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Abstract9

We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof10

system if and only if it is randomly reducible via an honest polynomial-time reduction to a promise11

problem for Kolmogorov-random strings, with a superlogarithmic additive approximation term.12

This extends recent work by Saks and Santhanam (CCC 2022). We build on this to give new13

characterizations of Statistical Zero Knowledge SZK, as well as the related classes NISZKL and SZKL.14
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1 Introduction21

In this paper, we give the first non-trivial characterization of a computational complexity22

class in terms of reducibility to the Kolmogorov random strings.23

Some readers may be surprised that this is possible. After all, the set of Kolmogorov24

random strings is undecidable, and undecidable sets typically do not figure prominently25

in complexity-theoretic investigations.1 But what does it mean to be reducible to the26

Kolmogorov-random strings? Let us consider the prefix-free Kolmogorov complexity K27

(which is one of the most-studied types of Kolmogorov complexity), and recall that different28

universal Turing machines U give a slightly different Kolmogorov measure KU . Then if29

we say “A is reducible to the K-random strings” we probably mean that A is reducible30

to the KU random strings, no matter which universal machine U we are using. But it31

turns out that the class of languages that can be solved in polynomial time with an oracle32

that returns KU (q) for any query q—regardless of which universal machine U is used—is a33

complexity class that contains NEXP and lies in EXPSPACE [25, 13, 31].2 There has been34

substantial interest in obtaining a precise understanding of which problems can be reduced35

in this way to the Kolmogorov complexity function under different notions of reducibility36

[2, 3, 9, 7, 8, 12, 13, 14, 22, 25, 32, 31, 34, 35, 48], but until now, no previously studied37

complexity class has been characterized in this way, with the exception of P [8, 48]. (The38

1 We do wish to highlight the recent work of Ilango, Ren, and Santhanam [39], who related the existence
of one-way functions to the average case complexity of computing Kolmogorov complexity.

2 More specifically, it is shown in [13] that all decidable sets with this property lie in EXPSPACE, and it
is shown in [25] that there are no undecidable sets with this property. Hirahara shows in [32] that every
set in EXPNP (and hence in NEXP) has this property.
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2 Kolmogorov Complexity Characterizes Statistical Zero Knowledge

characterizations of P obtained in this way can be viewed as showing that certain limited39

polynomial-time reductions are useless when using the Kolmogorov complexity function as40

an oracle.)41

Faced with this lack of success, it was proposed in [3, Open Question 4.8] that a more42

successful approach might be to consider reductions to approximations to the Kolmogorov43

complexity function. Saks and Santhanam [48] took the first significant step in this direction,44

by showing the following results:45

▶ Theorem 1 (Saks & Santhanam [48]). 1. Although (by the work of Hirahara [32]) every46

language in EXPNP is reducible in deterministic polynomial time to any function that47

differs from K by at most an additive O(log n) term, no decidable language outside of P48

is reducible to all approximations to K that differ by an error margin e(n) = ω(log n) via49

an “honest” deterministic polynomial-time nonadaptive reduction.50

2. Although (by the work of Hirahara [31]) every language in NEXP is reducible via random-51

ized nonadaptive reductions to any function that differs from K by at most an additive52

O(log n) term, no decidable language outside of AM ∩ coAM is reducible to all approxi-53

mations to K that differ by an error margin e(n) = ω(log n) via an “honest” probabilistic54

polynomial-time nonadaptive reduction.55

3. No decidable language outside of SZK is randomly m-reducible to each ω(log n) approxi-56

mation to the K-random strings.357

This is not the first time that the complexity class SZK (for Statistical Zero Knowledge58

has arisen in the context of investigations relating to Kolmogorov complexity. In particular,59

SZK and its “non-interactive” subclass NISZK have been studied in connection with a version60

of time-bounded Kolmogorov complexity, which in turn is studied because of its connection61

with the Minimum Circuit Size Problem (MCSP) [11, 14]. These problems lie at the heart of62

what has come to be called meta-complexity: the study of the computational difficulty of63

answering questions about complexity.64

Allender [2] proposed an intriguing research program towards the P = BPP conjecture.65

The class P can be characterized by the class of languages reducible to the set of Kolmogorov-66

random strings under polynomial-time disjunctive truth-table reductions [8]. Similarly, he67

conjectured that BPP can also be characterized by polynomial-time truth-table reductions68

to the set of Kolmogorov-random strings, and envisioned that such a completely new69

characterization of complexity classes would give us new insights into BPP, especially from70

the perspective of computability theory. However, his conjecture was refuted by Hirahara71

[32] under a plausible complexity-theoretic assumption.72

In this paper, we show that SZK, NISZK and their logspace variants SZKL and NISZKL73

can be characterized by reductions to approximations to the Kolmogorov complexity function.74

More specifically, we define a promise problem R̃K whose YES instances are strings of75

high Kolmogorov complexity, and whose NO instances are strings with significantly lower76

Kolmogorov complexity, and we show the following:77

1. A decidable promise problem is randomly reducible to R̃K via an honest polynomial time78

reduction if and only it is in NISZK. (Theorem 15)79

3 Although the statement of this theorem in [48] does not mention “honesty,” the proof requires that the
approximation error be ω(log n), where n is the input size, rather than the query size [49]. The proof of
[48, Theorem 39] shows that, under this assumption, all queries on an input x can be assumed to have
the same length, greater than |x|. (See Lemma 6 for a similar result.) An earlier version of our paper
[17] mistakenly interpreted this as holding when the approximation error is a function of the query size,
and consequently our main theorems were stated without assuming “honesty”.
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2. A decidable promise problem is randomly reducible to R̃K via an honest logspace or NC0
80

reduction if and only it is in NISZKL. (Theorem 32)81

3. Analogous characterizations of SZK and SZKL are given in terms of probabilistic honest82

nonadaptive reductions. (Theorems 28 and 34)83

We envision that our new characterization of these complexity classes would improve our84

understanding of zero knowledge interactive proof systems in future. Zero knowledge85

interactive proof systems have many applications in cryptographic protocols, and they have86

been studied very widely. We refer the reader to the excellent survey by Vadhan for more87

background [50]. For our purposes, the complexity classes of interest to us (SZK, NISZK,88

SZKL, and NISZKL) can be defined in terms of their complete problems. But first, we need89

to define some basic notions and provide some background.90

2 Preliminaries91

We assume familiarity with basic complexity classes such as P, L, and AC0; we view these92

as classes of functions, as well as of languages. We also will refer to the class of functions93

computed in NC0, where each output bit depends on at most O(1) input bits. For circuit94

complexity classes such as NC0, and AC0, by default we assume that the circuit families are95

“First-Order-uniform” as discussed in [5, 20, 40]. This coincides with Dlogtime-uniform AC0,96

and what one might call “Dlogtime-uniform AC0-uniform” NC0. (We refer the reader to [52]97

for more background on circuit uniformity.) When we need to refer to nonuniform circuit98

complexity, we will be explicit.99

All of these classes give rise to restrictions of Karp reducibility ≤P
m, such as ≤L

m, ≤AC0

m ,100

and ≤NC0

m . We will also discuss projections (≤proj
m ), which are ≤NC0

m reductions in which each101

output bit depends on at most one input bit. Thus projections are computed by circuits102

consisting of constants, wires, and NOT gates.103

For any class of functions C and type of reducibility r (such as m-reducibility, truth-104

reducibility, Turing reducibility, or other notions considered in this paper) if there is some105

ϵ > 0 such that all queries made by the ≤C
r reduction on inputs of length n have length at106

least nϵ, the reduction is said to be “honest”, and we use the notation ≤C
hr to denote this.107

A promise problem A is a pair of disjoint sets (YA, NA) of YES instances and NO instances,108

respectively. A solution to a promise problem is any set B such that YA ⊆ B and NA ⊆ B.109

A don’t-care instance of A is any string that is not in YA ∪ NA. A language can be viewed as110

a promise problem that has no don’t-care instances.111

We say that a promise problem A = (Y, N) is decidable if Y and N are decidable sets.112

Observe that if B = (Y ′, N ′) with Y ′ ⊆ Y and N ′ ⊆ N , then any solution to A is also a113

solution to B. Such subproblems of decidable promise problems are intuitively “decidable”,114

but are not necessarily decidable according to our definition. Since there are uncountably115

many subsets of Y and N for any nontrivial promise problem, clearly not every intuitively116

“decidable” promise problem can be decidable.117

When defining reductions between two promise problems A and B, there are two options.118

Either119

for every solution S to B there is a reduction from A to S, or120

there is a reduction that correctly decides A when given any solution S for B.121

As it turns out, these two notions are equivalent [30, 45]. Thus we shall always use the122

second approach, when defining notions of reducibility between promise problems.123

We assume that the reader is familiar with Kolmogorov complexity; more background124

on this topic can be found in references such as [43, 27]. Briefly, KU (x|y) = min{|d| :125
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U(d, y) = x}, and KU (x) = K(x|λ) where λ denotes the empty string.4 Although this126

definition depends on the choice of the Turing machine U , we pick some “universal” machine127

U ′ and define K(x|y) to be KU ′(x|y); for every machine U , there is a constant c such that128

K(x|y) ≤ KU (x|y) + c. One important non-trivial fact regarding Kolmogorov complexity is129

known as symmetry of information:130

▶ Theorem 2. (Symmetry of Information)

K(x, y) = K(x) + K(y|x) ± O(log(K(x, y))).

Let R̃K be the promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that131

K(y) ≥ |y|/2 and the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2−e(|y|)132

for some approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1). All of our133

theorems hold for any e(n) in this range. We will sometimes assume that e(n) is computable134

in AC0, which is true for most approximation terms of interest.135

Since the approximation error e(n) is superlogarithmic, it is worth noting that R̃K can be136

defined equivalently either in terms of prefix-free or plain Kolmogorov complexity (because137

these two measures are within an additive logarithmic term of each other).138

Any language that is reducible to R̃K via any of the reducibilities that we consider is139

decidable, by a theorem of [25]. However, it is not known whether this carries over in any140

meaningful way to promise problems.141

The reader may wonder about the justification for the threshold K(y) ≥ |y|/2 in the142

definition of R̃K . The following proposition indicates that, for large error bounds e(n), using143

a larger threshold reduces to R̃K . Later, we show a related result for smaller thresholds.144

▶ Proposition 3. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)} for145

some AC0-computable threshold t(n) ≥ n
2 , and where N = {y : K(y) ≤ t(|y|) − |y|ϵ} for some146

1 > ϵ > 0. Then A≤proj
m R̃K .147

Proof. Let δ = ϵ
2 . Given an instance y of length n (for all large n), in AC0 we can find the148

least integer i < n such that 2t(n) − n + 5 log n + (2(2n)δ − nϵ) ≤ i ≤ 2t(n) − n − 3 log n.149

Let z = y0i. Then K(z) ≤ K(y) + 2 log i + O(1). Similarly, K(y) ≤ K(z) + 2 log i + O(1),150

and hence K(z) ≥ K(y) − 2 log i − O(1).151

Thus if y ∈ Y , then K(z) ≥ t(n) − 2 log i − O(1) > (t(n) − n
2 ) + n

2 − 3 log n ≥ n+i
2 = |z|

2 .152

And if y ∈ N , then K(z) ≤ t(n) − nϵ + 2 log i + O(1) < (t(n) − n
2 ) + n

2 − nϵ + 2 log i + O(1) ≤153

n+i
2 − (n + i)δ = |z|

2 − |z|δ < |z|
2 − e(|z|).154

Thus y ∈ Y implies z ∈ Y
R̃K

and y ∈ N implies z ∈ N
R̃K

. ◀155

Randomized reductions play a central role in the results that we will be presenting. Here156

is the basic definition:157

▶ Definition 4. A promise problem A = (Y, N) is ≤RP
m -reducible to B = (Y ′, N ′) with158

threshold θ if there is a polynomial p and a deterministic Turing machine M running in time159

p such that160

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.161

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] = 1.162

4 This is actually the definition of so-called “plain” Kolmogorov complexity, although the letter K is
traditionally used for the “prefix-free” Kolmogorov complexity. These two measures differ by at most
a logarithmic term, and our theorems hold for either measure. For simplicity, we have presented the
simpler definition.
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If there is some ϵ > 0 such that, for every x and every r of length p(|x|), M(x, r) has length163

≥ |x|ϵ, then we say that M computes an “honest” reduction, and we write A≤RP
hmB.164

Randomized reductions were introduced by Adleman and Manders, as a probabilistic165

generalization of ≤P
m reducibility5 [1]. They used the threshold θ = 1

2 . One of the most166

important applications of randomized reductions is the theorem of Valiant and Vazirani167

[51], where they showed that SAT reduces to Unique Satisfiability (USAT) via a randomized168

reduction, with threshold θ = 1
4n .6 The reader may expect that—as is so often the case with169

probabilistic notions in computational complexity theory—the choice of threshold is arbitrary,170

and can be changed with no meaningful consequences. However, this does not appear to be171

true; we refer the reader to the work of Chang, Kadin, and Rohatgi [26] for a discussion of this172

point. As they point out, different thresholds are appropriate in different situations. If A≤RP
m B173

with threshold 1
4n (for instance), where the set ORB = {(x1, . . . , xk) : ∃i, xi ∈ B}≤P

mB, then174

it is indeed true that A≤RP
m B with threshold 1 − 1

2n [26]. But Chang, Kadin, and Rohatgi175

point out that it is far from clear that USAT has this property. We are concerned here with176

problems that are ≤RP
hm-reducible to R̃K ; just as in the case with randomized reductions177

to USAT, we must be careful about which threshold θ we choose. For the remainder of178

this paper, we will use the threshold θ = 1 − 1
nω(1) . (For a discussion of why we select this179

threshold, see Remark 17.)180

The following proposition is the counterpart to Proposition 3, for thresholds smaller than181

n
2 .182

▶ Proposition 5. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)}183

for some polynomial-time computable threshold t(n) ≤ n
2 , and where N = {y : K(y) ≤184

t(|y|) − |y|ϵ} for some 1 > ϵ > 0. Then A≤RP
hmR̃K .185

Proof. Given an instance y of length n (for all large n), in polynomial time we can find the186

least integer i < n such that 2t(n) − 2nϵ + 2e(3n) + 4 log n ≤ i ≤ 2t(n) − e(n) − 2c log n (for187

a constant c that will be picked later).188

Pick a random string r of length n. Let z = yr0i. Then K(z) ≤ K(y) + 2 log i + |r|.189

Also, by symmetry of information, K(z) ≥ K(yr0i|y0i) + K(y0i) − c′ log n (for some fixed190

constant c′, and hence with probability at least 1 − 1
nω(1) , K(z) ≥ (n − e(n)

2 ) + K(y) − c log n191

(for some fixed c, which is the constant c that we use above in defining i).192

Thus if y ∈ Y , then with high probability K(z) ≥ t(n) + (n − e(n)
2 ) − c log n > n + i

2 = |z|
2 .193

And if y ∈ N , then K(z) ≤ (t(n) − nϵ) + 2 log i + |r| ≤ n + i
2 − e(3n) ≤ |z|

2 − e(|z|).194

Thus y ∈ Y implies z ∈ Y
R̃K

(with probability ≥ 1 − 1
nω(1) ), and y ∈ N implies195

z ∈ N
R̃K

. ◀196

We will also need the following lemma, which states that short queries to R̃K can be197

replaced by (longer) padded queries. Since R̃K is defined so as to distinguish between strings198

of length n having Kolmogorov complexity ≥ n/2 and those with complexity ≤ n/2−ω(log n),199

the idea is to pad the (short) query with a string that has complexity around half of its200

length — with some room to adjust for the difference needed to preserve the Yes and No201

instances.202

5 We assume that the reader is familiar with Karp reducibility ≤P
m.

6 Recently, there have also been several papers showing that certain meta-complexity-theoretic problems
are NP-complete under randomized reductions, including [10, 33, 36, 37, 38, 44, 46].
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▶ Lemma 6 (Query padding). Let R̃K(g) denote the parameterized version of R̃K with Yes203

instances y satisfying K(y) ≥ |y|/2 and No instances satisfying K(y) ≤ |y|/2 − g(|y|). If204

g(n) = ω(log n) and A≤RP
hmR̃K(g), then for some δ > 0, A≤RP

hmR̃K(2g(nδ)/3) via a reduction205

in which all queries on input x have the same length.206

Proof. We assume that the “gap” function g is nondecreasing and computable in AC0. If207

A≤RP
hmR̃K(g) via a reduction computable in time p(n) where each query has length at least208

nϵ, consider the reduction that replaces each query q of length k by queries of the form209

qy = qr0 m−k
2 −a(n) where m = p(n) and r ∈ {0, 1} m−k

2 +a(n) is sampled uniformly at random.210

(Here, a(n) is a function that will be specified below.) Pick δ so that p(n)δ < nϵ. We recall211

that by the Symmetry of Information theorem :212

K(q) + K(y|q) − s log m ≤ K(qy) ≤ K(q) + K(y|q) + s log m213

for some constant s > 0.214

Case 1 : q ∈ Y
R̃K (g)

215

Thus K(q) ≥ k
2 , and hence, if we set b(n) = (log(g(nϵ)/ log n)) log n = ω(log n), then with216

probability at least 1 − 1
nω(1)217

K(qy) ≥ K(q) + K(y|q) − s log m ≥ k

2 + m − k

2 + a(n) − b(n) − s log m218

where the second inequality holds with probability 1− 1
nω(1) since there are at most 1

nω(1) frac-219

tion of y ∈ {0, 1} m−k
2 +a(n) satisfying K(y|q) ≤ (m−k)

2 + a(n) − b(n). Setting a(n) = g(nϵ)/4220

gives K(qy) ≥ m
2 with probability at least 1 − 1

nω(1) for all large n.221

222

Case 2 : q ∈ N
R̃K (g)

223

We have K(q) ≤ k
2 − g(k) ≤ k

2 − g(nϵ) and need to show that K(qy) ≤ m
2 − 2g(mδ)/3.224

K(qy) ≤ K(q) + K(y|q) + s log m ≤ k

2 − g(nϵ) +
(

m − k

2 + g(nϵ)/4
)

+ O(log m)225

<
m

2 − g(nϵ) + g(nϵ)/3 <
m

2 − 2g(mδ)/3.

◀226

▶ Corollary 7. For any of the honest probabilistic reductions to R̃K that we consider in this227

paper, we may assume without loss of generality that, for each input x, all queries made by228

the reduction on input x have the same length.229

Proof. If A is reducible to R̃K using some approximation error e(n) with e(n) = ω(log n)230

and e(n) = no(1), then, by Lemma 6, it is also reducible to R̃K using approximation error231

2e(nδ)
3 , which also is ω(log n) and no(1) via a reduction with the desired characteristics. ◀232

We will also need a “two-sided error” version of random reducibility, analogous to the233

relationship between RP and BPP.234

▶ Definition 8. A promise problem A = (Y, N) is ≤BPP
m -reducible to B = (Y ′, N ′) with235

threshold θ > 1
2 if there is a polynomial p and a deterministic Turing machine M running in236

time p such that237

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.238

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] ≥ θ.239
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Similar to the definition of ≤RP
hm, we say that A≤BPP

hm B if M is honest.240

The complexity classes SZK (Statistical Zero Knowledge) and NISZK (Non-Interactive241

Statistical Zero Knowledge) are defined in terms of interactive proof protocols (with a Prover242

interacting with a probabilistic polynomial-time Verifier, together with a Simulator that243

can produce a distribution on transcripts that is statistically close to the distribution on244

messages that would be exchanged by the prover and the verifier on YES instances. But245

for our purposes, it will suffice (and be simpler) to present alternative definitions of these246

classes, in terms of their standard complete problems.247

▶ Definition 9 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

YEA = {(C, k) | H(X) > k + 1}
NEA = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.248

▶ Theorem 10 ([29]). EA is complete for NISZK under honest ≤P
m reductions.249

We will actually take this as a definition; we say that (Y, N) is in NISZK if and only if250

(Y, N)≤P
mEA.251

▶ Definition 11 (Promise-SD). SD (Statistical Difference) is the promise problem

YSD =
{

(C, D)
∣∣∣∣ ∆(C, D) >

2
3

}
,

NSD =
{

(C, D)
∣∣∣∣ ∆(C, D) <

1
3

}
.

where ∆(C, D) denotes the statistical distance between the distributions represented by the252

circuits C and D.253

▶ Theorem 12 ([47]). SD is complete for SZK under honest ≤P
m reductions.254

Thus we will define SZK to be the class of promise problems (Y, N) such that (Y, N)≤P
mSD.255

We will also be making use of a restricted version of the NISZK-complete problem EA:256

▶ Definition 13 (Promise-EA′). We define Promise-EA′ to be the promise problem

YEA′ = {C | H(X) > n − 2}

NEA′ = {C | |Supp(X)| < 2n−nϵ

}

where C is a circuit C : {0, 1}m → {0, 1}n representing a probability distribution X on {0, 1}n
257

induced by the uniform distribution on {0, 1}m, and Supp(X) denotes the support of X, and258

ϵ is some fixed constant, 0 < ϵ < 1.259

▶ Lemma 14. EA′ is complete for NISZK under honest ≤P
m reductions.260

Proof. Lemma 3.2 in [29] shows that the following promise problem A is complete for NISZK:261

All instances are of the form (C, 1s), where C is a circuit with m inputs and n outputs,262

representing a distribution (also denoted C) on {0, 1}n. (C, 1s) is a YES instance if C has263

statistical distance at most 2−s from the uniform distribution on {0, 1}n. (C, 1s) is in the set264

of NO instances if the support of C has size at most 2n−s. Furthermore, the reduction g265

from EA to A has the property that the parameter s is at least nϵ for some constant ϵ > 0.266

Also, it is observed in Lemma 4.1 of [29] that the mapping (C, 1s) 7→ (C, n − 3) (i.e., the267

mapping that leaves the circuit C unchanged) is a reduction from A to EA. Combining these268

two results from [29] completes the proof of the lemma. ◀269
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3 A New Characterization of NISZK270

We are now ready to present the characterization of NISZK by reductions to the set of271

Kolmogorov-random strings.272

▶ Theorem 15. The following are equivalent, for any decidable promise problem A:273

1. A ∈ NISZK.274

2. A≤RP
hmR̃K .275

3. A≤BPP
hm R̃K .276

Proof. In order to show that A ∈ NISZK implies A≤RP
hmR̃K , it suffices to reduce the NISZK-277

complete problem EA′ to R̃K (by Lemma 14).278

Corollary 18 of [14] states that every promise problem in NISZK reduces to the problem279

of computing the time-bounded Kolmogorov complexity KT via a probabilistic reduction280

that makes at most one query along any computation path. Here we observe that the same281

approach can be used to obtain a ≤RP
hm reduction to R̃K .282

Consider a probabilistic reduction that takes an instance C of EA′ and constructs a string283

y that is the concatenation of t random samples from C (i.e., y = C(r1)C(r2) . . . C(rt) for284

uniformly chosen random strings r1, . . . , rt, for some polynomially-large t). Lemma 16 of [14]285

shows that, with probability exponentially close to 1, if C is a YES instance of EA′, then286

the time-bounded Kolmogorov complexity KT(y) is greater than a threshold θ of the form287

θ = t(n − 2) − t1−α for some constant α > 0. (Briefly, this is because a good approximation288

to the entropy of a sufficiently “flat” distribution can be obtained by computing the KT289

complexity of a string composed of many random samples from the distribution [16].)290

As in the argument of [14, Theorem 17], we can choose t to be an arbitrarily large291

polynomial nk. Choosing k to be large enough (relative to 1/α, and also so that nk is292

large relative to |C|), we have θ > nk(n − 3) for all large n, and hence for all large YES293

instances we have that, with probability exponentially close to 1, the string y satisfies294

KT(y) > nk(n − 3) = ℓ − ℓδ for some δ < 1, where |y| = tn = ℓ. The focus of [14] was on the295

measure KT, but (as was previously observed in [4, Theorem 1]) the analysis in [14, Lemma296

16] carries over unchanged to the setting of non-resource-bounded Kolmogorov complexity K.297

(That is, in obtaining the lower bound on KT(y), the probabilistic argument is just bounding298

the number of short descriptions, and not making use of the time required to build y from299

a description.) Thus, with high probability, the probabilistic routine, when given a YES300

instance of EA′, produces a string y where K(y) ≥ |y| − |y|δ.301

On the other hand, if C is a NO instance, then the support of C has size at most302

2n−nϵ , and thus any string z in the support of C has K(z|C) ≤ n − nϵ + O(1). Thus303

any string y that is produced by M in this case has K(y) ≤ t(n − nϵ) + |C| + O(1) =304

nk(n − nϵ) + |C| + O(1). Since t = nk was chosen to be large (with respect to the length305

of the input instance C), we may assume |C| < nk+ϵ − 4nk. Thus if C is any large NO306

instance, we have K(y) < nk(n−4) = ℓ−ℓδ′ for some δ′ > δ. To summarize, with probability307

1, the probabilistic routine, when given a NO instance of EA′, produces a string y where308

K(y) ≤ |y| − |y|δ′ ≤ (|y| − |y|δ) − |y|ρ for some ρ > 0. We can now conclude that EA′≤RP
hmR̃K309

by appealing to Proposition 3.310

To complete the proof of the theorem, we need to show that if A is any decidable promise311

problem that has a randomized poly-time m-reduction (≤BPP
hm ) with error 1/nω(1) to the312

promise problem R̃K then A ∈ NISZK. This was essentially shown by Saks and Santhanam313

[48, Theorem 39], but we present a complete argument here. Let M be the probabilistic314

machine that computes this ≤BPP
hm reduction.315
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Let y = f(x, r) ∈ {0, 1}m denote the output that M produces, where x is an instance316

of A and r denotes the randomness used in the reduction. By Corollary 7, we may assume317

that, for each x, all outputs of the form f(x, r) have the same length. Given an x ∈ {0, 1}n,318

observe that there is a polynomial-sized circuit Cx such that Cx(r) = f(x, r). According to319

the correctness of the reduction, we have320

x ∈ YA ⇒ Pr
r

[M(x, r) ∈ Y
R̃K

] ≥ 1 − 1/nω(1) and321

322

x ∈ NA ⇒ Pr
r

[M(x, r) ∈ N
R̃K

] ≥ 1 − 1/nω(1).323

In other words, if x is a YES instance, then K(y) ≥ |y|/2 with probability at least324

1 − 1/nω(1) and if x is a NO instance, then K(y) ≤ |y|/2 − e(|y|) with probability at least325

1 − 1/nω(1). (Recall that e(n) is the error term in the approximation R̃K .) We will now show326

that there is an entropy threshold that separates these two distributions, which will provide327

an NISZK upper bound on resolving A.328

▷ Claim 16. If x is a YES instance, then the entropy of the distribution Cx(r) is at329

least m/2 − e(m)/2 + 1 and if x is a NO instance, then the entropy of Cx(r) is at most330

m/2 − e(m)/2 − 1.331

We first show that if the claim holds, then A ∈ NISZK. Let k = m/2 − e(m)/2. The332

reduction given above reduces membership in A to the Entropy Approximation (EA) problem333

on the circuit description Cx with threshold k. Given x, we can compute the map x 7→ Cx334

in time nO(1). Recall that EA is complete for NISZK. Since NISZK is closed under ≤P
m335

reductions, we can conclude that A ∈ NISZK.336

Proof of Claim 16. Assume not and let x be the lexicographically first string that violates337

the above claim (for some length n). Since the reduction is a computable function, and since338

A is a decidable promise problem, K(x) = O(log n). We have the following two cases to339

consider:340

Case 1 — x is a YES instance: From the correctness of the reduction we have that341

with probability 1 − 1/nω(1) the output y is a string with Kolmogorov complexity at least342

|m|/2. Since x is a violator, we have H(Cx(r)) < k + 1 = m/2 − e(m)/2 + 1.343

On one hand, the distribution Cx(r) has large enough probability mass on the high-344

complexity strings. On the other hand, we have that since x is a low-complexity string345

itself, the elements of Cx(r) with highest mass can be identified by short descriptions. This346

leads to a contradiction of simultaneously having large enough mass on the low and the high347

K-complexity strings.348

Let t be the entropy of the distribution Cx(r). Let Y = {y1 . . . y2t+log m} be the heaviest349

elements (in terms of probability mass) of Cx(r) in decreasing order. Conditioned on x, the350

K complexity of any of these strings yi is at most t + O(log m). Since K(x) = O(log n) =351

O(log m), we have K(yi) ≤ t + O(log m) < m/2. Next, we will show that there is at least352

mass 1
m on these strings within Cx(r). This will contradict the correctness of the reduction353

for x ∈ L since it cannot output strings with K complexity at most |m|/2 with probability354

1/nΩ(1).355

Assume not, i.e., the mass on elements of Y is at most 1
m . Observe that elements of356

Supp(Cx(r))−Y have mass no more than 2−(t+log m) each. Then, the contribution to entropy357

by these elements is at least (1 − 1/m)(t + log m) > t (which is a contradiction).358

Case 2 — x is a NO instance: From the correctness of the reduction we have that359

with probability at least 1 − 1/nω(1) the output f(x, r) is a string with K complexity at most360

m/2 − e(m). Since x is a violator, we also have H(Cx(r)) > k − 1 = m/2 − e(m)/2 − 1.361
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We claim that the following holds:362

Pr
y∼f(x,r)

[K(y) > m/2 − e(m)] ≥ 1/m.363

Assume not. Then, the entropy of f(x, r) is at most (1/m)(m) + (1 − 1/m)(m/2 − e(m)) ≤364

m/2 − e(m) + 1 < m/2 − e(m)/2 − 1, which contradicts the lower bound on the entropy of365

f(x, r) above.366

Since the claim holds, with probability at least 1/m the output of the reduction is not an367

element of the set N
R̃K

. Thus, the reduction fails with probability 1/nΩ(1). ◁368

This completes the proof of Theorem 15. ◀369

▶ Remark 17. The proof of the preceding theorem illustrates why we define the error threshold370

in our randomized reductions to be 1
nω(1) . If we assumed that A were ≤BPP

hm -reducible to371

R̃K with an inverse polynomial threshold (say q(n)−1), then by Corollary 7 we may assume372

that the length of each output produced has length Q(n) = ω(q(n)) (by padding with some373

uniformly-random bits). For strings x that are NO instances of A, when the reduction to374

R̃K fails with probability 1/q(n), our calculation of the entropy of Cx will involve a term of375

1
q(n) Q(n) (because the queries made in this case can have nearly Q(n) bits of entropy). This376

is more than the entropy gap between the distributions corresponding to the YES and NO377

outputs.378

▶ Remark 18. Although our focus in this paper is on R̃K , we note that one can also define379

an analogous problem R̃KT in terms of the time-bounded measure KT. The approach used380

in Theorem 15 also shows that every problem in NISZK is ≤BPP
hm reducible to R̃KT, although381

we do not know how to show hardness under ≤RP
hm reductions. (A random sample from the382

low-entropy distribution is guaranteed to always have low K-complexity, but the tools of383

[14, 16] only guarantee that the output has low KT-complexity with high probability.)384

4 More Powerful Reductions385

Just as ≤RP
m and ≤BPP

m reducibilities generalize the familiar ≤P
m (Karp) reducibility to the386

setting of probabilistic computation, so also are there probabilistic generalizations of determin-387

istic non-adaptive reductions (also known as truth-table reductions). Before presenting these388

probabilistic generalizations, let us review the previously-studied deterministic non-adaptive389

reducibilities that are relevant for this investigation. Some of them may be unfamiliar to the390

reader.391

Ladner, Lynch, and Selman [42] considered several possible ways to define polynomial-time392

versions of the truth-table reducibility that had been studied in computability theory, before393

settling on the definition of ≤P
tt reducibility below. They considered only reductions between394

languages; the corresponding generalization to promise problems is due to [47]. In order to395

state this generalization formally, let us define the characteristic function χA of a promise396

problem A = (Y, N) to take on the following values in three-valued logic:397

If x ∈ Y , then χA(x) = 1.398

If x ∈ N , then χA(x) = 0.399

If x ̸∈ (Y ∪ N), then χA(x) = ∗.400

A Boolean circuit with n variables, when given an assignment in {0, 1, ∗}n, can be evaluated401

using the usual rules of three-valued logic. (See, e.g., [47, Definition 4.6].)402
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▶ Definition 19. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤P
ttB if403

there is a function f computable in polynomial time, such that, for all x, f(x) is of the form404

(C, z1, z2, . . . , zk) where C is a Boolean circuit with k input variables, and (z1, . . . , zk) is a405

list of queries, with the property that406

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.407

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.408

This definition ensures that the circuit C, viewed as an ordinary circuit in 2-valued logic,409

correctly decides membership for all x ∈ (Y ∪ N) when given any solution S for B as an410

oracle.411

If C is a Boolean formula, instead of a circuit, then one obtains the so-called “Boolean412

formula reducibility” (denoted by A≤P
bfB), which was discussed in [42] and studied further413

in [41, 24]. (See also [23, 6].)414

▶ Theorem 20. SZK = {A : A≤P
bfEA} = {A : A≤P

hbfEA}.415

Proof. EA ∈ NISZK ⊆ SZK. Sahai and Vadhan [47, Corollary 4.14] showed that SZK is416

closed under NC1-truth-table reductions, but the proof carries over immediately to ≤P
bf417

reductions. Thus {A : A≤P
bfEA} ⊆ SZK. The other inclusion was shown in [29, Proposition418

5.4] (and the reduction to EA they present is honest). ◀419

Notably, it is still an open question if SZK is closed under ≤P
tt reducibility.420

Our characterization of SZK in terms of reductions to R̃K relies on the following proba-421

bilistic generalization of ≤P
bf :422

▶ Definition 21. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
bf B423

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial424

time, and a polynomial p, such that, for all x, f(x) is a Boolean formula C (with k = |x|O(1)
425

variables), with the property that426

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,427

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,428

where429

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ430

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ431

χg,B(x, i) = ∗ otherwise.432

Intuitively, ≤BPP
bf reductions generalize ≤P

bf reductions, in that the queries are now generated433

probabilistically, and the probability that any query returns a definite YES or NO answer is434

bounded away from 1
2 . Again, if all queries are of length at least nϵ, then we write A≤BPP

hbf B.435

The following proposition is immediate from the definitions.436

▶ Proposition 22. If A≤P
hbfB and B≤BPP

hm C with threshold θ, then A≤BPP
hbf C with threshold437

θ.438

▶ Corollary 23. SZK ⊆ {A : A≤BPP
hbf R̃K} with threshold 1 − 1

nω(1) .439

Proof. Immediate from Theorem 20 and Theorem 15. ◀440

There are (at least) three other variants of probabilistic nonadaptive reducibility that441

we should mention. The first of these is the notion that goes by the name “nonadaptive442

BPP reducibility” or “randomized nonadaptive reductions” in work such as [48, 14, 21] and443

elsewhere.444
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▶ Definition 24. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
tt B445

if there are a function f computable in polynomial time and a polynomial p such that, for all446

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean447

circuit with k input variables, and (z1, . . . , zk) is a list of queries, with the property that448

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .449

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0 ≥ 2
3 .450

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , by the usual method451

of taking the majority vote of several independent trials.)452

Saks and Santhanam showed that if A≤BPP
htt R̃K , then A ∈ AM ∩ coAM [48]. The most453

important ways in which ≤BPP
bf and ≤BPP

tt reducibility differ from each other, are (1) in ≤BPP
bf454

reducibility, the query evaluation is performed by a Boolean formula, instead of a circuit,455

and (2) in ≤BPP
tt reducibility, the circuit that is chosen to do the evaluation depends on the456

choice of random bits, whereas in ≤BPP
bf reducibility, the formula is chosen deterministically.457

Making different choices in these two dimensions gives rise to two other notions:458

▶ Definition 25. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
rbf B459

if there are a function f computable in polynomial time and a polynomial p such that, for all460

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean461

formula with k input variables, and (z1, . . . , zk) is a list of queries, with the property that462

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .463

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0] ≥ 2
3 .464

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , simply by incorpo-465

rating a Boolean formula that takes the majority vote of several independent trials.).466

The notation ≤BPP
rbf is intended to suggest “random Boolean formula”, since the Boolean467

formula is chosen randomly.468

▶ Definition 26. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
circ B469

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial470

time, and a polynomial p, such that, for all x, f(x) is a Boolean circuit (with k = |x|O(1)
471

variables), with the property that472

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,473

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,474

where475

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ476

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ477

χg,B(x, i) = ∗ otherwise.478

If the reduction is honest, we write A≤BPP
hcircB.479

We show in this paper that SZK is the class of problems ≤BPP
hbf reducible to R̃K . We are480

not able to show that the class of problems (honestly) ≤BPP
rbf reducible to R̃K is contained in481

SZK, although we do observe that SZK is closed under this type of reducibility.482

▶ Theorem 27. SZK = {A : A≤BPP
rbf EA}.483

Proof. The inclusion of SZK in {A : A≤BPP
rbf EA} is immediate from Theorem 20. For the484

other direction, let A≤BPP
rbf EA. Thus there are a function f computable in polynomial485

time, and a polynomial p such that, for all x and all r of length p(|x|), f(x, r) is of the486

form (C, z1, z2, . . . , zk), where evaluating the Boolean formula C(χB(z1), . . . , χB(zk)) gives a487

correct answer for all x ∈ Y ∪N with error at most 2−n2 . Here is a zero-knowledge interactive488
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protocol for A. The verifier sends a random string r to the prover. The prover and the verifier489

can each compute f(x, r) = (C, z1, z2, . . . , zk), and then (as in [47, Corollary 4.14], compute an490

instance (D, E) of SD such that (D, E) is a YES instance of SD if C(χB(z1), . . . , χB(zk)) = 1,491

and (D, E) is a NO instance of SD if C(χB(z1), . . . , χB(zk)) = 0. The prover and the verifier492

can then run the SZK protocol for the SD instance (D, E). The verifier clearly accepts each493

YES instance with high probability, and cannot be convinced to accept any NO instance494

with more than negligible probability. The simulator, given input x, will generate the string495

r uniformly at random, and then compute f(x, r) and compute the instance (D, E) as above,496

and then produce the transcript that is produced by the SD simulator on input (D, E).497

It is straightforward to observe that, if x ∈ Y , then this distribution is very close to the498

distribution induced by the honest prover and verifier. ◀499

5 A New Characterization of SZK500

▶ Theorem 28. The following are equivalent, for any decidable promise problem A:501

1. A ∈ SZK.502

2. A≤BPP
hbf R̃K with threshold 1 − 1

nω(1) .503

Proof. Corollary 23 states that all problems in SZK ≤BPP
hbf -reduce to R̃K . Thus we need504

only show the converse containment. Let A≤BPP
hbf R̃K . As in the proof of Theorem 15, we505

will build circuits Cx,i(r) that model the computation that produces the ith query that is506

asked on input x, when using random bits r. As in the proof of Theorem 15, we claim that507

if a 1 − 1
nω(1) fraction of the strings of the form Cx,i(r) are in Y

R̃K
, then Cx,i represents a508

distribution with entropy at least m/2 − e(m)/2 + 1, and if a 1 − 1
nω(1) fraction of the strings509

of the form Cx,i(r) are in N
R̃K

, then Cx,i represents a distribution with entropy at most510

m/2 − e(m)/2 − 1. Indeed, the proof is essentially identical. Assume that there are infinitely511

many x that are not don’t care instances, where replacing the R̃K oracle with the EA oracle512

does not yield the correct answer. Given n, we can find the lexicographically-least string x513

of length n for which the reduction fails. Since the reduction fails, there must be some i such514

that the ith query in the formula yields the wrong answer. Thus, given (n, i), we can find x515

and build the circuit Cx,i of Kolmogorov complexity O(log n) that yields a correct answer516

when given R̃K as an oracle, but fails when queries are made to EA instead. The analysis is517

identical to the argument in the proof of Theorem 15. ◀518

We have nothing to say, regarding the problems that are reducible to R̃K via ≤BPP
tt or519

≤BPP
rbf reductions, other than to refer to the AM ∩ coAM upper bound provided by Saks and520

Santhanam [48]. We do have a somewhat better bound to report, regarding ≤BPP
circ reducibility.521

▶ Theorem 29. The following are equivalent, for any decidable promise problem A:522

1. A≤BPP
hcircR̃K with threshold 1 − 1

nω(1) .523

2. A≤P
httEA.524

3. A≤P
ttB for some B ∈ SZK.525

Proof. Items 2 and 3 are equivalent, by Theorem 20. Similarly, if A≤P
ttB for some B ∈ SZK,526

then we know that A≤P
httEA≤BPP

hbf R̃K . The composition of a ≤P
htt reduction with a ≤BPP

hbf527

reduction is clearly a ≤BPP
hcirc reduction. Finally, the proof of the remaining implication follows528

along the same lines as the proof of Theorem 28. ◀529
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6 Less Powerful Reductions530

The standard complete problems EA and SD remain complete for NISZK and SZK, respectively,531

even under more restrictive reductions such as ≤L
m, ≤NC0

m and ≤proj
m . In this section, we show532

that it is worthwhile considering probabilistic versions of ≤L
m, ≤AC0

m and ≤NC0

m reducibility to533

R̃K .534

▶ Definition 30. For a class C, a promise problem A = (Y, N) is ≤RC
m -reducible to B =535

(Y ′, N ′) with threshold θ if there are a function f ∈ C and a polynomial p such that536

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.537

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] = 1.538

A is ≤BPC
m -reducible to B with threshold θ if there are a function f ∈ C and a polynomial p539

such that540

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.541

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.542

We are particularly interested in the cases C = L, C = AC0, and C = NC0. Note especially543

that, in the definitions of ≤RL
m and ≤BPL

m , the logspace computation has full (two-way) access544

to the random bits r. This is consistent with the way that probabilistic logspace computation545

is used in the context of the “verifier” and “simulator” in the complexity classes SZKL and546

NISZKL [28, 14].547

SZKL, the “logspace version” of SZK, was introduced in [28], primarily as a tool to548

discuss the complexity of problems involving distributions realized by extremely limited549

circuits (such as NC0 circuits). It is shown in [28] that SZKL contains many of the problems550

of cryptographic significance that lie in SZK. NISZKL was introduced in [14] as the “non-551

interactive” counterpart to SZKL, by analogy with NISZK, primarily as a tool to investigate552

the complexity of computing time-bounded Kolmogorov complexity. It was subsequently553

studied in [15], where it was shown to be robust to several changes to the definition. It554

is shown in [28, 14] that complete problems for SZKL and NISZKL arise by considering555

restrictions of the standard complete problems for SZK and NISZK where the distributions556

under consideration are represented either by branching programs (in EABP), or by NC0
557

circuits where each output bit depends on at most 4 input bits (in SDNC0 and EANC0).558

Following the pattern we established in Section 2, we now define SZKL and NISZKL in559

terms of their complete problems, rather than presenting the definitions in terms of interactive560

proofs:561

▶ Definition 31. SZKL = {A : A≤proj
m SDNC0} = {A : A≤L

mSDBP}562

NISZKL = {A : A≤proj
m EANC0} = {A : A≤L

mEABP}.563

▶ Theorem 32. The following are equivalent, for any decidable promise problem A:564

A ∈ NISZKL565

A≤RNC0

hm R̃K566

A≤BPNC0

hm R̃K567

A≤RAC0

hm R̃K568

A≤BPAC0

hm R̃K569

A≤RL
hmR̃K570

A≤BPL
hm R̃K571

Proof. The proof that A ∈ NISZK implies A≤RNC0

hm R̃K proceeds as in the proof of Theorem 15,572

except that we appeal to [14, Corollary 43] (presenting a nonuniform ≤proj
m reduction from573

EANC0 to R̃K), instead of Corollary 18 in that paper. In more detail: as in the proof of574
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Theorem 15, given x, the reduction constructs a sequence of independent copies of EA, but575

now each distribution is represented by an NC0 circuit. The proof of Corollary 43 in [14]576

shows that these NC0 circuits can be constructed via uniform projections. Let f(x, r) denote577

the function that takes input x (an instance of the promise problem A) and random sequence578

r as input, and first constructs (via a projection) the sequence C1, C2, ..., C|x|O(1) of NC0
579

circuits, and then produces as output the result of partitioning the bits of r into inputs ri for580

each Ci, computing Ci(ri), and concatenating the results. Thus each output bit of f(x, r)581

is computed by a gadget that is connected to O(1) random bits (i.e., the bits that are fed582

into the circuit computing the distribution), along with at most one bit from the input x583

(determining the circuitry internal to the gadget). The rest of the analysis is similar to that584

in the proof of Theorem 15.585

If A is decidable and A≤BPL
m R̃K , then, as in the proof of Theorem 15, we build a device586

Cx(r) that simulates the computation that produces queries to R̃K on input x. However,587

now Cx is a branching program, and thus we replace queries to R̃K by queries to EABP. Since588

EABP ∈ NISZKL, this shows that A is also in NISZKL. Again, the analysis is similar to that589

in the proof of Theorem 15. ◀590

We end this section, with an analogous characterization of SZKL.591

▶ Definition 33. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤L
bfB592

if there is a function f computable in logspace such that, for all x, f(x) is of the form593

(C, z1, z2, . . . , zk) where C is a Boolean formula with k input variables, and (z1, . . . , zk) is a594

list of queries, with the property that595

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.596

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.597

Earlier work that studied ≤L
bf reducibility can be found in [23, 6].598

We say A≤BPL
bf B with threshold θ > 1

2 if there are functions f and g computable in599

deterministic logspace, and a polynomial p, such that, for all x, f(x) is a Boolean formula600

(with k = |x|O(1) variables), with the property that601

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,602

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,603

where604

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ605

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ606

χg,B(x, i) = ∗ otherwise.607

If the reduction is honest, then we write A≤BPL
hbf B608

(Similarly, one can define AC0 versions of ≤L
bf , although, since an AC0 circuit cannot609

evaluate a Boolean formula, we do not pursue that direction here.)610

▶ Theorem 34. The following are equivalent, for any decidable promise problem A:611

A ∈ SZKL.612

A≤L
bfEANC0 .613

A≤BPL
hbf R̃K with threshold 1 − 1

nω(1) .614

Proof. The first two items are equivalent, because (a) SZKL is closed under ≤L
bf reducibility615

[15], and (b) the argument in [29], showing that SZK ≤L
bf-reduces to NISZK carries over616

directly to SZKL and NISZKL. Furthermore, the reduction to EANC0 is length-increasing, and617

hence honest.618

Since EANC0 is complete for NISZKL, Theorem 32 implies that every A ∈ NISZKL is619

≤BPL
hbf -reducible to R̃K . The argument that every decidable A that ≤BPL

hbf -reduces to R̃K lies620

in SZKL is similar to the argument in Theorem 28. ◀621
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7 Discussion622

There are not many examples of natural computational problems that are known or conjec-623

tured to lie outside of P, such that the class of problems reducible to them via ≤P
m and ≤L

m624

(or ≤AC0

m ) reductions differ (or are conjectured to differ). Is it the case that the problems625

reducible to R̃K via ≤RP
hm and ≤RL

hm (or ≤RAC0

hm ) reductions differ? Or should this be taken as626

evidence that NISZK and NISZKL coincide?627

Similarly, there are not many examples of natural computational problems such that the628

classes of problems reducible to them via ≤P
tt and ≤P

bf reductions differ (or are conjectured to629

differ). For example, these reducibilities coincide for SAT [24]. Is it the case that ≤BPP
bf and630

≤BPP
circ reducibilities differ for R̃K? Or should this be taken as evidence that SZK is closed631

under ≤P
tt reducibility?632

Perhaps our new characterizations of statistical zero knowledge classes will be useful in633

answering these questions.634

It is known that every promise problem in NISZKL reduces to R̃K via nonuniform635

projections [14, 4]. The following quote from [4] is worth paraphrasing here:636

. . . no complexity class larger than NISZKL is known to be (non-uniformly) ≤AC0

m637

reducible to the Kolmogorov-random strings [14]. It seems unlikely that this is optimal.638

The discussion in [4] was referring to reductions to an oracle for the exact Kolmogorov-639

complexity function. Our results show that, for reductions to an approximation to the640

Kolmogorov-complexity function, NISZKL is essentially “optimal”.641

8 An Application642

Finally, let us observe that our new characterizations of NISZKL may open new avenues643

of attack on questions such as whether NP = NL. MKTP, the problem of computing KT644

complexity, lies in NP and is hard for co-NISZKL under nonuniform projections [14]. If645

MKTP ∈ NISZKL, then there must be a nonuniform projection f that takes strings of646

low KT-complexity (and hence low K-complexity) to strings of high K complexity, and647

simultaneously maps strings of high KT complexity to strings of low K-complexity. It is648

plausible that one could show unconditionally that no such projection can exist. Among649

other things, this would show that NP ̸= DET (where DET is the complexity class, containing650

NL, of problems that reduce to the determinant) since DET ⊆ NISZKL [14].651

Although we do not know how to prove that there is no projection reducing MKTP to652

R̃K , we note there there is provably no projection reducing MKTP to a related problem R̃′
K ,653

where the “gap” between the YES and NO instances is larger than in R̃K . Define R̃′
K to654

have YES instances {x : K(x) ≥ 4|x|
5 } and NO instances {x : K(x) ≤ |x|

5 }.655

▶ Theorem 35. There is no projection reducing MKTP to R̃′
K .656

Proof. Since PARITY is in co-NISZKL, we know that PARITY ≤proj
m MKTP. Thus if657

MKTP≤proj
m R̃′

K it follows that PARITY ≤proj
m R̃′

K . We apply the techniques of [18, Lemma658

6] to show that no such projection can exist. More precisely, we show that if A is any language659

that projection reduces to R̃′
K , then the 1-block sensitivity of A is at most 2. (Since the660

1-block sensitivity of PARITY is n, this suffices to prove the theorem.)661

Let x ∈ A be such that the block sensitivity at x is at least 3. Thus there are three662

disjoint blocks of input bits B1, B2, B3, such that flipping the bits in any block Bi produces a663

string xi ̸∈ A. If f is a projection reducing A to R̃′
K , then K(f(x)) ≥ 4m

5 , where m = |f(x)|,664
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whereas K(f(xi)) ≤ m
5 . Let di be a short description of xi; thus U(di) = xi, where U is665

the universal Turing machine from the definition of Kolmogorov complexity. Any bit of the666

output of f depends on at most 1 input bit. Thus, for any i, the ith bit of f(x) agrees with667

the ith bit of at least 2 of {f(x1), f(x2), f(x3)} (since the blocks B1, B2, and B3 are disjoint).668

Thus we can simply take the majority vote of {U(d1), U(d2), U(d3)} to obtain any bit of f(x).669

It follows that K(f(x)) ≤ |d1| + |d2| + |d3| + O(log m) < 4m
5 . This is a contradiction. ◀670

In this vein, let us also remark that Kolmogorov complexity has already proved useful671

in developing nonrelativizing proof techniques [33], and also that the machinery of perfect672

randomized encodings (which were developed in [19] and which are essential to the results of673

[14]) also does not seem to relativize in any obvious way.674

Acknowledgments675

We thank Sam Buss, Johannes Köbler, and Uwe Schöning for discussions concerning Boolean676

formula reducibility.677

References678

1 Leonard M. Adleman and Kenneth L. Manders. Reducibility, randomness, and intractability679

(abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of Computing680

(STOC), pages 151–163. ACM, 1977. doi:10.1145/800105.803405.681

2 Eric Allender. Curiouser and curiouser: The link between incompressibility and complexity.682

In Proc. Computability in Europe (CiE), volume 7318 of Lecture Notes in Computer Science,683

pages 11–16. Springer, 2012. doi:10.1007/978-3-642-30870-3_2.684

3 Eric Allender. The complexity of complexity. In Computability and Complexity: Essays685

Dedicated to Rodney G. Downey on the Occasion of his 60th Birthday, volume 10010 of Lecture686

Notes in Computer Science, pages 79–94. Springer, 2017. doi:10.1007/978-3-319-50062-1_6.687

4 Eric Allender. Vaughan Jones, Kolmogorov complexity, and the new complexity landscape688

around circuit minimization. New Zealand journal of mathematics, 52, 2021. doi:10.53733/689

148.690

5 Eric Allender, José L. Balcázar, and Neil Immerman. A first-order isomorphism theorem.691

SIAM J. Comput., 26(2):557–567, 1997. doi:10.1137/S0097539794270236.692

6 Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha693

Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675–694

723, 2009. doi:10.1007/s00224-009-9172-z.695

7 Eric Allender, Harry Buhrman, Luke Friedman, and Bruno Loff. Reductions to the set of696

random strings: The resource-bounded case. Logical Methods in Computer Science, 10(3),697

2014. doi:10.2168/LMCS-10(3:5)2014.698

8 Eric Allender, Harry Buhrman, and Michal Koucký. What can be efficiently reduced to the699

Kolmogorov-random strings? Annals of Pure and Applied Logic, 138:2–19, 2006.700
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