2.10. Let ε be given, 0 < ε < 1. Then for some constant c = c(ε) ∈ (0, 1)
and every integer n > 1, there is an (explicitly given) function ω : {0, 1, 2, . . . , n} →
R such that

ω(0) >
1− ε

2
· ‖ω‖1,

|ω(t)| 6 1

ct2 2ct/
√
n
· ‖ω‖1 (t = 1, 2, . . . , n),

(−1)tω(t) > 0 (t = 0, 1, 2, . . . , n),

orthω > c
√
n.

A useful tool in the construction of dual polynomials is the following lemma due
to Razborov and Sherstov [34].

Lemma 2.11 (Razborov and Sherstov). Fix integers D and n, where 0 6 D < n.
Then there is an (explicitly given) function ζ : {0, 1}n → R such that

supp ζ ⊆ {0, 1}n|6D ∪ {1n}, (2.4)
ζ(1n) = 1, (2.5)

‖ζ‖1 6 1 + 2D
(
n

D

)
, (2.6)

orth ζ > D. (2.7)

In more detail, this result corresponds to taking k = D and ζ = (−1)ng in the
proof of Lemma 3.2 of [34]. We will need the following natural generalization of
Lemma 2.11.

Lemma 2.12. Fix integers D and B, where 0 6 D < B. Let y ∈ {0, 1}B be a string
with |y| > D. Then there is an (explicitly given) function ζy : {0, 1}B → R such that

supp ζy ⊆ {x : x 6 y and |x| 6 D} ∪ {y}, (2.8)
ζy(y) = 1, (2.9)

‖ζy‖1 6 1 + 2D
(
B

D

)
, (2.10)

orth ζy > D. (2.11)

Proof. Set n = |y|. Lemma 2.11 gives an explicit function ζ : {0, 1}n → R that
satisfies (2.4)–(2.7). Define ζy : {0, 1}B → R by

ζy(x) = ζ(x|S)
∏
i/∈S

(1− xi),

where S = {i : yi = 1}. Then (2.9) and (2.10) are immediate from (2.5) and (2.6),
respectively. Property (2.11) follows from (2.7) in light of Proposition 2.6 (ii). To
verify the remaining property (2.8), fix any input x with ζy(x) 6= 0. Then the
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definition of ζy implies that x|S is the zero vector, whereas (2.4) implies that x|S
is either 1n or a string of Hamming weight at most D. In the former case, we have
x = y; in the latter case, x 6 y and |x| 6 D.

Informally, Lemmas 2.11 and 2.12 are useful when one needs to adjust a dual
object’s metric properties while preserving its orthogonality to low-degree polyno-
mials. These lemmas play a basic role in several recent papers [34, 17, 14, 18, 49]
as well as our work. For the reader’s benefit, we encapsulate this procedure as
Lemma 2.13 below and provide a detailed proof.

Lemma 2.13. Let Φ: {0, 1}B → R be given. Fix integers T > D > 0. Then there
is an (explicitly given) function Φ̃ : {0, 1}B → R such that

supp Φ̃ ⊆ {0, 1}B |6T , (2.12)

orth(Φ− Φ̃) > D, (2.13)

‖Φ− Φ̃‖1 6

(
1 + 2D

(
B

D

)) ∑
x:|x|>T

|Φ(x)|. (2.14)

Proof (adapted from [34, 17, 14, 18, 49]). For T > B, the lemma holds trivially
with Φ̃ = Φ. In what follows, we treat the complementary case T < B.

For each y ∈ {0, 1}B |>T , Lemma 2.12 constructs a function ζy : {0, 1}B → R
that obeys (2.8)–(2.11). Define

Φ̃ = Φ−
∑

y∈{0,1}B |>T

Φ(y)ζy.

Then for x ∈ {0, 1}B |>T , properties (2.8) and (2.9) force ζy(x) = δx,y and conse-
quently Φ̃(x) = Φ(x) − Φ(x) = 0. This settles (2.12). Property (2.13) is justified
by

orth(Φ− Φ̃) = orth

 ∑
y∈{0,1}B |>T

Φ(y)ζy

 > min
y∈{0,1}B |>T

orth ζy > D,

where the last two steps use Proposition 2.6(i) and (2.11), respectively. The final
property (2.14) can be derived as follows:

‖Φ− Φ̃‖1 =

∥∥∥∥∥∥
∑

y∈{0,1}B |>T

Φ(y)ζy

∥∥∥∥∥∥
1

6
∑

y∈{0,1}B |>T

|Φ(y)|‖ζy‖1

6

(
1 + 2D

(
B

D

)) ∑
y∈{0,1}B |>T

|Φ(y)|,

where the last two steps use the triangle inequality and (2.10), respectively.
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2.7. Symmetrization. Let Sn denote the symmetric group on n elements. For
a permutation σ ∈ Sn and an arbitrary sequence x = (x1, x2, . . . , xn), we
adopt the shorthand σx = (xσ(1), xσ(2), . . . , xσ(n)). A function f(x1, x2, . . . , xn)
is called symmetric if it is invariant under permutation of the input variables:
f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)) for all x and σ. Symmetric functions
on {0, 1}n are intimately related to univariate polynomials, as was first observed
by Minsky and Papert in their symmetrization argument [30].

Proposition 2.14 (Minsky and Papert). Let p : Rn → R be a given polynomial.
Then the mapping

t 7→ E
x∈{0,1}n|t

p(x)

is a univariate polynomial on {0, 1, 2, . . . , n} of degree at most deg p.

The next result, proved in [49, Corollary 2.13], generalizes Minsky and Papert’s
symmetrization to the setting when x1, x2, . . . , xn are vectors rather than bits.

Fact 2.15 (Sherstov and Wu). Let p : (RN )θ → R be a given polynomial. Then the
mapping

v 7→ E
x∈{0N ,e1,e2,...,eN}θ:
x1+x2+···+xθ=v

p(x) (2.15)

is a polynomial on NN |6θ of degree at most deg p.

Minsky and Papert’s symmetrization corresponds to N = 1 in Fact 2.15.

2.8. Number theory. For positive integers a and b that are relatively prime, we
let (a−1)b ∈ {1, 2, . . . , b − 1} denote the multiplicative inverse of a modulo b. The
following fact is well-known and straightforward to verify; see, e.g., [48, Fact 2.8].

Fact 2.16. For any positive integers a and b that are relatively prime,

(a−1)b
b

+
(b−1)a
a
− 1

ab
∈ Z.

The prime counting function π(x) for a real argument x > 0 evaluates to the
number of prime numbers less than or equal to x. In this manuscript, it will be clear
from the context whether π refers to 3.14159 . . . or the prime counting function. The
asymptotic growth of the latter is given by the prime number theorem, which states
that π(n) ∼ n/ lnn. The following explicit bound on π(n) is due to Rosser [35].

Fact 2.17 (Rosser). For n > 55,

n

lnn+ 2
< π(n) <

n

lnn− 4
.

The number of distinct prime divisors of a natural number n is denoted ν(n). The
following first-principles bound on ν(n) is asymptotically tight for infinitely many
n; see [48, Fact 2.11] for details.
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Fact 2.18. The number of distinct prime divisors of n obeys

(ν(n) + 1)! 6 n.

In particular,

ν(n) 6 (1 + o(1))
lnn

ln lnn
.

3. Balanced colorings

For integers n > k > 1 and r > 1, consider a mapping γ :
(

[n]
k

)
→ [r]. We refer

to any such γ as a coloring of
(

[n]
k

)
with r colors. An important ingredient in our

work is the construction of a balanced coloring, in the following technical sense.

Definition 3.1. Let γ :
(

[n]
k

)
→ [r] be a given coloring. For a subset A ⊆ [n], we

say that γ is ε-balanced on A iff for each i ∈ [r],

1− ε
r

(
|A|
k

)
6

∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣ 6 1 + ε

r

(
|A|
k

)
.

We define γ to be (ε, δ,m)-balanced iff

P
A∈([n]

` )
[γ is ε-balanced on A] > 1− δ

for all ` ∈ {m,m+ 1, . . . , n}.

As one might expect, a uniformly random coloring is balanced with high prob-
ability; we establish this fact in Section 3.1. In Sections 3.2–3.5 that follow, we
construct a highly balanced coloring based on an integer set with low discrepancy.
The reader who is interested only in the quantitative aspect of our theorems and
is not concerned about explicitness, may read Section 3.1 and skip without loss of
continuity to Section 4.

3.1. Existence of balanced colorings. The next lemma uses the probabilistic
method to establish the existence of balanced colorings with excellent parameters.

Lemma 3.2. Let ε, δ ∈ (0, 1] be given. Let n,m, k, r be positive integers with n >
m > k and(

m

k

)
>

3r

ε2
· ln 2rn

δ
. (3.1)

Then there exists an (ε, δ,m)-balanced coloring γ :
(

[n]
k

)
→ [r].

Proof. Let γ :
(

[n]
k

)
→ [r] be a uniformly random coloring. For fixed i and A ∈

(
[n]
>m

)
,

the cardinality |γ−1(i) ∩
(
A
k

)
| is the sum of

(|A|
k

)
independent Bernoulli random
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variables, each with expected value 1/r. As a result,

P
γ

[γ is not ε-balanced on A]

= P
γ

[
max
i∈[r]

∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣− 1

r

(
|A|
k

)∣∣∣∣ > ε

r

(
|A|
k

)]
6 rmax

i∈[r]
P
γ

[∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣− 1

r

(
|A|
k

)∣∣∣∣ > ε

r

(
|A|
k

)]
6 r · 2 exp

(
− ε

2

3r

(
|A|
k

))
6 r · 2 exp

(
− ε

2

3r

(
m

k

))
6
δ

n
, (3.2)

where the second step applies the union bound over i ∈ [r], the third step uses the
Chernoff bound (Theorem 2.1), and the fifth step uses (3.1). Now

E
γ

max
`∈{m,m+1,...,n}

P
A∈([n]

` )
[γ is not ε-balanced on A]

6 E
γ

n∑
`=m

P
A∈([n]

` )
[γ is not ε-balanced on A]

=

n∑
`=m

E
A∈([n]

` )
P
γ

[γ is not ε-balanced on A]

6
n∑

`=m

δ

n

6 δ,

where the next-to-last step uses (3.2). We conclude that there exists a coloring γ
with

max
`∈{m,m+1,...,n}

P
A∈([n]

` )
[γ is not ε-balanced on A] 6 δ,

which is the definition of an (ε, δ,m)-balanced coloring.

For our purposes, the following consequence of Lemma 3.2 will be sufficient.

Corollary 3.3. Let n,m, k, r be positive integers with n > m > k2. Let ε ∈ (0, 1]
be given with

ε >
3r
√
k ln(n+ 1)

mk/4
.

Then there exists an (ε, ε,m)-balanced coloring γ :
(

[n]
k

)
→ [r].
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Proof. We have

3r

ε2
· ln 2rn

ε
6

3rmk/2

9r2k ln(n+ 1)
· ln

(
2rn

3r
√
k ln(n+ 1)

·mk/4

)

6
mk/2

3rk ln(n+ 1)
· ln(n ·mk/4)

6
mk/2

3rk ln(n+ 1)
· 2k lnn

6 mk/2

6
(m
k

)k
6

(
m

k

)
,

where the next-to-last step uses the hypothesism > k2. By Lemma 3.2, we conclude
that there is an (ε, ε,m)-balanced coloring γ :

(
[n]
k

)
→ [r].

In Sections 3.2–3.5 below, we will give an explicit coloring with parameters essen-
tially matching Corollary 3.3.

3.2. Discrepancy defined. Discrepancy is a measure of pseudorandomness or
aperiodicity of a multiset of integers with respect to a given modulus M. Formally,
let M > 2 be a given integer. The M -discrepancy of a nonempty multiset Z =
{z1, z2, . . . , zn} of arbitrary integers is defined as

discM (Z) = max
k=1,2,...,M−1

∣∣∣∣∣∣ 1n
n∑
j=1

ωkzj

∣∣∣∣∣∣ ,
where ω is a primitiveM -th root of unity; the right-hand side is obviously the same
for any such ω. Equivalently, we may write

discM (Z) = max
ω 6=1:ωM=1

∣∣∣∣∣∣ 1n
n∑
j=1

ωzj

∣∣∣∣∣∣ ,
where the maximum is over M -th roots of unity ω other than 1. Yet another
way to think of M -discrepancy is in terms of the discrete Fourier transform on
ZM . Specifically, consider the frequency vector (f0, f1, . . . , fM−1) of Z, where fj
is the total number of element occurrences in Z that are congruent to j mod-
ulo M. Applying the discrete Fourier transform to (fj)

M−1
j=0 produces the sequence

(
∑M−1
j=0 fj exp(−2πikj/M))M−1

k=0 = (
∑n
j=1 exp(−2πikzj/M))M−1

k=0 , which is a per-
mutation of (n,

∑n
j=1 ω

zj , . . . ,
∑n
j=1 ω

(M−1)zj ) for a primitive M -th root of unity
ω. Thus, the M -discrepancy of Z coincides up to a normalizing factor with the
largest absolute value of a nonconstant Fourier coefficient of the frequency vector
of Z. The notion of m-discrepancy has a long history in combinatorics and theoret-
ical computer science; see [48] for a bibliographic overview.
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Lemma 3.4 (Discrepancy under sampling without replacement). Fix integers n >
t > 1 and M > 2. Let Z = {z1, z2, . . . , zn} be a multiset of integers. Then for all
α ∈ [0, 1],

P
S∈([n]

t )
[discM ({zi : i ∈ S})− discM (Z) > α] 6 4M exp

(
− tα

2

8

)
,

where {zi : i ∈ S} is understood to be a multiset of cardinality t.

Proof. Fix an M -th root of unity ω. Then Re(ωz1),Re(ωz2), . . . ,Re(ωzn) range in
[−1, 1]. Now, let S ∈

(
[n]
t

)
be a uniformly random subset. Then the Hoeffding

inequality for sampling without replacement (Theorem 2.3) implies that

P
S∈([n]

t )

∣∣∣∣∣∣1t
∑
j∈S

Re(ωzj )− 1

n

n∑
j=1

Re(ωzj )

∣∣∣∣∣∣ > α

2

 6 2 exp

(
− tα

2

8

)
.

Analogously,

P
S∈([n]

t )

∣∣∣∣∣∣1t
∑
j∈S

Im(ωzj )− 1

n

n∑
j=1

Im(ωzj )

∣∣∣∣∣∣ > α

2

 6 2 exp

(
− tα

2

8

)
.

Combining these two equations shows that for every M -th root of unity ω,

P
S∈([n]

t )

∣∣∣∣∣∣1t
∑
j∈S

ωzj − 1

n

n∑
j=1

ωzj

∣∣∣∣∣∣ > α

 6 4 exp

(
− tα

2

8

)
. (3.3)

Now

discM ({zi : i ∈ S})− discM (Z)

= max
ω

∣∣∣∣∣∣1t
∑
j∈S

ωzj

∣∣∣∣∣∣−max
ω

∣∣∣∣∣∣ 1n
n∑
j=1

ωzj

∣∣∣∣∣∣
6 max

ω


∣∣∣∣∣∣1t
∑
j∈S

ωzj

∣∣∣∣∣∣−
∣∣∣∣∣∣ 1n

n∑
j=1

ωzj

∣∣∣∣∣∣


6 max
ω

∣∣∣∣∣∣1t
∑
j∈S

ωzj − 1

n

n∑
j=1

ωzj

∣∣∣∣∣∣ , (3.4)

where the maximum in all equations is taken over M -th roots of unity ω 6= 1.
Using (3.3) and the union bound over ω, we see that the right-hand side of (3.4) is
bounded by α with probability at least 1− 4M exp(−tα2/8).

3.3. A low-discrepancy set. The construction of sparse integer sets with small
discrepancy relative to a given modulus M is a well-studied problem. There is an
inherent trade-off between the size of the set and the discrepancy it achieves, and
different works have focused on different regimes depending on the application at
hand. We work in a regime not considered previously: for any constant ε > 0, we
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construct a set of cardinality at most M ε that has M -discrepancy at most M−δ for
some constant δ = δ(ε) > 0. We construct such a set based on the following result.

Theorem 3.5 (cf. [2, 48]). Fix an integer R > 1 and reals P > 2 and ∆ > 1. Let
M be an integer with

M > P 2(R+ 1).

Fix a set Sp ⊆ {1, 2, . . . , p − 1} for each prime p ∈ (P/2, P ] with p - M . Suppose
further that the cardinalities of any two sets from among the Sp differ by a factor
of at most ∆. Consider the multiset

S = {(r + s · (p−1)M ) mod M :

r = 1, . . . , R; p ∈ (P/2, P ] prime with p -M ; s ∈ Sp}. (3.5)

Then the elements of S are pairwise distinct and nonzero. Moreover, if S 6= ∅ then

discM (S) 6
c√
R

+
c logM

log logM
· logP

P
·∆ + max

p
{discp(Sp)}

for some (explicitly given) constant c > 1 independent of P,R,M,∆.

Ajtai et al. [2] proved a special case of Theorem 3.5 for M prime and ∆ = 1. Their
argument was generalized in [48, Theorem 3.6] to arbitrary moduli M , again in the
setting of ∆ = 1. The treatment in [48] in turn readily generalizes to any ∆ > 1,
and for the reader’s convenience we provide a complete proof of Theorem 3.5 in
Appendix A. With this result in hand, we obtain the low-discrepancy set with the
needed parameters:

Theorem 3.6 (Explicit low-discrepancy set). For all integers M > 2 and t > 2,
there is an (explicitly given) nonempty set S ⊆ {1, 2, . . . ,M} with

|S| 6 t, (3.6)

discM (S) 6
C∗ log t

t1/4
· logM

1 + log logM
, (3.7)

where C∗ > 1 is an (explicitly given) absolute constant independent of M and t.

Proof. Facts 2.17 and 2.18 imply that

π(P )− π
(
P

2

)
>

P

C logP
for all P > C, (3.8)

ν(M) 6
C logM

1 + log logM
for all M > 2, (3.9)

for some integer C > 1 that is an absolute constant. Moreover, C can be easily
calculated from the explicit bounds in Facts 2.17 and 2.18. We will show that the
theorem holds for some constant C∗ > 4C2.

For t > M, the theorem is trivial since the set S = {1, 2, . . . ,M} achieves
discM (S) = 0. Also, if the right-hand side of (3.7) exceeds 1, then (3.7) holds
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trivially for the set S = {1}. In what follows, we treat the remaining case when

t < M, (3.10)

4C2 log t

t1/4
· logM

1 + log logM
6 1. (3.11)

The latter condition forces

t > max{81, C8}. (3.12)

Set P = bt1/4c and R = b
√
t−1c. Then (3.10) and (3.12) imply that P > max{3, C},

R > 1, and M > P 2(R + 1). As a result, Theorem 3.5 is applicable with the sets
Sp = {1, 2, . . . , p − 1} for prime p ∈ (P/2, P ]. The discrepancy of these sets is
given by discp(Sp) = 1/(p − 1). Define S by (3.5). The interval (P/2, P ] contains
π(P )− π(P/2) prime numbers, of which at most ν(M) are divisors of M. We have

π(P )− π
(
P

2

)
− ν(M) >

P

C logP
− C logM

1 + log logM

>
t1/4

C log t
− C logM

1 + log logM

> 0,

where the first step uses (3.8), (3.9), and P > C, and the last step uses (3.11).
We conclude that (P/2, P ] contains a prime that does not divide M, which in turn
implies that S is nonempty. Continuing, P > 3 forces ∆ 6 (P −1)/(dP/2e−1) 6 3
in the notation of Theorem 3.5. As a result, Theorem 3.5 guarantees (3.7) for a large
enough constant C∗. We note that C∗ can be easily calculated from the constant c
in Theorem 3.5. Since |S| 6 RP 2 6 t by definition, the proof is complete.

3.4. Discrepancy and balanced colorings. We will leverage the low-
discrepancy integer set in Theorem 3.6 to construct a balanced coloring of

(
[n]
k

)
.

For this, we now develop a connection between these two notions of pseudorandom-
ness. We will henceforth denote the modulus by r since in our construction, the
modulus is set equal to the number of colors in the coloring of

(
[n]
k

)
. We start with

a technical lemma.

Lemma 3.7. Fix integers `, k, r with ` > k > 1 and r > 2. Let Z = {z1, z2, . . . , z`}
be a multiset of integers. Then for all α ∈ [0, 1],

max
a∈Z

∣∣∣∣∣ P
S∈([`]

k )

[∑
i∈S

zi ≡ a (mod r)

]
− 1

r

∣∣∣∣∣
6 4rk exp

(
−b`/kcα

2

8

)
+ (discr(Z) + α)k.
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Proof. Let ω be a primitive r-th root of unity. Then

P
S∈([`]

k )

[∑
i∈S

zi ≡ a (mod r)

]
= E
S∈([`]

k )
I

[∑
i∈S

zi ≡ a (mod r)

]

= E
S∈([`]

k )

1

r

r−1∑
t=0

ωt(
∑
i∈S zi−a)

=
1

r

r−1∑
t=0

E
S∈([`]

k )
ωt(

∑
i∈S zi−a)

=
1

r
+

1

r

r−1∑
t=1

E
S∈([`]

k )
ωt(

∑
i∈S zi−a)

=
1

r
+

1

r

r−1∑
t=1

E
i1,i2,...,ik

ωt(zi1+zi2+···+zik−a),

where the final expectation is taken over a uniformly random tuple of indices
i1, i2, . . . , ik ∈ [`] that are pairwise distinct. Therefore,∣∣∣∣∣ P

S∈([`]
k )

[∑
i∈S

zi ≡ a (mod r)

]
− 1

r

∣∣∣∣∣ =

∣∣∣∣∣1r
r−1∑
t=1

E
i1,i2,...,ik

ωt(zi1+zi2+···+zik−a)

∣∣∣∣∣
6

1

r

r−1∑
t=1

∣∣∣∣ E
i1,i2,...,ik

ωt(zi1+zi2+···+zik−a)

∣∣∣∣
=

1

r

r−1∑
t=1

∣∣∣∣∣∣ E
i1,i2,...,ik

k∏
j=1

ωtzij

∣∣∣∣∣∣ . (3.13)

We now introduce conditioning to make i1, i2, . . . , ik independent random variables.
Specifically, i1, i2, . . . , ik can be generated by the following two-step procedure:

(i) pick uniformly random sets S1, S2, . . . , Sk ∈
(

[`]
b`/kc

)
that are pairwise dis-

joint;
(ii) for j = 1, 2, . . . , k, pick ij uniformly at random from among the elements

of Sj .
By symmetry, this procedure generates every tuple (i1, i2, . . . , ik) of pairwise dis-
tinct integers with equal probability. Importantly, conditioning on S1, S2, . . . , Sk
makes i1, i2, . . . , ik independent. Now (3.13) gives

max
a∈Z

∣∣∣∣∣ P
S∈([`]

k )

[∑
i∈S

zi ≡ a (mod r)

]
− 1

r

∣∣∣∣∣
6

1

r

r−1∑
t=1

∣∣∣∣∣∣ E
i1,i2,...,ik

k∏
j=1

ωtzij

∣∣∣∣∣∣
=

1

r

r−1∑
t=1

∣∣∣∣∣∣ E
S1,S2,...,Sk

k∏
j=1

E
ij∈Sj

ωtzij

∣∣∣∣∣∣
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6
1

r

r−1∑
t=1

E
S1,S2,...,Sk

k∏
j=1

∣∣∣∣ E
ij∈Sj

ωtzij
∣∣∣∣

6
1

r

r−1∑
t=1

E
S1,S2,...,Sk

k∏
j=1

discr({zi : i ∈ Sj})

6 E
S1,S2,...,Sk

k∏
j=1

discr({zi : i ∈ Sj}), (3.14)

where {zi : i ∈ Sj} for each j is a multiset of cardinality b`/kc.
Let Bj be the event that {zi : i ∈ Sj} has r-discrepancy greater than discr(Z)+α,

and let B = B1∨B2∨· · ·∨Bk. Conditioned on B, we get
∏
j discr({zi : i ∈ Sj}) 6 1

since r-discrepancy is at most 1. Conditioned on B, we have by definition that∏
j discr({zi : i ∈ Sj}) 6 (discr(Z) + α)k. Thus,

E
S1,S2,...,Sk

k∏
j=1

discr({zi : i ∈ Sj}) 6 P
S1,S2,...,Sk

[B] + (discr(Z) + α)k. (3.15)

Recall that S1, S2, . . . , Sk are identically distributed, namely, each Sj has the dis-
tribution of a uniformly random subset of [`] of cardinality b`/kc. As a result,
Lemma 3.4 guarantees that Bj occurs with probability at most 4r exp(−b`/kcα2/8).
Applying the union bound over all j,

P
S1,S2,...,Sk

[B] 6 4rk exp

(
−b`/kcα

2

8

)
. (3.16)

Combining (3.14)–(3.16) concludes the proof.

We are now in a position to give our general transformation of a low-discrepancy
integer set into a balanced coloring of

(
[n]
k

)
.

Theorem 3.8 (From a low-discrepancy set to a balanced coloring). Let n,m, k, r
be integers with n > m > k > 1 and r > 2. Let Z = {z1, z2, . . . , zn} be a multiset
of integers. Define γ :

(
[n]
k

)
→ [r] by

γ(S) = 1 +

((∑
i∈S

zi

)
mod r

)
. (3.17)

Let β, ζ ∈ [0, 1] be arbitrary. Then γ is (ε, δ,m)-balanced, where

ε = 4r2k exp

(
−bm/kcζ

2

8

)
+ r(discr(Z) + β + ζ)k,

δ = 4r exp

(
−mβ

2

8

)
.

Proof. Let ` ∈ {m,m+ 1, . . . , n} be arbitrary. Then Lemma 3.4 implies that for all
but a δ fraction of the sets A ∈

(
[n]
`

)
,

discr({zi : i ∈ A}) 6 discr(Z) + β. (3.18)
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It remains to prove that γ is ε-balanced on every set A ∈
(

[n]
`

)
that satisfies (3.18).

We have

max
a∈[r]

∣∣∣∣∣ |γ−1(a) ∩
(
A
k

)
|(|A|

k

) − 1

r

∣∣∣∣∣
= max

a∈[r]

∣∣∣∣∣ P
S∈(Ak)

[γ(S) = a]− 1

r

∣∣∣∣∣
= max

a∈Z

∣∣∣∣∣ P
S∈(Ak)

[∑
i∈S

zi ≡ a (mod r)

]
− 1

r

∣∣∣∣∣
6 4rk exp

(
−b`/kcζ

2

8

)
+ (discr({zi : i ∈ A}) + ζ)k

6 4rk exp

(
−bm/kcζ

2

8

)
+ (discr(Z) + β + ζ)k

=
ε

r
,

where the second step uses the definition of γ, the third step applies Lemma 3.7,
the fourth step uses (3.18) and ` > m, and the fifth step uses the definition of ε.
We have shown that γ is ε-balanced on A, thereby completing the proof.

3.5. An explicit balanced coloring. Theorem 3.8 transforms any integer set
with small r-discrepancy into a balanced coloring with r colors. We now apply this
transformation to the low-discrepancy integer set constructed earlier, resulting in
an explicit balanced coloring.

Theorem 3.9 (Explicit balanced coloring). Let n,m, k, r be integers with n/2 >
m > k > 1 and r > 2. Let β, ζ ∈ [0, 1] be arbitrary. Then there is an (explicitly
given) integer n′ ∈ (n/2, n] and an (explicitly given) (ε, δ,m)-balanced coloring
γ :
(

[n′]
k

)
→ [r], where

ε = 4r2k exp

(
−bm/kcζ

2

8

)
+ r

(
C∗ log n

n1/4
· log r

1 + log log r
+ β + ζ

)k
,

(3.19)

δ = 4r exp

(
−mβ

2

8

)
, (3.20)

and C∗ > 1 is the absolute constant from Theorem 3.6.

Proof. By hypothesis, n > 2. Invoke Theorem 3.6 with M = r and t = n to obtain
an explicit nonempty set S ⊆ {1, 2, . . . , r} with

|S| 6 n,

discr(S) 6
C∗ log n

n1/4
· log r

1 + log log r
.

Let Z be the union of bn/|S|c copies of S. Then discr(Z) = discr(S) by the definition
of r-discrepancy. Letting n′ = |Z|, we claim that n′ ∈ (n/2, n]. Indeed, the upper
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bound is justified by n′ = |S|·bn/|S|c 6 n, whereas the lower bound is the arithmetic
mean of the bounds n′ > |S| and n′ > |S|(n/|S| − 1).

Now, let z1, z2, . . . , zn′ be the elements of Z and define γ :
(

[n′]
k

)
→ [r] by (3.17).

Then Theorem 3.8 implies that γ is (ε, δ,m)-balanced with ε, δ given by (3.19)
and (3.20), respectively.

Taking β = ζ = m−1/4 in Theorem 3.9, we obtain:

Corollary 3.10 (Explicit balanced coloring). Let n,m, k, r be integers with n/2 >
m > k > 1 and r > 2. Then there is an (explicitly given) integer n′ ∈ (n/2, n] and
an (explicitly given) (ε, δ,m)-balanced coloring γ :

(
[n′]
k

)
→ [r], where

ε = 4r2k exp

(
−
√
m

16k

)
+ r

(
3C∗ log2(n+ r)

m1/4

)k
, (3.21)

δ = 4r exp

(
−
√
m

8

)
, (3.22)

and C∗ > 1 is the absolute constant from Theorem 3.6.

The parameters in Corollary 3.10 generously meet our requirements. In our set-
ting of interest, the integers n,m, r are polynomially related. Thus, we obtain
an (m−K ,m−K ,m)-balanced coloring for any desired constant K > 1 by invoking
Corollary 3.10 with a large enough constant k = k(K).

4. Hardness amplification

In Section 3, we laid the foundation for our main result by constructing an
explicit integer set with small discrepancy and transforming it into a highly bal-
anced coloring of

(
[n]
k

)
. In this section, we use this coloring to design a hardness

amplification method for approximate degree and its one-sided variant.

4.1. Pseudodistributions from balanced colorings. Recall from the intro-
duction that our approach centers around encoding the vectors e1, e2, . . . , eN , 0

N

as n-bit strings with n� N so as to make the decoding easy for circuits but hard
for low-degree polynomials. The construction of this code requires several steps.
As a first step, we show how to convert any balanced coloring of

(
[n]
k

)
with r colors

into an explicit sequence of functions φ1, φ2, . . . , φr : {0, 1}n → R that are almost
everywhere nonnegative, are supported almost entirely on pairwise disjoint sets
of strings of Hamming weight k, and are pairwise indistinguishable by low-degree
polynomials. We call them pseudodistributions to highlight the fact that each φi
has `1 norm approximately 1, nearly all of it coming from the points where φi is
nonnegative.

Theorem 4.1. Let ε, δ ∈ [0, 1) be given. Let n,m, k, r be positive integers with
n > m > k. Let γ :

(
[n]
k

)
→ [r] be a given (ε, δ,m)-balanced coloring. Then there are

(explicitly given) functions φ1, φ2, . . . , φr : {0, 1}n → R with the following properties.

(i) Support: suppφi ⊆ {x ∈ {0, 1}n : |x| = k or |x| > m};

(ii) Essential support: {0, 1}n|k ∩ suppφi = {1S : S ∈ γ−1(i)};
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(iii) Nonnegativity: φi > 0 on {0, 1}n|k;

(iv) Normalization:
∑
x:|x|=k φi(x) = 1;

(v) Tail bound:
∑
x:|x|6=k |φi(x)| 6 (8ε+ 4rδ)/(1− ε);

(vi) Graded bound: for some absolute constant c′ ∈ (0, 1),∑
x:|x|=`

|φi(x)| 6 ε+ rδ

1− ε
· m

2

c′`2
· exp

(
−c
′(`− k)√
nm

)
, ` > k;

(vii) Orthogonality: for some absolute constant c′′ ∈ (0, 1),

orth(φi − φj) > c′′
√
n

m
, i, j ∈ [r].

Proof. Define

∆ = m− k, (4.1)

D =

⌊
n− k

∆

⌋
. (4.2)

Setting ε = 1/2 in Lemma 2.10 gives an explicit function ω : {0, 1, 2, . . . , D} → R
with

ω(0) >
1

4
‖ω‖1, (4.3)

|ω(t)| 6 1

ct2 2ct/
√
D
· ‖ω‖1 (t = 1, 2, . . . , D), (4.4)

orthω > c
√
D, (4.5)

where 0 < c < 1 is an absolute constant. For convenience of notation, we will extend
ω to all of R by setting ω(t) = 0 for t /∈ {0, 1, 2, . . . , D}. With this extension, (4.4)
gives

|ω(t)| 6 1

ct2 2ct/
√
D
· ‖ω‖1, t ∈ [1,∞). (4.6)

For S ∈
(

[n]
k

)
, define an auxiliary dual object φS : {0, 1}n → R by

φS(x) =

(
n− k
|x| − k

)−1

ω(0)−1ω

(
|x| − k

∆

)∏
i∈S

xi. (4.7)

Then

φS(1S) = 1, S ∈
(

[n]

k

)
. (4.8)

Since φS(x) = 0 unless x|S = 1k, we see that 1S is in fact the only input of Hamming
weight k at which φS is nonzero:

φS(1T ) = δS,T , S, T ∈
(

[n]

k

)
. (4.9)
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Since suppω ⊆ {0, 1, 2, . . . , D}, the only inputs x other than 1S in the support of
φS have Hamming weight |x| ∈ {k + ∆, k + 2∆, . . . , k +D∆}, so that in particular
|x| > m. In summary,

suppφS ⊆ {x : x = 1S or |x| > m}, S ∈
(

[n]

k

)
, (4.10)

suppφS ⊆
D⋃
i=0

{x : |x| = k + i∆}, S ∈
(

[n]

k

)
. (4.11)

We now turn to the construction of the φi. By definition of an (ε, δ,m)-balanced
coloring, the given coloring γ :

(
[n]
k

)
→ [r] satisfies

P
A∈([n]

` )

[
1− ε
r

(
|A|
k

)
6

∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣ 6 1 + ε

r

(
|A|
k

)]
> 1− δ,

` = m,m + 1, . . . , n. (4.12)

Since δ < 1, taking ` = n in this equation leads to∣∣∣∣|γ−1(i)| − 1

r

(
n

k

)∣∣∣∣ 6 ε

r

(
n

k

)
, i ∈ [r], (4.13)

and in particular

|γ−1(i)| > 1− ε
r

(
n

k

)
, i ∈ [r]. (4.14)

For i = 1, 2, . . . , r, we define φi : {0, 1}n → R by

φi(x) = E
S∈γ−1(i)

φS(x)− I[|x| > m] E
S∈([n]

k )
φS(x).

This definition is legitimate since γ−1(i) 6= ∅ for every i due to (4.14) and ε < 1.

Claim 4.2. For all i ∈ [r] and ` ∈ {m,m+ 1, . . . , n},

E
A∈([n]

` )

∣∣∣∣∣ P
S∈γ−1(i)

[S ⊆ A]− P
S∈([n]

k )
[S ⊆ A]

∣∣∣∣∣ 6 2ε+ rδ

1− ε

(
n

k

)−1(
`

k

)
.

Proof. Fix i ∈ [r] and ` ∈ {m,m + 1, . . . , n} arbitrarily for the remainder of the
proof. Let A ∈

(
[n]
`

)
be uniformly random. If γ is ε-balanced on A, then by definition∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣− 1

r

(
|A|
k

)∣∣∣∣ 6 ε

r

(
|A|
k

)
.

If γ is not ε-balanced on A, we have the trivial bound∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣− 1

r

(
|A|
k

)∣∣∣∣ 6 (|A|k
)
.

Combining these two equations, we arrive at∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣− 1

r

(
|A|
k

)∣∣∣∣ 6 ( εr + YA

)(|A|
k

)
(4.15)
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for all A, where YA is the indicator random variable for the event that γ is not
ε-balanced on A. Since γ is (ε, δ,m)-balanced, we further have

E
A∈([n]

` )
YA 6 δ. (4.16)

Now ∣∣∣∣∣ P
S∈γ−1(i)

[S ⊆ A]− P
S∈([n]

k )
[S ⊆ A]

∣∣∣∣∣
=

∣∣∣∣∣ |γ−1(i) ∩
(
A
k

)
|

|γ−1(i)|
−
(|A|
k

)(
n
k

) ∣∣∣∣∣
=

1

|γ−1(i)|

(
n

k

)−1 ∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣ (nk
)
− |γ−1(i)|

(
|A|
k

)∣∣∣∣
6

r

1− ε

(
n

k

)−2 ∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣ (nk
)
− |γ−1(i)|

(
|A|
k

)∣∣∣∣
6

r

1− ε

(
n

k

)−2 ∣∣∣∣∣∣∣∣γ−1(i) ∩
(
A

k

)∣∣∣∣ (nk
)
− 1

r

(
|A|
k

)(
n

k

)∣∣∣∣
+

r

1− ε

(
n

k

)−2 ∣∣∣∣1r
(
|A|
k

)(
n

k

)
− |γ−1(i)|

(
|A|
k

)∣∣∣∣
6

r

1− ε

(
n

k

)−2 ( ε
r

+
ε

r
+ YA

)(|A|
k

)(
n

k

)
=

r

1− ε

(
n

k

)−1(
2ε

r
+ YA

)(
`

k

)
, (4.17)

where the third step is valid by (4.14), the fourth step applies the triangle inequality,
the fifth step uses (4.13) and (4.15), and the last step uses |A| = `. It remains to
pass to expectations with respect to A:

E
A∈([n]

` )

∣∣∣∣∣ P
S∈γ−1(i)

[S ⊆ A]− P
S∈([n]

k )
[S ⊆ A]

∣∣∣∣∣
6 E
A∈([n]

` )

r

1− ε

(
n

k

)−1(
2ε

r
+ YA

)(
`

k

)

=
r

1− ε

(
n

k

)−1
(

2ε

r
+ E
A∈([n]

` )
YA

)(
`

k

)

6
2ε+ rδ

1− ε

(
n

k

)−1(
`

k

)
,

where the last step uses (4.16).

Claim 4.3. For each i ∈ [r] and ` ∈ {m,m+ 1, . . . , n},

∑
x:|x|=`

|φi(x)| 6 2ε+ rδ

1− ε
·

∣∣∣∣∣ω( `−k∆ )

ω(0)

∣∣∣∣∣ .
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Proof. Fix i ∈ [r] and ` ∈ {m,m + 1, . . . , n} arbitrarily for the remainder of the
proof. Consider any input x = 1A with |A| = `. In this case, the definition of φi
simplifies to

φi(1A) = E
S∈γ−1(i)

φS(1A)− E
S∈([n]

k )
φS(1A).

Recall from (4.7) that

φS(1A) =
ω( `−k∆ )

ω(0)
(
n−k
`−k
) · I[S ⊆ A].

As a result,

φi(1A) =
ω( `−k∆ )

ω(0)
(
n−k
`−k
) ( P

S∈γ−1(i)
[S ⊆ A]− P

S∈([n]
k )

[S ⊆ A]

)
.

Passing to absolute values and summing over A ∈
(

[n]
`

)
, we obtain

∑
A∈([n]

` )

|φi(1A)| =

∣∣∣∣∣ ω( `−k∆ )

ω(0)
(
n−k
`−k
) ∣∣∣∣∣ ∑

A∈([n]
` )

∣∣∣∣∣ P
S∈γ−1(i)

[S ⊆ A]− P
S∈([n]

k )
[S ⊆ A]

∣∣∣∣∣
6

∣∣∣∣∣ ω( `−k∆ )

ω(0)
(
n−k
`−k
) ∣∣∣∣∣ ·

(
n

`

)
· 2ε+ rδ

1− ε
·
(
n

k

)−1(
`

k

)

=

∣∣∣∣∣ω( `−k∆ )

ω(0)

∣∣∣∣∣ · 2ε+ rδ

1− ε
,

where the second step applies Claim 4.2, and the final step is justified by(
n− k
`− k

)−1(
n

`

)(
n

k

)−1(
`

k

)
=

(`− k)! (n− `)!
(n− k)!

· n!

`! (n− `)!
· k! (n− k)!

n!
· `!

k! (`− k)!
= 1.

We now turn to the verification of properties (i)–(vii) in the theorem statement.

Properties (i)–(iv). Equation (4.10) shows that φi is a linear combination of
functions whose support is contained in {x : |x| = k or |x| > m}. This settles the
support requirement (i). For T ∈

(
[n]
k

)
,

φi(1T ) = E
S∈γ−1(i)

φS(1T )

= E
S∈γ−1(i)

δS,T

=
I[T ∈ γ−1(i)]

|γ−1(i)|
, T ∈

(
[n]

k

)
, (4.18)

where the first step is immediate from the defining equation for φi, and the sec-
ond step applies (4.9). The essential support property (ii) and nonnegativity prop-
erty (iii) are now immediate from (4.18). The normalization requirement (iv) follows
by summing (4.18) over T ∈

(
[n]
k

)
.



40 ALEXANDER A. SHERSTOV

Properties (v) and (vi). The tail bound (v) for i ∈ [r] can be seen as follows:∑
x:|x|6=k

|φi(x)| =
∑

x:|x|>m

|φi(x)|

=

n∑
`=m

∑
x:|x|=`

|φi(x)|

6
2ε+ rδ

1− ε
·

n∑
`=m

∣∣∣∣ω(0)−1ω

(
`− k

∆

)∣∣∣∣
6

2ε+ rδ

1− ε
· ‖ω‖1
|ω(0)|

6
8ε+ 4rδ

1− ε
,

where the first step uses the support property (i), the third step is valid by Claim 4.3,
and the last step applies (4.3).

The graded bound (vi) for ` ∈ (k,m) holds trivially since φi vanishes on inputs
of Hamming weight in (k,m), by the support property (i). The validity of (vi) for
` > m is borne out by∑

x:|x|=`

|φi(x)| 6 2ε+ rδ

1− ε
·
∣∣∣∣ω(0)−1ω

(
`− k

∆

)∣∣∣∣
6

8ε+ 4rδ

1− ε
· 1

‖ω‖1
·
∣∣∣∣ω(`− k∆

)∣∣∣∣
6

8ε+ 4rδ

1− ε
· 1

c
(
`−k
∆

)2
2c(`−k)/(∆

√
D)

=
8ε+ 4rδ

1− ε
· 1

c
(
`−k
m−k

)2

2c(`−k)/((m−k)
√
b(n−k)/(m−k)c)

6
8ε+ 4rδ

1− ε
· m2

c`2 2c(`−k)/
√
nm

,

where the first step restates Claim 4.3, the second step is justified by (4.3), the
third step appeals to (4.6), and the fourth step substitutes the values from (4.1)
and (4.2).

Property (vii). To begin with, we claim that

orthφS > c
√
D, S ∈

(
[n]

k

)
. (4.19)

Indeed, let p be a real polynomial on {0, 1}n with deg p < c
√
D. By linearity, it

suffices to consider polynomials p that factor as p(x) = p1(x|S)p2(x|S) for some
nonzero polynomials p1, p2. Now, Minsky and Papert’s symmetrization argument
(Proposition 2.14) guarantees that

E
y∈{0,1}n−k
|y|=i

p2(y) = p∗2(i), i = 0, 1, 2, . . . , n− k, (4.20)
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for some univariate polynomial p∗2 of degree at most deg p2. As a result,

〈φS , p〉 =
∑

x∈{0,1}n:

x|S=1k

φS(x)p(x)

=

D∑
i=0

∑
x∈{0,1}n:

|x|=k+i∆, x|S=1k

φS(x)p(x)

=

D∑
i=0

∑
x∈{0,1}n:

|x|=k+i∆, x|S=1k

(
n− k
i∆

)−1
ω(i)

ω(0)
· p(x)

=
D∑
i=0

E
y∈{0,1}n−k:
|y|=i∆

[
ω(i)

ω(0)
· p1(1k)p2(y)

]

=
p1(1k)

ω(0)

D∑
i=0

ω(i)p∗2(i∆)

= 0,

where the first and third steps use the definition of φS , the second step is justified
by (4.11), the next-to-last step uses (4.20), and the last step is valid by (4.5) since
deg p∗2 6 deg p2 6 deg p < c

√
D. This settles (4.19).

Now the orthogonality requirement (vii) can be seen as follows:

orth(φi − φj) = orth

(
E

S∈γ−1(i)
φS − E

S∈γ−1(j)
φS

)
> min
S∈([n]

k )
orthφS

> c
√
D

= c

√⌊
n− k
m− k

⌋
> c

√⌊ n
m

⌋
,

where the second step uses Proposition 2.6(i), the third step is valid by (4.19), the
fourth step applies the definition of D, and the last step uses n > m.

4.2. Encoding via indistinguishable distributions. As our next step, we will
show that the pseudodistributions φ1, φ2, . . . , φr in Theorem 4.1 can be turned
into actual probability distributions λ1, λ2, . . . , λr provided that the underlying
coloring of

(
[n]
k

)
is sufficiently balanced. The resulting distributions λi inherit all

the desirable analytic properties established for the φi in Theorem 4.1. Specifically,
the λi are supported almost entirely on pairwise disjoint sets of inputs of Hamming
weight k and are pairwise indistinguishable by low-degree polynomials.

Theorem 4.4. Let 0 < β < 1 be given. Let n, n′,m, k, r be positive integers with
n > n′ > m > k. Let γ :

(
[n′]
k

)
→ [r] be a given ( β

16rm2 ,
β

16r2m2 ,m)-balanced coloring.
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Then there are (explicitly given) probability distributions λ1, λ2, . . . , λr on {0, 1}n
such that

suppλi ⊆ {x ∈ {0, 1}n : |x| = k or |x| > m}, i ∈ [r], (4.21)

{0, 1}n|k ∩ suppλi = {1S : S ∈ γ−1(i)}, i ∈ [r], (4.22)
λi({0, 1}n|k) > 1− β, i ∈ [r], (4.23)

λi({0, 1}n|`) 6
exp(−c(`− k)/

√
n′m)

c(`− k + 1)2
, i ∈ [r], ` > k, (4.24)

orth(λi − λj) > c

√
n′

m
, i, j ∈ [r], (4.25)

where c ∈ (0, 1) is an absolute constant, independent of n, n′,m, k, r, β.

Proof. By hypothesis, γ is (ε, δ,m)-balanced with

ε =
β

16rm2
,

δ =
β

16r2m2
.

Applying Theorem 4.1 with these parameters gives functions
φ1, φ2, . . . , φr : {0, 1}n′ → R that obey

suppφi ⊆ {x ∈ {0, 1}n
′

: |x| = k or |x| > m}, (4.26)

{0, 1}n
′
|k ∩ suppφi = {1S : S ∈ γ−1(i)}, (4.27)

φi > 0 on {0, 1}n
′
|k, (4.28)∑

x:|x|=k

φi(x) = 1, (4.29)

∑
x:|x|6=k

|φi(x)| 6 β

r
, (4.30)

∑
x:|x|=`

|φi(x)| 6 β

rc′`2
· exp

(
−c
′(`− k)√
n′m

)
, ` > k, (4.31)

orth(φi − φj) > c′′
√
n′

m
for all i, j ∈ [r], (4.32)

where c′, c′′ ∈ (0, 1) are the absolute constants defined in Theorem 4.1. For i ∈ [r],

define φ̃i : {0, 1}n
′ → R by

φ̃i(x) = φi(x)− I[|x| > k] min
j∈[r]

φj(x). (4.33)

Equation (4.26) shows that φ̃i is a linear combination of functions whose support
is contained in {x ∈ {0, 1}n′ : |x| = k or |x| > m}. As a result,

supp φ̃i ⊆ {x ∈ {0, 1}n
′

: |x| = k or |x| > m}. (4.34)
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Since φ̃i = φi on {0, 1}n
′ |k, we obtain from (4.27) and (4.29) that

{0, 1}n
′
|k ∩ supp φ̃i = {1S : S ∈ γ−1(i)}, (4.35)∑

x:|x|=k

φ̃i(x) = 1. (4.36)

In particular,

‖φ̃i‖1 > 1. (4.37)

We further claim that

φ̃i(x) > 0, x ∈ {0, 1}n
′
. (4.38)

Indeed, the nonnegativity of φ̃i(x) for x ∈ {0, 1}n′ |k follows from φ̃i(x) = φi(x)

and (4.28), whereas the nonnegativity of φ̃i(x) for x ∈ {0, 1}n′ |>k follows from (4.33)
via φ̃i(x) = φi(x)−minj∈[r] φj(x) > φi(x)− φi(x) > 0.

On {0, 1}n′ |>k, we have

φ̃i = φi − min
j∈[r]

φj = max
j∈[r]
{φi − φj} 6 max

j∈[r]
|φi − φj | 6

r∑
j=1

|φj |.

This conclusion is also valid on {0, 1}n′ |<k due to (4.34). Thus,

φ̃i(x) 6
r∑
j=1

|φj(x)|, |x| 6= k. (4.39)

Summing over x gives∑
x:|x|6=k

φ̃i(x) 6
∑

x:|x|6=k

r∑
j=1

|φj(x)|

=

r∑
j=1

∑
x:|x|6=k

|φj(x)|

6 β, (4.40)

where the third step applies (4.30).
For all i ∈ [r] and ` ∈ {m,m+ 1, . . . , n′}, we have the graded bound∑

x:|x|=`

φ̃i(x) 6
r∑
j=1

∑
x:|x|=`

|φj(x)|

6
1

c′`2
· exp

(
−c
′(`− k)√
n′m

)
, (4.41)

where the first step uses (4.39), and the second step uses (4.31). Finally, for i, j ∈ [r],
we have

orth(φ̃i − φ̃j) = orth(φi − φj)

> c′′
√
n′

m
, (4.42)
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where the first step uses the definition (4.33), and the second step uses (4.32).
Define c = min{c′, c′′}. Equations (4.36) and (4.38) show that each φ̃i is a nonneg-

ative function and is not identically zero, making it possible to define a probability
distribution λi on {0, 1}n by

λi(x) =
1

‖φ̃i‖1
φ̃i(x1x2 . . . xn′)

n∏
j=n′+1

(1− xj).

In other words, λi is nonzero only on inputs x with xn′+1 = xn′+2 = · · · = xn = 0,
and on such inputs λi(x) is the properly normalized version of the nonnegative func-
tion φ̃i(x1x2 . . . xn′). Then properties (4.21) and (4.22) are immediate from (4.34)
and (4.35), respectively. Property (4.23) follows from

λi({0, 1}n|k) =
1

‖φ̃i‖1

∑
x∈{0,1}n|k

φ̃i(x1x2 . . . xn′)

n∏
j=n′+1

(1− xj)

=
1

‖φ̃i‖1

∑
x∈{0,1}n′ |k

φ̃i(x1x2 . . . xn′)

=
1

‖φ̃i‖1

>
1

1 + β

> 1− β,

where the third step uses (4.36), and the fourth step uses (4.36) and (4.40). Prop-
erty (4.24) is trivial for ` = k and follows for ` > k from

λi({0, 1}n|`) =
1

‖φ̃i‖1

∑
x∈{0,1}n|`

φ̃i(x1x2 . . . xn′)

n∏
j=n′+1

(1− xj)

=
1

‖φ̃i‖1

∑
x∈{0,1}n′ |`

φ̃i(x1x2 . . . xn′)

6
1

‖φ̃i‖1
· exp(−c′(`− k)/

√
n′m)

c′`2

6
exp(−c(`− k)/

√
n′m)

c`2
,

where the third step uses (4.41), and the fourth step uses (4.37) and c = min{c′, c′′}.
It remains to verify (4.25). For this, fix i, j ∈ [r] arbitrarily. Then ‖φ̃i‖1−‖φ̃j‖1 =

〈φ̃i, 1〉 − 〈φ̃j , 1〉 = 〈φ̃i − φ̃j , 1〉 = 0, where the first step uses (4.38), and the third
step uses (4.42). We thus see that

‖φ̃i‖1 = ‖φ̃j‖1. (4.43)
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Next, observe that λi can be written as the product of two functions on disjoint
sets of variables, and likewise for λj . Namely,

λi =
1

‖φ̃i‖1
φ̃i ⊗NORn−n′ ,

λj =
1

‖φ̃j‖1
φ̃j ⊗NORn−n′ .

Now

orth(λi − λj) = orth

((
φ̃i

‖φ̃i‖1
− φ̃j

‖φ̃j‖1

)
⊗NORn−n′

)

> orth

(
φ̃i

‖φ̃i‖1
− φ̃j

‖φ̃j‖1

)

= orth

(
φ̃i − φ̃j
‖φ̃i‖1

)
= orth(φ̃i − φ̃j)

> c′′
√
n′

m
,

where the second step uses Proposition 2.6(ii), the third step applies (4.43), and
the last step is justified by (4.42). In view of c = min{c′, c′′}, this settles (4.25) and
completes the proof.

4.3. Hardness amplification for approximate degree. We have reached the
crux of our proof, a hardness amplification theorem for approximate degree. Un-
like previous work, our hardness amplification is directly applicable to Boolean
functions with sparse input and does not use componentwise composition or input
compression. The theorem statement below has a large number of parameters, for
maximum generality and black-box integration with the auxiliary results of previ-
ous sections. We will later derive a succinct and easy-to-apply corollary that will
suffice for our hardness amplification purposes.

Theorem 4.5. Let C∗ > 1 and c ∈ (0, 1) be the absolute constants from Theo-
rems 3.6 and 4.4, respectively. Fix a real number 0 < β < 1 and positive integers
n,m, k,N, θ,D, T such that

n/2 > m > k, (4.44)

4(N + 1)2k exp

(
−
√
m

16k

)
+ (N + 1)

(
3C∗ log2(n+N + 1)

m1/4

)k
6

β

16(N + 1)2m2
, (4.45)

T >
8e

c
· θ(1 + ln θ) + θk, (4.46)

T > D. (4.47)
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Define

∆ =

(
1 + 2D

(
nθ

D

))
exp

(
−c(T − θk)

2
√
nm

)
. (4.48)

Then there is an (explicitly given) mapping H : ({0, 1}n)θ → {0, 1}N such that:

(i) each output bit of H is computable by a monotone (k + 1)-DNF formula;
(ii) for every ε ∈ [0, 1] and every f : {0, 1}N → {0, 1}, one has

degε−βθ−2∆((f ◦H)|6T ) > min

{
cdegε(f |6θ)

√
n

2m
,D

}
.

Proof. We may assume that

ε− βθ − 2∆ > 0 (4.49)

since otherwise the left-hand side in the approximate degree lower bound of (ii) is
by definition +∞. Define V ⊆ RN by V = {0N , e1, e2, . . . , eN} and set r = N+1. In
view of (4.44) and (4.45), Corollary 3.10 gives an explicit integer n′ ∈ (n/2, n] and
an explicit ( β

16r2m2 ,
β

16r2m2 ,m)-balanced coloring γ :
(

[n′]
k

)
→ [r]. Alternatively, if

one is not concerned about explicitness, the existence of γ can be deduced from the
much simpler Corollary 3.3. Specifically, (4.45) forces

√
m > k and in particular n >

m > k2 > 1. Moreover, (4.45) implies that 3r
√
k ln(n+ 1)/mk/4 6 β

16r2m2 . Now
Corollary 3.3 guarantees the existence of a ( β

16r2m2 ,
β

16r2m2 ,m)-balanced coloring
γ :
(

[n]
k

)
→ [r].

Since n′ > m > k, Theorem 4.4 gives explicit distributions λ0N , λe1 , λe2 , . . . , λeN
on {0, 1}n such that

suppλv ⊆ {x ∈ {0, 1}n : |x| = k or |x| > m}, v ∈ V, (4.50)

{0, 1}n|k ∩ suppλei = {1S : S ∈ γ−1(i)}, i ∈ [N ], (4.51)

{0, 1}n|k ∩ suppλ0N = {1S : S ∈ γ−1(N + 1)}, (4.52)
λv({0, 1}n|k) > 1− β, v ∈ V, (4.53)

λv({0, 1}n|t) 6
exp(−c(t− k)/

√
nm)

c(t− k + 1)2
, v ∈ V, t > k, (4.54)

orth(λv − λu) > c

√
n

2m
, v, u ∈ V. (4.55)

Properties (4.51) and (4.52) imply that

{0, 1}n|k ∩ suppλu ∩ suppλv = ∅, u, v ∈ V, u 6= v. (4.56)

For v = (v1,v2, . . . ,vθ) ∈ V θ, define

Λv =

θ⊗
i=1

λvi . (4.57)
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Claim 4.6. For each v ∈ V θ, there is a function Λ̃v : ({0, 1}n)θ → R such that

supp Λ̃v ⊆ ({0, 1}n)θ|6T , (4.58)

orth(Λv − Λ̃v) > D, (4.59)

‖Λv − Λ̃v‖1 6 ∆. (4.60)

We will settle Claim 4.6, and all other claims, after the proof of the theorem.
We now turn to the construction of the monotone mapping H in the theorem

statement. Define h : {0, 1}n → {0, 1}N by

(h(z))j =
∨

S∈( [n]
k+1)∪γ−1(j)

∧
s∈S

zs, j = 1, 2, . . . , N. (4.61)

Clearly, this is a monotone DNF formula of width k + 1. Define H : ({0, 1}n)θ →
{0, 1}N by

H(x1, x2, . . . , xθ) =

θ∨
i=1

h(xi), x1, x2, . . . , xθ ∈ {0, 1}n, (4.62)

where the right-hand side is the componentwise disjunction of the Boolean vectors
h(x1), h(x2), . . . , h(xθ). Observe that both h and H are monotone and are given
explicitly in closed form in terms of the coloring γ constructed at the beginning of
the proof. This settles (i).

For (ii), fix an arbitrary function f : {0, 1}N → {0, 1} and abbreviate

d = degε(f |6θ).

By the dual characterization of approximate degree (Fact 2.8), there is a function
ψ : {0, 1}N |6θ → R such that

‖ψ‖1 = 1, (4.63)
〈f, ψ〉 > ε, (4.64)
orthψ > d. (4.65)

Define Ψ: ({0, 1}n)θ → R by

Ψ =
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

Λ̃v. (4.66)

We will now use (4.44)–(4.66) to prove a sequence of claims.

Claim 4.7. One has

supp Ψ ⊆ ({0, 1}n)θ|6T , (4.67)
‖Ψ‖1 6 1 + ∆, (4.68)

orth Ψ > min

{
cd

√
n

2m
,D

}
. (4.69)

Claim 4.8. Let v ∈ V be given. Then for all z ∈ {0, 1}n|k ∩ suppλv, one has
h(z) = v.
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Claim 4.9. Let u ∈ {0, 1}N |6θ and v = (v1,v2, . . . ,vθ) ∈ V θ be given such that
v1 + v2 + · · ·+ vθ = u. Then

|f(u)− 〈Λ̃v, f ◦H〉| 6 βθ + ∆. (4.70)

Claim 4.10. One has

〈f ◦H,Ψ〉 > (ε− βθ − 2∆)‖Ψ‖1. (4.71)

Note from (4.67) that Ψ is supported on inputs of Hamming weight at most T
and can therefore be regarded as a function on ({0, 1}n)θ|6T . Now the claimed
bound in (ii) follows by Fact 2.8 in view of (4.69) and (4.71). The proof of the
theorem is complete.

Proof of Claim 4.6. Equations (4.46), (4.50), and (4.54) ensure that Lemma 2.5 is
applicable to the distributions λv1

, λv2
, . . . , λvθ with parameters ` = θ, B = n,

C = 1/c, and α = exp(−c/
√
nm), whence

Λv(({0, 1}n)θ|>T ) 6 exp

(
−c(T − θk)

2
√
nm

)
, v ∈ V θ.

In view of (4.47), we can now invoke Lemma 2.13 with parameter B = nθ to obtain
a function Λ̃v : ({0, 1}n)θ → R that satisfies (4.58)–(4.60).

Proof of Claim 4.7. Observe from (4.58) that Ψ is a linear combination of func-
tions supported on inputs of Hamming weight at most T. This settles the support
property (4.67). Property (4.68) can be verified as follows:

‖Ψ‖1 6
∑

u∈{0,1}N |6θ

|ψ(u)| E
v∈V θ:

v1+v2+···+vθ=u

‖Λ̃v‖1

6

 ∑
u∈{0,1}N |6θ

|ψ(u)|

 max
v∈V θ

‖Λ̃v‖1

= ‖ψ‖1 max
v∈V θ

‖Λ̃v‖1

6 ‖ψ‖1 max
v∈V θ

{‖Λv‖1 + ‖Λ̃v − Λv‖1}

6 1 + ∆,

where the first and fourth steps apply the triangle inequality, and the last step
uses (4.60) and (4.63).

To settle (4.69), consider an arbitrary polynomial P : ({0, 1}n)θ → R of degree
less than min{cd

√
n/(2m), D}. Then

〈Ψ, P 〉 =
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

〈Λ̃v, P 〉

=
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

[〈Λv, P 〉+ 〈Λ̃v − Λv, P 〉]

=
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

〈Λv, P 〉, (4.72)
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where the first and second steps use the linearity of inner product, and the third
step is valid by (4.59). Equation (4.55) allows us to invoke Proposition 2.7 with
` = θ and φv = λv to infer that the inner product 〈Λv, P 〉 is a polynomial in v of
degree less than d. As a result, Fact 2.15 implies that the expected value in (4.72)
is a polynomial in u of degree less than d. In summary, (4.72) is the inner product
of ψ with a polynomial of degree less than d and is therefore zero by (4.65). The
proof of (4.69) is complete.

Proof of Claim 4.8. Consider an arbitrary string z ∈ {0, 1}n|k. Then

(h(z))j =
∨

S∈γ−1(j)

∧
s∈S

zs = I[z ∈ suppλej ],

where the first step uses the defining equation (4.61) together with |z| = k, and
the second step applies (4.51) along with |z| = k. Thus, h(z) can be written out
explicitly as

h(z) = (I[z ∈ suppλe1 ], I[z ∈ suppλe2 ], . . . , I[z ∈ suppλeN ]). (4.73)

Now recall from (4.56) that a string z of Hamming weight k can belong to at
most one of the sets suppλ0N , suppλe1 , suppλe2 , . . . , suppλeN . As a result, if z ∈
suppλei then z /∈ suppλej for all j 6= i and consequently h(z) = ei by (4.73).
Analogously, if z ∈ suppλ0N then z /∈ suppλej for all j and consequently h(z) = 0N

by (4.73). This settles the claim for all v ∈ V.

Proof of Claim 4.9. Since u is a Boolean vector, the equality v1 +v2 + · · ·+vθ = u
forces

v1 ∨ v2 ∨ · · · ∨ vθ = u, (4.74)

where the disjunction is applied componentwise. For any input (x1, x2, . . . , xθ)
where xi ∈ {0, 1}n|k ∩ suppλvi , we have

(f ◦H)(x1, x2, . . . , xθ) = f

(
θ∨
i=1

h(xi)

)
= f

(
θ∨
i=1

vi

)
= f(u),

where the second and third steps use Claim 4.8 and (4.74), respectively. Since
supp Λv =

∏θ
i=1 suppλvi , we have shown that

f ◦H ≡ f(u) on ({0, 1}n|k)θ ∩ supp Λv. (4.75)

Furthermore,

Λv(({0, 1}n|k)θ) =

θ∏
i=1

λvi({0, 1}n|k) > (1− β)θ > 1− βθ, (4.76)



50 ALEXANDER A. SHERSTOV

where the second step uses (4.53). Now

|f(u)−〈Λ̃v, f ◦H〉|

6 |f(u)− 〈Λv, f ◦H〉|+ |〈Λv − Λ̃v, f ◦H〉|

6 |f(u)− 〈Λv, f ◦H〉|+ ‖Λv − Λ̃v‖1

=

∣∣∣∣f(u)− E
Λv

f ◦H
∣∣∣∣+ ‖Λv − Λ̃v‖1

6 E
Λv

|f(u)− f ◦H|+ ‖Λv − Λ̃v‖1

6 0 · Λv(({0, 1}n|k)θ) + 1 · Λv(({0, 1}n|k)θ) + ‖Λv − Λ̃v‖1
6 βθ + ‖Λv − Λ̃v‖1
6 βθ + ∆,

where the last three steps use (4.75), (4.76), and (4.60), respectively.

Proof of Claim 4.10. To begin with,

〈f, ψ〉 − 〈f ◦H,Ψ〉 =
∑

u∈{0,1}N |6θ

ψ(u)f(u)

−
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

〈Λ̃v, f ◦H〉

=
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

[f(u)− 〈Λ̃v, f ◦H〉]

6
∑

u∈{0,1}N |6θ

|ψ(u)| E
v∈V θ:

v1+v2+···+vθ=u

|f(u)− 〈Λ̃v, f ◦H〉|

6 ‖ψ‖1 max
u∈{0,1}N |6θ

max
v∈V θ:

v1+v2+···+vθ=u

|f(u)− 〈Λ̃v, f ◦H〉|

6 ‖ψ‖1(βθ + ∆)

= βθ + ∆, (4.77)

where the last two steps use Claim 4.9 and (4.63), respectively. Then

〈f ◦H,Ψ〉 > ε− βθ −∆

>
ε− βθ −∆

1 + ∆
· ‖Ψ‖1

> (ε− βθ − 2∆)‖Ψ‖1,

where the first step uses (4.64) and (4.77), the second step is justified by (4.49)
and (4.68), and the third step is legitimate since a/(1 + b) > a− b for all a ∈ [0, 1]
and b > 0. This completes the proof of (4.71).

4.4. Hardness amplification for one-sided approximate degree. In this sec-
tion, we will prove that the construction of Theorem 4.5 amplifies not only approx-
imate degree but also its one-sided variant. We start with a technical lemma.
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Lemma 4.11. Let n,m, k, θ,D, T be positive integers with

T > n+D, (4.78)
T > θk. (4.79)

Let y ∈ ({0, 1}n)θ|>T be given. Then there exists ζy : ({0, 1}n)θ → R such that

supp ζy ⊆ ({0, 1}n)θ|6T ∪ {y}, (4.80)
ζy(y) = 1, (4.81)
orth ζy > D, (4.82)

‖ζy‖1 6 1 + 2D
(
n(θ − 1)

D

)
, (4.83)

ζy = 0 on ({0, 1}n|6k)θ. (4.84)

Proof. It follows from (4.79) that y = (y1, y2, . . . , yθ) has a coordinate with Ham-
ming weight greater than k. By symmetry, we may assume that

|y1| > k. (4.85)

We have |y2y3 . . . yθ| = |y| − |y1| > T − n > D, where the second step uses the
hypothesis |y| > T along with the trivial bound |y1| 6 n, whereas the third step
is legitimate by (4.78). Thanks to the newly obtained inequality |y2y3 . . . yθ| > D,
Lemma 2.12 is applicable with B = n(θ−1) and gives a function ζ : ({0, 1}n)θ−1 →
R such that

supp ζ ⊆ ({0, 1}n)θ−1|6D ∪ {y2y3 . . . yθ}, (4.86)
ζ(y2y3 . . . yθ) = 1, (4.87)

‖ζ‖1 6 1 + 2D
(
n(θ − 1)

D

)
, (4.88)

orth ζ > D. (4.89)

We will prove that the claimed properties (4.80)–(4.84) are enjoyed by the function

ζy(x) = δx1,y1
ζ(x2x3 . . . xθ).

To verify the support property (4.80), fix any x with ζy(x) 6= 0. Then necessarily
δx1,y1

= 1, forcing x1 = y1. Now (4.86) implies that x either equals y or has
Hamming weight at most |y1| + D. Since |y1| + D 6 n + D 6 T by (4.78), this
completes the proof of (4.80).

The remaining properties are straightforward. Property (4.81) follows from the
corresponding property (4.87) of ζ. Likewise, property (4.82) follows from (4.89)
in light of Proposition 2.6 (ii). Property (4.83) is immediate from (4.88). Finally,
(4.84) is a consequence of (4.85).

We are now ready to state and prove our hardness amplification result, which is
a far-reaching generalization of Theorem 4.5.

Theorem 4.12. Let C∗ > 1 and c ∈ (0, 1) be the absolute constants from Theo-
rems 3.6 and 4.4, respectively. Fix a real number 0 < β < 1 and positive integers
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n,m, k,N, θ,D, T such that

n/2 > m > k, (4.90)

4(N + 1)2k exp

(
−
√
m

16k

)
+ (N + 1)

(
3C∗ log2(n+N + 1)

m1/4

)k
6

β

16(N + 1)2m2
, (4.91)

T >
8e

c
· θ(1 + ln θ) + θk, (4.92)

T > D + n. (4.93)

Define

∆ =

(
1 + 2D

(
nθ

D

))
exp

(
−c(T − θk)

2
√
nm

)
. (4.94)

Then there is an (explicitly given) mapping H : ({0, 1}n)θ → {0, 1}N such that:
(i) each output bit of H is computable by a monotone (k + 1)-DNF formula;
(ii) for every ε ∈ [0, 1] and every f : {0, 1}N → {0, 1}, one has

degε−βθ−2∆((f ◦H)|6T ) > min

{
cdegε(f |6θ)

√
n

2m
,D

}
;

(iii) for every ε ∈ [0, 1] and every f : {0, 1}N → {0, 1} with f(1N ) = 0, one has

deg+
ε−βθ−2∆((f ◦H)|6T ) > min

{
cdeg+

ε (f |6θ)
√

n

2m
,D

}
.

Proof. As in the proof of Theorem 4.5, we may assume that

ε− βθ − 2∆ > 0 (4.95)

since otherwise the left-hand side in the lower bounds of (ii) and (iii) is by definition
+∞. Define V ⊆ RN by V = {0N , e1, e2, . . . , eN} and set r = N + 1. Arguing as
in the proof of Theorem 4.5, we obtain an explicit integer n′ ∈ (n/2, n] and an
explicit ( β

16r2m2 ,
β

16r2m2 ,m)-balanced coloring γ :
(

[n′]
k

)
→ [r], which in turn results

in explicit distributions λ0N , λe1 , λe2 , . . . , λeN on {0, 1}n such that

suppλv ⊆ {x ∈ {0, 1}n : |x| = k or |x| > m}, v ∈ V, (4.96)

{0, 1}n|k ∩ suppλei = {1S : S ∈ γ−1(i)}, i ∈ [N ], (4.97)

{0, 1}n|k ∩ suppλ0N = {1S : S ∈ γ−1(N + 1)}, (4.98)
λv({0, 1}n|k) > 1− β, v ∈ V, (4.99)

λv({0, 1}n|t) 6
exp(−c(t− k)/

√
nm)

c(t− k + 1)2
, v ∈ V, t > k, (4.100)

orth(λv − λu) > c

√
n

2m
, v, u ∈ V. (4.101)

Properties (4.97) and (4.98) imply that

{0, 1}n|k ∩ suppλu ∩ suppλv = ∅, u, v ∈ V, u 6= v. (4.102)
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For v = (v1,v2, . . . ,vθ) ∈ V θ, define

Λv =

θ⊗
i=1

λvi . (4.103)

Claim 4.13. For each v ∈ V θ, there is a function Λ̃v : ({0, 1}n)θ → R such that

supp Λ̃v ⊆ ({0, 1}n)θ|6T , (4.104)

orth(Λv − Λ̃v) > D, (4.105)

‖Λv − Λ̃v‖1 6 ∆, (4.106)

Λ̃v = Λv on ({0, 1}n|6k)θ. (4.107)

We will settle Claim 4.13 after the proof of the theorem. We now define the
monotone mapping H exactly the same way as in the proof of Theorem 4.5. Specif-
ically, define h : {0, 1}n → {0, 1}N by

(h(z))j =
∨

S∈( [n]
k+1)∪γ−1(j)

∧
s∈S

zs, j = 1, 2, . . . , N. (4.108)

Define H : ({0, 1}n)θ → {0, 1}N by

H(x1, x2, . . . , xθ) =

θ∨
i=1

h(xi), x1, x2, . . . , xθ ∈ {0, 1}n, (4.109)

where the right-hand side is the componentwise disjunction of the Boolean vectors
h(x1), h(x2), . . . , h(xθ). With these definitions, items (i) and (ii) are immediate
because they are restatements of Theorem 4.5 (i), (ii). To prove the remaining
item (iii), fix an arbitrary function f : {0, 1}N → {0, 1} with

f(1N ) = 0, (4.110)

and abbreviate

d = deg+
ε (f |6θ).

By the dual characterization of one-sided approximate degree (Fact 2.9), there is a
function ψ : {0, 1}N |6θ → R such that

‖ψ‖1 = 1, (4.111)
〈f, ψ〉 > ε, (4.112)
orthψ > d, (4.113)
ψ(x) > 0 whenever f(x) = 1. (4.114)

Define Ψ: ({0, 1}n)θ → R by

Ψ =
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

Λ̃v. (4.115)
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Equations (4.90)–(4.115) subsume the corresponding equations (4.44)–(4.66) in the
proof of Theorem 4.5. Recall that from (4.44)–(4.66), we deduced Claims 4.7–4.10.
As a result, Claims 4.7–4.10 remain valid here as well. In particular, we have

supp Ψ ⊆ ({0, 1}n)θ|6T , (4.116)

orth Ψ > min

{
cd

√
n

2m
,D

}
, (4.117)

h ≡ v on {0, 1}n|k ∩ suppλv (v ∈ V ), (4.118)
〈f ◦H,Ψ〉 > (ε− βθ − 2∆)‖Ψ‖1. (4.119)

Moreover, we will shortly prove the following new claim.

Claim 4.14. Ψ(x) > 0 whenever (f ◦H)(x) = 1.

The lower bound on the one-sided approximate degree in (iii) now follows from
the dual characterization of one-sided approximate degree (Fact 2.9) in view of
(4.116)–(4.119) and Claim 4.14. This completes the proof of Theorem 4.12.

Proof of Claim 4.13. Fix v ∈ V θ arbitrarily for the remainder of the proof. Equa-
tions (4.92), (4.96), and (4.100) ensure that Lemma 2.5 is applicable to the
distributions λv1

, λv2
, . . . , λvθ with parameters ` = θ, B = n, C = 1/c, and

α = exp(−c/
√
nm), whence

Λv(({0, 1}n)θ|>T ) 6 exp

(
−c(T − θk)

2
√
nm

)
. (4.120)

Recall from (4.92) and (4.93) that T > D+n and T > θk, which makes Lemma 4.11
applicable. Define Λ̃v : ({0, 1}n)θ → R by

Λ̃v = Λv −
∑

y∈({0,1}n)θ|>T

Λv(y)ζy, (4.121)

where ζy is as given by Lemma 4.11. To verify the support property (4.104),
fix any input x of Hamming weight |x| > T. For all y in the summation with
y 6= x, we have ζy(x) = 0 in view of (4.80). As a result, (4.121) simplifies to
Λ̃v(x) = Λv(x)− Λv(x)ζx(x). In view of (4.81), we conclude that Λ̃v(x) = 0.

The orthogonality property (4.105) follows from

orth(Λv − Λ̃v) > min
y∈({0,1}n)θ|>T

orth ζy > D,

where the first step uses the defining equation (4.121) and Proposition 2.6 (i), and
the second step is legitimate by (4.82).

Property (4.106) can be verified as follows:



THE APPROXIMATE DEGREE OF DNF AND CNF FORMULAS 55

‖Λv − Λ̃v‖1 6
∑

y∈({0,1}n)θ|>T

Λv(y)‖ζy‖1

6

(
1 + 2D

(
n(θ − 1)

D

)) ∑
y∈({0,1}n)θ|>T

Λv(y)

6

(
1 + 2D

(
n(θ − 1)

D

))
exp

(
−c(T − θk)

2
√
nm

)
6 ∆,

where the first step uses the triangle inequality along with the defining equa-
tion (4.121), the second step applies (4.83), the third step is valid by (4.120), and
the fourth step uses the definition (4.94).

Finally, (4.107) follows from the definition (4.121) in view of (4.84).

Proof of Claim 4.14. We will prove the claim in contrapositive form. Specifically,
fix an arbitrary string x = (x1, x2, . . . , xθ) ∈ ({0, 1}n)θ with Ψ(x) < 0. Our objec-
tive is to deduce that (f ◦H)(x) = 0.

There are two cases to consider. If |xi| > k for some i, then the defining equa-
tion (4.108) implies that h(xi) = 1N . As a result,

(f ◦H)(x) = f(H(x)) = f

(
θ∨
i=1

h(xi)

)
= f(1N ) = 0,

where the last step uses (4.110).
We now treat the complementary case x ∈ ({0, 1}n|6k)θ. By (4.107) and (4.115),

Ψ(x) =
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

Λv(x)

=
∑

u∈{0,1}N |6θ

ψ(u) E
v∈V θ:

v1+v2+···+vθ=u

θ∏
i=1

λvi(xi). (4.122)

It follows from Ψ(x) < 0 that the summation in (4.122) contains at least one
negative term, corresponding to a string u ∈ {0, 1}N |6θ. This forces

ψ(u) < 0 (4.123)

and additionally implies the existence of v1,v2, . . . ,vθ ∈ V with

xi ∈ suppλvi , i = 1, 2, . . . , θ, (4.124)
θ∑
i=1

vi = u. (4.125)

Since x ∈ ({0, 1}n|6k)θ in the case under consideration, it follows from (4.96)
and (4.124) that |xi| = k for all i. Now (4.118) ensures that h(xi) = vi for all
i, which in turn makes it possible to rewrite (4.125) as

∑θ
i=1 h(xi) = u. Since
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u, h(x1), h(x2), . . . , h(xθ) ∈ {0, 1}N , we conclude that
∨θ
i=1 h(xi) = u. As a result,

(f ◦H)(x) = f

(
θ∨
i=1

h(xi)

)
= f(u) = 0,

where the last step is immediate from (4.114) and (4.123).

4.5. Specializing the parameters. Theorems 4.5 and 4.12 have a large number
of parameters that one can adjust to produce various hardness amplification theo-
rems. We do so in this section. For any constants α ∈ (0, 1] and C > 1, we show
how to transform a function f on θC bits with approximate degree

degε(f |6θ) > θ1−α (4.126)

into a function F on T 1+α bits with approximate degree

degε− 1
T

(F |6T ) > T 1− 2
3α. (4.127)

Comparing the exponents in (4.126) and (4.127), we see that F is harder to approxi-
mate than f relative to the Hamming weight of the inputs for F and f , respectively.
Moreover, we show that F is expressible as F = f ◦H for some mapping H whose
output bits are computable by monotone DNF formulas of constant width. In par-
ticular, if f is a monotone DNF formula of constant width, then so is F. The formal
statement follows.

Corollary 4.15. Fix reals α ∈ (0, 1], A > 1, and C > 1 arbitrarily. Then for all
large enough integers θ, there is an (explicitly given) mapping H : {0, 1}bT 1+αc →
{0, 1}bθCc with T = bθ log2 θc such that the output bits of H are computable by
monotone d50(A+ C)/αe-DNF formulas and

degε− 1

TA
((f ◦H)|6T ) > T 1− 2

3α (4.128)

for every ε ∈ [0, 1] and every function f : {0, 1}bθCc → {0, 1} with degε(f |6θ) >
θ1−α.

Proof. Invoke Theorem 4.5 with parameters

β =
1

2θbθ log2 θcA
, (4.129)

N = bθCc, (4.130)
n = bθαc, (4.131)

m = bθα/4c, (4.132)

k =

⌈
50(A+ C)

α

⌉
− 1, (4.133)

D = dθ1− 5
8αe, (4.134)

T = bθ log2 θc. (4.135)
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Provided that θ is large enough, these parameter settings satisfy the theorem hy-
potheses (4.44)–(4.47), whereas (4.48) gives

∆ 6
1

4TA
. (4.136)

As a result, Theorem 4.5 guarantees that

degε− 1

TA
((f ◦H)|6T ) >

c

2
· θ1− 5

8α, (4.137)

where c ∈ (0, 1) is the absolute constant from Theorem 4.4 and H : {0, 1}bT 1+αc →
{0, 1}bθCc is an explicit mapping whose output bits are computable by monotone
d50(A + C)/αe-DNF formulas. (In fact, H uses only nθ ≈ (T/ log2 T )1+α input
bits, but this improvement is not relevant for our purposes.) Provided that θ
is large enough relative to the absolute constant c, we infer (4.128) immediately
from (4.137).

Analogously, we have the following hardness amplification result for one-sided
approximate degree.

Corollary 4.16. Fix reals α ∈ (0, 1], A > 1, and C > 1 arbitrarily. Then for all
large enough integers θ, there is an (explicitly given) mapping H : {0, 1}bT 1+αc →
{0, 1}bθCc with T = bθ log2 θc such that the output bits of H are computable by
monotone d50(A+ C)/αe-DNF formulas and

deg+
ε− 1

TA
((f ◦H)|6T ) > T 1− 2

3α (4.138)

for every ε ∈ [0, 1] and every function f : {0, 1}bθCc → {0, 1} such that deg+
ε (f |6θ) >

θ1−α and f(1bθ
Cc) = 0.

Proof. The proof is the same, mutatis mutandis, as that of Corollary 4.15. Specif-
ically, invoke Theorem 4.12 with parameters (4.129)–(4.135). Provided that θ is
large enough, these parameter settings satisfy the theorem hypotheses (4.90)–(4.93),
whereas (4.94) gives (4.136). As a result, Theorem 4.12 guarantees that

deg+
ε− 1

TA
((f ◦H)|6T ) >

c

2
· θ1− 5

8α, (4.139)

where c ∈ (0, 1) is the absolute constant from Theorem 4.4 and H : {0, 1}bT 1+αc →
{0, 1}bθCc is an explicit mapping whose output bits are computable by monotone
d50(A + C)/αe-DNF formulas. Provided that θ is large enough relative to the
absolute constant c, this settles (4.138).

5. Main results

In this section, we will settle our main results on approximate degree and present
their applications to communication complexity.
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5.1. Approximate degree of DNF and CNF formulas. We will start with the
two-sided case. Our proof here amounts to taking the trivial one-variable formula
x1 and iteratively applying the hardness amplification of Corollary 4.15.

Theorem 5.1. For every δ ∈ (0, 1] and ∆ > 1, there is a constant c > 1 and an
(explicitly given) family {fn}∞n=1 of functions fn : {0, 1}n → {0, 1} such that each
fn is computable by a monotone c-DNF formula and satisfies

deg 1
2−

1

n∆
(fn) >

1

c
· n1−δ, n = 1, 2, 3, . . . . (5.1)

Proof. Let K > 1 be the smallest integer such that

1− (2/3)K

1 + (2/3)K−1
> 1− δ. (5.2)

Define

A = 2∆ + 3. (5.3)

Now, let n > 1 be any large enough integer. Define T0, T1, T2, . . . , TK recursively
by T0 = bn/ log2K nc and Ti = bTi−1 log2 Ti−1c for i > 1. Thus,

Ti 6
n

log2(K−i) n
, i = 0, 1, 2, . . . ,K, (5.4)

Ti ∼
n

log2(K−i) n
, i = 0, 1, 2, . . . ,K, (5.5)

where ∼ denotes equality up to lower-order terms. Provided that n is larger than
a certain constant, inductive application of Corollary 4.15 gives functions

gn,i : {0, 1}bT
1+(2/3)i−1

i c → {0, 1}, i = 0, 1, 2, . . . ,K, (5.6)

such that

deg 1
2−

1

TA0

− 1

TA1

−···− 1

TA
i

(gn,i|6Ti) > T
1−(2/3)i

i , i = 0, 1, 2, . . . ,K, (5.7)

and each gn,i is an explicitly constructed monotone ci-DNF formula for some con-
stant ci independent of n. In more detail, the requirement (5.7) for i = 0 is equiv-
alent to deg 1

2−
1

TA0

(gn,0|6T0
) > 0 and is trivially satisfied by the “dictator” function

gn,0(x) = x1, whereas for i > 1 the function gn,i is obtained constructively from
gn,i−1 by invoking Corollary 4.15 with

α =

(
2

3

)i−1

,

C = 1 +

(
2

3

)i−2

,

θ = Ti−1,

f = gn,i−1,

ε =
1

2
− 1

TA0
− 1

TA1
− · · · − 1

TAi−1

.
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Specializing (5.4)–(5.7) to i = K, the function gn,K is a monotone cK-DNF
formula for some constant cK independent of n, takes at most N := n1+(2/3)K−1

input variables, and has approximate degree

deg 1
2−

1

N∆+1
(gn,K) > deg 1

2−
1

TA0

− 1

TA1

−···− 1

TA
K

(gn,K)

> deg 1
2−

1

TA0

− 1

TA1

−···− 1

TA
K

(gn,K |6TK )

= Ω(n1−(2/3)K )

= ω(N1−δ),

where the first and last steps hold for all large enough n due to (5.3) and (5.2),
respectively. The desired function family {fn}∞n=1 can then be defined by setting

fn = gbn1/(1+(2/3)K−1)c,K

for all n larger than a certain constant n0, and taking the remaining functions
f1, f2, . . . , fn0

to be the dictator function x 7→ x1.

Theorem 5.1 immediately implies Theorems 1.1 and 1.2 from the introduction.
We now move on to the one-sided case.

Theorem 5.2. For every δ ∈ (0, 1] and ∆ > 1, there is a constant c > 1 and an
(explicitly given) family {fn}∞n=1 of functions fn : {0, 1}n → {0, 1} such that each
fn is computable by a monotone c-DNF formula and satisfies

deg+
1
2−

1

n∆
(¬fn) >

1

c
· n1−δ, n = 1, 2, 3, . . . . (5.8)

This result subsumes Theorem 5.1 and settles Theorem 1.4 in the introduction. The
proof below makes repeated use of the following observation: if one applies Corol-
lary 4.16 to a function f that is the negation of a constant-width monotone DNF
formula, then the resulting composition f ◦H is again the negation of a constant-
width monotone DNF formula. This is easy to see by writing ¬(f ◦H) = (¬f) ◦H
and noting that both ¬f and H are computable by constant-width monotone DNF
formulas.

Proof of Theorem 5.2. Much of the proof is identical to that of Theorem 5.1. As
before, let K > 1 be the smallest integer such that

1− (2/3)K

1 + (2/3)K−1
> 1− δ. (5.9)

Define

A = 2∆ + 3. (5.10)

Now, let n > 1 be any large enough integer. Define T0, T1, T2, . . . , TK recursively
by T0 = bn/ log2K nc and Ti = bTi−1 log2 Ti−1c for i > 1. Thus,

Ti 6
n

log2(K−i) n
, i = 0, 1, 2, . . . ,K, (5.11)

Ti ∼
n

log2(K−i) n
, i = 0, 1, 2, . . . ,K, (5.12)
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where ∼ denotes equality up to lower-order terms. Provided that n is larger than
a certain constant, inductive application of Corollary 4.16 gives functions

gn,i : {0, 1}bT
1+(2/3)i−1

i c → {0, 1}, i = 0, 1, 2, . . . ,K, (5.13)

such that

deg+
1
2−

1

TA0

− 1

TA1

−···− 1

TA
i

(¬gn,i|6Ti) > T
1−(2/3)i

i , i = 0, 1, 2, . . . ,K, (5.14)

and each gn,i is an explicitly constructed monotone ci-DNF formula for some con-
stant ci independent of n. In more detail, the requirement (5.14) for i = 0 is equiva-
lent to deg+

1
2−

1

TA0

(¬gn,0|6T0
) > 0 and is trivially satisfied by the “dictator” function

gn,0(x) = x1. For i > 1, we obtain gn,i from gn,i−1 by applying Corollary 4.16 with

α =

(
2

3

)i−1

,

C = 1 +

(
2

3

)i−2

,

θ = Ti−1,

f = ¬gn,i−1,

ε =
1

2
− 1

TA0
− 1

TA1
− · · · − 1

TAi−1

.

This appeal to Corollary 4.16 is legitimate because gn,i−1 is a monotone DNF
formula and therefore its negation f = ¬gn,i−1 evaluates to 0 on the all-ones input.

Specializing (5.11)–(5.14) to i = K, the function gn,K is a monotone cK-DNF
formula for some constant cK independent of n, takes at most N := n1+(2/3)K−1

input variables, and has one-sided approximate degree

deg+
1
2−

1

N∆+1
(¬gn,K) > deg+

1
2−

1

TA0

− 1

TA1

−···− 1

TA
K

(¬gn,K)

> deg+
1
2−

1

TA0

− 1

TA1

−···− 1

TA
K

(¬gn,K |6TK )

= Ω(n1−(2/3)K )

= ω(N1−δ),

where the first and last steps hold for all large enough n due to (5.10) and (5.9),
respectively. The desired function family {fn}∞n=1 can then be defined by setting

fn = gbn1/(1+(2/3)K−1)c,K

for all n larger than a certain constant n0, and taking the remaining functions
f1, f2, . . . , fn0 to be the dictator function x 7→ x1.

5.2. Quantum communication complexity. Using the pattern matrix method,
we will “lift” our approximate degree results to a near-optimal lower bound on
the communication complexity of DNF formulas in the two-party quantum model.
Before we can apply the pattern matrix method, there is a technicality to address
with regard to the representation of Boolean values as real numbers. In this paper,
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we have followed the standard convention of representing “true” and “false” as 1 and
0, respectively. There is another common encoding, inspired by Fourier analysis
and used in the pattern matrix method [38, 43], whereby “true” and “false” are
represented as −1 and 1, respectively. To switch back and forth between these
representations, we will use the following proposition.

Proposition 5.3. For any function f : X → R on a finite subset X of Euclidean
space, and any reals ε > 0 and c 6= 0,

degε(f + c) = degε(f),

deg|c|ε(cf) = degε(f).

Proof. For any polynomial p, we have the following equivalences:

‖f − p‖∞ 6 ε ⇔ ‖(f + c)− (p+ c)‖∞ 6 ε,

‖f − p‖∞ 6 ε ⇔ ‖cf − cp‖∞ 6 |c|ε,

where the second line uses c 6= 0.

As a corollary, we can relate in a precise way the approximate degree of a Boolean
function f : X → {0, 1} and the approximate degree of the associated ±1-valued
function f ′ : X → {−1,+1} given by f ′ =(−1)f .

Corollary 5.4. For any Boolean function f : X → {0, 1} and any ε > 0,

degε((−1)f ) = degε/2(f).

Proof. Since f is Boolean-valued, we have the equality of functions (−1)f = 1−2f.
Now degε((−1)f ) = degε(1− 2f) = degε(−2f) = deg2·ε/2(−2f) = degε/2(f), where
the second and fourth steps apply Proposition 5.3.

Corollary 5.4 makes it easy to convert approximate degree results between the
0, 1 representation and ±1 representation. For communication complexity, no con-
version is necessary in the first place:

Q∗ε (F ) = Q∗ε ((−1)F ), F : X × Y → {0, 1}, (5.15)

where Q∗ε denotes ε-error quantum communication complexity with arbitrary prior
entanglement. This equality holds because the representation of “true” and “false”
in a communication protocol is a purely syntactic matter, and one can relabel the
output values 0, 1 as 1,−1, respectively, without affecting the protocol’s correctness
or communication cost. We note that (5.15) and Corollary 5.4 pertain to the
encoding of the output of a Boolean function f . How “true” and “false” bits are
represented in the input to f is immaterial both for communication complexity and
approximate degree because the bijection (0, 1)↔ (1,−1) is a linear map.

We are now in a position to prove the promised communication lower bounds.
The pattern matrix method for two-party quantum communication is given by the
following theorem [38, Theorem 1.1].
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Theorem 5.5 (Sherstov). Let f : {0, 1}t → {0, 1} be given. Define F : {0, 1}4t ×
{0, 1}4t → {0, 1} by

F (x, y) = f

(
4∨
i=1

(x1,i ∧ y1,i), . . . ,

4∨
i=1

(xt,i ∧ yt,i)

)
.

Then for all α ∈ [0, 1) and β < α/2,

Q∗β(F ) >
1

4
degα/2(f)− 1

2
log

(
3

α− 2β

)
.

The original statement in [38, Theorem 1.1] uses the ±1 representation for the range
of f and F.We translated it to the 0, 1 representation, as stated in Theorem 5.5, by
applying (5.15) to F and Corollary 5.4 to f. By combining Theorems 5.1 and 5.5,
we obtain our main result on the quantum communication complexity of DNF
formulas:

Theorem 5.6. For all δ ∈ (0, 1] and A > 1, there is a constant c > 1
and an (explicitly given) family {Fn}∞n=1 of two-party communication problems
Fn : {0, 1}n × {0, 1}n → {0, 1} such that each Fn is computable by a monotone
c-DNF formula and satisfies

Q∗1
2−

1

nA
(Fn) = Ω(n1−δ). (5.16)

Proof. Theorem 5.1 gives a constant c′ > 1 and an explicit family {fn}∞n=1 of
functions fn : {0, 1}n → {0, 1} such that each fn is computable by a monotone
c′-DNF formula and satisfies

deg 1
2−

1

n2A
(fn) >

1

c′
· n1−δ, n = 1, 2, 3, . . . . (5.17)

For n > 4, define Fn : {0, 1}n × {0, 1}n → {0, 1} by

Fn(x, y) = fbn/4c

(
4∨
i=1

(x1,i ∧ y1,i), . . . ,

4∨
i=1

(xbn/4c,i ∧ ybn/4c,i)

)
,

where we index the strings x and y as arrays of bn/4c × 4 bits. Clearly, Fn is
computable by a monotone 2c′-DNF formula. We now invoke the pattern matrix
method for quantum communication (Theorem 5.5) with parameters

α = 1− 2

bn/4c2A
,

β =
1

2
− 1

nA
,

f = fbn/4c,

which satisfy β < α/2 for all n > 24. As a result,

Q∗1
2−

1

nA
(Fn) >

1

4
· deg 1

2−
1

bn/4c2A
(fbn/4c)−

1

2
log

(
3

2
nA
− 2
bn/4c2A

)

>
1

4
· 1

c′
·
⌊n

4

⌋1−δ
− 1

2
log

(
3

2
nA
− 2
bn/4c2A

)
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for all n > 24, where the first inequality applies the pattern matrix method, and the
second inequality uses (5.17). Now (5.16) follows since A, c′, δ are constants.

Theorem 5.6 settles Theorem 1.9 from the introduction.

5.3. Randomized multiparty communication. We now turn to communica-
tion lower bounds for DNF formulas in the k-party number-on-the-forehead model.
Analogous to (5.15), we have

Rε(F ) = Rε((−1)F ), F : X1 ×X2 × · · · ×Xk → {0, 1}, (5.18)

where Rε denotes ε-error number-on-the-forehead randomized communication com-
plexity. The k-party set disjointness problem DISJn,k : ({0, 1}n)k → {0, 1} is given
by

DISJn,k(x1, x2, . . . , xk) =

n∧
j=1

k∨
i=1

xi,j .

In other words, the problem asks whether there is a coordinate j in which each
of the Boolean vectors x1, x2, . . . , xk has a 1. If one views x1, x2, . . . , xk as the
characteristic vectors of corresponding sets S1, S2, . . . , Sk, then the set disjointness
function evaluates to true if and only if S1∩S2∩· · ·∩Sk = ∅. For a communication
problem g : X1 × X2 × · · · × Xk → {0, 1} and a function f : {0, 1}n → {0, 1}, we
view the componentwise composition f ◦ g as a k-party communication problem on
Xn

1 × Xn
2 × · · · × Xn

k . The multiparty pattern matrix method [43, Theorem 5.1]
gives a lower bound on the communication complexity of f ◦ DISJm,k in terms of
the approximate degree of f :

Theorem 5.7 (Sherstov). Let f : {0, 1}n → {0, 1} be given. Consider the k-party
communication problem F defined by F = f ◦ DISJm,k. Then for all α, β > 0 with
β < α/2, one has

Rβ(F ) >
degα/2(f)

2
· log

( √
m

C2kk

)
− log

1

α− 2β
,

where C > 0 is an absolute constant.

The actual statement of the pattern matrix method in [43, Theorem 5.1] is for
functions f and F with range {−1,+1}. Theorem 5.7 above, stated for functions
with range {0, 1}, is immediate from [43, Theorem 5.1] by applying (5.18) to F
and Corollary 5.4 to f . We are now ready for our main result on the randomized
multiparty communication complexity of DNF formulas.

Theorem 5.8. Fix arbitrary constants δ ∈ (0, 1] and A > 1. Then for all in-
tegers n, k > 2, there is an (explicitly given) k-party communication problem
Fn,k : ({0, 1}n)k → {0, 1} with

R1/3(Fn,k) >
( n

c4kk2

)1−δ
, (5.19)

R 1
2−

1

nA
(Fn,k) >

n1−δ

c4k
, (5.20)
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where c > 1 is a constant independent of n and k.Moreover, each Fn,k is computable
by a monotone DNF formula of width ck and size nc.

It will be helpful to keep in mind that the conclusion of Theorem 5.8 is “mono-
tone” in c, in the sense that proving Theorem 5.8 for a given constant c proves it
for all larger constants as well.

Proof. Theorem 5.1 gives a constant c′ > 1 and an explicit family {fn}∞n=1 of
functions fn : {0, 1}n → {0, 1} such that each fn is computable by a monotone
DNF formula of width c′ and satisfies

deg 1
2−

1

n2A/δ
(fn) >

1

c′
· n1− δ2 , n = 1, 2, 3, . . . . (5.21)

Let C > 0 be the absolute constant from Theorem 5.7. For arbitrary integers
n, k > 2, define

Fn,k =

{
ANDk if n < dC2k+1ke2,
fbn/dC2k+1ke2c ◦ ¬DISJdC2k+1ke2,k otherwise.

We first analyze the cost of representing Fn,k as a DNF formula. If n < dC2k+1ke2,
then by definition Fn,k is a monotone DNF formula of width k and size 1. In the
complementary case, fbn/dC2k+1ke2c is by construction a monotone DNF formula of
width c′ and hence of size at most nc

′
, whereas ¬DISJdC2k+1ke2,k is by definition a

monotone DNF formula of width k and size at most dC2k+1ke2 6 n. As a result,
the composed function Fn,k is a monotone DNF formula of width c′k and size at
most nc

′ · nc′ = n2c′ . In particular, the claim in the theorem statement regarding
the width and size of Fn,k as a monotone DNF formula is valid for any constant
c > 2c′.

We now turn to the communication complexity of Fn,k. Since Fn,k is nonconstant,
we have the trivial bound

Rε(Fn,k) > 1, 0 6 ε <
1

2
. (5.22)

We further claim that

Rε(Fn,k) >
1

2c′
·
⌊

n

dC2k+1ke2

⌋1− δ2

+ log

(
1− 2

bn/dC2k+1ke2c2A/δ
− 2ε

)
(5.23)

whenever the logarithmic term is well-defined. For n < dC2k+1ke2, this claim is
vacuous. In the complementary case n > dC2k+1ke2, consider the family {gn}∞n=1 of
functions gn : {0, 1}n → {0, 1} given by gn(x1, x2, . . . , xn) = fn(¬x1,¬x2, . . . ,¬xn).
For each n, it is clear that gn and fn have the same approximate degree. Since
Fn,k = gbn/dC2k+1ke2c ◦DISJdC2k+1ke2,k, one now obtains (5.23) directly from (5.21)
and the multiparty pattern matrix method (Theorem 5.7).

For a sufficiently large constant c > 1, the communication lower bound (5.19)
follows from (5.23) for n > c4kk2 and follows from (5.22) for n < c4kk2.
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The proof of (5.20) is more tedious. Take the constant c > 1 large enough that
the following relations hold:⌊

nδ

d2Ce2 log2 n

⌋
> 2nδ/2 for all n > c, (5.24)

nδ
2/4 > 1 +A log n for all n > c, (5.25)

c > 2c′. (5.26)

If n1−δ < c4k, then (5.20) holds due to (5.22). In what follows, we treat the
complementary case when

n1−δ

c4k
> 1 (5.27)

and in particular

n > c, (5.28)
k 6 log n. (5.29)

Then ⌊
n

dC2k+1ke2

⌋1− δ2
>

⌊
n

d2Ce24kk2

⌋1− δ2

>

⌊
n1−δ

4k
· nδ

d2Ce2 log2 n

⌋1− δ2

>

⌊
n1−δ

4k
· 2nδ/2

⌋1− δ2

>

(
n1−δ

4k
· nδ/2

)1− δ2

>
n1−δ

4k
· nδ

2/4

>
n1−δ

4k
· (1 +A log n), (5.30)

where the second step uses (5.29), the third step uses (5.24) and (5.28), the fourth
step is valid by (5.27), and the last step uses (5.25) and (5.28). Continuing,

log

(
1− 2

bn/dC2k+1ke2c2A/δ
− 2

(
1

2
− 1

nA

))
= log

(
2

nA
− 2

bn/dC2k+1ke2c2A/δ

)
> log

(
2

nA
− 2

bn/(d2Ce24kk2)c2A/δ

)
> log

(
2

nA
− 2

bn/(d2Ce2n1−δ log2 n)c2A/δ

)
> log

(
2

nA
− 2

(2nδ/2)2A/δ

)
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> log

(
2

nA
− 1

nA

)
= −A log n, (5.31)

where the third step uses (5.27) and (5.29), and the fourth step uses (5.24)
and (5.28). Now

R 1
2−

1

nA
(Fn,k) >

1

2c′
· n

1−δ

4k
· (1 +A log n)−A log n

>
n1−δ

c4k
· (1 +A log n)−A log n

>
n1−δ

c4k
,

where the first step substitutes the bounds (5.30) and (5.31) into (5.23), the second
step uses (5.26), and the third step is valid by (5.27). This completes the proof
of (5.20).

Theorem 5.8 settles Theorem 1.6 from the introduction.

Remark 5.9. In this section, we considered k-party number-on-the-forehead
bounded-error communication complexity with classical players. The model natu-
rally extends to quantum players, and our lower bound in Theorem 5.8 implies an
Ω(n1−δ/4kk) communication lower bound in this quantum k-party number-on-the-
forehead model for computing an explicit DNF formula F : ({0, 1}n)k → {0, 1} of
size nO(1) and width O(k) with error probability 1

2 −
1
nA
, where the constants δ > 0

and A > 1 can be set arbitrarily. In more detail, the multiparty pattern matrix
method actually gives a bound on the generalized discrepancy of the composed com-
munication problem F . By the results of [27], generalized discrepancy leads in turn
to a lower bound on the communication complexity of F in the quantum k-party
number-on-the-forehead model. Quantitatively, the authors of [27] show that any
classical communication lower bound obtained via generalized discrepancy carries
over to the quantum model with only a factor of Θ(k) loss.

5.4. Nondeterministic and Merlin–Arthur multiparty communication.
To obtain our results on nondeterminism and Merlin–Arthur communication, we
will now develop a general technique for transforming lower bounds on one-sided
approximate degree into lower bounds in these communication models. The tech-
nique in question is implicit in the papers [23, 43] but has not been previously
formalized in our sought generality.

Consider a k-party communication problem F : X1×X2×· · ·×Xk → {0, 1}, for
some finite sets X1, X2, . . . , Xk. A fundamental notion in the study of multiparty
communication is that of a cylinder intersection [6], defined as any function χ :
X1 ×X2 × · · · ×Xk → {0, 1} of the form

χ(x1, . . . , xk) =

k∏
i=1

φi(x1, . . . , xi−1, xi+1, . . . , xk)

for some φi : X1 × · · ·Xi−1 × Xi+1 × · · ·Xk → {0, 1}, i = 1, 2, . . . , k. In other
words, a cylinder intersection is the product of k Boolean functions, where the i-th
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function does not depend on the i-th coordinate. For a probability distribution µ
on the domain of F, the discrepancy of F with respect to µ is denoted discµ(F ) and
defined as

discµ(F ) = max
χ

∣∣∣∣ E
(x1,...,xk)∼µ

(−1)F (x1,...,xk)χ(x1, . . . , xk)

∣∣∣∣ ,
where the maximum is taken over all cylinder intersections χ. This notion of dis-
crepancy was defined by Babai, Nisan, and Szegedy [6] and is unrelated to the one
that we encountered in Section 3.2. It is of interest to us because of the following
theorem [23, Theorem 4.1], which gives a lower bound on nondeterministic and
Merlin–Arthur communication complexity in terms of discrepancy.

Theorem 5.10 (Gavinsky and Sherstov). Let F : X → {0, 1} be a given k-party
communication problem, where X = X1 × · · · ×Xk. Fix a function H : X → {0, 1}
and a probability distribution Π on X. Put

α = Π(F−1(1) ∩H−1(1)),

β = Π(F−1(1) ∩H−1(0)),

Q = log
α

β + discΠ(H)
.

Then

N(F ) > Q, (5.32)

MA1/3(F )2 > min

{
Ω(Q), Ω

(
Q

log{2/α}

)2
}

(5.33)

> Ω(Q)−
(

log
2

α

)2

. (5.34)

We note that the original statement in [23] is for functions with range {−1,+1}.
The above version for {0, 1} follows immediately because the output values of a
communication protocol serve as textual labels that can be changed at will. Equa-
tion (5.34), which is also not part of the statement in [23], follows from (5.33) in
view of the inequality (q/a)2 > 2q − a2 for all reals q, a with a 6= 0. (Start with
(q/a− a)2 > 0 and multiply out the left-hand side.)

We will need yet another notion of discrepancy, introduced in [43] and called
“repeated discrepancy.” Let G be a k-party communication problem on X = X1 ×
X2 × · · · ×Xk. A probability distribution π on the domain of G is called balanced
if π(G−1(0)) = π(G−1(1)) = 1/2. For such π, the repeated discrepancy of G with
respect to π is given by

rdiscπ(G) = sup
d,r∈Z+

max
χ

∣∣∣∣∣ E
...,xi,j ,...

[
χ(. . . , xi,j , . . .)

d∏
i=1

(−1)G(xi,1)

]∣∣∣∣∣
1/d

,

where the maximum is over k-dimensional cylinder intersections χ on Xdr = Xdr
1 ×

Xdr
2 × · · · ×Xdr

k , and the arguments xi,j (i = 1, 2, . . . , d; j = 1, 2, . . . , r) are chosen
independently according to π conditioned on G(xi,1) = G(xi,2) = · · · = G(xi,r)
for each i. The repeated discrepancy of a communication problem is much harder
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to bound from above than standard discrepancy. The following result from [43,
Theorem 4.27] bounds the repeated discrepancy of set disjointness.

Theorem 5.11 (Sherstov). Let m and k be positive integers. Then there is a
balanced probability distribution π on the domain of DISJm,k such that

rdiscπ(DISJm,k) 6

(
ck2k√
m

)1/2

,

where c > 0 is an absolute constant independent of m, k, π.

It was shown in [43] that repeated discrepancy gives a highly efficient way to
transform multiparty communication protocols into polynomials. For a nonnegative
integer d and a function f on a finite subset of Euclidean space, define

E(f, d) = min
p
{‖f − p‖∞ : deg p 6 d},

where the minimum is taken over polynomials of degree at most d. In other words,
E(f, d) stands for the minimum error in an `∞-norm approximation of f by a poly-
nomial of degree at most d. The following result was proved in [43, Theorem 4.2].

Theorem 5.12 (Sherstov). Let G : X → {0, 1} be a k-party communication prob-
lem, where X = X1 × X2 × · · · × Xk. For an integer n > 1 and a bal-
anced probability distribution π on the domain of G, consider the linear operator
Lπ,n : RXn → R{0,1}n given by

(Lπ,nχ)(z) = E
x1∼πz1

· · · E
xn∼πzn

χ(x1, . . . , xn), z ∈ {0, 1}n, (5.35)

where π0 and π1 are the probability distributions induced by π on G−1(0) and
G−1(1), respectively. Then for some absolute constant c > 0 and every k-
dimensional cylinder intersection χ on Xn = Xn

1 ×Xn
2 × · · · ×Xn

k ,

E(Lπ,nχ, d− 1) 6 (c rdiscπ(G))d, d = 1, 2, . . . , n.

We are now in a position to derive the promised lower bound on nondeterministic
and Merlin–Arthur communication complexity in terms of one-sided approximate
degree. Our proof combines Theorems 5.10–5.12 in a way closely analogous to the
proof of [43, Theorem 6.9].

Theorem 5.13. Let f : {0, 1}n → {0, 1} be given. Let m and k be positive integers,
and put F = f ◦DISJm,k. Then for all ε ∈ (0, 1/2],

N(F ) >
deg+

ε (f)

2
log

( √
m

Ck2k

)
− log

1

ε
, (5.36)

MA1/3(F )2 >
deg+

ε (f)

C
log

( √
m

Ck2k

)
−
(

log
2

ε

)2

, (5.37)

where C > 1 is an absolute constant, independent of f, n,m, k, ε.
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Proof. Abbreviate d = deg+
ε (f). Let X = ({0, 1}m)k denote the domain of

DISJm,k. By Theorem 5.11, there is a probability distribution π on X such that

π(DISJ−1
m,k(0)) = π(DISJ−1

m,k(1)) =
1

2
, (5.38)

rdiscπ(DISJm,k) 6

(
c′k2k√
m

)1/2

, (5.39)

where c′ > 0 is an absolute constant independent of m and k. By the dual char-
acterization of one-sided approximate degree (Fact 2.9), there exists a function
ψ : {0, 1}n → R such that

〈f, ψ〉 > ε, (5.40)
‖ψ‖1 = 1, (5.41)
orthψ > d, (5.42)

ψ > 0 on f−1(1). (5.43)

Define Ψ: Xn → R by

Ψ(x) = 2nψ(DISJm,k(x1), . . . ,DISJm,k(xn))

n∏
i=1

π(xi). (5.44)

Claim 5.14. Ψ satisfies

〈F,Ψ〉 > ε, (5.45)
‖Ψ‖1 = 1, (5.46)

Ψ > 0 on F−1(1). (5.47)

We will carry on with the theorem proof and settle the claims later. Equa-
tion (5.46) allows us to write

Ψ(x) = Π(x) · (−1)1−H(x) (5.48)

for some Boolean function H : Xn → {0, 1} and a probability distribution Π on
Xn. Indeed, one can explicitly define Π(x) = |Ψ(x)| and H(x) = I[Ψ(x) > 0].

Claim 5.15. One has

Π(F−1(1) ∩H−1(0)) = 0, (5.49)

Π(F−1(1) ∩H−1(1)) > ε. (5.50)

Claim 5.16. There is an absolute constant c > 0 such that

discΠ(H) 6

(
ck2k√
m

)d/2
.

The sought communication bounds (5.36) and (5.37) follow from Theorem 5.10
in view of Claims 5.15 and 5.16.

We now settle the claims used in the proof of Theorem 5.13.
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Proof of Claim 5.14. We have

〈F,Ψ〉 = 2n E
x1,...,xn∼π

f(. . . ,DISJm,k(xi), . . .)ψ(. . . ,DISJm,k(xi), . . .)

= 2n E
z∈{0,1}n

f(z)ψ(z)

= 〈f, ψ〉
> ε,

where the second step uses (5.38), and the third step is legitimate by (5.40). Anal-
ogously,

‖Ψ‖1 = 2n E
x1,...,xn∼π

|ψ(DISJm,k(x1), . . . ,DISJm,k(xn))|

= 2n E
z∈{0,1}n

|ψ(z)|

= 1,

where the last two steps are valid by (5.38) and (5.41), respectively. The final
property (5.47) can be seen from the following chain of implications:

x ∈ F−1(1)⇒ (DISJm,k(x1), . . . ,DISJm,k(xn)) ∈ f−1(1)

⇒ ψ(DISJm,k(x1), . . . ,DISJm,k(xn)) > 0

⇒ Ψ(x) > 0,

where the first and third steps use the definitions of F and Ψ, respectively, and the
second step is valid by (5.43).

Proof of Claim 5.15. Fix any point x ∈ F−1(1)∩H−1(0). Then (5.47) implies that
Ψ(x) > 0, or equivalently Π(x) · (−1)1−H(x) > 0. This forces Π(x) 6 0 due to
H(x) = 0. Since Π is a probability distribution, we conclude that Π(x) = 0. The
proof of (5.49) is complete. The remaining relation (5.50) can be seen as follows:

Π(F−1(1) ∩H−1(1)) = Π(F−1(1) ∩H−1(1))−Π(F−1(1) ∩H−1(0))

=
∑
Xn

Π(x)F (x)(−1)1−H(x)

= 〈Ψ, F 〉
> ε,

where the first step exploits (5.49), and the last step applies (5.45).

Proof of Claim 5.16. Let π0 and π1 be the probability distributions induced by π
on DISJ−1

m,k(0) and DISJ−1
m,k(1), respectively, and let Lπ,n : RXn → R{0,1}n be the

linear operator given by (5.35). Then for any cylinder intersection χ : Xn → {0, 1},
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we have∣∣∣ E
x∼Π

(−1)H(x)χ(x)
∣∣∣ =

∣∣∣∣∣∑
Xn

Π(x)(−1)H(x)χ(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
Xn

Ψ(x)χ(x)

∣∣∣∣∣
=

∣∣∣∣2n E
x1,...,xn∼π

ψ(. . . ,DISJm,k(xi), . . .)χ(x)

∣∣∣∣
=

∣∣∣∣∣∣
∑

z∈{0,1}n
ψ(z) E

x1∼πz1
. . . E

xn∼πzn
χ(x)

∣∣∣∣∣∣
= |〈ψ,Lπ,nχ〉|, (5.51)

where the second step uses (5.48), the third step invokes the definition (5.44), the
fourth step is justified by (5.38), and the last step is valid by the definition of Lπ,n.

For every polynomial p : {0, 1}n → R of degree less than d, we have

|〈ψ,Lπ,nχ〉| = |〈ψ,Lπ,nχ− p〉+ 〈ψ, p〉|
= |〈ψ,Lπ,nχ− p〉|
6 ‖ψ‖1 ‖Lπ,nχ− p‖∞
= ‖Lπ,nχ− p‖∞, (5.52)

where the second step uses (5.42), the third step applies Hölder’s inequality, and the
fourth step substitutes (5.41). Taking the infimum in (5.52) over all polynomials p
of degree less than d, we arrive at

|〈ψ,Lπ,nχ〉| 6 E(Lπ,nχ, d− 1). (5.53)

Now

discΠ(H) = max
χ

∣∣∣ E
x∼Π

(−1)H(x)χ(x)
∣∣∣

6 max
χ

E(Lπ,nχ, d− 1)

6 (c′′ rdiscπ(DISJm,k))d

6

(
c′′
(
c′k2k√
m

)1/2
)d

,

where the first step maximizes over all cylinder intersections χ, the second step
combines (5.51) and (5.53), the third step is valid for some absolute constant c′′ > 0
by Theorem 5.12, and the fourth step holds by (5.39).

This completes the proof of Theorem 5.13. By combining it with our main
result on one-sided approximate degree, we now obtain our sought lower bounds
for nondeterministic and Merlin–Arthur multiparty communication.
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Theorem 5.17. Let δ > 0 be arbitrary. Then for all integers n, k > 2, there is an
(explicitly given) k-party communication problem Fn,k : ({0, 1}n)k → {0, 1} with

N(Fn,k) 6 c log n, (5.54)

N(¬Fn,k) >
( n

c4kk2

)1−δ
, (5.55)

R1/3(¬Fn,k) >
( n

c4kk2

)1−δ
, (5.56)

MA1/3(¬Fn,k) >
( n

c4kk2

) 1−δ
2

, (5.57)

where c > 1 is a constant independent of n and k.Moreover, each Fn,k is computable
by a monotone DNF formula of width ck and size nc.

Proof. Theorem 5.2 gives a constant c′ > 1 and an explicit family {fn}∞n=1 of
functions fn : {0, 1}n → {0, 1} such that each fn is computable by a monotone
DNF formula of width c′ and satisfies

deg+
3/8(¬fn) >

1

c′
· n1−δ, n = 1, 2, 3, . . . . (5.58)

In particular,

deg3/8(¬fn) >
1

c′
· n1−δ, n = 1, 2, 3, . . . . (5.59)

Let C > 1 be the maximum of the absolute constants from Theorems 5.7 and 5.13.
For arbitrary integers n, k > 2, define

Fn,k =

{
ANDk if n < dC2k+1ke2,
fbn/dC2k+1ke2c ◦ ¬DISJdC2k+1ke2,k otherwise.

We first analyze the cost of representing Fn,k as a DNF formula. If n < dC2k+1ke2,
then by definition Fn,k is a monotone DNF formula of width k and size 1. In the
complementary case, fbn/dC2k+1ke2c is by construction a monotone DNF formula of
width c′ and hence of size at most nc

′
, whereas ¬DISJdC2k+1ke2,k is by definition a

monotone DNF formula of width k and size at most dC2k+1ke2 6 n. As a result,
the composed function Fn,k is a monotone DNF formula of width c′k and size at
most nc

′ · nc′ = n2c′ . In particular, the claim in the theorem statement regarding
the width and size of Fn,k as a monotone DNF formula is valid for any large enough
c. This in turn implies the upper bound in (5.54): consider the nondeterministic
protocol in which the parties “guess” one of the terms of the DNF formula for Fn,k
(for a cost of dlog n2c′e bits), evaluate it (using another 2 bits of communication),
and output the result.

We now turn to the communication lower bounds. Since Fn,k is nonconstant, we
have the trivial bounds

N(¬Fn,k) > 1, (5.60)
R1/3(¬Fn,k) > 1, (5.61)
MA1/3(¬Fn,k) > 1. (5.62)
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We further claim that

N(¬Fn,k) >
1

2c′
·
⌊

n

dC2k+1ke2

⌋1−δ

− log
8

3
, (5.63)

R1/3(¬Fn,k) >
1

2c′
·
⌊

n

dC2k+1ke2

⌋1−δ

− log 12, (5.64)

MA1/3(¬Fn,k)2 >
1

Cc′
·
⌊

n

dC2k+1ke2

⌋1−δ

−
(

log
16

3

)2

. (5.65)

For n < dC2k+1ke2, these claims are trivial since communication complexity
is nonnegative. In the complementary case n > dC2k+1ke2, consider the fam-
ily {gn}∞n=1 of functions gn : {0, 1}n → {0, 1} given by gn(x1, x2, . . . , xn) =
¬fn(¬x1,¬x2, . . . ,¬xn). For each n, it is clear that gn and ¬fn have the same
one-sided approximate degree. Since ¬Fn,k = gbn/dC2k+1ke2c ◦DISJdC2k+1ke2,k, one
now obtains (5.63) and (5.65) directly from (5.58) and Theorem 5.13. Analogously,
gn and ¬fn have the same two-sided approximate degree for each n, and one ob-
tains (5.64) from (5.59) and Theorem 5.7.

For a large enough constant c > 1, the communication lower bounds (5.55)–(5.57)
follow from (5.63)–(5.65) for n > c4kk2, and from (5.60)–(5.62) for n < c4kk2.

Theorem 5.17 settles Theorem 1.7 from the introduction.
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Fix a set Sp ⊆ {1, 2, . . . , p − 1} for each prime p ∈ (P/2, P ] with p - m. Suppose
further that the cardinalities of any two sets from among the Sp differ by a factor
of at most ∆. Consider the multiset
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Then the elements of S are pairwise distinct and nonzero. Moreover, if S 6= ∅ then

discm(S) 6
c√
R

+
c logm

log logm
· logP

P
·∆ + max

p
{discp(Sp)} (A.1)

for some (explicitly given) constant c > 1 independent of P,R,m,∆.

The special case ∆ = 1 in this result was proved in [48, Theorem 3.6], and that
proof applies with cosmetic changes to any ∆ > 1. As a service to the reader,
we provide the complete derivation below; the treatment here is the same word
for word as in [48] except for one minor point of departure to handle arbitrary
∆ > 1. We use the same notation as in [48] and in particular denote the modulus
by lowercase m, as opposed to the uppercase M in the main body of our paper
(Theorem 3.5). Analogous to [48], the presentation is broken down into five key
milestones, corresponding to Sections A.1–A.5 below.

A.1. Exponential notation. In the remainder of this manuscript, we adopt the
shorthand

e(x) = exp(2πxi),

where i is the imaginary unit. We will need the following bounds [48, Section 6.1]:

|1− e(x)| 6 2πx, 0 6 x 6 1, (A.2)
|1− e(x)| > 4 min(x, 1− x), 0 6 x 6 1. (A.3)

Let P denote the set of prime numbers p ∈ (P/2, P ] with p - m. In this notation,
the multiset S is given by

S = {(r + s · (p−1)m) mod m : p ∈P, s ∈ Sp, r = 1, 2, . . . , R}.

There are precisely π(P ) − π(P/2) primes in (P/2, P ], of which at most ν(m) are
prime divisors of m. Therefore,

|P| > π(P )− π
(
P

2

)
− ν(m). (A.4)

A.2. Elements of S are nonzero and distinct. As our first step, we verify that
the elements of S are nonzero and distinct modulo m. This part of the argument
is reproduced word for word from [48, Section 6.2].

Specifically, consider any r ∈ {1, 2, . . . , R}, any prime p ∈ (P/2, P ] with p - m,
and any s ∈ Sp. Then pr+ s ∈ [1, PR+P −1] ⊆ [1,m). This means that pr+ s 6≡ 0
(mod m), which in turn implies that r + s · (p−1)m 6≡ 0 (mod m).

We now show that the multiset S contains no repeated elements. For this,
consider any r, r′ ∈ {1, 2, . . . , R}, any primes p, p′ ∈ P, and any s ∈ Sp and
s′ ∈ Sp′ such that

r + s · (p−1)m ≡ r′ + s′ · (p′−1)m (mod m). (A.5)

Our goal is to show that p = p′, r = r′, s = s′. To this end, multiply (A.5) through
by pp′ to obtain

r · pp′ + s · p′ ≡ r′ · pp′ + s′ · p (mod m). (A.6)
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The left-hand side and right-hand side of (A.6) are integers in [1, RP 2 +(P−1)P ] ⊆
[1,m), whence

r · pp′ + s · p′ = r′ · pp′ + s′ · p. (A.7)

This implies that p | s · p′, which in view of s < p and the primality of p and p′

forces p = p′. Now (A.7) simplifies to

r · p+ s = r′ · p+ s′, (A.8)

which in turn yields s ≡ s′ (mod p). Recalling that s, s′ ∈ {1, 2, . . . , p − 1}, we
arrive at s = s′. Finally, substituting s = s′ in (A.8) gives r = r′.

A.3. Correlation for k small. So far, we have shown that the elements of S are
distinct and nonzero. To bound the m-discrepancy of this set, we must bound the
exponential sum

∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ (A.9)

for all k = 1, 2, . . . ,m−1. This subsection and the next provide two complementary
bounds on (A.9). The first bound, presented below, is preferable when k is close to
zero modulo m.

Claim A.1. Let k ∈ {1, 2, . . . ,m− 1} be given. Then

∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣

6

(
2πmin(k,m− k)

m
+ max
p∈P
{discp(Sp)}+

ν(k) + ν(m− k)

|P|
·∆
)
|S|.

This claim generalizes the analogous statement in [48, Claim 6.10], where the
special case ∆ = 1 was considered.

Proof. Let P ′ be the set of those primes in P that divide neither k nor m − k.
Then clearly

|P \P ′| 6 ν(k) + ν(m− k). (A.10)
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Exactly as in [48], we have∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣

=

∣∣∣∣∣∣
R∑
r=1

∑
p∈P

∑
s∈Sp

e

(
k

m
· (r + s · (p−1)m)

)∣∣∣∣∣∣
6

R∑
r=1

∑
p∈P

∣∣∣∣∣∣
∑
s∈Sp

e

(
k

m
· (r + s · (p−1)m)

)∣∣∣∣∣∣
= R

∑
p∈P

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
6 R

∑
p∈P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣+R
∑

p∈P\P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
6 R

∑
p∈P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣+R
∑

p∈P\P′
|Sp|. (A.11)

We proceed to bound the two summations in (A.11). Bounding the second
summation is straightforward:

R
∑

p∈P\P′
|Sp| 6 R · |P \P ′|

|P|
∑
p∈P

∆|Sp|

=
|P \P ′|
|P|

·∆|S|

6
ν(k) + ν(m− k)

|P|
·∆|S|, (A.12)

where the first step is valid because the cardinalities of any two sets Sp differ by a
factor of at most ∆, and the last step uses (A.10). This three-line derivation is our
only point of departure from the treatment in [48].

The other summation in (A.11) is analyzed exactly as in [48]. For p ∈ P ′ and
K ∈ {k, k −m}, we have∣∣∣∣∣∣

∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈Sp

e

(
Ks · (p−1)m

m

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)
e

(
Ks

pm

)∣∣∣∣∣∣
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6

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)(
e

(
Ks

pm

)
− 1

)∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)∣∣∣∣∣∣
6

∣∣∣∣∣∣
∑
s∈Sp

e

(
−Ks · (m

−1)p
p

)(
e

(
Ks

pm

)
− 1

)∣∣∣∣∣∣+ discp(Sp) · |Sp|

6
∑
s∈Sp

∣∣∣∣e(Kspm
)
− 1

∣∣∣∣+ discp(Sp) · |Sp|

=
∑
s∈Sp

∣∣∣∣e( |K|spm

)
− 1

∣∣∣∣+ discp(Sp) · |Sp|

6 |Sp| ·
2π|K|
m

+ discp(Sp) · |Sp|,

where the second step uses Fact 2.16 and the relative primality of p and m; the
third step applies the triangle inequality; the fourth step follows from p - |K|, and
the last step is valid by (A.2) and s < p. We have shown that∣∣∣∣∣∣

∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣ 6 2πmin(k,m− k)

m
· |Sp|+ discp(Sp) · |Sp|

for p ∈P ′. Summing over P ′,

R
∑
p∈P′

∣∣∣∣∣∣
∑
s∈Sp

e

(
ks · (p−1)m

m

)∣∣∣∣∣∣
6 R

∑
p∈P′

(
2πmin(k,m− k)

m
· |Sp|+ discp(Sp) · |Sp|

)

6 R
∑
p∈P

(
2πmin(k,m− k)

m
· |Sp|+ discp(Sp) · |Sp|

)

6

(
2πmin(k,m− k)

m
+ max
p∈P
{discp(Sp)}

)
R
∑
p∈P

|Sp|

=

(
2πmin(k,m− k)

m
+ max
p∈P
{discp(Sp)}

)
|S|. (A.13)

By (A.11)–(A.13), the proof of the claim is complete.

A.4. Correlation for k large. We now present an alternative bound on the
exponential sum (A.9), which is preferable to the bound of Claim A.1 when k is
far from zero modulo m. This part of the proof is reproduced verbatim from [48,
Section 6.4].

Claim A.2. Let k ∈ {1, 2, . . . ,m− 1} be given. Then∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ 6 m

2Rmin(k,m− k)
· |S|.
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Proof:

∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p∈P

∑
s∈Sp

R∑
r=1

e

(
k

m
· (r + s · (p−1)m)

)∣∣∣∣∣∣
6
∑
p∈P

∑
s∈Sp

∣∣∣∣∣
R∑
r=1

e

(
k

m
· (r + s · (p−1)m)

)∣∣∣∣∣
=
∑
p∈P

∑
s∈Sp

∣∣∣∣∣
R∑
r=1

e

(
kr

m

)∣∣∣∣∣
=
∑
p∈P

∑
s∈Sp

|1− e(kR/m)|
|1− e(k/m)|

6
∑
p∈P

∑
s∈Sp

2

|1− e(k/m)|

6
∑
p∈P

∑
s∈Sp

m

2 min(k,m− k)

=
m

2Rmin(k,m− k)
· |S|,

where the last two steps use (A.3) and |S| = R
∑
p∈P |Sp|, respectively.

A.5. Finishing the proof. The remainder of the proof is reproduced without
changes from [48, Section 6.5], except for the use of the updated bound in Claim A.1
for arbitrary ∆ > 1.

Specifically, Facts 2.17 and 2.18 imply that

π(P )− π
(
P

2

)
>

P

C logP
(P > C), (A.14)

max
k=1,2,...,m

ν(k) 6
C logm

log logm
, (A.15)

where C > 1 is a constant independent of R,P,m,∆. Moreover, C can be easily
calculated from the explicit bounds in Facts 2.17 and 2.18. We will show that the
theorem conclusion (A.1) holds with c = 4C2. We may assume that

P > C, (A.16)
C logm

log logm
6

P

2C logP
, (A.17)

since otherwise the right-hand side of (A.1) exceeds 1 and the theorem is trivially
true. By (A.4) and (A.14)–(A.17), we obtain

|P| > P

2C logP
,
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which along with (A.15) gives

max
k=1,2,...,m−1

ν(k) + ν(m− k)

|P|
6

2C logm

log logm
· 2C logP

P

=
c logm

log logm
· logP

P
. (A.18)

Claims A.1 and A.2 ensure that for every k = 1, 2, . . . ,m− 1,∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣ 6

(
min

(
2πmin(k,m− k)

m
,

m

2Rmin(k,m− k)

)
+ max
p∈P
{discp(Sp)}+

ν(k) + ν(m− k)

|P|
·∆
)
|S|

6

(√
π

R
+ max
p∈P
{discp(Sp)}+

ν(k) + ν(m− k)

|P|
·∆
)
|S|

6

(
c√
R

+ max
p∈P
{discp(Sp)}+

ν(k) + ν(m− k)

|P|
·∆
)
|S|;

here we are using the updated bound from Claim A.1 in this paper for general ∆.
Substituting the estimate from (A.18), we conclude that

max
k=1,2,...,m−1

∣∣∣∣∣∑
s∈S

e

(
k

m
· s
)∣∣∣∣∣

6

(
c√
R

+ max
p∈P
{discp(Sp)}+

c logm

log logm
· logP

P
·∆
)
|S|.

This conclusion is equivalent to (A.1). The proof of Theorem 3.5 is complete.
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