
Binary Codes with Resilience Beyond 1/4 via Interaction

Klim Efremenko∗

Ben-Gurion University

Gillat Kol†

Princeton University

Raghuvansh R. Saxena‡

Microsoft

Zhijun Zhang§

Princeton University

Abstract

In the reliable transmission problem, a sender, Alice, wishes to transmit a bit-

string x to a remote receiver, Bob, over a binary channel with adversarial noise. The

solution to this problem is to encode x using an error correcting code. As it is long

known that the distance of binary codes is at most 1
2 , reliable transmission is possible

only if the channel corrupts (flips) at most a 1
4 -fraction of the communicated bits.

We revisit the reliable transmission problem in the two-way setting, where both

Alice and Bob can send bits to each other. Our main result is the construction of

two-way error correcting codes that are resilient to a constant fraction of corruptions

strictly larger than 1
4 . Moreover, our code has constant rate and requires Bob to only

send one short message. We mention that our result resolves an open problem by

Haeupler, Kamath, and Velingker [APPROX-RANDOM, 2015] and by Gupta, Kalai,

and Zhang [STOC, 2022].

Curiously, our new two-way code requires a fresh perspective on classical error

correcting codes: While classical codes have only one distance guarantee for all pairs of

codewords (i.e., the minimum distance), we construct codes where the distance between

a pair of codewords depends on the “compatibility” of the messages they encode. We

also prove that such codes are necessary for our result.

∗klimefrem@gmail.com
†gillat.kol@gmail.com
‡raghuvansh.saxena@gmail.com
§zhijunz@princeton.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 129 (2022)

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:raghuvansh.saxena@gmail.com
mailto:zhijunz@princeton.edu

Contents

1 Introduction 1

1.1 Our Result . 1

1.1.1 Main Result: Binary Two-Way Codes with Error Resilience > 1/4 . . 1

1.1.2 Impossibility for Equally-Spaced Codes 1

1.2 Related Work . 3

1.2.1 Two-Way Erasure Codes . 3

1.2.2 Reliable Exchange and Interactive Coding 3

1.2.3 Reliable Transmission with Feedback 4

2 Proof Sketch 5

2.1 The [EKS20b] Result: Beating 1
4
Given One-Way Error 6

2.2 Challenges in Going from One-Way to Two-Way Error 6

2.3 Our Main Idea: Non-Equally-Spaced Codes 7

2.4 Distance Requirements for Pairs of Codewords 8

2.5 Location-Sensitive Codes: The Construction 10

2.6 Finalizing the Details . 11

3 Model and Preliminaries 12

3.1 Notation . 12

3.2 Preliminaries . 12

3.3 The Binary Two-Way Communication Channel 13

3.3.1 Protocols with Equally Spaced Code 14

3.3.2 The Message Transfer Function . 15

4 Location-Sensitive Codes 15

4.1 Random Coding . 16

4.2 The Code Merging Operation . 17

4.3 Proof of Theorem 4.1 . 19

5 Our Protocol 20

5.1 Stories . 21

5.2 Location-Sensitive Codes for Stories . 21

5.3 Protocol Definitions . 22

5.4 The Protocol . 23

5.5 Proof of Lemma 5.4 . 23

6 Analysis of Our Protocol 28

6.1 Proof of Theorem 5.1 . 31

i

7 Impossibility Result for Equally Spaced Code 31

7.1 Proof of Theorem 7.1 . 31

7.1.1 Going from 3 Phases to 2 . 32

7.1.2 Going from 2 Phases to 1 . 34

7.1.3 Lower Bound for 1 Phase . 35

7.2 Tightness of Lemma 7.4 . 36

ii

1 Introduction

As errors are everywhere, essentially any telecommunications system crucially uses error

correcting codes. Classical “one-way” error correcting codes date back to the 40’s [Sha48]

and are designed to solve the reliable transmission problem, where a sender, Alice, wishes to

send a message x to a remote receiver, Bob, but she can only communicate with him over a

noisy one-way channel that corrupts some of her communication.

As the price of interaction goes down, systems are becoming more interactive. In this

paper we study two-way error correcting codes, that are designed to solve the same problem,

but work assuming a two-way channel instead of a one-way channel, allowing the parties to

interact. Specifically, we consider the reliable transmission problem, where Alice and Bob

are connected by a pair of binary channels with adversarial corruption noise (bit flips), one

in each direction.

The two most important parameters in the study of error correcting codes are the (rela-

tive) distance and the rate of the code. Plotkin showed in the 60’s [Plo60] that the minimum

(or even average) relative distance of a binary error correcting code is at most 1
2
, which

implies that binary codes can be resilient to up to 1
4
fraction of adversarial errors. Can

interaction improve the error resilience of binary codes?

1.1 Our Result

1.1.1 Main Result: Binary Two-Way Codes with Error Resilience > 1/4

The main result of this paper is Theorem 1.1 (see Theorem 5.1 for a formal statement),

that gives a positive answer to the above question, resolving an open problem by Haeupler,

Kamath, and Velingker (Section 6 in [HKV15]) and by Gupta, Kalai, and Zhang (Section 1.1

in [GKZ22]).

Theorem 1.1 (Main, Informal). There exists a constant rate, deterministic, binary two-way

error correcting code with error resilience 1
4
+ 10−5, where Bob sends a single message.

We mention that in the two-way code we construct, Bob sends a single message whose

length is less than 2% of the total communication, thus showing that even a minimal amount

of interaction can already improve the noise resilience of binary codes, while keeping their

rate constant. Finding the maximal noise tolerance of (constant rate or even zero-rate)

binary two-way codes is an intriguing question we leave open.

1.1.2 Impossibility for Equally-Spaced Codes

To construct the binary two-way code promised by Theorem 1.1, we design a new binary

one-way code where the guaranteed distance between certain carefully chosen pairs of “com-

patible” codewords is strictly greater than 1
2
(at a high level, the adversary is more likely

to want to confuse bewteen these pairs of codewords). Recall, however, that by the Plotkin

1

bound, the average distance of a binary code is at most 1
2
, thus the distance between some

of the other pairs of codewords is strictly smaller than 1
2
.

Theorem 1.2 below (see Theorem 7.1 for a formal statement) shows that these types

of codes are required to obtain our result, as solely using equally-spaced codes, where the

distance between every pair of codewords is roughly equal, is insufficient for breaking the 1
4

error resilience barrier. This is in contrast to the one-way setting where equally-spaced

codes attain the maximum resilience (e.g., random binary codes are equally-spaced and have

resilience of 1
4
). We also mention that all prior work concerned with the noise resilience of

two-way channels and channels with feedback, surveyed in Section 1.2, essentially only uses

equally-spaced codes (see Section 2.3).

Theorem 1.2 (Informal). The maximum error resilience of a binary two-way error correct-

ing code (of any rate) that uses equally-spaced codes and has Bob sending a single message

is 1
4
.

Why non-equally-spaced? Intriguingly, when we started this project over a year ago, we

believed that the answer to the above question should be negative, that is, that binary two-

way codes cannot break the 1
4
resilience barrier. In fact, we had a sketch of an impossibility

result designed to show that any two-way code (say, with three messages, Alice, Bob, Alice)

is essentially of the following form, and that codes of this form cannot have resilience better

than 1
4
: On input x, Alice sends x encoded by a list-decodable code (for simplicity, assume

lists are of size 2). Bob decodes to obtain two candidates x1 and x2 with the promise

x ∈ {x1, x2}. Bob sends {x1, x2} encoded by a list-decodable code. Alice decodes to obtain

two candidates of the form {x, x3} and {x, x4}. Observe that after this second message,

the parties are left with the following communication task F : Bob knows {x1, x2} such that

x ∈ {x1, x2}, Alice knows x, {x3, x4} such that {x1, x2} ⊆ {x, x3, x4}. Bob wishes to learn x.

The two-way code then solves F with a single message from Alice to Bob.

Our strategy for proving an impossibility result was to show the following two lemmas:

(1) A round elimination lemma saying that a reliable transmission protocol with resilience γ

implies a one-message protocol for the task F with resilience γ. (2) A lemma showing that F

cannot be solved with a single message of constant size over the noiseless channel.1 We ob-

served that under the assumption that Alice uses an equally-spaced code C to solve F ,2

the second lemma implies that the distance between any two messages she may send is at

most 1
2
.3 In this case F cannot have resilience better than 1

4
, and using the first lemma,

we get our impossibility result. However, as should be expected, despite our best effort,

we were unsuccessful in showing that the assumption is without loss of generality... Never-

1The task F is interesting on its own right. In Section 7 we show that if x, x1, x2, x3, x4 ∈ [N], then
the one-way communication complexity of F is Θ(log logN). We also mention that F is very related to
compression efforts by [Orl90, HS16].

2That is, the set C of all possible messages by Alice for all possible inputs, forms an equally-spaced code.
3In more detail, for equally-spaced codes, the distance between every pair of codewords is roughly the

minimum distance, and the minimum distance of codes of super-constant size is 1
2 .

2

theless, under this assumption, we were able to formalize this impossibility sketch, yielding

Theorem 1.2 (see additional discussion in Section 2.2).

1.2 Related Work

1.2.1 Two-Way Erasure Codes

In a recent work, Gupta, Kalai, and Zhang [GKZ22] study two-way error correcting codes

over the adversarial binary erasure channel, where the adversary may replace some of the

sent bits by ‘?’. Their main result is a code that is resilient to a 3
5
fraction of adversarial

errors, improving on the noise tolerance of the one-way binary erasure channel that is known

to be 1
2
. Gupta and Zhang [GZ22b] give a two-way code over the same channel that is also of

constant rate. We mention that the two-way coding schemes of [GKZ22, GZ22b] exchange

(almost) linear number of messages and are generally very different than ours.

[GKZ22] also give an upper bound of 2
3
on the maximum tolerance of the two-way ad-

versarial binary erasure channel, and an upper bound of 2
7
on the maximum tolerance of the

two-way adversarial binary channel (the model assumed by our work). As mentioned above,

bridging the gap between our lower bound on the noise tolerance and their upper bound is

a great problem.

1.2.2 Reliable Exchange and Interactive Coding

Reliable exchange. In the reliable exchange problem, two parties, Alice, holding a private

input x, and Bob, holding a private input y, communicate over the two-way binary adversarial

channel with the goal of learning each other’s input. Observe that the reliable transmission

problem is at least as hard as the reliable exchange problem, in the sense that a transmission

protocol with resilience θ implies an exchange protocol with resilience θ
2
: Alice sends x using

the transmission protocol, then Bob sends y using the transmission protocol. Now, if an

adversary corrupts at most θ
2
fraction of the total communication, it also corrupts at most θ

fraction of each transmission and both transmissions go through. Since one-way codes solve

the transmission problem with error resilience 1
4
, the exchange problem is easily solvable

with error resilience 1
8
.

Efremenko, Kol, and Saxena [EKS20b] show how to go beyond 1
8
and obtain an ex-

change protocol that is resilient to a 5
39

fraction of adversarial errors with a constant num-

ber of rounds and constant overhead. As explained in Section 2, we use [EKS20b] as a

stepping stone towards our two-way code. The resilience constant was later improved by

[GZ22a] from 5
39

to 1
6
, which was known to be optimal [Ber68, EGH16]. Note however, that

the [GZ22a] protocol has linear overhead and many communication rounds.

Interactive coding. The reliable exchange problem (and therefore also reliable transmis-

sion) are special cases of the interactive coding problem: Given a two-party communication

protocol Π that works assuming the noiseless channel, simulate Π by a protocol Π′ that

3

works over a noisy channel. The study of interactive coding was first suggested in seminal

works by Schulman [Sch92, Sch93, Sch96], and is now an active research area, see [Gel17] for

an excellent survey.

Observe that the transmission problem corresponds to the noiseless protocol Π where

Alice sends her input x, and the exchange problem corresponds to Π where Alice sends her

input x and Bob sends his input y. The exchange problem is also “complete” in the sense that

after exchanging x and y the parties can run any other protocol without communication.

Thus, an exchange protocol resilient to θ fraction of errors implies an interactive coding

scheme with the same resilience. Note however that this scheme may have a huge overhead.

Braverman and Rao [BR11], building on [Sch96], gave an interactive code with constant

overhead and optimal resilience of 1
4
for the case where the alphabet set is large, and showed

that it implies a binary interactive code with resilience 1
8
; see also [BE17] on asymmetric

corruptions. [EKS20b] gave a binary interactive code with constant overhead that is resilient

to a 5
39

fraction of errors (that is, they showed that their reliable exchange scheme can be

generalized to an interactive coding scheme).

The maximum resilience of interactive coding schemes was also studied for other channels,

such as the erasure channel, the channel with feedback, and the insertion-deletion channel

[FGOS15, EGH16, GH17, Pan13, BGMO17, SW17, HSV18]. Another channel that received

quite a bit of attention in this context is the adaptive channel, where several parties may

speak at the same round and collisions may occur4 [GHS14, GH14, EKS20a, EKS21].

1.2.3 Reliable Transmission with Feedback

The works surveyed so far consider two-way channels, but are inspired by classical results

from the 60’s showing that the maximum resilience of one-way error correcting codes can be

improved assuming the channel provides feedback. At a very high level, these two-way results

work by implementing feedback (over channels with no build-in feedback) using interaction.

In more detail, the feedback channel allows Alice to communicate symbols to Bob, but

upon receiving each sent symbol, Bob sends the received symbol back to Alice as feed-

back [Ber64]. Alice can then use it when deciding what to send next. Note that it is

typically assumed that Bob’s feedback is not corrupted by the channel.

Observe that any protocol that can be run over a two-way channel can also be run over

the feedback version of the same channel: Given a communication protocol over the two-way

channel, Alice can simulate the messages sent by Bob as she knows everything he knows

(which, as Bob has no input, is just his received transcript). The two main differences

between two-way channels and feedback channels are: (1) The noise in a feedback channel

is one-way: while the communication from Alice to Bob may be noisy, the communication

from Bob to Alice is noiseless. (2) For a feedback channel, the length of the communication

is defined as the number of rounds where Alice communicates (Bob’s feedback rounds do not

4More formally, the communication order is not predetermined. In every round, each party may decide
whether to send or listen depending on his input and received transcript.

4

count towards the length of the protocol). In particular, the noise tolerance is measured as

a fraction of Alice’s rounds.

While Shannon showed that feedback does not increase the maximum noise tolerance of

stochastic channels [Sha56], feedback can, in fact, increase the noise tolerance of adversarial

channels [Ber68, Zig76, SWS92, ADL06]. Specifically, it was shown by Berlekamp that the

noise tolerance of the binary adversarial channel increases from 1
4
to 1

3
given feedback [Ber68].

Haeupler, Kamath, and Velingker [HKV15] considered the setting where the feedback is

partial, and showed that even if Alice receives feedback bits from Bob for an arbitrarily

small constant fraction of her transmissions, resilience close to 1
3
is possible.

Partial noisy feedback was considered by Wang, Qin, and Chang [WQC17], who con-

structed a binary two-way code that is resilient to any constant fraction strictly smaller

than 1 of adversarial erasures from Bob to Alice, but only up to 1
2
fraction of adversarial

erasures from Alice to Bob (cf. [GKZ22], where the total noise tolerance is strictly greater

than 1
2
).

2 Proof Sketch

We now give a detailed overview of our main result, a 3-message (or a 3-step) protocol for

the reliable transmission problem with error resilience strictly larger than 1
4
. Recall that

the maximum distance possible using a binary code depends on the number of codewords it

has. Precisely, if one wants an even5 number C of codewords, then the maximum distance6

one can get equals C
2(C−1)

. Put another way, this means that if Alice wants to send one

of C strings to Bob over a one-way channel that corrupts (flips) a γ fraction of the symbols

sent, she can do this if and only if γ < C
4(C−1)

. As C goes to infinity, this bound becomes

γ < 1
4
, which is the error resilience of the one-way channel. However, for smaller values of C,

the error resilience is much higher: It is 1
2
when C = 2, as demonstrated by the codewords

00 · · · 0 and 11 · · · 1, and 1
3
when C = 4, etc.

As a prelude to our main result, we first overview the result of [EKS20b]. We mention

that [EKS20b] were concerned with the reliable exchange problem and the interactive coding

question (see Section 1.2.2), and that we are presenting a simplified and slightly modified

version of their scheme for the restricted case where Bob has no input and the channel has

one-way error, meaning that the adversary can only corrupt symbols sent from Alice to Bob,

but cannot corrupt the ones sent from Bob to Alice7.

5The bound is slightly different for odd numbers, but exhibits the same phenomenon.
6Recall that the distance of a code is defined as the minimum distance between any two codewords.

However, the bound stated here even holds for the average distance between pairs of codewords.
7The one-way error setting differs from the noiseless feedback setting (see Section 1.2.3) in two respects:

(1) It allows Bob to send any value it wishes as feedback. (2) The length of the protocol is the total number
of bits communicated by both parties.

5

2.1 The [EKS20b] Result: Beating 1
4 Given One-Way Error

At an extremely high level, the [EKS20b] protocol works by using two-way communication

(with one-way error) to reduce the effective number of codewords that Alice and Bob need

to consider, and then uses the higher resilience guarantees achievable by codes with small C

to get an improved error resilience.

In more detail, [EKS20b] describe a 3-message protocol where in the first step, Alice sends

to Bob an encoding of her input x using a list-decodable error correcting code. Bob’s goal in

this step is not to recover x exactly, which would limit the error resilience to 1
4
, but instead

to compute a set of size 2,8 say S = {x1, x2} such that x ∈ S. This weaker guarantee, known

as list-decoding, allows the parties to tolerate strictly higher than 1
4
errors in this step.

Then, in the second step, Bob sends the set S to Alice, and the one-way error guarantee

implies that Alice will always receive the set S correctly. Additionally, the one-way error

guarantee also means that the second step can be arbitrarily short.

Overall, these two steps guarantee that before the third step begins, both Alice and Bob

agree on a set S of size 2 that contains x, and in the third step Alice only needs to tell Bob

which of the two elements in S is her correct input. As S is of size 2, this can be done with

a high error resilience using the codes with small C discussed above.

2.2 Challenges in Going from One-Way to Two-Way Error

The [EKS20b] protocol described above breaks down once the adversary is allowed to corrupt

the bits sent from Bob to Alice in the second step, in addition to those sent from Alice to

Bob in the first and the third steps. This poses the following challenges:

No unique-decoding the second step. First and foremost, the guarantee that Alice

and Bob agree on a small set S containing x that [EKS20b] crucially relied on no longer

holds in the two-way error case. As the number of possible sets Bob could send in this step

is large, by corrupting just a 1
4
fraction of this step, the adversary can make sure that the

set Alice decodes is different from the set Bob sent. This is fatal to the protocol, as without

the common knowledge of S, Bob has no way to interpret the message sent by Alice in the

third step, which means he cannot output x.

List-decoding the second step seems insufficient. A possible remedy that one might

consider for the foregoing problem is to have Bob send the set S to Alice using a list-decodable

error correcting code similarly to the way Alice sent him x in the first step. This would allow

Alice to have two sets T1, T2, both containing x such that one of the two sets equals S. One

may then hope to suitably adapt the third step of the protocol to work with this weaker

guarantee while still using codes with small C.

8We mention that the bounds one gets for list-decoding implies that the set S needs to be of size at least 3
to get guarantees better than 1

4 . Nonetheless, for the sake of this sketch, we shall stick to sets of size 2.

6

It turns out that such an adaptation is impossible. As we show in Section 7, specifically,

in Lemma 7.4, the third step in any such adaptation must use a super-constant number C

of codewords (also see discussion after Theorem 1.2). However, a super-constant C means

that the error resilience guarantee reduces to 1
4
, and we get no improvement.

List-decoding the second step is impossible. Not only does it seem hard to get a

protocol that works given a list-decoding guarantee for the second step (i.e., assuming Alice

obtains two sets T1, T2 such that one of them is S), but it is actually impossible for Alice

to obtain such sets T1, T2. The reason is that any protocol for the transmission problem

with error resilience larger than 1
4
must have Bob speak in at most a 1

4
fraction of the

communication rounds. This is because of a classical result by [Ber64, Ber68] showing that

even when Alice knows everything Bob knows, the maximum error resilience possible (as a

fraction of Alice’s rounds) is 1
3
(see Section 1.2.3). Therefore, if Bob speaks in more than

a 1
4
fraction of the rounds, Alice speaks in at most 3

4
fraction of the rounds. Now, even if the

adversary does not corrupt Bob at all and Alice knows everything Bob knows, the maximum

error resilience is at most 1
3
· 3
4
= 1

4
.9

However, the facts that Bob speaks in at most a 1
4
fraction of the rounds, and that the

adversary can corrupt strictly more than a 1
4
fraction of the rounds, mean that the adversary

can, if he wants, corrupt Bob’s transmission entirely (that is, corrupt the communication

from Bob to Alice in all 3 steps). Since Bob is effectively shut off with this attack, Alice will

not be able to obtain sets T1, T2 such that one of them is S. Thus, even if one could adapt

the third step of the [EKS20b] protocol to work when Alice has a list of 2 sets (which has

its own challenges), one cannot guarantee that Alice will have this list.

2.3 Our Main Idea: Non-Equally-Spaced Codes

Although the challenges mentioned above make a pretty solid case for an impossibility result,

we were able to construct a two-way scheme with resilience better than 1
4
using new ideas.

Our main new idea, and where our work differs most significantly from all prior work, is the

use of codes where not all codewords are equally-spaced. Note that the distance between any

two codewords sent by Alice roughly captures the amount of corruptions that the adversary

needs to invest to confuse Bob between those two codewords. We observe that, in our

protocol, some pairs of codewords are more prone to be corrupted by the adversary than

others, and ensure that such pairs have a high distance to begin with, thereby implying that

the adversary needs a high number of corruptions to confuse Bob.

Implementing this idea is not simple, as whatever code we come up with still needs to

obey the aforementioned bound of C
2(C−1)

on the average distance between codewords. Thus,

if we want to have a higher distance between some pairs of codewords, we must also have a

9We mention that this idea can also be used to get an upper bound of 2
7 on the maximum error resilience,

without any restriction on the number of rounds Bob speaks in, see [GKZ22].

7

lower distance between some other pair of codewords, and we need to ensure that these low

distance pairs are carefully chosen to not affect the overall error resilience of our protocol.

Before explaining which pairs of codewords can have a lower than average distance and

which pairs need to be farther apart, we mention that such a careful analysis of the distance is

a novelty of our paper. Most prior work in the area of error resilience, and the area of binary

codes in general, only uses one measure, the minimum distance between two codewords, when

understanding the distance properties of a given code. Moreover, many constructions have

a lot of “symmetry”, e.g., picking codewords at random, that implies the distance between

any two pairs of codewords is more or less the same. This also holds for the codes with

small C that were used in the [EKS20b] protocol and followup work (see Section 1.2), with

[GZ22a] being a minor exception as the codes in [GZ22a], albeit not equally-spaced overall,

can be seen as a union of a small number (four) of codes that are equally-spaced, and still

have the issues described above.

2.4 Distance Requirements for Pairs of Codewords

We now explain why our protocol benefits if certain pairs of codewords are farther apart

than other pairs of codewords. Recall that our protocol has 3 steps, and let L1, L2, L3 be the

lengths of these steps, and let T = L1 + L2 + L3. Our protocol sticks to the framework in

Sections 2.1 and 2.2 for the first two steps, using equally-spaced codes for these two steps.

In this section we are going to make the following two simplifying assumptions: first is

that at the end of the first step Bob has a list of size two instead of three, second one is that

at the second round adversary can either completely corrupt message to another codeword

by investing L2/2 errors or not to corrupt this message at all. Removing this assumptions

is not trivial and we will discuss it in details in Section 2.6.

As a result, if x is the input that Alice starts the protocol with, then at the end of the

first step Bob has a set S of size 2 that is guaranteed to contain x. Moreover, Bob knows

that Alice’s encodings for the two elements of S are at least L1/2 apart in Hamming distance

(as the list-decoding radius is 1
2
).

For the second step, Alice gets a set T of size 2 that contains x, as she knows that Bob

encoded a set that contains x, but is otherwise arbitrary. As Alice knows both T and x, this

is equivalent to her knowing an ordered pair (x, a), where x is her input and a is the element

in T that is different from her input. Moreover, Bob knows that if Alice indeed got a set

T ̸= S, then the adversary must have invested at least L2/2 corruptions in the second step.

For the third step, Alice encodes an ordered pair (x, a), and sends the encoding to Bob.

As Bob knows a set S of size 2 that contains x, say S = {x, x′}, where x ̸= x′, he knows that

Alice either encoded a pair of the form (x, a) or a pair of the form (x′, b), for some inputs

a ̸= x, b ̸= x′, and his goal is to use the messages he received in the first and third step to

figure out whether the pair sent was of the form (x, a) or the form (x′, b). Note that he does

not need to know what the pair was exactly as his goal is to output Alice’s input (and not

the pair).

8

If the target error resilience is 1
4
+ θ, Bob can achieve this goal only if it is impossible for

two pairs, one of the form (x, a) and the other of the form (x′, b), to give rise to the same

messages (m1,m3) in the first and the third steps, with at most
(
1
4
+ θ

)
· T corruptions.

With this in mind, let us now look at the set of messages in the first and third steps that

the adversary can generate using
(
1
4
+ θ

)
· T corruptions from pairs of the form (x, a).

Let ECC1 and ECC3 denote the error correcting codes used by Alice in the first and

third steps respectively, so that the messages Alice sends are ECC1(x) and ECC3(x, a). As

explained above, we either have a = x′ or the adversary spent at least L2/2 corruptions in

the second step. Let ∆ denote the Hamming distance, and let

f(x, x′,m1,m3) = ∆(ECC1(x),m1) + ∆(ECC3(x, x
′),m3).

The above discussion implies that all the pairs of messages (m1,m3) that the adversary can

generate using
(
1
4
+ θ

)
· T corruptions from the pair (x, a) must either satisfy a = x′ (that

is, Alice’s second element is one of the elements in Bob’s list) and

f(x, x′,m1,m3) ≤
(
1

4
+ θ

)
· T, (1)

or satisfy a /∈ {x, x′} (that is, Alice’s second element is not one of the elements in Bob’s list)

and

f(x, a,m1,m3) ≤
(
1

4
+ θ

)
· T − L2

2
, (2)

Using these inequalities and the fact that Alice’s encodings for x and x′ in the first step

are L1/2 apart in Hamming distance, one gets that the following guarantees on the distances

between codewords of ECC3 are both necessary and sufficient for a protocol to have error

resilience 1
4
+ θ:

1. For Bob to not be confused between messages for the pairs (x, x′) and (x′, x) we need

there not to be a pair (m1,m3) that satisfies both f(x, x′,m1,m3) ≤
(
1
4
+ θ

)
· T and

f(x′, x,m1,m3) ≤
(
1
4
+ θ

)
·T . The reason is that if Alice has (x, x′) then her input is x

and her second element is in Bob’s list. Similarly, if Alice has (x′, x) then her input

is x′ and her second element is in Bob’s list. Thus, on both pairs we can use Eq. (1).

Take m1 to be the middle point between ECC1(x) and ECC1(x
′) (a point with equal

Hamming distance from both) and m3 be the middle point between ECC3(x, x
′) and

ECC3(x
′, x). Very roughly, we claim that these are the “worst” m1 and m3.

By summing the two f inequalities for this m1 and m3 we get

∆(ECC1(x),ECC1(x
′)) + ∆(ECC3(x, x

′),ECC3(x
′, x)) ≤ 2

(
1

4
+ θ

)
· T.

Recall that ∆(ECC1(x),ECC1(x
′)) = L1/2 and that T = L1 +L2 +L3, and get that we

9

must have:

∆(ECC3(x, x
′),ECC3(x

′, x)) ≥ L3

2
+ 2θT +

L2

2
.

2. For Bob to not be confused between messages for the pairs (x, a) and (x′, x) (and

similarly for pairs (x, x′) and (x′, b)), we must have:

∆(ECC3(x, a),ECC3(x
′, x)) ≥ L3

2
+ 2θT.

This follows from a similar argument to Item 1 where we use Eq. (1) on (x′, x) and

Eq. (2) on (x, a).

3. For Bob to not be confused between messages for the pairs (x, a) and (x′, b) (note that

it is possible that a = b but both are always different from x and x′), we must have:

∆(ECC3(x, a),ECC3(x
′, b)) ≥ L3

2
+ 2θT − L2

2
.

This follows from similar argument to Item 1 when we use Eq. (2) on both pairs.

Importantly, as the number of pairs that require the weakest possible guarantee in Item 3

above is much larger than those requiring the stronger guarantees, if we choose θ > 0 small

enough so that L2 is significantly larger than θT , say, L2 = 16θT , these distance requirements

do not violate the L3/2 bound on the average distance implied by the Plotkin bound. Thus,

such an ECC3 code is theoretically possible, and we provide a construction below.

2.5 Location-Sensitive Codes: The Construction

The upshot of the discussion above is that the code Alice uses in the third step to encode

pairs must ensure that the distance between the encodings of pairs that have one or two

common elements at different locations must be large (Items 1 and 2), while the distance

between the encodings of pairs that have no common elements or the common elements are

at the same location (Item 3) can be smaller than the distance obtained by a random code.

We call such a code a location-sensitive code and note that its distance guarantees are

very different from standard equally-spaced codes. To capture the fact that the distances

need to be larger between the encodings of two pairs where the same element appears in

different locations, we employ the following approach while encoding a pair (s, t): Let C be an

equally-spaced code that encodes a single input s and has relative distance 1
2
between pairs of

codewords. We construct our location-sensitive code LSC(s, t) by setting each coordinate i to

be coordinate i of C(s) with probability p and coordinate i of C(t) with probability 1−p, for

some carefully selected p > 0. In other words, the encoding LSC(s, t) is positively correlated

with C(s) and negatively correlated with C(t).

Roughly speaking, the above approach has the property that for pairs (x, a) and (x′, x)

where the same element appears at different locations, the encodings LSC(x, a) and LSC(x′, x)

10

will be positively and negatively correlated with C(x) respectively, and therefore should have

a high distance. In contrast, for pairs (x, a) and (x′, a) where the same element appears at

the same location, the encodings LSC(x, a) and LSC(x′, a) will both be negatively correlated

with C(a) and will suffer from a lower distance. By choosing the parameters carefully, we

are able to meet the requirements in Section 2.4.

2.6 Finalizing the Details

We finish the overview with a discussion of some remaining issues that we have not covered

well so far.

Other attacks in the second step. One assumption that we made in our discussion

above is that Alice always gets the encoding of one pair in the second step. This loses

generality as nothing stops the adversary from giving Alice a combination of the encoding

of various pairs. To get around this, we use list-decoding in the second step to give Alice a

pair of pairs that contains the right pair unless there were too many corruptions.

When Alice tries to encode this pair of pairs in the third step using a location-sensitive

code, she actually just encodes both the pairs separately, and simply sends a message that

is positively correlated with both the encodings. The actual correlations intricately depend

on the exact message received by her in the second step, with larger correlations to one of

the pairs if the encoding of that pair was not too far from what Alice received in the second

step.

Sets arising from list-decoding. Another assumption we made throughout the above

sketch was that using list-decodable codes allows the parties to compute sets of size 2 that

are guaranteed to contain the correct codeword even if there are strictly more than 1
4
errors.

This assumption is not correct for binary codes, and one needs to have sets of size at least 3.

Correspondingly, in the actual proof, we make the entire argument above work with list-

decodable codes that yield lists of size 3.

One crucial change this entails is that our location-sensitive codes must also now take

triples instead of pairs. While we believe that such location-sensitive codes still exist, we

found it easier to convert triple to pairs in the following way: When Alice wants to encode

a triple (x, a, b), where x is her true input and a, b ̸= x, she instead encodes the pairs (x, a)

and (x, b) and sends a message positively correlated with both these encodings. We then are

able to make the analysis work by carefully controlling the correlations, which forms a lot of

the technical work in this paper.

11

3 Model and Preliminaries

3.1 Notation

All logarithms are base 2. We use log(k) n to denote the k-times iterated logarithms of n.

For n ∈ N, x, y ∈ {0, 1}n, we denote by ∆(x, y) = |{i ∈ [n] | xi ̸= yi}| the Hamming distance

between x and y. For a set S and an integer k ≥ 0, the notation
(
S
k

)
denotes the set of all

subsets of S that have exactly k elements. Also define, for a set S, the set D(S) to be the

set of all distributions over S.

3.2 Preliminaries

We will be using the following version of the Chernoff bound:

Lemma 3.1 (Chernoff bound). For all n ∈ N, and independent random variables X1, . . . , Xn ∈
[0, 1], let S =

∑
i∈[n] Xi. For all t > 0, we have:

Pr(|S − E[S]| ≥ t) ≤ 2 · exp
(
−2t2/n

)
.

We will also use the following well-known result about multicolor Ramsey numbers. We

include a proof for completeness.

Lemma 3.2 (Multicolor Ramsey numbers). Let k, z > 1 be integers and n ≥ 4(z−1)k−1
. Any

complete graph on n vertices with each edge colored using one of k colors has a monochromatic

complete subgraph of size z.

Proof. We first rephrase the lemma in terms of Ramsey numbers. For n > 1 and integers

r1, · · · , rn > 1, let R(n; r1, · · · , rn) denote the minimum number of vertices such that for

any coloring of the complete graph with R(n; r1, · · · , rn) with colors in [n], there exists an

i ∈ [n] such that there is a complete subgraph of size ri all of whose edges have color i. In

this notation, we have to show that for all integers k, z > 1, we have:

R(k; z, · · · , z) ≤ 4(z−1)k−1

.

Observe that the foregoing equation follows if we show that: (1) For all s, t > 1, we

have R(2; s, t) ≤
(
t+s−2
s−1

)
≤ ts−1. (2) For all n > 2, s > 1, we have R(n; s, · · · , s) ≤

R(2; s, R(n− 1; s, · · · , s)).
For Item 1, we proceed by induction on s+ t. If either s or t equals 2, the result is trivial

giving us our base case s+ t = 4. We show the result for s+ t > 4 assuming s, t > 2 and the

result holds for s+ t−1. For this, we shall show that R(2; s, t) ≤ R(2; s−1, t)+R(2; s, t−1)

implying by our induction hypothesis that R(2; s, t) ≤
(
t+s−3
s−2

)
+
(
t+s−3
s−1

)
=

(
t+s−2
s−1

)
. Consider

a fixed vertex, say vertex 1, in a complete graph with R(2; s− 1, t) + R(2; s, t− 1) vertices.

There are R(2; s− 1, t) + R(2; s, t− 1)− 1 edges incident on vertex 1, implying that either

12

at least R(2; s− 1, t) have color 1 or at least R(2; s, t− 1) of them have color 2. We assume

the former as the argument in the other case is symmetric. Consider the subgraph formed

by the ≥ R(2; s− 1, t) vertices that have an edge colored 1 connecting them to vertex 1. By

the definition of R(2; s − 1, t) either this subgraph has a complete subgraph of size t all of

whose edges have color 2, and we are done, or this subgraph has a complete subgraph of size

s− 1 all of whose edges have color 1, then we can add the vertex 1 to this subgraph and get

a complete subgraph of size s of the original graph all of whose edges have color 1, finishing

the proof.

For Item 2, consider a complete graph with R(2; s, R(n− 1; s, · · · , s)) vertices colored

using n colors. Repaint this graph by keeping color 1 as is and painting all the other edges

with a “super-color”. By definition of R(2; s, R(n− 1; s, · · · , s)), either there is complete

subgraph of size s all of whose edges have color 1, and we are done, or there is a complete

subgraph of size R(n− 1; s, · · · , s) all of whose edges have the super-color. In the latter

case, we get a complete subgraph of the original graph of size at least R(n− 1; s, · · · , s) all
of whose edges are colored with n− 1 colors. By definition of R(n− 1; s, · · · , s), this has a
monochromatic complete subgraph of size s, finishing the proof.

3.3 The Binary Two-Way Communication Channel

We now define (deterministic) protocols over the binary two-way communication channel.

Such a protocol is defined by a tuple:

Π =
(
XA,XB,Y , T, p, fA, fB, out

)
,

where (1) XA is the set of all possible inputs for Alice, (2) XB is the set of all possible inputs

for Bob, (3) Y is the set of all possible outputs (for Bob), (4) T is the length of the protocol

(the number of rounds), (5) p ∈ {A,B}T is the order of turns, (6) fA : XA×{0, 1}<T → {0, 1}
is the message function for Alice, (7) fB : XB × {0, 1}<T → {0, 1} is the message function

for Bob, (8) out : XB × {0, 1}T → Y is the output function (for Bob).

Execution of a protocol. An adversary for such a protocol is defined by a function Adv :

XA × XB → {0, 1}T . For i ∈ [T], we shall use Advi(·) to denote the function that outputs

the ith bit of Adv(·). We next define an execution of Π in the presence of an adversary Adv

for Π: At the beginning of the execution, Alice starts with an input xA ∈ XA and Bob starts

with an input xB ∈ XB. The execution consists of T rounds and before the ith round, for

i ∈ [T], Alice and Bob have transcripts πA, πB ∈ {0, 1}i−1 respectively. In round i, if pi = A,

then Alice transmits the symbol fA(xA, πA) while Bob receives the symbol Advi(x
A, xB).

Both the parties add these symbols to πA and πB respectively. Similarly, if pi = B, then

Bob transmits the symbol fB(xB, πB) while Alice receives the symbol Advi(x
A, xB). Both

the parties add these symbols to πA and πB respectively.

After T such rounds, Bob outputs out(xB, πB). Observe that this execution, and there-

13

fore πA and πB, are completely determined by xA, xB, Π, and Adv. We denote the output

of Π on inputs xA ∈ XA and xB ∈ XB in the presence of adversary Adv by outΠ,Adv(x
A, xB).

Phases. We say that i ∈ [T − 1] is an alternation round of Π if pi+1 ̸= pi. Assume that

Π has P alternations and let i1 < i2 < i3 < · · · < iP be all alternation rounds. Define

i0 = 0 and iP+1 = T . For t ∈ [P + 1], we define Phase t of Π as the set of rounds (it−1, it].

Informally, Phase t is the tth message by one of the parties.

Corruptions. Consider an execution of Π in the presence of the adversary Adv. For

R ⊆ [T], xA ∈ XA, and xB ∈ XB, we define the number of corruptions in the rounds in R

to be

corrΠ,Adv,R(x
A, xB) =

∑
i∈R

1
(
πA
i ̸= πB

i

)
.

Recall that πA, πB are completely determined by xA, xB, Π, and Adv and therefore corr is

well defined. We omit the subscript R when R = [T].

Computing a function. Let I ⊆ XA × XB and let γ ∈ [0, 1]. Let F : I → Y be a

(possibly partial) function. Let Π =
(
XA,XB,Y , T, p, fA, fB, out

)
be a protocol. We say

that Π computes F against a γ fraction of corruptions if for all adversaries Adv and all inputs

(xA, xB) ∈ I, it holds that outΠ,Adv(x
A, xB) = F (xA, xB) as long as corrΠ,Adv(x

A, xB) ≤ ⌈γT ⌉.
Similarly, we say that Π computes F against a γ fraction of corruptions per phase if for all

adversaries Adv and all inputs (xA, xB) ∈ I, it holds that outΠ,Adv(x
A, xB) = F (xA, xB) as

long as corrΠ,Adv,(it−1,it](x
A, xB) ≤ ⌈γ(it − it−1)⌉ for all t ∈ [P +1] (recall that rounds (it−1, it]

constitute Phase t).

3.3.1 Protocols with Equally Spaced Code

Let n, k ∈ N and C ⊆ {0, 1}n be such that |C| = k. Let δ > 0. We say that C is a

δ-Equally Spaced Code if for all c1, c2 ∈ C it holds that

∆(c1, c2) ≤


(

k
2(k−1)

+ δ
)
n, if k is even(

k+1
2k

+ δ
)
n, if k is odd

.

We mention that the Plotkin bound implies that for any code C the average distance,

∆(c1, c2), between two codewords c1, c2 ∈ C satisfies the last inequality, even with δ = 0.

Thus, a code C is an Equally Spaced Code if all the distances are at most the best

possible average distance of a binary code.

Let Π be a protocol of length T over the binary two-way communication channel. For

every Phase t ∈ [P + 1] of Π, let Ct,I,γ be the set of all possible messages sent in Phase

t for inputs in I and adversaries with at most γ fraction of corruptions per phase. More

formally, if Alice is the sender in Phase t, then Ct,I,γ is πA
(it−1,it]

for all possible transcripts

14

πA obtained by taking all possible input pairs (xA, xB) ∈ I and adversaries Adv with ∀t′ ∈
[t−1] : corrΠ,Adv,(it′−1,it′]

(xA, xB) ≤ ⌈γ(it′ − it′−1)⌉. (Recall that πA is completely determined

by xA, xB, Π, and Adv.) Similarly, for the case that Bob is the sender in Phase t.

Let δ > 0. We say that Π uses (I, γ, δ)-Equally Spaced Code if for all t ∈ [P + 1]

the set Ct,I,γ is a δ-Equally Spaced Code.

3.3.2 The Message Transfer Function

We now define the message transfer function MsgTrans that is the focus of this paper. Let

n ∈ N. The message transfer function MsgTransn : {0, 1}n × {⊥} → {0, 1}n is given by

MsgTransn(x,⊥) = x for all x ∈ {0, 1}n.

4 Location-Sensitive Codes

This section is devoted to the construction of our location-sensitive code C, formally stated in

Theorem 4.1 below. This code encodes a pair of binary strings (x1, x2) ∈ {0, 1}n×{0, 1}n such
that the distance between the encodings of two different pairs, ∆ = ∆

(
C(x1,1, x1,2), C(x2,1, x2,2)

)
,

satisfies:

1. If the two pairs do not share an element, i.e., |{x1,1, x1,2} ∩ {x2,1, x2,2}| = 0, then

∆ = 1
2
.

2. If the two pairs share a single element and the element is in the same location, i.e.,

|{x1,1, x1,2} ∩ {x2,1, x2,2}| = 1 and ∃j ∈ [2] : x1,j = x2,j, then ∆ is a constant smaller

than 1/2.

3. If the two pairs share a single element and the element is in different locations, i.e.,

|{x1,1, x1,2} ∩ {x2,1, x2,2}| = 1 and ∃j ∈ [2] : x1,j = x2,3−j, then ∆ is a constant greater

than 1/2.

4. If the two pairs share both elements, i.e., |{x1,1, x1,2} ∩ {x2,1, x2,2}| = 2, then ∆ is

a constant strictly greater than 1 minus the constant in Item 2 (and, in particular,

greater than 1/2).

Theorem 4.1. For all ϵ > 0, there exists a constant K5 such that for all K ′ ≥ K5 and

n > 0, there exists a code C : {0, 1}n × {0, 1}n → {0, 1}K
′n such that the following holds for

all (x1,1, x1,2), (x2,1, x2,2) ∈ {0, 1}n × {0, 1}n satisfying xi,1 ̸= xi,2 for all i ∈ [2]:(
1

2
+ η − ϵ

)
·K ′n ≤ ∆

(
C(x1,1, x1,2), C(x2,1, x2,2)

)
≤

(
1

2
+ η + ϵ

)
·K ′n,

where:

η = − 1

128
·
∑

j,j′∈[2]

(−7)4−j−j′ · 1(x1,j = x2,j′).

15

(Note that η may be positive.)

To prove Theorem 4.1, we will need some (fairly standard) results about random codes

(given in Section 4.1), as well as new ideas (given in Sections 4.2 and 4.3).

4.1 Random Coding

Define the function reg : [4] → R as follows:

reg(z) =


0, z = 1
1
2
, z = 2

3
4
, z = 3

5
4
, z = 4

. (3)

Roughly speaking, reg(z) for z ∈ [4] captures the expected sum of the fractional Hamming

distance of any z codewords to the bitwise majority of the z codewords when the code is

chosen uniformly at random. Using the probabilistic method, we show a code for which these

fractional Hamming distances are always attained.

Lemma 4.2. For all ϵ > 0, there exists a constant K1 such that for all K ′ ≥ K1 and n > 0,

there exists a code C : {0, 1}n → {0, 1}K
′n such that the following holds for all z ∈ [4],

distinct x1, . . . , xz ∈ {0, 1}n, and (not necessarily distinct) bits b1, . . . , bz ∈ {0, 1}:∣∣∣∣∣∣ 1

K ′n
·

∑
j∈[K′n]

1
(
∀i ∈ [z] : Cj(xi) = bi

)
− 1

2z

∣∣∣∣∣∣ ≤ ϵ. (4)

Proof. Set K1 = 10
ϵ2
. We show that C exists using the probabilistic method. For any input

x ∈ {0, 1}n, we independently sample its encoding C(x) uniformly at random from {0, 1}K
′n.

For all z ∈ [4], distinct x1, . . . , xz ∈ {0, 1}n, and bits b1, . . . , bz ∈ {0, 1}, we have:

E

 ∑
j∈[K′n]

1
(
∀i ∈ [z] : Cj(xi) = bi

) =
∑

j∈[K′n]

Pr[∀i ∈ [z] : Cj(xi) = bi]

=
∑

j∈[K′n]

∏
i∈[z]

Pr[Cj(xi) = bi]

=
K ′n

2z
.

By Chernoff bound (Lemma 3.1), the probability of Eq. (4) not satisfied by any fixed z ∈ [4],

x1, . . . , xz ∈ {0, 1}n and b1, . . . , bz ∈ {0, 1} is upper bounded by 2·exp(−2 · (ϵK ′n)2/(K ′n)) ≤
exp(−10n). Moreover, by the union bound, there exists some z ∈ [4], x1, . . . , xz ∈ {0, 1}n

16

and b1, . . . , bz ∈ {0, 1} violating Eq. (4) with probability at most 4 ·(2n)4 ·24 ·exp(−10n) < 1.

This implies the existence of a code C satisfying the lemma.

Corollary 4.3. For all ϵ > 0, there exists a constant K2 such that for all K ′ ≥ K2 and

n > 0, there exists a code C : {0, 1}n → {0, 1}K
′n such that the following holds for all z ∈ [4]

and distinct x1, . . . , xz ∈ {0, 1}n:

(reg(z)− ϵ) ·K ′n ≤
∑

j∈[K′n]

min
b∈{0,1}

∑
i∈[z]

∆
(
Cj(xi), b

)
≤ (reg(z) + ϵ) ·K ′n.

Proof. Let K1 be the constant from Lemma 4.2 for ϵ′ = ϵ
20
. Set K2 = K1. For all K

′ ≥ K2,

let C : {0, 1}n → {0, 1}K
′n be the code guaranteed by Lemma 4.2 for K ′, n. We show the

code C satisfies the corollary.

To see this, fix z ∈ [4] and distinct x1, . . . , xz ∈ {0, 1}n. For all bits b1, . . . , bz ∈ {0, 1},
define:

δ(b1, . . . , bz) := min
b∈{0,1}

∑
i∈[z]

∆(bi, b) = min

∑
i∈[z]

bi, z −
∑
i∈[z]

bi

.

At a high level, δ simply counts the number of occurrences of the bit that appears less often.

Observe that:∑
j∈[K′n]

min
b∈{0,1}

∑
i∈[z]

∆
(
Cj(xi), b

)
=

∑
j∈[K′n]

δ(Cj(x1), . . . , Cj(xz))

=
∑

b1,...,bz∈{0,1}

δ(b1, . . . , bz) ·
∑

j∈[K′n]

1
(
∀i ∈ [z] : Cj(xi) = bi

)
.

As a result, by Lemma 4.2, we further get:

∑
j∈[K′n]

min
b∈{0,1}

∑
i∈[z]

∆
(
Cj(xi), b

)
∈
[
1

2z
− ϵ′,

1

2z
+ ϵ′

]
·K ′n ·

∑
b1,...,bz∈{0,1}

δ(b1, . . . , bz).

This concludes the proof by observing that:

reg(z) =
1

2z
·

∑
b1,...,bz∈{0,1}

δ(b1, . . . , bz).

4.2 The Code Merging Operation

Lemma 4.4. For all ϵ > 0, k,m ∈ N, and a set D ∈
(D([k])

m

)
, there exists a constant K3

such that for all K ′ ≥ K3, n > 0, a set S with |S| ≤ 2n, and codes Cj : S → {0, 1}n for

all j ∈ [k], there exists a code C : Sk ×D → {0, 1}K
′n such that the following holds for all

17

distinct
(
(si,j)j∈[k], di

)
i∈[2]

∈
(
Sk ×D

)2
:

∇− ϵK ′n ≤ ∆
(
C
(
(s1,j)j∈[k], d1

)
, C

(
(s2,j)j∈[k], d2

))
≤ ∇+ ϵK ′n, (5)

where:

∇ = K ′ ·
∑

j,j′∈[k]

d1(j)d2(j
′) ·∆

(
Cj(s1,j), Cj′(s2,j′)

)
.

Proof. Set K3 =
2km
ϵ2

. We show that C exists using the probabilistic method. First, associate

each element of [K ′n] with a unique pair (ℓ, ℓ′) ∈ [n] × [K ′]. This allows us to index each

coordinate of C by a pair (ℓ, ℓ′) ∈ [n] × [K ′]. For any
(
(sj)j∈[k], d

)
∈ Sk × D and (ℓ, ℓ′) ∈

[n]× [K ′], we independently sample coordinate (ℓ, ℓ′) of C as:

C(ℓ,ℓ′)

(
(sj)j∈[k], d

)
=

1, with probability
∑

j∈[k] d(j) · 1
(
Cj,ℓ(sj)

)
0, otherwise .

.

The expected distance between the encodings for distinct
(
(si,j)j∈[k], di

)
i∈[2]

∈
(
Sk ×D

)2
is

therefore:

K ′ ·
∑
ℓ∈[n]

∑
j∈[k]

d1(j) · 1
(
Cj,ℓ(s1,j)

) ·

1−
∑
j∈[k]

d2(j) · 1
(
Cj,ℓ(s2,j)

)
+K ′ ·

∑
ℓ∈[n]

1−
∑
j∈[k]

d1(j) · 1
(
Cj,ℓ(s1,j)

) ·

∑
j∈[k]

d2(j) · 1
(
Cj,ℓ(s2,j)

)
= K ′ ·

∑
ℓ∈[n]

∑
j,j′∈[k]

d1(j)d2(j
′) · 1

(
Cj,ℓ(s1,j)

)
·
(
1− 1

(
Cj′,ℓ(s2,j′)

))
+K ′ ·

∑
ℓ∈[n]

∑
j,j′∈[k]

d1(j)d2(j
′) ·

(
1− 1

(
Cj,ℓ(s1,j)

))
· 1

(
Cj′,ℓ(s2,j′)

)
= K ′ ·

∑
ℓ∈[n]

∑
j,j′∈[k]

d1(j)d2(j
′) · 1

(
Cj,ℓ(s1,j) ̸= Cj′,ℓ(s2,j′)

)
= K ′ ·

∑
j,j′∈[k]

d1(j)d2(j
′) ·∆

(
Cj(s1,j), Cj′(s2,j′)

)
= ∇.

By Chernoff bound (Lemma 3.1), Eq. (5) is not satisfied by any fixed
(
(si,j)j∈[k], di

)
i∈[2]

∈(
Sk ×D

)2
with probability at most 2 · exp

(
−2 · (ϵK ′n)2/(K ′n)

)
≤ exp(−2kmn). Moreover,

by the union bound, there exists some
(
(si,j)j∈[k], di

)
i∈[2]

∈
(
Sk ×D

)2
violating Eq. (5) with

18

probability at most
(
(2n)k ·m

)2

· exp(−2kmn) < 1. This implies the existence of a code C

satisfying the lemma.

4.3 Proof of Theorem 4.1

Lemma 4.5 below constructs an error correcting code that encodes a binary string and a

bit (x, ℓ) ∈ {0, 1}n × {0, 1} such that the distance between the encodings of two different

messages, ∆
(
C(x1, ℓ1), C(x2, ℓ2)

)
, is 1/2 if x1 ̸= x2 and is 1 if x1 = x2. Note that in the

latter case, we must have ℓ1 ̸= ℓ2.

Lemma 4.5. For all ϵ > 0, there exists a constant K4 such that for all K ′ ≥ K4 and n > 0,

there exists a code C : {0, 1}n × {0, 1} → {0, 1}K
′n such that the following holds for all

x1, x2 ∈ {0, 1}n and ℓ1, ℓ2 ∈ {0, 1}:(
1

2
+ κ− ϵ

)
·K ′n ≤ ∆

(
C(x1, ℓ1), C(x2, ℓ2)

)
≤

(
1

2
+ κ+ ϵ

)
·K ′n,

where:

κ =
1

2
· (−1)ℓ1+ℓ2+1 · 1(x1 = x2).

(Note that κ may be negative.)

Proof. Let K1 be the constant from Lemma 4.2 for ϵ′ = ϵ
2
. Set K4 = K1. For all K ′ ≥ K4,

let C ′ : {0, 1}n → {0, 1}K
′n be the code guaranteed by Lemma 4.2 for K ′, n. We show the

following code C satisfies the lemma:

C(x, ℓ) :=

{
C ′(x), ℓ = 0

C ′(x), ℓ = 1
.

The case in which x1 = x2 is straightforward. If ℓ1 = ℓ2, we are encoding exactly the

same input so ∆(C(x1, ℓ1), C(x2, ℓ2)) = 0 and κ = −1
2
. Otherwise, when ℓ1 ̸= ℓ2, we have

∆(C(x1, ℓ1), C(x2, ℓ2)) = K ′n and κ = 1
2
as C ′ negates every bit of C ′.

When x1 ̸= x2, which implies κ = 0, we have the observation that for all x1 ̸= x2 ∈ {0, 1}n

and ℓ1, ℓ2 ∈ {0, 1}, it holds that:

∆
(
C(x1, ℓ1), C(x2, ℓ2)

)
= K ′n−∆

(
C(x1, ℓ1), C(x2, 1− ℓ2)

)
.

Consequently, it suffices to consider the case where ℓ1 = ℓ2 = 0. To this end, Lemma 4.2

guarantees both:(
1

4
− ϵ′

)
·K ′n ≤

∑
j∈[K′n]

1
(
C ′

j(x1) = 0 ∧ C ′
j(x2) = 1

)
≤

(
1

4
+ ϵ′

)
·K ′n,

19

and: (
1

4
− ϵ′

)
·K ′n ≤

∑
j∈[K′n]

1
(
C ′

j(x1) = 1 ∧ C ′
j(x2) = 0

)
≤

(
1

4
+ ϵ′

)
·K ′n.

Summing the above two inequalities gives us(
1

2
− 2ϵ′

)
·K ′n ≤ ∆

(
C ′(x1), C

′(x2)
)
≤

(
1

2
+ 2ϵ′

)
·K ′n.

This concludes the proof as ϵ = 2ϵ′ and C(x, 0) = C ′(x) for all x ∈ {0, 1}n by definition.

We are now ready to prove the main result of this section, Theorem 4.1.

Proof of Theorem 4.1. Let K4 be the constant from Lemma 4.5 for ϵ′ = ϵ
2
, and C ′ : {0, 1}n×

{0, 1} → {0, 1}K4n the code guaranteed by Lemma 4.5 for K4, n. Define C1(·) := C ′(·, 0) and
C2(·) := C ′(·, 1). Let K3 be the constant from Lemma 4.4 for ϵ′, k = 2,m = 1 and D being

the singleton set containing the distribution µ over [2] that gives a probability of 7
8
to 1 and a

probability of 1
8
to 2. SetK5 = K4K3. For allK

′ ≥ K5, let C0 : ({0, 1}n)2×D → {0, 1}K
′n be

the code guaranteed by Lemma 4.4 for K ′/K4, K4n and codes C1, C2. We show the following

code C satisfies the lemma:

C(x1, x2) := C0(x1, x2, µ).

By Lemma 4.4, we get that for all (x1,1, x1,2), (x2,1, x2,2) ∈ {0, 1}n × {0, 1}n as in the

lemma statement, we have:

∇− ϵ′K ′n ≤ ∆
(
C(x1,1, x1,2), C(x2,1, x2,2)

)
≤ ∇+ ϵ′K ′n,

where, using Lemma 4.5, we have:

(κ∗ − ϵ′) ·K ′n ≤ ∇ ≤ (κ∗ + ϵ′) ·K ′n,

and:

κ∗ =
∑

j,j′∈[2]

74−j−j′

64
·
(
1

2
+

1

2
· (−1)j+j′+1 · 1(x1,j = x2,j′)

)
.

To finish the proof, note that η = κ∗ − 1
2
and ϵ = 2ϵ′.

5 Our Protocol

We formalize Theorem 1.1 as Theorem 5.1:

Theorem 5.1. Define θ = 10−5. There exists a constant K such that for all n ∈ N there

exists a two party protocol Π = Πn with length T = Kn that computes the message transfer

function MsgTransn against a
(
1
4
+ θ

)
fraction of corruptions.

20

In this section we give the protocol that proves Theorem 5.1. We first give the notation

and definitions used by the protocol (Sections 5.1 to 5.3). The protocol itself is in Algorithm 1

(Section 5.4). The analysis of Algorithm 1 (and proof of Theorem 5.1) is in Section 6.

For the rest of this section and the next, since Bob has only one possible input xB = ⊥ in

a protocol Π forMsgTransn, we omit Bob’s input from our notation (e.g., we write outΠ,Adv(x)

to mean outΠ,Adv(x
A = x, xB = ⊥)).

5.1 Stories

We heavily rely on the following definition of a story.

Definition 5.2. Let n,M ∈ N. We define an (n,M)-story to be a tuple Z = (x, U, V, w) ∈
{0, 1}n ×

({0,1}n
2

)
×
({0,1}n

4

)
× [M] such that U ∩ V = ∅ and x /∈ U ∪ V . Denote by Storiesn,M

the set of all (n,M)-stories.

The function story(·). Recall that our algorithm starts with Alice sending her input x

using a list-decodable code. This allows Bob to compute a set S of size 3 that contains x.

Bob then sends this set S back to Alice using another list-decodable code, which allows

Alice to compute three sets T1, T2, T3 ∈
({0,1}n

3

)
such that all of them contain x and (if not

too many errors were introduced), one of them is S. Additionally, Alice can compute the

distance w ∈ [M] of the message she receives to the closest correct codeword (see Line 4).

Thus, before Phase 3, Alice can compute a tuple T = (T1, T2, T3, w), which is guaranteed to

be an element of the set Data defined next.

Definition 5.3. For x ∈ {0, 1}n, we define the set Data(x) to be the set containing all tuples

T = (T1, T2, T3, w) ∈
({0,1}n

3

)3
× [M] such that T1, T2, T3 are distinct and x ∈

⋂
ℓ∈[3] Tℓ. We

also define the set Data =
⋃

x∈{0,1}n Data(x).

Next, we define a function story(·) that Alice can use to take a tuple T ∈ Data(x) and her

input x to output a story story(x, T) ∈ Storiesn,M she can encode in Phase 3. More precisely,

we define story(x, T) = (x, U, V, w), where U = T1\{x} and V is the set (T2∪T3)\T1 padded

using dummy elements to have size 4.

5.2 Location-Sensitive Codes for Stories

Our protocol uses a location-sensitive code that encodes stories, given in Lemma 5.4, and is

based on the location-sensitive code constructed in Section 4. This code uses the following

functions d1, d2, d3 : [0, 1] → [0, 1]:

d1(z) = z, d2(z) = max

(
z,

1

2
− z

)
, d3(z) = max

(
z,

1

2
− z,

5

12
− z

3

)
.

21

Lemma 5.4. For all ϵ > 0 and M ∈ N, there exists a constant K6 such that for all K ′ ≥ K6

and n > 0, there exists a code C : Storiesn,M → {0, 1}K
′n such that the following holds for

all Z1 = (x1, U1, V1, w1),Z2 = (x2, U2, V2, w2) ∈ Storiesn,M satisfying x1 ̸= x2:

∆
(
C(Z1), C(Z2)

)
≥

0.5511− ϵ− 0.1 ·
∑
i∈[2]

d(x3−i, Ui, Vi, wi)

 ·K ′n,

where:

d(y, U, V, w) =


d1
(

w
M

)
, if y ∈ U

d2
(

w
M

)
, if y ∈ V

d3
(

w
M

)
, if y ̸∈ U ∪ V

.

We defer the proof of Lemma 5.4 to Section 5.5.

5.3 Protocol Definitions

Constants. We shall assume that there are at least 20 “dummy” strings (strings that

cannot be inputs for Alice) in {0, 1}n. This is without loss of generality as one can simply

increase n by 10 and have enough dummy strings. We define ϵ = θ10 and M = 480
ϵ
. Let K2

be the constant from Corollary 4.3 for this value of ϵ. Similarly, let K6 be the constant from

Lemma 5.4 for this value of ϵ and M . Define K = 9010 ·max(K2, K6) and the parameters:

L1 =
401

500
·K, L2 =

9

500
·K, L3 =

90

500
·K. (6)

Note that all these parameters are integers divisible by 3 and larger than max(K2, K6).

Error correcting codes. Fix n > 0 for the rest of this paper. The protocol Π that we

define shall use several different types of codes, which we define next. Let ECC1 and ECC2

be the codes promised by Corollary 4.3 for L1, n and L2/3, 3n respectively. Also, let ECC3

be the code promised by Lemma 5.4 for L3, n.

The function corr-lb(2)(·). As explained above, in Phase 3, Alice sends the encoding of a

story to Bob. To compute its output, Bob decodes this message together with the message

he received in Phase 1. During this decoding, he will also need to estimate (actually, lower

bound) the number of corruptions in Phase 2.

This is done using a function corr-lb(2)(·), parameterized by the set S ∈
({0,1}n

3

)
that Bob

computed in Phase 1, and takes as input T ∈ Data, which is Bob’s candidate for what Alice

22

may have encoded in Phase 2. Formally,

corr-lb
(2)
S (T) = L2n ·


d1
(

w
M

)
, if S = T1

d2
(

w
M

)
, else if S = T2 or S = T3

d3
(

w
M

)
, otherwise

. (7)

As we shall show in Lemma 6.2, corr-lb
(2)
S (T) is indeed a lower bound on the number

of corruptions in Phase 2 when S is the set Bob computed in Phase 1 and T is the data

Alice computed in Phase 2. Note however that none of the parties can actually compute

corr-lb
(2)
S (T) as they do not know both S and T .

5.4 The Protocol

We are now ready to define the protocol Π in Algorithm 1. We note that ties in all argmin

are broken arbitrarily.

Algorithm 1 The MsgTrans protocol Π.

Input: Alice has input x ∈ {0, 1}n.
Output: Bob outputs y ∈ {0, 1}n.
Phase 1:

1: Alice sends ECC1(x) bit by bit over L1n rounds.
2: Bob receives ρ ∈ {0, 1}L1n and computes S = argmin

S′∈({0,1}
n

3)
∑

x′∈S′ ∆(ECC1(x
′), ρ).

Phase 2:

3: Bob sends ECC2(S) bit by bit over L2n rounds.
4: Alice receives σ ∈ {0, 1}L2n. She orders all sets T ∈

({0,1}n
3

)
containing x in increasing

order of the value ∆(ECC2(T), σ), and denotes by T1, T2, T3 the first three sets in this

ordering, with T1 being the first. Let T = (T1, T2, T3, w) where w =
⌈
M · ∆(ECC2(T1),σ)

L2n

⌉
.

Phase 3:

5: Alice sends ECC3(story(x, T)) bit by bit over L3n rounds.
6: Bob receives τ ∈ {0, 1}L3n and outputs y = argminx′∈S corr-lb(x

′), where

corr-lb(x′) = ∆(ECC1(x
′), ρ) + min

T ′∈Data(x′)

(
corr-lb

(2)
S (T ′) + ∆

(
ECC3(story(x

′, T ′)), τ
))

.

5.5 Proof of Lemma 5.4

This section is devoted to proving Lemma 5.4.

LetK5 be the constant from Theorem 4.1 for ϵ′ = ϵ
2
, and C ′ : {0, 1}n×{0, 1}n → {0, 1}K5n

the code guaranteed by Theorem 4.1 for K5, n. Define Cj = C ′ for all j ∈ [6]. For f ∈ [0, 1],

23

define:

p(f) :=
3− 2f

6
,

and:

q(f) :=
1− 2p(f)

4
=

f

6
.

For all f ∈ [0, 1], we have:

2p(f) + 4q(f) = 2 · 3− 2f

6
+ 4 · f

6
= 1,

and:

p(f) ≥ 1

6
≥ q(f).

Let µf be the distribution over [6] that gives a probability of p(f) to each of 1, 2 and

a probability of q(f) to each of 3, 4, 5, 6. Let K3 be the constant from Lemma 4.4 for

ϵ′,m = M,k = 6 and D =
{
µw/M | w ∈ [M]

}
. Set K6 = K5K3. For all K ′ ≥ K6, let C0 :

({0, 1}n × {0, 1}n)6 ×D → {0, 1}K
′n be the code guarenteed by Lemma 4.4 for K ′/K5, K5n

and codes Cj for j ∈ [6]. We show the following code C satisfies the lemma:

C(Z) := C0

(
(x, u1), (x, u2), (x, v1), (x, v2), (x, v3), (x, v4), µw/M

)
,

where u1, u2 and v1, v2, v3, v4 are the elements of U and V , respectively, in some fixed order

for Z = (x, U, V, w) ∈ Storiesn,M .

Because of Lemma 4.4 and Theorem 4.1, it suffices to show that the following holds for

all Z1 = (x1, U1, V1, w1),Z2 = (x2, U2, V2, w2) ∈ Storiesn,M as in the lemma statement:

η∗ + 0.1 ·
∑
i∈[2]

d(x3−i, Ui, Vi, wi) ≥ 0.5511, (8)

where:

η∗ =
∑
j∈[2]

∑
j′∈[2]

p(f1)p(f2) ·
(
1

2
+ η((x1,u1,j),(x2,u2,j′))

)

+
∑
j∈[4]

∑
j′∈[4]

q(f1)q(f2) ·
(
1

2
+ η((x1,v1,j),(x2,v2,j′))

)

+
∑
j∈[2]

∑
j′∈[4]

p(f1)q(f2) ·
(
1

2
+ η((x1,u1,j),(x2,v2,j′))

)

+
∑
j∈[4]

∑
j′∈[2]

q(f1)p(f2) ·
(
1

2
+ η((x1,v1,j),(x2,u2,j′))

)
,

24

with fi =
wi

M
for i ∈ [2], and:

η((y1,1,y1,2),(y2,1,y2,2)) =


0, if {y1,1, y1,2} ∩ {y2,1, y2,2} = ∅
− 1

128
, if y1,1 ̸= y2,1 and y1,2 = y2,2

7
128

, if y1,1 = y2,2 and y1,2 ̸= y2,1, or y1,2 = y2,1 and y1,1 ̸= y2,2
7
64
, if y1,1 = y2,2 and y1,2 = y2,1

.

Note that we have assumed x1 ̸= x2, so η and η((y1,1,y1,2),(y2,1,y2,2)) are always well-defined. For

convenience, we will prove the following equivalent form of Eq. (8):

η∗ − 0.5 + 0.1 ·
∑
i∈[2]

d(x3−i, Ui, Vi, wi) ≥ 0.0511. (9)

Depending on whether x3−i ∈ Ui, x3−i ∈ Vi, or x3−i ̸∈ Ui∪Vi, for i ∈ [2], there are 32 = 9

cases in total. Taking symmetry into account, only 6 of them are different essentially. We

conclude the proof by lower bounding LHS of Eq. (9) in all these cases.

1. If x1 ∈ U2 and x2 ∈ U1, assume without loss of generality that x1 = u2,1 and x2 = u1,1.

For any y ∈ U2 ∪ V2 that is not x1, we have η((x1,u1,1=x2),(x2,y)) = 7
128

, so the gain in

LHS of Eq. (8) is 7
128

· p(f1)(1− p(f2)). Similarly, for any y ∈ U1 ∪ V1 that is not x2,

we have η((x1,y),(x2,u2,1=x1)) =
7

128
and thus we gain 7

128
· (1− p(f1))p(f2). We also have

η((x1,u1,1=x2),(x2,u2,1=x1)) =
7
64
, implying a gain of 7

64
· p(f1)p(f2).

On the other hand, recall that p(f) ≥ q(f) for all f ∈ [0, 1]. Then by the rearrangement

inequality, the worst possible case for η∗ occurs when u1,2 = u2,2 and v1,j = v2,j for all

j ∈ [4]. The former results in a loss of 1
128

· p(f1)p(f2) since η((x1,u1,2),(x2,u2,2)) = − 1
128

.

Similarly, each of the latter four results in a loss of 1
128

· q(f1)q(f2). Overall, we have:

LHS ≥ 7

128
· p(f1)(1− p(f2)) +

7

128
· (1− p(f1))p(f2) +

7

64
· p(f1)p(f2)

− 1

128
· (p(f1)p(f2) + 4q(f1)q(f2))

+ 0.1 · (d(x2, U1, V1, w1) + d(x1, U2, V2, w2))

=
7

128
· (p(f1) + p(f2))−

1

128
· (p(f1)p(f2) + 4q(f1)q(f2))

+ 0.1 · (d1(f1) + d1(f2))

=
−8f2f1 − 78f1 − 78f2 + 243

4608
+ 0.1 · (f1 + f2)

≥ 27

512
> 0.0511. (Minimized at f1 = 0, f2 = 0)

We shall remark that in this case and all the following cases, we are always seeking

the minimum of a piecewise bilinear function in f1, f2. Minima of such functions can

be obtained by examining its value only at the corner points of each piece.

25

2. If x1 ∈ U2 and x2 ∈ V1, assume without loss of generality that x1 = u2,1 and x2 = v1,1.

The gain is similar to the first case except that x2 is now chosen with probability

q(f1) instead of p(f1). Regarding the loss, the worst possible case is where u1,1 = u2,2,

u1,2 = v2,1, and v1,j+1 = v2,j+1 for all j ∈ [3]. Overall, we have:

LHS ≥ 7

128
· q(f1)(1− p(f2)) +

7

128
· (1− q(f1))p(f2) +

7

64
· q(f1)p(f2)

− 1

128
· (p(f1)p(f2) + p(f1)q(f2) + 3q(f1)q(f2))

+ 0.1 · (d(x2, U1, V1, w1) + d(x1, U2, V2, w2))

=
7

128
· (q(f1) + p(f2))−

1

128
· (p(f1)p(f2) + p(f1)q(f2) + 3q(f1)q(f2))

+ 0.1 · (d2(f1) + d1(f2))

=
−5f2f1 + 48f1 − 81f2 + 117

4608
+ 0.1 ·

(
max

(
f1,

1

2
− f1

)
+ f2

)
≥ 407

7680
> 0.0511. (Minimized at f1 =

1
4
, f2 = 0)

3. If x1 ∈ U2 and x2 ̸∈ U1 ∪ V1, assume without loss of generality that x1 = u2,1. Now the

only gain is coming from x1 while the worst possible case for the loss is still u1,1 = u2,2,

u1,2 = v2,1, and v1,j+1 = v2,j+1 for all j ∈ [3]. Overall, we have:

LHS ≥ 7

128
· p(f2)−

1

128
· (p(f1)p(f2) + p(f1)q(f2) + 3q(f1)q(f2))

+ 0.1 · (d(x2, U1, V1, w1) + d(x1, U2, V2, w2))

≥ 7

128
· p(f2)−

1

128
· (p(f1)p(f2) + p(f1)q(f2) + 3q(f1)q(f2))

+ 0.1 · (d3(f1) + d1(f2))

=
−5f2f1 + 6f1 − 81f2 + 117

4608
+ 0.1 ·

(
max

(
f1,

1

2
− f1,

5

12
− f1

3

)
+ f2

)
≥ 701

12288
> 0.0511. (Minimized at f1 =

5
16
, f2 = 0)

4. If x1 ∈ V2 and x2 ∈ V1, assume without loss of generality that x1 = v2,1 and x2 =

v1,1. In this case, the probabilities of choosing x1 and x2 become q(f2) and q(f1),

respectively. The worst possible case for the loss becomes u1,j = u2,j for all j ∈ [2],

and v1,j′+1 = v2,j′+1 for all j′ ∈ [3]. Overall, we have:

LHS ≥ 7

128
· q(f1)(1− q(f2)) +

7

128
· (1− q(f1))q(f2) +

7

64
· q(f1)q(f2)

− 1

128
· (2p(f1)p(f2) + 3q(f1)q(f2))

+ 0.1 · (d(x2, U1, V1, w1) + d(x1, U2, V2, w2))

26

=
7

128
· (q(f1) + q(f2))−

1

128
· (2p(f1)p(f2) + 3q(f1)q(f2))

+ 0.1 · (d2(f1) + d2(f2))

=
−11f2f1 + 54f1 + 54f2 − 18

4608
+ 0.1 ·

(
max

(
f1,

1

2
− f1

)
+max

(
f2,

1

2
− f2

))
≥ 19097

368640
> 0.0511. (Minimized at f1 =

1
4
, f2 =

1
4
)

5. If x1 ∈ V2 and x2 ̸∈ U1 ∪ V1, assume without loss of generality that x1 = v2,1. As in

the third case, now only x1 is giving us some additional gain. For the loss, the worst

possible case remains u1,j = u2,j for all j ∈ [2], and v1,j′+1 = v2,j′+1 for all j′ ∈ [3].

Overall, we have:

LHS ≥ 7

128
· q(f2)−

1

128
· (2p(f1)p(f2) + 3q(f1)q(f2))

+ 0.1 · (d(x2, U1, V1, w1) + d(x1, U2, V2, w2))

≥ 7

128
· q(f2)−

1

128
· (2p(f1)p(f2) + 3q(f1)q(f2)) + 0.1 · (d3(f1) + d2(f2))

=
−11f2f1 + 12f1 + 54f2 − 18

4608

+ 0.1 ·
(
max

(
f1,

1

2
− f1,

5

12
− f1

3

)
+max

(
f2,

1

2
− f2

))
≥ 82429

1474560
> 0.0511. (Minimized at f1 =

5
16
, f2 =

1
4
)

6. If x1 ̸∈ U2 ∪ V2 and x2 ̸∈ U1 ∪ V1, then U1 ∪ V1 and U2 ∪ V2 are completely disjoint.

There is just no additional gain in this case. As to the loss, the worst possible case is

when u1,j = u2,j for all j ∈ [2], and v1,j′ = v2,j′ for all j
′ ∈ [4]. Overall, we have:

LHS ≥ 0− 1

128
· (2p(f1)p(f2) + 4q(f1)q(f2))

+ 0.1 · (d(x2, U1, V1, w1) + d(x1, U2, V2, w2))

≥ 0− 1

128
· (2p(f1)p(f2) + 4q(f1)q(f2)) + 0.1 · (d3(f1) + d3(f2))

=
−2f2f1 + 2f1 + 2f2 − 3

768

+ 0.1 ·
(
max

(
f1,

1

2
− f1,

5

12
− f1

3

)
+max

(
f2,

1

2
− f2,

5

12
− f2

3

))
≥ 1965

32768
> 0.0511. (Minimized at f1 =

5
16
, f2 =

5
16
)

27

6 Analysis of Our Protocol

In this section we prove Theorem 5.1. We fix an input x for Alice and an adversary Adv for

the protocol Π such that:

corrΠ,Adv(x) ≤
(
1

4
+ θ

)
·Kn. (10)

As we fix Adv and Π is as defined in Algorithm 1, we shall omit both Π and Adv from our

notations, e.g., we shall write corr(·) instead of corrΠ,Adv(·). As our protocol is deterministic,

fixing x and Adv fixes the values of all the variables in Algorithm 1. Henceforth, for a variable

var in Algorithm 1, we shall use var to also denote this fixed value. In this notation, in

order to show Theorem 5.1, we have to show that y = x. We do this in the remainder of this

section.

We start by defining, for i ∈ [3], the notation for the corruptions corr(i)(x) that happened

in Phase i. Recalling the definitions in Section 3.3, we have:

corr(1)(x) = corr[L1n](x),

corr(2)(x) = corr[(L1+L2)n]\[L1n](x),

corr(3)(x) = corr[Kn]\[(L1+L2)n](x).

Lemma 6.1. x ∈ S.

Proof. Suppose for the purpose of contradiction that x /∈ S. Let x1, x2, x3 ∈ {0, 1}n be the

three elements of S. Corollary 4.3 easily shows that:

∆
(
ECC1(x), ρ

)
+
∑
i∈[3]

∆
(
ECC1(xi), ρ

)
≥ (reg(4)− ϵ) · L1n =

(
5

4
− ϵ

)
· L1n.

Moreover, by definition of S, we have:

corr(x) ≥ ∆(ECC1(x), ρ) ≥
1

4
·
(
5

4
− ϵ

)
· L1n =

(
5

16
− ϵ

4

)
· L1n,

which, under our setting of the parameters, contradicts the assumption in Eq. (10).

Lemma 6.2. We have:

corr-lb
(2)
S (T) ≤ corr(2)(x) +

(
ϵ+

1

M

)
· L2n.

Proof. Let ∆i = ∆(ECC2(Ti), σ) for i ∈ [3]. Also note that corr(2)(x) = ∆(ECC2(S), σ). By

definition of w, we have:

L2n

M
· (w − 1) ≤ ∆1 ≤

L2n

M
· w. (11)

28

Moreover, Algorithm 1 ensures ∆2,∆3 ≥ ∆1. If S = T1, then it is easy to see that by Eq. (11),

we have:

corr(2)(x) = ∆1

≥ L2n

M
· (w − 1)

=

(
d1
(w

M

)
− 1

M

)
· L2n.

If S ̸= T1 but S = Ti for some i ∈ {2, 3}, by Corollary 4.3, we have:

∆1 +∆i ≥
(
reg(2)− ϵ

)
· L2n =

(
1

2
− ϵ

)
· L2n.

Again using Eq. (11), we can get:

corr(2)(x) = ∆i

≥ max

(
∆1,

(
1

2
− ϵ

)
· L2n−∆1

)
≥ max

(
L2n

M
· (w − 1),

(
1

2
− ϵ− w

M

)
· L2n

)
≥

(
d2
(w

M

)
− ϵ− 1

M

)
· L2n.

Similarly, if S ̸= Ti for all i ∈ [3], Corollary 4.3 shows:

∆
(
ECC2(S), σ

)
+∆1 ≥

(
reg(2)− ϵ

)
· L2n =

(
1

2
− ϵ

)
· L2n,

as well as:

∆
(
ECC2(S), σ

)
+
∑
i∈[3]

∆i ≥
(
reg(4)− ϵ

)
· L2n =

(
5

4
− ϵ

)
· L2n.

Also observe that ∆(ECC2(S), σ) ≥ ∆i for all i ∈ [3] in this case since x ∈ Ti for all i ∈ [3]

and x ∈ S by Lemma 6.1. By definition of T , Eq. (11) then implies:

corr(2)(x) = ∆(ECC2(S), σ)

≥ max

(
∆1,

(
1

2
− ϵ

)
· L2n−∆1,

1

3
·
((

5

4
− ϵ

)
· L2n−∆1

))
≥ max

(
L2n

M
· (w − 1),

(
1

2
− ϵ− w

M

)
· L2n,

(
5

12
− ϵ

3
− w

3M

)
· L2n

)

29

≥
(
d3
(w

M

)
− ϵ− 1

M

)
· L2n.

This concludes the proof of the lemma by definition of corr-lb
(2)
S (·).

Lemma 6.3. We have:

corr-lb(x) ≤ corr(x) +

(
ϵ+

1

M

)
· L2n.

Proof. By definition of corr-lb(·) and Lemma 6.2, we have:

corr-lb(x) ≤ ∆
(
ECC1(x), ρ

)
+ corr-lb

(2)
S (T) + ∆

(
ECC3(story(x, T)), τ

)
≤ corr(1)(x) + corr(2)(x) +

(
ϵ+

1

M

)
· L2n+ corr(3)(x)

= corr(x) +

(
ϵ+

1

M

)
· L2n.

Lemma 6.4. For all x1 ̸= x2 ∈ S, we have corr-lb(x1)+corr-lb(x2) ≥ 2·
(
1
4
+ θ + ϵ+ 1

M

)
·Kn.

Proof. For any T1 = (T1,1, T1,2, T1,3, w1) ∈ Data(x1) and T2 = (T2,1, T2,2, T2,3, w2) ∈ Data(x2),

let Zi = story(xi, Ti) = (xi, Ui, Vi, wi) for i ∈ [2]. Corollary 4.3 easily gives us the following

for the first phase:

∆
(
ECC1(x1), ρ

)
+∆

(
ECC1(x2), ρ

)
≥ (reg(2)− ϵ) · L1n = (0.5− ϵ) · L1n. (12)

Regarding the third phase, by Lemma 5.4, we have:

∆
(
ECC3(Z1), τ

)
+∆

(
ECC3(Z2), τ

)
≥ ∆

(
ECC3(Z1),ECC3(Z2)

)
≥

0.5511− ϵ− 0.1 ·
∑
i∈[2]

d(x3−i, Ui, Vi, wi)

 · L3n

=

0.501−
∑
i∈[2]

d(x3−i, Ui, Vi, wi)

 · L2n+ (0.501− ϵ) · L3n. (13)

To finish the proof, we claim that for all i ∈ [2], it holds:

corr-lb
(2)
S (Ti) ≥ d(x3−i, Ui, Vi, wi) · L2n. (14)

30

This is because S = Ti,1 always implies x3−i ∈ Ui by definition and thus d(x3−i, Ui, Vi, wi) =

d1
(
wi

M

)
. If S ̸= Ti,1 but S = Ti,2 or S = Ti,3, then we know s3−i ∈ Ui ∪ Vi. Therefore,

d(x3−i, Ui, Vi, wi) ≤ d2
(
wi

M

)
in this case. The third case is straightforward by definition of

d(·) and corr-lb(2)(·). Summing Eqs. (12) to (14), we finally get

corr-lb(x1) + corr-lb(x2)

≥ (0.5− ϵ) · L1n+ 0.501 · L2n+ (0.501− ϵ) · L3n

>
1

2
Kn+

(
(L2 + L3)/K

1000
− ϵ

)
·Kn

>
1

2
Kn+ 2

(
θ + ϵ+

1

M

)
·Kn.

6.1 Proof of Theorem 5.1

We now finish the proof of Theorem 5.1 using Lemmas 6.3 and 6.4.

Proof of Theorem 5.1. As mentioned above, we need to argue that y = x. Suppose for the

sake of contradiction that y ̸= x. Then, by Line 6 of Algorithm 1 and Lemma 6.1, we get

that x and y are two distinct elements of S and corr-lb(y) ≤ corr-lb(x). This means:

2 · corr-lb(x) ≥ corr-lb(y) + corr-lb(x)

≥ 2 ·
(
1

4
+ θ + ϵ+

1

M

)
·Kn (Lemma 6.4)

> 2 · corr(x) + 2 ·
(
ϵ+

1

M

)
· L2n (Eq. (10))

≥ 2 · corr-lb(x), (Lemma 6.3)

a contradiction.

7 Impossibility Result for Equally Spaced Code

In this section we prove Theorem 7.1 below, which is the formal version of Theorem 1.2.

Theorem 7.1. For any θ > 0, there exists n0 > 0 such that for every n ≥ n0, there does

not exist a 3-phase protocol using
(
{0, 1}n, 1

4
+ θ, θ

2

)
-Equally Spaced Code that computes

MsgTransn against a
(
1
4
+ θ

)
fraction of corruptions.

7.1 Proof of Theorem 7.1

The proof of Theorem 7.1 uses the following functions:

31

1. F1,N : Let I1,N = [N]× {⊥}. Define F1,N : I1,N → [N] by F1,N(x,⊥) = x.

2. F2,N : Let I2,N =
{
(x,B) ∈ [N]×

(
[N]
2

)
| x ∈ B

}
. Define F2,N : I2,N → [N] by

F2,N(x,B) = x.

3. F3,N : Let I3,N =
{(

(x,A), B
)
∈
(
[N]×

(
[N]
2

))
×
(
[N]
2

)
| x ∈ B, x /∈ A, B ⊆ A ∪ {x}

}
.

Define F3,N : I3,N → [N] by F3,N

(
(x,A), B

)
= x.

For i ∈ [3], we are interested in (4 − i)-phase protocols using Equally Spaced Code

that computes Fi,N against a
(
1
4
+ θ

)
fraction of corruptions per phase for θ > 0. Without

loss of generality, we assume protocols alternate between Alice and Bob across phases with

Alice always sending in the last phase.

To prove Theorem 7.1, we first note that for N = 2n, F1,N is MsgTransn, thus we need to

prove a lower bound against 3-phase protocols for F1,N . To this end, we show that a 3-phase

protocol using Equally Spaced Code that computes F1,N against a
(
1
4
+ θ

)
fraction of

corruptions per phase for θ > 0, implies a similar 2-phase protocol that computes F2,N ′ , for

some smaller N ′ (Lemma 7.2). We then show that a 2-phase protocol that computes F2,N ′

implies a 1-phase protocol that computes F3,N ′′ , for some even smaller N ′′ (Lemma 7.3). Fi-

nally, we give a lower bound against any 1-phase protocol that computes F3,N ′′ (Lemma 7.4).

We mention that the (noiseless) communication complexity of F2,N was studied by [Orl90],

who showed a tight bound of Θ(logN). Furthermore, his upper bound protocol consists of

only two phases. Observe that a 2-phase protocol for F2,N implies a 1-phase protocol for F3,N .

Lemma 7.4 gives an Ω(log logN) lower bound on the communication complexity of a 1-phase

protocol for F3,N . While our result in this paper does not require an upper bound for this

problem, in Section 7.2 we include a matching O(log logN) upper bound as we believe it may

be of independent interest. We also remark that the 1-phase complexity of F3,N is closely

related to the question of deterministic compression with uncertain priors studied in [HS16].

We will use the following definition: For n > 0 and x, y ∈ {0, 1}n we define the string

mid(x, y) ∈ {0, 1}n. Informally, mid(x, y) is a string whose Hamming distance from x

and from y is equal (up-to ±1). Formally, if i1 < i2 < · · · < i∆(x,y) are the elements of

{i ∈ [n] | xi ̸= yi}, then, for all i ∈ [n], coordinate i of the string mid(x, y) is defined as:

mid(x, y) =


xi, if ∀j ∈ [∆(x, y)] : i ̸= ij

xi, if ∃j ∈
[⌈

∆(x,y)
2

⌉]
: i = ij

yi, if ∃j ∈ [∆(x, y)] \
[⌈

∆(x,y)
2

⌉]
: i = ij

. (15)

7.1.1 Going from 3 Phases to 2

Lemma 7.2. If there exists a 3-phase protocol Π using
(
I1,N ,

1
4
+ θ, θ

2

)
-Equally Spaced

Code that computes F1,N against a
(
1
4
+ θ

2

)
fraction of corruptions per phase, where N, θ >

0, then there also exists a 2-phase protocol Π′ using
(
I2,θN ,

1
4
+ θ, θ

2

)
-Equally Spaced

Code that computes F2,θN against a
(
1
4
+ θ

2

)
fraction of corruptions per phase.

32

Proof. Let ECC be the code Alice uses in Phase 1 of Π, and C the set of codewords Alice

uses in Phase 1 of Π across all possible inputs. In the following, we construct Π′ with the

desired property in two different cases based on |C|.

Case 1: |C| ≤ 1
θ
. By an averaging argument, there exists a codeword c ∈ C such that

Alice sends c in Phase 1 of Π when given any one of at least N
|C| out of all N possible

inputs. Without loss of generality, assume Alice sends c upon seeing any one of [N ′] where

N ′ = N
|C| ≥ θN . Let Π′ be the 2-phase protocol for F2,N ′ in which both parties simulate Π

with Bob pretending that he receives c from Alice at the very beginning (so Bob is actually

not using his input as is in Π). Clearly, Π′ is using
(
I2,N ′ , 1

4
+ θ, θ

2

)
-Equally Spaced Code

by definition. We claim that Π′ computes F2,N ′ against a
(
1
4
+ θ

2

)
fraction of corruptions per

phase.

To see this, suppose for the purpose of contradiction that an adversary Adv′ for Π′ is able

to make Bob output y ̸= xA
1 on some input A′ = xA

1 and B′ =
{
xB
1 , x

B
2

}
, while corrupting at

most a
(
1
4
+ θ

2

)
fraction of each phase. Consider the execution of Π on the input A = xA

1 and

B =⊥. Let Adv be the adversary for Π who makes no corruption in Phase 1 and simulates

Adv′ in all later phases. By our assumption, Alice sends c in Phase 1, which is received

by Bob without corruptions. As a result, Bob behaves in exactly the same way in both Π

and Π′ (with an imaginary first-phase message), and thus outputs the same answer y ̸= xA
1 ,

contradicting that Π computes F1,N against a
(
1
4
+ θ

2

)
fraction of corruptions per phase.

Case 2: |C| > 1
θ
. Since Π is using

(
I1,N ,

1
4
+ θ, θ

2

)
-Equally Spaced Code, we know that

any two codewords in C have a relative Hamming distance of at most 1
2
+ 1

2(|C|−1)
+ θ

2
≤ 1

2
+θ

by definition. This implies a
(
1
4
+ θ

2

)
fraction of corruptions is sufficient to corrupt any

codeword c1 ∈ C into mid(c1, c2) for any other codeword c2 ∈ C. On input A = xA
1 and

B =
{
xB
1 , x

B
2

}
, the 2-phase protocol Π′ for F2,N proceeds by both parties simulating Π with

Bob pretending that he receives mid
(
ECC

(
xB
1

)
,ECC

(
xB
2

))
from Alice at the very beginning.

It is not hard to see that Π′ is using
(
I2,N ,

1
4
+ θ, θ

2

)
-Equally Spaced Code. We claim

that Π′ computes F2,N against a
(
1
4
+ θ

2

)
fraction of corruptions per phase.

Again, suppose for the purpose of contradiction that an adversary Adv′ for Π′ is able to

make Bob output y ̸= xA
1 on some input A′ = xA

1 and B′ =
{
xB
1 , x

B
2

}
, while corrupting at

most a
(
1
4
+ θ

2

)
fraction of each phase. Consider the execution of Π on the input A = xA

1 and

B =⊥. Alice sends ECC(xA
1) in Phase 1. Moreover, since xA

1 ∈
{
xB
1 , x

B
2

}
, by the argument

above, we can construct an adversary Adv who corrupts a
(
1
4
+ θ

2

)
fraction of Alice’s first-

phase message into mid
(
ECC

(
xB
1

)
,ECC

(
xB
2

))
. Adv then simulates Adv′ in all later phases.

Similarly to the first case, it is not hard to see that Adv forces Bob to output the incorrect

answer y ̸= xA
1 in Π, a contradiction. This concludes the proof.

33

7.1.2 Going from 2 Phases to 1

Lemma 7.3. If there exists a 2-phase protocol Π using
(
I2,N ,

1
4
+ θ, θ

2

)
-Equally Spaced

Code that computes F2,N against a
(
1
4
+ θ

2

)
fraction of corruptions per phase, where N, θ >

0, then there also exists a 1-phase protocol Π′ using
(
I3,logθ N ,

1
4
+ θ, θ

2

)
-Equally Spaced

Code that computes F3,logθ N against a
(
1
4
+ θ

2

)
fraction of corruptions (per phase).

Proof. Let ECC be the code Bob uses in Phase 1 of Π, and C the set of codewords Bob uses

in Phase 1 of Π across all possible inputs. In the following, we construct Π′ with the desired

property in two different cases based on |C|.

Case 1: |C| ≤ 1
θ
. Imagine a complete graph G with the vertex set [N]. For each {x1, x2} ∈(

[N]
2

)
, the edge (x1, x2) of G is colored by the codeword ECC({x1, x2}), so there are a total

of |C| colors. By Lemma 3.2, there exists a monochromatic clique of size at least log
1

|C| N .

Without loss of generality, assume Bob sends the same codeword c ∈ C upon seeing B ∈
(
[N ′]
2

)
where N ′ = log

1
|C| N ≥ logθ N . Let Π′ be the 1-phase protocol for F3,N ′ in which both

parties simulate Π with Alice pretending that she receives c from Bob at the very beginning.

Clearly, Π′ is using
(
I3,N ′ , 1

4
+ θ, θ

2

)
-Equally Spaced Code by definition. We claim that

Π′ computes F3,N ′ against a
(
1
4
+ θ

2

)
fraction of corruptions.

To see this, suppose for the purpose of contradiction that an adversary Adv′ for Π′ is able

to make Bob output y ̸= xA
1 on some input A′ =

(
xA
1 ,

{
xA
2 , x

A
3

})
and B′ =

{
xB
1 , x

B
2

}
, while

corrupting at most a
(
1
4
+ θ

2

)
fraction. Consider the execution of Π on the input A = xA

1

and B =
{
xB
1 , x

B
2

}
. Let Adv be the adversary for Π who makes no corruption in Phase 1

and simulates Adv′ in all later phases. By our assumption, Bob sends c in Phase 1, which is

received by Alice without corruptions. As a result, Alice behaves in exactly the same way in

both Π and Π′ (with an imaginary first-phase message), and so does Bob, who then outputs

the same answer y ̸= xA
1 , contradicting that Π computes F2,N against a

(
1
4
+ θ

2

)
fraction of

corruptions per phase.

Case 2: |C| > 1
θ
. Since Π is using

(
I2,N ,

1
4
+ θ, θ

2

)
-Equally Spaced Code, we know that

any two codewords in C have a relative Hamming distance of at most 1
2
+ 1

2(|C|−1)
+ θ

2
≤ 1

2
+θ by

definition. This implies a
(
1
4
+ θ

2

)
fraction of corruptions is sufficient to corrupt any codeword

c1 ∈ C into mid(c1, c2) for any other codeword c2 ∈ C. On input A =
(
xA
1 ,

{
xA
2 , x

A
3

})
and

B =
{
xB
1 , x

B
2

}
, the 1-phase protocol Π′ for F3,N proceeds by both parties simulating Π with

Alice pretending that she receives mid
(
ECC

({
xA
1 , x

A
2

})
,ECC

({
xA
1 , x

A
3

}))
from Bob at the

very beginning. It is not hard to see that Π′ is using
(
I3,N ,

1
4
+ θ, θ

2

)
-Equally Spaced

Code. We claim that Π′ computes F3,N against a
(
1
4
+ θ

2

)
fraction of corruptions.

Again, suppose for the purpose of contradiction that an adversary Adv′ for Π′ is able to

make Bob output y ̸= xA
1 on some input A′ =

(
xA
1 ,

{
xA
2 , x

A
3

})
and B′ =

{
xB
1 , x

B
2

}
, while

corrupting at most a
(
1
4
+ θ

2

)
fraction. Consider the execution of Π on the input A = xA

1

and B =
{
xB
1 , x

B
2

}
. Bob sends ECC(

{
xB
1 , x

B
2

}
) in Phase 1. Moreover, it holds that either

34

{
xA
1 , x

A
2

}
=

{
xB
1 , x

B
2

}
or

{
xA
1 , x

A
3

}
=

{
xB
1 , x

B
2

}
by definition. Then by the argument above,

we can construct an adversary Adv who corrupts a
(
1
4
+ θ

2

)
fraction of Bob’s first-phase

message into mid
(
ECC

({
xA
1 , x

A
2

})
,ECC

({
xA
1 , x

A
3

}))
. Adv then simulates Adv′ in all later

phases. Similarly to the first case, it is not hard to see that Adv forces Bob to output the

incorrect answer y ̸= xA
1 in Π, a contradiction. This concludes the proof.

7.1.3 Lower Bound for 1 Phase

Lemma 7.4. For any 1-phase protocol Π computing F3,N , Alice uses at least log logN dis-

tinct codewords across all possible inputs.

Proof. Let C be the set of codewords Alice uses in Π across all possible inputs. For all

possible input B =
{
xB
1 , x

B
2

}
of Bob, Bob’s output function (on uncorrupted codewords)

is essentially a function outB : C → {0, 1}, where 0 represents outputting min
{
xB
1 , x

B
2

}
while 1 represents outputting max

{
xB
1 , x

B
2

}
. Note that there are a total of 2|C| possible

output functions. We claim that the sets of output functions Sx =
{
out{x,x′} | x < x′ ≤ N

}
are distinct for all x ∈ [N].

To see this, suppose for the purpose of contradiction that Sx1 = Sx2 for 1 ≤ x1 < x2 ≤ N .

By definition, out{x1,x2} ∈ Sx1 and thus out{x1,x2} ∈ Sx2 . So there exists x3 ∈ [N] such that

x3 > x2 and out{x2,x3} = out{x1,x2}. Now consider the two cases where Alice always has input

A = (x2, {x1, x3}) while Bob has input either B = {x1, x2} or B′ = {x2, x3}. In both cases,

Alice sends the same codeword c ∈ C. With no corruptions, observe that outB(c) = outB′(c)

as the two cases share the same output function. However, this implies Bob can output the

correct answer x2 only in exactly one of the two cases since x1 < x2 < x3. This shows Sx

are indeed distinct for all x ∈ [N].

Counting the number of possible sets of output functions, we finally get 22
|C| ≥ N , or

equivalently |C| ≥ log logN , concluding the proof.

Finally, we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. We first claim that a 3-phase protocol that computesMsgTransn (even

against a 0 fraction of corruptions) must have at least logn
10

rounds. Suppose there exists a

3-phase protocol that computes MsgTransn with T < logn
10

rounds, then there also exists a

1-phase protocol that computes MsgTransn with 4T rounds. But a 1-phase protocol that

computes MsgTransn (one message from Alice to Bob) must communicate at least n bits, a

contradiction.

Fix θ > 0 and let n0 be an arbitrary integer such that log log
(
log

θ
100

(
θ

100
· n0

))
≥ 100

θ
.

Let n ≥ n0. We next claim that any 3-phase protocol Π that computes MsgTransn against

a
(
1
4
+ θ

)
fraction of corruptions, also computes MsgTransn against a

(
1
4
+ θ′

)
fraction of

corruptions per phase, where θ′ = θ
2
. To see this, for t ∈ [3], let Lt be the length of Phase

t of Π, and let T = L1 + L2 + L3. Let Adv be an adversary for Π that corrupts at most⌈(
1
4
+ θ′

)
Lt

⌉
rounds in Phase t. The total number of rounds that are corrupted by Adv is at

most
(
1
4
+ θ′

)
T + 3, which is no more than

⌈(
1
4
+ θ

)
T
⌉
as T ≥ logn

10
≥ 10

θ
.

35

Let N = 2n. Observe that F1,N is exactly MsgTransn. Thus, it remains to show that there

is no 3-phase protocol Π using
(
I1,N ,

1
4
+ θ, θ′

)
-Equally Spaced Code that computes F1,N

against a
(
1
4
+ θ′

)
fraction of corruptions per phase.

We prove the last claim by contradiction. Assume that there exists a 3-phase protocol

Π using
(
I1,N ,

1
4
+ θ, θ′

)
-Equally Spaced Code that computes F1,N against a

(
1
4
+ θ′

)
fraction of corruptions per phase. We can apply Lemmas 7.2 and 7.3 in sequence to get

a 1-phase protocol Π′ using
(
I3,N ′ , 1

4
+ θ, θ′

)
-Equally Spaced Code that computes F3,N ′

against a
(
1
4
+ θ′

)
fraction of corruptions, where N ′ = logθ

′
(θ′N). Furthermore, Lemma 7.4

shows Alice must use at least N ′′ = log logN ′ distinct codewords across all possible inputs

in Π′. However, this contradicts the assumption that Π′ is using
(
I3,N ′ , 1

4
+ θ, θ′

)
-Equally

Spaced Code since 1
2
+ 1

2(N ′′−1)
+ θ′ is less than 2 ·

(
1
4
+ θ′

)
under the above assumptions.

7.2 Tightness of Lemma 7.4

In this section, we present a simple 1-phase protocol computing F3,N . It shows the lower

bound of Lemma 7.4 is essentially tight up to constant factors.

Theorem 7.5. There exists a 1-phase protocol computing F3,N in which Alice uses O(log logN)

distinct codewords across all possible inputs.

The protocol proving Theorem 7.5 is presented in Algorithm 2. In Algorithm 2, we iden-

tify an integer x ∈ [N] with a (logN)-bit string corresponding to its binary representation,

from its most significant bit to its least significant bit. Similarly, we also identify an integer

i ∈ [logN] with a (log logN)-bit string corresponding to its binary representation, from its

most significant bit to its least significant bit. The length of the string can always be inferred

from context.

It is not hard to see Alice uses O(log logN) distinct codewords across all possible inputs.

Now, we first show that the protocol is well-defined as Eq. (16) covers all possible cases. In

particular, if there exists no such index j (equivalently, i1 = i2), one of the first two cases

of Eq. (16) must hold.

Claim 7.6. If i1 = i2, then it holds that either xA
1 = min

(
xA
1 , x

A
2 , x

A
3

)
or xA

1 = max
(
xA
1 , x

A
2 , x

A
3

)
.

Proof. By definition, for all i ∈ [1, i1), we have x
A
1,i = xA

2,i = xA
3,i since i1 = i2. Let b = xA

1,i1
∈

{0, 1}. Then, we also have xA
2,i1

= xA
3,i1

= 1− b. Since the binary representations are written

from the most significant bits to the least significant bits, we can get that xA
2 , x

A
3 > xA

1 if

b = 0 and xA
2 , x

A
3 < xA

1 if b = 1, concluding the proof.

Then, we finish the proof of Theorem 7.5 by showing the correctness of Algorithm 2.

Proof of Theorem 7.5. When j′ = 0, since xA
1 ∈

{
xB
1 , x

B
2

}
⊆

{
xA
1 , x

A
2 , x

A
3

}
, it is clearly that

either y = min
(
xB
1 , x

B
2

)
= min

(
xA
1 , x

A
2 , x

A
3

)
= xA

1 or y = max
(
xB
1 , x

B
2

)
= max

(
xA
1 , x

A
2 , x

A
3

)
=

xA
1 . Now consider the case where j′ = j ∈ [logN]. Assume without loss of generality

36

Algorithm 2 The protocol computing F3,N .

Input: Alice has input A =
(
xA
1 ,

{
xA
2 , x

A
3

})
∈ [N]×

(
[N]
2

)
, and Bob has input B =

{
xB
1 , x

B
2

}
.

Output: Bob outputs y ∈ [N].

Alice:

1: Alice finds the smallest index i1 ∈ [logN] such that xA
1,i1

̸= xA
2,i1

and the smallest index
i2 ∈ [logN] such that xA

1,i2
̸= xA

3,i2
. Alice also tries to find an index j ∈ [log logN] such

that i1,j ̸= i2,j.
2: Alice sends a codeword to Bob as follows (the first satisfying case applies):

(0, 0, 0), xA
1 = min

(
xA
1 , x

A
2 , x

A
3

)
(0, 1, 1), xA

1 = max
(
xA
1 , x

A
2 , x

A
3

)(
j,1

(
xA
1 > xA

2

)
,1

(
xA
1 > xA

3

))
, i1,j < i2,j(

j,1
(
xA
1 > xA

3

)
,1

(
xA
1 > xA

2

))
, i1,j > i2,j

. (16)

Bob:

3: Bob finds the smallest index i′ ∈ [logN] such that xB
1,i′ ̸= xB

2,i′ .
4: Bob receives (j′, b0, b1) from Alice and outputs

y =

{
min

(
xB
1 , x

B
2

)
, (j′, b1, b2) = (0, 0, 0) or bi′

j′
= 0

max
(
xB
1 , x

B
2

)
, (j′, b1, b2) = (0, 1, 1) or bi′

j′
= 1

. (17)

37

that i1,j < i2,j, implying that i1,j = 0 and i2,j = 1. (The other case where i1,j > i2,j
is symmetric.) Observe that Bob must have i′ = i1 if

{
xB
1 , x

B
2

}
=

{
xA
1 , x

A
2

}
and i′ = i2 if{

xB
1 , x

B
2

}
=

{
xA
1 , x

A
3

}
. Moreover, Bob can distinguish between the cases by simply examining

the value of i′j′ : i
′
j′ = 0 implies the former case while i′j′ = 1 implies the latter one. By the

construction of Alice’s message in Eq. (16), bi′
j′
always conveys the critical information about

the relative order of the correct answer xA
1 in the two-candidate set

{
xB
1 , x

B
2

}
. Therefore,

the correctness of y follows as Bob already figures out which one of b0, b1 conveys the correct

information.

Acknowledgements

Klim Efremenko is supported by the Israel Science Foundation (ISF) through grant No.

1456/18 and European Research Council Grant number: 949707. Gillat Kol is supported

by a National Science Foundation CAREER award CCF-1750443 and by a BSF grant No.

2018325.

References

[ADL06] Rudolf Ahlswede, Christian Deppe, and Vladimir S. Lebedev. Non-binary error

correcting codes with noiseless feedback, localized errors, or both. In Interna-

tional Symposium on Information Theory (ISIT), pages 2486–2487, 2006. 5

[BE17] Mark Braverman and Klim Efremenko. List and unique coding for interac-

tive communication in the presence of adversarial noise. SIAM J. Comput.,

46(1):388–428, 2017. 4

[Ber64] Elwyn R. Berlekamp. Block Coding with Noiseless Feedback. PhD thesis, Mas-

sachusetts Institute of Technology (MIT), 1964. 4, 7

[Ber68] Elwyn R Berlekamp. Block coding for the binary symmetric channel with noise-

less, delayless feedback. Error-correcting codes, pages 61–68, 1968. 3, 5, 7

[BGMO17] Mark Braverman, Ran Gelles, Jieming Mao, and Rafail Ostrovsky. Coding for in-

teractive communication correcting insertions and deletions. IEEE Transactions

on Information Theory, 63(10):6256–6270, 2017. 4

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in inter-

active communication. In Symposium on Theory of computing (STOC), pages

159–166, 2011. 4

[EGH16] Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Maximal noise in inter-

active communication over erasure channels and channels with feedback. IEEE

Trans. Inf. Theory, 62(8):4575–4588, 2016. 3, 4

38

[EKS20a] Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive error resilience

beyond 2/7. In Symposium on Theory of Computing (STOC). ACM, 2020. 4

[EKS20b] Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Binary interactive

error resilience beyond 1/8. In Foundations of Computer Science (FOCS), pages

470–481, 2020. i, 3, 4, 5, 6, 7, 8

[EKS21] Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Optimal error resilience

of adaptive message exchange. In Symposium on Theory of Computing (STOC),

pages 1235–1247, 2021. 4

[FGOS15] Matthew Franklin, Ran Gelles, Rafail Ostrovsky, and Leonard J. Schulman.

Optimal coding for streaming authentication and interactive communication.

IEEE Transactions on Information Theory, 61(1):133–145, 2015. 4

[Gel17] Ran Gelles. Coding for interactive communication: A survey. Foundations and

Trends® in Theoretical Computer Science, 13(1–2):1–157, 2017. 4

[GH14] Mohsen Ghaffari and Bernhard Haeupler. Optimal Error Rates for Interactive

Coding II: Efficiency and List Decoding. In Foundations of Computer Science

(FOCS), FOCS, pages 394–403, 2014. 4

[GH17] Ran Gelles and Bernhard Haeupler. Capacity of interactive communication over

erasure channels and channels with feedback. SIAM Journal on Computing,

46(4):1449–1472, 2017. 4

[GHS14] Mohsen Ghaffari, Bernhard Haeupler, and Madhu Sudan. Optimal error rates

for interactive coding i: Adaptivity and other settings. In Symposium on Theory

of computing (STOC), pages 794–803, 2014. 4

[GKZ22] Meghal Gupta, Yael Tauman Kalai, and Rachel Yun Zhang. Interactive error

correcting codes over binary erasure channels resilient to 1/2 adversarial corrup-

tion. In Symposium on Theory of Computing (STOC), 2022. 1, 3, 5, 7

[GZ22a] Meghal Gupta and Rachel Yun Zhang. The optimal error resilience of interactive

communication over binary channels. In Symposium on Theory of Computing

(STOC), 2022. 3, 8

[GZ22b] Meghal Gupta and Rachel Yun Zhang. Positive rate binary interactive error

correcting codes resilient to ¿1/2 adversarial erasures. CoRR, abs/2201.11929,

2022. 3

[HKV15] Bernhard Haeupler, Pritish Kamath, and Ameya Velingker. Communication

with partial noiseless feedback. In Approximation, Randomization, and Combi-

natorial Optimization. Algorithms and Techniques (APPROX/RANDOM), vol-

ume 40 of LIPIcs, pages 881–897, 2015. 1, 5

39

[HS16] Elad Haramaty and Madhu Sudan. Deterministic compression with uncertain

priors. Algorithmica, 76(3):630–653, 2016. 2, 32

[HSV18] Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchroniza-

tion strings: Channel simulations and interactive coding for insertions and dele-

tions. In International Colloquium on Automata, Languages, and Programming

(ICALP), volume 107, pages 75:1–75:14, 2018. 4

[Orl90] Alon Orlitsky. Worst-case interactive communication. i. two messages are almost

optimal. IEEE Transactions on Information Theory, 36(5), 1990. 2, 32

[Pan13] Denis Pankratov. On the power of feedback in interactive channels. Manuscript,

2013. 4

[Plo60] M. Plotkin. Binary codes with specified minimum distance. IRE Transactions

on Information Theory, 6(4):445–450, 1960. 1

[Sch92] Leonard J Schulman. Communication on noisy channels: A coding theorem

for computation. In Foundations of Computer Science (FOCS), pages 724–733,

1992. 4

[Sch93] Leonard J Schulman. Deterministic coding for interactive communication. In

Symposium on Theory of computing (STOC), pages 747–756, 1993. 4

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Transactions

on Information Theory, 42(6):1745–1756, 1996. 4

[Sha48] Claude E. Shannon. A mathematical theory of communication. ACM SIGMO-

BILE Mobile Computing and Communications Review, 5(1):3–55, 2001. Origi-

nally appeared in Bell System Tech. J. 27:379–423, 623–656, 1948. 1

[Sha56] Claude E. Shannon. The zero error capacity of a noisy channel. IRE Transactions

on Information Theory, 2(3):8–19, 1956. 5

[SW17] Alexander A. Sherstov and Pei Wu. Optimal interactive coding for insertions,

deletions, and substitutions. In Foundations of Computer Science (FOCS), pages

240–251, 2017. 4

[SWS92] Joel Spencer, Peter Winkler, and South St. Three thresholds for a liar. Combi-

natorics, Probability and Computing, 1:81–93, 1992. 5

[WQC17] Gang Wang, Yanyuan Qin, and Chengjuan Chang. Communication with par-

tial noisy feedback. In IEEE Symposium on Computers and Communications

(ISCC), pages 602–607, 2017. 5

40

[Zig76] K.Sh. Zigangirov. On the number of correctable errors for transmission over a

binary symmetrical channel with feedback. Problems of Information Transmis-

sion, 12:85–97, 1976. 5

41
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

