
PPP-Completeness and Extremal Combinatorics∗

Romain Bourneuf1, Lukáš Folwarczný†2,3, Pavel Hubáček‡2, Alon Rosen§4, and Nikolaj I.
Schwartzbach5

1ENS de Lyon
2Charles University, Faculty of Mathematics and Physics
3Institute of Mathematics, Czech Academy of Sciences

4Bocconi University and Reichman University
5Aarhus University

Abstract

Many classical theorems in combinatorics establish the emergence of substructures within sufficiently
large collections of objects. Well-known examples are Ramsey’s theorem on monochromatic subgraphs
and the Erdős-Rado sunflower lemma. Implicit versions of the corresponding total search problems are
known to be PWPP-hard; here “implicit” means that the collection is represented by a poly-sized circuit
inducing an exponentially large number of objects.

We show that several other well-known theorems from extremal combinatorics – including Erdős-
Ko-Rado, Sperner, and Cayley’s formula – give rise to complete problems for PWPP and PPP. This
is in contrast to the Ramsey and Erdős-Rado problems, for which establishing inclusion in PWPP has
remained elusive. Besides significantly expanding the set of problems that are complete for PWPP and
PPP, our work identifies some key properties of combinatorial proofs of existence that can give rise to
completeness for these classes.

Our completeness results rely on efficient encodings for which finding collisions allows extracting the
desired substructure. These encodings are made possible by the tightness of the bounds for the problems
at hand (tighter than what is known for Ramsey’s theorem and the sunflower lemma). Previous techniques
for proving bounds in TFNP invariably made use of structured algorithms. Such algorithms are not known
to exist for the theorems considered in this work, as their proofs “from the book” are non-constructive.

∗Part of this work done while visiting R.B., L.F., P.H., and N.I.S. were visiting Bocconi University.
†Supported by the Grant Agency of the Czech Republic under the grant agreement no. 19-27871X and by the Charles

University grant SVV–2020–260578.
‡Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

programme (Grant agreement No. 101019547), by the Cariplo CRYPTONOMEX grant, by the Grant Agency of the Czech
Republic under the grant agreement no. 19-27871X, and by the Charles University project UNCE/SCI/004.

§Supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (Grant agreement No. 101019547) and Cariplo CRYPTONOMEX grant.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 128 (2022)

Contents

1 Introduction 1
1.1 Our Results . 1
1.2 Techniques and Ideas . 3
1.3 PPP-Completeness From Extremal Combinatorics . 4
1.4 Related Work . 4
1.5 Open Problems . 5

2 Preliminaries 5
2.1 Total Search Problems . 6

3 Property-Preserving Encodings 6
3.1 Cover Encodings . 7
3.2 Encoding 2-subsets of [2n] . 7
3.3 Prüfer Codes . 8
3.4 Catalan Factorization . 8

4 Erdős-Ko-Rado Theorem on Intersecting Families 10
4.1 A Generalized Erdős-Ko-Rado Problem . 14

5 Sperner’s Theorem on Largest Antichains 18

6 Cayley’s Tree Formula 21

7 Ward-Szabo Theorem on Swell Colorings 24
7.1 A Hierarchy of Total Search Problems between weak-Pigeon and Pigeon? 27

8 Mantel’s Theorem on Triangle-Free Graphs 27
8.1 Generalization with Turán’s Theorem . 29

A Efficient algorithm for the explicit Ramsey problem 33

i

1 Introduction

A well-known theorem by Ramsey gives a lower bound on the size of the largest monochromatic clique in
any edge-coloring of the complete graph using two colors.

Ramsey [Ram30] Any edge-coloring of the complete graph on n vertices with two colors contains a
monochromatic clique of size at least 1

2 log n.

Ramsey’s theorem gives rise to a natural computational search problem Ramsey [Kra05, KNY19]: given a
description of an edge-coloring, output the vertices of a monochromatic clique of size 1

2 log n. Since the theo-
rem guarantees the existence of a monochromatic clique of this size, Ramsey belongs to the complexity class
TFNP consisting of efficiently verifiable search problems to which a solution is guaranteed to exist [MP91].

The computational complexity of Ramsey very much depends on its representation. One the one hand,
it is efficiently solvable when the graph is given explicitly ; a folklore proof of Ramsey’s theorem gives an
efficient algorithm to find such a subgraph – see Appendix A. On the other hand, the situation is less clear
when the graph is represented implicitly, e.g., via a Boolean circuit that, for any pair of vertices, outputs
the corresponding color of the edge-coloring of the graph.1

Another TFNP problem considered in the literature that is motivated by a result in extremal combinatorics
arises from the well-known Erdős-Rado sunflower lemma.

Erdős-Rado [ER60] Any family of n-sets of cardinality greater than nnn! contains an n-sunflower of size
n+1, i.e., subsets A1, A2, . . . , An+1 ∈ F such that, for some ∆, Ai ∩Aj = ∆ for every distinct Ai, Aj.

An instance of the total search problem Sunflower [KNY19] can be implicitly represented, e.g., via a
Boolean circuit that, given an index of a set in the family, outputs its characteristic vector.

In general, little is known of the complexity of the implicit variants of Ramsey or Sunflower – the proofs
of the corresponding theorems are either non-constructive or result in inefficient (i.e., superpolynomial-time)
algorithms. Both problems are known to be PWPP-hard, as shown by Kraj́ıček [Kra05] and Komargodski,
Naor, and Yogev [KNY19]. This means that finding the desired substructure is at least as hard as finding
collisions in an arbitrary poly-sized shrinking circuit and, hence, hard in the worst-case if collision-resistant
hash functions exist. However, they are not known to be complete for the class PWPP and the intriguing
question of whether they give rise to a complexity class distinct from PWPP has remained open for years.

1.1 Our Results

We explore new connections between classical theorems in extremal combinatorics and the complexity classes
PPP [Pap94] and PWPP [Jeř16], i.e., the classes of search problems with totality guaranteed by the (weak)
pigeonhole principle. We show that PPP and PWPP can be characterized via a number of new TFNP
problems based on the following theorems.

Erdős-Ko-Rado [EKR61]. Any family of distinct pairwise-intersecting k-sets on a universe of size m has
size at most

(
m−1
k−1

)
.

Sperner [Spe28]. The largest antichain, i.e., a family of subsets such that no member is contained in any
other, on a universe with 2n elements is unique and consists of all subsets of size n.

Cayley [Cay89]. There are exactly nn−2 spanning trees of the complete graph on n vertices.

Just as for Ramsey and Sunflower, the corresponding search problems are efficiently solvable when
given explicit access to the family of objects and, again, their computational complexity is open when we
consider implicit access to the structure, e.g., where the instance is given by a circuit that on input i returns

1Given such a representation, it might be even hard to compute the degree of a node with respect to one of the two colors.

1

an encoding of the ith object in the collection.2 The totality of the problems we define follows from a common
principle – the instances are given via an implicit representation of a sufficiently large collection of objects
(e.g., subsets for Erdős-Ko-Rado) such that, by the corresponding theorem, there exists a small subset of
these objects satisfying some efficiently verifiable property (e.g, a pair of disjoint subsets for Erdős-Ko-Rado).

In addition to the above completeness results, we define TFNP problems arising from the following two
results in extremal combinatorics.

Mantel [Man07]. Any triangle-free graph on n vertices has at most n2/4 edges.

Ward-Szabo [WS95]. Any edge-coloring of the complete graph on n vertices with 2 ≤ r ≤
√
n colors must

contain a bichromatic triangle.

We show that variants of the corresponding problems are hard for PWPP and PPP. However, proving
their inclusion in PWPP or PPP remains open and they join Ramsey and Sunflower as candidate problems
that might define a new class above PWPP or PPP (see Section 1.5). An overview of our results in terms of
weak and strong problems (see Section 1.3) is given in Table 1.

Problem Hardness Containment

Ramsey
PWPP [Kra05, KNY19]

TFNPSunflower

Ward-Szabo

PWPP

[Theorems 7.4, 8.3 and 8.12]

weak-Mantel PPP

[Theorems 7.7, 8.4 and 8.13]
weak-Turánr

Ward-Szabo-Colorful-Collisions

Ward-Szabo-Collisions

PWPP [Theorems 4.4, 4.21, 5.2, 6.2, 7.4 and 7.5]

weak-Erdős-Ko-Rado

weak-general-Erdős-Ko-Radok

weak-Sperner-Antichain

weak-Cayley

Erdős-Ko-Rado

PPP [Theorems 4.9, 4.26, 5.7 and 6.7]
general-Erdős-Ko-Radok

Sperner-Antichain

Cayley

Mantel PPP [Theorem 8.8] TFNP

Table 1: Summary of the complexity of problems we consider. Except for Ramsey and Sunflower, all
problems were introduced in this work. The containment results for weak-general-Erdős-Ko-Radok

and general-Erdős-Ko-Radok rely on the efficient Baranyai assumption (Assumption 4.18).

2Note that an implicit representation of the collection might not necessarily satisfy the assumptions of the underlying
theorem. For instance, representing sets via characteristic vectors for Erdős-Ko-Rado does not ensure that they are actually k-
sets or that they are distinct. Importantly, such a violation could allow evading the totality of the search problem. Nevertheless,
we can ensure totality by allowing locally verifiable evidence of a malformed representation as a solution, e.g., an index not
corresponding to a k-set or two indices corresponding to the same set.

2

1.2 Techniques and Ideas

A long-standing open problem regarding Ramsey and Sunflower has been to determine their status
with respect to the classes PWPP and PPP. For the most part, the most challenging part in establishing
completeness for some syntactic subclass of TFNP lies in proving hardness (see, e.g., [DGP09, Meh18, FG18]).
For subclasses of TFNP such as PPAD, PPA, and PLS, the inclusion in a subclass mostly follows from the
existence of an inefficient yet structured algorithm for the problem at hand; for example, the chessplayer
algorithm for PPA [Pap94] or the steepest descent algorithm for PLS [JPY88]. However, this methodology
seems inapplicable for proving inclusion in PWPP or PPP as these classes do not exhibit any characterizing
graph-theoretic structure that could capture some class of natural algorithms.

In contrast to many existing bounds in TFNP, our work does not make use of structured algorithms but
instead makes use of encodings that translate between substructures and collisions in circuits. In order to
establish inclusion in PWPP, we encode the objects of the collection using a “property-preserving encoding”
that encodes the objects in a way that translates some specific relation into collisions. More precisely, we
want an encoding function that is efficiently computable and (nearly) optimal, such that whenever two
elements have the same encoding, these two elements give a solution to the original problem. While this
technique is quite general, it is not always clear how to instantiate the encoding to get the desired collisions.

Consider, for example, the total search problem corresponding to the Erdős-Ko-Rado theorem for in-
tersecting families of n-sets on a universe of size 2n. An instance can be given by a Boolean circuit

C : {0, 1}⌈log((
2n−1
n−1))⌉+1 → {0, 1}2n representing a family of subsets of [2n], i.e., C(i) is the characteris-

tic vector of the i-th n-set in the family. Suppose the outputs of C define distinct n-sets. Since there are
more than

(
2n−1
n−1

)
of them, then, by the Erdős-Ko-Rado theorem, there must exist a pair of inputs mapped

to disjoint n-sets by C. We define any such pair of inputs to be a solution.3

When proving that the above total search problem is contained in the complexity class PWPP, at a high
level, we want to encode the n-sets of the family using a shrinking circuit, in such a way that collisions
correspond to disjoint sets. Observe that for n-sets in a universe of size 2n, the only disjoint sets are
complements and, hence, we get an equivalent instance of the problem if we map each set to either itself or
its complement, arbitrarily. In our construction, we map each set S to the representative not containing the
element 1. That is, if 1 ̸∈ S, the set is left unchanged and, otherwise, it is mapped to its complement S. Note
that, by the pigeonhole principle, two sets that do not contain 1 must have a non-empty intersection since
we work with n-subsets of [2n]. To obtain a shrinking circuit, we make use of Cover encodings (Section 3.1)
that give an optimal encoding of all n-sets by considering their lexicographic order. Notice that if the input
S is not an n-set, we may map it arbitrarily to any n-set, as a collision, in this case, yields a solution to the
instance of the above problem motivated by the Erdős-Ko-Rado theorem.

In contrast, the PWPP-hardness results for Ramsey and Sunflower follow an extremely elegant but
rather direct (compared to other hardness results for subclasses of TFNP) technique of graph-hash prod-
uct [Kra05, KNY19], which we illustrate on Ramsey. Recall that there are known randomized constructions
of edge-colorings of the complete graph K2n/4 on 2n/4 vertices that do not contain a monochromatic clique
of size n/2 [Erd47]. Given such an underlying edge-coloring of K2n/4 and a hash function h mapping n-bit
strings to n/4-bit strings, one can construct an edge-coloring of the complete graph on 2n vertices by assign-
ing to every edge (u, v) ∈ {0, 1}n ×{0, 1}n the color of the edge (h(u), h(v)) ∈ {0, 1}n/4 ×{0, 1}n/4 from the
underlying coloring. Since the underlying edge-coloring of K2n/4 does not contain a monochromatic clique
of size n/2, it is easy to see that any monochromatic clique of size n/2 in the resulting edge-coloring of K2n

(guaranteed to exist by Ramsey’s theorem) must have been introduced via a collision in the hash h.
As noted by [KNY19], the structure of a PWPP-hardness proof using the graph-hash product is not

restricted to total search problems corresponding to graph-theoretic theorems of existence; indeed, [KNY19]
used the graph-hash product to prove also PWPP-hardness of Sunflower. On a high level, for a problem
to be amenable to the graph-hash product technique, it is sufficient to be able to construct a collection of
objects such that 1) it does not contain the desired substructure, 2) its size is at least a constant fraction of

3To ensure the totality of the problem, we introduce additional solutions corresponding to succinct certificates that C does
not define a family of distinct n-sets, i.e., either an i such that C(i) is not of Hamming weight n or a pair i ̸= j such that
C(i) = C(j).

3

the threshold necessary for the existential theorem to apply,4 and 3) it can be efficiently indexed. Then, we
can interpret the output of an appropriately shrinking hash h as an index into the small collection of objects,
and, for each index, we can efficiently compute and output the corresponding element in the collection.
Again, since the small collection does not contain the desired substructure, all solutions of the instance
constructed via graph-hash product must in some way result from a collision in the hash h.

For example, consider the total search problem arising from Sperner’s theorem on antichains – here, the
threshold size is

(
2n
n

)
, meaning that if we have a family with strictly more than

(
2n
n

)
distinct subsets of [2n]

then one subset from the family must be contained in another member of the family. It is straightforward to
construct a family of subsets that does not contain the specific substructure (i.e., a subset that is included in
another one) with size equal to the threshold size

(
2n
n

)
. It suffices to consider the family of all the n-subsets

of [2n]. Similarly, for many other combinatorial problems we study, an adequate collection of objects can be
found by looking at a collection of maximum size that does not contain the substructure.

We also show natural reductions between some of the problems we define (from Erdős-Ko-Rado to
Sperner-Antichain for instance), which, in our opinion, highlights the relevance of these new problems
and the fact that their definition is the correct one.

1.3 PPP-Completeness From Extremal Combinatorics

Up to this point, our discussion did not explicitly distinguish between the classes PWPP and PPP. However,
our work highlights important structural differences between the two complexity classes. Recall that the
class PWPP contains the search problems in TFNP whose totality can be proved using the weak pigeonhole
principle: “In any assignment of 2n pigeons to n holes there must be two pigeons sharing the same hole.”

This statement can be seen as a result in extremal combinatorics bounding the maximum number of
pigeons that can be assigned to n holes without two pigeons being sent to the same hole. More generally, we
say that a theorem from extremal combinatorics is “weak” if it gives an upper bound (which may or may
not be tight) on the maximum size of a collection of objects that does not contain some substructure (above,
two pigeons sharing the same hole). On the contrary, we say that a theorem from extremal combinatorics
is “strong” if it gives a tight upper bound on the maximum size of a collection of objects that does not
contain some substructure, as well as some structural property about the maximum families without the
substructure. For instance, the strong pigeonhole principle can be stated as: “In any assignment of n pigeons
to n holes there is either a pigeon in the first hole or two pigeons sharing the same hole.” Note that it is
exactly this formulation of the strong pigeonhole principle that defines the class PPP.

Many results in extremal combinatorics have a weak statement and a strong statement. For such results,
we can define a problem corresponding to the weak statement, which often is related to PWPP, and a
problem corresponding to the strong statement, which often is related to PPP. In this paper, all PWPP-hard
problems correspond to a weak theorem in extremal combinatorics, while PPP-hard problems correspond to
a strong theorems in extremal combinatorics. As an example, consider Cayley’s formula and note that the
bound nn−2 is tight. Hence, if we are given a collection of exactly nn−2 distinct graphs on n vertices, then
either one of the graphs is not a spanning tree, or every spanning tree is in the collection. This observation
induces a TFNP problem that we show to be PPP-complete.

1.4 Related Work

Compared to the majority of subclasses of TFNP that have been extensively studied and are known to
capture various total search problems from diverse domains of mathematics, PPP and PWPP might seem
less expressive and the first non-trivial completeness results appeared only recently.

Sotiraki, Zampetakis, and Zirdelis [SZZ18] and Ban, Jain, Papadimitriou, Psomas, and Rubinstein [BJP+19]
demonstrated that PPP contains computational problems from number theory and the theory of integral

4This is a technical condition ensuring that we can reduce from a PWPP-complete variant of the problem of finding collisions
in a shrinking hash. Note that it is easy to find collisions in functions that exhibit extreme shrinking.

4

lattices. In particular, Sotiraki et al. showed PPP-completeness of a computational problem related to Blitch-
feld’s theorem and PPP-completeness (resp. PWPP-completeness) of a problem motivated by the Short Inte-
ger Solution problem. Hubáček and Václavek [HV21] showed that some general formalizations of the discrete
logarithm problem are complete for PWPP and PPP and, motivated by classical constructions of collision-
resistant hashing, they characterized PWPP via the problem of breaking claw-free (pseudo-)permutations.

1.5 Open Problems

Our work suggests various interesting directions for future research:

• We exploit the power of strong statements in extremal combinatorics for establishing PPP-completeness.
The notorious lack of tight bounds for the Erdős-Rado sunflower lemma and Ramsey’s theorem implies
that we have no strong version of these theorems, which may explain why showing the inclusion of the
corresponding problems in, e.g., PPP has eluded researchers.

• We introduced total search problems corresponding to Mantel’s theorem, Turán’s theorem, and Ward-
Szabo’s theorem. In this work, we only prove hardness results for these problems but no inclusion
results. Hence, it is still open whether they are complete for the classes PPP and PWPP, or whether
they could define a new subclass of TFNP.

• The Turánr problem is defined in a similar fashion to Mantel, yet, unlike for Mantel, we currently
do not have a proof of PPP-hardness for it. Thus, the question of PPP-hardness of Turánr is imme-
diate. Alternatively, it would be interesting to define a different PPP-hard problem in a natural way
from Turán’s theorem.

• Another exciting question is whether the efficient Baranyai assumption (Assumption 4.18) holds, as well
as whether it is possible to prove the inclusion results of the problems associated to the general version
of Erdős-Ko-Rado’s theorem without that assumption. Showing reductions between general-Erdős-
Ko-Radok and general-Erdős-Ko-Radol for k ̸= l without the efficient Baranyai assumption
would also be intriguing.

• Finally, we believe the problems General-Pigeonm
k deserve a more thorough investigation to further

our understanding of the classes they define and their interrelation.

2 Preliminaries

We denote by log x the binary logarithm of x. We denote by [n] the set {1, 2, 3, . . . , n− 1, n}. We interpret
elements of {0, 1}∗ as strings and write them as x = x1x2 · · ·xn for xi ∈ {0, 1}. Each element xi is also
called a bit. We say n is the length of x ∈ {0, 1}n, and say x is an n-bit string. We denote by 0n (resp. 1n)
the n-bit string consisting of all 0 (resp. 1). If x, y ∈ {0, 1}∗ are two strings of lengths n,m, respectively, we
denote by x ∥ y = x1x2 · · ·xny1y2 · · · ym the concatenation of x and y. We denote by ≤ the lexicographical
order on strings. Note that ≤ is a partial order as it is only well-defined for strings of the same length. We
use x < y to denote x ≤ y and x ̸= y. We may occasionally abuse notation and write x < k where k ∈ N, in
which case we mean the binary encoding of k on the same number of bits as x. If ⌈log k⌉ exceeds the length
of x, we define x < k such that the order is total.

If Ω is a set of size n, we associate the set 2Ω with the characteristic vectors from {0, 1}n for some
arbitrary (but fixed) order on Ω. We denote by ⊆ the partial order on {0, 1}n where x ⊆ y iff xi ≤ yi for
every i = 1 . . . n. If x ∈ {0, 1}n is a string, we denote by x := x1x2 · · ·xn the complement of x, defined by
xi = 1 − xi. We also use other set-theoretic operators ∩,∪, \ that are defined in a natural way. We also
denote by |x| =

∑n
i=1 xi the number of 1s in x when the length is implicit from the context.

5

2.1 Total Search Problems

A search problem is defined by a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ – a string s ∈ {0, 1}∗ is a solution
for an instance x ∈ {0, 1}∗ if (x, s) ∈ R. A search problem defined by relation R is total if for every x,
there exists an s such that (x, s) ∈ R. We define TFNP as the class of all total search problems that can be
efficiently verified, i.e., there is a deterministic polynomial-time Turing machine that, given (x, s), outputs 1
if and only if (x, s) ∈ R and, for every instance x, there exists a solution s of polynomial length in the size
of x.

To avoid unnecessarily cumbersome phrasing throughout the paper, we define TFNP relations implicitly
by presenting the set of valid instances X ⊆ {0, 1}∗ recognizable in polynomial time (in the length of an
instance) and, for each instance i ∈ X, the set of admissible solutions Yi ⊆ {0, 1}∗ for the instance i. It is
then implicitly assumed that, for any invalid instance i ∈ {0, 1}∗ \X, we define the corresponding solution
set as Yi = {0, 1}∗.

Next, we recall the definitions of the complexity classes PWPP and PPP via their canonical complete
problems weak-Pigeon and Pigeon.

Definition 2.1 (weak-Pigeon and PWPP [Jeř16]). The problem weak-Pigeon is defined by the relation

Instance: A Boolean circuit C : {0, 1}n → {0, 1}n−1.

Solution: x1 ̸= x2 s.t. C(x1) = C(x2).

The class of all TFNP problems reducible to weak-Pigeon is called PWPP.

Definition 2.2 (Pigeon and PPP [Pap94]). The problem Pigeon is defined by the relation

Instance: A Boolean circuit C : {0, 1}n → {0, 1}n.

Solution: One of the following:

i) x s.t. C(x) = 0n,

ii) x ̸= y s.t. C(x) = C(y).

The class of all TFNP problems reducible to Pigeon is called PPP.

3 Property-Preserving Encodings

A key ingredient to our proofs of inclusion in PWPP and PPP is the use of efficient encodings. We rely on two
different types of encodings. The first one simply consists of bijections between two different representations
of the same set of objects, the first one being more natural and more convenient to work with, and the
second one being more concise. The second type of encodings, which we call property-preserving encodings,
consists of shrinking functions, in the sense that the range of the encoding is smaller than the domain, whose
collisions exactly correspond to elements sharing some property. The following definition gives a precise
description of the features we require from these encodings.

Definition 3.1 (Property-preserving encoding). Let X ⊆ {0, 1}k,Y be sets, and let ∼ be an equivalence
relation on X . Let E : {0, 1}k → Y be a surjection. We say that E constitutes a property-preserving
encoding for ∼ on X if it satisfies.

• (Efficiency). E can be computed in polynomial time.

• (Compression). |Y| ≤ |X |.

• (∼-correctness). E is constant on every coset of X for ∼.

We first describe some bijective encodings before studying some property-preserving encodings.

6

3.1 Cover Encodings

Our reductions in Section 4 make use of Cover encodings [Cov73] that efficiently encode subsets of a specified
size in optimal space: namely, we may encode every subset S ⊆ {0, 1}m such that |S| = k by considering the
lexicographic order of all

(
m
k

)
such sets (in fact we consider the lexicographic order over their characteristic

vectors ∈ {0, 1}m), and mapping this into binary strings: this requires
⌈
log

(
m
k

)⌉
bits, which is optimal. We

denote the encoding and decoding functions as follows, with α(k,m) =
⌈
log

(
m
k

)⌉
.

Ek,m
Cover : {0, 1}

m → {0, 1}α(k,m)

Dk,m
Cover : {0, 1}

α(k,m) → {0, 1}m

We set ECover = En,2n
Cover and DCover = Dn,2n

Cover, and α = α(n, 2n). As described in [Cov73], these functions
can be made efficient.

Lemma 3.2. For every k ≤ m, Dk,m
Cover ◦ Ek,m

Cover is the identity over all k-subsets of {0, 1}m. Similarly,

Ek,m
Cover ◦D

k,m
Cover is the identity over the first

(
k
m

)
elements in the lexicographic order of {0, 1}α(k,m).

Note that the behavior of Dk,m
Cover is undefined for the last 2α(k,m) −

(
m
k

)
inputs. Furthermore, by design,

Ek,m
Cover is well-defined on any subset of [m] (even if this subset does not have size k), but the encoding only

makes sense for subsets of size k. We also note the following identity which will be useful later when dealing
with n-subsets of [2n].

DCover(0
α) = 0n1n = [n] (1)

Remark 3.3. When we encode n-subsets of [2n], since we encode sets according to their rank of their
characteristic vector in the lexicographic order, any set that does not contain element 1 is one of the

(
2n−1
n−1

)
=

1
2

(
2n
n

)
≤ 2α−1 first ones in the lexicographic order, hence its encoding starts with a 0. Conversely, if we decode

an element whose first two bits are 0’s, this means that the corresponding n-subset of [2n] is one of the first
2α−2 ≤

(
2n−1
n−1

)
in the lexicographic order, hence that it does not contain the element 1. ⋄

3.2 Encoding 2-subsets of [2n]

In Section 7, we need to encode the subsets of [2n] with 2 distinct elements in an injective way. Unfortunately,
since the base set is large, we cannot use Cover encodings to do so. However, we can use the idea behind Cover
encodings, that is to encode the subsets by their rank in the lexicographic order. Consider (x, y) ∈ [2n]× [2n],
with x < y. What is its rank in the lexicographic order?
All subsets whose smallest element is smaller than x have a lower rank. The number of such subsets is

(2n − 1) + (2n − 2) + . . .+ (2n − x+ 1) =

2n−1∑
j=2n−x+1

j

=

2n−1∑
j=1

j −
2n−x∑
j=1

j

=
2n(2n − 1)

2
− (2n − x)(2n − x+ 1)

2

All subsets whose smallest element is x and whose second smallest element is smaller than y also have a
lower rank. There are exactly y − x− 1 such subsets.
Hence, the rank of the subset (x, y) in the lexicographic order is

2n(2n − 1)

2
− (2n − x)(2n − x+ 1)

2
+ y − x− 1

Note that since there are
(
2n

2

)
< 22n−1 subsets of [2n] with 2 distinct elements, the rank of any subset (x, y)

7

with x < y can be written in binary using 2n− 1 bits. Now, denote as Elex : {0, 1}n × {0, 1}n → {0, 1}2n−1

the following circuit. On input (x, y), it proceeds as follows.

1. If x = y, it returns 02n−1.

2. If x < y, it computes and returns the binary encoding on 2n − 1 bits of 2n(2n−1)
2 − (2n−x)(2n−x+1)

2 +
y − x− 1.

3. If x > y, it computes and returns the binary encoding on 2n − 1 bits of 2n(2n−1)
2 − (2n−y)(2n−y+1)

2 +
x− y − 1.

Note that Elex has polynomial size, and is injective on the set of subsets of [2n] with 2 distinct elements by
construction.

Remark 3.4. In fact, this encoding is a bijection from the set of 2-subsets of [2n] to the set [
(
2n

2

)
]. The

reciprocal of that bijection can also be computed by a circuit Dlex of polynomial size.

3.3 Prüfer Codes

In Section 6, we make use of Prüfer codes [Pru18] that give an efficiently computable bijection between the
set of labelled spanning trees on n vertices and the set of sequences of n − 2 elements of [n]. They were
originally used by Heinz Prüfer [Pru18] to prove Classical Theorem 5

We denote by EPrüfer a circuit that efficiently computes the Prüfer encoding of a spanning tree described

by an element of {0, 1}(
n
2). Similarly, let DPrüfer be a circuit that efficiently computes the spanning tree

associated with a Prüfer code. By looking at the algorithm to compute Prüfer encodings, it is clear that we
can assume these circuits to have polynomial size. We also assume that EPrüfer outputs elements of the right
form even on inputs which do not correspond to spanning trees. Consider the lexicographic order on [n]n−2.
Let R be a circuit that efficiently computes the rank of an element of [n]n−2, and let ẼPrüfer = R ◦ EPrüfer.
Given a spanning tree, ẼPrüfer returns the rank of its Prüfer code in the lexicographic order.

Let R′ be a circuit which on input x computes the sequence of [n]n−2 whose rank in the lexicographic
order is x. Let D̃Prüfer = DPrüfer ◦R′. Given a rank, D̃Prüfer returns the spanning tree whose Prüfer code has
the corresponding rank in the lexicographic order. Note that D̃Prüfer and ẼPrüfer both have polynomial size.

Now, if β = ⌈(n−2) log(n)⌉, then ẼPrüfer : {0, 1}(
n
2) → {0, 1}β , D̃Prüfer : {0, 1}β → {0, 1}(

n
2). By construction,

we have the following.

Lemma 3.5. The following statements are true.

1. D̃Prüfer ◦ ẼPrüfer is the identity over the set of labelled spanning trees on n vertices.

2. ẼPrüfer ◦ D̃Prüfer is the identity over the first nn−2 elements of {0, 1}β.

Remark 3.6. The behavior of D̃Prüfer on its last 2β − nn−2 inputs is undefined.

Remark 3.7. Let T1 be the tree composed of the edges (1, 2), (1, 3), . . . , (1, n). Then, ẼPrüfer(T1) = 0β and
D̃Prüfer(0

β) = T1. ⋄

3.4 Catalan Factorization

Catalan factorization [EK99] is an encoding of subsets of [2n] that allows us to decompose the partially
ordered set (2[2n],⊆) into

(
2n
n

)
chains and to move efficiently within each chain to find a canonical represen-

tative, namely the only n-subset of the chain.
Let x ∈ {0, 1}2n be a bitmap representing an element of [2n]. We introduce a new symbol z, and construct

the Catalan factorization as follows. We temporarily record for each symbol whether or not it is underlined.

8

1. Underline the leftmost substring that starts with a non-underlined 1, followed by a (possibly empty)
sequence of underlined symbols, and ends in a non-underlined 0. If no such substring exists, go to step
3.

2. Go to step 1.

3. Record the number k of non-underlined 1’s.

4. Replace all non-underlined symbols in x with z, and let x′ ∈ {0, 1, z}2n be the resulting string (with
underlinings removed).

5. Output (x′, k).

We denote the output of the Catalan factorization as ECatalan(x) ∈ {0, 1, z}2n× [2n]. We say x′ = ẼCatalan(x)
is the Catalan string of x. If x′ ∈ {0, 1, z}2n and m is the number of z’s in x′, then for any l ≤ m, we define
DCatalan(x

′, l) as the string obtained from x′ by replacing the l last z’s by 1 and the rest by 0.

Example 3.8. Let n = 4 and let x = 01101100 be the string corresponding to the set {2, 3, 5, 6}. Then, we
construct the Catalan factorization by repeating step 1 to get the underlined version.

01101100 → 01101100 → 01101100 → 01101100

We terminate as there are no non-underlined 0’s with a 1 on its left. We record that there is k = 1 non-
underlined 1. We then replace all non-underlined symbols with z to obtain the Catalan factorization.

(x′, k) = (zz101100, 1)

Note that we have DCatalan(x
′, k) = 01101100 = x so the encoding and decoding operations behave as expected.

Note also that DCatalan(x
′, 0) = 00101100 corresponds to the set {3, 5, 6} and DCatalan(x

′, 2) = 11101100
corresponds to the set {1, 2, 3, 5, 6}. For this reason, we say that the Catalan string x′ identifies the following
chain.

{3, 5, 6} ⊂ {2, 3, 5, 6} ⊂ {1, 2, 3, 5, 6}

In that chain, k identifies that x is the 1st element, counting from 0. ⋄

Lemma 3.9. DCatalan ◦ ECatalan acts as identity over {0, 1}2n.

Proof. Let x ∈ {0, 1}2n, and (x′, k) = ECatalan(x) be its Catalan factorization. Let m be the number of z’s in
x. We claim that at the end of the underlining phase of the Catalan factorization of x, the entries that are
not underlined are first m − k 0’s and then k 1’s. Indeed, by definition, k of them are 1, so m − k of them
are 0. Furthermore, if we had a non-underlined 1 before a non-underlined 0, then we could consider the
rightmost non-underlined 1 that is before a non-underlined 0. This 1 is followed by a sequence of underlined
symbols and then by a non-underlined 0 so this 1 and the corresponding 0 should have been underlined.
Thus, we indeed have that the entries that are not underlined are first m− k 0’s and then k 1’s. These are
the entries that are turned into z’s when we go from x to x′.

Now, when we compute DCatalan(x
′, k), we replace the last k z’s in x′ by 1’s and the m− k other ones by

0’s, which is exactly what we had in x. Hence, DCatalan ◦ ECatalan(x) = DCatalan(x
′, k) = x.

We also denote by D
(l)
Catalan : {0, 1, z}2n → {0, 1}2n the map x′ 7→ DCatalan(x

′, l). If on input x′, l is larger
than the number of z symbols in x′, all z symbols are be replaced with 1; this ensures the map is defined for
all l ≥ 0.

Lemma 3.10. For every l ≥ 0, ẼCatalan ◦D(l)
Catalan acts as identity on the set of Catalan strings. That is, if

x′ is a Catalan string, then for every l, the Catalan string of D
(l)
Catalan(x

′) is x′.

9

Proof. Let x ∈ {0, 1}2n and let x′ = ẼCatalan(x) be the Catalan string of x. Now let l ≥ 0, y = DCatalan(x
′, l)

and y′ = ẼCatalan(y) be the Catalan string of y. We want to show that y′ = x′.
We proceed using induction on the steps of the algorithm. At first, no entries are underlined in either

string. Next, suppose that after some number of steps, the underlined bits are exactly the same in x and in
y. Now, consider two bits that get underlined in x at the next step. Then, all the bits between them are
underlined in x at this point, so this is also the case in y by induction hypothesis. Furthermore, since these
two bits get underlined in x, they are not turned into z’s at the end of the algorithm, which means that they
are still the same bits in x′ and therefore in y. Hence, in y we have these 2 bits, first a 1 and then a 0, such
that every entry between them is underlined, so they get underlined at this step.

Conversely, consider two bits that get underlined in y at the next step. Then, all the entries between
them in y are underlined at this point, so it is the case in x too by induction hypothesis. By contradiction,
suppose that the corresponding bits in x do not get underlined at this step. By the previous observation, it
means that this pair of bits in x is not (1, 0). There are three cases to consider:

1. In x, these two bits are 0’s. Then, the first gets turned into a 1 in y, which means that it never gets
underlined in x (otherwise it would remain the same). Then, since all the bits in x between these two
are already underlined, and since the first never gets underlined, this means that the second never gets
underlined (there will never be a non-underlined 1 before it such that all entries between them are
underlined). Hence, these two bits never get underlined in the algorithm, and are finally turned into
z’s. Then, to go from x′ to y, we replace the l last z’s by 1’s and the others by 0’s, thus making it
impossible for the first of these two bits to be turned into a 1 while the second is turned into a 0.

2. In x, these two bits are respectively 0 and 1. Then, both these bits are changed between x and y,
which means that they never get underlined in x, hence they are z’s in x′. Thus, like previously, it is
impossible that the first one is turned into a 0 while the second is turned into a 1.

3. In x, these two bits are 1’s. Then, the second bit gets turned into a 0 in y, which means that it never
gets underlined in x. Like in the first case, we get that the first bit never gets underlined neither, once
more making it impossible for these two bits to be turned respectively in 1 and 0.

In all three cases, we get a contradiction. Thus, the corresponding bits in x are also underlined at this step.
Then, by induction, we get that at each step, the same bits are underlined in x and y. Finally, we turn all
the bits that are not underlined into z’s to get x′ and y′, hence x′ = y′.

Remark 3.11. We can define an equivalence relation ∼ over the subsets of [2n] by saying that two subsets
are equivalent if and only if they have the same Catalan string.
By combining Catalan factorization and Cover encodings, we can obtain a property-preserving encoding for
∼ on {0, 1}2n. We use this in Section 5.

4 Erdős-Ko-Rado Theorem on Intersecting Families

In this section, we define total search problems motivated by the well-known Erdős-Ko-Rado theorem on
intersecting families and study their computational complexity. First, we present a PWPP-complete variant
of the problem. Next, we modify the problem using a strong statement of the Erdős-Ko-Rado theorem to
get a PPP-complete variant.

Recall the definition of an intersecting family and the statement of the Erdős-Ko-Rado theorem.

Definition 4.1 (Intersecting family). Let Ω be any set. A family of sets F ⊆ 2Ω is an intersecting family
if no two sets are disjoint, i.e., if for any A,B ∈ F , it holds that A ∩B ̸= ∅.

Classical Theorem 1 (Erdős-Ko-Rado [EKR61]). Any intersecting family where each set has k elements
on a universe of size m contains at most

(
m−1
k−1

)
sets, and this bound is tight.

We start by defining a total search problem motivated by a special case of the Erdős-Ko-Rado theorem
for families of n-sets in a universe of size 2n presented in the following corollary.

10

Corollary 4.2. Any intersecting family where each set has n elements on a universe of size 2n contains at
most

(
2n−1
n−1

)
sets, and this bound is tight. Furthermore, if F is an intersecting family of maximum size, then

for every n-subset S, exactly one of S and S is in F .

Suppose that we have a collection, containing more than
(
2n−1
n−1

)
sets of size n on 2n elements. Then, by

Classical Theorem 1, there must be two sets that do not intersect. This induces a total search problem of
finding two such disjoint sets. We consider an implicit representation of such a collection by a circuit C whose
inputs serve as indices in the collection. The output of the circuit is a representation of the corresponding
set as a characteristic vector of the 2n elements. Of course, this representation does not guarantee that C
satisfies the conditions required for Classical Theorem 1 to apply, which would make the problem not total;
in this case, we allow evidence of this fact to be a solution to the problem. Namely, if for a given input x,
we do not have |C(x)| = n, or two distinct indices x, y represent the same set, i.e., C(x) = C(y), we allow
such inputs as solutions.

Definition 4.3 (weak-Erdős-Ko-Rado). The problem weak-Erdős-Ko-Rado is defined by the relation

Instance: A Boolean circuit C : {0, 1}⌈log((
2n−1
n−1))⌉+1 → {0, 1}2n.

Solution: One of the following:

i) x s.t. |C(x)| ≠ n,

ii) x ̸= y s.t. C(x) = C(y),

iii) x, y s.t. C(x) ∩ C(y) = ∅.

As we discussed in the introduction, the totality of this problem is proved using a “weak” statement in
extremal combinatorics, namely the first part of Corollary 4.2, hence the name Weak. However, the analogy
with weak-Pigeon goes further. Indeed, our first main theorem is the following.

Theorem 4.4. weak-Erdős-Ko-Rado is PWPP-complete.

Throughout this section, we maintain α =
⌈
log

(
2n
n

)⌉
=

⌈
log

(
2n−1
n−1

)⌉
+ 1.

Lemma 4.5. weak-Erdős-Ko-Rado ∈ PWPP.

Proof. At a high level, we want to encode the sets using a shrinking circuit, in such a way that collisions
correspond to disjoint sets. Observe that for n-sets in a universe of size 2n, the only disjoint sets are
complements, hence we get an equivalent instance of weak-Erdős-Ko-Rado if we map each set to either
itself or its complement, arbitrarily. In our construction, we map each set S to the representative not
containing 1. That is, if 1 ̸∈ S, the set is left unchanged and, otherwise, it is mapped to its complement S.
Note that by the pigeonhole principle, two sets that do not contain 1 must have a non-empty intersection since
we work with n-subsets of [2n]. To obtain a shrinking circuit, we make use of Cover encodings (Section 3.1)
that give an optimal encoding of all n-sets by considering their lexicographic order. Notice that if the input
S is not an n-set, we may map it arbitrarily to any n-set, as a collision, in this case, yields a solution to the
weak-Erdős-Ko-Rado instance.

Formally, recall that we have ECover : {0, 1}2n → {0, 1}α and DCover : {0, 1}α → {0, 1}2n. Now let
C : {0, 1}α → {0, 1}2n be an instance of Erdős-Ko-Rado. We proceed to construct an instance C ′ :
{0, 1}α → {0, 1}α−1 of weak-Pigeon as follows:

C ′(x) =

{
ECover(C(x)) if C(x)1 = 0

ECover(C(x)) if C(x)1 = 1

Note that since we only encode sets whose first bit is a 0, by Remark 3.3, we get that the first bit of the
encoding always is a 0, so we can consider only the

⌈
log(

(
2n
n

)
)
⌉
− 1 = α − 1 last bits of C ′(x) for every x,

11

which is why we say that C ′ only outputs α− 1 bits. Note also that if for some x, C(x) does not have size
n, then ECover(C(x)) and ECover(C(x)) are still well-defined, even if they are meaningless.

Now, suppose that we have a solution to C ′, that is x ̸= y such that C ′(x) = C ′(y). There are four cases
to consider, depending on the first bits of C(x), C(y). If C(x)1 = C(y)1 = 0, then ECover(C(x)) = C ′(x) =
C ′(y) = ECover(C(y)). If both C(x) and C(y) have size n, then by injectivity of ECover on inputs of size n
(see Lemma 3.2), we get C(x) = C(y), which is a solution to weak-Erdős-Ko-Rado. If one of them does
not have size n, we also get a solution to weak-Erdős-Ko-Rado. The other cases are similar.

Remark 4.6. Consider the circuit E : {0, 1}2n → {0, 1}α−1, defined as follows.

E(x) =

0α−1 if |x| ≠ n

ECover(x) if x1 = 0 and |x| = n

ECover(x) if x1 = 1 and |x| = n

Let X ⊆ {0, 1}2n be the subset of {0, 1}2n corresponding to the n-subsets of [2n]. We define an equivalence
relation ∼ on X by saying that two strings are equivalent if the corresponding subsets are either equal or
disjoint. Note that this relation is transitive only because we work with n-subsets of [2n].
Then, we have that E is a property-preserving encoding for ∼ on X .
Furthermore, the property that is preserved by E is such that if two of its inputs collide, they form a solution
to the problem we’re interested in.
Then, to prove the inclusion of weak-Erdős-Ko-Rado into PWPP, it suffices to compose our instance of
weak-Erdős-Ko-Rado with E.

Lemma 4.7. weak-Erdős-Ko-Rado is PWPP-hard.

Proof. Our goal is for the Erdős-Ko-Rado solver to find collisions in an instance C ′ of weak-Pigeon.
We use a variation of the graph hash product [Kra05, KNY19]. The idea is to interpret the output of C ′ as
an index into the collection of all n-sets that do not contain 1. We then use the Cover decoding function to
obtain a representation of the corresponding set, and by correctness of the encoding, any such set must have
exactly n elements – and all the sets intersect since they do not contain 1. Hence, the only solutions to the
weak-Erdős-Ko-Rado instance are collisions, that yield solutions to the original circuit C ′.

Formally, let C ′ : {0, 1}m → {0, 1}m−1 be an instance of weak-Pigeon. Let n be the minimal integer
such that 2m+1 ≤

(
2n
n

)
. Then, m+ 1 ≤ α. We proceed to build a circuit A : {0, 1}α → {0, 1}α−2 whose size

is polynomial in m and such that from any collision in A we can efficiently find a collision in C ′. Recall that
we have ECover : {0, 1}2n → {0, 1}α and DCover : {0, 1}α → {0, 1}2n. We define C : {0, 1}α → {0, 1}2n by

C(x) = DCover(00 ∥A(x))

By Remark 3.3, since for every x, (00 ∥A(x)) is one of the
(
2n−1
n−1

)
first possible inputs, we have that the set

DCover(00 ∥A(x)) is an n-subset of [2n] which does not contain the element 1. We observe that C defines an
instance of weak-Erdős-Ko-Rado. Now suppose that we have a solution to this instance. By correctness
of the decoding, we can only have solutions of type iii), that is x ̸= y such that C(x) = C(y). By injectivity
of DCover on its first

(
2n
n

)
inputs (see Lemma 3.2), we get that (00 ∥ A(x)) = (00 ∥ A(y)) hence A(x) = A(y)

and from there we can retrieve a collision for C ′.

PPP-completeness using the tight bound We remark that Corollary 4.2 gives a tight upper bound on
the size of the collection. Furthermore, we know some structure of any collection whose size is exactly one(
2n−1
n−1

)
: it must either not be an intersecting family, or it must contain either [n] or [n]. This is an example of

a “strong” theorem in extremal combinatorics. As discussed in the introduction, this observation allows us
to modify the problem to be create a variant of weak-Erdős-Ko-Rado that is to weak-Erdős-Ko-Rado
what Pigeon is to weak-Pigeon. The idea is to let C encode a collection whose size exactly matches
the threshold. We then let C represent a collection of exactly

(
2n−1
n−1

)
sets, and also allow preimages of [n]

and [n] as solutions. We show that modifying the problem in this manner makes it PPP-complete, thus

12

strengthening the analogy with Pigeon. This technique is quite general, and we utilise it again in later
sections.

Definition 4.8 (Erdős-Ko-Rado). The problem Erdős-Ko-Rado is defined by the relation

Instance: A Boolean circuit C : {0, 1}⌈log((
2n−1
n−1))⌉ → {0, 1}2n.

Solution: One of the following:

i) x s.t. |C(x)| ≠ n and x <
(
2n−1
n−1

)
,

ii) x ̸= y s.t. C(x) = C(y) and x, y <
(
2n−1
n−1

)
,

iii) x, y s.t. C(x) ∩ C(y) = ∅ and x, y <
(
2n−1
n−1

)
,

iv) x s.t. C(x) = [n] or [n] and x <
(
2n−1
n−1

)
.

Theorem 4.9. Erdős-Ko-Rado is PPP-complete.

Lemma 4.10. Erdős-Ko-Rado is PPP-hard.

Proof. This proof is similar in spirit to that of Lemma 4.7, except for some minor changes. The first one
is that the instance of Pigeon might be a permutation, and thus not have collisions. We then need to be
able to find the preimage of 0. This is done by solutions of type iv). The second one is that we only look
at the first

(
2n−1
n−1

)
inputs of the Pigeon instance, so we have to modify it to make sure that all the possible

solutions come from here. This is why we build the circuit A.
Formally, let C ′ : {0, 1}m → {0, 1}m be an instance of Pigeon, and let n be the minimal integer such

that 2m <
(
2n−1
n−1

)
. Since α =

⌈
log

(
2n−1
n−1

)⌉
+ 1, we have m < α− 1. Define A : {0, 1}α−1 → {0, 1}α−1 by,

A(x) =

{
C ′(x) if x < 2m

x o.w.

It might be the case that the output of A has less than α−1 bits, in which case we pad it with 0 on the left to
make it an (α−1)-bit string. Recall that we have ECover : {0, 1}2n → {0, 1}α and DCover : {0, 1}α → {0, 1}2n.

We proceed to build an instance C : {0, 1}α−1 → {0, 1}2n of Erdős-Ko-Rado by setting C(x) =
DCover(0 ∥A(x)). Note that for any x <

(
2n−1
n−1

)
, we have A(x) <

(
2n−1
n−1

)
, thus C(x) ⊆ [2n] is an n-subset and

does not contain the element 1 by Remark 3.3.
Now, suppose that we have a solution to C. Since the index of a solution is <

(
2n−1
n−1

)
, the corresponding

subset(s) must have size n and can’t contain 1. If the solution is of the form x, y such that C(x)∩C(y) = ∅
then we have |C(x) ∪ C(y)| = |C(x)|+ |C(y)| = 2n so we must have either 1 ∈ C(x) or 1 ∈ C(y), which is
not possible.

Thus, any solution must be x ̸= y such that C(x) = C(y) or x such that C(x) = [n] or [n]. There are
two cases to consider:

• Case DCover(0 ∥ A(x)) = DCover(0 ∥ A(y)). Then A(x) = A(y) since DCover is injective on its first
(
2n
n

)
inputs. But C ′ has range ⊆ [2m − 1] so any collision in A must result from a collision in C ′. Hence,
we get that x, y < 2m give us a solution to C ′.

• Case DCover(A(x)) = [n] or [n]. Since A(x) <
(
2n−1
n−1

)
then DCover(0 ∥ A(x)) does not contain element

1, so C(x) = [n] = DCover(0
α), thus A(x) = 0α−1. This means that we have x < 2m and x corresponds

to a preimage of 0m for C ′.

In each case, we get a solution to our original problem.

Remark 4.11. We often use that technique of creating a circuit A from a circuit C, such that any collision
(resp. preimage of 0) in A must come from a collision (resp. preimage of 0) in C, and happen in the first
inputs of A (in the range where we want it to happen).

13

Lemma 4.12. Erdős-Ko-Rado ∈ PPP.

Proof. This proof is quite the same as the proof of Lemma 4.7, with two minor differences. The first one
is that in the instance of Pigeon we create, there might be preimages of 0. These solutions to Pigeon
correspond to solutions of type iv) for Erdős-Ko-Rado. The second difference is that we only perform
the reduction on the first

(
2n−1
n−1

)
inputs, and then map the others in such a way that they neither create a

collision nor result in a preimage of 0.
Formally, suppose that we have an instance of Erdős-Ko-Rado, i.e., a circuit C : {0, 1}α−1 → {0, 1}2n.

We proceed to construct an instance C ′ : {0, 1}α−1 → {0, 1}α−1 of Pigeon as follows:

C ′(x) =

ECover(C(x)) if C(x)1 = 0 and x <

(
2n−1
n−1

)
ECover(C(x)) if C(x)1 = 1 and x <

(
2n−1
n−1

)
x if x ≥

(
2n−1
n−1

)
In the case x <

(
2n−1
n−1

)
, since we only encode sets whose first bit is a 0, by Remark 3.3, we get that the

first bit of the encoding always is a 0, so we can consider only the
⌈
log(

(
2n
n

)
)
⌉
− 1 = α− 1 last bits of C ′(x)

for every such x. Furthermore, if we consider the output of ECover as an integer, we get that this integer is
<

(
2n−1
n−1

)
(because the set we encode is one of the first

(
2n−1
n−1

)
in the lexicographic order). Note also that if

for some x such that x <
(
2n−1
n−1

)
, C(x) does not have size n, then C ′(x) is still well-defined and less than(

2n−1
n−1

)
, even if it is meaningless.

Now, suppose that we have a solution to C ′ of the form x ̸= y such that C ′(x) = C ′(y). Again
there are four cases to consider, depending on the first bits of C(x), C(y). If C(x)1 = C(y)1 = 0 then
ECover(C(x)) = C ′(x) = C ′(y) = ECover(C(y)). If both C(x) and C(y) have size n, then by injectivity of
ECover on inputs of size n (see Lemma 3.2), we get C(x) = C(y), which is a solution to Erdős-Ko-Rado. If
one of them does not have size n, we also get a solution to Erdős-Ko-Rado. The other cases are similar.

Now, suppose that we have a solution to C ′ of the form x such that C ′(x) = 0α−1. Like previously, we
get that x <

(
2n−1
n−1

)
. If C(x) does not have size n then x is a solution. Now, suppose that C(x) has size

n. There are two cases to consider, depending on the first bit of C ′(x). If the first bit of C(x) is 0, then,
ECover(C(x)) = 0α so C(x) = 0n ∥ 1n by Eq. (1) and Lemma 3.2. Thus, C(x) = [n]. Instead, if the first bit
of C(x) is 1, then ECover(C(x)) = 0α so C(x) = [n] and thus C(x) = [n]. In either case, we get a solution to
our original problem.

Remark 4.13. Like previously, the idea behind that proof is to compose our instance of Erdős-Ko-Rado
with the property-preserving encoding we defined in Remark 4.6. However, this time it is not only the
collisions that are of interest to us, but also the preimages of the 0 string.

4.1 A Generalized Erdős-Ko-Rado Problem

For the previous problems, we were only considering a very restricted version of the Erdős-Ko-Rado theorem,
namely for an intersecting family of n-subsets of [2n]. We now consider a more general version where we
consider an intersecting family of n-subsets of [kn] for some k > 2.

We now fix some k > 2 for the rest of this section. The Erdős-Ko-Rado theorem states that if F is an
intersecting family where each set has n elements on a universe of size kn, then F contains at most

(
kn−1
n−1

)
sets. Then, we can define the following TFNP problem, very similar to weak-Erdős-Ko-Rado.

Definition 4.14 (weak-general-Erdős-Ko-Radok). The problem weak-general-Erdős-Ko-Radok

is defined by the relation

Instance: A Boolean circuit C : {0, 1}⌈log((
kn−1
n−1))⌉+1 → {0, 1}kn.

Solution: One of the following:

i) x s.t. |C(x)| ≠ n,

14

ii) x ̸= y s.t. C(x) = C(y),

iii) x, y s.t. C(x) ∩ C(y) = ∅.

Proposition 4.15. weak-general-Erdős-Ko-Radok is PWPP-hard.

Proof. This proof is very similar to the proof of Lemma 4.7, except that instead of working with n-subsets of
[2n], we work with n-subsets of [kn]. There is also a technical change, which is that this time we work with
n-subsets of [kn] that do contain the element 1. This is necessary to make sure that we have an intersecting
family, but it adds some more technicality. For the same reason, we need A to shrink more than in the
previous proof. However, the idea behind the proof is exactly the same, with the same use of the graph-hash
product on a large intersecting family.

Formally, let C ′ : {0, 1}m → {0, 1}m−1 be an instance of weak-Pigeon. Let n be the minimal integer

such that 2m+1 ≤
(
kn
n

)
. Now, let α =

⌈
log

(
kn
n

)⌉
. Then, m + 1 ≤ α. We also define a = ⌈log(k)⌉. By

definition of α, we have
(
kn
n

)
≥ 2α−1. We also have 1

k ≥ 1
2a , so

(
kn−1
n−1

)
= 1

k

(
kn
n

)
≥ 2α−1

k ≥ 2α−1−a. Like

in the proof of Lemma 6.5, we can build a circuit A′ : {0, 1}α → {0, 1}α−1−a whose size is polynomial in
m and such that from any collision in A′ we can efficiently find a collision in C ′. Let s ∈ {0, 1}α be the
binary encoding on α bits of

(
kn
n

)
−

(
kn−1
n−1

)
. We use the Cover encoding functions for n-subsets of [kn]:

En,kn
Cover : {0, 1}kn → {0, 1}α and Dn,kn

Cover : {0, 1}α → {0, 1}kn.
We define C : {0, 1}α → {0, 1}kn by C(x) = Dk,kn

Cover(s ⊕ 0a+1 ∥ A′(x)). For every x, we have that
(0a+1∥A′(x)) is one of the first 2α−1−a elements of {0, 1}α in the lexicographic order, hence it is one of the first(
kn−1
n−1

)
first. Thus, the rank of s⊕0a+1∥A′(x) in the lexicographic order is between

(
kn
n

)
−
(
kn−1
n−1

)
and

(
kn
n

)
−1

counting from 0. The last
(
kn−1
n−1

)
n-subsets of [kn] in the lexicographic order correspond to subsets that

contain the element 1. Hence, for every x, we have that the set Dn,kn
Cover(s⊕01+a ∥A′(x)) is an n-subset of [kn]

which contains the element 1. We observe that C defines an instance of weak-general-Erdős-Ko-Radok.
Now, suppose that we have a solution to this instance. We consider each solution type separately.

i) It cannot be x such that |C(x)| ≠ n because C(x) = Dn,kn
Cover(s⊕ 01+a ∥A′(x)) is an n-subset of [kn].

ii) By the previous, 1 ∈ C(x) and 1 ∈ C(y) so 1 ∈ C(x) ∪ C(y), which is a contradiction.

iii) By injectivity of Dn,kn
Cover on its first

(
kn
n

)
inputs (see Lemma 3.2), we get that (s ⊕ 01+a ∥ A′(x)) =

(s⊕ 01+a ∥A′(y)) hence A′(x) = A′(y) and from there we can retrieve a collision for C ′.

To prove that weak-general-Erdős-Ko-Radok ∈ PWPP, we present some useful definitions and
results related to the Erdős-Ko-Rado theorem.

Definition 4.16. If k divides m, a (k,m)-parallel class is a set of m/k k-subsets of [m] which partition [m].

Classical Theorem 2 (Baranyai, [Bar73]). If k divides m, we can define
(
m−1
k−1

)
(k,m)-parallel classes

A1, . . . ,A(m−1
k−1)

such that each k-subset of [m] appears in exactly one Ai.

Remark 4.17. Note that this result proves the Erdős-Ko-Rado theorem in the case where the size of the
subsets divides the size of the universe.
Note also that up to renaming the elements, we can assume that A1 consists exactly of the sets {1, 2, . . . , n}, {n+
1, n+ 2, . . . , 2n}, . . ., and {(k − 1)n+ 1, (k − 1)n+ 2, . . . , kn}.

However, all known proofs of this theorem are inefficient, in the sense that there is no known way to
define A1, . . . ,A(m−1

k−1)
such that given a k-subset of [m], we can find in polynomial time the only i such that

this subset appears in Ai. We make this assumption explicit.

Assumption 4.18 (efficient Baranyai assumption). There is an efficient procedure to define A1, . . . ,A(m−1
k−1)

and a circuit Bar : {0, 1}m → [
(
m−1
k−1

)
] which takes as input a k-subset of [m] and returns the only index i such

that this subset appears in Ai. Furthermore, we assume that A1 consists exactly of the sets {1, 2, . . . , n}, {n+
1, n+ 2, . . . , 2n}, . . ., and {(k − 1)n+ 1, (k − 1)n+ 2, . . . , kn}.

15

Proposition 4.19. Under Assumption 4.18, weak-general-Erdős-Ko-Radok ∈ PWPP.

Proof. At a high level, the proof goes as follows. We are given strictly more than
(
kn−1
n−1

)
subsets of [kn]. We

map them to elements of [
(
kn−1
n−1

)
] in the following way. If one set does not have size n, we map it anywhere.

If it has size n, we map it to the only i such that the set is in Ai. This defines an instance of weak-Pigeon.
In any collision for this instance, we must have either a set that does not have size n, or two sets in the same
parallel class, which means that either they are equal, or they do not intersect.

Formally, by assumption, we have a circuit Bar : {0, 1}kn → [
(
kn−1
n−1

)
] which takes as input an n-subset of

[kn] and returns the only index i such that this subset appears in Ai. We define a circuit Bar′ : {0, 1}kn →
{0, 1}⌈log (

kn−1
n−1)⌉ which takes as input an n-subset of [kn] and returns the binary encoding on

⌈
log

(
kn−1
n−1

)⌉
bits of the only index i such that this subset appears in Ai. Now, suppose that we have an instance

C : {0, 1}⌈log((
kn−1
n−1))⌉+1 → {0, 1}kn of weak-general-Erdős-Ko-Radok. We set C ′ = Bar′ ◦ C. Then,

we have C ′ : {0, 1}⌈log((
kn−1
n−1))⌉+1 → {0, 1}⌈log (

kn−1
n−1)⌉ so C ′ is an instance of weak-Pigeon.

Now, suppose that we have a solution to this instance ofweak-Pigeon, that is x ̸= y ∈ {0, 1}⌈log((
kn−1
n−1))⌉+1

such that C ′(x) = C ′(y). Then, Bar′(C(x)) = Bar′(C(y)). If one of C(x), C(y) does not have size n, we
have a solution to our instance of weak-general-Erdős-Ko-Radok, and similarly if C(x) = C(y). Oth-
erwise, it means that C(x), C(y) are distinct n-subsets of [kn] that appear in the same (n, kn)-parallel class.
By definition of a parallel class, it means that these 2 sets are part of a partition of [kn], hence they don’t
intersect and they form a solution to our original instance of weak-general-Erdős-Ko-Radok.

Remark 4.20. Let X be the set of n-subsets of [kn]. We define an equivalence relation ∼ on X by saying
that two n-subsets X and Y of [kn] are equivalent if and only Bar(X) = Bar(Y), meaning that they are in
the same (n, kn)-parallel class in the partition induced by Bar.
Then, we have that Bar is a property-preserving encoding for ∼ on X .
Note that two equivalent subsets are either equal or disjoint. Hence, the property that is preserved by Bar is
such that if two of its inputs collide, they form a solution to our problem.
Then, to prove the inclusion of weak-general-Erdős-Ko-Radok into PPP, it suffices to compose our
instance of weak-general-Erdős-Ko-Radok with Bar.

The previous two propositions establish the following result.

Theorem 4.21. Under Assumption 4.18, weak-general-Erdős-Ko-Radok is PWPP-complete.

PPP-completeness using the tight bound Like for the case of n-subsets of [2n], we can define a “tight”
version of the previous problem, which is very similar to Erdős-Ko-Rado.

Definition 4.22 (general-Erdős-Ko-Radok). The problem general-Erdős-Ko-Radok is defined by
the relation

Instance: A Boolean circuit C : {0, 1}⌈log((
kn−1
n−1))⌉ → {0, 1}kn.

Solution: One of the following:

i) x s.t. |C(x)| ≠ n and x <
(
kn−1
n−1

)
,

ii) x ̸= y s.t. C(x) = C(y) and x, y <
(
kn−1
n−1

)
,

iii) x, y s.t. C(x) ∩ C(y) = ∅ and x, y <
(
kn−1
n−1

)
,

iv) x s.t. C(x) = {1, 2, . . . , n} or {n+ 1, n+ 2, . . . , 2n}, or..., or {(k− 1)n+ 1, (k− 1)n+ 2, . . . , kn}
and x <

(
kn−1
n−1

)
.

First, let’s see why this problem is total. Suppose that we have a list of
(
kn−1
n−1

)
subsets of [kn]. If one of

the sets does not have n elements, if two of the sets are equal, or if two of the sets don’t intersect, we have
a solution. Now, suppose that we have an intersecting family of

(
kn−1
n−1

)
distinct n-subsets of [kn].

16

Now, consider a collection of (n, kn)-parallel classes A1, . . . ,A(kn−1
n−1)

such that each n-subset of [kn] appears

in exactly one Ai (which exists by Classical Theorem 2). Up to renaming the elements, we can assume that
A1 is composed of the k n-subsets {1, 2, . . . , n}, {n+1, n+2, . . . , 2n}, ... and {(k−1)n+1, (k−1)n+2, . . . , kn}.
Since we have an intersecting family of distinct subsets, no two subsets can be in the same Ai, and we have
as many subsets as Ai’s, which means that one of the subsets is in A1, hence that it is one of the particular
subsets we are looking for. This proves that general-Erdős-Ko-Radok ∈ TFNP. We then have the
following result.

Proposition 4.23. general-Erdős-Ko-Radok is PPP-hard.

Proof. Informally, this proof is very much like the proof of Proposition 4.15, with the same technicalities as
in the proof of Lemma 4.10. The idea is again to interpret the outputs of an instance of Pigeon as indices
into the collection of all the n-subsets of [kn] which contain the element 1. Solutions of type iv) correspond
to preimages of 0. Like for Lemma 4.10, we need to define A to make sure that all solutions to our instance
of general-Erdős-Ko-Radok indeed come from the instance of Pigeon.

Formally, let C ′ : {0, 1}m → {0, 1}m be an instance of Pigeon, and let n be the minimal integer

such that 2m ≤
(
kn−1
n−1

)
. We set α =

⌈
log

(
kn
n

)⌉
and β =

⌈
log

(
kn−1
n−1

)⌉
+ 1. Then, β − 1 ≥ m. Define

A : {0, 1}β−1 → {0, 1}β−1 by,

A(x) =

{
C ′(x) if x < 2m

x if x ≥ 2m

It might be the case that the output of A has less than β− 1 bits, in which case we pad it with 0 on the left
to make it an (β − 1)-bit string. Let s ∈ {0, 1}α be the binary encoding on α bits of

(
kn
n

)
− 1. Recall that

we have En,kn
Cover : {0, 1}kn → {0, 1}α and Dn,kn

Cover : {0, 1}α → {0, 1}kn.
We proceed to build an instance C : {0, 1}β−1 → {0, 1}kn of general-Erdős-Ko-Radok by setting

C(x) = Dn,kn
Cover(s−0α+1−β∥A(x)) where - represents the subtraction in binary (mod 2α). For every x <

(
kn−1
n−1

)
,

we have that (0α+1−β ∥A(x)) is one of the first
(
kn−1
n−1

)
elements of {0, 1}α in the lexicographic order. Thus,

the rank of s − 0α+1−β ∥ A(x) in the lexicographic order is between
(
kn
n

)
−

(
kn−1
n−1

)
and

(
kn
n

)
− 1 counting

from 0. The last
(
kn−1
n−1

)
n-subsets of [kn] in the lexicographic order correspond to subsets that contain the

element 1. Hence, for every x <
(
kn−1
n−1

)
, we have that the set Dn,kn

Cover(s − 0α+1−β ∥ A(x)) is an n-subset of

[kn] which contains the element 1. We observe that C defines an instance of general-Erdős-Ko-Radok.
Now, suppose that we have a solution to this instance. We consider each solution type separately.

i) It cannot be x such that |C(x)| ≠ n because C(x) = Dn,kn
Cover(s− 0α+1−β ∥A(x)) is an n-subset of [kn].

ii) By the previous, 1 ∈ C(x) and 1 ∈ C(y) so 1 ∈ C(x) ∪ C(y), which is a contradiction.

iii) By injectivity of Dn,kn
Cover on its first

(
kn
n

)
inputs (see Lemma 3.2), we get that (s − 0α+1−β ∥ A(x)) =

(s− 0α+1−β ∥ A(y)) hence A(x) = A(y) and from there we can retrieve a collision for C ′ by design of
A.

iv) If it is x such that C(x) is one of the k particular subsets we’re looking for, since we know that
1 ∈ C(x), it means that C(x) = [n]. When we consider n-subsets of [kn], the characteristic vector of

[n] is the last one in the lexicographic order, which means that [n] = Dn,kn
Cover(s). Furthermore, [n] =

C(x) = Dn,kn
Cover(s− 0α+1−β ∥A(x)), the rank of s− 0α+1−β ∥A(x) in the lexicographic order is between(

kn
n

)
−
(
kn−1
n−1

)
+1 and

(
kn
n

)
and Dn,kn

Cover is injective on its first
(
kn
n

)
inputs. Thus, s− 0α+1−β ∥A(x) = s,

which implies that A(x) = 0. By definition of A, this can only mean that C ′(x) = 0m.

In either case, we get a solution to our original problem.

Proposition 4.24. Under Assumption 4.18, general-Erdős-Ko-Radok ∈ PPP.

17

Proof. The proof of this result resembles a lot the proof of Proposition 4.19. The idea is the same: we are
given

(
kn−1
n−1

)
subsets of [kn]. We map each of them to an element of [

(
kn−1
n−1

)
as follows. If a set does not have

n elements, we map it anywhere, and if it has n elements, we map it to the only i such that this set is in
Ai. This defines an instance of Pigeon. If we have a collision, it results in a solution like before. If we have
a preimage of 0, it is a set in A1, which means it is one of the sets we are looking for. The definition of C ′

has some technicality since we need to take care of the last inputs to make sure that they are not involved
in a collision or result in a preimage of 0.

More formally, we have by assumption a circuit Bar : {0, 1}kn → [
(
kn−1
n−1

)
] which takes as input an

n-subset of [kn] and returns the only index i such that this subset appears in Ai. We define a circuit

Bar′ : {0, 1}kn → {0, 1}⌈log (
kn−1
n−1)⌉ which takes as input an n-subset of [kn] and returns the binary encoding

on
⌈
log

(
kn−1
n−1

)⌉
bits of i− 1 where i is the only index such that this subset appears in Ai.

Now, suppose that we have an instance C : {0, 1}⌈log((
kn−1
n−1))⌉ → {0, 1}kn ofweak-general-Erdős-Ko-Radok.

We set

C ′(x) =

{
Bar′ ◦ C(x) if x <

(
kn−1
n−1

)
x if x ≥

(
kn−1
n−1

)
Then, we have C ′ : {0, 1}⌈log((

kn−1
n−1))⌉ → {0, 1}⌈log (

kn−1
n−1)⌉ so C ′ is an instance of Pigeon.

Now, suppose that we have a solution to this instance of Pigeon. There are two cases to consider.

1. It is x ̸= y ∈ {0, 1}⌈log((
kn−1
n−1))⌉ such that C ′(x) = C ′(y). By construction of C ′ (and by definition

of Bar′), this means that x, y <
(
kn−1
n−1

)
. We have Bar′(C(x)) = Bar′(C(y)). If one of C(x), C(y)

does not have size n, we have a solution to our instance of general-Erdős-Ko-Radok, and similarly
if C(x) = C(y). Otherwise, it means that C(x), C(y) are distinct n-subsets of [kn] that appear in
the same (n, kn)-parallel class. By definition of a parallel class, it means that these 2 sets are part
of a partition of [kn], hence they don’t intersect and they form a solution to our original instance of
general-Erdős-Ko-Radok.

2. It is x such that C ′(x) = 0⌈log((
kn−1
n−1))⌉. By construction of C ′, it means that x <

(
kn−1
n−1

)
. We have

Bar′(C(x)) = 0⌈log((
kn−1
n−1))⌉. If C(x) does not have size n, it is a solution to our original instance. If

it has size n, it means that it is an n-subset of [kn] which is in A1. By assumption, the only such
subsets are the particular ones we’re looking for. Hence, x is a solution to our original instance of
general-Erdős-Ko-Radok.

Remark 4.25. As before, the idea behind that proof is to compose our instance of general-Erdős-Ko-Radok

with the property-preserving encoding Bar. However, this time it is not only the collisions that are of interest
to us, but also the preimages of the 0 string.

The previous two propositions establish the following result.

Theorem 4.26. Under Assumption 4.18, general-Erdős-Ko-Radok is PPP-complete.

5 Sperner’s Theorem on Largest Antichains

We now turn our attention to a different existence theorem from extremal combinatorics, concerning an-
tichains. We say a family of sets F ⊆ 2Ω is an antichain if for every A ̸= B ∈ F , it holds that A ̸⊆ B. A
well-known theorem by Sperner gives a characterization of the largest antichain. As before, for an appro-
priate input size, this induces a total search problem of finding two distinct sets A,B for which A ⊆ B. As
in the previous section, we consider both a weak and a strong version, and prove the weak version to be
PWPP-complete, and the strong one PPP-complete.

Classical Theorem 3 (Sperner [Spe28]). The largest antichain on any universe of 2n elements is unique
and consists of all subsets of size n.

18

Like before, we consider an implicit representation of the collection of subsets via a circuit C whose input
corresponds to an index into the collection, and whose output is the characteristic vector of the corresponding
set.

Definition 5.1 (weak-Sperner-Antichain). The problem weak-Sperner-Antichain is defined by the
relation

Instance: A Boolean circuit C : {0, 1}⌈log((
2n
n))⌉+1 → {0, 1}2n.

Solution: x ̸= y s.t. C(x) ⊆ C(y).

Theorem 5.2. weak-Sperner-Antichain is PWPP-complete

For the rest of this section, we set α =
⌈
log

(
2n
n

)⌉
=

⌈
log

(
2n−1
n−1

)⌉
+ 1.

Lemma 5.3. weak-Sperner-Antichain is PWPP-hard.

Proof. We explain the reduction at a high level. We reduce from weak-Erdős-Ko-Rado and create
an instance of weak-Sperner-Antichain by including each set from the weak-Erdős-Ko-Rado in-
stance, as well as its complement. If we find a solution to weak-Sperner-Antichain, one of the sets
must be contained within another. If one of the two sets does not have size n, we obtain a solution to
weak-Erdős-Ko-Rado of type i). Otherwise, the duplicated sets must be equal, and hence the original
sets are either equal, or one of the sets is the complement of the other.

Formally, suppose that we have an instance C : {0, 1}α → {0, 1}2n of weak-Erdős-Ko-Rado. Write
x = yb where b is a bit. We build an instance C ′ : {0, 1}α+1 → {0, 1}2n of Sperner-Antichain as follows.

C ′(x) =

{
C(y) if b = 0

C(y) if b = 1

Now, suppose that we have a solution to this instance of Sperner-Antichain, that is x ̸= x′ such that
C ′(x) = C ′(x′). Write x = yb and x′ = y′b′. There are four cases to consider. If b = b′ = 0. Then y ̸= y′ and
C(y) = C ′(x) ⊆ C ′(x′) = C(y′). If C(y) and C(y′) both have size n, then C(y) = C(y′), and if this is not
the case we get a solution for C. In both cases, we get a solution for weak-Erdős-Ko-Rado. The other
cases are similar; in all four cases, we get a solution to our original problem, so weak-Sperner-Antichain
is PWPP-hard.

Classical Theorem 4 (Dilworth’s Theorem, [Dil50]). The size of the largest antichain in (2[2n],⊆) is equal
to the size of the smallest chain partition, namely

(
2n
n

)
.

Lemma 5.4. weak-Sperner-Antichain ∈ PWPP.

Proof. We give a high-level overview of the reduction from weak-Sperner-Antichain to weak-Pigeon.
Fix an arbitrary partition into chains of (2[2n],⊆) of size

(
2n
n

)
(which exists by Classical Theorems 3

and 4). Since we have more than
(
2n
n

)
inputs in an instance ofweak-Sperner-Antichain, by the pigeonhole

principle, two distinct inputs must end up in the same chain. We want to give an identifier to each of these
chains, using α bits, such that for any subset we are be able to quickly find the identifier of the chain to which
it belongs. To do so, in each chain, we choose as representative the n-subset of the chain, that is guaranteed
to exist by Classical Theorem 4. Then, the identifier of the chain is the Cover encoding on this subset. To
map a subset to the representative of its chain, we make use Catalan factorizations (Section 3.4). Once we
have this, from each subset we can efficiently get the n-subset in its chain and therefore the identifier of the
chain. Finally, a collision in the identifiers is equivalent to two elements in the same chain, which means a
solution for weak-Sperner-Antichain.

Formally, let C : {0, 1}α+1 → {0, 1}2n be an instance of weak-Sperner-Antichain. We proceed to
construct an instance of weak-Pigeon as follows: if x ∈ {0, 1}α+1, we have X := C(x) ∈ {0, 1}2n which
represents a subset of [2n]. Let (X ′, k) = ECatalan(X) be the Catalan factorization of X, l be the number

19

of z’s in X ′ and m the number of bits underlined during the construction of X ′. Note that every time we
underline bits we underline simultaneously a 0 and a 1, thus m is even. Then, l = 2n−m is an even number.

Now, let S(x) = D
(l/2)
Catalan(X

′). Then, since X ′ has the same number of 1’s and 0’s and since we replaced half
of the z’s by 1’s and the other half by 0’s, we have that S(x) represents an n-subset of [2n]. Informally, it
is the n-subset of the chain that contains X, and replacing z’s by 1’s enables us to move inside that chain.
Finally, we set C ′(x) = ECover(S(x)) ∈ {0, 1}α. We observe that C ′ is an instance of weak-Pigeon.

Now suppose that we have a solution to this instance of weak-Pigeon, that is x ̸= y such that C ′(x) =
C ′(y). Then, by injectivity of ECover on the n-subsets of [2n] (see Lemma 3.2), we get that S(x) = S(y).
Informally, this means that C(x) and C(y) belong to the same chain and thus that one is contained is the
other. Let’s now prove it formally. Let (X ′, k) = ECatalan(X) = ECatalan(C(x)) be the Catalan factorization
of X and l be the number of z’s in X ′, and let (Y ′, k′) = ECatalan(Y) = ECatalan(C(y)). We have S(x) =
DCatalan(X

′, l/2) so by Lemma 3.10, the Catalan string that corresponds to S(x) is X ′. Similarly, the
Catalan string that corresponds to S(y) is Y ′. Since S(x) = S(y), we get X ′ = Y ′. We have that X =
DCatalan(ECatalan(X)) and that Y = DCatalan(ECatalan(Y)) by Lemma 3.9, so X = DCatalan(X

′, k) and Y =
DCatalan(Y

′, k′) = DCatalan(X
′, k′). By symmetry of x and y we can assume that k ≤ k′. Then, to go from

X ′ to X we added k elements (the ones corresponding to the last k z’s in X ′) while to go from X ′ to Y we
added these same k elements plus k′ − k others. Hence, C(x) = X ⊆ Y = C(y).

Remark 5.5. Consider the circuit E : {0, 1}2n → {0, 1}α, defined as follows. On input X ∈ {0, 1}2n,
it computes (X ′, k) the Catalan factorization of X, l the number of z in X ′. Then, it computes S(X) =

D
(l/2)
Catalan(X

′) and finally returns ECover(S(X)).
Let X = 2[2n]. We define an equivalence relation on X by saying that two subsets are equivalent if and only
if they have the same Catalan string.
Then, we showed in the previous proof that E is a property-preserving encoding for ∼ on X . Note that we
also showed that if we have two equivalent subsets, one is included in the other. Hence, the property that is
preserved by E is such that if two of its inputs collide, they form a solution to our problem.
Then, to prove the inclusion of weak-Sperner-Antichain into PWPP, it suffices to compose our instance
of weak-Sperner-Antichain with E.

PPP-completeness using the tight bound As with Erdős-Ko-Rado, we observe that the bound in
theorem is tight, and we know the unique antichain of size

(
2n
n

)
, so we have some structural information

about any collection of size
(
2n
n

)
. From that strong theorem, employing the same technique as before, we

modify the problem to let the circuit represent a collection of that exact size. By Classical Theorem 3, we
observe that if F is an antichain with |F| =

(
2n
n

)
, then F must contain [n]. This leads us to define the

following problem.

Definition 5.6 (Sperner-Antichain). The problem Sperner-Antichain is defined by the relation

Instance: A Boolean circuit C : {0, 1}⌈log((
2n
n))⌉ → {0, 1}2n.

Solution: One of the following:

i) x ̸= y s.t. C(x) ⊆ C(y) and x, y <
(
2n
n

)
,

ii) x s.t. C(x) = [n] and x <
(
2n
n

)
.

Theorem 5.7. Sperner-Antichain is PPP-complete.

Lemma 5.8. Sperner-Antichain is PPP-hard.

Proof. Same proof as for Lemma 5.3, by reduction from Erdős-Ko-Rado. Observe that if we have a
solution of type ii) for Sperner-Antichain, the corresponding set in the Erdős-Ko-Rado instance is
either [n] or [n], which is one of the desired solutions to Erdős-Ko-Rado.

Lemma 5.9. Sperner-Antichain ∈ PPP.

20

Proof. Informally, this proof is the same as the proof of Lemma 5.3, with some additional technical details.
First, we need to take care of preimages of 0. The indices corresponding to preimages of 0 correspond to
solutions of type ii). Second, since we only care about the first

(
2n
n

)
inputs, we have to make sure that the

last ones are not part of a collision, or result in a preimage of 0.
Formally, let C : {0, 1}α → {0, 1}2n be an instance of Sperner-Antichain. We proceed to construct

an instance of Pigeon as follows: if x ∈ {0, 1}α, we have X := C(x) ∈ {0, 1}2n which is a subset of [2n].
Let (X ′, k) = ECatalan(X) be the Catalan factorization of X, l be the number of z’s in X ′ and m the number
of bits underlined during the construction of X ′. Note that every time we underline bits we underline
simultaneously a 0 and a 1, thus m is even. Then, l = 2n−m is an even number. Now, let

S(x) = D
(l/2)
Catalan(X

′)

Then, since X ′ has the same number of 1’s and 0’s and since we replaced half of the z’s by 1’s and the other
half by 0’s, we have that S(x) represents an n-subset of [2n]. Informally, it is the n-subset of the chain that
contains X, and replacing z’s by 1’s enables us to move inside that chain. Finally, we set,

C ′(x) =

{
ECover(S(x)) if x <

(
2n
n

)
x if x ≥

(
2n
n

)
Then C ′ : {0, 1}α → {0, 1}α is an instance of Pigeon and has polynomial size. Suppose that we have a
solution to this instance of Pigeon of the form x such that C ′(x) = 0α. Then, x <

(
2n
n

)
and ECover(S(x)) = 0α

so S(x) = [n]. Let (X ′, k) = ECatalan(X) = ECatalan(C(x)) be the Catalan factorization of X. Like previously,
we get that the Catalan string that corresponds to S(x) is X ′. However, S(x) = [n] and the Catalan
string that corresponds to [n] is 0n ∥ 1n. Thus, X ′ = 0n ∥ 1n. Now, C(x) = DCatalan ◦ ECatalan(C(x)) =
DCatalan(0

n ∥ 1n, k) = 0n ∥ 1n, so C(x) = [n].
Suppose instead that we have a solution to this instance of Pigeon, of the form x ̸= y such that

C ′(x) = C ′(y). Like before, we have x, y <
(
2n
n

)
. Then, by injectivity of ECover on the n-subsets of [2n]

(see Lemma 3.2), we get that S(x) = S(y). Informally, this means that C(x) and C(y) belong to the same
chain and thus that one is contained is the other. Let (X ′, k) = ECatalan(X) = ECatalan(C(x)) be the Catalan
factorization of X and l be the number of z’s in X ′, and let (Y ′, k′) = ECatalan(Y) = ECatalan(C(y)). We have
S(x) = DCatalan(X

′, l/2) so by Lemma 3.10, the Catalan string that corresponds to S(x) is X ′. Similarly,
the Catalan string that corresponds to S(y) is Y ′. Since S(x) = S(y), we get X ′ = Y ′. We have that
X = DCatalan(ECatalan(X)) and that Y = DCatalan(ECatalan(Y)) by Lemma 3.9, so X = DCatalan(X

′, k) and
Y = DCatalan(Y

′, k′) = DCatalan(X
′, k′). By symmetry of x and y we can assume that k ≤ k′. Then, to go

from X ′ to X we added k elements (the ones corresponding to the last k z’s in X ′) while to go from X ′ to
Y we added these same k elements plus k′ − k others. Hence, C(x) = X ⊆ Y = C(y).

Remark 5.10. Like previously, the idea behind that proof is to compose our instance of Sperner-Antichain
with the property-preserving encoding we defined in Remark 5.5. However, this time it is not only the
collisions that are of interest to us, but also the preimages of the 0 string.

6 Cayley’s Tree Formula

We consider yet another classic theorem from combinatorics, related to spanning trees. A classic result by
Cayley establishes the number of spanning trees of the complete graph on n vertices. We observe then that if
we have a collection of sufficiently many such graphs, either one of the graphs is not a spanning tree, or two
spanning trees collide. Note that two isomorphic trees on distinct vertices are not considered a collision. This
allows us to define a total search problem of either finding a collision or finding an index not corresponding to
a spanning tree. We represent trees using a bitmap on all possible edges, ordered arbitrarily. We show that
this problem is equivalent to weak-Pigeon, in a more direct way than for the previous results. As before,
the problem can be modified using the same technique as previously to become equivalent to Pigeon, and
thus PPP-complete.

21

Classical Theorem 5 (Cayley [Cay89]). There are exactly nn−2 spanning trees of the complete graph on n
vertices.

Definition 6.1 (weak-Cayley). The problem weak-Cayley is defined by the relation

Instance: A Boolean circuit C : {0, 1}⌈(n−2) log(n)⌉+1 → {0, 1}(
n
2).

Solution: One of the following:

i) x s.t. C(x) is not a spanning tree (i.e., is not spanning, not connected or contains a cycle),

ii) x ̸= y s.t. C(x) = C(y).

Theorem 6.2. weak-Cayley is PWPP-complete.

For the rest of this section, we set β = ⌈(n− 2) log(n)⌉.

Lemma 6.3. weak-Cayley ∈ PWPP.

Proof. We reduce to weak-Pigeon. Unlike the previous problems, here, we are interested in a very simple
algebraic structure, namely equality. Thus, we want collisions in our encoding to correspond to equality.
This means that we want an efficiently computable injective encoding of spanning trees. For this, we use
Prüfer codes (Section 3.3). We map any input x to the Prüfer encoding of C(x) and, therefore, a collision
either yield a collision in the trees or a graph that is not a spanning tree.

Formally, suppose that we have C : {0, 1}⌈(n−2) log(n)⌉+1 → {0, 1}(
n
2) an instance of Cayley. We may

define an instance of weak-Pigeon by setting C ′(x) = ẼPrüfer(C(x)). We observe that C ′ : {0, 1}β+1 →
{0, 1}β is indeed an instance of weak-Pigeon. By definition, C ′(x) is the rank in the lexicographic order
of the Prüfer code of C(x). Now, suppose that we have a solution to this instance, that is x ̸= y ∈ {0, 1}β+1

such that C ′(x) = C ′(y). Then, ẼPrüfer(C(x)) = ẼPrüfer(C(y)). If C(x) or C(y) is not a spanning tree, then
we have a solution to our original instance of Cayley. Otherwise, C(x) and C(y) are spanning trees, so by
injectivity of ẼPrüfer on the set of labelled spanning trees on n vertices (see Lemma 3.5), we have C(x) = C(y)
which is a solution to our original instance of weak-Cayley.

Remark 6.4. Here, we can interpret ẼPrüfer as a property-preserving encoding on the set of labelled spanning
trees on n vertices, where the equivalence relation is equality. Hence, this is another proof of inclusion using
property-preserving encodings, where we compose the instance of our problem with an appropriate property-
preserving encoding. The equivalence relation has to be equality since the only spanning trees that are solutions
of weak-Cayley are spanning trees that are equal.

Lemma 6.5. weak-Cayley is PWPP-hard.

Proof. We interpret the output of the weak-Pigeon instance as an index into the collection of all labelled
spanning trees on n vertices. By correctness of the encoding, the output necessarily is a spanning tree and,
hence, the only solutions are collisions. We also detail some technical work to get a circuit with the right
input size and output size, for which finding collisions allows solving the original instance of weak-Pigeon.

Formally, let C ′ : {0, 1}m+1 → {0, 1}m be an instance of weak-Pigeon. We define a circuit A :
{0, 1}m+2 → {0, 1}m as follows. For any x ∈ {0, 1}m+2, write x = y ∥ z with y ∈ {0, 1}m+1 and z ∈ {0, 1}.
Then, we set A(x) = C ′(C ′(y) ∥ z). Note that A still has polynomial size and that any collision in A allows
us to retrieve a collision for C ′ (like in the Merkle-Damg̊ard construction, see [Mer79]).

Let n be the smallest integer such that m + 1 ≤ (n − 2) log(n). Note that n is polynomial in m. Let
β = ⌈(n−2) log(n)⌉. Then,m+1 ≤ β, hencem+2 ≤ β+1. Now, we define a circuitA′ : {0, 1}β+1 → {0, 1}β−1

as follows. For any x ∈ {0, 1}β+1, write x = y ∥ z with y ∈ {0, 1}m+2 and z ∈ {0, 1}β+1−m−2. Then, we set
A′(x) = A(y) ∥ z. Note that A′ also has polynomial size and that any collision in A′ allows us to retrieve a
collision for A hence for C ′.

Recall that we have ẼPrüfer : {0, 1}(
n
2) → {0, 1}β and D̃Prüfer : {0, 1}β → {0, 1}(

n
2). We now define an

instance C of Cayley by setting C(x) = D̃Prüfer(0 ∥ A′(x)). Now, suppose that we have a solution to this

22

instance of Cayley. For every x, 0 ∥ A′(x) is one of the first nn−2 elements of {0, 1}β in the lexicographic
order, so D̃Prüfer is well-defined and correct (i.e., it indeed returns a spanning tree) on input 0 ∥A′(x). Then,
this solution must be x ̸= y such that C(x) = C(y). By injectivity of D̃Prüfer on its first nn−2 inputs
(Lemma 3.5), we get that A′(x) = A′(y) and from this we can retrieve a solution to our original instance of
weak-Pigeon.

PPP-completeness using the tight bound Again, we observe that Classical Theorem 5 gives an exact
bound, namely that there are exactly nn−2 labelled spanning trees on n vertices. As before, this leads us to
defining the following problem.

Definition 6.6 (Cayley). The problem Cayley is defined by the relation

Instance: A Boolean circuit C : {0, 1}⌈(n−2) log(n)⌉ → {0, 1}(
n
2).

Solution: One of the following:

i) x s.t. C(x) is not a spanning tree and x < nn−2,

ii) x ̸= y s.t. C(x) = C(y) and x < nn−2,

iii) x s.t. C(x) = T1 and x < nn−2, with T1 defined as in Remark 3.7.

Theorem 6.7. Cayley is PPP-complete.

Lemma 6.8. Cayley is PPP-hard.

Proof. This proof is in spirit similar to the proof of Lemma 6.5. We interpret the outputs of the instance of
Pigeon as indices in the list of all spanning trees of the complete graph on n vertices. Like in previous proofs,
we have to define a circuit A with sufficiently many inputs such that from any collision (resp. preimage of
0) in A we can find a collision (resp. preimage of 0) in the instance of Pigeon. In the instance of Cayley
we create, preimages of T1 correspond to preimages of 0.

Let C ′ : {0, 1}m → {0, 1}m be an instance of Pigeon, and let n be the smallest integer such that
m ≤ (n−2) log(n). Note that n is polynomial in m. Let β = ⌈(n−2) log(n)⌉. We define A : {0, 1}β → {0, 1}β
as follows.

A(x) =

{
C ′(x) if x < 2m

x if x ≥ 2m

If necessary, we pad the outputs of A on the left by 0’s so that they have length β (this might be necessary
for x < 2m). Note that A([2m − 1]) ⊆ [2m − 1] and A acts as the identity over [2β − 1] \ [2m − 1], hence
any solution to A as an instance of Pigeon immediately gives a solution to C ′. Recall that we have

ẼPrüfer : {0, 1}(
n
2) → {0, 1}β and D̃Prüfer : {0, 1}β → {0, 1}(

n
2). Then, we define an instance C of Cayley by

setting C(x) = D̃Prüfer(A(x)).
Now, suppose that we have a solution to this instance of Cayley. Every solution must consist of inputs

< nn−2 but A([nn−2−1]) ⊆ [nn−2−1] by construction of A, and D̃Prüfer is well-defined, correct and injective
on this set by Lemma 3.5. This implies that this solution can not be x such that C(x) is not a spanning tree.
Then, suppose that this solution is x ̸= y such that C(x) = C(y). By injectivity of D̃Prüfer on [nn−2 − 1],
we get that A(x) = A(y) and from this we can retrieve a solution to our original instance of Pigeon. Now,
if this solution is x such that C(x) = T1 then this means that A(x) = 0β by Remark 3.7 and injectivity of
DPrüfer over [n

n−2 − 1] so C ′(x) = 0m.

Lemma 6.9. Cayley ∈ PPP.

Proof. The idea behind the proof is similar to that of Lemma 6.3, using ẼPrüfer to create an instance of
Pigeon except that we restrict the circuit to only apply the first nn−2 elements of the collection, and set it
to the identity on the rest of the inputs. Any preimage of 0 correspond to a preimage of T1, and collisions
arise from graphs that are not spanning trees, as well as collisions in the Cayley instance.

23

7 Ward-Szabo Theorem on Swell Colorings

We now focus on a different theorem from extremal combinatorics, and more precisely from extremal graph
theory. Let G = (V,E) be the complete graph on N vertices. An edge-coloring c : E → [r] for some r
is called a swell coloring of G if it uses at least 2 colors and if every triangle is either monochromatic or
trichromatic. It is rather straightforward to see that in any 2-coloring of G, there must exist a bichromatic
triangle. On the contrary, if we color each edge with a different color, we trivially get a swell coloring. The
natural question that appears is then to determine the minimal number of colors required to swell-color the
complete graph on N vertices. This was solved in some cases by Ward and Szabo in 1995.

Classical Theorem 6 (Ward-Szabo [WS95]). The complete graph on N vertices cannot be swell-colored
with fewer than

√
N + 1 colors, and this bound is tight.

From that theorem, we can define a TFNP problem as follows: the input is a coloring C of the edges of
the complete graph on 22n vertices with 2n colors, as well as three vertices a, b, c such that C(a, b) ̸= C(a, c)
to guarantee that at least 2 colors are used in the coloring. A solution is then the vertices of a bichromatic
triangle (which is guaranteed to exist by Classical Theorem 6). We also allow extra solutions, one to specify
that the edges (a, b) and (a, c) have the same color, and one if the coloring of the graph is not consistent.

Definition 7.1 (Ward-Szabo). The problem Ward-Szabo is defined by the relation

Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n.

Solution: One of the following:

i) 0 if C(a, b) = C(a, c),

ii) x, y s.t. C(x, y) ̸= C(y, x),

iii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z).

We also define two variants of this problem, whose totality is a consequence of the totality ofWard-Szabo.
In the first one, we allow an extra type of solution, namely the vertices of two distinct triangles with the
same “color profile”.

Definition 7.2 (Ward-Szabo-Collisions). The problem Ward-Szabo-Collisions is defined by the
relation

Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n.

Solution: One of the following:

i) 0 if C(a, b) = C(a, c),

ii) x, y s.t. C(x, y) ̸= C(y, x),

iii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z),

iv) Two triples, (x, y, z), (x′, y′, z′), each with 3 distinct elements, s.t. {x, y, z} ̸= {x′, y′, z′} and
C(x, y) = C(x′, y′), C(x, z) = C(x′, z′), C(y, z) = C(y′, z′).

In the second variant, we allow the same extra type of solution, namely the vertices of two distinct triangles
with the same “color profile”, with the additional constraint that these triangles should be trichromatic.

24

Definition 7.3 (Ward-Szabo-Colorful-Collisions). The problem Ward-Szabo-Colorful-Collisions
is defined by the relation

Instance: The following:

1. A Boolean circuit C : {0, 1}2n × {0, 1}2n → {0, 1}n; and,
2. Distinct a, b, c ∈ {0, 1}2n.

Solution: One of the following:

i) 0 if C(a, b) = C(a, c),

ii) x, y s.t. C(x, y) ̸= C(y, x),

iii) Distinct x, y, z s.t. C(x, y) = C(y, z) ̸= C(x, z),

iv) Two triples (x, y, z), (x′, y′, z′), each with 3 distinct elements, s.t. {x, y, z} ≠ {x′, y′, z′}, C(x, y) =
C(x′, y′), C(x, z) = C(x′, z′), C(y, z) = C(y′, z′) and the triangle (x, y, z) is trichromatic.

Theorem 7.4. weak-Pigeon ≤ Ward-Szabo-Collisions ≤ Ward-Szabo-Colorful-Collisions ≤
Ward-Szabo.

Proof. At a high level, we use the weak-Pigeon circuit as the coloring of the graph. If we find a bichromatic
triangle, we have found a collision. If we find two triangles with the same “color-profile”, we have also found
a collision.

Formally, let us prove that weak-Pigeon reduces to Ward-Szabo-Collisions. Let C : {0, 1}n+1 →
{0, 1}n be an instance of weak-Pigeon. By the Merkle-Damg̊ard construction, we can build a circuit
A : {0, 1}4n → {0, 1}n of polynomial size such that finding a collision for A allows finding a collision for C.
We set a = 02n, b = 12n and c = 02n−1 ∥ 1. If A(a, b) = A(a, c) then we have a collision for A. Otherwise, we
have A(a, b) ̸= A(a, c). We define a circuit A′ : {0, 1}4n → {0, 1}n as follows.

A′(x, y) =

{
A(x, y) if x ≤ y

A(y, x) if x > y

Then, we define an instance of Ward-Szabo-Collisions by saying that the coloring isA′ and thatA′(a, b) ̸=
A′(a, c).

Now, suppose that we have a solution to this instance of Ward-Szabo-Collisions. Note that solution
cannot be x, y such that A′(x, y) ̸= A′(y, x) by definition of A′. If this solution is distinct x, y, z such that
A′(x, y) = A′(x, z) ̸= A′(y, z) then A′(x ∥ y) = A′(x ∥ z). which implies a collision for A in any case.
If this solution is two triples (x, y, z) ̸= (x′, y′, z′) such that A′(x, y) = A′(x′, y′), A′(x, z) = A′(x′, z′),
A′(y, z) = A′(y′, z′), then by symmetry of x, y and z, and of x′, y′ and z′, we can assume x ̸= x′. If x = y′

and y = x′, then A′(x, z) = A′(x′, z′) = A′(y, z′) and x ̸= y so this gives us a collision for A. Otherwise,
from A′(x ∥ y) = A′(x′ ∥ y′), from which we can find a collision for A.
In all cases, we get a collision for A from which we can get a collision for C.

Theorem 7.5. Ward-Szabo-Collisions ∈ PWPP.

Proof. We describe informally the proof. There are only 23n different “color profiles” possible, which is less
than the number of triangles containing the vertex 02n. Hence, if we map sufficiently many distinct triangles
containing that vertex to their color profile, it defines an instance of weak-Pigeon, and any solution to this
instance gives us a solution of type iv).

Formally, let C : {0, 1}2n × {0, 1}2n → {0, 1}n, a, b, c ∈ {0, 1}2nbe an instance of Ward-Szabo-
Collisions. We consider the “color profile” of some triangles containing the vertex indexed by 02n. Let
C ′ : {0, 1}3n+1 → {0, 1}3n be the circuit defined as follows. For every x ∈ {0, 1}3n+1, write x = (y ∥ z) with
y ∈ {0, 1}n+3 and z ∈ {0, 1}2n−2. Then, let y′ = (1n−2 ∥ y) and z′ = (10 ∥ z) ∈ {0, 1}2n. Then, we set
C ′(x) = (C(02n, y′), C(02n, z′), C(y′, z′)). C ′ defines an instance of weak-Pigeon. Suppose now that we

25

have a solution to this instance of weak-Pigeon, that is x1 ̸= x2 such that C ′(x1) = C ′(x2).
Then, define y′1, z

′
1, y

′
2 and z′2 as above. Since x1 ̸= x2, by construction we have that {02n, y′1, z′1} ̸=

{02n, y′2, z′2} and that each of these two sets has three distinct elements. Furthermore, C ′(x1) = C ′(x2)
implies that C(02n, y′1) = C(02n, y′2), C(02n, z′1) = C(02n, z′2) and C(y′1, z

′
1) = C(y′2, z

′
2). Hence, we have a

solution of type iv) to Ward-Szabo-Collisions.

Remark 7.6. The last two theorems prove that Ward-Szabo-Collisions is PWPP-complete. However,
notice that the proof of inclusion into PWPP does not use solutions of the first three types. Hence, if we
call Ward-Szabo-Collisions’ the problem similar to Ward-Szabo-Collisions but without the first three
types of solutions, this new problem is also PWPP-complete. Indeed, the proof of inclusion into PWPP would
be similar, and the proof of hardness too, only with less cases to consider. Thus, it seems (at least that is how
we prove it) that what makes Ward-Szabo-Collisions PWPP-complete is only its last type of solutions.
Now, one could wonder how hard this problem becomes if we slightly modify this last type of solutions to
make them harder to find. This is exactly what Ward-Szabo-Colorful-Collisions does.

Theorem 7.7. Ward-Szabo-Colorful-Collisions ∈ PPP.

Proof. We first give an overview of the proof. It is quite similar in spirit to the previous one, but we need to
work to avoid getting collisions that would give us 2 monochromatic triangles. This costs an extra bit, hence
the inclusion in PPP and not in PWPP. We are given three vertices a, b, c ∈ {0, 1}2n such that the colors
C(a, b), C(a, c) and C(a, c) are distinct (otherwise we have an easy solution to the instance). We create
an instance of Pigeon by mapping any vertex x to the pair of colors (C(x, b), C(x, c)) if we don’t have
C(x, b) = C(x, c) = C(b, c) which would be a monochromatic triangle, and to the color C(x, a) otherwise.
We need 2n bits to make sure that these two types of outputs don’t collide. We make sure that 0 has no
preimage. Then, any solution to the instance of Pigeon must be a collision. If it is a collision from the first
case, we found 2 distinct non-monochromatic triangles with the same profile, hence a solution of type iii) or
iv). If it is a collision from the second case, we found 2 non-monochromatic triangles with the same profile.

Formally, let C : {0, 1}2n × {0, 1}2n → {0, 1}n and a, b, c ∈ {0, 1}2n be an instance of Ward-Szabo-
Colorful-Collisions. If C(a, b) = C(a, c) then we have a solution to this instance of Ward-Szabo-
Colorful-Collisions. Now, suppose C(a, b) ̸= C(a, c). If C(b, c) = C(a, b) or C(b, c) = C(a, c), then we
have a solution of type iii) to this instance of Ward-Szabo-Colorful-Collisions. Hence, we can suppose
that the colors C(a, b), C(a, c) and C(b, c) are all distinct. Furthermore, if C(c, b) ̸= C(b, c), we have a solution
of type ii), so we also assume that C(c, b) = C(b, c). We use the circuit Elex : {0, 1}n ×{0, 1}n → {0, 1}2n−1

defined in Section 3.2, to encode 2-subsets of {0, 1}n using 2n− 1 bits.
We define an instance C ′ : {0, 1}2n → {0, 1}2n of Pigeon as follows.

C ′(x) =

011102n−4 if x = a

0102n−2 if x = b

01102n−3 if x = c

01n−1 ∥ C(x, a) if C(x, b) = C(x, c) = C(b, c)

1 ∥ Elex(C(x, b), C(x, c)) otherwise

Now, suppose that we have a solution to this instance of Pigeon. By construction of C ′, it cannot be
x ∈ {0, 1}2n such that C ′(x) = 02n. Then, it must be x ̸= y ∈ {0, 1}2n such that C ′(x) = C ′(y). Furthermore,
by design of C ′, we have x, y /∈ {a, b, c}. We consider two cases, depending on the first bit of C ′(x).

1. Suppose the first bit of C ′(y) = C ′(x) is a 1. Then, Elex(C(x, b), C(x, c)) = Elex(C(y, b), C(y, c)). If
C(x, b) = C(x, c), then we have that C(x, b) = C(x, c) ̸= C(b, c) otherwise the first bit of C ′(x) would
be a 0. Then, the triangle (x, b, c) is bichromatic so it’s a solution to our instance of Ward-Szabo-
Colorful-Collisions. Similarly, if C(y, b) = C(y, c), then the triangle (y, b, c) is bichromatic. Now,
if C(x, b) ̸= C(x, c) and C(y, b) ̸= C(y, c), then {C(x, b), C(x, c)} = {C(y, b), C(y, c)} by injectivity of
Elex on subsets of 2 distinct elements of {0, 1}n. Then, {x, b, c} ̸= {y, b, c}, each has three distinct
elements, and either C(x, b) = C(y, b), C(x, c) = C(y, c) and C(b, c) = C(b, c), or C(x, b) = C(y, c),

26

C(x, c) = C(y, b) and C(b, c) = C(c, b). The triangle (x, b, c) is not monochromatic so this gives us a
solution to our instance of Ward-Szabo-Colorful-Collisions, either of type iv) if it is trichromatic,
or of type iii) if it is bichromatic.

2. Otherwise, suppose that the first bit of C ′(y) = C ′(x) is a 0. By construction of C ′, this means
that C(x, b) = C(x, c) = C(b, c) = C(y, c) = C(y, b). Furthermore, since C ′(x) = C ′(y), we get that
C(x, a) = C(y, a). Then, {x, a, b} ̸= {y, a, b}, each has three distinct elements, and C(x, a) = C(y, a),
C(x, b) = C(y, b) and C(a, b) = C(a, b). The triangle (x, a, b) is not monochromatic since C(x, b) =
C(b, c) ̸= C(a, b) so this gives us a solution to our instance of Ward-Szabo-Colorful-Collisions,
either of type iv) if it is trichromatic, or of type iii) if it is bichromatic.

7.1 A Hierarchy of Total Search Problems between weak-Pigeon and Pigeon?

In the last proof, we define a reduction to Pigeon where the circuit C ′ only has a range of 22n−1 + 2n−1

elements. Indeed, we need exactly
(
2n

2

)
= 22n−1 − 2n−1 elements to encode the pairs of colors. We also

need exactly 2n elements for the fourth case. However, we can map the x anywhere in that case if C(x, a) ∈
{C(a, b), C(a, c), C(b, c)} because such an x would give us a bichromatic triangle. Hence, we need 2n − 3
colors for this case. We also need 3 extra elements for a, b and c. Hence, overall, we only need a range of
22n−1 + 2n−1 elements. Thus, we get a reduction from Ward-Szabo-Colorful-Collisions to a problem
that is weaker than Pigeon (but stronger than weak-Pigeon), which is the following : given a circuit from
2n bits to 2n bits, either find a collision, or a preimage of one of the first 22n − (22n−1 + 2n−1) elements.

More generally, we can define the problem General-Pigeonm
k as follows.

Definition 7.8 (General-Pigeonm
k). The problem General-Pigeonm

k is defined by the relation

Instance: A Boolean circuit C : {0, 1}m → {0, 1}m.

Solution: One of the following:

i) x ̸= y ∈ {0, 1}m s.t. C(x) = C(y),

ii) x ∈ {0, 1}m s.t. C(x) is one of the first k elements of {0, 1}m.

Note that this problem gets harder as k decreases. It is trivial for k = 2m, equivalent to weak-Pigeon
for k = 2m−1 and to Pigeon for k = 1.
This problem induces an entire family of intermediary problems between weak-Pigeon and Pigeon. It
is not clear how many non-equivalent problems appear in that hierarchy. It is also unclear whether each
PWPP-hard problem that is in PPP is in fact equivalent to one of these.

8 Mantel’s Theorem on Triangle-Free Graphs

Next, we move on to another classical theorem in extremal graph theory. It answers the following question:
What is the maximum number of edges in a triangle-free graph on N vertices?

Classical Theorem 7 (Mantel [Man07]). If G = (V,E) is a triangle-free graph on N vertices then |E| ≤
N2/4, and this bound is tight.

This gives rise to the following search problem. Suppose that we are given a collection of strictly more
than N2/4 distinct edges for a graph on N vertices. Then, by Mantel’s theorem, there must be three of these
edges forming a triangle in the graph. The search problem is then to find them. We can turn this problem
into a TFNP problem if we also allow evidence that two edges in the collection are in fact the same, or that
an edge is in fact a loop. For practical reasons, we demand that the endpoints of every edge are given in the
lexicographic order. When the edges are represented implicitly by a poly-sized circuit, we get the following
problem.

27

Definition 8.1 (weak-Mantel). The problem weak-Mantel is defined by the relation

Instance: A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n.

Solution: One of the following:

i) Distinct i, j, k s.t. C(i), C(j), C(k) form a triangle,

ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,

iii) i ̸= j s.t. C(i) = C(j).

Remark 8.2. Like in the other problems, the size of the collection we receive (in this case, edges) is twice
the threshold size (here, 2n−2). However, here, we observe that the number of edges we receive as input is

greater than the number of possible edges since 2n−1 >
(
2n

2

)
. Thus, in any instance of weak-Mantel, there

must be solutions of type ii) or iii).

Theorem 8.3. weak-Mantel is PWPP-hard.

Proof. To prove this result, we apply the graph-hash product to the complete balanced bipartite graph on
2n vertices.

Formally, let C : {0, 1}n → {0, 1}n−1 be an instance of weak-Pigeon. We define C ′ : {0, 1}2n−1 →
{0, 1}2n−2 as follows. For every x ∈ {0, 1}2n−1, write x = y ∥ z with y ∈ {0, 1}n and z ∈ {0, 1}n−1. We then
set C ′(x) = C(y) ∥ z. Note that from any collision for C ′ we can retrieve a collision for C (by looking at
the first n bits). Now, we define C ′′ : {0, 1}2n−1 → {0, 1}n × {0, 1}n as follows. For every x ∈ {0, 1}2n−1,
write C ′(x) = (y ∥ z) with y, z ∈ {0, 1}n−1. We then set C ′′(x) = (0 ∥ y, 1 ∥ z). We observe that C ′′ defines
an instance of Mantel. Note that the edges given by C ′′ correspond to edges of the complete balanced
bipartite graph on 2n vertices where one side of the bipartition consists of the 2n−1 first elements in the
lexicographic order. In particular, the graph described by C ′′ is triangle-free, so there is no solution of type
i). Similarly, by construction of C ′′, there can be no solution of type ii). Thus, any solution to this instance
of weak-Mantel is i ̸= j such that C ′′(i) = C ′′(j). By construction of C ′′, this means that C ′(i) = C ′(j)
and from there we can find a collision for C.

Theorem 8.4. weak-Mantel ∈ PPP.

Proof. We give a high-level overview of the proof. Since we have more edges than there are possible distinct
edges, we encode the edges injectively, mapping only ill-defined edges to 0. This defines an instance of
Pigeon, where a solution can only be a collision, meaning two different indices corresponding to the same
edge.

With the circuit Elex : {0, 1}n × {0, 1}n → {0, 1}2n−1 defined in Section 3.2, we can encode 2-subsets of

{0, 1}n using optimally many bits, that is
⌈
log

(
2n

2

)⌉
= 2n− 1.

Now, consider the following circuit E : {0, 1}n × {0, 1}n → {0, 1}2n−1,

E(u, v) =

{
02n−1 if u ≥ v

Elex(u, v) + 02n−21 if u < v

where + represents the addition in binary. Note that since the range of Elex is exactly the first
(
2n

2

)
elements

of {0, 1}2n−1 in the lexicographic order, if E(u, v) = 02n−1, it must be that u ≥ v.
Let C : {0, 1}2n−1 → {0, 1}n × {0, 1}n be an instance of weak-Mantel. For every x ∈ {0, 1}2n−1, we

set C ′(x) = E(C(x)). Then, C ′ : {0, 1}2n−1 → {0, 1}2n−1 is an instance of Pigeon.
Now, suppose that we have a solution to this instance of Pigeon. If it is x such that C ′(x) = 02n−1,

then E(C(x)) = 02n−1 which means that C(x) = (u, v) with u ≥ v so x is a solution to our instance of
weak-Mantel. If it is x ̸= y such that C ′(x) = C ′(y). If C ′(x) = 02n−1, by the first case we have that x is a
solution to the instance of weak-Mantel. Now, if C ′(x) ̸= 02n−1, then it means that E(C(x)) + 02n−21 =
E(C(y)) + 02n−21 so E(C(x)) = E(C(y)). By injectivity of E on well-defined inputs (that is inputs of
the form (u, v) with u < v), this means that C(x) = C(y) which is a solution to our original instance of
weak-Mantel.

28

Remark 8.5. Similarly to the proof that Ward-Szabo-Collisions ∈ PPP, we only use the last two types
of solutions, which suggests that what makes this problem easier than Pigeon is only the fact that we are
given more edges than there are different possible edges in a graph on 2n vertices.

Remark 8.6. In fact, this last proof shows that weak-Mantel reduces to General-Pigeon2n−1
2n−1 .

Mantel’s theorem states that there is a unique triangle-free graph on 2N vertices that has N2 edges, it is
the complete bipartite graph KN,N . Now, consider any labelling of the vertices of KN,N . If for every label
x, the vertices labelled x and x+ 1 mod 2N were on the same side of the bipartition, then all the vertices
would be on the same side of the bipartition, which is impossible. Hence, there must be 2 vertices labelled x
and x+1 mod 2N on different sides of the bipartition, and therefore there must be an edge between them.
Thus, the following problem is total.

Definition 8.7 (Mantel). The problem Mantel is defined by the relation

Instance: A Boolean circuit C : {0, 1}2n−2 → {0, 1}n × {0, 1}n.

Solution: One of the following:

i) Distinct i, j, k s.t. C(i), C(j), C(k) form a triangle,

ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,

iii) i ̸= j s.t. C(i) = C(j),

iv) i s.t. C(i) = (u, v) with v = u+ 1 mod 2n when we consider u and v as integers.

Theorem 8.8. Mantel is PPP-hard.

Proof. To prove this result, we do the graph-hash product on the complete balanced bipartite graph on 2n

vertices, where one side of the bipartition consists of the first 2n−1 vertices in the lexicographic order. We
make sure to map 0 into the edge (01n−1, 10n−1), which is the only edge satisfying iv) in that graph.

Formally, let C : {0, 1}2n−2 → {0, 1}2n−2 be an instance of Pigeon.
We define a circuit C ′ : {0, 1}2n−2 → {0, 1}n × {0, 1}n as follows. Let x ∈ {0, 1}2n−2. If C(x) = 02n−2,
we set C ′(x) = (0 ∥ 1n−1, 1 ∥ 0n−1). If C(x) = 1n−1 ∥ 0n−1, we set C ′(x) = (0n, 1 ∥ 0n−1). Otherwise, if
C(x) = (u, v), we set C ′(x) = (0 ∥ u, 1 ∥ v). C ′ has polynomial size and defines an instance of Mantel.

Now, suppose that we have a solution to this instance of Mantel. Like in the proof of Theorem 8.8,
this solution cannot be of type i) because the graph described by C ′ is bipartite hence triangle-free, and it
cannot be of type ii) neither, by construction. If this solution is of the form i ̸= j such that C ′(i) = C ′(j), by
construction of C ′ it means that C(i) = C(j) which is a collision for C. If this solution is of the form i such
that C ′(i) = (u, v) with v = u+1 mod 2n, then by definition of C ′, it can only be that C ′(i) = (0∥1n, 1∥0n).
By construction of C ′, this means that C(i) = 02n−2 hence x is a solution to the original instance of Pigeon.

8.1 Generalization with Turán’s Theorem

Mantel’s theorem investigates the maximum number of edges in a triangle-free graph onN vertices. Similarly,
one could wonder about the maximum number of edges in a graph on N vertices that does not contain a
clique on r vertices, where r ≥ 3 is an arbitrary constant. This problem was solved by Turán in 1941.

Classical Theorem 8 (Turán [Tur41]). If G = (V,E) is a graph on N = |V | vertices that does not contain
any r + 1-clique, then |E| ≤ (1− 1

r)
N2

2 and this bound is tight when r divides N .

Now, suppose that we are given a list of strictly more than (1 − 1
r)

N2

2 edges for a graph on N vertices.
Then, by Turán’s theorem, if all these edges are distinct, the graph must contain an r + 1-clique. This
induces a total search, namely that of finding the vertices of such a clique. If the edges are given implicitly
via a Boolean circuit which on input i returns the endpoints of the i-th edge, we get the following TFNP
problem.

29

Definition 8.9 (weak-Turánr). The problem weak-Turánr is defined by the relation

Instance: A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n.

Solution: One of the following:

i) Distinct i1, i2, . . . i(r+1)(r+2)/2 such that C(i1), C(i2), . . . C(i(r+1)(r+2)/2) are the edges of an r+1-
clique,

ii) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order,

iii) i ̸= j s.t. C(i) = C(j).

Remark 8.10. Note that r can be any polynomial in n in the previous definition and it would still define a
TFNP problem.

Theorem 8.11. For every r1 < r2, there is a reduction from weak-Turánr1 to weak-Turánr2 .

Proof. Let C : {0, 1}2n−1 → {0, 1}n × {0, 1}n be an instance of weak-Turánr1 . Now, we interpret it as an
instance of weak-Turánr2 . Suppose that we have a solution to this instance of weak-Turánr2 .
If we have (r2 + 1)(r2 + 2)/2 edges that form an r2 + 1-clique, it suffices to remove some of them to get
the edges of an r1 + 1-clique. Otherwise, any solution of type ii) or iii) for weak-Turánr2 immediately
translates into a solution of the same type for weak-Turánr1 .

Theorem 8.12. For every r ≥ 2, weak-Turánr is PWPP-hard.

Proof. It is enough to notice that WeakTurán2 is exactly weak-Mantel, which is PWPP-hard by Theo-
rem 8.3. Then, apply Theorem 8.11.

Theorem 8.13. For every r > 2, weak-Turánr ∈ PPP.

The proof is exactly similar to the proof of Theorem 8.4. In this case too, it appears that what makes
the problem easier than Pigeon is that we are given too many edges.

Turán’s theorem states that there if r divides N , there is a unique graph on N vertices that does
not contain any r + 1-clique and that has the maximum number of edges. This graph is the complete r-
partite graph, where each part has size N/r. Like previously, there must be 2 vertices labelled x and x+ 1
mod 2N with an edge between them. We denote by N the largest multiple of r that is at most 2n, and set

M = (1− 1
r)

N2

2 . Thus, the following problem is in TFNP.

Definition 8.14 (Turánr). The problem Turánr is defined by the relation

Instance: The following:

1. A Boolean circuit C : {0, 1}2n−1 → {0, 1}n × {0, 1}n; and,
2. Two integers N and M .

Solution: One of the following:

i) 0 if r does not divide N , or if N > 2n, or if N + r ≤ 2n, or if M ̸= (1− 1
r)

N2

2 ,

ii) i s.t. C(i) = (u, v) with u ≥ N or v ≥ N , and i < M

iii) Distinct i1, i2, . . . i(r+1)(r+2)/2 such that C(i1), C(i2), . . . C(i(r+1)(r+2)/2) are the edges of an r+1-
clique, and ij < M for every j,

iv) i s.t. C(i) = (u, v) with u ≥ v in the lexicographic order, and i < M ,

v) i ̸= j s.t. C(i) = C(j), and i, j < M ,

vi) i s.t. C(i) = (u, v) with v = u+ 1 mod 2n when we consider u and v as integers, and i < M .

This last problem is in TFNP. However, we cannot adapt the proof of PPP-hardness of Mantel to it in
a straightforward way and, in fact, it is open whether this problem is PPP-hard.

30

References

[Bar73] Zsolt Baranyai. Infinite and finite sets, vol. 1. proceedings of a colloquium held at Keszthely, June
25 – July 1, 1973. Dedicated to Paul Erdős on his 60th Birthday. J. Symb. Log., 1:91–108, 1973.

[BJP+19] Frank Ban, Kamal Jain, Christos H. Papadimitriou, Christos-Alexandros Psomas, and Aviad
Rubinstein. Reductions in PPP. Inf. Process. Lett., 145:48–52, 2019.

[Cay89] Arthur Cayley. A theorem on trees. Quarterly Journal of Mathematics, 23:376–378, 1889.

[Cov73] Thomas M. Cover. Enumerative source encoding. IEEE Transactions on Information Theory,
19(1):73–77, 1973.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity of
computing a Nash equilibrium. SIAM J. Comput., 39(1):195–259, 2009.

[Dil50] Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics
51, pages 161–166, 1950.

[EK99] Ömer Egecioglu and Alastair King. Random walks and Catalan factorization. 1999.

[EKR61] Paul Erdős, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets. The
Quarterly Journal of Mathematics, 12(1):313–320, 01 1961.

[ER60] Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, s1-35(1):85–90, 1960.

[Erd47] Paul Erdös. Some remarks on the theory of graphs. Bulletin of the American Mathematical
Society, 53(4):292–294, 1947.

[FG18] Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is PPA-complete. In Ilias Di-
akonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 51–64. ACM, 2018.

[HV21] Pavel Hubáček and Jan Václavek. On search complexity of discrete logarithm. In Filippo Bonchi
and Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs,
pages 60:1–60:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[Jeř16] Emil Jeřábek. Integer factoring and modular square roots. J. Comput. Syst. Sci., 82(2):380–394,
2016.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local search?
J. Comput. Syst. Sci., 37(1):79–100, 1988.

[KNY19] Ilan Komargodski, Moni Naor, and Eylon Yogev. White-box vs. black-box complexity of search
problems: Ramsey and graph property testing. J. ACM, 66(5), jul 2019.

[Kra05] Jan Kraj́ıček. Structured pigeonhole principle, search problems and hard tautologies. J. Symb.
Log., 70(2):619–630, 2005.

[Man07] Willem Mantel. Problem 28 (Solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F.
Schuh and W. A. Wythoff). Wiskundige Opgaven, 18:60–61, 1907.

[Meh18] Ruta Mehta. Constant rank two-player games are PPAD-hard. SIAM J. Comput., 47(5):1858–
1887, 2018.

31

[Mer79] Ralph Charles Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Stanford,
CA, USA, 1979. AAI8001972.

[MP91] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci., 81(2):317–324, 1991.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[Pru18] Heinz Prufer. Neuer Beweis eines Satzes über Permutationen. Archiv der Mathematischen Physik,
27:742–744, 1918.

[Ram30] Frank P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical Society,
s2-30(1):264–286, 01 1930.

[Spe28] Emanuel Sperner. Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift,
27(1):544–548, 1928.

[SZZ18] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. Ppp-completeness with connections
to cryptography. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 148–158. IEEE Computer
Society, 2018.

[Tur41] Paul Turán. On an extremal problem in graph theory (in hungarian). Matematikai és Fizikai
Lapok, 48:436–452, 1941.

[WS95] Coburn Ward and Sandor Szabo. On swell-colored complete graphs. 06 1995.

32

A Efficient algorithm for the explicit Ramsey problem

The following proof of Ramsey’s theorem is folklore. Recall the statement of the theorem

Ramsey [Ram30] Any edge-coloring of the complete graph on n vertices with two colors contains a
monochromatic clique of size at least 1

2 log n.

Proof. Let G = (V,E) be the complete graph on n vertices, and c : E → {0, 1} be a two-coloring of its edges.
Pick an arbitrary vertex v1 ∈ V .
v1 has n− 1 adjacent edges so at least n/2 of them have the same color by the pigeonhole principle.
Let c1 be that color and V1 = {v ∈ V \ {v1}, c(v, v1) = c1}.
Then, V1 has at least n/2 elements.

Next, pick an arbitrary vertex v2 ∈ V1.
There are at least n/2− 1 edges between v2 and another vertex in V1. Like before, at least n/4 of them have
the same color by the pigeonhole principle.
Let c2 be that color and V2 = {v ∈ V1 \ {v2}, c(v, v2) = c2}.

That way, we proceed to build by induction a finite family of vertices (vi), a finite family of colors (ci) and
a finite family of sets of vertices (Vi) with the following properties :
• For every i, Vi ⊂ Vi−1.
• For every i, Vi has size at least n/2i.
• For every i, vi+1 ∈ Vi.
• For every i and for every u ∈ Vi, we have c(vi, u) = ci.

In particular, note that the second point implies that we have at least log(n)− 1 Vi’s, thus we can construct
at least log(n) vi’s (since we need that Vi is not empty to build vi+1).
This means that we define at least log(n) − 1 colors ci. By the pigeonhole principle, at least log(n)/2 of
them are the same, say color c ∈ {0, 1}.
Let k = log(n)/2.
Pick i1, i2, . . . , ik such that ci1 = ci2 = . . . = cik = c.
We claim that the subgraph whose vertices are vi1 , vi2 , . . . , vik is monochromatic.
Indeed, let j < l ∈ [k].
Then, vil ∈ Vil−1 ⊂ Vil−2 ⊂ . . . ⊂ Vij , so by the fourth point, we get that c(vij , vil) = cij = c.

Now, note that this proof is constructive and yields an algorithm to find a monochromatic subgraph of size
k = log(n)/2 of the complete graph on n vertices.
In this algorithm, we have log(n) iterations, and each of them can be done in time O(n), so overall we get
an algorithm running in O(n log(n)) time.

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

