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Abstract9

We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof10

system if and only if it is randomly reducible via an honest polynomial-time reduction to a promise11

problem for Kolmogorov-random strings, with a superlogarithmic additive approximation term. This12

extends work by Saks and Santhanam (CCC 2022). (Saks and Santhanam showed that promise13

problems that can be reduced in this way to such an approximation of the Kolmogorov-random14

strings have (possibly interactive) zero-knowledge proof systems, and they did not address the15

converse implication.) We build on this to give new characterizations of Statistical Zero Knowledge16

SZK, as well as the related classes NISZKL and SZKL.17
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1 Introduction24

In this paper, we give the first non-trivial characterization of a computational complexity25

class in terms of reducibility to the Kolmogorov random strings.26

Readers who are familiar with Kolmogorov complexity may be surprised that such a27

characterization is possible. For the other readers, who may be less familiar with Kolmogorov28

complexity, let us provide a bit of background, to explain why such a close connection29

between Kolmogorov complexity and computational complexity may have seemed unlikely.30

Given any Turing machine M , KM (x) is the length of the shortest “description” d such that31

M(d) = x. Given two different Turing machines M1 and M2, KM1(x) and KM2(x) might32

have no clear relationship with each other, and one or both may even be undefined. But if33

M1 is a “universal” Turing machine, then KM1(x) ≤ KM2(x) + O(1), and hence if M1 and34

M2 are both “universal” Turing machines, then KM1(x) and KM2(x) are the same, plus or35

minus an additive O(1) term. Thus, we select one such universal machine U (and it doesn’t36

make much difference which one), and define the Kolmogorov complexity of x (K(x)) to be37

KU (x).1 Kolmogorov complexity is usually studied in the context of computability theory,38

∗ A preliminary version of this work appeared as [23].
1 We should also mention that Kolmogorov complexity comes in two slightly-different flavors. The

informal definition given above describes “plain Kolmogorov complexity”, while the other flavor is called
“prefix-free” Kolmogorov complexity (which imposes the additional restriction that no description d on
which U halts may be a prefix of any other).
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2 Kolmogorov Complexity Characterizes Statistical Zero Knowledge

since no restriction is placed on the amount of time that U might require in order to produce39

x from a description d. Indeed, one of the basic facts about Kolmogorov complexity is that40

the function K is not computable. A randomly-chosen string x of length n will have K(x)41

very close to n; in the present work, we will say that x is Kolmogorov random if K(x) ≥ |x|
2 .242

There is a rich and fascinating body of work dealing with Kolmogorov complexity. We refer43

the reader to standard texts such as [55, 35], and we provide some basic required background44

in Section 2.45

At this point in the introduction, however, it is sufficient to consider the fact that the set46

of Kolmogorov-random strings is not decidable. It is not at all clear that it is meaningful or47

interesting to study efficient reductions to sets that are not even computable. Undecidable48

sets typically do not figure prominently in complexity-theoretic investigations.349

Worse, it is not even clear what it means for a problem to be “reducible to the Kolmogorov-50

random strings”. Recall that the choice of the universal Turing machine U that is used51

to define Kolmogorov complexity is arbitrary (and each choice of U leads to a slightly52

different Kolmogorov measure KU ). But an investigation of which problems are reducible53

to the K-random strings should not depend on the specific properties of the particular54

universal machine that is chosen, when defining Kolmogorov complexity. Thus we focus55

our investigation on the sets that are reducible to the KU random strings, no matter which56

universal machine U we are using. It turns out that, by phrasing the question in this way, we57

are able to open the door to some interesting relationships between Kolmogorov complexity58

and computational complexity theory.59

This is because, if we consider prefix-free Kolmogorov complexity, then the class of60

languages that can be solved in polynomial time with an oracle that returns KU (q) for61

any query q—regardless of which universal machine U is used—is a complexity class that62

contains NEXP and lies in EXPSPACE [33, 17, 42].4 There has been substantial interest63

in obtaining a precise understanding of which problems can be reduced in this way to the64

Kolmogorov complexity function under different notions of reducibility [6, 7, 13, 11, 12,65

16, 17, 18, 30, 33, 43, 42, 45, 47, 61]. In one line of research in this direction, Allender [6]66

proposed an intriguing research program towards the P = BPP conjecture. The class P can67

be characterized as the class of languages reducible to the set of Kolmogorov-random strings68

under polynomial-time disjunctive truth-table reductions [12]. Similarly, he conjectured69

that BPP can also be characterized by polynomial-time truth-table reductions to the set of70

Kolmogorov-random strings, and envisioned that such a completely new characterization of71

complexity classes would give us new insights into BPP, especially from the perspective of72

computability theory. However, his conjecture was refuted by Hirahara [43] under a plausible73

complexity-theoretic assumption.74

In spite of the efforts involved in the fifteen publications cited in the preceding paragraph,75

until now, no previously studied complexity class has been characterized in this way, with76

the exception of P [12, 61]. (The characterizations of P obtained in this way can be viewed77

as showing that certain limited polynomial-time reductions are useless when using the78

2 Other authors frequently use a different threshold when defining the term “Kolmogorov random”, such
as K(x) ≥ |n|. We use the threshold |x|

2 in order for the statement of our main results to be as crisp as
possible.

3 We do wish to highlight the work of Ilango, Ren, and Santhanam [51], who related the existence of
one-way functions to the average case complexity of computing Kolmogorov complexity.

4 More specifically, it is shown in [17] that all decidable sets with this property lie in EXPSPACE, and it
is shown in [33] that there are no undecidable sets with this property. Hirahara shows in [43] that every
set in EXPNP (and hence in NEXP) has this property.
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Kolmogorov complexity function as an oracle.)79

Faced with this lack of success, it was proposed in [7, Open Question 4.8] that a more80

successful approach might be to consider reductions to approximations to the Kolmogorov81

complexity function. Saks and Santhanam [61] took the first significant step in this direction,82

by showing that no decidable language outside of SZK is randomly m-reducible to each83

ω(log n) approximation to the K-random strings.584

This is not the first time that the complexity class SZK (Statistical Zero Knowledge) has85

arisen in the context of investigations relating to Kolmogorov complexity. In particular, SZK86

and its “non-interactive” subclass NISZK have been studied in connection with a version of87

time-bounded Kolmogorov complexity, which in turn is studied because of its connection88

with the Minimum Circuit Size Problem (MCSP) [15, 18]. These problems lie at the heart of89

what has come to be called meta-complexity: the study of the computational difficulty of90

answering questions about complexity.91

In this paper, we show that SZK, NISZK and their logspace variants SZKL and NISZKL92

can be characterized by reductions to approximations to the Kolmogorov complexity function.93

More specifically, we define a promise problem R̃K whose YES instances are strings of94

high Kolmogorov complexity, and whose NO instances are strings with significantly lower95

Kolmogorov complexity, and we show the following:96

1. A decidable promise problem is randomly reducible to R̃K via an honest6 polynomial97

time reduction if and only if it is in NISZK (Theorem 14).98

2. A decidable promise problem is randomly reducible to R̃K via an honest logspace or NC0
99

reduction if and only if it is in NISZKL (Theorem 32).100

3. Analogous characterizations of SZK and SZKL are given in terms of probabilistic honest101

nonadaptive reductions (Theorems 28 and 34).102

We hope that our new characterization of these complexity classes will improve our under-103

standing of zero knowledge interactive proof systems in the future. Zero knowledge interactive104

proof systems have many applications in cryptographic protocols, and they have been studied105

very widely. We refer the reader to the excellent survey by Vadhan for more background [65].106

For our purposes, the complexity classes of interest to us (SZK, NISZK, SZKL, and NISZKL)107

can be defined in terms of their complete problems. But first, we need to define some basic108

notions and provide some background.109

2 Preliminaries110

In this section, we present some background material regarding reducibility, promise problems,111

Kolmogorov complexity, and Zero Knowledge protocols. We also provide pointers to sources112

where more comprehensive treatment of this as background material can be found.113

5 See Section 2 for a definition of randomized m-reductions. Although the statement of this theorem in
[61] does not mention “honesty,” the proof requires that the approximation error be ω(log n), where
n is the input size, rather than the query size [62]. The proof of [61, Theorem 39] shows that, under
this assumption, all queries on an input x can be assumed to have the same length, greater than |x|.
(See Lemma 5 for a similar result.) An earlier version of our paper [22] mistakenly interpreted this
as holding when the approximation error is a function of the query size, and consequently our main
theorems were stated without assuming “honesty”.

6 Informally, a reduction is said to be “honest” if it does not make extremely short queries. A formal
definition is provided in Section 2.
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2.1 Reducibility and Promise Problems114

We assume familiarity with basic complexity classes such as P, L, and AC0; we view these115

as classes of functions, as well as of languages. We also will refer to the class of functions116

computed in NC0, where each output bit depends on at most O(1) input bits. For circuit117

complexity classes such as NC0, and AC0, by default we assume that the circuit families118

are “First-Order-uniform” as discussed in [9, 28, 52]. Briefly: a circuit family {Cn : n ∈ N}119

consists of a circuit with n input wires, for each input length n. “Uniform” circuit families120

have the property that a description of Cn is “easy” to compute from n in some sense; when no121

such requirement is imposed then the circuit family is said to be “nonuniform”. The references122

cited explain the rationale for using a fairly restrictive notion of uniformity. In particular,123

First-Order-uniform AC0 coincides with Dlogtime-uniform AC0 and also coincides with the124

class of languages accepted by alternating Turing machines that run in time O(log n) and125

make O(1) alternations along any computation path. The terminology “First-Order-uniform”126

refers to the fact that another equivalent characterization of Dlogtime-uniform AC0 is as127

the class of languages encoding the models of first-order formulae over {+, ×}. First-Order-128

uniform NC0 requires that the description of Cn be computable from 1n in Dlogtime-uniform129

AC0. (We refer the reader to [67] for more background on circuit uniformity.) When we need130

to refer to nonuniform circuit complexity, we will be explicit.131

All of these classes give rise to restrictions of Karp reducibility ≤P
m, such as ≤L

m, ≤AC0

m , and132

≤NC0

m . Such reductions are all examples of “m-reductions”, since they are restrictions of the133

classical ≤m reductions of computability theory. (See, for example, a standard introductory134

text such as [63].) The hallmark of an m-reduction from A to B is that there is a procedure135

that takes some input x and produces an output y, and then proceeds to accept x if and136

only if y is in B. For the examples listed above (≤m, ≤P
m, ≤L

m, ≤AC0

m , ≤NC0

m ) the procedure137

is deterministic, but later in this section we will also consider m-reductions in which the138

procedure is probabilistic. Some textbooks (such as [63, 26]) have taken to using the notation139

≤P instead of ≤P
m to refer to Karp reducibility. We have chosen instead to follow the140

notational conventions of textbooks such as [27], which allow us to refer more conveniently141

to the different types of m-reductions, as well as other types of reducibility (in particular,142

truth-table reductions, discussed in Section 4).143

We will also discuss projections (≤proj
m ), which are ≤NC0

m reductions in which each output144

bit pends on at most one input bit. Thus projections are computed by circuits consisting of145

constants, wires, and NOT gates.146

For any class of functions C and type of reducibility r (such as m-reducibility, truth-table147

reducibility, Turing reducibility, or other notions considered in this paper) if there is some148

ϵ > 0 such that all queries made by the ≤C
r reduction on inputs of length n have length at149

least nϵ, the reduction is said to be “honest”, and we use the notation ≤C
hr to denote this.150

A promise problem A is a pair of disjoint sets (YA, NA) of YES instances and NO instances,151

respectively. A solution to a promise problem is any set B such that YA ⊆ B and NA ⊆ B.152

A don’t-care instance of A is any string that is not in YA ∪ NA. A language can be viewed as153

a promise problem that has no don’t-care instances.154

We say that a promise problem A = (Y, N) is decidable if Y and N are decidable sets.7155

Note that the property of being a decidable promise problem is not the same as having a156

decidable solution: If A = (Y, N) is decidable, then the set Y is a solution to A, and thus157

every decidable promise problem has a decidable solution, but the converse need not hold.158

7 Such promise problems have also been called totally decidable promise problems [37].
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For instance, if B = (Y ′, N ′) with Y ′ ⊆ Y and N ′ ⊆ N , then any solution to A is also159

a solution to B, and thus B has a decidable solution. Since there are uncountably many160

subsets of Y and N for any nontrivial promise problem, clearly not every promise problem161

with a decidable solution is decidable according to our definition. For complexity classes such162

as SZK, every promise problem in the class is ≤NC0

m reducible to a decidable promise problem,163

and thus our main theorems (which are stated in terms of decidable promise problems) have164

wide applicability.165

When defining reductions between two promise problems A and B, there are two options.166

Either167

for every solution S to B there is a reduction from A to S, or168

there is a reduction that correctly decides A when given any solution S for B as an oracle.169

As it turns out, these two notions are equivalent [41, 57]. Thus we shall always use the170

second approach, when defining notions of reducibility between promise problems.171

2.2 Kolmogorov Complexity172

We assume that the reader is familiar with Kolmogorov complexity; more background on this173

topic can be found in references such as [55, 35]. Briefly, KU (x|y) = min{|d| : U(d, y) = x},174

and KU (x) = KU (x|λ) where λ denotes the empty string.8 Although this definition depends175

on the choice of the Turing machine U , we pick some “universal” machine U ′ and define K(x|y)176

to be KU ′(x|y); for every machine U , there is a constant c such that K(x|y) ≤ KU (x|y) + c.177

One important non-trivial fact regarding Kolmogorov complexity is known as symmetry of178

information:179

▶ Theorem 1. (Symmetry of Information)

K(x, y) = K(x) + K(y|x) ± O(log(K(x, y))).

Let R̃K be the promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that180

K(y) ≥ |y|/2 and the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2−e(|y|)181

for some approximation error term e(n), where e(n) = ω(log n) and e(n) = no(1). All of our182

theorems hold for any e(n) in this range. We will sometimes assume that e(n) is computable183

in AC0, which is true for most approximation terms of interest.184

Since the approximation error e(n) is superlogarithmic, it is worth noting that R̃K can be185

defined equivalently either in terms of prefix-free or plain Kolmogorov complexity (because186

these two measures are within an additive logarithmic term of each other).187

Any language that is reducible to R̃K via any of the reducibilities that we consider is188

decidable, by a theorem of [33]. However, it is not known whether this carries over in any189

meaningful way to promise problems.190

The reader may wonder about the justification for the threshold K(y) ≥ |y|/2 in the191

definition of R̃K . The following proposition indicates that, for large error bounds e(n), using192

a larger threshold reduces to R̃K . Later, we show a related result for smaller thresholds.193

▶ Proposition 2. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)} for194

some AC0-computable threshold t(n) ≥ n
2 , and where N = {y : K(y) ≤ t(|y|) − |y|ϵ} for some195

1 > ϵ > 0. Then A≤proj
m R̃K .196

8 This is actually the definition of so-called “plain” Kolmogorov complexity, although the letter K is
traditionally used for the “prefix-free” Kolmogorov complexity. These two measures differ by at most
a logarithmic term, and our theorems hold for either measure. For simplicity, we have presented the
simpler definition.
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Proof. The proof is a simple padding argument. Let δ = ϵ
2 . Given an instance y of length n197

(for all large n), in AC0 we can find the least integer i < n such that 2t(n) − n + 5 log n +198

2((2n)δ − nϵ) ≤ i ≤ 2t(n) − n − 6 log n.199

Let z = y0i. Then K(z) ≤ K(y) + 2 log i + O(1). Similarly, K(y) ≤ K(z) + 2 log i + O(1),200

and hence K(z) ≥ K(y) − 2 log i − O(1).201

Thus if y ∈ Y , then K(z) ≥ t(n) − 2 log i − O(1) > (t(n) − n
2 ) + n

2 − 3 log n ≥ n+i
2 = |z|

2 .202

And if y ∈ N , then K(z) ≤ t(n) − nϵ + 2 log i + O(1) < (t(n) − n
2 ) + n

2 − nϵ + 2 log i + O(1) ≤203

n+i
2 − (n + i)δ = |z|

2 − |z|δ < |z|
2 − e(|z|).204

Thus y ∈ Y implies z ∈ Y
R̃K

and y ∈ N implies z ∈ N
R̃K

. ◀205

2.3 Randomized Reductions206

Randomized reductions play a central role in the results that we will be presenting. Here is207

the basic definition:208

▶ Definition 3. A promise problem A = (Y, N) is ≤RP
m -reducible to B = (Y ′, N ′) with209

threshold θ if there is a polynomial p and a deterministic Turing machine M running in time210

p such that211

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.212

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] = 1.213

If there is some ϵ > 0 such that, for every x and every r of length p(|x|), M(x, r) has length214

≥ |x|ϵ, then we say that M computes an “honest” reduction, and we write A≤RP
hmB.215

Randomized reductions were introduced by Adleman and Manders, as a probabilistic216

generalization of ≤P
m reducibility9 [1]. They used the threshold θ = 1

2 . One of the most217

important applications of randomized reductions is the theorem of Valiant and Vazirani218

[66], where they showed that SAT reduces to Unique Satisfiability (USAT) via a randomized219

reduction, with threshold θ = 1
4n .10 The reader may expect that—as is so often the case with220

probabilistic notions in computational complexity theory—the choice of threshold is arbitrary,221

and can be changed with no meaningful consequences. However, this does not appear to be222

true; we refer the reader to the work of Chang, Kadin, and Rohatgi [34] for a discussion of this223

point. As they point out, different thresholds are appropriate in different situations. If A≤RP
m B224

with threshold 1
4n (for instance), where the set ORB = {(x1, . . . , xk) : ∃i, xi ∈ B}≤P

mB, then225

it is indeed true that A≤RP
m B with threshold 1 − 1

2n [34]. But Chang, Kadin, and Rohatgi226

point out that it is far from clear that USAT has this property. We are concerned here with227

problems that are ≤RP
hm-reducible to R̃K ; just as in the case with randomized reductions228

to USAT, we must be careful about which threshold θ we choose. For the remainder of229

this paper, we will use the threshold θ = 1 − 1
nω(1) . (For a discussion of why we select this230

threshold, see Remark 16.)231

The following proposition is the counterpart to Proposition 2, for thresholds smaller than232

n
2 .233

▶ Proposition 4. Let A = (Y, N) be the promise problem where Y = {y : K(y) ≥ t(|y|)}234

for some polynomial-time computable threshold t(n) ≤ n
2 , and where N = {y : K(y) ≤235

t(|y|) − |y|ϵ} for some 1 > ϵ > 0. Then A≤RP
hmR̃K .236

9 We assume that the reader is familiar with Karp reducibility ≤P
m.

10 Recently, there have also been several papers showing that certain meta-complexity-theoretic problems
are NP-complete under randomized reductions, including [14, 44, 48, 49, 50, 56, 58].
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Proof. Given an instance y of length n (for all large n), in polynomial time we can find the237

least integer i < n such that 2t(n) − 2nϵ + 2e(3n) + 4 log n ≤ i ≤ 2t(n) − e(n) − 2c log n (for238

a constant c that will be picked later).239

Pick a random string r of length n. Let z = yr0i. Then K(z) ≤ K(y) + 2 log i + |r|.240

Also, by symmetry of information, K(z) ≥ K(yr0i|y0i) + K(y0i) − c′ log n (for some fixed241

constant c′, and hence with probability at least 1 − 1
nω(1) , K(z) ≥ (n − e(n)

2 ) + K(y) − c log n242

(for some fixed c, which is the constant c that we use above in defining i).243

Thus if y ∈ Y , then with high probability K(z) ≥ t(n) + (n − e(n)
2 ) − c log n > n + i

2 = |z|
2 .244

And if y ∈ N , then K(z) ≤ (t(n) − nϵ) + 2 log i + |r| ≤ n + i
2 − e(3n) ≤ |z|

2 − e(|z|).245

Thus y ∈ Y implies z ∈ Y
R̃K

(with probability ≥ 1 − 1
nω(1) ), and y ∈ N implies246

z ∈ N
R̃K

. ◀247

We will also need the following lemma, which states that short queries to R̃K can be248

replaced by (longer) padded queries. Since R̃K is defined so as to distinguish between strings249

of length n having Kolmogorov complexity ≥ n/2 and those with complexity ≤ n/2−ω(log n),250

the idea is to pad the (short) query with a string that has complexity around half of its251

length — with some room to adjust for the difference needed to preserve the Yes and No252

instances.253

▶ Lemma 5 (Query padding). Let R̃K(g) denote the parameterized version of R̃K with Yes254

instances y satisfying K(y) ≥ |y|/2 and No instances satisfying K(y) ≤ |y|/2 − g(|y|). If255

g(n) = ω(log n) is nondecreasing and computable in AC0 and A≤RP
hmR̃K(g), then for some256

δ > 0, A≤RP
hmR̃K(2g(nδ)/3) via a reduction in which all queries on input x have the same257

length.258

Proof. If A≤RP
hmR̃K(g) via a reduction computable in time p(n) where each query has length259

at least nϵ, consider the reduction that replaces each query q of length k by queries of the260

form qy = qr0 m−k
2 −a(n) where m = p(n) and r ∈ {0, 1} m−k

2 +a(n) is sampled uniformly at261

random. (Here, a(n) is a function that will be specified below.) Pick δ so that p(n)δ < nϵ.262

We recall that by the Symmetry of Information theorem :263

K(q) + K(y|q) − s log m ≤ K(qy) ≤ K(q) + K(y|q) + s log m264

for some constant s > 0.265

Case 1 : q ∈ Y
R̃K (g)

266

Thus K(q) ≥ k
2 , and hence, if we set b(n) = (log(g(nϵ)/ log n)) log n = ω(log n), then with267

probability at least 1 − 1
nω(1)268

K(qy) ≥ K(q) + K(y|q) − s log m ≥ k

2 + m − k

2 + a(n) − b(n) − s log m269

where the second inequality holds with probability 1− 1
nω(1) since there are at most 1

nω(1) frac-270

tion of y ∈ {0, 1} m−k
2 +a(n) satisfying K(y|q) ≤ (m−k)

2 + a(n) − b(n). Setting a(n) = g(nϵ)/4271

gives K(qy) ≥ m
2 with probability at least 1 − 1

nω(1) for all large n.272

273

Case 2 : q ∈ N
R̃K (g)

274

We have K(q) ≤ k
2 − g(k) ≤ k

2 − g(nϵ) and need to show that K(qy) ≤ m
2 − 2g(mδ)/3.275

K(qy) ≤ K(q) + K(y|q) + s log m ≤ k

2 − g(nϵ) +
(

m − k

2 + g(nϵ)/4
)

+ O(log m)276
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<
m

2 − g(nϵ) + g(nϵ)/3 <
m

2 − 2g(mδ)/3.

◀277

▶ Corollary 6. For any of the honest probabilistic reductions to R̃K that we consider in this278

paper, we may assume without loss of generality that, for each input x, all queries made by279

the reduction on input x have the same length.280

Proof. If A is reducible to R̃K using some approximation error e(n) with e(n) = ω(log n)281

and e(n) = no(1), then, by Lemma 5, it is also reducible to R̃K using approximation error282

2e(nδ)
3 , which also is ω(log n) and no(1) via a reduction with the desired characteristics. ◀283

We will also need a “two-sided error” version of random reducibility, analogous to the284

relationship between RP and BPP.285

▶ Definition 7. A promise problem A = (Y, N) is ≤BPP
m -reducible to B = (Y ′, N ′) with286

threshold θ > 1
2 if there is a polynomial p and a deterministic Turing machine M running in287

time p such that288

x ∈ Y implies Prr∈{0,1}p(|x|) [M(x, r) ∈ Y ′] ≥ θ.289

x ∈ N implies Prr∈{0,1}p(|x|) [M(x, r) ∈ N ′] ≥ θ.290

Similar to the definition of ≤RP
hm, we say that A≤BPP

hm B if M is honest.291

2.4 Zero Knowledge292

The complexity classes SZK (Statistical Zero Knowledge) and NISZK (Non-Interactive Sta-293

tistical Zero Knowledge) are defined in terms of interactive proof protocols (with a Prover294

interacting with a probabilistic polynomial-time Verifier, together with a Simulator that295

can produce a distribution on transcripts that is statistically close to the distribution on296

messages that would be exchanged by the prover and the verifier on YES instances. (See,297

e.g. [65, 40].) But for our purposes, it will suffice (and be simpler) to present alternative298

definitions of these classes, in terms of their standard complete problems.299

▶ Definition 8 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

YEA = {(C, k) | H(X) > k + 1}
NEA = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.300

▶ Theorem 9 ([40]). EA is complete for NISZK under honest ≤P
m reductions.301

We will actually take this as a definition; we say that (Y, N) is in NISZK if and only if302

(Y, N)≤P
mEA.303

▶ Definition 10 (Promise-SD). SD (Statistical Difference) is the promise problem

YSD =
{

(C, D)
∣∣∣∣ ∆(C, D) >

2
3

}
,

NSD =
{

(C, D)
∣∣∣∣ ∆(C, D) <

1
3

}
.

where ∆(C, D) denotes the statistical distance between the distributions represented by the304

circuits C and D.305



E. Allender, S. Hirahara, and H. Tirumala 9

▶ Theorem 11 ([59]). SD is complete for SZK under honest ≤P
m reductions.306

Thus we will define SZK to be the class of promise problems (Y, N) such that (Y, N)≤P
mSD.307

We will also be making use of a restricted version of the NISZK-complete problem EA:308

▶ Definition 12 (Promise-EA′). We define Promise-EA′ to be the promise problem

YEA′ = {C | H(X) > n − 2}

NEA′ = {C | |Supp(X)| < 2n−nϵ

}

where C is a circuit C : {0, 1}m → {0, 1}n representing a probability distribution X on {0, 1}n
309

induced by the uniform distribution on {0, 1}m, and Supp(X) denotes the support of X, and310

ϵ is some fixed constant, 0 < ϵ < 1.311

▶ Lemma 13. EA′ is complete for NISZK under honest ≤P
m reductions.312

Proof. Lemma 3.2 in [40] shows that the following promise problem A is complete for NISZK:313

All instances are of the form (C, 1s), where C is a circuit with m inputs and n outputs,314

representing a distribution (also denoted C) on {0, 1}n. (C, 1s) is a YES instance if C has315

statistical distance at most 2−s from the uniform distribution on {0, 1}n. (C, 1s) is in the set316

of NO instances if the support of C has size at most 2n−s. Furthermore, the reduction g317

from EA to A has the property that the parameter s is at least nϵ for some constant ϵ > 0.318

Also, it is observed in Lemma 4.1 of [40] that the mapping (C, 1s) 7→ (C, n − 3) (i.e., the319

mapping that leaves the circuit C unchanged) is a reduction from A to EA. Combining these320

two results from [40] completes the proof of the lemma. ◀321

3 A New Characterization of NISZK322

We are now ready to present the characterization of NISZK by reductions to the set of323

Kolmogorov-random strings.324

▶ Theorem 14. The following are equivalent, for any decidable promise problem A:325

1. A ∈ NISZK.326

2. A≤RP
hmR̃K .327

3. A≤BPP
hm R̃K .328

Proof. In order to show that A ∈ NISZK implies A≤RP
hmR̃K , it suffices to reduce the NISZK-329

complete problem EA′ to R̃K (by Lemma 13).330

Corollary 18 of [18] states that every promise problem in NISZK reduces to the problem331

of computing the time-bounded Kolmogorov complexity KT via a probabilistic reduction332

that makes at most one query along any computation path. Here we observe that the same333

approach can be used to obtain a ≤RP
hm reduction to R̃K .334

Consider a probabilistic reduction that takes an instance C of EA′ and constructs a string335

y that is the concatenation of t random samples from C (i.e., y = C(r1)C(r2) . . . C(rt) for336

uniformly chosen random strings r1, . . . , rt, for some polynomially-large t). Lemma 16 of [18]337

shows that, with probability exponentially close to 1, if C is a YES instance of EA′, then338

the time-bounded Kolmogorov complexity KT(y) is greater than a threshold θ of the form339

θ = t(n − 2) − t1−α for some constant α > 0. (Briefly, this is because a good approximation340

to the entropy of a sufficiently “flat” distribution can be obtained by computing the KT341

complexity of a string composed of many random samples from the distribution [20].)342

As in the argument of [18, Theorem 17], we can choose t to be an arbitrarily large343

polynomial nk. Choosing k to be large enough (relative to 1/α, and also so that nk is344
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large relative to |C|), we have θ > nk(n − 3) for all large n, and hence for all large YES345

instances we have that, with probability exponentially close to 1, the string y satisfies346

KT(y) > nk(n − 3) > ℓ − ℓδ for some δ < 1, where |y| = tn = ℓ. (Picking δ > k
k+1 is sufficient.347

For later convenience, pick δ in the range k
k+1 < δ < k+.5

k+1 .) The focus of [18] was on the348

measure KT, but (as was previously observed in [8, Theorem 1]) the analysis in [18, Lemma349

16] carries over unchanged to the setting of non-resource-bounded Kolmogorov complexity K.350

(That is, in obtaining the lower bound on KT(y), the probabilistic argument is just bounding351

the number of short descriptions, and not making use of the time required to build y from352

a description.) Thus, with high probability, the probabilistic routine, when given a YES353

instance of EA′, produces a string y where K(y) ≥ |y| − |y|δ.354

On the other hand, if C is a NO instance, then the support of C has size at most 2n−nϵ ,355

and thus any string z in the support of C has K(z|C) ≤ n − nϵ + O(1). Thus any string y of356

length ℓ = tn = nk+1 that is produced by M in this case has K(y) ≤ t(n−nϵ)+ |C|+O(1) =357

nk(n − nϵ) + |C| + O(1). Since t = nk was chosen to be large (with respect to the length358

of the input instance C), we may assume that |C| < nk − n < nk+ϵ − nδ′
< nk+ϵ − nδ, for359

δ = k+.5
k+1 . Thus if C is any large NO instance, we have K(y) < ℓ − ℓδ′ for some 1 > δ′ > δ.360

To summarize, with probability 1, the probabilistic routine, when given a NO instance of361

EA′, produces a string y where K(y) ≤ |y| − |y|δ′ ≤ (|y| − |y|δ) − |y|ρ for some ρ > 0. We362

can now conclude that EA′≤RP
hmR̃K by appealing to Proposition 2.363

To complete the proof of the theorem, we need to show that if A is any decidable promise364

problem that has a randomized poly-time m-reduction (≤BPP
hm ) with error 1/nω(1) to the365

promise problem R̃K then A ∈ NISZK. This was essentially shown by Saks and Santhanam366

[61, Theorem 39], but we present a complete argument here. Let M be the probabilistic367

machine that computes this ≤BPP
hm reduction.368

Let y = f(x, r) ∈ {0, 1}m denote the output that M produces, where x is an instance369

of A and r denotes the randomness used in the reduction. By Corollary 6, we may assume370

that, for each x, all outputs of the form f(x, r) have the same length. Given an x ∈ {0, 1}n,371

observe that there is a polynomial-sized circuit Cx such that Cx(r) = f(x, r). According to372

the correctness of the reduction, we have373

x ∈ YA ⇒ Pr
r

[M(x, r) ∈ Y
R̃K

] ≥ 1 − 1/nω(1) and374

375

x ∈ NA ⇒ Pr
r

[M(x, r) ∈ N
R̃K

] ≥ 1 − 1/nω(1).376

In other words, if x is a YES instance, then K(y) ≥ |y|/2 with probability at least377

1 − 1/nω(1) and if x is a NO instance, then K(y) ≤ |y|/2 − e(|y|) with probability at least378

1 − 1/nω(1). (Recall that e(n) is the error term in the approximation R̃K .) We will now show379

that there is an entropy threshold that separates these two distributions, which will provide380

an NISZK upper bound on resolving A.381

▷ Claim 15. The following holds for all large strings x. If x is a YES instance, then the382

entropy of the distribution Cx(r) is at least m/2 − e(m)/2 + 1 and if x is a NO instance,383

then the entropy of Cx(r) is at most m/2 − e(m)/2 − 1.384

We first show that if the claim holds, then A ∈ NISZK. Let k = m/2 − e(m)/2. The385

reduction given above reduces membership in A to the Entropy Approximation (EA) problem386

on the circuit description Cx with threshold k. Given x, we can compute the map x 7→ Cx387

in time nO(1). Recall that EA is complete for NISZK. Since NISZK is closed under ≤P
m388

reductions, we can conclude that A ∈ NISZK.389
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Proof of Claim 15. Assume the claim is false, and let x be the lexicographically first string390

that violates the above claim (for some length n). Since the reduction is a computable391

function, and since A is a decidable promise problem, K(x) = O(log n). We have the following392

two cases to consider:393

Case 1 — x is a YES instance: From the correctness of the reduction we have that394

with probability 1 − 1/nω(1) the output y is a string with Kolmogorov complexity at least395

|m|/2. Since x is a violator, we have H(Cx(r)) < k + 1 = m/2 − e(m)/2 + 1.396

First, we present some intuition. On one hand, the distribution Cx(r) has large enough397

probability mass on the high-complexity strings (because the reduction succeeds). On the398

other hand, we have that since x is a low-complexity string itself, the elements of Cx(r)399

with highest mass can be identified by short descriptions. This leads to a contradiction of400

simultaneously having large enough mass on the low and the high K-complexity strings.401

Now, we present a more detailed argument. Let t be the entropy of the distribution Cx(r).402

Thus, for large x, t + O(log m) < t + e(m)/2 − 1 < m/2. Let Y = {y1 . . . y2t+log m} be the403

heaviest elements (in terms of probability mass) of Cx(r) in decreasing order. (Note that404

Pr[y2t+log m ] ≤ 1
2t+log m .) Conditioned on x, the K complexity of any of these strings yi is at405

most t+O(log m). Since K(x) = O(log n) = O(log m), we have K(yi) ≤ t+O(log m) < m/2.406

Next, we will show that there is at least mass 1
m on these strings within Cx(r). This will407

contradict the correctness of the reduction for x ∈ L since it cannot output strings with K408

complexity at most |m|/2 with probability 1/nΩ(1).409

Assume not, i.e., the mass on elements of Y is at most 1
m . Observe that elements410

of Supp(Cx(r)) − Y have mass no more than 2−(t+log m) each. Thus t = H(Cx(r)) >411 ∑
y ̸∈Y Pr[y] log( 1

Pr[y] ) >
∑

y ̸∈Y Pr[y](t + log m) > (1 − 1/m)(t + log m) > t − t/m + log m >412

t − 1
2 + log m > t, which is a contradiction.413

Case 2 — x is a NO instance: From the correctness of the reduction we have that414

with probability at least 1 − 1/nω(1) the output f(x, r) is a string with K complexity at most415

m/2 − e(m). Since x is a violator, we also have H(Cx(r)) > k − 1 = m/2 − e(m)/2 − 1.416

We claim that the following holds:417

Pr
y∼f(x,r)

[K(y) > m/2 − e(m)] ≥ 1/m.418

Assume not. Then, since419

there are at most 2m/2−e(m) strings y with K(y) ≤ m/2 − e(m), and420

entropy is maximized when probabilities are flat within a partition, and421

any element in the support has probability at least 1
2m422

it follows that the entropy of f(x, r) is at most (1/m)(m) + (1 − 1/m)(m/2 − e(m)) ≤423

m/2 − e(m) + 1 < m/2 − e(m)/2 − 1, which contradicts the lower bound on the entropy of424

f(x, r) above.425

Since the claim holds, with probability at least 1/m the output of the reduction is not an426

element of the set N
R̃K

. Thus, the reduction fails with probability 1/nΩ(1). ◁427

This completes the proof of Theorem 14. ◀428

▶ Remark 16. The proof of the preceding theorem illustrates why we define the error threshold429

in our randomized reductions to be 1
nω(1) . If we assumed that A were ≤BPP

hm -reducible to430

R̃K with an inverse polynomial threshold (say q(n)−1), then by Corollary 6 we may assume431

that the length of each output produced has length Q(n) = ω(q(n)) (by padding with some432

uniformly-random bits). For strings x that are NO instances of A, when the reduction to433

R̃K fails with probability 1/q(n), our calculation of the entropy of Cx will involve a term of434
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1
q(n) Q(n) (because the queries made in this case can have nearly Q(n) bits of entropy). This435

is more than the entropy gap between the distributions corresponding to the YES and NO436

outputs.437

▶ Remark 17. Although our focus in this paper is on R̃K , we note that one can also define438

an analogous problem R̃KT in terms of the time-bounded measure KT. The approach used439

in Theorem 14 also shows that every problem in NISZK is ≤BPP
hm reducible to R̃KT, although440

we do not know how to show hardness under ≤RP
hm reductions. (A random sample from the441

low-entropy distribution is guaranteed to always have low K-complexity, but the tools of442

[18, 20] only guarantee that the output has low KT-complexity with high probability.)443

4 More Powerful Reductions444

Just as ≤RP
m and ≤BPP

m reducibilities generalize the familiar ≤P
m (Karp) reducibility to the445

setting of probabilistic computation, so also are there probabilistic generalizations of determin-446

istic non-adaptive reductions (also known as truth-table reductions). Before presenting these447

probabilistic generalizations, let us review the previously-studied deterministic non-adaptive448

reducibilities that are relevant for this investigation. Some of them may be unfamiliar to the449

reader.450

Ladner, Lynch, and Selman [54] considered several possible ways to define polynomial-time451

versions of the truth-table reducibility that had been studied in computability theory, before452

settling on the definition of ≤P
tt reducibility below. They considered only reductions between453

languages; the corresponding generalization to promise problems is due to [59]. In order to454

state this generalization formally, let us define the characteristic function χA of a promise455

problem A = (Y, N) to take on the following values in three-valued logic:456

If x ∈ Y , then χA(x) = 1.457

If x ∈ N , then χA(x) = 0.458

If x ̸∈ (Y ∪ N), then χA(x) = ∗.459

A Boolean circuit with n variables, when given an assignment in {0, 1, ∗}n, can be evaluated460

using the usual rules of three-valued logic. (See, e.g., [59, Definition 4.6].)461

▶ Definition 18. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤P
ttB if462

there is a function f computable in polynomial time, such that, for all x, f(x) is of the form463

(C, z1, z2, . . . , zk) where C is a Boolean circuit with k input variables, and (z1, . . . , zk) is a464

list of queries, with the property that465

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.466

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.467

This definition ensures that the circuit C, viewed as an ordinary circuit in 2-valued logic,468

correctly decides membership for all x ∈ (Y ∪ N) when given any solution S for B as an469

oracle.470

If C is a Boolean formula, instead of a circuit, then one obtains the so-called “Boolean471

formula reducibility” (denoted by A≤P
bfB), which was discussed in [54] and studied further472

in [53, 32]. (See also [31, 10].)473

▶ Theorem 19. SZK = {A : A≤P
bfEA} = {A : A≤P

hbfEA}.474

Proof. EA ∈ NISZK ⊆ SZK. Sahai and Vadhan [59, Corollary 4.14] showed that SZK is475

closed under NC1-truth-table reductions, but the proof carries over immediately to ≤P
bf476

reductions. Thus {A : A≤P
bfEA} ⊆ SZK. The other inclusion was shown in [40, Proposition477

5.4] (and the reduction to EA they present is honest). ◀478
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Notably, it is still an open question if SZK is closed under ≤P
tt reducibility.479

Our characterization of SZK in terms of reductions to R̃K relies on the following proba-480

bilistic generalization of ≤P
bf :481

▶ Definition 20. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
bf B482

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial483

time, and a polynomial p, such that, for all x, f(x) is a Boolean formula C (with k = |x|O(1)
484

variables), with the property that485

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,486

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,487

where488

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ489

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ490

χg,B(x, i) = ∗ otherwise.491

Intuitively, ≤BPP
bf reductions generalize ≤P

bf reductions, in that the queries are now generated492

probabilistically, and the probability that any query returns a definite YES or NO answer is493

bounded away from 1
2 . Again, if all queries are of length at least nϵ, then we write A≤BPP

hbf B.494

The following proposition is immediate from the definitions.495

▶ Proposition 21. If A≤P
hbfB and B≤BPP

hm C with threshold θ, then A≤BPP
hbf C with threshold496

θ.497

▶ Corollary 22. SZK ⊆ {A : A≤BPP
hbf R̃K} with threshold 1 − 1

nω(1) .498

Proof. Immediate from Theorem 19 and Theorem 14. ◀499

There are (at least) three other variants of probabilistic nonadaptive reducibility that500

we should mention. The first of these is the notion that goes by the name “nonadaptive501

BPP reducibility” or “randomized nonadaptive reductions” in work such as [61, 18, 29] and502

elsewhere.503

▶ Definition 23. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
tt B504

if there are a function f computable in polynomial time and a polynomial p such that, for all505

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean506

circuit with k input variables, and (z1, . . . , zk) is a list of queries, with the property that507

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .508

If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0 ≥ 2
3 .509

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , by the usual method510

of taking the majority vote of several independent trials.)511

Saks and Santhanam showed that if A≤BPP
htt R̃K , then A ∈ AM ∩ coAM [61]. The most512

important ways in which ≤BPP
bf and ≤BPP

tt reducibility differ from each other, are (1) in ≤BPP
bf513

reducibility, the query evaluation is performed by a Boolean formula, instead of a circuit,514

and (2) in ≤BPP
tt reducibility, the circuit that is chosen to do the evaluation depends on the515

choice of random bits, whereas in ≤BPP
bf reducibility, the formula is chosen deterministically.516

Making different choices in these two dimensions gives rise to two other notions:517

▶ Definition 24. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
rbf B518

if there are a function f computable in polynomial time and a polynomial p such that, for all519

x and all r of length p(|x|), f(x, r) is of the form (C, z1, z2, . . . , zk) where C is a Boolean520

formula with k input variables, and (z1, . . . , zk) is a list of queries, with the property that521

If x ∈ Y , then Prr[C(χB(z1), . . . , χB(zk)) = 1] ≥ 2
3 .522
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If x ∈ N , then Prr[C(χB(z1), . . . , χB(zk)) = 0] ≥ 2
3 .523

(The threshold 2
3 can be replaced by any threshold between n−k and 2−nk , simply by incorpo-524

rating a Boolean formula that takes the majority vote of several independent trials.).525

The notation ≤BPP
rbf is intended to suggest “random Boolean formula”, since the Boolean526

formula is chosen randomly.527

▶ Definition 25. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤BPP
circ B528

with threshold θ > 1
2 if there are functions f and g computable in deterministic polynomial529

time, and a polynomial p, such that, for all x, f(x) is a Boolean circuit (with k = |x|O(1)
530

variables), with the property that531

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,532

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,533

where534

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ535

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ536

χg,B(x, i) = ∗ otherwise.537

If the reduction is honest, we write A≤BPP
hcircB.538

We show in this paper that SZK is the class of problems ≤BPP
hbf reducible to R̃K . We are539

not able to show that the class of problems (honestly) ≤BPP
rbf reducible to R̃K is contained in540

SZK, although we do observe that SZK is closed under this type of reducibility.541

▶ Theorem 26. SZK = {A : A≤BPP
rbf EA}.542

Proof. The inclusion of SZK in {A : A≤BPP
rbf EA} is immediate from Theorem 19. For the543

other direction, let A≤BPP
rbf EA. Thus there are a function f computable in polynomial544

time, and a polynomial p such that, for all x and all r of length p(|x|), f(x, r) is of the545

form (C, z1, z2, . . . , zk), where evaluating the Boolean formula C(χB(z1), . . . , χB(zk)) gives546

a correct answer for all x ∈ Y ∪ N with error at most 2−n2 . Here is a zero-knowledge547

interactive protocol for A. The verifier sends a random string r to the prover. The prover548

and the verifier can each compute f(x, r) = (C, z1, z2, . . . , zk), and then (as in [59, Corollary549

4.14]) compute an instance (D, E) of SD such that (D, E) is a YES instance of SD if550

C(χB(z1), . . . , χB(zk)) = 1, and (D, E) is a NO instance of SD if C(χB(z1), . . . , χB(zk)) = 0.551

The prover and the verifier can then run the SZK protocol for the SD instance (D, E). The552

verifier clearly accepts each YES instance with high probability, and cannot be convinced to553

accept any NO instance with more than negligible probability. The simulator, given input554

x, will generate the string r uniformly at random, and then compute f(x, r) and compute555

the instance (D, E) as above, and then produce the transcript that is produced by the556

SD simulator on input (D, E). It is straightforward to observe that, if x ∈ Y , then this557

distribution is very close to the distribution induced by the honest prover and verifier. ◀558

It is straightforward to observe that ≤BPP
tt and ≤BPP

rbf are transitive relations. It is not559

clear that ≤BPP
bf and ≤BPP

circ are transitive. But for promise problems that reduce to R̃K , a560

similar property holds.561

▶ Theorem 27. If A≤BPP
bf B and B≤BPP

hbf R̃K , then A≤BPP
hbf R̃K .562

Proof. If B≤BPP
hbf R̃K , then B ∈ SZK by Theorem 28. Since A≤BPP

bf B ∈ SZK, it follows563

that A≤BPP
rbf B≤BPP

rbf EA and hence (by Theorem 26) A ∈ SZK. Thus (by Theorem 28)564

A≤BPP
hbf R̃K . ◀565
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5 A New Characterization of SZK566

▶ Theorem 28. The following are equivalent, for any decidable promise problem A:567

1. A ∈ SZK.568

2. A≤BPP
hbf R̃K with threshold 1 − 1

nω(1) .569

Proof. Corollary 22 states that all problems in SZK ≤BPP
hbf -reduce to R̃K . Thus we need570

only show the converse containment. Let A≤BPP
hbf R̃K . As in the proof of Theorem 14, we571

will build circuits Cx,i(r) that model the computation that produces the ith query that is572

asked on input x, when using random bits r. As in the proof of Theorem 14, we claim that573

if a 1 − 1
nω(1) fraction of the strings of the form Cx,i(r) are in Y

R̃K
, then Cx,i represents a574

distribution with entropy at least m/2 − e(m)/2 + 1, and if a 1 − 1
nω(1) fraction of the strings575

of the form Cx,i(r) are in N
R̃K

, then Cx,i represents a distribution with entropy at most576

m/2 − e(m)/2 − 1. Indeed, the proof is essentially identical. Assume that there are infinitely577

many x that are not don’t care instances, where replacing the R̃K oracle with the EA oracle578

does not yield the correct answer. Given n, we can find the lexicographically-least string x579

of length n for which the reduction fails. Since the reduction fails, there must be some i such580

that the ith query in the formula yields the wrong answer. Thus, given (n, i), we can find x581

and build the circuit Cx,i of Kolmogorov complexity O(log n) that yields a correct answer582

when given R̃K as an oracle, but fails when queries are made to EA instead. The analysis is583

identical to the argument in the proof of Theorem 14. ◀584

We have nothing to say, regarding the problems that are reducible to R̃K via ≤BPP
tt or585

≤BPP
rbf reductions, other than to refer to the AM ∩ coAM upper bound provided by Saks and586

Santhanam [61]. We do have a somewhat better bound to report, regarding ≤BPP
circ reducibility.587

▶ Theorem 29. The following are equivalent, for any decidable promise problem A:588

1. A≤BPP
hcircR̃K with threshold 1 − 1

nω(1) .589

2. A≤P
httEA.590

3. A≤P
ttB for some B ∈ SZK.591

Proof. Item 2 obviously implies item 3. To see that item 3 implies item 1, observe592

that if A≤P
ttB for some B ∈ SZK, then we know that A≤P

httB × 0∗ ∈ SZK, and hence593

A≤P
httEA≤BPP

hm R̃K . The composition of a ≤P
htt reduction with a ≤BPP

hm reduction is clearly594

a ≤BPP
hcirc reduction (as in Proposition 21). Finally, the proof of the remaining implication595

(item 1 implies item 2) follows along the same lines as the proof of Theorem 28. We still596

build circuits Cx,i that produce the ith query, and use the oracle for EA to determine if597

those circuits represent distributions of high or low entropy. Since we are assuming only that598

A≤BPP
hcircR̃K (instead of A≤BPP

hbf R̃K) we end by concluding only A≤BPP
htt R̃K . ◀599

6 Less Powerful Reductions600

The standard complete problems EA and SD remain complete for NISZK and SZK, respectively,601

even under more restrictive reductions such as ≤L
m, ≤AC0

m , ≤NC0

m and ≤proj
m . In this section, we602

show that it is worthwhile considering probabilistic versions of ≤L
m, ≤AC0

m and ≤NC0

m reducibility603

to R̃K .604

▶ Definition 30. For a class C, a promise problem A = (Y, N) is ≤RC
m -reducible to B =605

(Y ′, N ′) with threshold θ if there are a function f ∈ C and a polynomial p such that606

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.607
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x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] = 1.608

A is ≤BPC
m -reducible to B with threshold θ if there are a function f ∈ C and a polynomial p609

such that610

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.611

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.612

We are particularly interested in the cases C = L, C = AC0, and C = NC0. Note especially613

that, in the definitions of ≤RL
m and ≤BPL

m , the logspace computation has full (two-way) access614

to the random bits r. This is consistent with the way that probabilistic logspace computation615

is used in the context of the “verifier” and “simulator” in the complexity classes SZKL and616

NISZKL [36, 18].617

SZKL, the “logspace version” of SZK, was introduced in [36], primarily as a tool to618

discuss the complexity of problems involving distributions realized by extremely limited619

circuits (such as NC0 circuits). It is shown in [36] that SZKL contains many of the problems620

of cryptographic significance that lie in SZK. NISZKL was introduced in [18] as the “non-621

interactive” counterpart to SZKL, by analogy with NISZK, primarily as a tool to investigate622

the complexity of computing time-bounded Kolmogorov complexity. It was subsequently623

studied in [19], where it was shown to be robust to several changes to the definition. It624

is shown in [36, 18] that complete problems for SZKL and NISZKL arise by considering625

restrictions of the standard complete problems for SZK and NISZK where the distributions626

under consideration are represented either by branching programs (in EABP), or by NC0
627

circuits where each output bit depends on at most 4 input bits (in SDNC0 and EANC0).628

Following the pattern we established in Section 2, we now define SZKL and NISZKL in629

terms of their complete problems, rather than presenting the definitions in terms of interactive630

proofs:631

▶ Definition 31. SZKL = {A : A≤proj
m SDNC0} = {A : A≤L

mSDBP}632

NISZKL = {A : A≤proj
m EANC0} = {A : A≤L

mEABP}.633

▶ Theorem 32. The following are equivalent, for any decidable promise problem A:634

A ∈ NISZKL635

A≤RNC0

hm R̃K636

A≤BPNC0

hm R̃K637

A≤RAC0

hm R̃K638

A≤BPAC0

hm R̃K639

A≤RL
hmR̃K640

A≤BPL
hm R̃K641

Proof. The proof that A ∈ NISZKL implies A≤RNC0

hm R̃K proceeds as in the proof of Theo-642

rem 14. Whereas the proof of Theorem 14 takes as its starting point the problem EA′, we643

make use of the analogous problem EA’NC0 , defined exactly as EA′ except that the input is644

an NC0 circuit where each output bit depends on at most four input bits. It is shown in645

[19, Theorem 3.4] that a promise problem denoted SDU’NC0 is complete for NISZKL under646

uniform projections. The problem SDU’NC0 has YES instances consisting of distributions with647

statistical distance at most 2−nϵ from the uniform distribution, and NO instances consisting648

of distributions with support of size at most 2n−nϵ for some fixed ϵ > 0. Thus, precisely649

as in the proof of Lemma 13, we obtain that EA’NC0 is complete for NISZKL under uniform650

projections.651

We continue to follow the outline of the proof of Theorem 14. The second paragraph of652

that proof makes use of Corollary 18 of [18], and instead we appeal to the analogous result653

[18, Corollary 43] (presenting a nonuniform ≤proj
m reduction from EANC0 to R̃K).654
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In more detail: as in the proof of Theorem 14, given x, our reduction constructs a655

sequence of independent copies of instances of EA’NC0 . The proof of Corollary 43 in [18]656

shows that these NC0 circuits can be constructed via uniform projections. Let f(x, r) denote657

the function that takes input x (an instance of the promise problem A) and random sequence658

r as input, and first constructs (via a projection) the sequence C1, C2, ..., C|x|O(1) of NC0
659

circuits, and then produces as output the result of partitioning the bits of r into inputs ri for660

each Ci, computing Ci(ri), and concatenating the results. Thus each output bit of f(x, r)661

is computed by a gadget that is connected to O(1) random bits (i.e., the bits that are fed662

into the circuit computing the distribution), along with at most one bit from the input x663

(determining the circuitry internal to the gadget). The rest of the analysis (showing that, if664

the EA’NC0 instance has high entropy, then f(x, r) has high Kolmogorov complexity with high665

probability, and if the EA’NC0 instance has small support, then f(x, r) has low Kolmogorov666

complexity) is similar to that in the proof of Theorem 14.667

All of the other implications clearly follow, if we show that if A is decidable and A≤BPL
hm R̃K ,668

then A ∈ NISZKL.669

If A is decidable and A≤BPL
hm R̃K , then, as in the proof of Theorem 14, we build a device670

Cx(r) that simulates the computation that produces queries to R̃K on input x. However,671

now Cx is a branching program, and thus we replace queries to R̃K by queries to EABP. Since672

EABP ∈ NISZKL, this shows that A is also in NISZKL. Again, the analysis is similar to that673

in the proof of Theorem 14. ◀674

We end this section, with an analogous characterization of SZKL.675

▶ Definition 33. Let A = (Y, N) and B = (Y ′, N ′) be promise problems. We say A≤L
bfB676

if there is a function f computable in logspace such that, for all x, f(x) is of the form677

(C, z1, z2, . . . , zk) where C is a Boolean formula with k input variables, and (z1, . . . , zk) is a678

list of queries, with the property that679

If x ∈ Y , then C(χB(z1), . . . , χB(zk)) = 1.680

If x ∈ N , then C(χB(z1), . . . , χB(zk)) = 0.681

Earlier work that studied ≤L
bf reducibility can be found in [31, 10].682

We say A≤BPL
bf B with threshold θ > 1

2 if there are functions f and g computable in683

deterministic logspace, and a polynomial p, such that, for all x, f(x) is a Boolean formula684

(with k = |x|O(1) variables), with the property that685

If x ∈ Y , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 1,686

If x ∈ N , then C(χg,B(x, 1), . . . , χg,B(x, k)) = 0,687

where688

χg,B(x, i) = 1 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ Y ′] ≥ θ689

χg,B(x, i) = 0 if Prr∈{0,1}p(|x|) [g(x, i, r) ∈ N ′] ≥ θ690

χg,B(x, i) = ∗ otherwise.691

If the reduction is honest, then we write A≤BPL
hbf B692

(Similarly, one can define AC0 versions of ≤L
bf , although, since an AC0 circuit cannot693

evaluate a Boolean formula, we do not pursue that direction here.)694

▶ Theorem 34. The following are equivalent, for any decidable promise problem A:695

A ∈ SZKL.696

A≤L
bfEANC0 .697

A≤BPL
hbf R̃K with threshold 1 − 1

nω(1) .698
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Proof. The first two items are equivalent, because (a) SZKL is closed under ≤L
bf reducibility699

[19], and (b) the argument in [40], showing that SZK ≤L
bf-reduces to NISZK carries over700

directly to SZKL and NISZKL. Furthermore, the reduction to EANC0 is length-increasing, and701

hence honest.702

Since EANC0 is complete for NISZKL, Theorem 32 implies that every A ∈ NISZKL is703

≤BPL
hbf -reducible to R̃K . The argument that every decidable A that ≤BPL

hbf -reduces to R̃K lies704

in SZKL is similar to the argument in Theorem 28. ◀705

7 How important is the “Honesty” Condition?706

Our main results (Theorems 14 and 32) rely on restricting randomized reductions to R̃K707

to be honest. In this section, we consider what happens when this “honesty” condition708

is dropped, for related notions of reducibility. First, we consider a seemingly much more709

powerful notion of reducibility, and show that we still obtain a complexity-theoretic upper710

bound.711

▶ Theorem 35. Let A be a decidable promise problem. Let RKU
be the set {x : KU (x) ≥ |x|}.712

If A≤NP
m RKU

for every universal Turing machine U , then A has a solution in PPNP.713

Note that, in contrast to Theorem 14, we no longer assume any approximation error, we no714

longer assume that the reduction is honest, and we are assuming a ≤NP
m reduction, instead715

of a ≤RP
m reduction. This means that there is a deterministic Turing machine M running716

in polynomial time p(n) such that x ∈ AY implies there exists a string r of length at most717

p(|x|) such that M(x, r) ∈ RKU
, and x ∈ AN implies that no such string r exists.718

Proof. It will suffice to show that, for any decidable promise problem A that has no solution719

in PPNP, there is a universal Turing machine U such that A ̸≤NP
m RKU

. We will follow the720

approach of [12, Theorem 14].721

Let Ust be some “standard” universal Turing machine that is used to define K(x). Now722

define a new Turing machine U such that U(00d) = Ust(d) for every string d. Note that,723

for every string x, KU (x) ≤ K(x) + 2, and thus U is a Universal Turing machine. Next, we724

describe a stage construction that will define the behavior of U on inputs not in 00{0, 1}∗.725

We accomplish this by presenting an enumeration of pairs (d, y); that is, U(d) = y if the pair726

(d, y) appears in the enumeration. In stage i, we will guarantee that the ith nondeterministic727

Turing machine Ni (with a run-time of ni) does not define a ≤NP
m reduction of A to RKU

.728

At the start of stage i, there is a length ℓi with the property that at no later stage will729

any string d of length less than ℓi or any string y of length less than 2ℓi be enumerated into730

our list of pairs (d, y). (At stage 1, let ℓ1 = 1.)731

For any string x, denote by Qi(x) the set of outputs produced along some branch of732

Ni(x), and let Q′
i(x) be the set of strings in Qi(x) having length less than ℓi.733

In Stage i, the construction starts searching through all strings of length 2ℓi or greater,734

until two strings x0 and x1 are found, such that735

x0 ∈ AN ,736

x1 ∈ AY ,737

Q′(x0) = Q′(x1), and738

One of the following holds:739

Qi(x1) contains no more than 2⌊m/2⌋−2 elements from {0, 1}m for each length m ≥ 2ℓi,740

or741

Qi(x0) contains more than 2⌊m/2⌋−2 elements from {0, 1}m for some length m ≥ 2ℓi. .742
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We argue below that strings x0 and x1 will be found after a finite number of steps.743

If Qi(x1) contains no more than 2⌊m/2⌋−2 elements from {0, 1}m for each length m ≥ ℓi,744

then for each string y of length m ≥ ℓi in Qi(x1), pick a different d of length ⌊m/2⌋ − 2 and745

add the pair (1d, y) to the enumeration. This guarantees that Qi(x1) contains no element of746

RKU
of length ≥ 2ℓi. Thus if Ni is to be a ≤NP

m reduction of A to RKU
, it must be the case747

that Q′
i(x1) contains an element of RKU

. However, since Q′
i(x1) = Q′

i(x0) and x0 ̸∈ A, we748

see that Ni is not a ≤NP
m reduction of A to RKU

749

If Qi(x0) contains more than 2⌊m/2⌋−2 elements from {0, 1}m for some length m ≥ 2ℓi,750

then note that at least one of these strings is not produced as output by U(00d) for any751

string d of length ≤ m
2 − 2. We will guarantee that U does not produce any of these strings752

on any description d ̸∈ 00{0, 1}∗, and thus one of these strings must be in RKU
, and hence753

Ni is not a ≤NP
m reduction of A to RKU

.754

Let ℓi+1 be the maximum of the lengths of x0, x1 and the lengths of the strings in Qi(x0)755

and Qi(x1).756

It remains only to show that strings x0 and x1 will be found after a finite number of757

steps. Assume otherwise. It follows that AY ∪ AN can be partitioned into a finite number758

of equivalence classes, where y and z are equivalent if both y and z have length less than759

2ℓi, or if they have length ≥ 2ℓi and Q′
i(y) = Q′

i(z). Furthermore, for the equivalence classes760

containing long strings, if the class contains both strings in A and in A, then the strings761

in A are exactly the strings on which Ni queries more than 2⌊m/2⌋−2 elements of {0, 1}m
762

for some length m ≥ 2ℓi. This can be decided by making a truth-table reduction to the set763

{(x, m) : Ni(x) queries at least 2⌊m/2⌋−2 strings of length m}, which is in PPNP. Since PPB
764

is closed under polynomial-time truth-table reductions for every oracle B [39], it follows that765

A has a solution in PPNP, in contradiction to our choice of A. ◀766

Theorem 35 highlights a weakness of ≤NP
m reducibility, in comparison to ≤P

T reducibility.767

By [43], every problem in EXPNP is ≤P
T-reducible to RKU

for every universal machine U ,768

whereas Theorem 35 shows that any set ≤NP
m reducible to RKU

for every U lies in PPNP,769

which seems to be a much smaller class.770

Theorem 35 gives an upper bound on the complexity of problems ≤NP
m reducible to RKU

;771

what can we say about lower bounds? It is clear that every set in NP is ≤NP
m reducible to772

any set other than the empty set and Σ∗, and Theorem 14 implies that every problem in773

NISZK is also reducible to RKU
in this way. (Note that NISZK is not known to be contained774

in NP.) But if we impose an “honesty” restriction on ≤NP
m reductions, then it is not at all775

clear that all problems in NP reduce to RKU
, although Theorem 14 implies that problems776

in NISZK reduce not only to RKU
, but to the more restrictive problem R̃K , using the even777

more restrictive ≤RP
hm reductions.778

Now we turn to the ≤RP
m reductions that yield one of our characterizations of NISZK, but779

dropping the “honesty” condition.780

▶ Theorem 36. Let A be a decidable promise problem. If A≤RP
m R̃K , then A has a solution781

in AM ∩ coAM.782

Proof. If A≤RP
m R̃K , then there is a single reduction R such that, for each universal Turing783

machine U , R reduces A to RKU
for all large inputs. We make use of this (weaker)784

assumption, without relying on the ω(log n) “approximation” term in the definition of R̃K .785

Thus Theorem 36 is incomparable with the main result of [61], where the same upper786

bound of AM ∩ coAM is presented for more general nonadaptive reductions, but with an787

“honesty” restriction, and requiring a superlogarithmic approximation term for the Kolmogorov788
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complexity promise problem. We wish to emphasize that the superlogarithmic approximation789

term is essential for the upper bound presented in [61], because Hirahara showed in [42] that790

every language in NEXP is reducible via randomized nonadaptive reductions to any function791

that differs from K by at most an additive O(log n) term.792

We follow a similar strategy to the proof of Theorem 35, while also incorporating some of793

the techniques of [46, Theorem 2]. Let A be any decidable promise problem with no solution794

in AM. We will show that, for every machine R computing a (possible) ≤RP
m reduction, there795

is a universal Turing machine U such that there are infinitely many inputs on which R fails796

to reduce A to RKU
.797

Let R be any probabilistic polynomial-time Turing machine that (possibly) computes a798

≤RP
m reduction to RKU

for every U (for all large inputs), and let p(n) be the running time of799

R. Define δ(n) = 1/p(n)11, and let δ′(n) = 3p(n)δ(n).800

On input x, the reduction R may query strings of various lengths j. Let Rj(x) be the801

set of all random sequences r such that R(x, r) outputs a string of length j. For a given U ,802

define Pj(x) to be Pr[R(r, x) ∈ RKU
|r ∈ Rj(x)]. (The machine U under consideration will803

always be clear from context.)804

▷ Claim 37. If R is computing a ≤RP
m reduction to RKU

on input x, then805

If the reduction accepts on input x, then there is some j such that Pr[r ∈ Rj(x)] ≥ 2δ(n)806

and Pj(x) ≥ 1 − δ′(n).807

If the reduction rejects on input x, then for all j such that Pr[r ∈ Rj(x)] > 0, Pj(x) = 0.808

Proof. The first item is proved along the lines of [46, Claim 14]: By definition, the probability
that the reduction accepts on input x is

Pr
r

[
KU (R(x, r)) ≥ |R(x, r)|

2

]
=

∑
j

Pr[r ∈ Rj(x)] · Pj(x).

If R is a ≤RP
m reduction to RKU

then this probability is 1 − 1
nω(1) ≥ 1 − δ(n)2. Assume by way809

of contradiction that Pj(x) < 1 − δ′(n) for every j such that Pr[r ∈ Rj(x) ≥ 2δ(n). Then810

1 − δ(n)2 ≤
∑

j

Pr[r ∈ Rj(x)] · Pj(x)811

=
∑

{j:Pj(x)≥2δ(n)}

Pr[r ∈ Rj(x)] · Pj(x) +
∑

{j:Pj(x)<2δ(n)}

Pr[r ∈ Rj(x)] · Pj(x)812

≤ (1 − δ′(n)) + p(n)2δ(n) = 1 − 3p(n)δ(n) + p(n)2δ(n) = 1 − p(n)δ(n)813
814

and thus p(n) ≤ δ(n) < 1, which is a contradiction.815

The second item follows immediately from the definition of a ≤RP
m reduction. If the816

reduction rejects on input x, then every query must be non-random. ◀817

Let us say that j is popular for x if Pr[r ∈ Rj(x)] ≥ 2δ(n). Since the running time of R818

is p(n), and since R outputs a string of some length (at most p(n)) along every path, there819

is always some j such that Pr[r ∈ Rj(x)] ≥ 1
p(n) ≥ 2δ(n), and thus there is always at least820

one j that is popular for x.821

Let Ust be some “standard” universal Turing machine that is used to define K(x). Now822

define a new Turing machine U such that U(00d) = Ust(d) for every string d. Note that,823

for every string x, KU (x) ≤ K(x) + 2, and thus U is a Universal Turing machine. Next, we824

describe a stage construction that will define the behavior of U on inputs not in 00{0, 1}∗.825

We accomplish this by presenting an enumeration of pairs (d, y); that is, U(d) = y if the826



E. Allender, S. Hirahara, and H. Tirumala 21

pair (d, y) appears in the enumeration. In stage i, we will guarantee that there are at least i827

inputs on which R fails to reduce A to RKU
.828

At the start of stage i, there is a length ℓi with the property that at no later stage will829

any string d of length less than ℓi or any string y of length less than 2ℓi be enumerated into830

our list of pairs (d, y). (At stage 1, let ℓ1 = 1.)831

Let us say that a query q of length j is β-heavy on input x if Prr∈Rj
[R(x, r) = q] ≥ β.832

In Stage i, the construction starts searching through all strings of length 2ℓi or greater,833

until two strings x0 and x1 are found, such that834

x0 ∈ AN ,835

x1 ∈ AY , and836

For each y ∈ {x0, x1}, there is a j ≥ ℓi such that j is popular for y.837

One of the following holds:838

For some j ≥ ℓi that is popular for x1, letting m = ⌊j/2⌋, and setting β = 1
2m+13 ,839

Prr∈Rj(x1)[R(x, r) is β heavy] ≥ 1
4 .840

For every j ≥ ℓi that is popular for x0, as above letting m = ⌊j/2⌋, and setting841

β = 1
2m+13 , Prr∈Rj(x0)[R(x, r) is 211β heavy] ≤ 3

4 .842

We claim that some such pair (x0, x1) will be found after a finite number of steps, and843

that R fails to reduce A to RKU
on either x0 or x1. Thus, at the end of stage i we will have844

found at least i strings on which R fails to reduce A to RKU
. Then we set ℓi to be larger845

than the length of any query that is made by R on either x0 and x1, and move on to the846

next stage.847

To see that a pair (x0, x1) will always be found, observe that otherwise, a string x848

of length greater than 2ℓi in AN ∪ AY is a YES instance if for every j ≥ ℓi that is849

popular for x, Prr∈Rj(x)[R(x, r) is β heavy] < 1
4 , and x is a NO instance if there is some850

j ≥ ℓi that is popular for x, where Prr∈Rj(x)[R(x, r) is 211β heavy] > 3
4 .11 But these851

conditions can both be checked in AM ∩ coAM, which places A in AM ∩ coAM, contrary852

to our choice of A. To see this, note that the distribution given by R(x, r) for uniformly853

sampled r ∈ Rj(x) is very close to a polynomial-time samplable distribution if j is popular.854

(Simply choose r uniformly at random for a large polynomial number of tries, until some855

r is found such that R(x, r) has length j, and output this R(x, r). By sampling r for a856

large enough polynomial number of times, the resulting distribution D has the property857

that | Prr∼D[R(x, r) is β heavy] − Prr∈Rj(x)[R(x, r) is β heavy]| < 1
8 ), and similarly the858

probabilities of sampling a 211β-heavy string in the two distributions are very close.) Thus859

we can appeal to the heavy samples protocol of Bogdanov and Trevisan [29], as presented in860

[46, Lemma 13]:861

▶ Lemma 38. Let q(n) be a polynomial. There is an AM ∩ coAM protocol that solves862

the following promise problem: Given a circuit of size q(n) producing output of length863

n representing a distribution D, and given a threshold β = a
b ∈ (0, 1) where a and b864

are represented in binary notation, accept if Pry∼D[y is 211β−heavy] ≥ 7
8 , and reject if865

Pry∼D[y is β−heavy] ≤ 1
8 .12

866

11 There is actually one other possibility: that all j that are popular for x are less than ℓi. However, in this
case the probability given to longer queries is no more than p(n)δ(n) = 1

p(n)10 and thus the short queries
determine the outcome of the reduction. Thus in BPP we can determine which j ≤ ℓi are popular and
simulate the reduction on those short queries, using a finite table to answer all of the short queries.

12 This is not precisely the way that the heavy samples lemma is stated in [46], but the proof that is
presented there establishes this version of the lemma.
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This gives the desired AM ∩ coAM protocol. (More precisely, Arthur can use BPP compu-867

tation to determine which j are popular, and then construct the circuits that approximate868

the distributions required, to run the heavy samples protocol in parallel for each popular869

j ≥ ℓi.)870

If the pair (x0, x1) that is found in stage i satisfies the second condition (namely: for every871

j ≥ ℓi that is popular for x0, Prr∈Rj(x0)[R(x, r)is 211β heavy] ≤ 3
4 ) we can conclude that R872

does not define a ≤RP
m reduction of A to RKU

on x0, since (a) there must be some j ≥ ℓi that873

is popular for x0, and (b) there must be more than 2⌊j/2⌋ strings of length j that are queried874

by R on input x0, and thus at least one of them must be random. To see this, order the 2j
875

possible queries of length j in decreasing order of weight, q1, q2, . . . , q2m , . . . q2m+2 , . . . , q2j ,876

where m = ⌊j/2⌋ and 211β = 1
2m+2 . Let w(qi) denote the weight of qi; thus w(qi) ≥ w(qi+1)877

and w(qi) ≤ 1
i . It suffices to show that, if no more than 2m strings of length j are queried,878

then Prr∈Rj(x0)[R(x, r) is 211β heavy] > 3
4 .879

Pr
r∈Rj(x0)

[R(x, r) is 211β heavy] =
∑

{i:w(qi)≥2−m−2}

w(qi)880

= 1 −
∑

{i:w(qi)<2−m−2}

w(qi)881

> 1 −
∑

{i:w(qi)<2−m−2}

2−m−2
882

≥ 1 − (2m · 2−m−2) = 3
4 .883

884

On the other hand, if the pair that is found in stage i satisfies the first condition885

(namely: for some j ≥ ℓi that is popular for x1, Prr∈Rj(x1)[R(x, r) is 1
2m+13 heavy] ≥886

1
4 ), then – as above – order the 2j possible queries of length j in decreasing order of887

weight, q1, q2, . . . , q2m−2 , . . . q2m , . . . , q2j . For each q ∈ S = {qh : h ≤ 2m−2} choose a888

distinct description d of length m − 2 and enumerate (1d, q) into the description of U ,889

thereby assuring that the heaviest queries made by R on input x1 are all non-random.890

The probability mass of the heaviest queries is minimized if as much mass as possible is891

shifted to the lighter queries. Let i be the largest number such that w(qi) ≥ β. In this892

case, Prr∈Rj(x1)[R(x, r) is 1
2m+13 heavy] = iβ ≥ 1

4 , and hence i ≥ 2m+13. In particular,893

we can conclude that the probability that R(x1) outputs one of the 2m−2 strings in S894

(conditioned on R producing a string of length j with weight at least β) is minimized if all895

strings of weight at least β have equal probability, and in particular w(q2m−2) = β. Thus896

Pr[R(x1, r) ∈ S|R(x1, r) has weight ≥ β and has length j] ≥ 2m−2

2m+13 = 1
215 . Thus897

Pr
r∈Rj(x1)

[R(x, r) ∈ S]898

= Pr
r∈Rj(x1)

[R(x, r) ∈ S|R(x, r) is 1
2m+13 heavy] · Pr

r∈Rj(x1)
[R(x, r) is 1

2m+13 heavy]899

≥ 1
215 · 1

4 .900
901

Thus, since j is popular for x1, R(x1, r) is producing as output a non-random string with902

probability at least 2δ(n)/217, which means that R is failing to compute a ≤RP
m reduction903

of A to RKU
(since this would require that R(x1) output a random string with probability904

1 − 1
nω(1) ).905

◀906

▶ Remark 39. The proof of Theorem 36 carries over, with only minor changes, to nonadaptive907

probabilistic reductions that make at most one query along any path.908
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8 Discussion909

There are not many examples of natural computational problems that are known or conjec-910

tured to lie outside of P, such that the class of problems reducible to them via ≤P
m and ≤L

m911

(or ≤AC0

m ) reductions differ (or are conjectured to differ). Is it the case that the problems912

reducible to R̃K via ≤RP
hm and ≤RL

hm (or ≤RAC0

hm ) reductions differ? Or should this be taken as913

evidence that NISZK and NISZKL coincide?914

Similarly, there are not many examples of natural computational problems such that the915

classes of problems reducible to them via ≤P
tt and ≤P

bf reductions differ (or are conjectured to916

differ). For example, these reducibilities coincide for SAT [32]. Is it the case that ≤BPP
bf and917

≤BPP
circ reducibilities differ for R̃K? Or should this be taken as evidence that SZK is closed918

under ≤P
tt reducibility?919

Perhaps our new characterizations of statistical zero knowledge classes will be useful in920

answering these questions.921

It is known that every promise problem in NISZKL reduces to R̃K via nonuniform922

projections [18, 8]. The following quote from [8] is worth paraphrasing here:923

. . . no complexity class larger than NISZKL is known to be (non-uniformly) ≤AC0

m924

reducible to the Kolmogorov-random strings [18]. It seems unlikely that this is optimal.925

The discussion in [8] was referring to reductions to an oracle for the exact Kolmogorov-926

complexity function. Our results show that, for reductions to an approximation to the927

Kolmogorov-complexity function, NISZKL is essentially “optimal”.928

9 An Application929

Finally, let us observe that our new characterizations of NISZKL may open new avenues930

of attack on questions such as whether NP = NL. MKTP, the problem of computing KT931

complexity, lies in NP and is hard for co-NISZKL under nonuniform projections [18]. If932

MKTP ∈ NISZKL, then there must be a nonuniform projection f that takes strings of933

low KT-complexity (and hence low K-complexity) to strings of high K complexity, and934

simultaneously maps strings of high KT complexity to strings of low K-complexity.13 It is935

plausible that one could show unconditionally that no such projection can exist. Among936

other things, this would show that NP ̸= DET (where DET is the complexity class, containing937

NL, of problems that reduce to the determinant) since DET ⊆ NISZKL [18].14
938

It may be useful to observe that, if MKTP ∈ NISZKL, then the projection discussed in the939

preceding paragraph can be assumed without loss of generality to have a very specific form.940

▶ Theorem 40. There are constants α > 0 and β < 1, for which the following holds. If941

MKTP ∈ NISZKL, then there is a (non-uniform, polynomial-size) projection f mapping942

strings of length n to strings of length m, such that943

KT(x) ≤ n
3 implies K(f(x)) > m

2 , and944

KT(x) > n
3 implies K(f(x)) < m

2 − mα
945

13 Similarly, under the same assumption, there is a nonuniform projection that takes strings of low KT
complexity to strings of high KT complexity, and simultaneously maps strings of high KT complexity to
strings of low KT complexity.

14 More precisely, as observed in [21], the Rigid Graph (non-) Isomorphism problem is hard for DET [64],
and the Rigid Graph Non-Isomorphism problem is in NISZKL [18, Corollary 23].
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and furthermore, f(x) has the following form: Given input x = x1x2 . . . xn,

f(x) = yng1(x1)g2(x2) . . . gn(xn),

where yn has length ≥ m − mβ and depends only on n, and each each gi depends on only a946

single bit of x, and all of the strings g1(0), g1(1), g2(0), g2(1), . . . , gn(0), gn(1) have the same947

length.948

Proof. (Sketch) If MKTP ∈ NISZKL, then the language A consisting of all strings x such949

that KT(x) < |x|
3 is also in NISZKL. Thus, as in the proof of Theorem 32, A is reducible950

to the Kolmogorov-approximation problem with approximation error nρ (and randomness951

threshold n − nδ), via a randomized reduction f0(x, r) computable in uniform NC0. In fact,952

as in [18, Theorem 39], the error probability for the reduction is exponentially small, and a953

deterministic (but nonuniform) reduction can be obtained by hardwiring in a fixed choice954

for r. As described in the proof of [18, Corollary 41], this yields a function f1(x) that is955

a projection; briefly, this is because each output bit of f0(x, r) depends on at most one bit956

of x (and depends on O(1) bits of r). In turn, the proof of Proposition 2 shows that the957

Kolmogorov-approximation problem with threshold n/2 and approximation error nα is also958

hard for NISZKL for some α > 0, via a non-uniform projection of the form f1(x)0i for some i959

that is only slightly less than |f1(x)|.960

Many of the output bits in f1(x)0i do not depend on bits of the original input x. Certainly961

the bits 0i do not; but we also claim that only a small fraction of the bits of f1(x) depend962

on x. First, since EABP is complete for NISZKL under projections, we can reduce A to EABP963

via a projection where most of the output bits do not depend on x. Then the reduction of A964

to EANC0 (and EA’NC0) given in [18] yields a projection in which only about a 1/|x| fraction965

of the output bits depend on x, and then the reduction from EA’NC0 to the Kolmogorov-966

approximation problem given in Theorem 32 (which in turn forms the basis of f1(x)) consists967

of nk copies of this reduction (for different random bits). Thus no more than around 1/|x|968

of the output bits of f1(x) actually depend on x; the rest of the output bits of f1(x)0i are969

fixed by the choice of r, and do not depend on x at all. In fact, since f0(x, r) is in uniform970

NC0, if we let m = |f1(x)0i|, we can conclude that there are at least m − m/|x| ≥ m − mβ
971

output bits that can be determined (merely by examining the uniform NC0 circuit computing972

f0(x, r)) to definitely not depend on the bits of x, for some β < 1. Let yn be the string973

that results from concatenating those bit positions consecutively. All of the bit positions of974

f1(x)0i that do not correspond to a bit in yn are all connected to exactly one bit position of975

x. Let kj be the number of output bits connected to xj , and let k be the maximum of all of976

the kj ; note that k can easily be computed, given n.977

Let gj(b) be the string of length k consisting of the concatenation of the bits of f1(x)0i
978

that depend on xj , when xj = b (padded out with zeros, if necessary, to obtain a string of979

length k).980

Let f2(x) = yng1(x1) . . . gn(xn). It is easy to see that K(f1(x)) = K(f2(x)) ± O(1).981

(Given a short description of f1(x) or f2(x), the other string can be obtained by simply982

rearranging the bits, using the uniform description of f0 to indicate which bits should be983

moved where. This function f2 is the projection f in the statement of the theorem. The proof984

is completed, by noticing that the proof of Theorem 32 carries over for any promise problem985

defined as R̃K , but with the YES instances consisting of strings z with K(z) > |z|
2 + c for986

any constant c. ◀987

We do not know if a version of Theorem 40 holds, where K-complexity is replaced by988

KT-complexity.989
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We have not been able to prove that there is no nonuniform projection reducing MKTP990

to R̃K . In fact, we do not even know whether there is a nonuniform projection reducing the991

halting problem to R̃K . The structure of the computably-enumerable degrees of languages992

under non-uniform projections does not seem to have been studied in any depth. Indeed, it is993

easy to observe that non-uniform projections do not behave similarly to the more-commonly994

studied m-reductions:995

▶ Theorem 41. The halting problem nonuniformly ≤proj
m -reduces to its complement.996

Proof. Let H = {(M, x) : M halts on input x}. Let nH = |H ∩ {y : |y| ≤ n}|. Note that997

the set A = {(y, i) : there are at least i strings x ̸= y in H having length at most n} is998

computably-enumerable, and thus there is a projection f reducing A to H. Let y have length999

n. Note that y ̸∈ H if and only if f(y, nH) ∈ H. ◀1000

Although we do not know how to prove that there is no projection reducing MKTP to1001

R̃K , we note there there is provably no projection reducing MKTP to a related problem R̃′
K ,1002

where the “gap” between the YES and NO instances is larger than in R̃K . Define R̃′
K to1003

have YES instances {x : K(x) ≥ |x|
2 } and NO instances {x : K(x) ≤ |x|

2 − |x|β}, where β is1004

the constant from the statement of Theorem 40.1005

▶ Theorem 42. There is no projection reducing MKTP to R̃′
K .1006

Proof. Since PARITY is in co-NISZKL, we know that PARITY ≤proj
m MKTP. Thus if1007

MKTP≤proj
m R̃′

K it follows that PARITY ≤proj
m R̃′

K . We apply a simplification of the1008

techniques of [24, Lemma 6] to show that no such projection can exist.1009

Let w = 0w′ be a string whose first symbol is 0, such that w ∈ PARITY, and thus 1w′ is1010

not in PARITY.1011

Let f be a projection reducing PARITY to R̃′
K , where f has the form guaranteed by

Theorem 40. In particular, Given input w = 0w2w3 . . . wn,

f(w) = yng1(0)g2(w2)g3(w3) . . . gn(wn),

where yn has length ≥ m − mβ and depends only on n. Thus each gj(xj) has length at most1012

mβ/n.1013

Since the nonuniform projection f obtained in the proof of Theorem 40 is obtained from1014

a uniform probabilistic NC0 reduction, the values of m and |gi(xi)| can be computed, given1015

n.1016

Thus K(f(0w′)) ≥ m
2 , whereas K(f(1w′)) ≤ m

2 − mβ . Let d be a short description1017

of f(1w′), so |d| ≤ m
2 − mβ . Note also that f(0w′) differs from f(1w′) only in that the1018

block immediately after yn in f(0w′) is g1(0), whereas in f(1w′) it is g1(1). Thus f(0w′)1019

can be obtained from d and g1(1), along with O(log n) additional information, and hence1020

K(f(0w′) ≤ |d| + |g1(1)| + O(log n) ≤ m
2 − mβ + mβ/n + O(log n) < m

2 contrary to our1021

assumption. ◀1022

We remark in passing that the proof of Theorem 42 shows unconditionally that there1023

is no projection reducing PARITY to R̃′
K . However, PARITY (and any other problem1024

known to be in NISZKL) is projection-reducible to the analogous problem defined in terms of1025

approximation error nβ′
< nβ for some β′. Thus any significant improvement to Theorem 421026

will have to make use of the properties of MKTP itself.1027

In this vein, let us also remark that Kolmogorov complexity has already proved useful1028

in developing nonrelativizing proof techniques [44], and also that the machinery of perfect1029

randomized encodings (which were developed in [25] and which are essential to the results of1030

[18]) also does not seem to relativize in any obvious way.1031
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Reducibility Motivation

≤P
m NP-completeness

≤L
m P-completeness

≤AC0
m NC1-completeness

≤NC0
m Usually equivalent to completeness under ≤AC0

m [5, 3]
≤proj

m stronger lower bounds
Table 1 Deterministic many-one reductions. All of these had been studied previously.

Reducibility Motivation Definition

≤RP
m [1, 66] Definition 3 [1]

≤BPP
m Robustness of Theorem 14 to 2-sided error Definition 7 [34]

≤RL
m Characterization of NISZKL Definition 30

≤BPL
m Robustness of Characterization of NISZKL Definition 30

≤RAC0
m Robustness of Characterization of NISZKL Definition 30

≤BPAC0
m Robustness of Characterization of NISZKL Definition 30

≤RNC0
m Robustness of Characterization of NISZKL Definition 30

≤BPNC0
m Robustness of Characterization of NISZKL Definition 30
≤NP

m Theorem 35 Theorem 35
Table 2 Nondeterministic and probabilistic many-one reductions.

reducibility (≤AC0

m ) have been widely studied. It turns out that most (but not all [4]) sets1230

known to be NP-complete are also complete under ≤AC0

m reductions.1231

The most restrictive notion of many-one reducibility that we consider is projection1232

reducibility (≤proj
m ), which also has been studied widely. Stronger lower bounds follow when it1233

is known that a set A is hard for some class under ≤proj
m reductions, than if it merely known1234

that it is hard under ≤AC0

m reductions. For example, in [18, Corollary 42] it was shown that1235

MKTP requires exponential size on a type of depth-two threshold circuit, as a consequence1236

of it being hard for co-NISZKL under nonuniform projections.1237

As discussed in Section 2.3 probabilistic many-one reductions with one-sided error (≤RP
m )1238

were introduced by Adleman and Manders [1] and have been studied extensively since then.1239

Probabilistic reductions with two-sided error were studied by Chang, Kadin, and Rohatgi [34].1240

In [1], Adleman and Manders also introduced a notion of nondeterministic polynomial-time1241

many-one reducibility that they called γ-reducibility, which they used in order to classify the1242

complexity of some number-theoretic problems [2]. The ≤NP
m reducibility that we define in1243

the text after Theorem 35 is significantly less restrictive than γ reducibility, and we are not1244

aware that it has been studied previously. We introduce it in the context of Theorem 35,1245

merely to show that, even with very powerful notions of reducibility to the Kolmogorov1246

random strings, one can still obtain a complexity-theoretic upper bound.1247

Similarly, we are not aware that the various types of probabilistic many-one reductions1248

based on space-bounded classes or small circuit classes that we consider have been studied1249

previously. They are introduced here, in order to obtain characterizations of NISZKL.1250

10.2 Adaptive and Nonadaptive Turing Reducibility1251

The classic adaptive Turing reducibility (≤P
T) does not play a significant role in our results.1252

Our work builds on the work of Saks and Santhanam [60], who were mainly concerned1253
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Reducibility Motivation Definition

≤P
tt Definition 18 [54]

≤P
bf [53, 32] Definition 18 [54]

≤L
bf [31, 10] Definition 33 [31]

≤BPP
tt [60] Definition 23

≤BPP
bf Characterization of SZK Definition 20

≤BPP
rbf Intermediate Notion Definition 24

≤BPP
circ Intermediate Notion Definition 25

≤BPL
bf Characterization of SZKL Definition 33

Table 3 Nonadaptive Turing reductions.

with the class of problems reducible to R̃K via probabilistic nonadaptive (or “truth-table”)1254

reductions (≤BPP
tt ).15 In order to obtain our characterizations of SZK, we needed to consider1255

the more restrictive notion of probabilistic Boolean Formula reductions ≤BPP
bf , which we1256

defined by analogy with the previously-studied notion of (deterministic) Boolean Formula1257

reductions (≤P
bf). In order to illustrate some of the differences between ≤BPP

tt and ≤BPP
bf1258

reductions, we also introduced two intermediate notions: ≤BPP
rbf and ≤BPP

circ .1259

Finally, logspace Boolean Formula reductions (≤BPL
bf ) were introduced in order to obtain1260

a characterization of SZKL.1261

15 Probabilistic nonadaptive reductions have been studied as far back as [38], and quite possibly earlier.
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