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Abstract9

We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof10

system if and only if it is randomly reducible to a promise problem for Kolmogorov-random11

strings, with a superlogarithmic additive approximation term. This extends recent work by Saks12

and Santhanam (CCC 2022). We build on this to give new characterizations of Statistical Zero13

Knowledge SZK, as well as the related classes NISZKL and SZKL.14
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1 Introduction21

In this paper, we give the first non-trivial characterization of a computational complexity22

class in terms of reducibility to the Kolmogorov random strings.23

Some readers may be surprised that this is possible. After all, the set of Kolmogorov24

random strings is undecidable, and undecidable sets typically do not figure prominently25

in complexity-theoretic investigations.1 But what does it mean to be reducible to the26

Kolmogorov-random strings? Let us consider the prefix-free Kolmogorov complexity K27

(which is one of the most-studied types of Kolmogorov complexity), and recall that different28

universal Turing machines U give a slightly different Kolmogorov measure KU . Then if29

we say “A is reducible to the K-random strings” we probably mean that A is reducible30

to the KU random strings, no matter which universal machine U we are using. But it31

turns out that the class of languages that can be solved in polynomial time with an oracle32

that returns KU (q) for any query q—regardless of which universal machine U is used—is a33

complexity class that contains NEXP and lies in EXPSPACE [23, 13, 29].2 There has been34

substantial interest in obtaining a precise understanding of which problems can be reduced35

in this way to the Kolmogorov complexity function under different notions of reducibility36

[2, 3, 9, 7, 8, 12, 13, 14, 20, 23, 30, 29, 32, 33, 46], but until now, no previously studied37

complexity class has been characterized in this way, with the exception of P [8, 46]. (The38

1 We do wish to highlight the recent work of Ilango, Ren, and Santhanam [37], who related the existence
of one-way functions to the average case complexity of computing Kolmogorov complexity.

2 More specifically, it is shown in [13] that all decidable sets with this property lie in EXPSPACE, and it
is shown in [23] that there are no undecidable sets with this property. Hirahara shows in [30] that every
set in EXPNP (and hence in NEXP) has this property.
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2 Kolmogorov Complexity Characterizes Statistical Zero Knowledge

characterizations of P obtained in this way can be viewed as showing that certain limited39

polynomial-time reductions are useless when using the Kolmogorov complexity function as40

an oracle.)41

Faced with this lack of success, it was proposed in [3, Open Question 4.8] that a more42

successful approach might be to consider reductions to approximations to the Kolmogorov43

complexity function. Saks and Santhanam [46] took the first significant step in this direction,44

by showing the following results:45

▶ Theorem 1 (Saks & Santhanam [46]). 1. Although (by the work of Hirahara [30]) every46

language in EXPNP is reducible in deterministic polynomial time to any function that47

differs from K by at most an additive O(log n) term, no decidable language outside of P48

is reducible to all approximations to K that differ by an error margin e(n) = ω(log n) via49

an “honest” deterministic polynomial-time nonadaptive reduction.50

2. Although (by the work of Hirahara [29]) every language in NEXP is reducible via random-51

ized nonadaptive reductions to any function that differs from K by at most an additive52

O(log n) term, no decidable language outside of AM ∩ coAM is reducible to all approxi-53

mations to K that differ by an error margin e(n) = ω(log n) via an “honest” probabilistic54

polynomial-time nonadaptive reduction.55

3. No decidable language outside of SZK is randomly m-reducible to each ω(log n) approxi-56

mation to the K-random strings.57

This is not the first time that the complexity class SZK (for Statistical Zero Knowledge58

has arisen in the context of investigations relating to Kolmogorov complexity. In particular,59

SZK and its “non-interactive” subclass NISZK have been studied in connection with a version60

of time-bounded Kolmogorov complexity, which in turn is studied because of its connection61

with the Minimum Circuit Size Problem (MCSP) [11, 14]. These problems lie at the heart of62

what has come to be called meta-complexity: the study of the computational difficulty of63

answering questions about complexity.64

Allender [2] proposed an intriguing research program towards the P = BPP conjecture.65

The class P can be characterized by the class of languages reducible to the set of Kolmogorov-66

random strings under polynomial-time disjunctive truth-table reductions [8]. Similarly, he67

conjectured that BPP can also be characterized by polynomial-time truth-table reductions68

to the set of Kolmogorov-random strings, and envisioned that such a completely new69

characterization of complexity classes would give us new insights into BPP, especially from70

the perspective of computability theory. Unfortunately, his conjecture was refuted by Hirahara71

[30] under a plausible complexity-theoretic assumption.72

In this paper, we show that SZK, NISZK and their logspace variants SZKL and NISZKL73

can be characterized by reductions to approximations to the Kolmogorov complexity function.74

We envision that our new characterization of these complexity classes would improve our75

understanding of zero knowledge interactive proof systems in future. Zero knowledge76

interactive proof systems have many applications in cryptographic protocols, and they have77

been studied very widely. We refer the reader to the excellent survey by Vadhan for more78

background [47]. For our purposes, the complexity classes of interest to us (SZK, NISZK,79

SZKL, and NISZKL) can be defined in terms of their complete problems. But first, we need80

to define some basic notions and provide some background.81

2 Preliminaries82

We assume familiarity with basic complexity classes such as P, L, and AC0; we view these83

as classes of functions, as well as of languages. We also will refer to the class of functions84
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computed in NC0, where each output bit depends on at most O(1) input bits. For circuit85

complexity classes such as NC0, and AC0, by default we assume that the circuit families are86

“First-Order-uniform” as discussed in [5, 18, 38]. This coincides with Dlogtime-uniform AC0,87

and what one might call “Dlogtime-uniform AC0-uniform” NC0. (We refer the reader to [49]88

for more background on circuit uniformity.) When we need to refer to nonuniform circuit89

complexity, we will be explicit.90

All of these classes give rise to restrictions of Karp reducibility ≤P
m, such as ≤L

m, ≤AC0

m ,91

and ≤NC0

m . We will also discuss projections (≤proj
m ), which are ≤NC0

m reductions in which each92

output bit depends on at most one input bit. Thus projections are computed by circuits93

consisting of constants, wires, and NOT gates.94

A promise problem A is a pair of disjoint sets (YA, NA) of YES instances and NO instances,95

respectively. A solution to a promise problem is any set B such that YA ⊆ B and NA ⊆ B.96

A don’t-care instance of A is any string that is not in YA ∪ NA. A language can be viewed as97

a promise problem that has no don’t-care instances.98

We say that a promise problem A = (Y, N) is decidable if Y and N are decidable sets.99

Observe that if B = (Y ′, N ′) with Y ′ ⊆ Y and N ′ ⊆ N , then any solution to A is also a100

solution to B. Such subproblems of decidable promise problems are intuitively “decidable”,101

but are not necessarily decidable according to our definition. Since there are uncountably102

many subsets of Y and N for any nontrivial promise problem, clearly not every intuitively103

“decidable” promise problem can be decidable.104

When defining reductions between two promise problems A and B, there are two options.105

Either106

for every solution S to B there is a reduction from A to S, or107

there is a reduction that correctly decides A when given any solution S for B.108

As it turns out, these two notions are equivalent [28, 43]. Thus we shall always use the109

second approach, when defining notions of reducibility between promise problems.110

We assume that the reader is familiar with Kolmogorov complexity; more background111

on this topic can be found in references such as [41, 25]. Briefly, KU (x|y) = min{|d| :112

U(d, y) = x}, and KU (x) = K(x|λ) where λ denotes the empty string.3 Although this113

definition depends on the choice of the Turing machine U , we pick some “universal” machine114

U ′ and define K(x|y) to be KU ′(x|y); for every machine U , there is a constant c such that115

K(x|y) ≤ KU (x|y) + c. One important non-trivial fact regarding Kolmogorov complexity is116

known as symmetry of information:117

▶ Theorem 2. (Symmetry of Information)

K(x, y) = K(x) + K(x|y) ± O(log(K(x, y))).

Let R̃K be the promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that118

K(y) ≥ |y|/2 and the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2−e(|y|)119

for some approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1). All of our120

theorems hold for any e(n) in this range. We will sometimes assume that e(n) is computable121

in AC0, which is true for most approximation terms of interest.122

3 This is actually the definition of so-called “plain” Kolmogorov complexity, although the letter K is
traditionally used for the “prefix-free” Kolmogorov complexity. These two measures differ by at most
a logarithmic term, and our theorems hold for either measure. For simplicity, we have presented the
simpler definition.
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Since the approximation error e(n) is superlogarithmic, it is worth noting that R̃K can be123

defined equivalently either in terms of prefix-free or plain Kolmogorov complexity (because124

these two measures are within an additive logarithmic term of each other).125

Any language that is reducible to R̃K via any of the reducibilities that we consider is126

decidable, by a theorem of [23]. However, it is not known whether this carries over in any127

meaningful way to promise problems.128

The reader may wonder about the justification for the threshold K(y) ≥ |y|/2 in the129

definition of R̃K . The following proposition indicates that, for large error bounds e(n), using130

a larger threshold reduces to R̃K . Later, we show a related result for smaller thresholds.131

▶ Proposition 3. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)} for132

some AC0-computable threshold t(n) ≥ n
2 , and where N = {y : K(y) ≤ t(|y|) − |y|ϵ} for some133

1 > ϵ > 0. Then A≤NC0

m R̃K .134

Proof. Let δ = ϵ
2 . Given an instance y of length n (for all large n), in AC0 we can find the135

least integer i < n such that 2t(n) − n + 5 log n + (2(2n)δ − nϵ) ≤ i ≤ 2t(n) − n − 3 log n.136

Let z = y0i. Then K(z) ≤ K(y) + 2 log i + O(1). Similarly, K(y) ≤ K(z) + 2 log i + O(1),137

and hence K(z) ≥ K(y) − 2 log i − O(1).138

Thus if y ∈ Y , then K(z) ≥ t(n) − 2 log i − O(1) > (t(n) − n
2 ) + n

2 − 3 log n ≥ n+i
2 = |z|

2 .139

And if y ∈ N , then K(z) ≤ t(n) − nϵ + 2 log i + O(1) < (t(n) − n
2 ) + n

2 − nϵ + 2 log i + O(1) ≤140

n+i
2 − (n + i)δ = |z|

2 − |z|δ < |z|
2 − e(|z|).141

Thus y ∈ Y implies z ∈ Y
R̃K

and y ∈ N implies z ∈ N
R̃K

. ◀142

Randomized reductions play a central role in the results that we will be presenting. Here143

is the basic definition:144

▶ Definition 4. A promise problem A = (Y, N) is ≤RP
m -reducible to B = (Y ′, N ′) with145

threshold θ if there is a polynomial p and a deterministic Turing machine M running in time146

p such that147

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.148

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] = 1.149

Randomized reductions were introduced by Adleman and Manders, as a probabilistic150

generalization of ≤P
m reducibility4 [1]. They used the threshold θ = 1

2 . One of the most151

important applications of randomized reductions is the theorem of Valiant and Vazirani152

[48], where they showed that SAT reduces to Unique Satisfiability (USAT) via a randomized153

reduction, with threshold θ = 1
4n .5 The reader may expect that—as is so often the case with154

probabilistic notions in computational complexity theory—the choice of threshold is arbitrary,155

and can be changed with no meaningful consequences. However, this does not appear to be156

true; we refer the reader to the work of Chang, Kadin, and Rohatgi [24] for a discussion of this157

point. As they point out, different thresholds are appropriate in different situations. If A≤RP
m B158

with threshold 1
4n (for instance), where the set ORB = {(x1, . . . , xk) : ∃i, xi ∈ B}≤P

mB, then159

it is indeed true that A≤RP
m B with threshold 1 − 1

2n [24]. But Chang, Kadin, and Rohatgi160

point out that it is far from clear that USAT has this property. We are concerned here161

with problems that are ≤RP
m -reducible to R̃K ; just as in the case with randomized reductions162

to USAT, we must be careful about which threshold θ we choose. For the remainder of163

4 We assume that the reader is familiar with Karp reducibility ≤P
m.

5 Recently, there have also been several papers showing that certain meta-complexity-theoretic problems
are NP-complete under randomized reductions, including [10, 31, 34, 35, 36, 42, 44].
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this paper, we will use the threshold θ = 1 − 1
nω(1) . (For a discussion of why we select this164

threshold, see Remark 12.)165

The following proposition is the counterpart to Proposition 3, for thresholds smaller than166

n
2 .167

▶ Proposition 5. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)}168

for some polynomial-time computable threshold t(n) ≤ n
2 , and where N = {y : K(y) ≤169

t(|y|) − |y|ϵ} for some 1 > ϵ > 0. Then A≤RP
m R̃K .170

Proof. Given an instance y of length n (for all large n), in polynomial time we can find the171

least integer i < n such that 2t(n) − 2nϵ + 2e(3n) + 4 log n ≤ i ≤ 2t(n) − e(n) − 2c log n (for172

a constant c that will be picked later).173

Pick a random string r of length n. Let z = yr0i. Then K(z) ≤ K(y) + 2 log i + |r|.174

Also, by symmetry of information, K(z) ≥ K(yr0i|y0i) + K(y0i) − c′ log n (for some fixed175

constant c′, and hence with probability at least 1 − 1
nω(1) , K(z) ≥ (n − e(n)

2 ) + K(y) − c log n176

(for some fixed c, which is the constant c that we use above in defining i).177

Thus if y ∈ Y , then with high probability K(z) ≥ t(n) + (n − e(n)
2 ) − c log n > n + i

2 = |z|
2 .178

And if y ∈ N , then K(z) ≤ (t(n) − nϵ) + 2 log i + |r| ≤ n + i
2 − e(3n) ≤ |z|

2 − e(|z|).179

Thus y ∈ Y implies z ∈ Y
R̃K

(with probability ≥ 1 − 1
nω(1) ), and y ∈ N implies180

z ∈ N
R̃K

. ◀181

We will also need a “two-sided error” version of random reducibility, analogous to the182

relationship between RP and BPP.183

▶ Definition 6. A promise problem A = (Y, N) is ≤BPP
m -reducible to B = (Y ′, N ′) with184

threshold θ > 1
2 if there is a polynomial p and a deterministic Turing machine M running in185

time p such that186

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.187

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] ≥ θ.188

The complexity classes SZK (Statistical Zero Knowledge) and NISZK (Non-Interactive189

Statistical Zero Knowledge) are defined in terms of interactive proof protocols (with a Prover190

interacting with a probabilistic polynomial-time Verifier, together with a Simulator that191

can produce a distribution on transcripts that is statistically close to the distribution on192

messages that would be exchanged by the prover and the verifier on YES instances. But193

for our purposes, it will suffice (and be simpler) to present alternative definitions of these194

classes, in terms of their standard complete problems.195

▶ Definition 7 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

YEA = {(C, k) | H(X) > k + 1}
NEA = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.196

▶ Theorem 8 ([27]). EA is complete for NISZK under ≤P
m reductions.197

We will actually take this as a definition; we say that (Y, N) is in NISZK if and only if198

(Y, N)≤P
mEA.199
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▶ Definition 9 (Promise-SD). SD (Statistical Difference) is the promise problem

YSD =
{

(C, D)
∣∣∣∣ ∆(C, D) >

2
3

}
,

NSD =
{

(C, D)
∣∣∣∣ ∆(C, D) <

1
3

}
.

where ∆(C, D) denotes the statistical distance between the distributions represented by the200

circuits C and D.201

▶ Theorem 10 ([45]). SD is complete for SZK under ≤P
m reductions.202

Thus we will define SZK to be the class of promise problems (Y, N) such that (Y, N)≤P
mSD.203

3 A New Characterization of NISZK204

We are now ready to present the characterization of NISZK by reductions to the set of205

Kolmogorov-random strings.206

▶ Theorem 11. The following are equivalent, for any decidable promise problem A:207

1. A ∈ NISZK.208

2. A≤RP
m R̃K .209

3. A≤BPP
m R̃K .210

Proof. In order to show that A ∈ NISZK implies A≤RP
m R̃K , it suffices to reduce the NISZK-211

complete problem EA to R̃K . This follows easily from the proof given in [14, Corollary 18],212

combined with [27, Lemma 3.2]. Specifically, Lemma 3.2 in [27] shows that the following213

promise problem is complete for NISZK: All instances are of the form (C, 1s), where C is214

a circuit with m inputs and n outputs, representing a distribution (also denoted C) on215

{0, 1}n. (C, 1s) is a YES instance if C has statistical distance at most 2−s from the uniform216

distribution on {0, 1}n. (C, 1s) is in the set of NO instances if the support of C has size at217

most 2n−s. Furthermore, the reduction g from EA to A has the property that the parameter218

s is at least nϵ for some constant ϵ > 0. Also, it is observed in Lemma 4.1 of [27] that the219

mapping (C, 1s) 7→ (C, n − 3) (i.e., the mapping that leaves the circuit C unchanged) is a220

reduction from A to EA. To summarize: these results from [27] show that the following221

subproblem of EA is also hard for NISZK under ≤P
m reductions: The set Y of YES instances222

consists of pairs (C, n − 3) where the entropy of C is greater than n − 2, and the set N of223

NO instances consists of pairs (C, n − 3) where the support of C has size at most 2n−nϵ .224

Corollary 18 of [14] states that every promise problem in NISZK reduces to the problem225

of computing the time-bounded Kolmogorov complexity KT via a probabilistic reduction226

that makes at most one query along any computation path. But here we observe that the227

same approach can be used to obtain a ≤RP
m reduction to R̃K . Corollary 18 of [14] relies228

on the proof of Theorem 17 in the same paper (which in turn relies on the techniques of229

[16]), which presents a probabilistic algorithm M that takes an instance (C, n − 3) of EA (as230

described above), and constructs a string y that is the concatenation of t random samples231

from C (i.e., y = C(r1)C(r2) . . . C(rt) for uniformly chosen random strings r1, . . . , rt, for232

some polynomially-large t). Lemma 16 of [14] shows that, with probability exponentially close233

to 1, if (C, n − 3) is a YES instance of EA, then the time-bounded Kolmogorov complexity234

KT(y) is greater than a threshold θ of the form θ = t(n − 2) − t1−α for some constant α > 0.235

In the argument of [14, Theorem 17], t can be chosen to be an arbitrarily large polynomial236
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nk. Thus we have θ > nk(n − 3) for all large n, and hence for all large YES instances we have237

KT(y) > nk(n − 3) = ℓ − ℓδ for some δ < 1, where |y| = tn = ℓ. The focus of [14] was on238

the measure KT, but (as was previously observed in [4, Theorem 1]) the analysis in Lemma239

16 carries over unchanged to the setting of non-resource-bounded Kolmogorov complexity240

K. Thus, with high probability, the probabilistic routine, when given a YES instance of EA,241

produces a string y where K(y) ≥ |y| − |y|δ.242

On the other hand, if (C, n − 3) is a NO instance, then the support of C has size at most243

2n−nϵ , and thus any string z in the support of C has K(z|C) ≤ n−nϵ+O(1). Thus any string y244

that is produced by M in this case has K(y) ≤ t(n−nϵ)+|C|+O(1) = nk(n−nϵ))+|C|+O(1).245

Since t = nk was chosen to be large (with respect to the length of the input instance246

(C, n − 3)), we may assume |C| < nk+ϵ − 4nk. Thus if (C, n − 3) is any large NO instance,247

we have K(y) < nk(n − 4) = ℓ − ℓδ′ for some δ′ > δ. To summarize, with probability248

1, the probabilistic routine, when given a NO instance of EA, produces a string y where249

K(y) ≥ |y| − |y|δ′ ≥ (|y| − |y|δ) − |y|ϵ for some ϵ > 0. We can now conclude that EA≤RP
m R̃K250

by appealing to Proposition 3.251

To complete the proof of the theorem, we need to show that if A is any decidable promise252

problem that has a randomized poly-time m-reduction (≤BPP
m ) with error 1/nω(1) to the253

promise problem R̃K then A ∈ NISZK. This was essentially shown by Saks and Santhanam254

[46, Theorem 39], but we present a complete argument here. Let M be the probabilistic255

machine that computes this ≤BPP
m reduction.256

Let y = f(x, r) ∈ {0, 1}m denote the output that M produces, where x is an instance of257

A and r denotes the randomness used in the reduction. (As in the proof of [46, Theorem 39],258

we may assume that, for each x, all outputs of the form f(x, r) have the same length.) Given259

an x ∈ {0, 1}n, observe that there is a polynomial-sized circuit Cx such that Cx(r) = f(x, r).260

According to the correctness of the reduction, we have261

x ∈ YA ⇒ Pr
r

[M(x, r) ∈ Y
R̃K

] ≥ 1 − 1/nω(1) and262

263

x ∈ NA ⇒ Pr
r

[M(x, r) ∈ N
R̃K

] ≥ 1 − 1/nω(1).264

In other words, if x is a YES instance, then K(y) ≥ |y|/2 with probability at least265

1 − 1/nω(1) and if x is a NO instance, then K(y) ≤ |y|/2 − e(|y|) with probability at least266

1 − 1/nω(1). (Recall that e(n) is the error term in the approximation R̃K .) We will now show267

that there is an entropy threshold that separates these two distributions, which will provide268

an NISZK upper bound on resolving A.269

Claim: If x is a YES instance, then the entropy of the distribution Cx(r) is at least270

m/2 − e(m)/2 + 1 and if x is a NO instance, then the entropy of Cx(r) is at most271

m/2 − e(m)/2 − 1.272

We first show that if the claim holds, then A ∈ NISZK. Let k = m/2−e(m)/2. The reduction273

given above reduces membership in A to the Entropy Approximation (EA) problem on the274

circuit description Cx with threshold k. Given x, we can compute the map x 7→ Cx in time275

nO(1). Recall that EA is compete for NISZK. Since NISZK is closed under ≤P
m reductions, we276

can conclude that A ∈ NISZK.277

Proof of claim:278

Assume not and let x be the lexicographically first string that violates the above claim (for279

some length n). Since the reduction is a computable function, and since A is a decidable280

promise problem, K(x) = O(log n). We have the following two cases to consider:281

Case 1 - x is a YES instance: From the correctness of the reduction we have that with282

probability 1 − 1/nω(1) the output y is a string with Kolmogorov complexity at least |m|/2.283
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Since x is a violator, we have H(Cx(r)) < k + 1 = m/2 − e(m)/2 + 1.284

On one hand, the distribution Cx(r) has large enough probability mass on the high-complexity285

strings. On the other hand, we have that since x is a low-complexity string itself, the elements286

of Cx(r) with highest mass can be identified by short descriptions. This leads to a contra-287

diction of simultaneously having large enough mass on the low and the high K-complexity288

strings.289

Let t be the entropy of the distribution Cx(r). Let Y = {y1 . . . y2t+log m} be the heaviest290

elements (in terms of probability mass) of Cx(r) in decreasing order. Conditioned on x, the291

K complexity of any of these strings yi is at most t + O(log m). Since K(x) = O(log n) =292

O(log m), we have K(yi) ≤ t + O(log m) < m/2. Next, we will show that there is at least293

mass 1
m on these strings within Cx(r). This will contradict the correctness of the reduction294

for x ∈ L since it cannot output strings with K complexity at most |m|/2 with probability295

1/nΩ(1).296

Assume not, i.e., the mass on elements of Y is at most 1
m . Observe that elements of297

Sup(Cx(r)) − Y have mass no more than 2−(t+log m) each. Then, the contribution to entropy298

by these elements is at least (1 − 1/m)(t + log m) > t (which is a contradiction).299

300

Case 2 - x is a NO instance: From the correctness of the reduction we have that with301

probability at least 1 − 1/nω(1) the output f(x, r) is a string with K complexity at most302

m/2 − e(m). Since x is a violator, we also have H(Cx(r)) > k − 1 = m/2 − e(m)/2 − 1.303

We claim that the following holds:304

Pr
y∼f(x,r)

[K(y) > m/2 − e(m)] ≥ 1/m.305

Assume not. Then, the entropy of f(x, r) is at most (1/m)(m) + (1 − 1/m)(m/2 − e(m)) ≤306

m/2 − e(m) + 1 < m/2 − e(m)/2 − 1, which contradicts the lower bound on the entropy of307

f(x, r) above.308

Since the claim holds, with probability at least 1/m the output of the reduction is not an309

element of the set NR̃K
. Thus, the reduction fails with probability 1/nΩ(1).310

◀311

▶ Remark 12. The proof of the preceding theorem illustrates why we define the error threshold312

in our randomized reductions to be 1
nω(1) . If we assumed that A were ≤BPP

m -reducible to R̃K313

with an inverse polynomial threshold (say q(n)−1), then (as in the proof of [46, Theorem314

39] we may modify the reduction so that the length of each output produced has length315

Q(n) = ω(q(n)) (by padding with some uniformly-random bits). For strings x that are NO316

instances of A, when the reduction to R̃K fails with probability 1/q(n), our calculation of the317

entropy of Cx will involve a term of 1
q(n) Q(n) (because the queries made in this case can have318

nearly Q(n) bits of entropy). This is more than the entropy gap between the distributions319

corresponding to the YES and NO outputs.320

▶ Remark 13. Although our focus in this paper is in R̃K , we note that one can also define321

an analogous problem R̃KT in terms of the time-bounded measure KT. The approach used322

in Theorem 11 also shows that every problem in NISZK is ≤BPP
m reducible to R̃KT, although323

we do not know how to show hardness under ≤RP
m reductions. (A random sample from the324

low-entropy distribution is guaranteed to always have low K-complexity, but the tools of325

[14, 16] only guarantee that the output has low KT-complexity with high probability.)326
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4 More Powerful Reductions327

Just as ≤RP
m and ≤BPP

m reducibilities generalize the familiar ≤P
m (Karp) reducibility to the328

setting of probabilistic computation, so also are there probabilistic generalizations of determin-329

istic non-adaptive reductions (also known as truth-table reductions). Before presenting these330

probabilistic generalizations, let us review the previously-studied deterministic non-adaptive331

reducibilities that are relevant for this investigation. Some of them may be unfamiliar to the332

reader.333

Ladner, Lynch, and Selman [40] considered several possible ways to define polynomial-time334

versions of the truth-table reducibility that had been studied in computability theory, before335

settling on the definition of ≤P
tt reducibility below. They considered only reductions between336

languages; the corresponding generalization to promise problems is due to [45]. In order to337

state this generalization formally, let us define the characteristic function χA of a promise338

problem A = (Y, N) to take on the following values in three-valued logic:339

If x ∈ Y , then χA(x) = 1.340

If x ∈ N , then χA(x) = 0.341

If x ̸∈ (Y ∪ N), then χA(x) = ∗.342

A Boolean circuit with n variables, when given an assignment in {0, 1, ∗}n, can be evaluated343

using the usual rules of three-valued logic. (See, e.g., [45, Definition 4.6].)344

▶ Definition 14. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤P
ttB if345

there is a function f computable in polynomial time, such that, for all x, f(x) is of the form346

(C, z1, z2, . . . , zk) where C is a Boolean circuit with k input variables, and (z1, . . . , zk) is a347

list of queries, with the property that348

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.349

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.350

This definition ensures that the circuit C, viewed as an ordinary circuit in 2-valued logic,351

correctly decides membership for all x ∈ (Y ∪ N) when given any solution S for B as an352

oracle.353

If C is a Boolean formula, instead of a circuit, then one obtains the so-called “Boolean354

formula reducibility” (denoted by A≤P
bfB), which was discussed in [40] and studied further355

in [39, 22]. (See also [21, 6].)356

▶ Theorem 15. SZK = {A : A≤P
bfEA}.357

Proof. EA ∈ NISZK ⊆ SZK. Sahai and Vadhan [45, Corollary 4.14] showed that SZK is358

closed under NC1-truth-table reductions, but the proof carries over immediately to ≤P
bf359

reductions. Thus {A : A≤P
bfEA} ⊆ SZK. The other inclusion was shown in [27, Proposition360

5.4]. ◀361

Notably, it is still an open question if SZK is closed under ≤P
tt reducibility.362

Our characterization of SZK in terms of reductions to R̃K relies on the following proba-363

bilistic generalization of ≤P
bf :364

▶ Definition 16. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
bf B365

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial366

time, and a polynomial p, such that, for all x, f(x) is a Boolean formula C (with k = |x|O(1)
367

variables), with the property that368
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If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,369

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,370

where371

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ372

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ373

χg,B(x, i) = ∗ otherwise.374

Intuitively, ≤BPP
bf reductions generalize ≤P

bf reductions, in that the queries are now generated375

probabilistically, and the probability that any query returns a definite YES or NO answer is376

bounded away from 1
2 .377

The following proposition is immediate from the definitions.378

▶ Proposition 17. If A≤P
bfB and B≤BPP

m C with threshold θ, then A≤BPP
bf C with threshold θ.379

▶ Corollary 18. SZK ⊆ {A : A≤BPP
bf R̃K} with threshold 1 − 1

nω(1) .380

Proof. Immediate from Theorem 15 and Theorem 11. ◀381

There are (at least) three other variants of probabilistic nonadaptive reducibility that382

we should mention. The first of these is the notion that goes by the name “nonadaptive383

BPP reducibility” or “randomized nonadaptive reductions” in work such as [46, 14, 19] and384

elsewhere.385

▶ Definition 19. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
tt B386

if there are a function f computable in polynomial time and a polynomial p such that, for all387

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean388

circuit with k input variables, and (z1, . . . , zk) is a list of queries, with the property that389

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .390

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0 ≥ 2
3 .391

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , by the usual method392

of taking the majority vote of several independent trials.)393

Saks and Santhanam showed that if A≤BPP
tt R̃K via a reduction that satisfies an additional394

“honesty” condition, then A ∈ AM∩ coAM [46]. The most important ways in which ≤BPP
bf and395

≤BPP
tt reducibility differ from each other, are (1) in ≤BPP

bf reducibility, the query evaluation396

is performed by a Boolean formula, instead of a circuit, and (2) in ≤BPP
tt reducibility, the397

circuit that is chosen, to do the evaluation, depends on the choice of random bits, whereas in398

≤BPP
bf reducibility, the formula is chosen deterministically. Making different choices in these399

two dimensions gives rise to two other notions:400

▶ Definition 20. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
rbf B401

if there are a function f computable in polynomial time and a polynomial p such that, for all402

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean403

formula with k input variables, and (z1, . . . , zk) is a list of queries, with the property that404

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .405

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0] ≥ 2
3 .406

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , simply by incorpo-407

rating a Boolean formula that takes the majority vote of several independent trials.).408
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The notation ≤BPP
rbf is intended to suggest “random Boolean formula”, since the Boolean409

formula is chosen randomly.410

▶ Definition 21. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
circ B411

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial412

time, and a polynomial p, such that, for all x, f(x) is a Boolean circuit (with k = |x|O(1)
413

variables), with the property that414

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,415

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,416

where417

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ418

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ419

χg,B(x, i) = ∗ otherwise.420

We show in this paper that SZK is the class of problems ≤BPP
bf reducible to R̃K . We421

are not able to show that the class of problems ≤BPP
rbf reducible to R̃K is contained in SZK,422

although we do observe that SZK is closed under this type of reducibility.423

▶ Theorem 22. SZK = {A : A≤BPP
rbf EA}.424

Proof. The inclusion of SZK in {A : A≤BPP
rbf EA} is immediate from Theorem 15. For the425

other direction, let A≤BPP
rbf EA. Thus there are a function f computable in polynomial426

time, and a polynomial p such that, for all x and all r of length p(|x|), f(x, r) is of the427

form (C, z1, z2, . . . , zk), where evaluating the Boolean formula C(χB(z1), . . . , χB(zk)) gives a428

correct answer for all x ∈ Y ∪N with error at most 2−n2 . Here is a zero-knowledge interactive429

protocol for A. The verifier sends a random string r to the prover. The prover and the verifier430

can each compute f(x, r) = (C, z1, z2, . . . , zk), and then (as in [45, Corollary 4.14], compute an431

instance (D, E) of SD such that (D, E) is a YES instance of SD if C(χB(z1), . . . , χB(zk)) = 1,432

and (D, E) is a NO instance of SD if C(χB(z1), . . . , χB(zk)) = 0. The prover and the verifier433

can then run the SZK protocol for the SD instance (D, E). The verifier clearly accepts each434

YES instance with high probability, and cannot be convinced to accept any NO instance435

with more than negligible probability. The simulator, given input x, will generate the string436

r uniformly at random, and then compute f(x, r) and compute the instance (D, E) as above,437

and then produce the transcript that is produced by the SD simulator on input (D, E).438

It is straightforward to observe that, if x ∈ Y , then this distribution is very close to the439

distribution induced by the honest prover and verifier. ◀440

5 A New Characterization of SZK441

▶ Theorem 23. The following are equivalent, for any decidable promise problem A:442

1. A ∈ SZK.443

2. A≤BPP
bf R̃K with threshold 1 − 1

nω(1) .444

Proof. Corollary 18 states that all problems in SZK ≤BPP
bf -reduce to R̃K . Thus we need445

only show the converse containment. Let A≤BPP
bf R̃K . As in the proof of Theorem 11, we446

will build circuits Cx,i(r) that model the computation that produces the ith query that is447

asked on input x, when using random bits r. As in the proof of Theorem 11, we claim that448

if a 1 − 1
nω(1) fraction of the strings of the form Cx,i(r) are in Y

R̃K
, then Cx,i represents a449
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distribution with entropy at least m/2 − e(m)/2 + 1, and if a 1 − 1
nω(1) fraction of the strings450

of the form Cx,i(r) are in N
R̃K

, then Cx,i represents a distribution with entropy at most451

m/2 − e(m)/2 − 1. Indeed, the proof is essentially identical. Assume that there are infinitely452

many x that are not don’t care instances, where replacing the R̃K oracle with the EA oracle453

does not yield the correct answer. Given n, we can find the lexicographically-least string x454

of length n for which the reduction fails. Since the reduction fails, there must be some i such455

that the ith query in the formula yields the wrong answer. Thus, given (n, i), we can find x456

and build the circuit Cx,i of Kolmogorov complexity O(log n) that yields a correct answer457

when given R̃K as an oracle, but fails when queries are made to EA instead. The analysis is458

identical to the argument in the proof of Theorem 11. ◀459

We have nothing to say, regarding the problems that are reducible to R̃K via ≤BPP
tt or460

≤BPP
rbf reductions, other than to refer to the AM ∩ coAM upper bound provided by Saks and461

Santhanam [46]. We do have a somewhat better bound to report, regarding ≤BPP
circ reducibility.462

▶ Theorem 24. The following are equivalent, for any decidable promise problem A:463

1. A≤BPP
circ R̃K with threshold 1 − 1

nω(1) .464

2. A≤P
ttEA.465

3. A≤P
ttB for some B ∈ SZK.466

Proof. Items 2 and 3 are equivalent, by Theorem 15. Similarly, if A≤P
ttB for some B ∈ SZK,467

then we know that A≤P
ttB≤BPP

bf R̃K . The composition of a ≤P
tt reduction with a ≤BPP

bf468

reduction is clearly a ≤BPP
circ reduction. Finally, the proof of the remaining implication follows469

along the same lines as the proof of Theorem 23. ◀470

6 Less Powerful Reductions471

The standard complete problems EA and SD remain complete for NISZK and SZK, respectively,472

even under more restrictive reductions such as ≤L
m and ≤NC0

m . In this section, we show that473

it is worthwhile considering probabilistic versions of ≤L
m, ≤AC0

m and ≤NC0

m reducibility to R̃K .474

▶ Definition 25. For a class C, a promise problem A = (Y, N) is ≤RC
m -reducible to B =475

(Y ′, N ′) with threshold θ if there are a function f ∈ C and a polynomial p such that476

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.477

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] = 1.478

A is ≤BPC
m -reducible to B with threshold θ if there are a function f ∈ C and a polynomial p479

such that480

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.481

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.482

We are particularly interested in the cases C = L, C = AC0, and C = NC0. Note especially483

that, in the definitions of ≤RL
m and ≤BPL

m , the logspace computation has full (two-way) access484

to the random bits r. This is consistent with the way that probabilistic logspace computation485

is used in the context of the “verifier” and “simulator” in the complexity classes SZKL and486

NISZKL [26, 14].487

SZKL, the “logspace version” of SZK, was introduced in [26], primarily as a tool to488

discuss the complexity of problems involving distributions realized by extremely limited489

circuits (such as NC0 circuits). It is shown in [26] that SZKL contains many of the problems490
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of cryptographic significance that lie in SZK. NISZKL was introduced in [14] as the “non-491

interactive” counterpart to SZKL, by analogy with NISZK, primarily as a tool to investigate492

the complexity of computing time-bounded Kolmogorov complexity. It was subsequently493

studied in [15], where it was shown to be robust to several changes to the definition. It494

is shown in [26, 14] that complete problems for SZKL and NISZKL arise by considering495

restrictions of the standard complete problems for SZK and NISZK where the distributions496

under consideration are represented either by branching programs (in EABP), or by NC0
497

circuits where each output bit depends on at most 4 input bits (in SDNC0 and EANC0).498

Following the pattern we established in Section 2, we now define SZKL and NISZKL in499

terms of their complete problems, rather than presenting the definitions in terms of interactive500

proofs:501

▶ Definition 26. SZKL = {A : A≤proj
m SDNC0} = {A : A≤L

mSDBP}502

NISZKL = {A : A≤proj
m EANC0} = {A : A≤L

mEABP}.503

▶ Theorem 27. The following are equivalent, for any decidable promise problem A:504

A ∈ NISZKL505

A≤RNC0

m R̃K506

A≤BPNC0

m R̃K507

A≤RAC0

m R̃K508

A≤BPAC0

m R̃K509

A≤RL
m R̃K510

A≤BPL
m R̃K511

Proof. The proof that A ∈ NISZK implies A≤RNC0

m R̃K proceeds as in the proof of Theorem 11,512

except that we appeal to [14, Corollary 43] (presenting a nonuniform ≤proj
m reduction from513

EANC0 to R̃K), instead of Corollary 18 in that paper. In more detail: as in the proof of514

Theorem 11, given x, the reduction constructs a sequence of independent copies of EA, but515

now each distribution is represented by an NC0 circuit. The proof of Corollary 43 in [14]516

shows that these NC0 circuits can be constructed via uniform projections, and thus each517

output bit is computed by a gadget that is connected to O(1) random bits (i.e., the bits that518

are fed into the circuit computing the distribution), along with at most one bit from the519

input x (determining the circuitry internal to the gadget). The rest of the analysis is similar520

to that in the proof of Theorem 11.521

If A is decidable and A≤BPL
m R̃K , then, as in the proof of Theorem 11, we build a device522

Cx(r) that simulates the computation that produces queries to R̃K on input x. However,523

now Cx is a branching program, and thus we replace queries to R̃K by queries to EABP.524

Again, the analysis is similar to that in the proof of Theorem 11. ◀525

We end this section, with an analogous characterization of SZKL.526

▶ Definition 28. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤L
bfB527

if there is a function f computable in logspace such that, for all x, f(x) is of the form528

(C, z1, z2, . . . , zk) where C is a Boolean formula with k input variables, and (z1, . . . , zk) is a529

list of queries, with the property that530

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.531

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.532
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Earlier work that studied ≤L
bf reducibility can be found in [21, 6].533

We say A≤BPL
bf B with threshold θ > 1

2 if there are functions f and g computable in534

deterministic logspace, and a polynomial p, such that, for all x, f(x) is a Boolean formula535

(with k = |x|O(1) variables), with the property that536

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,537

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,538

where539

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ540

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ541

χg,B(x, i) = ∗ otherwise.542

(Similarly, one can define AC0 versions of ≤L
bf , although, since an AC0 circuit cannot543

evaluate a Boolean formula, we do not pursue that direction here.)544

▶ Theorem 29. The following are equivalent, for any decidable promise problem A:545

A ∈ SZKL.546

A≤L
bfEANC0 .547

A≤BPL
bf R̃K with threshold 1 − 1

nω(1) .548

Proof. The first two items are equivalent, because (a) SZKL is closed under ≤L
bf reducibility549

[15], and (b) the argument in [27], showing that SZK ≤L
bf-reduces to NISZK carries over550

directly to SZKL and NISZKL.551

Since EANC0 is complete for NISZKL, Theorem 27 implies that every A ∈ NISZKL is552

≤BPL
bf -reducible to R̃K . The argument that every decidable A that ≤BPL

bf -reduces to R̃K lies553

in SZKL is similar to the argument in Theorem 23. ◀554

7 Discussion555

There are not many examples of natural computational problems that are known or conjec-556

tured to lie outside of P, such that the class of problems reducible to them via ≤P
m and ≤L

m557

(or ≤AC0

m ) reductions differ (or are conjectured to differ). Is it the case that the problems558

reducible to R̃K via ≤RP
m and ≤RL

m (or ≤RAC0

m ) reductions differ? Or should this be taken as559

evidence that NISZK and NISZKL coincide?560

Similarly, there are not many examples of natural computational problems such that the561

classes of problems reducible to them via ≤P
tt and ≤P

bf reductions differ (or are conjectured to562

differ). For example, these reducibilities coincide for SAT [22]. Is it the case that ≤BPP
bf and563

≤BPP
circ reducibilities differ for R̃K? Or should this be taken as evidence that SZK is closed564

under ≤P
tt reducibility?565

Perhaps our new characterizations of statistical zero knowledge classes will be useful in566

answering these questions.567

It is known that every promise problem in NISZKL reduces to R̃K via nonuniform568

projections [14, 4]. The following quote from [4] is worth paraphrasing here:569

. . . no complexity class larger than NISZKL is known to be (non-uniformly) ≤AC0

m570

reducible to the Kolmogorov-random strings [14]. It seems unlikely that this is optimal.571
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The discussion in [4] was referring to reductions to an oracle for the exact Kolmogorov-572

complexity function. Our results show that, for reductions to an approximation to the573

Kolmogorov-complexity function, NISZKL is essentially “optimal”.574

Finally, let us observe that our new characterizations of NISZKL may open new avenues575

of attack on questions such as whether NP = NL. MKTP, the problem of computing KT576

complexity, lies in NP and is hard for co-NISZKL under nonuniform projections [14]. If577

MKTP ∈ NISZKL, then there must be a nonuniform projection f that takes strings of578

low KT-complexity (and hence low K-complexity) to strings of high K complexity, and579

simultaneously maps strings of high KT complexity to strings of low K-complexity. It is580

plausible that one could show unconditionally that no such projection can exist. Among581

other things, this would show that NP ̸= DET (where DET is the complexity class, containing582

NL, of problems that reduce to the determinant) since DET ⊆ NISZKL [14]. In this vein,583

let us also remark that Kolmogorov complexity has already proved useful in developing584

nonrelativizing proof techniques [31], and also that the machinery of perfect randomized585

encodings (which were developed in [17] and which are essential to the results of [14]) also586

does not seem to relativize in any obvious way.587
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