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Abstract

Let F = tF1, . . . , Fmu be a finite set of irreducible homogeneous multivariate polynomials
of degree at most 3 such that Fi does not divide Fj for i ‰ j. We say that F is a cubic radical
Sylvester-Gallai configuration if for any two distinct Fi, Fj there exists a third polynomial Fk such
that whenever Fi, Fj vanish, Fk also vanishes. In particular, for any two indices i, j P [m], there
exists k P [m]zti, ju such that Fk P rad(Fi, Fj).

We prove that any cubic radical Sylvester-Gallai configuration is low-dimensional, that is

dim spanK tFu = O(1).

This solves a conjecture of Gupta [Gup14] in degree 3 and generalizes the result in [Shp20],
which proved that quadratic radical Sylvester-Gallai configurations are low-dimensional. Our
result takes us one step closer towards solving the non-linear Sylvester-Gallai conjectures of
Gupta [Gup14], which would yield the first deterministic polynomial time algorithm for the PIT
problem for depth-4 circuits of bounded top and bottom fanins.

To prove our Sylvester-Gallai theorem, we develop several new tools combining techniques
from algebraic geometry and elimination theory. Among our technical contributions, we
prove a structure theorem characterizing non-radical ideals generated by two cubic forms,
generalizing the structure theorems of [HP94, CTSSD87, Shp20]. Moreover, building upon the
groundbreakingwork [AH20a], we introduce the notion of wide Ananyan-Hochster algebras and
show that these algebras allowus to transfer the local conditions of Sylvester-Gallai configurations
into global conditions.
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1 Introduction

In 1893, Sylvester asked a basic question in combinatorial geometry ([Syl93]): given a finite set
of distinct points v1, . . . , vm P RN such that the line defined by any pair of distinct points vi, vj
contains a third point vk in the set, must all points in the set be collinear? This question was
independently answered in the affirmative by Melchior and Gallai [Mel40, Gal44], and is now
known as the Sylvester-Gallai theorem.

Since then, generalizations of Sylvester’s question have received considerable attention by math-
ematicians and computer scientists [EK66, Han66, Ser66, Kel86, BDWY11], and results such as the
above are known as Sylvester-Gallai type theorems. In its most general form, a Sylvester-Gallai type
configuration is a finite set of geometric objects which satisfy certain local conditions/dependencies.
For instance, in the original question above the geometric objects are the points and the local
dependencies are collinear dependencies amongst the points of the set. The general underlying
theme of Sylvester-Gallai type problems is the following local-to-global phenomenon: must these
local constraints on the geometric objects imply a global constraint on such configurations? The
main question of concern is:

Are Sylvester-Gallai type configurations always low-dimensional?

For a thorough survey on earlier works on Sylvester-Gallai type problems, we refer the reader to
[BM90], and for a survey on applications to computer science, we refer the reader to [SY10, Dvi12].

The perspective above highlights the geometric aspects of Sylvester-Gallai problems. If one looks
at the problems through the algebraic and computational lens (via the algebra-geometry dictionary),
one realizes that they are intrinsically related to the study of cancellations/relations in computational
problems. In algebraic and computational terms, the Sylvester-Gallai questions become:

Must Sylvester-Gallai configurations depend only on "few variables"?

Since cancellations are remarkably powerful in computation, as we know from several results in
boolean and algebraic complexity [Tar88, Raz92, RW92, GMOR15], it is no wonder that Sylvester-
Gallai type theorems have appeared in the study of cancellations in algebraic complexity – the
polynomial identity testing problem. Moreover, since Sylvester-Gallai problems are about cancella-
tions, it is not surprising that the solutions of such problems has used sophisticated mathematics.

As an example, linear Sylvester-Gallai type problems have found applications in diverse subfields
of theoretical computer science. In algebraic complexity theory, linear Sylvester-Gallai theorems
were used in algorithms for polynomial identity testing (PIT) and reconstrution of depth-3 circuits
of bounded top fanin [DS07, KS09, SS13, Sin16]. In coding theory, linear Sylvester-Gallai theorems
were used to prove non-existence of 2-query LCCs over fields of characteristic zero [BDWY11].

In [Gup14], Gupta proposed far-reaching non-linear generalizations of the known Sylvester-
Gallai type problems in order to give a deterministic polynomial time black-box PIT algorithm
for the model of depth 4 algebraic circuits with constant top fanin. Gupta conjectured that the
non-linear Sylvester-Gallai type problems that he proposed were also “low dimensional” and must
depend on “few variables”.

The main conjecture in Gupta’s work that needs to be solved in order to prove that his black-box
PIT algorithm runs in deterministic polynomial time is the following [Gup14, Conjecture 1].
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Conjecture 1.1 ((k, d, c)-Sylvester-Gallai conjecture). Let k, d, c P N be positive integers. There exists a
function B : N3 Ñ N such that for any collection of k finite sets F1, . . . ,Fk Ă K[x1, . . . , xN] of irreducible
polynomials of degree at most d satisfying

• Ş

i Fi =H,

• for every P1, . . . , Pk´1 each from a distinct set Fij , there are forms Q1, . . . , Qc in the remaining set
such that

śc
i=1Qi P rad(P1, . . . , Pk´1),

the transcendence degree of the union
Ť

i Fi is bounded above by B(k, d, c). In particular, this bound is
independent of the number of variables N or the size of the sets Fi.

The first challenge in Gupta’s series of conjectures is a non-linear version of the (dual) linear
Sylvester-Gallai problem, which we now state. We begin with the definition of a radical Sylvester-
Gallai configuration. For the remainder of the paper, we will adopt the usual notation and use the
term form to refer to a homogeneous polynomial, and we will take K to be an algebraically closed
field of characteristic zero.

Definition 1.2 (Radical Sylvester-Gallai configuration). Let d be a positive integer. We say that a
finite set F = tF1, . . . , Fmu Ă K[x1, . . . , xN] of irreducible forms of degree ď d is a d-radical-SG
configuration if the following conditions hold:

1. Fi R (Fj) for any i ‰ j P [m], (forms are “pairwise independent”)

2. for every pair Fi, Fj, there is k ‰ i, j such that Fk P rad(Fi, Fj). (radical SG condition)

Note that if d = 1, the definition above specializes to the dual of the classical Sylvester-Gallai
condition for points in KN. A fundamental step towards resolving Conjecture 1.1 would be the
following conjecture of Gupta, [Gup14, Conjecture 2]:

Conjecture 1.3 (Radical Sylvester-Gallai). There is a function λ : N Ñ N such that the transcendence
degree of any d-radical-SG configuration F is upper bounded by λ(d).

In [Shp20], Shpilka broke ground on the conjecture above, solving it for d = 2. In this work, we
solve the above conjecture for d = 3. The geometry of cubic or higher degree forms is significantly
more complex and richer than that of quadratic forms. For example, quadratic forms over an
algebraically closed field are determined, up to isomorphism, by their rank or strength. However,
the same statement does not hold for cubics. Therefore, there are many challenges that are unique to
the cubic SG problem, which are not amenable to the existing approaches for quadratic or linear SG
problems. We generalize the approach of [Shp20], introducing several new concepts and techniques
from algebraic geometry and elimination theory to solve Conjecture 1.3 in degree 3, and we expect
that these techniques will prove fundamental for the full resolution of the conjecture in general.

We develop an inductive framework for solving Conjecture 1.3 and prove that this inductive
approach solves Conjecture 1.3 in degree 3. In inductive arguments, one often needs to start from
a stronger hypothesis, which may be harder to prove but amenable to induction. In a similar
spirit, one of our conceptual contributions towards attacking Conjecture 1.3 is the following. We
generalize radical SG configurations to have weaker constraints (what we call SG configurations
over an algebra – Definition 6.6) and prove our main result by reducing 3-radical-SG configurations
to these generalized SG configurations for quadratic forms. Since many of our tools work for
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forms of arbitrary degree, our work provides strong evidence that these radical SG configurations
over algebras have the potential to allow us to reduce d-radical-SG configurations to generalized
(d´ 1)-radical-SG configurations over an algebra.

Since the solution of the quadratic radical SG problem by [Shp20] (that is, Conjecture 1.3 for
d = 2), further progress on the conjectures of [Gup14] have been made, whenever the forms in
consideration are quadratic forms. This progress was done in the sequence of works [PS20a, PS20b],
where the first work solved a product-version of the radical SG problem and the second work
managed to solve Conjecture 1.1 for the case when (k, d, c) = (3, 2, 4).

Just as the solution of the radical SG problem for quadratic forms fueled further progress
towards Conjecture 1.1, we expect that our techniques and inductive approach will lead to progress
towards a full resolution to Conjecture 1.1, albeit much more work remains to be done.

In the next section, we formally state the main contributions of this paper.

1.1 Main results

The main result of this paper is a solution of the radical Sylvester-Gallai problem for cubics. More
precisely, we prove the following theorem, which implies Conjecture 1.3 for d = 3.

Theorem 1.4 (Radical Sylvester-Gallai for cubics). If F is a 3-radical-SG configuration, then

dim spanK tFu = O(1).

First we note that in order to bound the dimension or transcendence degree of F, it is enough to
show thatF is contained in a small subalgebra of the polynomial ring. Before we are able to construct
such algebras, an important observation is that if the configuration F has indeed low transcendence
degree, then it should depend on "few variables," and these variables are (in principle) the generators
of the small subalgebra that we will construct. To prove the theorem above in an "inductive way,"
we would like to reduce the 3-radical-SG configuration F to a 2-radical-SG configuration. While
this may not be possible in general, one natural approach to induct is to try to construct a small
subalgebra of the polynomial ring which contains all the cubic forms in our configuration F. Then
we can reduce to a generalized 2-radical-SG configuration over an algebra. The main technically
challenging and most interesting part of this approach is to construct a subalgebra containing the
cubics. In order to achieve our goal, we develop several algebraic-geometric tools along the way
and prove results which are of independent interest. We describe some of these results below.

Since the local constraint in our SG problem is given by radicals, we are lead to the fundamental
question: when is the ideal generated by two cubic forms not radical? This brings us to one of
our main technical contributions: a structure theorem for non-radical ideals generated by two
irreducible cubics.

Theorem 1.5. Let F1, F2 be two non-associate irreducible cubic forms in the polynomial ring K[x1, ¨ ¨ ¨ , xn]
over an algebraically closed field K. Then at least one of the following holds:

1. The ideal (F1, F2) is radical.

2. There exists a linear minimal prime of (F1, F2), i.e. there exist two linearly independent linear forms
x, y such that (F1, F2) Ă (x, y).
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3. There exists a quadratic minimal prime of (F1, F2), i.e. there exists a prime ideal (Q, `) where Q is a
quadratic form, ` is a linear form and (F1, F2) Ă (Q, `).

4. There exist linear forms x, y such that xy2 P spanK tF1, F2u.

5. There exists a minimal prime p of (F1, F2) such that p is the homogeneous prime ideal a variety of
minimal degree. In particular, p = (Q1, Q2, Q3) where Qi are the quadratic forms given by the
maximal minors of a matrixM of the form(

y0 y1 y2
y1 y2 y3

)
or

(
y0 y2 y3
y1 y3 y4

)
or

(
y0 y2 y4
y1 y3 y5

)
,

where y1, . . . , y5 are linearly independent linear forms.

This theorem generalizes previous structural results for intersections of two quadrics, which
were proved in [HP94, CTSSD87, Shp20]. In [CTSSD87, Section 1], the authors analyzed the cycle
decomposition of a complete intersection of two quadrics. Inspired by their approach, we generalize
their result to the case of cubic forms. We use the standard tools of primary decomposition and
Hilbert-Samuel multiplicity to characterize minimal primes of non-radical ideals generated by
two cubic forms. The main conceptual takeaway is: the ideal generated by two cubic forms is not
radical only if the cubic forms "are close" to each other, in the sense that they "share many common
variables." Therefore we may try to construct a small algebra containing F that depends on "few
variables" globally.

Theorem 1.5 provides us insight into the structure of non-radical ideals. However, it does not
provide us with a quantitative bound on how many such non-radical ideals can be there in a SG
configuration, and such quantitiative bounds will also be crucial for us to obtain global constraints
on the SG configuration. Thus we are lead to the following key question: given a subalgebra of a
polynomial ring and an irreducible form P outside of the subalgebra, how many forms Q are there
in the subalgebra such that the ideal (P,Q) is not radical? Bertini’s theorem in algebraic geometry
tells us that we should expect that there are not too many such forms Q. We provide a criterion for
determining when such an ideal is radical and consequently we obtain quantitative bounds on the
number of such forms Q in a fixed algebra (see Corollary 3.24). One of our technical contributions
in Section 3 is a criterion for radical ideals in terms of disciminants of polynomials (see Lemma 3.22).
We state a simplified version below.

Lemma 1.6. Let P,Q P K[z1, ¨ ¨ ¨ , zr, x1, ¨ ¨ ¨ , xs] be irreducible forms of arbitrary degree over an alge-
braically closed field. Suppose the following conditions hold:

1. Q P K[x1, ¨ ¨ ¨ , xs],

2. P R (x1, ¨ ¨ ¨ , xs)

3. For all i P [r] such that P depends on the variable zi, we have Disczi(P) R (Q).

Then the ideal (P,Q) is radical.

The result above is a generalization of the fact that the discriminant of a univariate polynomial
P is zero iff P has multiple roots – in other words the ideal (P) is not radical. A key property
in our proof of the above lemma is that the ideal (P,Q) is Cohen-Macaulay. In this case, the
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Cohen-Macaulay property implies that it is enough to show that P has no multiple roots after
generic evaluations in the variables xi which belong to the zero set ofQ. Cohen-Macaulay rings and
ideals play a central role in our arguments throughout Section 3 since they enjoy several beautiful
properties such as equidimensionality and uniqueness of primary decompositions.

The SG conditions on triples of forms Fk P rad(Fi, Fj) is a "local condition," involving only three
forms. So we first construct a "nice algebra" which resembles a small polynomial subring, that
contains these three polynomials. However, even if we construct a nice algebra for each such triple,
we still have to cope with the global aspect of the SG condition, that is, that for any pair Fi, Fj, there
is an Fk with the relation above. Therefore, if we fix a form Fi, the algebras that we construct for the
triples better be "compatible" as we vary the indices j, k.

To achieve such compatibility among these small algebras that we are constructing, we need
such algebras to be robust in a certain sense, which we make precise in Section 4. We introduce the
notion of wide AH algebras, by building upon the strong algebras recently constructed by Ananyan
and Hochster [AH20a, AH20b]. We prove that these wide algebras are robust with regards to
our SG configuration. A key property of wide algebras is the intersection flatness property. This
property allows us to apply algebraic-geometric and elimination theoretic tools to ideals within a
wide algebra and extend properties of such ideals to the ambient polynomial ring via a transfer
principle. For example, if the generators of an ideal I is contained in a wide algebra then, in order to
verify properties of I such as primality, reducedness in the polynomial ring, it is enough to verify
these properties inside the wide algebra (see Section 3).

Summary of contributions: Since this work introduces several new technical tools, the following
points summarize the main technical takeaways of the paper.

1. We generalize the SG problem of [Gup14] to SG configurations over an algebra and develop
an inductive framework for solving Conjecture 1.3. Using our inductive approach we solve
Conjecture 1.3 in degree 3. Thus, we open up a concrete avenue to prove the general version
of the problem without reducing it to robust versions or other variants.
In the previous versions of the problem, it was unclear how one could prove the SG theorem
inductively, and here we provide such a way.

2. We use tools from algebraic geometry to generalize the structure theorem for intersection of
quadrics proved in [HP94, CTSSD87, Shp20]. This structure theorem (Theorem 1.5) is new
and interesting on its own right. We use the standard tools of Hilbert-Samuel multiplicty
and primary decomposition to characterize non-radical ideals generated by cubic forms. The
structure theorem for cubics is relatively more involved as the geometry of cubic forms is
significantly richer than that of quadratic forms.

3. We prove a criterion for determining when certain ideals generated by two forms of arbitrary
degree is radical (Lemma 1.6). This result generalizes the classical fact that the discriminant
of a univariate polynomial P is zero iff P has multiple roots.

4. We introduce the notion of wide Ananyan-Hochster algebras, by building upon the seminal
work of Ananyan-Hochster in [AH20a, AH20b]. These wide algebras are “well-behaved”
subalgebras that behave similar to subpolynomial rings and are particularly amenable to
algebraic geometric and elimination theoretic tools. These wide algebras have robustness
properties which are particularly useful for our inductive approach to the SG problem.

7



5. As a part of our inductive approach, we generalize the main result of [Shp20] to quadratic SG
configurations over an algebra (see Appendix A). As a special case we obtain a new proof of
the quadratic SG theorem in [Shp20].

Generality of our results: Many of our results (especially in Section 3) hold for polynomials of
arbitrary degree and therefore we expect that these tools will pave a way for fully settling the main
radical SG problem in Conjecture 1.3.

1.2 High-level ideas of the proof

Suppose we are given a 3-radical-SG configuration F = F1 \ F2 \ F3 Ă K[x1, . . . , xn], where
Fd is the set of irreducible forms of degree d in the configuration. As stated, the radical SG
problem is not amenable to inductive arguments, as there seems to be no way to convert F into a
2-radical-SG configuration. However, if one could prove that there is a small polynomial subring
K[y1, . . . , yr] Ă K[x1, . . . , xn]where r = O(1) and F3 Ă K[y1, . . . , yr], then one could hope that the
remaining configuration F1 \ F2 would behave similarly to a 2-radical-SG configuration, which
would make our problem more tractable.

This overall strategy is exactly the main idea behind our proof. However, several challenges need
to be overcome, as the situation abovemay not happen at all. For instance, there could be a cubic form
C P F3 of really “high rank,” that is, C cannot be decomposed as C =

řs
i=1 yiQi for linear forms yi

and quadratic formsQi. Additionally, even if Cwere of “low rank,” there could be a quadratic form
in its decomposition which is of high rank, for instance C = y1(x1z1 + ¨ ¨ ¨+ xnzn) + y

2
2. In both

cases, we have that the cubic form will depend on many linear variables, so at first glance it seems
that the strategy described above is doomed to fail! Moreover, even if we managed to construct
such a small polynomial ring, how do we solve the remaining configuration? In the set F1 \ F2, we
would have to account for SG pairs which have a dependency outside of the configuration, which
will be inside of the small polynomial ring.

To address the first problem, instead of working with small polynomial subrings, we need to
construct small and graded K-subalgebras of K[x1, . . . , xn] which behave like polynomial rings, in the
sense that these subalgebras are generated by elements which are as free as possible, which is the
main property of polynomial rings. But this is not the only property of such algebras that we need:
we also need these algebras to interact wellwith the main polynomial ring K[x1, . . . , xn] – and for
us, the commutative algebraic property we need is called intersection flatness, which we formally
define in Section 3. The main property from intersection flatness that we will need is that it preserves
prime ideals, namely, if p is a prime ideal in our subalgebra, then pwill also be a prime ideal over
K[x1, . . . , xn]. This is important because if an algebra preserves primes, then it also preserves the
structure of radical ideals, and thus such algebra should behave nicely with our SG configuration.

Suppose we have an algebra A with the properties from the previous paragraph. If this algebra
contains our entire configuration F we are done, but this may not happen, as we will not be able to
construct this algebra at once. Hence, another desirable property of the algebra A that we will need
is that it can be augmented to a slightly larger algebra B without losing its structure – that is, we
would like the generators of A (which one can think of as the “free variables” of A) to be a subset of
the generators of B. We denote such property by robustness.

Robustness is desirable for several reasons – as it allows us to extend several results from
elimination theory and algebraic geometry (which hold for polynomial rings) to such subalgebras.
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But in a high level, the main advantage that robustness gives us is that it formally allows us to
treat the subalgebra A as a polynomial ring with respect to our configuration F. That is, with such
robustness we are formally in the case where A is of the form K[g1, . . . , gs] (where the gi’s are not
necessarily linear) where we can think of gi’s in the same way as if they were free linear forms – as
far as they interact with F.

To construct such algebras, we build on the groundbreaking result of Ananyan and Hochster
[AH20a, AH20b] which in a high level say that if your algebra generators are of “sufficiently high
rank” then your algebra will behave like a polynomial ring. In Section 4 we build on their work by
constructing wide Ananyan-Hochster algebras (wide AH algebras), and proving that they have all the
aforementioned properties, in particular showing that they are robust to small augmentations.

Once we construct such algebras, we are equipped to finally define our inductive strategy. In
Section 6.2 we define our “inductive form of SG problem:” the radical SG problem over an algebra
(which in practice we’ll take it to be a wide AH algebra). In Section 7 we proceed to reducing the
3-radical-SG problem to a 2-radical-SG problem over a wide AH algebra, by proving that the cubics
in F must be contained in a small wide AH algebra. Subsequently in Appendix A we prove that
2-radical-SG configurations over wide AH algebras have small vector-space dimension.

We now describe our approach to prove that forms in F3 are in a small wide AH algebra. Let
tC1, . . . , Ctu = F3 be the cubic forms in our SG configuration. If δ P (0, 1) is a small constant, and
each Ci is such that for at least δ(t´ 1) Cj’s spanK

 

Ci, Cj
(

contains another cubic from F3, then F3
is in fact a fractional linear SG configuration, in which case we know that dim spanK tF3u = O(1),
and in this case we know how to construct a small wide AH algebra (see Section 4).

The main difficulty comes when F3 is not a fractional linear SG configuration, that is, we have
many forms Ci for whichmost Cj’s are such that spanK

 

Ci, Cj
(

does not contain a third cubic in F3.
In this case, the ideal (Ci, Cj)must not be radical, and we use our main structure theorem for ideals
of the form (C1, C2) where C1, C2 are cubic forms (see Section 5) to show that there exists a simple
prime ideal (of small height) containing most of the cubic forms. Once we have such a simple prime,
we can invoke special quadratic SG configurations (see Section 6.3 and Section 6.5) to construct a
small wide AH algebra that contains most of the cubic forms. As it turns out, we can also prove
that if a small wide algebra contains most cubic forms, then it must contain all cubic forms. This
concludes the reduction from a 3-radical-SG configuration to a 2-radical-SG configuration over a
wide AH algebra, which we handle in Appendix A.

In summary, the high-level roadmap of our proof is as follows:

1. Given 3-radical-SG configuration F = F1 \ F2 \ F3, prove that F3 is contained in a wide AH
algebra of constant dimension (“reducing max degree”)

(a) If each form in F3 spans a third element with many other forms in F3, then F3 is a linear
SG configuration, and in this case we are done

(b) If F3 is not a linear SG configuration, there must be many cubics Ci P F3 such that
(Ci, Cj) does not span a third element in F3, which implies (Ci, Cj) is not a radical ideal.
In this case, use our structure theorem (see Theorem 1.5) and the disciminant criterion
(see Lemma 1.6) to prove there is a small prime ideal containing most of F3.

(c) Then we prove that SG subconfigurations within small prime ideals are constant
dimensional. We use the structure of these primes to construct a small wide AH algebra
containing most of F3 (Section 6).
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(d) Once we have that most of our polynomials in F3 are contained in a small wide AH
algebra, then we show that all of F3 must be contained in a small wide AH algebra
(Section 6.4).

2. Once we have the small wide AH algebra containing F3, note that the set F1 \ F2 is a
2-radical-SG over the wide AH algebra. We show that such configurations are constant
dimensional (Appendix A). (“inductive step”)

3. The two steps above prove that F must be a low-dimensional vector space.

It is worth noting that most of the technical work is needed in the steps 1. (b)-(d) above, in
order to handle the loss linearity. As mentioned above, to handle this case, we need to develop and
generalize several results from elimination theory and algebraic geometry to the setting of algebras
generated by prime sequences, and in this step we also crucially use the robustness of the wide AH
algebras.

1.3 Related Work

Radical Sylvester-Gallai problems: among the previous works, the one which mostly resemble
ours are [Shp20] solution of the quadratic radical SG problem.

Our work generalizes [Shp20] by solving the cubic radical SG problem. Moreover, we also
prove in Appendix A a more general version of the quadratic SG problem, allowing some of the SG
dependencies to be in a fixed algebra. In Section 6.3 we also need to solve an important variant
of quadratic SG configurations, which we term as "saturated SG configurations," where there is
an extra linear form z such that the SG dependencies are of the form zFk P rad(Fi, Fj). Saturated
configurations mostly resemble the product configurations from [PS20a], but they are not quite
the same as the linear form z may not satisfy the SG condition with many of the forms in the
configuration F.

On a high level, our approach is similar to the one from [Shp20], and we were inspired by
it, generalizing it in several ways. In his work, Shpilka proves his main theorem by reducing a
quadratic SG configuration to a linear SG configuration, and therefore his approach is also inductive.
To achieve this induction, Shpilka proves a structure theorem on the structure of dependencies
of the form Qk P rad(Qi, Qj), [Shp20, Theorem 29]. This structure theorem falls slightly short
of a structure theorem for intersections of quadrics, but it was sufficient for his application and
motivated us to generalize his theorem for intersections of cubics. Once Shpilka has his structure
theorem, his approach to construct a small algebra containing all forms in the configuration is by
converting the radical dependencies (which are non-linear) into linear dependencies. To achieve
this, Shpilka then uses general linear projections ([Shp20, Section 5.1, Claim 45]) to preserve the
radical dependencies in a non-trivial way. Once Shpilka converts the radical dependencies into
linear ones, he can finally apply the linear SG theorems from [BDWY11, DSW14]. As discussed
in Section 1.2, we generalize all steps in this approach to make it work for cubic forms, providing
several structural elements which generalize to the degree d case.

Progress on PIT: the past year has seen remarkable progress on the PIT problem for constant
depth circuits. In [DDS21], the authors give a deterministic quasi-polynomial time algorithm for
blackbox PIT for depth 4 circuits with bounded top and bottom fanins. Their approach is analytic
in nature, allowing them to bypass the need of Sylvester-Gallai configurations. Another PIT result
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in this setting comes from the lower bound against low depth algebraic circuits proved by [LST22],
which gives a deterministic weakly-exponential algorithm for PIT for these circuits via the hardness
vs randomness paradigm for constant depth circuits [CKS19].

However, the SG-based approach of [Gup14] is the only one so farwhich could yield deterministic
polynomial-time blackbox PIT algorithms for the subclass of depth-4 circuits with constant top and
bottom fanins. Moreover, understanding these non-linear SG type configurations will improve the
conceptual understanding of cancellation in algebraic computations, which is something inherent
in the SG-based approach.

1.4 Organization

In Section 2 we establish the notation and basic facts that will be used throughout the paper. In
Section 3, we establish necessary definitions and theorems needed from commutative algebra and
algebraic geometry. Moreover, in this section we develop some transfer principles, showing that
certain elimination-theoretic and algebro-geometric results also hold for subalgebras generated by
prime sequences. In Section 4 we define and establish useful properties of the main object that we
will use in our proof: wide Ananyan-Hochster algebras. In Section 5 we prove our main structure
theorem and auxiliary lemmas about the structure of ideals generated by two cubic forms. In
Section 6 we define the variants and generalizations of Sylvester-Gallai configurations that we need,
as well as our “inductive-friendly” Sylvester-Gallai configurations over an algebra. In Section 7 we
prove our main theorem, that 3-radical-SG configurations are low dimensional. In Section 8 we
conclude and pose some open problems which would lead to a solution of Conjecture 1.1.

2 Preliminaries

In this section, we establish the notation which will be used throughout the paper and some
important background which we shall need to prove our claims in the next sections.

2.1 General Facts and Notations

Throughout the paper, we will work over an algebraically closed field Kwith char(K) = 0. From
now on we will use boldface to denote a vector of variables or an element of the projective space.
For instance, x = (x0, x1, . . . , xn) is the vector of variables x0, x1, . . . , xn and a = [a0 : a1 : ¨ ¨ ¨ : an]
is a point in Pn.

We will denote by S := K[x0, ¨ ¨ ¨ , xn] our polynomial ring, with the standard grading by degree.
That is, S =

à

dě0

Sd, where Sd is the K-vector space of forms of degree d. For the rest of this paper,

we will use the term form to refer to a homogeneous polynomial.
Given any set of polynomials F1, . . . , Fr P S, we denote the ideal generated by the polynomials

F1, . . . , Fr by (F1, . . . , Fr), and by rad(F1, . . . , Fr) the radical of the ideal (F1, . . . , Fr).

2.2 Quadratic forms

In this subsection we recall the following basic definitions and statements about quadratic forms
borrowed from [Shp20, PS20a]. In Section 4, we generalize these facts to cubic forms.
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Definition 2.1 (Rank of quadratic form). If Q P S2 is a quadratic form, we denote by rank(Q) the
minimal r P N such that Q =

řr
i=1 aibi, where ai, bi P S1. We call any representation of Q of the

form above a minimal representation of Q.

The next proposition appears in [PS20a, Claim 2.13]

Proposition 2.2. If Q P S2 is such that rank(Q) = r and Q =
řr
i=1 aibi =

řr
i=1 figi are two minimal

representations of Q, then spanK tf1, g1, . . . , fr, gru = spanK ta1, b1, . . . , ar, bru.

The proposition above motivates the following definition, taken from [PS20a, Definition 2.14]

Definition 2.3. Let Q P S2 be a quadratic form, where rank(Q) = r, and let Q =
řr
i=1 aibi be a

minimal representation of Q. Define LinQ := spanK ta1, b1, . . . , ar, bru.

The proposition below appears in [PS20a, Claim 2.17].

Proposition 2.4. If Q P S2 is such that dimLinQ ě 2 and x, y P S1 such that x, y R LinQ, then for any
α,β P K˚, we have that s(αQ+ βxy) = s(Q) + 1.

2.3 General Projections

In this subsection, we recall some properties of projection maps used in [Shp20, PS20a]. We begin
by defining projections maps.

Definition 2.5 (Projection maps). Let S = K[x1, ¨ ¨ ¨ , xn] be a polynomial ring. Let W Ă S1
be a subspace of linear forms and y1, ¨ ¨ ¨ , yt be a basis of W. Let y1, ¨ ¨ ¨ , yn be a basis of S1
that extends the basis y1, ¨ ¨ ¨ , yt of W. Let z be a formal variable not in ty1, ¨ ¨ ¨ , ynu. For
α = (α1, ¨ ¨ ¨ , αt) P Kt, we define the projection map ϕα,W as the K-algebra homomorphism
ϕα,W : SÑ K[z, yt+1, ¨ ¨ ¨ , yn] = S[z]/(W) defined by

yi ÞÑ

#

αiz, if 0 ď i ď t
yi, otherwise

For simplicity we will often drop the subscriptsW or α, and write ϕα or ϕ for a projection map
when there is no ambiguity about the vector spaceW or the vector α.

General projections. Fix a vector spaceW Ă S1 as in Definition 2.5. We will say that a property
holds for a general projection ϕα, if there exists a non-empty open subset U Ă Kt such that the
property holds for all ϕα with α P U. Here U Ă Kt is open with respect to the Zariski topology,
hence U is the complement of the zero set of finitely many polynomial functions on Kt. The general
choice of the element α defining a general projection ϕα allows us to say that such projection maps
will avoid any finite set of polynomial constraints. As shown in [Shp20, PS20a], general projection
maps preserve several important properties of polynomials.

Proposition 2.6. Let F P S be a polynomial andW Ă S1 be a vector space of linear forms.

(a) If F R K[W], then ϕ(F) R K[z] for a general projection ϕ : SÑ S[z]/(W).

(b) If F ‰ 0, then ϕ(F) ‰ 0 for a general projection.

(c) Suppose F is a form which does not have any multiple factors and F P (W). If ϕ(F) = zkG where
G R (z), then G does not have any mulitple factors.
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Proof. (a) LetW = spanK ty1, ¨ ¨ ¨ , ytu and y1, ¨ ¨ ¨ , yn be a basis of S1. Let R = K[y1, ¨ ¨ ¨ , yt]. We
may write F as a polynomial in yt+1, ¨ ¨ ¨ , yn with coefficients in R. Since F R R, we know that
there is a non-zero polynomial g(y1 ¨ ¨ ¨ , yt) P R such that g is the coefficient of some monomial
Πnj=t+1y

ej
j in F. If α P KtzV(g), then we must have that ϕα R K[z]. Hence ϕα R K[z] for a general α.

(b) If F R K[W], then by part (a) we conclude that F ‰ 0. If F P K[W] then F = F0 + F1 + ¨ ¨ ¨+ Fd
where Fi P K[W] is the degree i homogeneous part of F. Nowϕα(F) = F0(α)+F1(α)z+¨ ¨ ¨+Fd(α)zd.
If F ‰ 0, then Fi ‰ 0 for some i. If α P KtzV(Fi), then ϕα(F) ‰ 0.

(c) If F P K[W] then G P K. So we may assume that F R K[W]. Since F does not have any
multiple factors, we have Discyj(F) ‰ 0 for all yj P tyt+1, ¨ ¨ ¨ , ynu such that F depends on yj.
Hence, for a general projection ϕα we have Discyj(ϕα(F)) = ϕα(Discyj(F)) ‰ 0. Suppose that for
some projection ϕα the polynomial G has a multiple factor. Let yj P tyt+1, ¨ ¨ ¨ , ynu be a variable
such that the multiple factor ofG depends on yj. Then Discyj(G) = 0 and hence Discyj(ϕα(F)) = 0.
Therefore G can not have any multiple factors for a general projection ϕ.

The next proposition is from [PS20a, Claim 2.23].

Proposition 2.7. Let F,G P S be two polynomials which have no common factor andW Ă S1 a subspace of
linear forms. For a general projection ϕ : SÑ S[z]/(W), we have gcd(ϕ(F), ϕ(G)) P K[z]. In particular, if
F,G are homogeneous then gcd(ϕ(F), ϕ(G)) = zk for some k P N.

The following corollary was proved in [PS20a, Corollary 2.24] for quadratic forms. The same
argument applies to forms of arbitrary degree. We provide a proof for completeness.

Corollary 2.8. Let F,G P S be linearly independent irreducible forms andW Ă S1 be a vector space of linear
forms. If F,G R K[W] thenϕ(F), ϕ(G) are linearly independent, for a general projectionϕ : SÑ S[z]/(W) .

Proof. Since F,G R K[W], we have ϕ(F), ϕ(G) R K[z] for a general projection ϕ, by Proposition 2.6.
Since F,G are irreducible, we know that any common factor of ϕ(F), ϕ(G)must be of the form zk. If
ϕ(F), ϕ(G) are linearly dependent, thenwemust haveϕ(F), ϕ(G) P K[z], which is a contradicion.

The next proposition follows from [PS20a, Claim 2.26].

Proposition 2.9. LetW Ă S1 be a vector space of linear forms. Let F Ă S2 be a finite set of quadratic forms.
Suppose there is an integer D ą 0 such that dim spanK t

Ť

FPF Linϕ(F)u ď D for a general projection
ϕ : SÑ S[z]/(W). Then dim spanK t

Ť

FPF LinFu ď (D+ 1) ¨ dimW.

The proposition above can be sharpened if we have extra information about the linear forms in
F. We state this sharpening in the next proposition

Proposition 2.10. Let W Ă S1 be a vector space of linear forms and F Ă S2 be a finite set of
quadratic forms such that F X (W) and s(F) ă s for each F P F. Suppose there is an integer
D ą 0 such that dim spanK t

Ť

FPF Linϕ(F)u ď D for a general projection ϕ : S Ñ S[z]/(W). Then
dim spanK t

Ť

FPF LinFu ď (D+ 1) ¨ s.

The next result is an analogue of Proposition 2.9 for forms of higher degree.

Proposition 2.11. Let W Ă S1 be a vector space of linear forms. Let F Ă Sd be a finite set of forms
of degree d ě 2 such that F Ă (W). Suppose that there exists an integer D ą 0 such that we have
dim spanK tϕ(F)u ď D for a general projection ϕ of W. Then there exists a graded vector space
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V = V1 + ¨ ¨ ¨+Vd´1 Ă S with Vk Ă Sk, such that F Ă K[V +W] and dim(Vk) ď D ¨
(dim(W)+d´k´1

d´k

)
for all k P [d´ 1].

Moreover, we have dim spanK tFu ď D ¨
(
řd´1
k=1

(dim(W)+k´1
k

)2)
Proof. Let F = tF1, ¨ ¨ ¨ , Fmu Ă Sd. Let W = spanK ty1, ¨ ¨ ¨ , ytu and y1, ¨ ¨ ¨ , yn be a basis of S1.
Let R = K[y1, ¨ ¨ ¨ , yt] and A = K[yt+1, ¨ ¨ ¨ , yn]. For k P [d ´ 1], let rk =

(
t+k´1
k

)
be the number

of distinct monomials of degree k in R. LetM1, ¨ ¨ ¨ ,Mrk denote these monomials that span Rk.
Consider Fi as a polynomial in A[y1, ¨ ¨ ¨ , yt]. Let Fkij P A denote the coefficient of the degree k
monomialMj in Fi. Note that if Fkij ‰ 0, then it is a homogeneous polynomial of degree d´ k. Let
Vd´k = spanK

!

Fkij|i P [m], j P [rk]
)

and V = V1 + ¨ ¨ ¨ + Vd´1. Then we have F Ă K[V +W]. We
will show that dim(Vd´k) ď rkD for all k P [d´ 1].

Fix k P [d´1] and let Fij denote the forms Fkij as defined above. Forα P Kt, we haveϕα(Fi) P A[z]
and the coefficient of zk in ϕα(Fi) is given byM1(α)Fi1 + ¨ ¨ ¨+Mrk(α)Firk . For a general α P Kt,
we know that dim spanK tϕ(F)u ď D. Therefore the dimension of the span of the coefficients of zk
in all the ϕ(Fi) is at most D, i.e. we have dim spanK tM1(α)Fi1 + ¨ ¨ ¨+Mrk(α)Firk |i P [m]u ď D.
We may choose rk number of general vectors α(1), ¨ ¨ ¨ , α(rk) P Krk , such that the matrix M defined
byMij =Mi(α

(j)) is invertible. Then we have dim spanK
 

Fij|i P [m], j P [rk]
(

ď rkD.
Let Fi P F and k P [d´1]. By the above argument, we know that the coefficients tFiju of the degree

kmonomialsM1, ¨ ¨ ¨ ,Mrk in Fi’s span a vector space of dimension at most rkD. Hence, the span of
tM`Fij|i P [m], j, ` P [rk]u is of dimension at most r2kD. Therefore, dim spanK tFu ď

řd´1
k=1 r

2
kD.

Corollary 2.12. Let W Ă S1 be a vector space of linear forms. Let F Ă Sď3 be a finite set of forms
of degree at most 3 such that F Ă (W). Suppose that there exists an integer D ą 0 such that we have
dim spanK tϕ(F)u ď D for a general projectionϕ ofW. Then there exists a graded vector spaceV = V1+V2
such that F Ă K[V +W] and dim(V1) = O((dimW)2), dim(V2) = O(dim(W)). Moreover, we have
dim spanK tFu ď O((dimW)4).

Proof. Let Fi = F X Si for i P [3]. As F Ă (W), we have F1 ĂW. By Proposition 2.11, there exists a
vector space U1 Ă S1 such that F2 Ă K[U1 +W] and dim(U1) ď D ¨ dim(W). Again, by applying
Proposition 2.11 to F3, we obtain a graded vector space U 11 +U 12 such that F3 Ă K[U 11 +U

1
2 +W]

and dim(U 11) ď D ¨
(dim(W)+1

2

)
, dim(U 12) ď D ¨ dim(W). Hence, we may take V1 = U1 +U

1
1 and

V2 = U
1
2.

Since F1 Ă W, we have dim(F1) ď dim(W). By Proposition 2.11, we know that dim(F2) ď

D ¨ (dimW)2 and dim(F3) ď D ¨
(
(dimW)2 +

(dim(W)+1
2

)2)
. Therefore, we have

dim spanK tFu ď dim(W) +D ¨

(
2(dimW)2 +

(
dimW + 1

2

)2)
.

Hence dim spanK tFu ď O((dimW)4).

3 Results from algebraic geometry

In this section we establish the necessary definitions and theorems needed from commutative
algebra and algebraic geometry.
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3.1 Regular sequences and Hilbert-Samuel multiplicity

Definition 3.1 (Regular sequence). Let R be ring andM an R-module. A sequence of elements
f1, f2, ¨ ¨ ¨ fn P R is called anM-regular sequence if

(1) (f1, f2, ¨ ¨ ¨ , fn)M ‰M, and

(2) for i = 1, ¨ ¨ ¨ , n, fi is a non-zerodivisor onM/(f1, ¨ ¨ ¨ , fi´1)M.

IfM = R, then we simply call it a regular sequence.

If P andQ are two irreducible polynomials in the polynomial ring S such that P does not divide
Q, then P,Q is an S-regular sequence. Indeed, since P is irreducible, we know that S/(P) is a integral
domain. Therefore Q is a non-zero element in S/(P), and hence a non-zero divisor.

We also note that if f1, ¨ ¨ ¨ , fm is a regular sequence of forms inS, then f1, ¨ ¨ ¨ , fm are algebraically
independent. Therefore the subalgebra generated by f1, ¨ ¨ ¨ , fm is isomorphic to a polynomial ring.
In particular, the ring homomorphism k[y1, ¨ ¨ ¨ , yn] Ñ S defined by yi ÞÑ fi is an isomorphism
onto its image.

Even though the K-algebra K[f1, . . . , fm] Ă S is isomorphic to a polynomial ring, its elements
may not behave well when seen as elements of S. We next present a sufficient condition which will
ensure to us that the subalgebra is well behaved with respect to S, in a way which we formalize later.

Definition 3.2 (Rη-property). Let η be a non-negative integer. We say that a Noetherian ring R
satisfies the Rη property if the local ring Rp is a regular local ring for all prime ideals p Ă R such
that height(p) ď η.

Definition 3.3. Let η be a non-negative integer and R a Noetherian ring. A sequence of elements
f1, . . . , fn P R is called a prime sequence (respectively an Rη-sequence) if

1. f1, ¨ ¨ ¨ , fn is a regular sequence, and

2. R/(f1, ¨ ¨ ¨ , fi) is an integral domain (respectively, satisfies the Rη property) for all i P [n].

Remark 3.4. Since prime sequences and Rη-sequences are regular sequences, we know that if f1, ¨ ¨ ¨ , fn is
a prime sequence or Rη-sequence in the polynomial ring S, then f1, ¨ ¨ ¨ , fn are algebraically independent.

We note the following simple statement about radicals and regular sequences.

Lemma 3.5. If F, P1, P2 is a regular sequence in S and FG P rad (FP1, FP2) then G P rad (F1, F2).

Proof. Note that we have (FG)d = AFP1+BFP2 for someA,B P S, and hence Fd´1Gd = AP1+BP2.
Since F is a non-zero divisor in S/(P1, P2), we conclude that Gd P (P1, P2).

Let (R,m) be a local ring andM be an R-module. Define the Hilbert-Samuel function ofM to be

Hm,M(n) = length
(

mnM

mn+1M

)
.

By [Eis95, Proposition 12.2, Theorem 12.4], there exists a polynomial Pm,M of degree dim(M)´1
such that Pm,M(n) = Hm,M(n) for n " 0. The polynomial Pm,M is called the Hilbert-Samuel
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polynomial of M. Let ad be the leading coefficient of Pm,M, where d = dim(M) ´ 1. The
Hilbert-Samuel multiplicity ofM is defined as

e(m,M) = (d´ 1)!ad.

Therefore, the leading coefficient of the Hilbert-Samuel polynomial Pm,M is e(m,M)
(dimM´1)! .

Let Sm be the localization of S at the irrelevant maximal ideal m = (x0, ¨ ¨ ¨ , xn) and let I
be a homogeneous ideal in S. Then the localization (S/I)m is an Sm-module. We will denote
e(S/I) := e(m, (S/I)m). Note that by [Eis95, Exercise 12.6], the number e(S/I) is also equal to the
degree of the projective variety defined by I in Pn.

Let I = q1 X ¨ ¨ ¨ X qm be an irredundant primary decomposition of I in S and pi = rad(qi) be a
minimal prime of I for some i P [m]. Then the localization (S/I)pi is an Spi module of finite length.
We define the multiplicity of pi in the primary decomposition of I as

m(pi) = length((S/I)pi).

Remark 3.6. Note thatm(pi) ě 1. Moreover, we havem(pi) = 1ô qi = pi. Indeed, length((S/qi)pi) ď
length((S/I)pi) since we have a surjective homomorphism (S/I)pi Ñ (S/qi)pi . Therefore we have
length((S/qi)pi) = 1. If qi Ĺ pi, then we have a strict chain of Spi-modules given by (0) Ĺ pi Ĺ (S/qi)pi ,
which is of length 2. That is a contradiction. Therefore we must have qi = pi. Hence if we havem(pj) = 1
for all j, then I = Xjpj, and I is a radical ideal.

Conversely if I is a radical ideal then m(pi) = 1 for all minimal primes. Indeed for every i the
ideal pi(S/I)pi is the nilradical of (S/I)pi by the minimality of pi. Since S/I has no nilpotents, we have
pi(S/I)pi = (0)pi , which implies (S/I)pi is a field, and therefore has length 1.

We recall the basic properties of the Hilbert-Samuel multiplicity below.

Proposition 3.7. [Eis95, Exercises 12.7, 12.11] Let I be a homogeneous ideal in S.

1. Let J Ă S be a homogeneous ideal such that I Ă J. Then e(S/J) ď e(S/I).

2. If I = (F) for some form of degree d, then e(S/I) = d.

3. If I = (F1, ¨ ¨ ¨ , Fm) where F1, ¨ ¨ ¨ , Fm is a regular sequence of forms and deg(Fi) = di. Then

e(S/I) = d1 ¨ ¨ ¨dm.

4. If I = (F1, ¨ ¨ ¨ , Fm) where F1, ¨ ¨ ¨ , Fm is a regular sequence of forms, and p1, ¨ ¨ ¨ , pm are the minimal
primes of I in S. Then

e(S/I) =
ÿ

i

m(pi)e(S/pi).

Lemma 3.8. Let P,Q be irreducible forms and p1, ¨ ¨ ¨ , pr be the minimal primes of (P,Q) in S. Suppose
there exist linear forms `j P pj for all j P [r]. Then we have

ź

j

`
m(pj)
j P (P,Q).
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Proof. Let I denote the ideal (P,Q) in S. We have a chain of (S)pj-submodules of (S/I)pj given by

(S/I)pj Ą (`j)pj Ą (`2j )pj Ą ¨ ¨ ¨ (`
mj

j )pj Ą 0

Since the local ring (S/I)pj is an Spj-module of length mj, we must have that `mj

j = 0 in (S/I)pj .
Now consider that natural morphism to the localization

(S/I)Ñ (S/I)pj .

Since the image of `mj

j is zero under the localization morphism, by [AM69, Corollary 10.21], we see
that `mj

j must be contained in all pj-primary ideals of S/I. In particular `mj

j P qj for all j. Therefore
we have

ź

j

`
mj

j P Xjqj = I.

Lemma 3.9. Let P,Q, P1, ¨ ¨ ¨ , Pm P S be irreducible forms of degree at most d. Suppose m ě 2d
2 . If

Q P rad(P, Pi) for all i P [m], then we must have rad (P, Pi) = rad(P, Pk) for two distinct i, k P [m].

Proof. Note that we have rad(P,Q) Ă rad(P, Pi) for all i P [m], since Q P rad(P, Pi). Let S =
tp1, ¨ ¨ ¨ p`u and Si = tpi1, ¨ ¨ ¨ , pi`iu be the set of minimal primes of (P,Q) and (P, Pi) respectively.
We have

Ş

pj = rad(P,Q) Ă rad(P, Pi) =
Ş

j pij. Therefore, by [AM69, Proposition 1.11], we must
have that for all i, j, there exists k such that pk Ă pij. Since we know that ht(pj) = ht(pij) = 2 for all
i, j, we must have that for all i, j, there exists k such that pk = pij, i.e. Si Ă S for all i P [m].

Note that we have
ř

jm(pj)e(S/pj) = e(S/(P,Q)) = deg(P)deg(Q) ď d2. Since m(pj) ě 1

and e(S/pj) ě 1, we conclude that |S| ď d2, i.e. there exist at most d2 minimal primes of (P,Q).
Therefore there are at most 2d2 ´ 1 number of distinct choices for the set of minimal primes
Si = tpiju of the ideals (P, Pi). By the pigeonhole principle, there exist distinct i, k P [m] such that
Si = Sk. Thus, rad(P, Pi) =

Ş

qPSi
q =

Ş

pPSk
p = rad(P, Pk).

3.2 Intersection flatness and prime ideals

Recall that if R Ñ R 1 is a flat ring homomorphism, then IR 1
Ş

JR 1 = (I
Ş

J)R 1 for any two ideals
I, J in R. The notion of intersection flatness generalizes this fact to arbitrary intersections. A flat
ring homomorphism RÑ R 1 is called intersection flat if for every family I of ideals in R, we have
Ş

IPI(IR
1) = (

Ş

IPI I)R
1. The following result is from the discussion on extensions of prime ideals in

in [AH20a, Section 2]. We rephrase it here in the form of the following proposition for convenience.

Proposition 3.10 (Intersection flatness). Let g1, ¨ ¨ ¨ , gs be forms in K[y1, ¨ ¨ ¨ , yn] such that g1, ¨ ¨ ¨ , gs
form a regular sequence. Then the K-algebra homomorphism K[x1, ¨ ¨ ¨ , xs] Ñ K[y1, ¨ ¨ ¨ , yn], given by
xi ÞÑ gi, is intersection flat.

Proof. Since g1, ¨ ¨ ¨ , gs is a regular sequence, it can be extended to a homogeneous system of
parameters g1, ¨ ¨ ¨ , gn. Since g1, ¨ ¨ ¨ , gn is a homogeneous system of parameters, we know
that K[y1, ¨ ¨ ¨ , yn] is a free module over K[g1, ¨ ¨ ¨ , gn]. Now K[g1, ¨ ¨ ¨ , gn] is a free module
over K[g1, ¨ ¨ ¨ , gs] via the inclusion homomorphism K[g1, ¨ ¨ ¨ , gs] ãÑ K[g1, ¨ ¨ ¨ , gn]. Therefore
K[y1, ¨ ¨ ¨ , yn] is free over K[g1, ¨ ¨ ¨ , gs] via the inclusion homomorphism. By [HH94, Page 41], free
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extensions are intersection flat. Therefore the ring homomorphism K[g1, ¨ ¨ ¨ , gs] ãÑ K[y1, ¨ ¨ ¨ , yn]
is intersection flat. Since g1, ¨ ¨ ¨ , gs is part of a homogeneous system of parameters, we know that
g1, ¨ ¨ ¨ , gs are algebraically independent over K. Therefore the homomorphism K[x1, ¨ ¨ ¨ , xs]Ñ
K[y1, ¨ ¨ ¨ , yn], given by xi ÞÑ gi is an isomorphism onto its image K[g1, ¨ ¨ ¨ , gs] and thus it is
intersection flat.

The following result from [AH20a] shows that if we further assume that g1, ¨ ¨ ¨ , gs is a prime
sequence, then prime ideals in K[g1, ¨ ¨ ¨ , gs] extend to prime ideals in K[y1, ¨ ¨ ¨ , yn].

Lemma 3.11. [AH20a, Corollary 2.9] Let S be our polynomial ring and g1, ¨ ¨ ¨ , gs be a prime sequence of
forms in S. Then for any prime ideal p Ă K[g1, ¨ ¨ ¨ , gs], the extension ideal pS is also prime.

Proposition 3.12. Let P,Q be non-associate irreducible forms in S. Let g1, ¨ ¨ ¨ , gs be a prime sequence of
forms such that Q P A := K[g1, ¨ ¨ ¨ , gs]. Suppose P R (g1, ¨ ¨ ¨ , gs). Let p Ă S be a minimal prime over
(P,Q). Then pXA = (Q) and (P,Q)XA = (Q).

Proof. Let q = pXA. Note that q Ă (g1, ¨ ¨ ¨ , gs). Indeed, suppose we have f P qz(g1, ¨ ¨ ¨ , gs). Then
f is a polynomial inK[g1, ¨ ¨ ¨ , gs]with non-zero constant term. Since (P,Q) is a homogeneous ideal,
the minimal prime p over (P,Q) is also a homogeneous ideal. By homogeneity, f P p implies that p
contains a non-zero constant, which is a contradiction.

Since P is irreducible, we know that (P,Q) is a regular sequence. Hence we have ht(p) = 2. By
Lemma 3.11, the ideal qS is prime. Therefore, ht(qS) ď 2 since qS Ă p. Note that for any prime ideal
q 1 Ă A we have q 1SXA = q 1. By Lemma 3.11, any strict chain of prime ideals q0 Ĺ ¨ ¨ ¨ Ĺ qm Ĺ q in
A extends to a strict chain of prime ideals q0S Ĺ ¨ ¨ ¨ Ĺ qmS Ĺ qS in S. Therefore ht(q) ď ht(qS) ď 2.
Suppose ht(q) = 2. Then we must have p = q ¨ S. This is a contradiction since P P p and
P R (g1, ¨ ¨ ¨ , gs). Therefore ht(q) = 1, and hence q = (Q), as (Q) is a prime ideal. Further, we have
(Q) Ă (P,Q)XA Ă pXA = (Q). Hence (P,Q)XA = (Q).

Corollary 3.13. Let P,Q be non-associate irreducible forms in S. Let g1, ¨ ¨ ¨ , gs be a prime sequence of
forms such that Q P A := K[g1, ¨ ¨ ¨ , gs]. Suppose P R (g1, ¨ ¨ ¨ , gs). Let Y Ă An and X Ă As be the affine
schemes defined by the ideals (P,Q) and (Q) respectively. Then every irreducible component of Y dominates
X under the projection morphism π : An Ñ As defined by y ÞÑ (g1(y), ¨ ¨ ¨ , gs(y)).

Proof. LetY =
Ť

j Yj be the irreducibledecompositionofY. Weknow that the irreducible components
Yj are in one-to-one correspondence with the minimal primes over (P,Q) in S. Let pj be the minimal
prime corresponding to Yj. Note that π(Y) Ă X. We have the projection morphism π : Yj Ñ X,
where Yj = Spec(S/pj) andX = Spec(A/(Q)). By Proposition 3.12, we have pjXA = (Q). Therefore
the generic point pj of Yj maps to the generic point of X under the morphism π. Hence we conclude
that the closure of π(Yj) is X, i.e. Yj dominates X.

Lemma 3.14. Let φ : A Ñ B be a homomorphism of finitely generated K-algebras. Let Y = Spec(B),
X = Spec(A) and π : Y Ñ X be the corresponding morphism of affine schemes. Suppose that X is irreducible
and reduced, i.e. A is an integral domain. Suppose that every irreducible component of Y dominates X.

1. If π´1(x) is irreducible for a general closed point x P X, then Y is irreducible.

2. If Y is Cohen-Macaulay and π´1(x) is reduced for a general closed point x P X, then Y is reduced.
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Proof. (1) Since A Ñ B is a homomorphism of finitely generated K-algebras, the morphsim π is
of finite type. Therefore, by [Sta15, Tag 0554], the generic fiber of π is irreducible. Since there is
bĳection between the irreducible components of Y that dominate X and the irreducible components
of the generic fiber, we conclude that Y is irreducible.

(2) Since B is Cohen-Macaulay, in order to show that B is reduced, it is enough to show that B is
generically reduced, i.e. Bp is reduced for any minimal prime p of B.

Note that the generic point α of Spec(A) is the point corresponding to the prime ideal (0)
in A. Recall that the minimal primes p of B correspond to the generic points of the irreducible
components of Y. Since all irreducible components of Y dominate X, any such generic point p maps
to (0) under Spec(B)Ñ Spec(A). Therefore we have φ´1(p) = (0). By [Sta15, Tag 0575] we know
that the generic fiber Yα is reduced, where α is the generic point of X. Hence the ring BbA K(A) is
reduced, as Yα = Spec(BbA K(A)) where K(A) is the fraction field of A.

Let ft P Bp be a nilpotent element. Therefore sfk = 0 in B for some s R p. So (sf)k = 0 in B

and hence (sf)k b 1 = 0 in B bA K(A). Therefore sf b 1 = 0 in B bA K(A) by reducedness. Let
T Ă A be the multiplicatively closed set Azt0u. Consider the A-bilinear map φ : Bˆ K(A)Ñ T´1B

given by (s, ab ) =
a¨s
b . If sfb 1 = 0, then by the universal property of tensor products we must have

sf = φ(sf, 1) = 0 in T´1B. Therefore there exists an a P T , such that a ¨ sf = 0 in B. Note that s R p
and φ(a) R p, as φ´1(p) = (0). So we have φ(a)sf = a ¨ sf = 0 P p, where φ(a)s R p.Therefore we
conclude that f = 0 in Bp. Thus Bp is reduced, since ft was an arbitrary nilpotent element.

Lemma 3.15. Let A be a subalgebra generated by a prime sequence of forms in S. Let P1, . . . , Pk P S be

irreducible polynomials and di P N+ such that
k
ź

i=1

Pdii P A. Then Pi P A for i P [k].

Proof. Since a prime sequence is algebraically independent, we know that A is isomorphic to a
polynomial ring, and hence an UFD. Let F =

śk
i=1 P

di
i . Since A is a UFD and F P A, we have

that F =
śt
i=1Q

ei
i , where each Qi P A is irreducible. Therefore (Qi) is a prime ideal in A. By

Lemma 3.11, we see that (Qi) ¨ S is a prime ideal in S. Therefore, Qi is irreducible in S as well and
hence, F =

śt
i=1Q

ei
i is an irreducible decomposition of F in S. Since S is a UFD, by uniqueness of

irreducible factorization, we must have that Pi = Qi and di = ei (after potential permutation of
indices). Hence Pi P A for all i P [k].

Note that, in Lemma 3.15, it is necessary to assume that A is generated by a prime sequence. For
example, consider the subalgebra A = k[xy] Ă k[x, y]. Now A is isomorphic to a polynomial ring in
one variable and hence an UFD. However xy P A but x, y R A.

Another important consequence of intersection flatness and prime sequences is that radical
ideals of complete intersections behave well across intersection flat ring homomorphisms. Let
A Ă S be a sub-algebra. Let I = (f1, ¨ ¨ ¨ , fr) Ă S be an ideal such that f1, ¨ ¨ ¨ , fr P A. Let IA be the
ideal generated by f1, ¨ ¨ ¨ , fr inA. Let radS(I) and radA(IA) denote the radical of I in S and IA inA

respectively. For example, if F,G are two non-associate cubic forms, and if the generators of A form
a prime sequence, then the minimal primes of I = (F,G) and IA are in one-to-one correspondence,
and the elimination ideal of radS(I) is exactly radA(IA).

Proposition 3.16. Let A = K[g1, . . . , gr] Ă S be a sub-algebra where g1, . . . , gr form a homogeneous
prime sequence in S. Let F,G P S be two irreducible forms such that F,G form a regular sequence in S.
Suppose F,G P A. Let I = (F,G) be the ideal generated by F,G in S. Then we have
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1. If p Ă A is a minimal prime of IA then p ¨ S is a minimal prime of I in S. Conversely, any minimal
prime q Ă S of I is of the form q = p ¨ S for some minimal prime p Ă A of IA.

2. Moreover, we have

radS(I)XA = radA(IA) and radA(IA) ¨ S = radS(I).

Proof. Since g1 ¨ ¨ ¨ , gr is a prime sequence, the subalgebra A is isomorphic to a polynomial ring in
r variables. Note that F,G are irreducible as elements of A, and hence F,G is a regular sequence in
A. Therefore every associated prime of the ideal (F,G) in A is minimal and of height 2. Thus we
can write radA(IA) =

Şa
i=1 pi where pi Ă A are the minimal primes of (F,G) in A. Similarly, we

have radS(I) =
Şb
j=1 qj where qj Ă S are the minimal primes of (F,G) in S, and thus ht(qj) = 2.

Since radA(IA) Ă radS(I) X A, we have that radA(IA) Ă (qj X A) for all j. Moreover, since
contractions of prime ideals are prime, we have that the ideal qjXA is prime. Then

Ş

i pi Ă (qjXA)
implies that pi Ă (qjXA) for some i, by [AM69, Proposition 1.11]. Since 2 = ht(pi) ď ht(qjXA) ď
ht(qj) = 2, all inequalities must be equalities and thus we must have pi = qj XA. Additionally, by
Lemma 3.11, we have that piS is prime in S and since piS Ă qj, the same height argument implies
piS = qj in S.

Hence, the previous paragraph and pure dimensionality imply that a = b and after relabeling
we have qj = piS, which implies that radS(I)XA = radA(IA) and radA(IA) ¨ S = radS(I).

3.3 Elimination, Resultants and Radical ideals

Wenowprove some structural results on the elimination ideals of radical ideals of the form rad(P,Q).
The following results show that certain eliminations will lead to principal ideals.

Lemma 3.17 (Principal Eliminations). Let P,Q P S := K[x1, . . . , xr, y1, . . . , ys] be irreducible polyno-
mials. Let S 1 = K[x1, . . . , xi´1, xi+1, . . . , xr, y1, . . . , ys]. Suppose the following conditions hold:

1. Q P R := K[y1, . . . , ys].

2. the polynomial P depends on the variable xi, i.e. P =
ře
k=0 pkx

k
i , where 0 ă e, pe ‰ 0 and pk P S 1

for all k.

3. pe R (Q).

Then the elimination ideal rad(P,Q)xi = rad(P,Q)X R is generated by Q, i.e. rad(P,Q)xi = (Q).

Proof. By item (2), we have P =
ře
k=0 pkx

k
i , where 0 ă e and pk P S 1, with pe ‰ 0. Let

J = rad(P,Q)X S 1. Since Q P J, we have that (Q) Ď J.
To show the other inclusion, if F P J, we have that

FD = PA+QB

for some A,B P S. We will now show that A P (Q). To prove this, it is enough to show that for any
solution A,B P S to the equation above, we must have that Q divides the leading term of A, when
considered as a polynomial in xi with coefficients in S 1.
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Since degxi(F
D) = degxi(Q) = 0, we have that degxi(PA) = degxi(B) =: ` ě e, which implies

that A =
ř`´e
k=0 akx

k
i , B =

ř`
k=0 bkx

k
i , where b` ‰ 0. Therefore we have

pe ¨ a`´e +Qb` = 0ñ Q | a`´e

since Q is irreducible and pe R (Q).
Thus, by induction, we must have that A P (Q), which proves that FD P (Q). Since (Q) is prime,

as Q is irreducible and S is a UFD, the latter implies F P (Q) and thus J = (Q).

We can easily generalize the statement above to subalgebras generated by homogeneous prime
sequences, and we do so in the next lemma. While the proof is essentially the same as in the above
lemma, some additional technicalities are needed to make the proof go through, and therefore we
add a proof for completeness.

Lemma 3.18 (Principal eliminations in prime sequences). Let A = K[x1, . . . , xr, y1, . . . , ys] Ă S

be a subalgebra of our polynomial ring S such that x1, . . . , xr, y1, . . . , ys are homogeneous polyno-
mials which form a prime sequence. Let P,Q be two irreducible polynomials in S and let A 1 =
K[x1, . . . , xi´1, xi+1, . . . , xr, y1, . . . , ys]. Suppose the following holds:

1. P P A and Q P B := K[y1, . . . , ys].

2. P depends on xi, i.e. P =
ře
k=0 pkx

k
i , where 0 ă e, pe ‰ 0 and pk P A 1 for all k.

3. pe R (Q).

Then the elimination ideal rad(P,Q)xi = rad(P,Q)XA 1 is generated by (Q), i.e. rad(P,Q)xi = (Q).

Proof. Note that B Ă A is an intersection flat subalgebra of A generated by a homogeneous
prime sequence. Let F P rad(P,Q) X A 1. By Proposition 3.16, we know that if F P A is such that
F P rad(P,Q), then there exist A,B P A and D P Ną0 such that FD = PA+QB.

Since P depends on xi, we have P =
ře
k=0 pkx

k
i , where 0 ă e ă d and pk P B for each 0 ď k ď e,

with pe R (Q). Let J = rad(P,Q)XB. Since Q P J, we have that (Q) Ď J.
To show the other inclusion, if F P B is such that F P rad(P,Q), by the first paragraph

there exist A,B P A and D P Ną0 such that FD = PA + QB. Since F,Q P B, we have that
degxi(F) = degxi(Q) = 0 overA. Thus, we have that degxi(PA) = degxi(B) =: ` ě e, which implies
that A =

ř`´e
k=0 akx

k
i , B =

ř`
k=0 bkx

k
i , where ak, bk P B, a`´e, b` ‰ 0 and thus

pe ¨ a`´e +Qb` = 0ñ Q | a`´e

since B is a UFD, Q P B is irreducible and pe R (Q).
Thus, by induction, we must have that A P (Q), which proves that FD P (Q). Since (Q) is prime,

as Q is irreducible and B is a UFD, the latter implies F P (Q) and thus J = (Q).

Corollary 3.19. Let A = K[x1, . . . , xr, y1, . . . , ys] Ă S be a subalgebra of our polynomial ring S such that
x1, . . . , xr, y1, . . . , ys are homogeneous polynomials which form a prime sequence, and let P,Q, F P A be
three irreducible and pairwise coprime forms such that Q P K[y1, . . . , ys] and F P rad(P,Q). If P depends
on xi, then F also depends on xi.

Proof. LetB := K[x1, . . . , xi´1, xi+1, . . . , xr, y1, . . . , ys]. By Lemma 3.18, we have that rad(P,Q)xi =
(Q). Since F,Q are pairwise coprime, we have that F R (Q), and therefore we must have F R B.
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Let S be our polynomial ring and P,Q be two polynomials in S. Let g1, ¨ ¨ ¨ , gs be a prime
sequence of forms. Let A = K[g1, ¨ ¨ ¨ , gs] be the subalgebra generated by g1, ¨ ¨ ¨ , gs. Since
g1, ¨ ¨ ¨ , gs are algebraically independent, we have an isomorphism φ : K[x1, ¨ ¨ ¨ , xs]

„−Ñ A given by
xi ÞÑ gi.

Definition 3.20. In the setting as above, suppose that P,Q P A. Let rP = φ´1(P) and rQ = φ´1(Q).
We define the resultant of P,Qwith respect to gi in the subalgebra A as

ResAgi(P,Q) = φ(Resxi(rP, rQ)).

Similarly we define the discriminant of P with respect to gi in the sublagebra A as

DiscAgi(P) = φ(Resxi(rP,
BrP

Bxi
)).

Using the isomorphism φ we can translate the usual properties of resultants in polynomial
rings to similar properties in the subalgebra A. Note that ResAgi(P,Q) is in the subalgebra generated
by tg1, ¨ ¨ ¨ , gsuztgiu in S. Also, we have ResAgi(P,Q) P (P,Q).

If we start with a form P P S such that P P K[g1, ¨ ¨ ¨ , gs] and write P as a polynomial in
g1 ¨ ¨ ¨ , gs, then P might not be homogeneous in g1, ¨ ¨ ¨ , gs (if we consider each gi having degree
1 in K[g1, . . . , gs]). Thus we need to consider possibly non-homogeneous polynomials in the
following result.

Lemma 3.21. Let P,Q P S = K[z1, ¨ ¨ ¨ , zm, x1, ¨ ¨ ¨ , xs] be irreducible polynomials. If the following holds

1. Q P R := K[x1, ¨ ¨ ¨ , xs],

2. pX R = (Q) for any minimal prime p of (P,Q).

3. For all i P [m] such that P depends on the variable zi, we have Disczi(P) R (Q).

Then the ideal (P,Q) is radical.

Proof. Note that if P P R, then condition 2 above implies that P P (Q). Therefore, in this case we have
(P,Q) = (Q), which is a prime ideal. Hence we may assume that P R R and in particular, there exists
at least one variable zi such that P depends on zi. Let π : Am+s Ñ As be the projection morphism
onto the (x1, ¨ ¨ ¨ , xs) coordinates. Let B = S/(P,Q) and A = R/(Q). Note that π|Y : Y Ñ X is the
corresponding morphism of affine schemes, where Y = Spec(B) and X = Spec(A). Note that by
assumption (2), every irreducible component of Y dominates X. Therefore, by Lemma 3.14, it is
enough to show that π|´1Y (x) is reduced for a general closed point x P X.

Let x = (c1, ¨ ¨ ¨ , cs) P X be a closed point. Let Px P K[z1 ¨ ¨ ¨ , zm] denote the polynomial
P(z1 ¨ ¨ ¨ , zm, c1, ¨ ¨ ¨ , cs). Note that π|´1Y (x) = Spec(K[z1, ¨ ¨ ¨ , zm]/(Px)). Now π|´1Y (x) is not
reduced iff the polynomial Px has a multiple factor, i.e. Disczi(Px) ” 0 for some variable zi such
that Px depends on zi. Let Zi Ă Am+s be the closed subscheme defined by Disczi(P). Now, if P
depends on a variable zi, then Disczi(Px) ” 0 iff π´1(x) Ă Zi. To summarize, for a closed point
x P X, we have that π|´1Y (x) is reduced iff π´1(x) Ć Zi for all i such that P depends on zi.

Note that Spec(S/(Q)) = π´1(X) = X ˆ Am. By assumption (3), we have that Zi X π´1(X)
is of pure dimension m + s ´ 2. Indeed, since Q is irreducible and Disczi(P) R (Q), we see that
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Q,Disczi(P) is a regular sequence. Recall that X is of dimension s ´ 1. If Zi X π´1(X) does not
dominate X, then for a general x P X we have π´1(x) Ć Zi. If Zi X π´1(X) dominates X, by [Har77,
Exercise II.3.2], we conclude that there is a dense open subset U Ă X such that Zi X π´1(x) is of
dimensionm´1 for x P U. Therefore for a general x P X, we have π´1(x) Ć Zi as dim(π´1(x)) = m.
Hence, π|´1Y (x) is reduced for a general closed point x P X.

Lemma 3.22. Let P,Q P S be irreducible forms and h1 ¨ ¨ ¨ , hm, g1, ¨ ¨ ¨ , gs be a prime sequence of forms
in S such that P,Q P A := K[h1, ¨ ¨ ¨ , hm, g1, ¨ ¨ ¨ , gs]. Suppose the following holds

1. Q P K[g1, ¨ ¨ ¨ , gs],

2. P R (g1, ¨ ¨ ¨ , gs) in S,

3. For all i P [m] such that P depends on hi, then DiscAhi(P) R (Q).

Then the ideal (P,Q) is a radical ideal in S.

Proof. Since h1 ¨ ¨ ¨ , hm, g1, ¨ ¨ ¨ , gs is a prime sequence, we have an isomorphism

φ : K[z1 ¨ ¨ ¨ , zm, x1, ¨ ¨ ¨ , xs]Ñ A

given by zi ÞÑ hi and xj ÞÑ gj. Let rP = φ´1(P) and rQ = φ´1(Q). Note that the minimal primes of
(rP, rQ) are of the form φ´1(p) for some minimal prime p of (P,Q) in A. Note that if p is a minimal
prime of (P,Q) in A, then pS is a minimal prime of (P,Q) in S by Lemma 3.11. Thus, by Proposition
3.12, we see that p X K[g1, ¨ ¨ ¨ , gs] = (Q). Therefore condition (2) of Lemma 3.21 is satisfied for
rP, rQ. Note that conditions (1) and (3) of Lemma 3.21 are satisfied for rP, rQ via the isomorphism φ.
Therefore the ideal (rP, rQ) is radical in the polynomial ring K[z1, ¨ ¨ ¨ , zm, x1, ¨ ¨ ¨ , xs]. Hence (P,Q)
is radical in the subalgebra A. By Lemma 3.11, prime ideals of A extend to prime ideals in S. Thus,
by Proposition 3.10, the ideal (P,Q) is an intersection of prime ideals and hence radical.

Example 3.23. Note that in Lemma 3.22, we need thatDiscAhi(P) R (Q) for all zi such that P depends on zi.
It is not enough to assume that this property holds for just one such zi. One can construct such an example
as follows. Let P = y3 + vy2 + (xu2 ´ z3) andQ = xu2 ´ z3 in K[x, y, z, u, v]. ThenQ P K[x, u, z] and
Discv(P) = y2 R (Q). However, the ideal (P,Q) is not radical as

a

(P,Q) = (y2 + yv, xu2 ´ z3). This
occurs because we have Discy(P) P (Q).

Corollary 3.24. Let P P S be irreducible form of degree ď d. Suppose h1 ¨ ¨ ¨ , hm, g1, ¨ ¨ ¨ , gs is a prime
sequence of forms in S such that P P A := K[h1, ¨ ¨ ¨ , hm, g1, ¨ ¨ ¨ , gs]. If P R (g1, ¨ ¨ ¨ , gs), then there exist
at most d2(2d´ 1) irreducible formsQi P K[g1, ¨ ¨ ¨ , gs] such that (P,Qi) is not radical andQi R (Qj) for
i ‰ j.

Proof. LetA 1 = K[g1, ¨ ¨ ¨ , gs]. Consider P as a polynomial inA 1[h1, ¨ ¨ ¨ , hm]. Since P R (g1, ¨ ¨ ¨ , gs),
there exists a monomial α

ś

j h
ej
ij

in P, where α is a non-zero constant in K and hij P th1 ¨ ¨ ¨ , hmu.
Without loss of generality, let h1, ¨ ¨ ¨ , hk be the elements appearing in this monomial. Note that
we must have k ď d since deg(P) ď d. Note that P R (hk+1, ¨ ¨ ¨ , hm, g1 ¨ ¨ ¨ , gs). Suppose for some
Q P K[g1, ¨ ¨ ¨ , gs]we have (P,Q) not radical. Then by Lemma 3.22, we know that DiscAhi(P) P (Q)
for some i P [k]. Therefore, for any Q P K[g1, ¨ ¨ ¨ , gs] such that (P,Q) is not radical, we must have
that Q divides

śk
i=1DiscAhi(P). Now, deg(DiscAhi(P)) ď d(2d´ 1) for all i. Therefore, there can be

at most d2(2d´ 1) such irreducible forms Qi, where Qi R (Qj) for i ‰ j.
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Proposition 3.25. Let P,Q P S = K[y, x1, ¨ ¨ ¨ , xn] be irreducible polynomials. Suppose P = ady
d +

¨ ¨ ¨+ a0 and Q = bey
e + ¨ ¨ ¨+ b0, where d, e are positive integers, ai, bi P A := K[x1, ¨ ¨ ¨ , xn], and at

least one of ad or be is non-zero. Let p Ă S be a minimal prime over the ideal (P,Q) and q = pXA. Then
the following holds:

(1) If ht(q) = 1, then q = (f) where f P A is an irreducible factor of the resultant Resy(P,Q).

(2) If ht(q) = 2, then (a0, ¨ ¨ ¨ , ad, b0, ¨ ¨ ¨ , be) Ă p.

Proof. Note that Resy(P,Q) is a non-zero polynomial in (P,Q) X A. In particular, Resy(P,Q) P q.
Since q is a prime ideal, we must have that f P q for some irreducible factor f of Resy(P,Q). Now (f)
is a prime ideal, since f is irreducible. Therefore if ht(q) = 1, then we must have q = (f).

Suppose ht(q) = 2. Recall that qS is a prime ideal. By Lemma 3.11, any strict chain of prime
ideals in A extends to a strict chain of prime ideals in S. Thus, ht(qS) = 2. Since (P,Q) is a regular
sequence and p is a minimal prime, we have ht(p) = 2. Therefore p = qS.

Consider the projection morphism π : An+1 Ñ An corresponding to the inclusion A Ă S. Let
Y Ă An+1 be the closed subscheme defined by (P,Q). Let Z Ă An+1 be the irreducible component
of Y given by Spec(S/p), andW Ă An the closed subscheme corresponding to Spec(A/q). Note
that the scheme-theoretic inverse image π´1(W) is given by Spec(S/qS). Since p = qS, we conclude
that Z = π´1(W). Note that π´1(W) »W ˆ A1. Therefore dim(π|´1Z (w)) = 1 for any w PW.

Suppose ai R q for some i. Then for any closed point w = (c1, ¨ ¨ ¨ , cn) P WzV(ai), we
have Pw(y) = P(y, c1, ¨ ¨ ¨ , cn) is a non-zero polynomial in y. Therefore Pw(y) = 0 for at most
finitely many y P A1. Hence π´1(w) X Y is finite for any closed point w P WzV(ai). Since
π|´1Z (w) Ă π´1(w)X Y, we have a contradiction. Hence ai P q for any i, and similarly bj P q for any
j. Therefore (a0, ¨ ¨ ¨ , ad, b0, ¨ ¨ ¨ , be) Ă p.

Corollary 3.26. Let P,Q P S = K[y, x1, ¨ ¨ ¨ , xn] be irreducible polynomials. Suppose P = ady
d+¨ ¨ ¨+a0

and Q = bey
e + ¨ ¨ ¨ + b0, where d, e are positive integers and ai, bi P A := K[x1, ¨ ¨ ¨ , xn], at least one

of ad or be being non-zero. Suppose (a0, ¨ ¨ ¨ , ad, b0, ¨ ¨ ¨ , bd) Ć rad(P,Q). Let C3 P rad(P,Q) be an
irreducible polynomial. If C3 P A, then C3 divides the resultant Resy(P,Q).

Proof. Recall that rad(P,Q) is the intersection of all the minimal primes pi over (P,Q) in S. Since
C3 P rad(P,Q), we know that C3 P Xiqi, where qi = pi X A. If ht(qi) = 2 for all i, then
(a0 ¨ ¨ ¨ , ad, b0, ¨ ¨ ¨ , be) Ă Xipi = rad(P,Q), by Proposition 3.25. Therefore there exists i such that
ht(qi) = 1. By Proposition 3.25, we know that q = (f) for some irreducible factor of Resy(P,Q).
Since C3 is irreducible we conclude that (C3) = (f) and hence C3 divides Resy(P,Q).

Proposition 3.27. Let P,Q P S = K[y, x1, ¨ ¨ ¨ , xn] be irreducible polynomials of positive degree in y.
Suppose P = ady

d + ¨ ¨ ¨+ a0 andQ = bdy
d + ¨ ¨ ¨+ b0, where ai, bi P A := K[x1, ¨ ¨ ¨ , xn]. Let f be an

irreducible factor of Resy(P,Q) and let I1 = (P,Q)XA. Suppose there exist i, j ‰ 0, such that f - ai and
f - bj. Then rad(I1) Ă (f).

Proof. Let Xf Ă An be the hypersurface defined by f. By our hypothesis, there exist ai, bj such
that XfzV(aibj) ‰ H. Therefore U = XfzV(aibj) is a non-empty open subset of Xf. Since Xf is
irreducible, we have U = Xf. Now, for any x P U, the polynomials Px(y) = ad(x)yd + ¨ ¨ ¨+ a0(x)
and Qx(y) = bd(x)yd + ¨ ¨ ¨ + b0(x) are of positive degree in y. Since f is an irreducible factor of
Resy(P,Q), we see that Resy(P,Q)(x) = 0 for any x P Xf. Therefore, Resy(Px(y), Qx(y)) = 0 for
any x P U. Hence, for any x P U, the polynomials Px(y) and Qx(y) have a common root y = c and
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we have (c, x) P V(I) Ă An+1, where I = (P,Q). Therefore, for any x P U, there exists a c such that
(c, x) P V(I) and hence U Ă π(V(I)) Ă V(I1). Thus we have Xf = U Ă V(I1) and rad(I1) Ă (f).

Proposition 3.28. Let P,Q P S = K[y, x1, ¨ ¨ ¨ , xn] be irreducible polynomials of positive degree in y.
Suppose P = ady

d + ¨ ¨ ¨ + a0 and Q = bdy
d + ¨ ¨ ¨ + b0, where ai, bi P A = K[x1, ¨ ¨ ¨ , xn]. Let I1 be

the elimination ideal (P,Q)XA. If rad(Resy(P,Q)) ‰ rad(I1), then there exists an irreducible factor f of
Resy(P,Q), such that (ad, ad´1, ¨ ¨ ¨ , a1, bd) Ă (f) or (ad, bd, bd´1, ¨ ¨ ¨ , b1) Ă (f). In particular, if ad
and bd do not have a common factor then rad(Resy(P,Q)) = rad(I1).

Proof. Let f1, ¨ ¨ ¨ , fk be the distinct irreducible factors of Resy(P,Q). If rad(I1) Ă (fi) for all i,
then rad(I1) Ă (f1 ¨ ¨ ¨ , fk) = rad(Resy(P,Q)). Then rad(Resy(P,Q)) = rad(I1), as Resy(P,Q) P I1.
Therefore we may assume that there is an irreducible factor f of Resy(P,Q), such that rad(I1) Ć (f).
Then by Proposition 3.27, we have f|ai for all i ‰ 0 or f|bj for all j ‰ 0. Without loss of generality,
let us assume that f|ai for all i ‰ 0. We will show that f|bd. Since f|ai for all i ‰ 0, if we have that
Resy(P,Q) ” ad0b

d
d modulo (f). Since f is an irreducible factor of Resy(P,Q), we have that f|ad0bdd.

As P is irreducible, f can not divide a0. Therefore f|bd.

The following result, from [GSS05, Proposition 23], states that birational projections are well-
behaved with respect to primary decompositions.

Proposition 3.29. Let I Ă S = K[y, x1, ¨ ¨ ¨ , xn] be an ideal. Suppose I contains a polynomial f = gy+ h
such that g, h P R = K[x1, ¨ ¨ ¨ , xn] and g is a non-zero divisor in S/I. Let I1 = IX R be the elimination
ideal. Then

(1) I is prime if and only if I1 is prime.

(2) I is primary if and only if I1 is primary.

(3) Any irredundant primary decomposition of I1 lifts to an irredundant primary decomposition of I.

(4) I is radical if and only if I1 is radical.

Proof. Parts (1)´ (3) is the content of [GSS05, Proposition 23]. We prove (4) here. Suppose I is a
radical ideal, then I is an intersection of prime ideals. Therefore I1 = IX R is the intersection of
the prime ideals containing I with R, and hence radical. Suppose I1 is a radical ideal. Consider
a minimal primary decomposition I1 = Xiqi. Since I1 is a radical ideal, we must have that the
primary ideals qi are actually prime. By part (3), we can lift the primary decomposition I1 = Xiqi
to a primary decomposition of I = Xjrqj where rqj X R = qi for some i. Now by part (1), we can
conclude that the primary ideals rqj are prime, and hence I is a radical ideal.

3.4 Determinantal ideals

Let R be a Cohen-Macaulay ring andM a p ˆ q matrix with entries in R. Let Ik(M) Ă R be the
ideal generated by the kˆ kminors of the matrixM. Then ht(Ik(M)) ď (p´ k+ 1)ˆ (q´ k+ 1)
[Eis95, Exercise 10.9]. It was proved by Eagon-Hochster [EH71, Theorem 1.1] that if ht(Ik(M)) =
(p´ k+ 1)ˆ (q´ k+ 1) then R/Ik(M) is Cohen-Macaulay (see [Eis95, Theorem 18.18]). We note
the precise statement for determinanatal ideals in polynomial rings below.

25



Proposition 3.30. LetM be a pˆ q matrix with entries in the polynomial ring S. Let Ik(M) Ă S be the
ideal generated by the k ˆ k minors ofM. If ht(Ik(M)) = (p ´ k + 1) ˆ (q ´ k + 1), then S/Ik(M) is
Cohen-Macaulay.

SupposeM is a matrix whose entries are linear forms in the polynomial ring S. We say thatM is
1-generic if every non-trivial linear combination of the rows ofM consists of linearly independent
linear forms [Eis05, Section 6B]. IfM is a 1-generic matrix, then the ideal generated by the maximal
minors ofM is a prime ideal [Eis05, Theorem 6.4].

Proposition 3.31. IfM is a 1-generic matrix of linear forms in the polynomial ring S, of size pˆ q where
p ď q. Then the ideal Ip(M) generated by the maximal minors ofM is a prime ideal of height q´ p+ 1.
Furthermore, S/Ip(M) is Cohen-Macaulay.

Example 3.32. LetM be one of the following matrices(
y0 y1 y2
y1 y2 y3

)
or

(
y0 y2 y3
y1 y3 y4

)
or

(
y0 y2 y4
y1 y3 y5

)
,

where y1, . . . , y5 P S1 are linearly independent linear forms. Then M is a 1-generic matrix and by
Proposition 3.31, the ideal I = I2(M) defined by the maximal minors ofM is a prime ideal. Note that the
ideal I does not contain any linear forms. Further, one can check the Hilbert-Samuel multiplicty of I is 3, i.e.
e(S/I) = 3. In Corollary 3.38, we will show that these are the only such homogeneous prime ideals.

One consequence of Proposition 3.30 is that certain determinantal varieties are prime, as the
following lemma shows.

Lemma 3.33. Let a, x1, x2, y1, y2 P S1 and P P S2 be such that dim spanK ta, x1, x2u = 3 and
P mod (a, x1, x2, y1, y2) is irreducible. If x1P´y1a2, x2P´y2a2 and x1y2´x2y1 are irreducible, then
the ideal (x1P ´ y1a2, x2P ´ y2a2, x1y2 ´ x2y1) is prime.

Proof. Let I = (x1P´ y1a
2, x2P´ y2a

2, x1y2´ x2y1) and J = (x1P´ y1a
2, x2P´ y2a

2). Note that
I is the determinantal ideal of (

P y1 y2
a2 x1 x2

)
.

Since x1P´y1a2, x2P´y2a2 are irreducible and x2P´y2a2 R (x1P´y1a2), we have that ht(J) = 2.
Since x1P ´ y1a2, x2P ´ y2a2, x1y2 ´ x2y1 is not a regular sequence we have that ht(I) ď 2. Since
the ht(I) ě ht(J), the above implies ht(I) = 2. Hence, by Proposition 3.30, we have that the ideal I is
Cohen-Macaulay and therefore equidimensional. In particular, all of the associated primes of I are
minimal primes of height 2.

LetW = spanK ta, x1, x2, y1, y2u. Since P mod (W) is irreducible, andW Ă S1, we have that
the generators ofW and P form a prime sequence. By Lemma 3.11, in order to prove that I is prime
in S, it is enough to prove that I is prime in A = K[W,P]. Since the generators ofW and P form a
prime sequence, we know that A » K[W, z] for a new variable z. Thus we may replace P by z and
let A = K[W, z]. Then I = (x1z ´ y1a

2, x2z ´ y2a
2, x1y2 ´ x2y1) Ă A. Let B := K[W]. Since the

generators of I satisfy Buchberger’s Criterion ([Eis95, Theorem 15.8]), they form a Gröbner basis.
Hence, the elimination ideal I1 = IXB = (x1y2 ´ x2y1) is prime, as (x1y2 ´ x2y1) is irreducible.

Now, we will show that x1 is a non-zero divisor in A/I and apply Proposition 3.29 to show
that I is prime. Since I is generated in S by elements of degree ě 2, we have that x1 is not zero
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in A/I. If x1 is a zero divisor, there exists a minimal prime I Ă p such that x1 P p. This implies
(x1, x1y2 ´ x2y1) Ă p. Therefore we have that either p = (x1, x2) or p = (x1, y1), since ht(p) = 2.

However, note that I Ć (x1, y1). Indeed, if x2P ´ y2a2 R (x1, y1) then we would either
have x2, y2 P (x1, y1), which would contradict x1y2 ´ x2y1 being irreducible, or x2P ” y2a2 ı
0 mod (x1, y1), which would contradict P being irreducible over S/(W).

Similarly, we have that I Ć (x1, x2). Otherwise we would have x1P ´ a2y1 P (x1, x2)ñ a2y1 P

(x1, x2)ñ y1 P (x1, x2) as a R (x1, x2). Also, x2P ´ a2y2 P (x1, x2)ñ y2 P (x1, x2), which would
contradict the irreducibility of x1y2 ´ x2y1. This completes the proof that x1 is a non-zero divisor.

Therefore, we can apply Proposition 3.29 with our ideal I, f = x1P ´ y1a2, y = P and g = x1.
Since I1 is prime, we obtain that I is also prime.

Corollary 3.34. Let a, x1, x2, y1, y2 P S1 and P P S2 be such that x1 R spanK ta, x2, y2u and P mod
(a, x1, x2, y1, y2) is irreducible. Suppose the polynomials x1P ´ y1a2, x2P ´ y2a2 are non-associate
irreducible forms. If G P S is an irreducible form such that G P rad(x1P ´ y1a2, x2P ´ y2a2) then
deg(G) ě 3.

Proof. We have two cases to analyze, depending on whether x1y2 ´ x2y1 is irreducible or not.

Case 1: x1y2 ´ x2y1 is irreducible.
In this case, let p := (x1P´y1a

2, x2P´y2a
2, x1y2´x2y1). Since x1P´y1a2, x2P´y2a2 are not

multiples of each other, and x1y2 ´ x2y1 is irreducible, we have dim spanK tx1, x2u = 2. Therefore,
x1 R spanK ta, x2, y2u implies that dim spanK ta, x2, x1u = 3. Thus, Lemma 3.33 applies and we
know that p is prime with ht(p) = 2. Note that rad(x1P ´ y1a2, x2P ´ y2a2) Ă (P, a)X p. Hence,
G P (P, a)Xp, which implies that deg(G) ‰ 1, as pdoes not contain any linear form. Nowdeg(G) = 2
and G irreducible would imply x1y2 ´ x2y1 P (G), but we know that x1y2 ´ x2y1 R (P, a) as that
would contradict the fact that P is irreducible over S/(a, x1, x2). Thus, we must have deg(G) ě 3.

Case 2: x1y2 ´ x2y1 = `1`2 for some `1, `2 P S1.
In this case, we know that `1`2 ” 0 mod (x1, x2) sowe can assumew.l.o.g. that `1 = α1x1+α2x2.

Moreover, we must have α1, α2 ‰ 0. Otherwise, if α2 = 0 we would have x2y1 P (x1), which
implies y1 P (x1), as dim spanK tx1, x2u = 2. This is a contradiction as x1P ´ y1a2 is irreducible.
The case where α1 = 0 is analogous.

Since x1 R spanK ta, x2, y2u, we have that the ideal p := (x2P ´ y2a
2, `1) is prime. Indeed, note

that `1, x2, y2, a, P form a prime sequence. Therefore, we may apply Proposition 3.29, to the ideal
I = (x2P ´ y2a

2, `1) with f = y = `1. Since the elimination ideal I1 = (x2P ´ y2a
2) is prime,

we conclude that I is prime. Thus, we have rad(x1P ´ y1a2, x2P ´ y2a2) Ă (P, a) X p. Hence,
G P (P, a)X pwhich implies that deg(G) ‰ 1, otherwiseG P (a)X (`1) = 0, which is a contradiction.
Moreover, deg(G) = 2 and G P p would imply G P (`1) which contradicts irreducibility of G. Thus,
we must have deg(G) ě 3.

3.5 Varieties of minimal degree

In this section we discuss the classification of homogeneous prime ideals that define varieties of
minimal degree in a projective space. The classification of these ideals will be a key ingredient for
our structure theorem for ideals generated by two cubics.

Definition 3.35. A homogeneous prime ideal p Ă S is degenerate if it contains a linear form.
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The following proposition is a classical lower bound for the multiplicity of non-degenerate
homogeneous primes (see [EH87, Proposition 0], [HMMS13, Proposition 2.12]).

Proposition 3.36. Let p be a homogeneous prime ideal in a polynomial ring over an algebraically closed
field. If p is non-degenerate, then e(S/p) ě ht(p) + 1.

We will say that a homogeneous prime ideal is a prime ideal of minimal multiplicity if
e(S/p) = ht(p)+1. If p Ă S is a homogeneous prime ideal ofminimalmultiplicity, then the projective
variety X = V(p) defined by p in Pn´1 is a variety of minimal degree, i.e. deg(X) = codim(X) + 1.
Varieties of minimal degree have been classified by del Pezzo-Bertini and later by the works in
[Har81, Xam81, EH87].

Theorem 3.37. (see [EH87, Theorem 1]) Let X Ă Pr be a projective variety of minimal degree, i.e.
deg(X) = codim(X) + 1. If X is smooth and codim(X) ą 1, then X Ă Pr is either a rational normal scroll
or the veronese embedding P2 Ă P5. If X is not smooth, then X is a cone over a smooth variety of minimal
degree.

Suppose F1, F2 Ă S3 are two non-associate irreducible cubic forms. In Section 5, we will be
interested in the minimal primes of the ideal (F1, F2). Suppose p is a minimal prime of (F1, F2).
Then p is a homogeneous prime ideal with ht(p) = 2. If p is non-degenerate and e(S/p) = 3, then p
is a homogeneous prime of minimal multiplicity. As a consequence of Theorem 3.37, we obtain
a classification of such prime ideals as determinantal prime ideals. The following result is an
immediate corollary of Theorem 3.37, we provide a proof for completeness.

Corollary 3.38. Let p Ă S be a non-degenerate homogeneous prime ideal with ht(p) = 2 and e(S/p) = 3.
Then p is the ideal generated by maximal minors of a matrixM of the form(

y0 y1 y2
y1 y2 y3

)
or

(
y0 y2 y3
y1 y3 y4

)
or

(
y0 y2 y4
y1 y3 y5

)
,

where y1, . . . , y5 P S1 are linearly independent linear forms.

Proof. LetX = V(p) Ă Pn´1 be the projetcive variety defined by p. Since p is a non-degenerate prime
ideal, by the projective Nullstellensatz, we have I(X) = p, where I(X) denotes the homogeneous
ideal of X. Now X is a variety of minimal degree, as deg(X) = e(S/p) and codim(X) = ht(p). Since
codim(X) = 2, we note that X Ă Pn´1 can not be the veronese embedding P2 Ă P5, as the image of
the veronese embedding has codimension 3. Also, X can not be a cone over the veronese embedding,
as the cone also has codimension 3. Therefore, by Theorem 3.37, we know that X Ă Pn is either
a rational normal scroll, or a cone over a rational normal scroll. Since the cone is cut out by the
same equations in a higher dimensional projective space, it is enough to prove the result when X is
a smooth rational normal scroll. By [EH87, Page 6], the homogeneous ideal of a rational normal
scroll X is given by the maximal minors of a matrix of the from(

x0,0 x0,1 ¨ ¨ ¨ x0,a0´1 | x1,0 ¨ ¨ ¨ x1,a1´1 | ¨ ¨ ¨ xd,ad´1
x0,1 x0,2 ¨ ¨ ¨ x0,a0 | x1,1 ¨ ¨ ¨ x1,a1 | ¨ ¨ ¨ xd,ad

)
where txiju are linearly independent linear forms and 0 ď a0 ď a1 ¨ ¨ ¨ ď ad. Also we have
ř

i ai = deg(X) and dim(X) = d+ 1. Since X is smooth, we have ai ą 0 for all i. Since deg(X) = 3
and dim(X) = n ´ 4, we see that d ď 3 and (a0, ¨ ¨ ¨ , ad) is (1, 1, 1), (1, 2) or (3). Therefore, p is
given by the maximal minors of a martix of the desired form.
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4 Wide algebras

In this section we describe the main tool which we will use to prove our Sylvester-Gallai theorem –
wide Ananyan-Hochster algebras. As mentioned in Section 1, we would like to construct small
algebraswhich behave as polynomial rings and containmany of the polynomials in our configuration.
As we saw in Section 3, for an algebra to “behave as a polynomial ring” it is enough to construct an
algebra whose generators form a prime sequence. Another property that we would like from our
algebras, is that they are robust with regards to certain augmentations, as we will increase such
algebras to contain more and more forms from our configuration, and we would like to preserve
the structure of the original algebra inside of the augmented one – a concept which we will make
precise in Proposition 4.11.

In a recent breakthrough work by Ananyan-Hochster [AH20a], where they positively answer
Stillman’s conjecture, they show that given an ideal I in a polynomial ring S, one can construct a
sub-algebra A Ă S such that I Ă A and the number of generators of A is uniformly bounded by a
function of the degrees and number of the generators of the given ideal I.

Building on the work in [AH20a], we define the notion of a wide Ananyan-Hochster algebra. We
show that these wide AH algebras have strong algebraic-geometric properties and are particularly
suitable for applications to Sylvester-Gallai problems as described above. In order to construct such
algebras, we need to define a notion of rank for a form in S. The notion of rank that we describe
below is called strength and it was introduced in [AH20a, AH20b]. This notion can be seen as a
symmetric version of the notion of slice rank of a tensor introduced by Tao.

Definition 4.1 (Collapse). Given non-zero a form F P Sd, we say that F has a k-collapse if there exist
k forms G1, . . . , Gk such that deg(Gi) ă d and F P (G1, . . . , Gk).

Definition 4.2 (Strength). Given a non-zero form F P Sd, the strength of F, denoted by s(F), is the
least positive integer such that F has a (s(F) + 1)-collapse but it has no s(F)-collapse. We say that
s(F) ě t whenever F does not have a t+ 1-collapse.

Remark 4.3. Note that by the definitions above, a linear form does not have a k-collapse for any k P N. Thus,
we say that for any x P S1, s(x) = ∞.

We will make the convention that s(0) = ´1.

Definition 4.4 (Minimum collapse). Given a non-zero form F P Sd and s P N˚ such that s(F) = s´1,
a minimum collapse of F is any identity of the form F = G1H1 + ¨ ¨ ¨+GsHs, where Gi, Hi are forms
of degree ă d.

Note that the definition of minimum collapse given above generalizes the definition of rank
from [PS20a] (see Definition 2.1). We will see that cubics or quadratic forms of high enough strength
can be used to construct subalgebras which are isomorphic to polynomial rings.

It is also useful to define the min and max strength of a pencil of forms of the same degree.

Definition4.5 (Minandmax strength). Givena set of forms F1, . . . , Fm P Sd, wedefine smin(F1, . . . , Fm)
as the minimum strength of a non-zero form in spanK tF1, . . . , Fmu and smax(F1, . . . , Fm) as the maxi-
mum strength of a form in spanK tF1, . . . , Fmu.

In particular, given any vector space V Ă Sd, we can define smin(V) (smax(V)) as the minimum
(maximum) strength of any non-zero form in V .
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For the rest of this section, we have that Vd Ă Sd is a vector space of forms of degree d from S.
The next theorem, proved in [AH20b, Theorem 1.10], states that a vector space of quadratics of high
enough strength is always generated by an Rη-sequence.

Theorem 4.6 (Ananyan-Hochster quadratic algebras). Let V be a vector space of quadratic forms in S2
of dimension n over K. If smin(V) ě n´ 1+ rη/2s, every sequence of linearly independent elements of V is
an Rη-sequence.

By Remark 3.4, we know that Rη-sequences in S are prime sequences whenever η ě 1, so the
above theorem is a way of obtaining prime sequences, and therefore algebras such that the tools
developed in the previous section apply. As noted in [AH20a, Discussion 1.3], if η ě 3 then we
have the extra property that all quotients of K[V] by ideals generated by homogeneous linear
combinations of the generators are UFDs.

An immediate corollary of the theorem above is the following result, which can be found in
[Har77, Chapter II, Section 6, Exercise 6.5] or (a more basic version) [Eis95, Exercise 18.12].

Proposition 4.7 (High rank quadratic yields UFD). IfQ P S2 such that s(Q) ě 2 then S/(Q) is a UFD.

The theorem above motivates our definition of wide algebras. As we will see, wide Ananyan-
Hochster algebras will also be robust to certain augmentations, and thus have all the algebro-
geometric properties we need for the Sylvester-Gallai theorem.

Definition 4.8 (Wide Ananyan-Hochster Algebras). Let w, t P Ną0. A graded vector space
V = V1 + V2 Ă S is called a (w, t)-wide AH vector space if smin(V2) ě t(dim(V) +w). The algebra
generated by V will be denotedAV orK[V]. An algebra generated by a (w, t)-wide AH vector space
is called a (w, t)-wide AH algebra.

We note the following simple result for convenience.

Proposition 4.9. Let V = V1 + V2 be a (w, t)-wide AH-vector space in S.

1. Let ` P S1. Then ` P K[V] if and only if ` P V1.

2. Let Q P S2 such that s(Q) ă (t ´ 1)dim(V1) + t(dim(V2) +w). Then Q P K[V] if and only if
F P K[V1]. Also, Q P (V) if and only if Q P (V1).

3. Let C P S3. If C P K[V] then C P (V1).

Proof. Note thatK[V]X S1 = V1, hence the first statement holds. LetQ P K[V]X S2 as in the second
statement above. We have Q = P1 + P2 where Pi P S2 with P1 P K[V1] and P2 P V2. Since V is
(w, t)-strong, we know that if P2 ‰ 0, then s(P2) ě t(dim(V) + w). Note that s(P1) ď dim(V1).
Therefore we have s(P2) ď s(P1) + s(Q) ă t(dim(V) + w), which is a contradiction. Therefore
P2 = 0 and hence Q P K[V1]. Similarly, suppose Q P (V)X S2. Then we have Q = P1 + P2 where
Pi P S2 with P1 P (V1) and P2 P V2. If P2 ‰ 0, we have a contradiction as above. Let C P K[V]X S3.
Then we may write C = x1Q1 + ¨ ¨ ¨+ xrQr where xi P V1 and hence C P (V1).

As a corollary of Theorem 4.6, we have that the algebra generated by an (w, t)-wide AH vector
space satisfies Serre’s Rη property if w ě rη/2s´ 1.

Proposition 4.10. LetV = V1+V2 be a (w, t)-wide AH-vector space wherew ě rη/2s´1. Let y1, ¨ ¨ ¨ , yr
and Q1, ¨ ¨ ¨ , Qn be bases of the vector spaces V1 and V2 respectively. Then y1, ¨ ¨ ¨ , yr, Q1 ¨ ¨ ¨ , Qn is an
Rη-sequence in S.
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Proof. Note that any subset of y1, ¨ ¨ ¨ , yr is an Rη-sequence as yi P V1 for all i P [r]. Consider
S 1 = S/(y1, ¨ ¨ ¨ , yr). Note that S 1 is isomorphic to a polynomial ring. For any quadratic form
Q P S, let Q denote the image of Q in S 1. Since V is (w, t)-wide and w ě rη/2s´ 1, we must have
smin(Q1, ¨ ¨ ¨ , Qn) ě t(n ´ 1 + rη/2s). Therefore, by Theorem 4.6, we have that Q1, ¨ ¨ ¨ , Qn is an
Rη-sequence in S 1. Hence y1, ¨ ¨ ¨ , yr, Q1 ¨ ¨ ¨ , Qn is an Rη-sequence in S.

The next proposition tells us that, for any w, t P N, if we start with a graded vector space U
which is not (w, t)-wide, we can construct a new vector space V (of larger total dimension) from
it which is (w, t)-wide, and the algebra generated by the latter contains the former. Also, given a
linear subspace H Ă U2 such that all the quadratics in H are "sufficiently" strong, we show that we
can construct the (w, t)-wide vector space V in such a way that H Ă V2.

Proposition 4.11 (Constructing wide AH algebras). Given a graded vector space U = U1 +U2 in S,
and parameters w, t P Ną0, there exists an (w, t)-wide AH vector space V = V1 + V2 such that

1. U1 Ă V1 and V2 Ă U2

2. K[U] Ă K[V]

3. dim(V1) ď (2t+ 1)(dim(U2)+1) ¨ (dim(U) +w)

Furthermore, suppose H Ă U2 is a sub-vector space of codimension r, such that

smin(H) ą (2t+ 1)(r+2) ¨ (dim(U) +w).

Then there exists a (w, t)-wide vector space V satisfying properties (1)´ (3) above such that H Ă V2.

Proof. Let U(0) = U. So long as U(k) is not (w, t)-wide, there exists a non-zero quadratic Q P U(k)
2

such that s(Q) ă t(dim(U(k)) + w). Let B(k) be a basis of U(k)
2 that contains Q. We can define

U(k+1) as follows: U(k+1)
1 = U

(k)
1 + Lin(Q), and U(k+1)

2 = spanK
 

B(k)ztQu
(

). At each step we
have that

dim(U
(k+1)
1 ) ď dim(U

(k)
1 ) + 2t(dim(U(k)) +w) and dim(U

(k+1)
2 ) ď dim(U

(k)
2 )´ 1.

Thus, this process has to stop in ď dim(U2) iterations. Let V be the last vector space from this
procedure. Then items 1 and 2 follow from the construction. The inequalities above imply that

dim(U
(k)
1 ) ď (2t+ 1)(k+1)(dim(U) +w).

Since the iterative process stops after at most dim(U2) steps, we have the desired inequality 3 above.

Now suppose H Ă U2 is a linear subspace of dimension d. Note that r = dim(U2)´ d, and let
tP1, ¨ ¨ ¨ , Pdu be a basis of H. Suppose that that smin(H) ą (2t + 1)(r+2) ¨ (dim(U) +w). We will
show that by induction, we can run the iterative process above in such a way that H Ă U(k)

2 for
all k. Note that H Ă U(0)

2 = U2. Suppose at the k-th step of the iterative process above we have
H Ă U

(k)
2 . If U(k) is (w, t)-strong, then V = U(k) and we are done. So, let us assume that U(k) is

not (w, t)-strong.

31



If k ě r, then dim(U
(k)
2 ) ď dim(U2)´ k ď d = dim(H). In this case, we must have k = r and

H = U
(r)
2 . Now, using the inequalities above we obtain,

smin(H) ě (2t+ 1)(r+2)(dim(U) +w) ą t(dim(U(r)) +w).

Hence U(k) = U(r) is (w, t)-strong, which is a contradiction.
Thus, we may assume that k ă r. Suppose Q P U(k)

2 is a non-zero quadratic form such that
s(Q) ă t(dim(U(k))+w). In particular, we have thatQ R H since smin(H) ą s(Q). Then, at this step
of the iterative process, we may choose the basisB(k) ofU(k)

2 that containsQ,P1, ¨ ¨ ¨ , Pd. Therefore,
we have Pi P U(k+1)

2 for all i P [d], and hence H Ă U(k+1)
2 . Thus we conclude by induction.

Remark 4.12. Note that the (w, t)-wide vector space constructed above is not unique, as it depends on the
choice of basis at each step of the iterative process. Furthermore, given a linear subspace H Ă U2 as above, the
vector space V constructed in Proposition 4.11 depends on H.

Corollary 4.13. Let w, t, s P Ną0 and G1, ¨ ¨ ¨ , Gm P S3 be cubic forms such that s(Gi) ď s ´ 1 for all
i P [m]. Suppose dim spanK tG1, ¨ ¨ ¨ , Gmu = d. Then there exists a (w, t)-wide vector space V = V1+V2
such that

1. Gi P K[V] for all i P [m],

2. dim(V1) ď (2t+ 1)(ds+1)(2ds+w), and dim(V2) ď ds.

Proof. Without loss of generality let us assume that G1, ¨ ¨ ¨ , Gd is a basis of spanK tG1, ¨ ¨ ¨ , Gmu.
Suppose s(Gi) = si. Let Gi = yi1Qi1+ ¨ ¨ ¨+yisiQisi be a minimum collapse of Gi, where yij P S1
and Qij P S2. Let U1 = spanK

 

yij
(

and U2 = spanK
 

Qij
(

. Consider the graded vector space
U = U1 +U2. Note that dim(U1) ď ds and dim(U2) ď ds. We have Gi P K[U] for all i P [m]. By
Proposition 4.11, there is a (w, t)-wide vector space V = V1 + V2 with the desired properties.

As a corollary, if three cubic forms of low strength depend on a sufficiently strong quadratic,
then one can construct a wide algebra which contains this strong quadratic as a “variable.” The
following corollary formalizes this.

Corollary 4.14. Let w, t P N, Q P S2 be such that s(Q) ą (2t + 1)8 ¨ (12 + w), x, y P S1 and
C1, C2, C3 P S3 X (Q, x, y). There is a (w, t)-wide vector space V = V1 + V2 such that Ci P K[V] and
Q P V2.

Proof. As Ci P (Q, x, y), we can write Ci = ziQ+ xAi + yBi, for some zi, P S1 and Ai, Bi P S2. Let
U = U1 +U2 where U1 = spanK tx, y, z1, z2, z3u and U2 = spanK tQ,A1, A2, A3, B1, B2, B3u. We
apply Proposition 4.11 to the vector space Uwith P = Q to obtain a (w, t)-wide vector space V with
the desired properties.

One desirable property of a strong subalgebra is that it is robust when we try to enlarge it by
adding a couple of weak polynomials to it (and applying Corollary 4.13). The following proposition
shows us that a wide algebra is robust under such changes, in the sense that it will remain wide
(perhaps with a small deterioration in the width parameter) after we add a weak cubic to it.
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Proposition 4.15 (Robustness of Wide Algebras). Let w, t, s P Ną0 such that w ą 2s and t ą 3s+2.
Let U = U1 + U2 be a (w, t)-wide AH-vector space. Let C P Sď3 be a form such that s(C) = s ´ 1 or
C P S1. For any pair of integers w1, t1 P Ną0 such that w1 ă (w ´ 2s) and (2t1 + 1)

(s+2) ă t, there
exists a (w1, t1)-wide vector space V = V1 + V2 where Vi Ă Si and

1. Ui Ă Vi for i P t1, 2u, and hence K[U] Ă K[V].

2. C P K[V].

3. dim(V) ď A(w, t,dim(W)) for some function A : N3 Ñ N.

Proof. If C P S1, then we define V1 = U1 + spanK tCu and V2 = U2. Note that V = V1 + V2 is
(w´ 1, t) wide. Hence V is (w1, t1)-wide and it satisfies the desired properties above.

If C P S2, let C = z1y1 + ¨ ¨ ¨ + zsys be a minimum collapse of C. Let V1 = U1 + Lin(Q) and
V2 = U2. Then dimLin(Q) ď 2s and thus V is (w´ 2s, t)-wide, which implies V is a (w1, t1)-wide
vector space with the additional properties above.

Now suppose C P S3. Let C = z1Q1 + ¨ ¨ ¨ + zsQs be a minimum collapse of C where
zi P S1 and Qi P S2. Consider the vector spaces U 11 = U1 + spanK tz1, ¨ ¨ ¨ , zsu and U 12 =
U2 + spanK tQ1, ¨ ¨ ¨ , Qsu. Let U 1 = U 11 + U

1
2. Note that C P K[U 1] and dim(U 1) ď dim(U) + 2s.

Now U2 Ă U 12 is a subspace of codimension at most s. Since U is (w, t)-wide, we know that
smin(U2) ě t(dim(U) +w). Thus,

smin(U2) ě t(dim(U) +w) ą (2t1 + 1)
(s+2)(dim(U 1) +w1).

Therefore by applying Proposition 4.11 to the vector space U 1 = U 11 +U 12 with H = U2, we obtain
a (w1, t1)-wide vector space V = V1 + V2 such that U2 Ă V2. Also, we have U1 Ă U 11 Ă V1 and
C P K[U 1] Ă K[V].

Note that in all the three cases above, we have dim(V) bounded above by some function of
w, t,dim(W), which we call A(w, t,dim(W)).

The next lemma shows that if a cubic form has a minimum collapse in a wide-algebra, then this
collapse can be taken to be from elements of the wide-algebra itself.

Lemma 4.16 (Minimum Collapse in Wide Algebra). Let A = K[V] be an algebra generated by a
(w, t)-wide AH-vector space V = V1 + V2 in the polynomial ring S, where w ě 3, t ě 1. Let 1 ď s ă w

2 .
Suppose C P S3 is a non-zero form such that s(C) = s´ 1 and C P A. Then, there exist z1, . . . , zs P AX S1
and P1, . . . , Ps P AX S2 such that

C = z1P1 + ¨ ¨ ¨+ zsPs.

Moreover, if C = `1Q1 + ¨ ¨ ¨+ `sQs is any s-collapse of C then

1. `i P A for all i P [s],

2. for any i P [s], we have Qi P A or there exists a quadratic form Ri P A such that s(Qi ´ Ri) ď s.

Proof. The proof is by induction on the strength of C. Note that, since w ě 3, we know that the
generators of the algebra A form a R1-sequence (and hence a prime sequence) by Proposition 4.10.
The base case, when s = 1, is the case where C is a reducible polynomial. If C = `1Q1 then we have
`1, Q1 P A by Lemma 3.15. Note that in this case any 1-collapse is of this form. Assume that the
lemma is true for forms of strength ď s´ 2 for some 1 ă s ă w

2 .
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Suppose that s(C) = s´ 1. Then C has an s-collapse, and we can write

C = `1Q1 + ¨ ¨ ¨+ `sQs

where `i P S1 and Qi P S2. If spanK t`1, . . . , `su X V1 ‰ t0u, we can assume w.l.o.g. that `1 P V1.
Then C̄ P A/(`1) is a non-zero cubic form in S/(`1) and s(C) = s ´ 2. Note that A/(`1) is a
(w´ 1, t)-wide AH-algebra and S/(`1) is a polynomial ring. Therefore by induction we must have

C̄ = z2P2 + . . .+ zsPs

where zi P (A/(`1))1 and Pi P (A/(`1))2. This yields the following minimum collapse of C:

C = `1P + z2P2 + . . .+ zsPs

for some P P S2. In particular, we have that `1P = C´ z2P2 + . . .+ zsPs is a non-zero form in the
algebra A and has strength 0. Thus, by Lemma 3.15 we have that P P A2.

Thus, we are left with the case where spanK t`1, . . . , `su X V1 = t0u. We will show that
this leads to a contradiction. Let r = dim(V1). Since s(C) = s ´ 1 it must be the case
that dim(spanK t`1, . . . , `su) = s. Thus we can extend t`1, . . . , `su to a basis of S1 given by
B = t`1, . . . , `s, x1, . . . , xr, y1, . . . , ytu where V1 = spanK tx1, . . . , xru. Note that B generates the
polynomial ring S as a K-algebra, i.e. S = K[B].

Let G1, . . . , Gm be a basis for V2. Since C P A, we have

C =
r
ÿ

i=1

xiFi

where each

Fi =
r
ÿ

j=i

xjaij +Hi

where ai,j P V1/(x1, . . . , xj´1) and Hi P V2.
Since s ă w

2 and V is (w, t)-wide, for any G P V2 we have s(G) ě t(r+ s+ dim(V2) +
w
2 ). Let

S 1 = S/(`1, ¨ ¨ ¨ , `s). Note that the image V = V1 + V2 in the polynomial ring S 1 is an (w2 , t)-wide
vector space, since for any element G P V2 we have s(G) ě t(r+ dim(V2) +

w
2 ). Now we have

C = x1F1 + ¨ ¨ ¨+ xrFr = 0

in S 1. Since x1, ¨ ¨ ¨ , xr is a regular sequence in S 1, wemust have that Fi P (x1, ¨ ¨ ¨ , xi´1, xi+1, ¨ ¨ ¨ , xr)
for all i. Therefore we haveHi P (x1, ¨ ¨ ¨ , xr) and hence s(Hi) ď r+ s for all i. Since V is (w, t)-wide
and Hi P V2, we must have Hi = 0 for all i. Thus we have C P K[V1]. Note that K[V1] is mapped
isomorphically to its image in S 1 since spanK t`1, ¨ ¨ ¨ , `su X V1 = (0). Therefore C = 0 in S 1 im-
plies thatC = 0 in S, which is a contradiction. This proves the existence of the collapse in the algebra.

Now we prove that properties (1) and (2) hold for any minimum collapse C = `1Q1+ ¨ ¨ ¨+ `sQs.
Recall that C P A/(`1) is non-zero and s(C) = s ´ 2. Hence we have a minimum collapse given
by C = `2Q2 + ¨ ¨ ¨ + `sQs in S/(`1). Moreover, by induction, we have `i P A/(`1) for i = 2, ¨ ¨ ¨ , s.
Since `1 P A, we conclude that `i P A for all i. Note that by induction, for all i = 2, ¨ ¨ ¨ , s, we
have that Qi P A/(`1) or there exists Ri P A/(`1) such that s(Qi ´ Ri) ď s ´ 1. Suppose for
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some i, we have Qi P A/(`1). Then there exists Ri P A such that Qi ´ Ri = `1zi for some linear
form zi. Hence Qi P A or s(Qi ´ Ri) = 0 ď s. Suppose for some i we have that Qi R A/(`1)
and there exists Ri P A/(`1) such that s(Qi ´ Ri) ď s ´ 1. Let Ri P A X S2 be a quadratic form
such that the image of Ri under the quotient homomorphism A Ñ A/(`1) is Ri. Then we have
s(Qi ´ Ri) ď s´ 1+ 1 = s.

The next corollary shows that if a cubic form C has a strong enough quadratic in a minimum
collapse, then C cannot be contained in a small wide algebra generated by linear forms.

Corollary 4.17. Let s P Ną0 and C P S3 be such that s(C) = s´ 1. Further, assume that C has a minimum
collapse C = x1Q1 + ¨ ¨ ¨+ xsQs where s(Q1) ě r+ s. IfW Ă S1 is a vector space such that C P K[W],
then dimW ą r.

Proof. Suppose W Ă S1 is such that C P K[W]. Since W is (w, t)-wide for any w, t P Ną0,
Lemma 4.16 applies and by item (2) of that lemma, there exists R P K[W] such that s(Q1 ´ R) ď s.
Since s(R) ă dimW, as R P K[W], we have

r+ s ď s(Q1) ď s(Q1 ´ R) + s(R) ă s+ dimW,

which concludes our proof.

5 Structure theorem and minimal primes

In this section we prove the main structural results of this paper. Our main result in this section is a
structure theorem for non-radical ideals generated by two irreducible cubic forms. With this result
at hand, we proceed to analyze certain important minimal primes which can appear in the cycle
decomposition of such non-radical ideals. The extra structure of these minimal primes will give us
crucial structure in the proof of the Sylvester-Gallai theorem.

5.1 Structure of non-radical ideals generated by two irreducible cubics

The following theorem is the main result about the structure of ideals generated by two cubic forms.
The structure of ideals generated by two quadratic forms was considered in [HP94, CTSSD87], and
later in the works of [Shp20, Theorem 4.1], [PS20a, Theorem 3.1], [GOS22, Proposition 1.4]. We
generalize the structure theorem to ideals generated by two cubic forms and classify when such an
ideal is not a radical ideal.

Theorem 1.5. Let F1, F2 be two non-associate irreducible cubic forms in the polynomial ring K[x1, ¨ ¨ ¨ , xn]
over an algebraically closed field K. Then at least one of the following holds:

1. The ideal (F1, F2) is radical.

2. There exists a linear minimal prime of (F1, F2), i.e. there exist two linearly independent linear forms
x, y such that (F1, F2) Ă (x, y).

3. There exists a quadratic minimal prime of (F1, F2), i.e. there exists a prime ideal (Q, `) where Q is a
quadratic form, ` is a linear form and (F1, F2) Ă (Q, `).

4. There exist linear forms x, y such that xy2 P spanK tF1, F2u.
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5. There exists a minimal prime p of (F1, F2) such that p is the homogeneous prime ideal a variety of
minimal degree. In particular, p = (Q1, Q2, Q3) where Qi are the quadratic forms given by the
maximal minors of a matrixM of the form(

y0 y1 y2
y1 y2 y3

)
or

(
y0 y2 y3
y1 y3 y4

)
or

(
y0 y2 y4
y1 y3 y5

)
,

where y1, . . . , y5 are linearly independent linear forms.

Proof. Let I = (F1, F2) and I = q1 X ¨ ¨ ¨ X qm be an irredundant primary decomposition of
I in S = K[x1 ¨ ¨ ¨ , xn]. Let pi = rad(qi). Note that F1, F2 is a regular sequence, hence all
the primes pi are minimal primes of I and ht(pi) = 2 for all i. By Proposition 3.7, we have
ř

im(pi)e(S/pi) = e(S/I) = 9.
Suppose there exists a minimal prime pi such that e(S/pi) ď 2. Then, by Proposition 3.36, the

ideal pi must be degenerate. Let x P pi be a linear form. Consider the image pi in the quotient
ring S/(x). Then we have ht(pi) = 1. Hence, by Krull’s principal ideal theorem, there exists an
irreducible homogeneous polynomial F such that pi = (F). Hence pi = (x, F) for some irreducible
form F. Now, deg(F) = e(S/pi) ď 2. Therefore, I has a linear or quadratic minimal prime.

Thereforewemay assume that e(S/pi) ě 3 for all i. Suppose I is not radical. Then, by Remark 3.6,
we must have that m(pi) ą 1 for some i. Since

ř

im(pi)e(S/pi) = 9, we see that we must have
e(S/pi) = 3 for all i. Furthermore, we see that either there is only one minimal prime p1 with
m(p1) = 3 or there are exactly two minimal primes of I given by p1, p2 such thatm(p1) = 1 and
m(p2) = 2.

If there exists a minimal prime pi which is non-degenerate, then it is a homogeneous prime of
minimal multiplicity and by Corollary 3.38, we have that pi is of the form as described in 5 above.
Therefore we may assume that all the minimal primes are degenerate. If there is only one minimal
prime p1 withm(p1) = 3. As p1 is degenerate there exists a linear form x P p1 and by Lemma 3.8,
we have x3 P (F1, F2). In the other case we have two degenerate minimal primes p1, p2 and we have
linear forms x P p1 and y P p2. Then by Lemma 3.8, we have xy2 P (F1, F2). As F1, F2 are cubics, we
conclude that xy2 P spanK tF1, F2u.

Corollary 5.1. Let F1, F2 be two non-associate irreducible cubic forms in the polynomial ringK[x1, ¨ ¨ ¨ , xn].
Suppose the ideal (F1, F2) does not satisfy the conditions 1, 2, 4, 5 in Theorem 1.5. Then there exists a
quadratic minimal prime p = (Q, `) of I such thatm(p) ě 2.

Proof. Let p1, ¨ ¨ ¨ , pm be the minimal primes of I. We have
ř

im(pi)e(S/pi) = e(S/I) = 9. By
Theorem 1.5, there exists at least one quadratic minimal prime, say p1 = (Q, `) with e(S/p1) = 2. If
m(p1) ě 2 then we are done. So we may assume thatm(p1) = 1. Therefore

ř

iě2m(pi)e(S/pi) = 7.
Since I does not have any linear minimal primes, we have e(S/pi) ě 2 for all i. Since I is not radical
we must havem(pi) ě 2 for some pi. Therefore, the above equation implies that there must exist a
minimal prime pi such that e(S/pi) = 2 andm(pi) ě 2.

5.2 Minimal primes defining varieties of minimal degree

LetM be matrix of the form(
y0 y1 y2
y1 y2 y3

)
or

(
y0 y2 y3
y1 y3 y4

)
or

(
y0 y2 y4
y1 y3 y5

)
,
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where y1, . . . , y5 P S1 are linearly independent linear forms. Let p be the prime ideal defined by
the maximal minors ofM. If F is a cubic form contained in p, then F has a very simple structure that
we note below.

Corollary 5.2. Suppose F is an irreducible cubic form contained in a prime ideal p given by the maximal
minors of a matrixM as above. Then there exists a vector space of linear forms V Ă S1 such that F P K[V]
and dim(V) ď 9. Furthermore, if s(F) = 2 andW is a (w, t)-wide vector space with w ě 6 and F P K[W],
then we have yi PW for all the variables yi that appear inM.

Proof. Let Q1, Q2, Q3 denote the maximal minors of M. Since deg(F) = 3, there exist at
most 3 linear forms `1, `2, `3 such that F = `1Q1 + `2Q2 + `3Q3. Therefore we may take
V = spanK

 

`i, yj|1 ď i ď 3, 0 ď j ď 5
(

.
Now, if s(F) = 2 andW is a (w, t)-wide vector space withw ą 6 such that F P K[W], Lemma 4.16

implies that if F P (`1, `2, `3)where `i P S1, thenwemust have `i PW. Since for any row of thematrix
M, which is of the form (yi, yj, yk), we have F P (yi, yj, yk), the above implies yi, yj, yk PW.

Corollary 5.3. Let F be an irreducible cubic form such that F = zQ+ z1Q1+ ¨ ¨ ¨ zrQr where s(Q) ą 9+ r
and z R spanK tz1, ¨ ¨ ¨ , zru. Then F can not be contained in a prime ideal p given by the maximal minors of
a matrixM as above.

Proof. If F is contained in a prime ideal p given by the maximal minors of a matrixM as above, then
by Corollary 5.2, there exists V Ă S1 such that F P K[V] and dim(V) ď 9. Then we have zQ P K[V]
modulo spanK tz1, ¨ ¨ ¨ , zru. Therefore, by Lemma 3.15, Q P K[V], which is a contradiction since
s(Q) ą 9+ r.

5.3 Quadratic minimal primes

Proposition 5.4. Let C be an irreducible cubic form andQ an irreducible quadratic form in S. If p = (x,Q)
is a prime ideal containing C then the local ring (S/C)p is a discrete valuation ring.

Proof. Note that p defines a prime ideal of height 1 in S/C. Therefore the local ring (S/C)p is one
dimensional and it is enough to show that (S/C)p is a regular local ring. Note that (S/C)p is a
regular local ring iff the Jacobian ideal ( BC

Bxi
|i P [n]) is not contained in p. Suppose ( BC

Bxi
|i P [n]) Ă p.

Let C = xP + yQ. After a change of coordinates, we may assume that x is one of the variables in S
and BQ

Bx = 0 (after possibly changing P). Then BC
Bx P p implies that P P p and hence P = xz+ αQ for

some z P S1, α P K. We have C = x2z+ (αx+ y)Q. Then BC
Bxi

P p implies that y BQ
Bxi

P p. Since y R p,
we must have that BQ

Bxi
P p. Since BQ

Bxi
P S1, we must have BQ

Bxi
= βx for some β P K. Now BC

BxBxi
= 0

implies that β = 0. Hence BQ
Bxi

= 0 for all the variables, which is a contradiction.

Lemma 5.5. Let V = V1 + V2 be an (w, t)-wide AH-vector space in the polynomial ring S, with w ě 2.
Let C be an irreducible cubic form contained in A = K[V]. Suppose C = xQ + `P where P,Q P S2 and
x, ` P S1. If s(Q) ă (t´ 1)dim(V1) + t(dim(V2) +w´ 1) then Q P (V1).

Proof. Note that C = xQ+ `P is a minimal collapse, and by Lemma 4.16, we have x, ` P V1. Consider
the algebra A 1 = K[V/(`)] in the polynomial ring S/(`). Note that A 1 is (w ´ 1, t) wide. By
Proposition 4.10, we know that any basis of V forms an R3 sequence, and in particular a prime
sequence. Now we have xQ P A 1. By Lemma 3.15, we know that Q P A 1 and hence Q = Q1 + `u,
where Q1 P A and u P S1. Note that s(Q1) ď s(Q) + 1 ă (t ´ 1)dim(V1) + t(dim(V2) +w ´ 1).
Therefore, by Proposition 4.9, we have Q1 P K[V1/(`)]. Thus Q P (V1) as ` P V1.
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Lemma 5.6 (Minimal prime with strong quadratic). Let C, F be irreducible cubic forms in S. Suppose
there exists a minimal prime p = (Q, `) of the ideal (C, F) such that Q is a quadratic form with s(Q) ě 5
and ` P S1. Ifm(p) ě 2, then one of the following holds:

1. we have F = αC+ β`Q+ `2z for some α,β P K and z P S1. In particular F P (C, `), and (C, F) has
a linear minimal prime.

2. there exists a quadratic form G such that (C, F) Ă (G, `2) and (G, `) = (Q, `).

Proof. Let C = xQ+ `P and F = aQ+ `B where x, a P S1 and P,Q P S2. If B P (Q, `) and P P (Q, `)
then we are done. So we may assume that B R (Q, `). By Proposition 5.4, we know that the local
ring (S/F)p is a discrete valuation ring with a discrete valuation ν. NowQa ” ´`B in (S/F)p. Since
B R p, we know that B is an unit in (S/F)p and we have ` = ´Qa

B
. If ν(Q) ą 1, then ν(`) ą 1 and

we have p Ă p2 in (S/F)p, which is contradiction by Nakayama’s lemma. Hence we must have
ν(Q) = 1. Then we have m(p) = ν(C) = ν(Qx + `P) = ν(Q) + ν(Bx ´ aP). Hence m(p) ą 1 iff
ν(Bx ´ aP) ą 0, i.e. Bx ´ aP P p = (Q, `). Since s(Q) ě 5, we know that S/(Q, `) is a UFD. Now
Bx ” aP in S/p. Therefore by unique factorization, we must have one the following two cases.

Case 1. We have B ” αP and a = αx in S/(Q, `) where α P K is an unit. Then we have
B = αP + µQ+ `z and a = αx+ λ` for some µ, λ P K and z P S1. Then we have F = (αx+ λ`)Q+
`(αP + µQ+ `z) = αC+ β`Q+ `2z for some β P K.

Case 2. We have a|B and x|P in S/(Q, `). Then we have B = az+ `y+αQ and P = xu+ `v+βQ for
some α,β P K and z, y, u, v P S1. Since Bx ” aP in S/(Q, `), we have ax(u´ z) ” 0modulo (Q, `).
Thereforeu ” zmodulo `, andmaywriteu = z+γ` for someγ P K. Then F = aQ+`(az+`y+αQ) =
a(Q+ `z) + `(`y+ αQ) = a(Q+ `z) + `(`y+ α(Q+ `z)´ α`z). Hence F = (a+ α`)G+ `2(y´ αz)
whereG = Q+`z. Similarly we haveC = xQ+`(xu+`v+βQ) = xQ+`(xz+γx`+`v+βQ). Hence
we haveC = (x+β`)G+ `2(γx+v´βz). Therefore (C, F) Ă (G, `2) and we have (G, `) = (Q, `).

A useful corollary of the lemma above is the following:

Corollary 5.7. Let V = V1 + V2 be an (w, t)-wide AH-vector space in the polynomial ring S, with w ě 6.
Let C be an irreducible cubic form contained in A = K[V]. Suppose F P S3 is an irreducible cubic form such
that (C, F) has a quadratic minimal prime p with m(p) ě 2 and F R (V1). Then there exists Q P S2 and
` P S1 such that p = (Q, `), and we have s(Q) ě (t´ 1)dim(V1) + t(dim(V2) +w´ 1)´ 1 and

(C, F) Ă (Q, `2).

Proof. Let p = (Q1, `). If s(Q1) ă (t ´ 1)dim(V1) + t(dim(V2) + w ´ 1), then by Lemma 5.5
we have Q1 P (V1). This is a contradiction since F R (V1). Thus we must have that s(Q1) ě
(t´ 1)dim(V1) + t(dim(V2) +w´ 1). Then by Lemma 5.6, we know that F P (C, `) or there exists a
quadratic form Q such that (C, F) Ă (Q, `2) and (Q, `) = (Q1, `). Let C = xQ1 + `P. If F P (C, `),
then F P (x, `). By Lemma 4.16, x, ` P V1 and hence F P (V1), which is a contradicion. Therefore,
theremust exist a quadratic formQ such that (C, F) Ă (Q, `2) and (Q, `) = (Q1, `). SinceQ P (Q1, `),
we note that s(Q) ě s(Q1)´ 1 ě (t´ 1)dim(V1) + t(dim(V2) +w´ 1)´ 1.

Lemma 5.8. Let F = xQ + `2y P S3 be an irreducible cubic where Q P S2 is such that s(Q) ě 3. If
F P (G,a2) where a P S1, G P S2 with s(G) ě 3, then a P (x, `), G P (Q, `, x) and F = xG+a2b for some
b P S1. Moreover, if x R (a, `), then a P (`) and (G,a2) = (Q, `2).
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Proof. Since F is irreducible, we know that dim spanK tx, `u = 2. Moreover, as F P (G,a2), we can
also write F = zG+ a2b.

Let us begin by proving that z = x (after a possible multiplication of G by a scalar). Since
zG ” ´a2b mod (x, `), S/(x, `) is a UFD, and s(G) ě 3, we must have that z ” 0 mod (x, `)
and a2b ” 0 mod (x, `). Writing z = αx + β`, we get F = xQ + `2y = (αx + β`)G + a2b, which
implies x(Q´ αG) = `(βG´ `y) + a2b. Hence, `(βG´ `y) ” ´a2b mod (x), and together with
s(G) ě 3 implies that β = 0 and therefore we can write z = αx, where α ‰ 0. Thus, after a possible
multiplication of G by a scalar, we have F = xG+ a2b.

Note that the above also implies that a2b ” `2y mod (x), which by factoriality of S/(x) implies
that a P (x, `). From 0 = x(Q´G) + `2y´ a2b, we have x(Q´G) ” a2b ” γx2b mod (`), which
implies that Q´G P (`, x) and thus G P (Q, `, x). This concludes the first part of the lemma.

For the moreover part, since we know that a P (x, `), if x R (a, `) then we must have a P (`). In
this case, xQ ” xG mod (`), which implies G = Q + `f for some f P S1. Hence, F = xQ + `2y =
x(Q+ `f) + `2b, which yields xf = `(y´ b), and therefore f P (`), otherwise x P spanK t`u, which is
a contradiction. However, f P (`)ñ G P (Q, `2) and therefore we can take G = Q.

Remark 5.9. An easy consequence of the above lemma is that given F = xQ+ `2y, then there is only one
primary ideal of the form (P, `2) such that F P (P, `2). In particular, we must have that (P, `2) = (Q, `2).

6 Sylvester-Gallai configurations

In this section we formally define several variants of Sylvester-Gallai configurations and discuss
some preliminary results – old and new – which we will need to prove our main theorem in
Section 7. In particular, we will define the main variant that we will need – Sylvester-Gallai over
algebras – in order to apply our reduction from the cubic case to the quadratic SG case. Throughout
this section we will denote our Sylvester-Gallai configuration by F, and Fd := F X Sd is the subset
of the forms in F which have degree d.

6.1 Linear Sylvester-Gallai configurations

Definition 6.1 (Robust linear SG configuration). LetF := t`1, ¨ ¨ ¨ , `mu Ă S1 be a finite set of pairwise
linearly independent linear forms in S and let δ P (0, 1]. We say that F is a δ-linear-SG configuration
if for every i P [m] there exist at least δ(m´1) values of j such that |FXspanK

 

`i, `j
(

| ě 3, i.e. there
exists k ‰ i, j such that `k P spanK

 

`i, `j
(

. If δ = 1, then we simply call it a linear SG configuration.
Given a Sylvester-Gallai configuration, we say that (`i, `j, `k) is a SG triple if i, j, k are distinct

and `k P spanK
 

`i, `j
(

. Moreover, we say that (`i, `j) is a SG pair if there is k ‰ i, j such that
(`i, `j, `k) is a SG triple.

It was proved in [BDWY11, DSW14] that the dimension of the span of a δ-linear-SG configuration
is bounded by a function depending only on the robustness parameter δ. Below we state the
sharpest known result, from [DSW14, Theorem 1.9].
Theorem 6.2. If F is a δ-linear-SG configuration, then dim(spanK tFu) ď

12
δ .

We will also need a slight strengthening of the result above, which comes from considering a
slightly more general type of linear SG configurations, where we also allow certain SG pairs (`i, `j)
to intersect non-trivially a small dimensional vector space, instead of spanning a third element of
the configuration.
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Definition 6.3 (Robust linear Sylvester-Gallai configurations over a vector space). Let c P N,
0 ă δ ď 1 and F := t`1, . . . , `mu Ă S1 be a set of linear forms such that `i R (`j) for any i ‰ j. We
say that F is a (c, δ)-linear-SG configuration if there exists a vector spaceW Ă S1 of dimension at
most c such that for any `i P FzW, there exist at least δ(m´ 1) indices j P [m]ztiu such that `j RW
and one of the following holds: |spanK

 

`i, `j
(

X F| ě 3 or spanK
 

`i, `j
(

XW ‰ 0.

The following proposition is an easy corollary of Theorem 6.2, and it is a slightly more general
version than [Shp20, Corollary 16]. For completeness, we provide a proof of this proposition in
Appendix B.1.

Proposition 6.4 (Robust Linear SG Configurations). Let F be a (c, δ)-linear-SG configuration. Then
dim spanK tFu ď c+ 25/δ.

6.2 Radical Sylvester-Gallai Configurations

Next we define a generalization of SG-configurations for radicals of ideals in a polynomial ring.
The following generalization was defined in [Gup14, Section 6].

Definition 6.5 (Radical SG configuration). Let F = tF1, ¨ ¨ ¨ , Fmu Ă S be a set of irreducible forms
such that deg(Fi) ď d for all i P [m] and Fi R (Fj) for i ‰ j. We say that F is a (δ, d)-radical-SG
configuration if for every i P [m] there exist at least δ(m´1) values of j such that |FXrad(Fi, Fj)| ě 3.
If δ = 1 then we simply call it a d-radical-SG configuration.

We now define a slightly more flexible variant of a radical SG configuration, where we allow
some dependencies to be inside of a predefined algebra.

Definition 6.6 (Radical SG over an algebra). Let d P N˚ and V Ă Sďd be a graded vector space. Let
F = tF1, ¨ ¨ ¨ , Fmu Ă S be a set of irreducible forms such that deg(Fi) ď d and Fi R (Fj) for i ‰ j. We
say that F is a (δ, d, V)-radical-SG configuration if for every i P [m], there exist at least δ(m ´ 1)
values of j such that |F X rad(Fi, Fj)| ě 3 or | rad(Fi, Fj) X K[V]z(Fi) Y (Fj)| ě 1. If δ = 1 then we
simply call it a (d, V)-radical-SG configuration.

The following proposition, whose proof can be found in Appendix A, says that any 2-radical-SG
configuration over a small algebra must be in a slightly larger algebra. In case the initial algebra is
of constant dimension, then the configuration must be in a constant dimensional vector space.

Proposition 6.7 (2-radical-SG configurations over small algebra). Let F Ă Sď2 be a finite set of
irreducible forms such that for any F,G P Fwe have F R (G). Additionally, letV = V1+V2 be a vector space of
forms of degree atmost 2. IfF is a (2, V)-radical-SG configuration, thendim spanK tFu = O(1+dim(W)2),
whereW is any (600, 8)-wide vector space such that K[V] Ă K[W].

An immediate corollary of the above proposition, when V = W = 0, is the quadratic radical
Sylvester-Gallai theorem [Shp20, Theorem 7].

6.3 Saturated radical Sylvester-Gallai theorem

In this section we consider a variant of the radical Sylvester-Gallai configuration, where now, in
addition to our set of forms F, there will be a special linear form z P S1 such that for any two
polynomials Fi, Fj P F, there exists k ‰ i, j such that zFk P rad(Fi, Fj). In hindsight, as one would
expect, such configurations can only appear inside small algebras, and in this section we prove this
fact. We begin by formally defining such configurations.
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Definition 6.8 (Saturated SG configurations). Let z be a non-zero linear form in S = K[x1, ¨ ¨ ¨ , xn].
Let F := tz, F1, . . . , Fmu Ă Sď2, where each Fi is either an irreducible form or a product of two
distinct linear forms such that gcd(Fi, Fj) = gcd(Fi, z) = 1 for any i ‰ j P [m]. We say that F is a
z-saturated radical Sylvester-Gallai configuration if for any two forms Fi, Fj P F, there is a third
form Fk P FztFi, Fju such that zFk P rad(Fi, Fj).

In what follows, the next definitions shall be useful:

• F = F1 \ F2 is our z-saturated configuration, with |F| = m and |Fi| = mi, for i P [2]

• For Q P S2, define L(Q) =

#

Lin(Q), if s(Q) ď 2,

spanK tQu , otherwise

• given Q P F2, denote by

Fspan(Q) := tP P F2 | |(P,Q)X F2| ě 3u

Fnon´prime(Q) := F2zFspan(Q)

• Given a parameter δ P (0, 1], define the set

Fspan := tQ P F2 | |Fspan(Q)| ě δm2u.

For the remainder of this subsection, we shall assume δ = 1/30 and Fspan is defined with
respect to this choice of δ.

With the definitions above at hand, we will now prove some useful lemmas about such
configurations. We begin by proving that if the quadratics are not a linear SG configuration, then
we can find a small wide algebra which “approximates” all the quadratics.

Proposition 6.9. Suppose F2 ‰ Fspan. LetW be a graded vector space such thatK[W]XF2zFspan ‰ H.
Then any Q P F2 can be written as Q = P + αR, where α P K, R P K[W]X F2 and s(P) ď 3.

Proof. Let F P K[W] X F2zFspan and Fnon´prime(F) := tG1, . . . , Gtu. Since F R Fspan, we have
that t ě (1´ δ)m2. Moreover, since (F,Gi) does not span a third element, we must have that (F,Gi)
is not prime. Thus, Proposition A.2 implies that either Gi = F + aibi for ai, bi P S1 or there are
xi, yi P S1 such that F,Gi P (xi, yi).

Since F P K[W], by the above paragraph, we have that each Gi P Fnon´prime(P) is such that
s(Gi) = 1 or Gi ´ F = aibi ñ s(Gi ´ F) = 0, i.e. smin(F,Gi) ď 1. Thus Gi satisfies the conditions of
the proposition withW.

LetQ P Fspan(F). If (Q,Gi) is not prime for someGi, then smin(Q,Gi) ď 1. Hence smin(Q, F) ď
3. Therefore we may assume that (Q,Gi) is prime for all i P [t]. However, since (1´ δ)m2 ą 2m2/3,
by the pigeonhole principle this would imply that there are Gi, Gj P Fnon´prime(P) such that
Q P (Gi, Gj). Hence we have min

αPK
s(Q+ αF) ď min

αPK
s(Gi + αF) +min

αPK
s(Gj + αF) + 1 ď 3.

Lemma 6.10. Let 0 ă ν ă 1 be a constant and w P N such that w ą 24/ν+ 10. If F2 ‰ Fspan andW
is a (w, 3)-wide vector space such that |F XK[W]| ě ν|F| and z PW, then there is a (w´ 24/ν, 1)-wide
vector space V such that K[W] Ă K[V], dim(V) ď 3(dim(W) + 1) + 25(1+ 1/ν) and F Ă K[V].
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Proof. Letm+ 1 := |F| and let tF1, . . . , Ftu = FXK[W]. Hence, we know that t ě νm. We begin by
showing that there is a (w´ 24/ν, 1)-wide vector space X such that dim(X) ď 3(dimW + 1) + 24/δ,
K[W] Ă K[X] and F Ă (X).

IfK[W] contains a form in F2zFspan, thenwe know that for anyQ P F2, there is RQ P K[W] such
that s(Q´ RQ) ď 3. If this is not the case, let Q P F2zFspan. By Lemma A.3 there is (w, 1)-wide U
such that dimU ď 3(dimW + 1),W Ă K[U] and Q P K[U].

If F Ă (U), set X = U. Otherwise, let P P Fz(U). If P P S1, then Y := U + spanK tPu is
(w ´ 1, 1)-wide, and if P P F2, we know that there is RP P K[U] such that s(P ´ RP) ď 3, which
implies that Y := U+Lin(P´RP) is (w´8, 1)-wide. In either case, we constructed Y (w´8, 1)-wide
such that U Ă Y and P P K[Y]. Since w´ 8 ą 3, we have that any homogeneous generators for Y
form an R3-sequence, and in particular Y is generated by a prime sequence (the same holds for U).

Lemma 3.22 applied to P, Fi, U and K[Y] (if Fi = uivi, apply the lemma to P, ui,K[Y] and
P, vi,K[Y]) implies that for at most 8 values of i P [t] we have (P, Fi) not radical. Hence, we can say
that (P, Fi) is radical for i ď t´ 8. Moreover, as z P U and P R (U), we have that P, Fi, z is a regular
sequence for each Fi P K[U], and therefore we have that zGi P rad(P, Fi)ñ Gi P rad(P, Fi).

Thus, if i ď t´8, the above implies that there isGi P Fz(U) such thatGi P (P, Fi) Ă (Y). Moreover,
note that if Gi P (P, Fi)X (P, Fj), then it must be the case that Fi, Fj P U1 and Gi = P + αiFiFj, and
thereby we have that each Gi can belong to at most 2 of the ideals (P, Fi). Therefore, we have that

|F X (Y)| ě |F X (U)|+
t´ 8

2
ě |F X (U)|+

νm

3
and |F XK[Y]| ě νm.

Hence, setting U = Y we can increase the number of forms in F X (U) by νm/3.
Given the above and the fact that dim(Y) ď dim(U) + 8, applying the process above at most

3/ν times we obtain X such that dimX ď dimU+ 24/ν ď 3(dimW + 1) + 24/ν and F Ă (X). It is
important to note that F Ă (X) implies that F1 Ă X1. Hence, FzK[X] only has quadratic forms.

Now that we have F Ă (X) and X is (w ´ 24/ν, 1)-wide, if we apply a general projection ϕ
mapping X1 ÞÑ z, we have that the forms in FzK[X] become:

ϕ(Fi) =

#

z`i, where `i R (z), if Fi P (X1)
Gi + z`i, where Gi P spanK tϕ(X2)u and `i R (z).

Since X is (w´ 24/ν, 1)-wide, we have that s(Gi) ě 10.
Let FzK[X] =: H = tH1, . . . , Hru, and for each i P [r], let `i be the linear form such that

ϕ(Hi) = z`i or ϕ(Hi) = Gi + z`i. Let L := t`1, . . . , `ru Y tzu. To conclude the proof, by
Proposition 2.9 it is enough to prove that spanK tLu = O(1). To do this, let L 1 = t`1, . . . , `su Y tzu
(after possibly relabeling) be the maximum subset of L such that `i R (`j) for any i ‰ j. Note that
spanK tLu = spanK tL

1u. We will show that L 1 is a (1, 1)-linear-SG configuration, which proves that
dim spanK tL

1u ď 25. Thus setting V = X+ spanK tL
1uwe are done.

Let i ‰ j P [s]. If z P (`i, `j), then we know that `i, `j, z form a SG triple and we are done. So
we can assume that dim spanK

 

`i, `j, z
(

= 3. By the z-saturated SG condition on Hi, Hj, there is
F P FztHi, Hju such that zF P rad(Hi, Hj). Hence, we have that zϕ(F) P rad(ϕ(Hi), ϕ(Hj)). We
have three cases to analyze:

Case 1: ϕ(Hi) = z`i, ϕ(Hj) = z`j.
In this case, we have zϕ(F) P rad(z`i, z`j) Ă (`i, `j) ñ ϕ(F) P (`i, `j) ñ ϕ(F) R K[X] and

therefore F = Hk for some k ‰ i, j. Moreover, since s(ϕ(Hk)) ď 2, as ϕ(Hk) Ă (`i, `j), we must
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have that ϕ(Hk) = z`k and hence `k P (`i, `j). By Corollary 2.8, we know that `k R (`i)Y (`j), and
hence `i, `j, `k form a SG triple.

Case 2: ϕ(Hi) = z`i, ϕ(Hj) = Gj + z`j.
In this case, we have zϕ(F) P rad(z`i, Gj+ z`j) Ă (`i, Gj+ z`j)ñ ϕ(F) P (`i, Gj+ z`j)ñ ϕ(F) R

K[X] and therefore F = Hk for some k ‰ i, j. Since s(Gj) ě 10, we have that ϕ(Hk) = Gk + z`k,
otherwise we would haveϕ(Hk) = z`k ñ `k P (`i, Gj+z`j)ñ `k P (`i), contradicting Corollary 2.8.

From Gk + z`k P (`i, Gj + z`j), we have Gk = αkGi for some α P K˚ and hence we know that
`k ‰ αk`j, otherwise Corollary 2.8 would imply that Hk P (Hj), which is a contradiction. Therefore,
z(`k ´ αk`j) P (`i, Gj + z`j), which implies `k ´ αk`j P (`i)ñ `i, `j, `k form a SG triple.

Case 3: ϕ(Hi) = Gi + z`i, ϕ(Hj) = Gj + z`j.
In this case, if dim spanK

 

Gi, Gj
(

= 2 then Proposition A.2 implies that (Gi + z`i, Gj + z`j) is
prime, as smin(Gi + z`i, Gj + z`j) ě 8. Therefore, we would have ϕ(F) P (Gi + z`i, Gj + z`j) which
implies that F = Hk and ϕ(Hk) = Gk + z`k. Hence, Gk + z`k P (Gi + z`i, Gj + z`j)ñ Gk + z`k =
αi(Gi + z`i) + αj(Gj + z`j) where αi, αj ‰ 0. This in turn implies `k = αi`i + αj`j, which together
with dim spanK

 

`i, `j
(

= 2 implies that `i, `j, `k is a SG triple.
On the other hand, if dim spanK

 

Gi, Gj
(

= 1 then there is β P K˚ such that Gj = βGi. In this
case, we have (Gi + z`i, Gj + z`j) = (Gi + z`i, z) X (Gi + z`i, `j ´ β`i). This in turn implies that
ϕ(F) P (Gi + z`i, `j ´ β`i)ñ ϕ(F) R K[X] and therefore F = Hk for some k ‰ i, j.

If s(ϕ(Hk)) ď 5, thenϕ(Hk) = z`k and z`k = ϕ(Hk) P (Gi+z`i, `j´β`i) implies `k P (`j´β`i)
which implies that `i, `j, `k is a SG triple.
Otherwise, ϕ(Hk) = Gk + z`k which implies

Gk + z`k = ϕ(Hk) P (Gi + z`i, `j ´ β`i)X (Gi + z`i, z) = (Gi + z`i, Gj + z`j).

Hence, we have thatGk+ z`k = γi(Gi+ z`i)+γj(Gj+ z`j), where γi, γj ‰ 0. Since s(Gi) ě 10 and
Gj, Gk P (Gi), the above implies `k = γi`i + γj`j, which implies that `i, `j, `k is a proper SG triple.

Conclusion: the above cases prove that for any pair `i, `j such that `j R (`i), either z P (`i, `j) or
there exists k P [s] such that `i, `j, `k is a SG triple. Thus, L 1 is a (1, 1)-linear-SG configuration.

Lemma 6.11. If F is a z-saturated SG configuration such that |F1| ě 3 ¨ |F|/4 then dim spanK tFu = O(1).

Proof. Let F1 = tz, x1, . . . , xru, F2 = tQ1, . . . , Qsu andm := |F| = 1+ r+ s. By the assumption of
the lemma, we have r ě 3s. If there exists a linear form xi such that for ě δm xj’s we have that
xi, xj, z is not a regular sequence, thenwe have that |spanK txi, zuXF1| ě δm, which by Lemma 6.10
implies that spanK tFu = O(1). Hence, we will assume that for each xi at most δm xj’s do not form
a regular sequence with xi, z.

Given xi P F1, let Fbad(xi) be the set of linear forms xj such that xi, xj, z is regular but no linear
form xk is such that xk P (xi, xj). We will now prove that |Fbad(xi)| ď r´ 2δm for each i P [r].

If the above is not the case, we can assumew.l.o.g. that x1 is such that |Fbad(x1)| ą r´2δm ą 2s.
Letting Fbad(x1) := tx2, . . . , xtu where t ą 2s, by the SG condition and the fact that x1, xi, z is
regular, we must have that there is Q P F2 such that Q P (x1, xi). We will now show that for any
distinct i, j, k P Fbad(x1), we must have F2 X (x1, xi)X (x1, xj)X (x1, xk) =H.

Let xi = xi mod (x1). Note that xi’s are all independent since xi P Fbad(x1), so we don’t
have linear dependencies. If F2 X (x1, xi) X (x1, xj) X (x1, xk) ‰ H, we would have Q P F2 X
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(x1, xi)X (x1, xj)X (x1, xk), which implies that Q P (xi ¨ xj ¨ xk) over S/(x1), which implies Q ” 0,
contradicting the fact that gcd(Q, x1) = 1. Hence, we have that eachQ P F2 is in at most two ideals
of the form (x1, xi), which implies that t ď 2s, which is a contradiction.

Since |Fbad(xi)| ď r´ 2δm for each xi, we have that F1 is a (1, δ)-linear-SG, which implies that
spanK tF1u = O(1), which by Lemma 6.10 implies that we are done.

Lemma 6.12. If there exists Q P F2 such that s(Q) ě 4 and Q R Fspan, then there exists V Ă S1 with
dim(V) = O(1) such that any algebra A containing V and Q is such that |AX F| ě δ|F|.
Proof. Let |F2| = s and m = |F|. We can assume that s ě m/4, otherwise Lemma 6.11 implies
that we are done. If Q R Fspan, then let Fnon´prime(Q) = tQ1, . . . , Qtu be the set of all forms
in F2 such that (Q,Qi) do not span a third element in F2. In this case, t ě s ´ δm. Note that
Qi P Fnon´prime(Q)ñ s(Qi) ě 3 and smin(Q,Qi) = 0, as eitherQ,Qi, z is not a regular sequence,
or (Q,Qi) is not radical.

We will show that P P F2 ñ smin(P,Q) ď 1. Suppose it is not the case, that is, we have
P P F2 such that smin(P,Q) ě 2. Note that P must be irreducible, as s(P) ě smin(P,Q) ě 2. By
Proposition A.2, we have that (P,Qi) is prime for any Qi P Fnon´prime(Q), as smin(P,Qi) ě
smin(P,Q) ´ 1 ě 1 and smax(P,Qi) ě s(Qi) ě s(Q) ´ 1 ě 3. Hence, we have that (P,Qi) must
span an element Gi P F2zFnon´prime(Q). Since spanK tP,Qiu X spanK

 

P,Qj
(

= spanK tPu, as
smin(P,Q) ě 2, we have that Gi R (Gj) for each i ‰ j P [t]. However, this would imply that
δm ě |F2zFnon´prime(Q)| ě t´ δm, which is a contradiction.

Now that we know that P P F2 ñ smin(P,Q) ď 1, we have two cases to analyze:

Case 1: there is P P F2 such that smin(P,Q) = 1.
In this case, we have that P = αQ + R, where α P K and s(R) = 1. Let A be an algebra

containing Q,Lin(R), z. We prove that |A X F| ě δm by proving that |Fnon´prime(Q)zA| ď δm.
This would conclude this case by taking V = spanK tz,Lin(R)u. After relabeling, we can assume
that tQ1, . . . , Qru := Fnon´prime(Q)zA for r ď t.

Let i P [r]. Since smin(Q,Qi) = 0 and s(Qi) ě 3, we have Qi = Q + uivi. In particular, this
implies that (Qi, `) is prime for any linear form ` P S1.

We first prove that P,Qi, z form a regular sequence. If this is not the case then P P (Qi, z), which
implies that P = βQi + z`i ñ (α´β)Q = z`i ´ R. Since s(Q) ě 4 and s(s`i ´ R) ď 2we must have
β = α, which implies s(R) = 0, which is a contradiction to s(R) = 1.

Moreover, (P,Qi) is radical, otherwise by PropositionA.2 there is `i P S1 such thatβP+γQi = `2i
which implies (αβ+ γ)Q = `2i ´ R and analogously this contradicts s(R) = 1.

Hence, it must be the case that (P,Qi) must span a third element of F2. If there is Qj P
(P,Qi)X F2ztP,Qiu such that smin(Q,Qj) = 0, writing Qj = Q+ ujvj, there is β, γ P K˚ such that

Qj = βP + γQi ñ (1´ αβ´ γ)Q = βR+ γuivi ´ ujvj.

Since s(Q) ě 4 and s(βR+ γuivi ´ ujvj) ď 3we must have 1´αβ´ γ = 0 and βR = ujvj ´ γuivi.
Since β ‰ 0 and s(R) = 1 Proposition 2.2 implies that ui, vi P Lin(R) Ă Awhich contradictsQi R A.

Thus, the only possibility is that (P,Qi)must span an element F P F2 such that smin(F,Q) = 1. In
particular, we know that F P F2zFnon´prime(Q) =: tF1, . . . , Fku. Since |Fnon´prime(Q)| ě s´ δm,
we have k ď δm. Since Qi R A for i P [r], we must have that spanK tP,Qiu X spanK

 

P,Qj
(

=
spanK tPu, otherwise P P spanK

 

Qi, Qj
(

which contradictsQi, Qj R A. Hence, for each i P [r], there
exists Fi P spanK tP,Qiu and for i ‰ j P [r], we have that Fi R (Fj). This implies that r ď k ď δm.
Since r = |Fnon´prime(Q)zA|we are done with this case.
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Case 2: all forms in Fi P F2 satisfy smin(Q, Fi) = 0, that is, are of the form Fi = αiQ+ uivi, where
αi P K and ui, vi P S1.

In this case, partition F2 = Λ \H, where Fi P Λ if s(Fi) = 0 (that is, αi = 0) and Fi P H if
s(Fi) ě 3 (that is αi ‰ 0). Let Λ̂ = tui, vi | Fi P Λu, and let Γ := F1 Y Λ̂.

The SG dependencies from F and the fact that s(F) ě 3 for F P H imply that Γ is a (1, 1)-linear-SG
configuration, and thus dim spanK tΓu = O(1). LetW = spanK tΓu. Since we are assuming that
z P F1, we also have that z PW. Moreover, if |F1YΛ| ě δmwehave that |FXK[W]| ě δm andwe are
done by setting V =W. Thus, we can assume that |H| ě (1´ δ)m. Since s = |F2| ě |H| ě (1´ δ)m,
this implies t ě (1´ 2δ)m. We now need to handle the forms inH.

Any Qi P Fnon´prime(Q) is of the form Qi = Q + a2i (in case (Q,Qi) not radical) or Qi =
Q + zbi where bi R (z) (in case (Q,Qi) is radical but Q,Qi, z not regular). Moreover, any
F P HzFnon´prime(Q)Y tQu is of the form F = Q+ uv where dim spanK tu, vu = 2 and uv R (z).

We can assume that for anyU Ă S1 for which z P U and dimU ď 4, we have |HXK[Q,U]| ď δm,
otherwise we are done by simply taking A to be any algebra containing Q,U.

We now show that H = Fnon´prime(Q) Y tQu. If H ‰ Fnon´prime(Q) Y tQu, let F P
HzFnon´prime(Q)Y tQu. By the argument above, F = Q + uv, where dim spanK tu, vu = 2 and
uv R (z). Let U = spanK tu, v, zu.

If Qi P Fnon´prime(Q) is such that Qi = Q + a2i , then we claim that ai P K[U]. Suppose, for
the sake of contradiction, that it is not the case. Then Proposition 2.4 implies that s(αuv+ βa2i ) = 1
for all α,β ‰ 0, which by Proposition A.2 implies (F,Qi) prime. Thus, there is a polynomial
G P F2ztF,Qiu such that G P (F,Qi). But in this case we have G = (β+ γ)Q+ βuv+ γa2i , for some
β, γ ‰ 0, which contradicts the fact that smin(Q,G) = 0.

Now, we will prove that if Qi P Fnon´prime(Q) is such that Qi = Q + zbi, then bi P K[U].
Suppose this is not the case. Then, Proposition B.2 implies that αuv + βzbi is irreducible for
all α,β P K˚. Hence, Proposition A.2 implies (F,Qi) is prime, and analogously to the previous
paragraph any G P F2 X (F,Qi)ztF,Qiu is such that smin(G,Q) = 1, which is a contradiction.

The two paragraphs above show that ifH ‰ Fnon´prime(Q)Y tQu, then there is a quadratic
that has no SG dependence, which contradicts the assumption that F is a SG configuration. Thus,
in this case H = Fnon´prime(Q)Y tQu. Now, we can partition Fnon´prime(Q) = N \ R, where
N := tQi | Q+ a2i and ai R (z)u and R := tQi | Qi = Q+ zbiu.

If there is P P R such that dim spanK tz, bu = 2, then Fnon´prime(Q) = R or N P K[Q, z, b].
To see this, note that if Q1 P NzK[Q, z, b], we have that Q1 = Q + a21 where a1 R (z, b). Thus,
Proposition B.2 implies s(αzb+ βa21) = 1 for all α,β P K˚, which implies that (P,Q1) is prime. By
the SG condition, there must be R P (P,Q1)XFztP,Q1u, which implies R = αP+βQ1 for α,β P K˚,
which contradicts the fact that smin(R,Q) = 0.

Since F2 = ΛYH, Λ Ă K[W] andH = Fnon´prime(Q)YtQu, by the above paragraph we have
two cases to analyze: F2zK[Q,W] Ă N or F2zK[Q,W] Ă R.

Case 2.1: If F2zK[Q,W] Ă N, let tQ1, . . . , Qsu = Fnon´prime(Q)zK[Q,W]. Hence, we have
Qi = Q + a2i , where ai R (W). If s ą 0, we claim that Qi P K[Q,W,a1], which concludes this
case. To see this, suppose a2 R (W,a1). This implies Q1, Q2, z is a regular sequence, and (Q1, Q2)
is radical. Thus, there is j ‰ 1, 2 such that Qj P (Q1, Q2), which implies a2j = αa21 + βa

2
2 with

α,β P K˚, which is a contradiction.
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Case 2.2: If F2zK[Q,W] Ă R, let tQ1, . . . , Qsu = Fnon´prime(Q)zK[Q,W]. Hence, we have
Qi = Q+ zbi, where bi R (W). W.l.o.g., we can assume that L := tb1, . . . , bru is a maximal subset
of tb1, . . . , bsu such that bj R (bi) for all i ‰ j. We now show that L forms a (dim(W), 1)-linear-SG
configuration, whichwill end this case. Let i ‰ j P [r]. Since (Qi, Qj) = (Q, z)X(Qi, bi´bj), we have
that (Qi, Qj) is radical, and by the saturated SG configuration condition, there is Fk P F such that
zFk P (Qi, Qj), which implies Fk P (Qi, bi´bj). If Fk P K[W], we have that spanK

 

bi, bj
(

XW ‰ 0,
which means that bi, bj forms a SG pair over W. Else, we must have Fk = Q + zbk for some
bk R W, where k P [s]. This implies that Fk P (Qi, Qj). Hence, there is α P Kzt0, 1u such that
Fk = αQi+(1´α)Qj ñ bk = αbi+(1´α)bj, which implies that bk P Lztbi, bju, which concludes
the proof that L is a (dim(W), 1)-linear-SG configuration.

Lemma 6.13. If there exists Q P F2 such that s(Q) ď 3 and Q R Fspan, then there exists V Ă S1 with
dim(V) = O(1) such that F Ă K[V].

Proof. Let |F1| = r, |F2| = s and m = |F| = r + s. By Lemma 6.11, we can assume that s ě m/4,
otherwise we are done. LetW = Lin(Q) + spanK tzu. Since s(Q) ď 3, we have that dimW ď 9. If
|F XK[W]| ě δmwe are done by Lemma 6.10, hence we will assume this is not the case.

Since Q R Fspan, denoting by B := F2z(Fspan(Q) Y K[W]) = tQ1, . . . , Qtu, we have that
t ě s´ 2δm. Now, if Qi P B, then one of the following holds:

• Q,Qi, z is not a regular sequence, which implies Qi P (W) and s(Qi) ď s(Q) + 1, as Qi must
be contained in a minimal prime of (Q, z) and all minimal primes of (Q, z) are in (W)

• Qi R (W) andQ,Qi is not radical: in this case by Proposition A.2 we must haveQi = Q´ y2i ,
for some yi RW.

In both cases above, after a general projection ϕmappingW ϕ
ÞÑ z, we have

Qi ÞÑ

#

z ¨ ui, ui R (W)

(yi ´ αiz)(yi ´ βiz), yi P S1/(W) and αi, βi P K˚

After relabeling theQi’s, we can assume thatϕ(Qi) = zui for i ď a andϕ(Qi) = (yi´αiz)(yi´βiz)
for a ă i ď t. Note that the above implies that s(Qi) ď s(Q) + 1 ď 4 for any form in B, and
Proposition 6.9 implies that s(F) ď 6 for any form F P F2.

We now show that every form in F2 will factor after projection. Suppose that is not the
case, that is, there is F P F2 such that ϕ(F) is irreducible. Hence, we must have that F R
(W) Y B. Let U = Lin(F) +W. As s(F) ď 6, we have that dim(U) ď 23. By Lemma 6.10, we
can assume that |F X K[U]| ď δm, otherwise we are done. For each Qi P B such that Qi R K[U],
let Gi P F such that zGi P rad(F,Qi). After projection, we have zϕ(Gi) P rad(ϕ(F), zui) or
zϕ(Gi) P rad(ϕ(F), (yi ´ αiz)(yi ´ βiz)). In either case, there is a linear form `i R U such that
ϕ(Gi) P (ϕ(F), `i) and the latter ideal is prime, since ϕ(F) is irreducible after quotienting by `i. As
Proposition 2.7 implies that Gi R (`i), we must also have that ϕ(Gi) is irreducible after projection.
Hence, by the pigeonhole principle we reach a contradiction, as we have t ě s´ 2δm ideals of the
form (F,Qi) and ď 2δm Gi’s.

Thus, after projection we have that for any F P F2:

• if F P (W)zK[W] then ϕ(F) = zu, where u R (W)

• if F R (W), then ϕ(F) = uv, where u, v R (W)
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Thus, we can write F2zK[W] = tF1, . . . , Fau Y tH1, . . . , Hbu, where Fi P (W) and Hi R (W). In
particular, we have that a + b ě s ´ δm, and after projection, we have that ϕ(Fi) = z`i and
ϕ(Hj) = ujvj where `i, uj, vj R (z) for all i, j.

Let F1 = tz, x1, . . . , xr´1u. We can also assume that after projection, we still have ϕ(xi) R
ϕ(xj)Y (z) for any i ‰ j P [r], otherwise we can just pick one representative for each ϕ(xi). Hence,
for simplicity we will denote ϕ(xi) by xi.

Let G1 := tz, x1, . . . , xr´1u Y t`1, . . . , `au Y tu1, v1, . . . , ub, vbu. That is, G1 is the set of all linear
forms appearing in ϕ(F). By Proposition 2.7 and the fact that the forms in F are all pairwise
coprime, we have that the set of linear forms in G1 are pairwise linearly independent.

We will now prove that the linear forms in the “projected configuration” G1 have small vector
space dimension. Todo that, wewill prove thatG1 is a (1, 1/2)-linear-SG configuration, which follows
from the following observation: let Fi, Fj P FzK[W], and let `i | ϕ(Fi), `j | ϕ(Fj) such that `i`j R (z).
If z P (`i, `j) then we are done, since `i, `j would be a valid SG pair. If dim spanK

 

`i, `j, z
(

= 3, then

zFk P rad(Fi, Fj)ñ zϕ(Fk) P rad(ϕ(Fi), ϕ(Fj)) Ă (`i, `j)ñ ϕ(Fk) P (`i, `j)

as z R (`i, `j) we have Fk R K[W], otherwise ϕ(Fk) = z2, so there is `k | ϕ(Fk) and `k P G1.

We are now ready to prove the main result of this section: saturated SG configurations can only
happen in small subalgebras.

Theorem 6.14. Let z P S1 be a non-zero linear form. If F is a z-saturated radical SG configuration, then

dim(spanK tFu) = O(1).

Proof. Letm := |F|, δ = 1/30, and define Fspan with respect to δ. By Lemma 6.11 we can assume
that |F2| ě m/4, otherwise we are done. We can also assume that there is no (24/δ+ 10, 3)-wide
vector spaceW such that dim(W) = O(1) and |F X K[W]| ě δm, otherwise Lemma 6.10 implies
that we are done.

By Lemma 6.12 and Lemma 6.13, we have that F2 = Fspan, otherwise we are done. Hence, F2
is a (0, δ)-linear-SG configuration, and Theorem 6.2 implies that dim spanK tF2u = O(1/δ) = O(1).

Now, by Proposition 4.11 applied to spanK tz,F2u, we can construct a (10, 1)-wide vector space
W such that tzu Y F2 Ă K[W] and dim(W) = O(1). WithW at hand, we will prove that F1 is a
(dim(W), 1)-linear-SG configuration, which will finish the proof.

For any xi, xj P F1, there exists Fk P F such that zFk P (xi, xj). If xi, xj, z are not a regular
sequence, then z P (xi, xj) and thus xi, xj is a valid (dim(W), 1)-SG pair. On the other hand, if
xi, xj, z is a regular sequence, then we must have Fk P (xi, xj). If Fk P F1 we have that xi, xj, Fk
are a SG triple. Otherwise, Fk P F2 and s(Fk) ď 1, which implies that spanK

 

xi, xj
(

XW1 ‰ 0.
Thus, either spanK

 

xi, xj
(

XW1 ‰ 0, in which case (xi, xj) is a valid (dim(W), 1)-SG pair, or
spanK

 

xi, xj
(

XW1 = 0 in which case there exists xk P F1 such that xk P xi, xj.

As a corollary of the results above, we have that 3-radical-SG configurations which are contained
in small linear ideals must be low dimensional. This is essentially the content of the next corollary.
However, we slightly generalize it to also work for (2,W)-radical-SG configurations, and hence the
statement looks a bit more technical.

Corollary 6.15. Let w, t P N with t ě 2 andW = W1 +W2 be a (w, t)-wide graded vector space. Let
F = tF1, ¨ ¨ ¨ , Fmu Ă Sď3 be a finite set of irreducible forms of degree at most 3 such that Fi R (Fj) for
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any i ‰ j. Suppose that for any two distinct Fi, Fj P F, either | rad(Fi, Fj)X F| ě 3 or there exists a form
G P K[W], of degree at most 2 such that G P rad(Fi, Fj). If F Ă (W1), then

dim spanK tFu = O((dimW)4).

Moreover, there exist constants C1, C2 such that for any w 1, t 1 P N, there exists a (w 1, t 1)-wide vector space
V such that F YK[W] Ă K[V] with

dim(V1) ď (2t 1 + 1)(C1 dim(W)+1)(C2(dimW)2 +w 1)

and dim(V2) = O(dim(W)). In particular, dim(V) ď B(w 1, t 1,dim(W)) for some function B : N3 Ñ N.

Proof. Let ϕ : S Ñ S[z]/(W1) be a general projection, where z is free from x1, . . . , xn. Denote by
R := S[z]/(W1). Since F := tF1, . . . , Fmu Ă (W1), we have that ϕ(Fi) = zdiGi, for some di ě 1.
Note that Gi P Rz(z) is square-free by Proposition 2.6. Let G = tz,G1, ¨ ¨ ¨ , Gmu.

We will show that the set G is a z-saturated radical SG configuration in R. By Proposition 2.7,
we know that for all i, j, the polynomials Gi, Gj do not have a common factor and z - Gi. Hence
any two distinct elements of G do not have a common factor. For Gi, Gj P G, suppose that there
is k ‰ i, j such Fk P rad(Fi, Fj). Then we have zdkGk P rad(zdiGi, zdjGj) Ă rad(Gi, Gj). Thus, we
have zGk P rad(Gi, Gj).

For some Gi, Gj P G, suppose there exists G P rad(Fi, Fj) X K[W] with deg(G) ď 2. Then
G P (W1) X K[W]. Since W is (w, t)-wide and degG ď 2, by Proposition 4.9 G P K[W1] and
ϕ(G) = zd for some d ě 1. Therefore zd P rad(zdiGi, zdjGj) Ă rad(Gi, Gj). Hence z P rad(Gi, Gj).

Therefore, G is a z-saturated SG configuration and by Theorem 6.14 dim spanK tGu = O(1).
Hence, there exists a constant D ą 0 such that for a general projection ϕ, dim spanK tϕ(F)u ď D.
By Corollary 2.12, we conclude that dim spanK tFu = O((dimW)4).

Also, by Corollary 2.12, there exists a graded vector spaceU = U1+U2, such that F Ă K[U+W]
where dim(U1) = O(dim(W)2) and dim(U2) = O(dim(W)). For any w 1, t 1 P N, we apply
Proposition 4.11 to the graded vector space (U1 +W) +U2 to obtain a (w 1, t 1)-wide vector space
V = V1 + V2 such that F YK[W] Ă K[V]. Furthermore, by Proposition 4.11, there exist constants
C1, C2 such that

dim(V1) ď (2t 1 + 1)(C1 dim(W)+1)(C2(dimW)2 +w 1)

and dim(V2) = O(dim(W)).

6.4 Cubic Sylvester-Gallai over a small algebra

We now prove that if a 3-radical-SG configuration has a constant fraction of its elements in a small
wide algebra, then there is a slightly larger wide algebra which contains the entire configuration.

Proposition 6.16. Let 0 ă ν ă 1 be a constant. There exists a function Bν : N3 Ñ N such that the
following holds:

Let F = tF1, ¨ ¨ ¨ , Fmu Ă Sď3 be a set of irreducible forms of degree at most 3 such that |F| ě 211/ν and
W =W1 +W2 be a (w, t)-wide AH-vector space. Suppose F is a 3-radical-SG configuration and we have

1. (Low strength). For all F P Fě2 we have 3s(F) ă w and 3s(F)+3 ă t.

2. (constant fraction in the algebra). we have |F XK[W]| ě ν|F|.
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Then there exists a (w, t)-wide vector space V such that FYK[W] Ă K[V] and dim(V) ď Bν(w, t,dimW).

Proof. We will construct the vector space V iteratively. At each step of the iterative process we will
preserve the property that K[W] Ă K[V] and we will increase the cardinality of F XK[V].

1. Set V =W.

2. While F Ć K[V] :

• If F Ă (V1), then apply Corollary 6.15 to the set F X (V1) and the algebra K[V], to obtain
a (w, t)-wide vector space U such that F YK[V] Ă K[U]. Set V = U and stop.

• Else:
– Pick P P Fz(V1). Apply Proposition 4.15 to P and V to obtain a (w1, t1)-wide vector
space U such that P P K[U] and V Ă U, where w1, t1 P N satisfy the inequalities in
Proposition 4.15.

– Apply Corollary 6.15 to F X (U1) and K[U] to obtain a (w, t)-wide vector space U 1
such that (F X (U1))YK[U] Ă K[U 1]. Set V = U 1.

Termination. We will show that this iterative process terminates after at most 210/ν iterations
of the While loop. First, we note that each step of the iterative process preserves the inclusion
K[W] Ă K[V]. Therefore we always have |F XK[V]| ě νm.

Suppose we have F Ć (V1). Let P P Fz(V1) and U be the (w1, t1)-wide vector space as
constructed above. Since P R K[V], there is a generator x P UzV such that P depends on x. Since
deg(P) ď 3, the leading coefficient of x in P P K[U] has degree at most 2. Thus there can be at most
two forms Fi P F X K[V], such that the coefficient of x in P P K[U] is divisible by Fi. Therefore,
by Lemma 3.18, we know that rad(P, Fi) X K[V] = (Fi) for at least νm ´ 2 forms Fi P F X K[V].
Hence, for each such Fi, there exists Gi P rad(P, Fi) X F, such that Gi R K[V]. As P, Fi P K[U], by
Proposition 4.9 we know that P, Fi P (U1) and hence rad(P, Fi) Ă (U1). Therefore, Gi P (U1)X F

for at least νm´ 2 forms Fi P K[V].
Let U 1 be the vector space constructed in the iterative process above. Then we have Gi P

K[U 1]zK[V] for at least νm ´ 2 forms Fi. Since m ě 211/ν, we know that (νm ´ 2)/29 ě 2. If
there exist less than (νm´ 2)/29 number of distinct Gi’s, then by the pigeonhole principle, there
exist at least 29 forms Fj such that some Gk P rad(P, Fj) for fixed k. By Lemma 3.9, we must have
rad(P, Fi) = rad(P, Fj) for some i ‰ j, which is a contradiction since rad(P, Fi)XK[V] = (Fi) for all
such Fi. Hence we must have at least (νm´ 2)/29 number of distinct Gi P K[U 1]zK[V]. Therefore,
at this step of the iterative process, when we update V = U 1, the cardinality |F XK[V]| increases
by at least (νm´ 2)/29. Hence, after each iteration of the While loop, the cardinality |F XK[V]|
increases by at least (νm´ 2)/29. Since |F| = m, the iterative process stops after ď 210/ν steps.

Dimension bound. If we apply Proposition 4.15 to a polynomial P and the vector space V to obtain
the vector space U, then dim(U) ď A(w, t,dim(V)) for the function A : N3 Ñ N in Proposition 4.15.
Further, if we apply Corollary 6.15 to FX (U1) andK[U] to obtain the vector spaceU 1, then dim(U 1)
is bounded above by B(w, t,dim(U)), where B : N3 Ñ N is the function in Corollary 6.15. Therefore
after the i-th step of the iterative process dim(V) is bounded above by Bi(w, t,dim(W)) for some
function Bi : N3 Ñ N. Indeed, we may take Bi = B(w, t,A(w, t, Bi´1)). Since the iterative process
terminates after at most 210/ν steps, we have dim(V) ď Bk(w, t,dim(W)) where k = r2

10

ν s.
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Corollary 6.17. Let 0 ă ν ă 1 be a constant. There exists a function Dν : N3 Ñ N such that the following
holds:

Given a 3-radical-SG configuration F , and a (w, t)-wide AH-vector spaceW =W1 +W2 such that

1. (Low strength). For all F P Fě2 we have 3s(F) ă w and 3s(F)+3 ă t.

2. (constant fraction in the algebra). we have |F XK[W]| ě ν|F|.

There exists a (w, t)-wide vector space V such that F YK[W] Ă K[V] and dim(V) ď Dν(w, t,dimW)).

Proof. Let FX Si = Fi. If |F| ď 210/ν. Then by Corollary 4.13, we have a vector space U = U1 +U2
such that F3 Ă K[U] and dim(U) ď Cν(w, t) for some function Cν. Consider the graded vector
space U 1 = (spanK tF1u+U1 +W1) + (spanK tF2u+U2 +W2). Note that the dim(U 1) is bounded
above by a function of ν,w, t,dim(W). Therefore, by Proposition 4.11, we have a (w, t)-wide vector
space V such that F YK[W] Ă K[V] and dim(V) ď Aν(w, t,dimW), for some function Aν.

Otherwise, we may assume that |F| ą 210/ν. Then by Proposition 6.16, we have a (w, t)-
wide vector space V such that F Y K[W] Ă K[V] and dim(V) ď Bν(w, t,dimW). We may take
Dν = max(Aν, Bν).

Proposition 6.18. Let 0 ă δ ă 1 and w, t P N. Let F = tF1, ¨ ¨ ¨ , Fmu Ă Sď3 be a set of irreducible forms
such that Fi R (Fj) for i ‰ j. LetU = U1+U2 be a (w, t)-wide vector space such that |FXK[U]| ě (1´δ)|F|.
Let F P FzK[U] be a cubic form such that 3s(F) ă w and 3s(F)+3 ă t. Then there are at most 29 ¨ δ ¨ |F|+ 2
forms G P F XK[U] such that | rad(F,G)X F| ě 3.

Proof. By Proposition 4.15, we have a (w1, t1)-wide vector space V = V1 + V2 such that F P K[V]
and Ui Ă Vi. Since F R K[U], there exists a generator x P K[V] such that F depends on x. Suppose
there exist r forms G1, ¨ ¨ ¨ , Gr P F X K[U] such that | rad(F,Gi) X F| ě 3. Since deg(F) = 3, note
that there exist at most two forms Gj P F X K[U] such that Gj divides the leading coefficient of
x in F P K[V]. Then by Lemma 3.18, we have rad(F,Gi)XK[U] = (Gi) for at least r´ 2 forms Gi.
Therefore, ifHi P rad(F,Gi)XF, then we must haveHi R K[U] for at least r´ 2 formsGi P FXK[U].
Note that by assumption |FzK[U]| ă δm. If r´ 2 ą 29δm, then by the pigeon-hole principle, there
exists Hk P F such that Hk P rad(F,Gi) for at least 29 + 1 such Gi’s. Now, by Lemma 3.9, we must
have rad(F,Gi) = rad(F,Gj) for some i ‰ j, which is a contradiction. Therefore r ď 29δm+ 2.

6.5 Radical Sylvester-Gallai configurations within wide quadratic ideals

In this section, we consider a special kind of 3-radical-SG configuration F, where the entire SG
configuration is contained in a prime ideal (Q, x, y) generated by a strong quadratic form Q and
linear forms x, y. We will show that the span of these special SG-configurations have constant
dimension.

Let F be a 3-radical-SG configuration. Let (Q, x, y) be a prime ideal such that F Ă (Q, x, y). We
partition F as

F := tF1, . . . , Fru \ tG1, . . . , Gsu \ tH1, . . . , Htu

where Gi P (x, y), Fi P S3 X (Q, x, y)z(x, y) and Hi P S2 X (Q, x, y)z(x, y). Henceforth, we shall
always work with such partitions. We begin with a remark on the structure of such configurations,
which allows us to drop the quadratics Hi from our configuration.
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Proposition 6.19. Let x, y P S1 andQ P S2 be such that s(Q) ě 5. LetF = tF1, . . . , Fru\tG1, . . . , Gsu\
tH1, . . . , Htu be a 3-radical-SG configuration as above where F Ă (Q, x, y). Then, tF1, . . . , Fru \
tG1, . . . , Gsu is also a 3-radical-SG configuration.

Proof. Let G := tF1, . . . , Fru \ tG1, . . . , Gsu. We write Hk = Q+ Rk, where Rk P (x, y)X S2 and let
zi P S/(x, y) be such that Fi ” ziQ mod (x, y) and zi ‰ 0. It is enough to show that given two
forms P1, P2 P G, we must have rad(P1, P2)XF = rad(P1, P2)X G. And to show this, it is enough to
show that Hk R rad(P1, P2) for any k P [t]. We have three cases to consider:

1. P1 = Fi, P2 = Fj. In this case, Hk P rad(Fi, Fj) ñ Q P rad(ziQ, zjQ) in S/(x, y). Hence
Q P (zi, zj) in S/(x, y), which is a contradiction since s(Q) ě 5.

2. P1 = Fi, P2 = Gj. In this case, Hk P rad(Fi, Gj) ñ Q P rad(ziQ) in S/(x, y) which is a
contradiction.

3. P1 = Gi, P2 = Gj. In this case, Hk P rad(Gi, Gj)ñ Hk P (x, y) which is a contradiction.

We also need the following facts:

Proposition 6.20. Let Fi = xiQ´ a2yi be non-associate irreducible forms for i P [3], where a, xi, yi P S1
and Q P S2 such that s(Q) ě 10. Suppose x2 R (a, x1, y1). Then we have

rad(F1, F2) = rad(F1, F3)ô F3 P (F1, F2).

Moreover, if x1y2 ´ x2y1 R (a) and is square-free, then F3 P rad(F1, F2)ô F3 P (F1, F2).

Proof. Since Fi, Fj are non-associate forms, we have F3 P (F1, F2) ñ (F1, F2) = (F1, F3) ñ
rad(F1, F3) = rad(F1, F2).

For the other direction, letB := K[a, x1, x2, x3, y1, y2, y3] andA := K[a, x1, x2, x3, y1, y2, y3, Q].
Let W = spanK ta, x1, x2, x3, y1, y2, y3u. Let w1, ¨ ¨ ¨ , wk be a basis of W for some k ď 7. Note
that w1, ¨ ¨ ¨ , wk, Q is a prime sequence, as s(Q) ě 10. Therefore the polynomial ring S is
intersection flat over the subalgebras A and B. By applying Proposition 3.28 in the algebra
A and eliminating the variable Q, we see that the radical of the elimination ideal is given by
rad((F1, F2)XB) = rad(ResQ(F1, F2)) = rad(a(x1y2 ´ x2y1)). We have two cases to analyze:

Case 1: If x1y2 ´ x2y1 is irreducible, then Lemma 3.33 implies (F1, F2, x1y2 ´ x2y1) is prime.
Thus, F3 P rad(F1, F2) ñ F3 P (F1, F2, x1y2 ´ x2y1). Let F3 = αF1 + βF2 + `(x1y2 ´ x2y1). Since
F3 P (Q,a2) and S/(Q) is a UFD, we must have a2|`(x1y2 ´ x2y1) in S/(Q). If ` ‰ 0, then
x1y2 ´ x2y1 P (Q,a), which is a contradiction since s(Q) ě 10. Therefore, we must have ` = 0 and
F3 P (F1, F2).

Case 2: x1y2´x2y1 = gh for some g, h P S1. Here, without loss of generality, wemay assume that
g P (x1, x2), and writing g = α1x1´α2x2. We have α1α2 ‰ 0, as α1 = 0ñ F2 P (x2) and α2 = 0ñ
F1 P (x1), which contradicts irreducibility of F1 or F2. Rearranging x1y2 ´ x2y1 = (α1x1 ´ α2x2)h,
we get that x1(y2 ´ α1h) = x2(y1 ´ α2h). Hence y1 = βx1 + α2h and y2 = βx2 + α1h, for some
β P K. Hence, F1 = x1(Q´ βa2)´ α2a2h and F2 = x2(Q´ βa2)´ α1a2h.
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Note that (F1, g) is a prime ideal. Indeed, we first note that (F1, g)X B = (g) by Lemma 3.18.
Hence the elimination ideal is a prime ideal. Next note that x1 is a non-zero divisor modulo (F1, g).
Otherwise, there is a minimal prime p of (F1, g) that contains x1, hence p = (x1, x2). However
F1 R (x1, x2), as F1 is irreducible and x2 R (a, x1, y1). Therefore we may apply Proposition 3.29
to conclude that (F1, g) is prime. Also, we have α2F2 = α1F1 ´ g(Q ´ βa

2) P (F1, g) and
hence rad(F1, F2) Ă (F1, g). Therefore we have F3 P rad(F1, F2) ñ F3 P (F1, g). Thus F3 P
(Q,a2)X(F1, g)ñ F3 = αF1+gP, where P P (Q,a2), since g R (Q,a). In particular, if P = µQ+νa2

we have F3 = (α+ µα1)F1 ´ µα2F2 + (µβ+ ν)ga2. We have two subcases to analyze, if h P (a) or
not.

Case 2.1: h R (a). Note that (Q ´ βa2, h) is a prime ideal, as s(Q) ě 10. Therefore we
have F3 P rad(F1, F2) ñ F3 P (Q ´ βa2, h). Hence, we must have gP P (Q ´ βa2, h). If
g = α1x1 ´ α2x2 P (Q ´ βa2, h), then we have h P (x1, x2). Hence y1 = βx1 + α2h P (x1, x2)
which is a contradiction. Therefore we must have P = µQ + νa2 P (Q ´ βa2, h) and thus
(µβ+ ν)a2 P (Q´βa2, h). If µβ+ ν ‰ 0, then a P (Q´βa2, h)which is a contradiction as a R (h).
Therefore µβ+ ν = 0 and F3 P (F1, F2).

Case 2.2: h P (a). In this case, we have F1 = x1(Q´βa2)´α2a3 and F2 = x2(Q´βa2)´α1a3.
Then (F1, F2) Ă (Q ´ βa2, a3) X (F1, g). Therefore the quadratic minimal prime (Q,a) has
multiplicity at least 3 in the primary decomposition of (F1, F2). Since the cubic minimal prime
(F1, g)musthavemultiplicity at least 1, we see that (Q,a) and (F1, g)must be the onlyminimalprimes
of (F1, F2). Hence, we have rad(F1, F3) = rad(F1, F2) = (Q,a)X (F1, g). Now x1 R (Q,a)Y (F1, g)
and hence x1 is a non-zero divisor modulo (F1, F3). By Proposition 3.29 a minimal primary
decomposition of (F1, F3)XB lifts to a minimal primary decomposition of (F1, F3).

Note that ResQ(F1, F3) = a2g((µβ + ν)x1 + µα2a). If µβ + ν ‰ 0, then rad((F1, F3) X B) =
(a)X (g)X ((µβ+ν)x1+µα2a) and ((µβ+ν)x1+µα2a) is a minimal prime of (F1, F3)XB. Hence,
we must have that (µβ+ ν)x1 + µα2a P (Q,a)Y (F1, g), which is a contradiction. Thus µβ+ ν = 0
and F3 P (F1, F2).

For the moreover part, note that x1y2 ´ x2y1 R (a) corresponds to cases 1 and 2.1 above, where
it is sufficient to have F3 P rad(F1, F2).

Proposition 6.21. LetQ1, Q2 P S2 such that s(Qi) ě 20. Let F1, F2 be irreducible cubics of the form Fi =
xiQi ´ y

2
i zi, where x2 R spanK tx1, y1, z1u. If F P S3 is irreducible such that F R (x1, y1, z1, x2, y2, z2)

and (F, Fi) is not radical for i P t1, 2u then there is P P S2 and ` P S1 such that s(P) ě 17 and
F1, F2, F P (P, `

2).

Proof. Note that the algebra K[Qi, xi, yi, zi] is (6, 2)-wide. If (F, Fi) is contained in a linear minimal
prime (x, y), then by Lemma 4.16, we have x, y P spanK txi, yi, ziu. This is a contradiction as
F R (x1, y1, z1, x2, y2, z2). Hence (F, Fi) does not have a linear minimal prime. By Corollary 5.3,
we know that (F, Fi) does not have minimal prime defining a variety of minimal degree. By
Theorem 1.5 and Corollary 5.7, the conditions of the proposition imply that (F, Fi) Ă (Pi, `

2
i ),

where s(Pi) ě 5. Thus, for i P t1, 2u, we can write Fi = uiPi ´ `
2
i vi, for ui, vi P S1. Note

that u1 P (x1), otherwise x1Q1 ” y21z1 ´ `
2
1v1 mod (u1) ñ Q1 mod (u1) P K[y1, z1, `1, v1] by

by Lemma 3.15. This contradicts s(Q1) ě 20. Similarly u2 P (x2). If ui = αixi, then we have
xi(Qi ´ αiPi) P K[yi, zi, `i, vi]. Therefore by Lemma 3.15, we have Qi ´ αiPi P K[yi, zi, `i, vi] and
hence, s(Pi) ě s(Qi)´ 3 ě 17 for i P t1, 2u. Moreover, Lemma 5.8 applied to Fi, (Pi, `2i ) implies that
`i P (xi, yi) for i P t1, 2u.

Since F P (P1, `21)X (P2, `
2
2), we can write F = a1P1 ´ `21b1 = a2P2 ´ `22b2. Note that a2 P (a1),

52



otherwise we would have a2P2 ” `22b2 ´ `
2
1b1 mod (a1) ñ P2 mod (a1) P K[b1, b2, `1, `2] by

contradicting s(P2) ě 17. Thus, we have `21b1 ” `22b2 mod (a1), which by factoriality of S/(a)
implies `2 P (a1, `1).

Therefore we have `2 P (a1, `1) X (x2, y2) and `1 P (x1, y1). Hence we must have that
(`2) = (`1), otherwise we would have a1 P (`1, `2) Ă (x1, x2, y1, y2), which contradicts F R
(x1, y1, z1, x2, y2, z2)ñ a1 R (x1, y1, x2, y2). Thus, we can take (`) := (`1) = (`2). As a1 R (`), we
may apply Lemma 5.8 to F, to conclude that (P1, `2) = (P2, `

2) and hence we can take P = P1.

In the next lemma, we show that such configurations are in fact contained in an ideal of small
codimension generated by linear forms.

Lemma 6.22. Let F be a 3-radical-SG configuration, x, y P S1 linearly independent, and let Q P S2
such that s(Q) ě 20 and F Ă (Q, x, y). If tF1, . . . , Fru = F3 X (Q, x, y)z(x, y), that is, such that
Fi ” ziQ ı 0 mod (x, y), then there is a (20, 1)-wide vector space V = V1 + V2 such that dimV = O(1),
F Ă K[V] and spanK tx, y, z1, . . . , zru Ă V1. In particular, dim spanK tx, y, z1, . . . , zru = O(1)

Proof. Since we are only interested in the Fi’s, by Proposition 6.19 we can assume that F =
tF1, . . . , Fru Y tG1, . . . , Gsu, where Gi P F X (x, y). Let m := |F|, where r + s = m. Note that
tG1, . . . , Gsu is a 3-radical-SG configuration, since (x, y) is a prime ideal. Corollary 6.15 applied
with vector space spanK tx, yu implies that dim spanK tG1, . . . , Gsu = O(1). Furthermore, there is
a (20, 1)-wide vector space Uwith dimU = O(1) such that x, y,Gi P K[U].

We would like to have a wide algebra containing Gi’s such that Q is one of the generators of
the algebra. Let U 11 = U1 and U 12 = U2 + spanK tQu. Consider the vector space U 1 = U 11 +U 12. If
Q is sufficiently strong, then we apply Proposition 4.11 to U 1 and with H = spanK tQu, to obtain
a (40, 330)-wide algebra W such that dimW = O(1) such that x, y,Q,Gi P K[W]. In this case
Q P W2. If Q is not strong enough to apply Proposition 4.11 with H = spanK tQu, then we have
F Ă (x, y,Lin(Q)) and dim(spanK tx, yu+ Lin(Q)) = O(1). In this case we conclude by applying
Corollary 6.15. Therefore we may assume that we have a (40, 330)-wide algebra W such that
dimW = O(1) such that x, y,Q,Gi P K[W] and Q PW2.

Let δ = 2´20. We can assume that s ď δm. Otherwise Proposition 6.16 yields a (20, 36)-wide V
with dim(V) = O(1) such that F YK[W] Ă K[V]. Then ziQmod (x, y) is in the algebra K[V/(x, y)].
Lemma 3.15 implies zi P V1 + spanK tx, yu for all i, and thus we would be done.

Given any form Fi, letW(i) =W
(i)
1 +W

(i)
2 be a (20, 1)-wide vector space that we obtain when

applying Proposition 4.15 to W and Fi. Thus, we have W Ă W(i) and dimW(i) = O(1). Also,
Fi P K[W(i)], zi, x, y PW(i)

1 andQ PW(i)
2 . In particular, this implies that Fj P (W(i)

1 )ô zj P (W
(i)
1 ).

Analogously to the previous paragraph, we can also assume that F X (W
(i)
1 ) ď δm. Otherwise we

could apply Corollary 6.15 to (W
(i)
1 ) and Proposition 6.16 to the resulting algebra and be done.

Let Fgood(Fi) := Fz(W
(i)
1 ). Then |Fgood(Fi)| ě (1 ´ 2δ)m and Gj R Fgood(Fi) for any

i P [r], j P [s]. Note that for any Fj P Fgood(Fi), dim(x, y, zi, zj) = 4 and (Fi, Fj) is not contained in
a linear minimal prime, otherwise we would have Fj P (W

(i)
1 ) by Lemma 4.16. Additionally, let

Fspan(Fi) := tFj P Fgood(Fi) | |FX (Fi, Fj)| ě 3u and define Fspan := tFi P Fz(W) | |Fspan(Fi)| ě
δmu.

Let T := tF1, . . . , FruzFspan. If |T| ď 6 then tF1, . . . , Fru form a (dimW3 + 6, δ)-linear-SG
configuration with respect to the vector space spanK tG,Tu and we are done by Proposition 6.4.
Thus, after relabeling, we can assume T = tF1, . . . , Ftu where t ą 6, and Fspan = tFt+1, . . . , Fru.
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Note that if T Ă (W
(1)
1 ), we are also done, as in this case we have F X (W

(1)
1 ) has O(1) dimension

by Corollary 6.15 and Fspan forms a (O(1), δ)-linear-SG configuration. Thus, after relabeling
we can assume that F2 R (W

(1)
1 ). Let X = X1 + X2 be a (20, 1)-wide vector space such that

W(1) +W(2) Ă K[X] and Q P X2. We now prove that |F X (X1)| ě δm, and thus we are done.
Suppose |F X (X1)| ď δm. Let G := tFk P Fz(X1) | |(Fb, Fk) X F| = 2 for 1 ď b ď 2u. Since

F1, F2 P T and |FX (X1)| ď δm, we have |G| ě (1´ 5δ)m. Moreover, by definition of Xwe have that
G Ă Fgood(F1) X Fgood(F2). We now show that there is ` P S1, P P S2 such that G Ă (P, `2) and
F1, F2 P (P, `

2).
In what follows, b P t1, 2u. For Fk P G, we have that (Fk, Fb) is not radical, since it does not

span a third element of F. By Theorem 1.5 and Fk P Fgood(Fb) we must have that (Fk, Fb) has a
quadratic minimal prime. Since Fk, Fb P (Q, x, y)z(x, y) the quadratic in the minimal prime must
have strength ě 17. Thus, Lemma 5.6 implies (Fk, Fb) Ă (Pkb, `

2
kb) for Pkb P S2 and `kb P S1 with

s(Pkb) ě s(Q)´ 3 ě 20.
In particular, the above implies F1 = u1P1 ´ a

2
1v1 and F2 = u2P2 ´ a

2
2v2, where ab, ub, vb P

W(b) and Pb P S2 such that s(Pb) ě 20. Moreover F2 R (W(1)) ñ u2 R (u1, a1, v1). Hence,
Proposition 6.21 applied to F1, F2, Fk, where Fk P G implies that there is Pk P S2 and `k P S2
such that F1, F2, Fk P (Pk, `

2
k). Thus, `k P W(1)

1 for each such k, and in particular we have that
u2 R (`k, `j) for any two distinct `k, `j. Hence, Remark 5.9 applied to F2 and the ideals (Pk, `2k)
imply that (Pk, `2k) = (Pj, `

2
j ) for any two distinct Fj, Fk P G. This proves that there is (P, `2) such

that G Ă (P, `2) and s(P) ě 20.
By the above paragraph, we can write Fk P G as Fk = ukP ´ `

2vk, as well as F1 = u1P ´ `
2v1

and F2 = u2P ´ `
2v2. By Proposition 6.20 and Lemma 3.9, there are at most 29 ¨ 5 ¨ δm Fk P G

such that | rad(F1, Fk) X G| = 2. Since |G| ě (1 ´ 5δ)m " 29 ¨ 5 ¨ δm, let us take Fk P G such that
| rad(F1, Fk)X G| ě 3 and rad(F1, Fk)X F Ă G.

By the moreover part of Proposition 6.20, and the fact that u1vk ´ ukv1 is square-free, we
must have u1vk ´ ukv1 P (`) and thus u1vk ´ ukv1 = g` where g = αu1 ´ βuk for αβ ‰ 0. Let
Fi P rad(F1, Fk) be their SG dependency. Since `2(u1vi ´ uiv1) = ResP(F1, Fi) P (`g) we have
that u1vi ´ uiv1 P (g). However, since rad(F1, Fk) X F Ă G we must have rad(F1, Fi) X F Ă G

and thus we must also have u1vi ´ uiv1 P (`g), which implies rad(F1, Fk) = rad(F1, Fi)which by
Proposition 6.20 implies Fi P (F1, Fk), which is a contradiction.

7 Radical Sylvester-Gallai for cubics

In this section, we prove our second main theorem: the radical Sylvester-Gallai theorem for
irreducible cubics. Throughout this section, our SG configuration will be denoted by F :=
F1 \ F2 \ F3, where Fd := F X Sd, and we will denote m := |F| and md := |Fd| for d P [3].
Moreover, we will write F3 := tC1, . . . , Cm3

u.
Before stating our main theorem, we need a couple of definitions which will be useful when

handling the cases which appear in our analysis. These definitions are motivated by our structure
theorem Theorem 1.5.

Definition 7.1. Given a radical Sylvester-Gallai configuration F, and a cubic C P F3, divide the
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cubic polynomials as follows:

Fspan(C) := tP P F3 | |spanC tP,Cu X F| ě 3u

Flinear(C) := tP P F3 | (P,C) Ă (x, y), x, y P S1u

Fquad(C) := tP P F3 | (P,C) Ă (x,Q), x P S1, Q P S2u

Fmd(C) := tP P F3 | (P,C) Ă IV , where IV ideal of variety of minimal degreeu
Ffactor(C) := tP P F3 | xy

2 P spanC tP,Cu , for x, y P S1u

And for a parameter ν P (0, 1) define the following subset of F:

Fspan := tC P F3 | |Fspan(C)| ě ν ¨ |F3|u

Another good definition to have is the set of pairs of cubics P,Q P S3 which not only do not span
a third cubic (and therefore (P,Q) is not radical) but the radical of (P,Q) has its SG dependency in
lower degrees. We term such pairs “bad pairs” and give the formal definition below.

Definition 7.2 (Bad Pairs). Given a radical SG configuration F, we say that two cubics C1, C2 P F3
form a bad pair if | rad(C1, C2)X F3| = 2. That is, we have the their SG dependency is in F1 Y F2.
Given a polynomial C P F3, let Fbad(C) be the set of cubics F P F3 such that (C, F) is a bad pair.

The following proposition also allows us to assume thatm3 = ω(1), otherwise we essentially
have that F is a 2-radical-SG configuration over a small algebra.

Proposition 7.3. If F is a 3-radical-SG configuration andm3 = O(1), then dim spanK tFu = O(1).

Proof. Let C1, . . . , Ct P F3 be the cubics from F3 for which s(Ci) = 1. Since t ď m = O(1),
Corollary 4.13 implies that there is a (20, 1)-wideWwith dimW = O(1) such thatC1, . . . , Ct P K[W].

Now, if G := F1\F2, the SG dependencies forF imply that G is a (2,W)-radical-SG configuration,
and hence Proposition 6.7 implies that dim spanK tGu = O(1) and we are done.

Given the above proposition, we shall henceforth assume thatm3 = ω(1).

7.1 Controlling the Cubic Forms

In this section, we will prove that the strong forms in F3 are in Fspan.

Lemma 7.4. Let δ ď 1/30 and define Fspan with respect to δ as in Definition 7.1. If C P F3 is such that
s(C) ě 3, then C P Fspan.

Proof. We will prove this lemma by first showing that for all but 2?m3 cubics F P F3zFspan(C),
we can find a third cubic G P F3 X rad(C, F) such that (C,G) is a radical ideal. Thus, for such F,
we can associate to the pair tC, Fu a third cubic G P Fspan(C) X rad(C, F). Then, we will show
that for at most 8 such polynomials F1, ¨ ¨ ¨ , F8 P F3zFspan(C), the associated cubics Gi that we
obtain can be the same. This will imply that |Fspan(C)| ě m3/20 and thus C P Fspan. Indeed,
let |Fspan(C)| = m 1. Then |F3zFspan(C)| = m3 ´m 1, and we must have m3´m

1´2
?
m3

8 ď m 1. We
may assume that ?m3 ď m3

4 . Then the previous inequality implies that we must have m3

20 ď m
1.

If Ci R Fspan(C), we must have that (C,Ci) is not radical. Since s(C) ě 3, Theorem 1.5 implies
Ci = C+ xiy

2
i or Ci = C+ x3i for linearly independent forms xi, yi P S1. We have two cases:
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Case 1: Ci = C+ xiy
2
i , with dim spanK txi, yiu = 2.

Note that we have rad(C,Ci) = (C, xiyi) by Proposition B.3. Thus we cannot have a linear
or irreducible quadratic form in rad(C,Ci). Therefore the SG condition implies the existence of
Cj P rad(C,Ci) = (C, xiyi), which implies thatCj = C+xiyizj. If zj R spanK txiuY spanK tyiu, we
have that (C,Cj) is radical, by Theorem1.5 and thereforeCj P Fspan(C). Note that if zj P spanK tyiu,
then we would have Cj P spanK tC,Ciu, and hence Ci P Fspan(C)which is a contradiction. Thus
we may assume that Cj = C + αx2iyi for some α P K˚. If Cj P Fspan(C) we are done, so assume
this is also not the case.

Note that s(C) ě 3 ñ (Ci, Cj) = (Ci, xiyi(yi ´ αxi)) is a radical ideal. Since C R (Ci, Cj),
there is k ‰ i, j such that Ck P (Ci, Cj) and Ck R (C). Hence, we can write Ck = C + xiyizk,
where zk P (xi, yi). Note that k ‰ i, j implies zk R spanK txiu Y spanK tyiu, otherwise either Ci or
Cj would be in Fspan(C). In this case, we have that (C,Ck) is radical by Theorem 1.5 and thus
Ck P Fspan(C)X rad(C,Ci).

Case 2: Ci = C+ x3i .
Note that rad(C,Ci) = (C, xi) by Proposition B.3. Thus we can not have an irreducible

quadratic form in rad(C,Ci). Therefore the SG condition implies that either there is a cubic
Cj P rad(C,Ci) = (C, xi), or there exists a linear form x P F1 X rad(C,Ci). Note that in the latter
case we must have that x P (xi), and x = αixifor some α P K˚.

Case 2.1: there is a cubic Cj P rad(C,Ci) = (C, xi).
In this case, we have Cj = C + xiyjzj or Cj = C + xiQj where Qj is an irreducible quadratic.

Note that if the latter happens, by Theorem 1.5 we have that (C,Cj) is radical, and therefore
Cj P Fspan(C). Thus, we are left with the case where Cj = C+ xiyjzj for yj, zj P S1.

If yj R spanK txiu Y spanK
 

zj
(

then by Theorem 1.5 we have that (C,Cj) is radical and we are
done. Otherwise, we have that Cj = C+ xiz

2
j or Cj = C+ x2i zj, which we already handled in the

previous case.

Case 2.2: we have αixi P rad(C,Ci) is the only SG dependence of C,Ci in F, where αi P K˚.
Let Γ := tF1, . . . , Fru Ă F3 be the set of cubic forms which satisfy this case, where Fi = C+ x3i ,

with xi P S1. For each i ‰ j P [r], by Theorem 1.5 we have that (Fi, Fj) is radical. Indeed, since
s(C) ě 3 the ideal (Fi, Fj) can not have a linear or quadratic minimal prime. If Fi = Fj + uv2, then
we have x3i ´ x3j = uv2. By unique factorization, we must have xi P (xj). Then we would have
Fj P rad(C, Fi)which is a contradiction. Suppose there is a minimal prime p of (Fi, Fj)which defines
a variety of minimal degree. Then we must have x3i ´ x3j P p, which is a contradiction since the
prime ideal p cannot contain a linear form. Therefore Fi, Fj must span a third element in F3, of the
form Gi,j := C+ λx3i + (1´ λ)x3j (after proper scalar multiplication). By Proposition B.4 we have
that for each pair ti, ju Ă [r], we must have a distinct form Gi,j of the form above. Thus, we have
that

(
r
2

)
ď m3, which implies that r ď 2?m3. Therefore, we can disregard this case.

Showing that spanned polynomials are mostly distinct: Now, let C1, . . . , Ct be the polynomials
in F3zFspan(C)which satisfy cases 1 and 2.1, i.e. Ci = C+ xiy

2
i for some linear forms xi, yi. Let

G1, . . . , Gt P Fspan(C) be the polynomials that we obtained from the process above such that
(C,Gi) Ă rad(C,Ci). Note that Ci’s are distinct polynomials, whereas the Gj’s may not be.
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Note that by our construction (C,Gj) is radical and we have Gj = C+ ujvjwj where uj, vj, wj
are pairwise linearly independent. Suppose Gj P rad(C,Ci) for some i. If Ci = C+ xiy

2
i then we

must have xi, yi P spanK
 

uj
(

Y spanK
 

vj
(

Y spanK
 

wj
(

. Therefore we must have that Ci is of
the form C+ βxy2 where x, y P tuj, vj, wju. If we have more than 8 such Ci’s, then there must be
two distinct C`, Ck which are of the same form. Then we will have Ck P spanK tC,C`u, which is a
contradiction because C` R Fspan(C). Therefore at most 8 of the Ci’s can give us the same Gj.

Lastly, we also need the following auxiliary lemma:

Proposition 7.5. LetA be a (10, 1)-wide AH algebra and C P AX S3 be an irreducible cubic form. Suppose
F = C´ xy2 is an irreducible cubic form where x, y R A. Then, up to multiplication by an unit, there exists
at most one irreducible cubic P P AX S3 such that C R (P) and (F, P) is not a radical ideal.

Proof. Let V = V1 + V2 be the (10, 1)-wide AH vector space that generates A. Let z1, ¨ ¨ ¨ , zr and
Q1, ¨ ¨ ¨ , Qm be bases for V1 and V2 respectively. Let V 11 = V1 + spanK tx, yu. Then V 1 = V 11 + V2 is
an (8, 1)-wide AH vector space. Let A 1 = K[V 1]. Note that if x, y are linearly independent modulo
V1, then we have that x, y, z1, ¨ ¨ ¨ , zr, Q1, ¨ ¨ ¨ , Qm is an R3-sequence that generates A 1. Otherwise
we may assume that y, z1, ¨ ¨ ¨ , zr, Q1, ¨ ¨ ¨ , Qm is an R3-sequence that generates A 1.

Let P1, P2 P AX S3 be irreducible cubic forms such that C R (Pi) and P1 R (P2). Suppose that
(F, Pi) is not radical for i = 1, 2. Note that F = C´ xy2 R (V) as x, y R A. Therefore, by Lemma 3.22,
we must have DiscA 1

x (F) ¨ DiscA 1

y (F) P (Pi) for i = 1, 2. If x, y are linearly independent modulo
V1, then we have that DiscA 1

x (F) = ´y2 and DiscA 1

y (F) = 4x2C. Hence we have a contradiction
since C R (Pi). If x, y are not linearly independent modulo V1, suppose x = z + αy, where
z P V1 and α P K˚. In this case, we must have that DiscA 1

y (F) P (Pi) for i = 1, 2. Now we have
DiscA 1

y (F) = C(4αz3 ´ 27α3C). Since C R (Pi), we must have that (4αz3 ´ 27α3C) = βiPi for
i = 1, 2 where βi P K˚, which is a contradiction.

7.2 Proof of Theorem 1.4

We begin by restating our main theorem on radical Sylvester-Gallai configurations. Our high level
strategy is as follows: we first construct a small algebra that contains F3, and once we construct
this algebra, we apply our “inductive step” by using Proposition 6.7 that a quadratic radical SG
configuration over a strong algebra has small dimension.

We begin by proving that in a 3-radical-SG configuration, if F3 is not a (0, δ)-linear-SG configu-
ration, for a constant δ P (0, 1/30], then all polynomials in F3 must be of low strength.

Proposition 7.6. Let δ ď 1/30 and define Fspan with respect to δ as in Definition 7.1. Suppose that
F3 ‰ Fspan. Then we have s(F) ď 5 for all F P F3.

Proof. Suppose, for the sakeof a contradiction, that there isC P F3zFspan anda cubic F P F3 such that
s(F) ě 6. By Lemma 7.4, we know that F ‰ C, as s(C) ď 2. Let L := F3zFspan(C) = tG1, . . . , Gtu.
Now, C R Fspan ñ t ě (1 ´ δ)m3. By definition of L, we have that, for i P [t], (Gi, C) is not
radical and therefore, by Theorem 1.5 we have that smax(Gi, C) ď 3, where if equality happens then
Gi = C+ xiy

2
i , for some xi, yi P S1.

In particular, the above implies that smax(Gi, Gj) ď 5 for any i ‰ j P [t]. Since s(Gi) ď 3,
Theorem 1.5 implies that (F,Gi) is radical and thus Gi P Fspan(F). However, since t ě (1´ δ)m3 ą
m3/2, there exist i ‰ j P [t] such that Gj P (F,Gi), which is a contradiction, as the latter inclusion
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implies that either Gj P (Gi) (contradicting the hypothesis of our SG configuration) or that
F P (Gi, Gj)ñ 6 ď s(F) ď smax(Gi, Gj) ď 5.

With the above observation at hand, we will prove that there exists a w-AH vector space
V = V1 + V2 and a space of cubics U Ă S3 where any nonzero C P U satisfies s(C) ě 3 such that
dim(U + V) = O(1) and F3 Ă C[U,V]. Moreover, if C P F3 is such that s(C) ď 2, then C P K[V].
Once we prove this structure, we will show how to reduce the cubic radical SG problem to the
quadratic radical SG problem with the strong subalgebra K[V].

Theorem 1.4. If F is a 3-radical-SG configuration, then

dim spanK tFu = O(1).

Proof. Let δ = 2´10 and Fspan be defined with respect to δ as in Definition 7.1.

Constructing small subalgebra containing F3. We nowwill construct a (10, 1)-wide vector space
V = V1 + V2 with dimV = O(1), and a vector space U Ă S3 with dim(U) = O(1) such that
F3 Ă K[U,V] where any C P F3 such that s(C) ď 2 is contained in K[V].

We divide this part of the proof into two cases:

Case 1: |F3zFspan| ď 3

In this case, we have that F3 is a (3, δ)-linear-SG configuration, and Proposition 6.4 gives
us dim spanK tF3u = O(1). Take a basis C1, . . . , Ct P F3 such that W = spanK tC1, . . . , Ctu =
spanK tF3u. By iteratively picking basis elements of lowest strength, we can construct a basis
F1, . . . , Fr, G1, . . . , Gt´r such that s(Fi) ď 2, and any element ofW that depends non-trivially on
G1, . . . , Gt´r has strength ě 3. Let V be the (10, 1)-wide vector space from Corollary 4.13 applied
to spanK tF1, . . . , Fru. Hence dimV = O(1). Moreover, by our choice of basis, if C P F3 is such that
s(C) ď 2, then C P K[V]. Taking U = spanK tG1, . . . , Gt´ru concludes this case.

Case 2: F3zFspan = tC1, . . . , Cku, where k ě 3.
By Proposition 7.6, we have that s(C) ď 5 for all C P F3. Moreover, by Lemma 7.4, we know

that s(Ci) ď 2 for all i P [k]. We can assume w.l.o.g. that 2 ě s(C1) ě s(C2) ě ¨ ¨ ¨ ě s(Ck) ě 1.
Since each Ci R Fspan, we have that |Fspan(Ci)| ď δm3 and therefore at least (1 ´ δ)m3 of the
polynomials in F3 do not form a radical ideal with Ci.

In this case, we will first prove that there exists a subspaceW1 Ă S1 such that:

1. dim(W1) = O(1)

2. there exists a subset G Ă F3 X (W1) such that |G| ě (1´ 3δ)m3

Case 2.1: s(C1) = 2.
Let W = W1 +W2 be the (3, 10)-wide algebra that one obtains from a minimal collapse of

C1, C2, C3. Let G := FzFspan(C1)Y Fspan(C2)Y Fspan(C3). Since C1, C2, C3 R Fspan, we have
that |G| ą (1´ 3δ)m3. In this case, we will show that G Ă (W1).

Since s(C1) = 2, Theorem 1.5 implies that F3zFspan(C1) = Fmd(C1) Y Ffactor(C1). Since
s(C1) = 2, if Fmd(C1) ‰ H then C1 P K[W1] and therefore by Lemma 4.16 any variety of minimal
degree containing C1 will have all its defining linear forms inW1. Hence Fmd(C1) Ă (W1).
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Thus, if a polynomial F P G is not in (W1), by the above it must be the case that F P Ffactor(C1),
since (F, C1) is not radical and F R (W1). In this case we must have F = C1´ xy2, where x, y R K[W].
However, we also know that (F, C2) and (F, C3) are not radical, and this contradicts Proposition 7.5.
Hence, we have that G Ă (W1), as we wanted.

Case 2.2: s(C1) = 1.
Similarly to the previous case, let U = U1 + U2 be the (3, 10)-wide algebra that one obtains

from a minimal collapse of C1, C2, C3. Let G = FzFspan(C1) Y Fspan(C2) Y Fspan(C3). Since
C1, C2, C3 R Fspan, we have that |G| ą (1´ 3δ)m3. In this case, we will now show that there is a
vector space X Ă S1 with dimX = O(1) such that G Ă (U1+X), and thus we can takeW1 = U1+X.

If G Ă (U1), we can take X = 0 and we are done. Therefore let’s assume that G Ć (U1). Consider
F P Gz(U1). By Theorem 1.5 and the fact that F R (U1) the only possible cases are the following:

1. F P Ffactor(Cb) for some b P [3].
In this case, we can assume F P Ffactor(C1), which implies that F = C1 + xy2 where
x, y R K[U]. However, by Proposition 7.5, there is at most one irreducible cubic P P K[U] such
that P R (C1) and (F, P) is not radical. This contradicts the fact that F P G, as that implies
(F, C2) and (F, C3) are both not radical. Thus, this subcase is ruled out.

2. F P Fquad(Cb) for some b P [3] and F R Ffactor(Cb) for any b P [3].
In this case, we can assume that F P Fquad(C1). Hence, we must have F, C1 P (Q, `) for
some ` P S1 and Q P S2. If there is a linear minimal prime (x, y) then, by Lemma 4.16, we
have x, y P U1. This is a contradiction as F R (U1). Suppose the minimal prime (Q, `) has
multiplicity 1. If we have a minimal prime pwith e(p) = 3 or e(p) = 4, andm(p) ě 2, then we
must have a linear minimal prime, which is again a contradiction. Therefore, by Theorem 1.5
we may assume that (Q, `) is a minimal prime of (C1, F) with multiplicity at least 2. Thus,
Corollary 5.7 applies, and we have that F, C1 P (Q, `2), so we can write F = yQ + `2z for
some y P S1zW1, z P S1. As C1 P (Q, `2), we must have s(Q) ě 10, otherwise we would have
C1 P K[U1], which implies Q P (U1), contradicting F R (U1).
Hence, Theorem 1.5 and the facts that F R (U1) and s(Q) ą 10 imply that F P Fquad(C1)X
Fquad(C2)X Fquad(C3). By Lemma 5.8, we have that C2, C3 P (Q, `2). Thus, we can write
Cb = xbQ+ `2ub, where xb, ub, ` P U1.
The above shows that any polynomial F R (U1)which satisfies this case must be in Fquad(C1).
By Lemma 5.8, we have that F P Fquad(Q1)ñ F P (Q, x1, `). Hence, Lemma 6.22 implies that
there exists X Ă S1 with dim(X) = O(1) such that Fquad(C1) Ă (U + X). Therefore, in this
case we can takeW1 = U1 + X.

3. F P Fmd(Cb) for all b P [3].
In this case, Corollary 5.2 implies that U = U1. Also by Corollary 5.2, there is Z Ă S1 with
d := dim(Z) ď 9 such that F P K[Z]. As we are assuming that F R (U1), we can take a basis
z1, . . . , zt for U1 + Z such that F is monic in z1 and U1 Ă spanK tz2, . . . , ztu. Hence, we have
Cb P K[z2, . . . , zt] and F P K[z1, . . . , zt] such that F R (z2, . . . , zt). By Lemma 3.21 we have
that (F, Cb) not radical iff Discz1(F) P (Cb), and since each Cb is irreducible and pairwise
independent, we must have Discz1(F) P (C1C2C3). However, we have that degDiscz1(F) = 6,
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so the foregoingwould imply that Discz1(F) = 0, which contradicts the fact that F is irreducible.
Hence, this case cannot happen.

Hence, in both cases there is W1 satisfying dim(W1) = O(1) and |F3 X (W1)| ě (1 ´ 3δ)m3.
By Corollary 6.15, if we set H := F X (W1) we know that dim spanK tHu = O(1) and that there
is a (20, 310)-wide vector space Y = Y1 + Y2 such that H Ă K[Y] and dim Y = O(1). Thus
|F3 XK[Y]| ě (1´ 3δ)m3.

If F3 Ă (Y1) we are done with this part of the proof, as Corollary 6.15 would imply that
dim spanK tF3u = O(1). So assume this is not the case and let B := F3z(Y1). As F3 XK[Y] Ă (Y1),
we have |B| ď 3δm3. Also, let Γ := F3 XK[Y] = tG1, . . . , Gtu, where t ě (1´ 3δ)m3.

Let F P B. Note that |Fspan(F)X Γ | ď 3δm3 as for each Gi P Fspan(F)X Γ , ifHi P spanK tF,Giu,
we must have that Hi P B, and for any two Gi, Gj P Γ we have that spanK tF,Giu X spanK

 

F,Gj
(

=
spanK tFu. Thus, we have that (F,Gi) does not span for ě (1´ 6δ)m3 Ci’s from Γ , and in particular,
we must have (F,Gi) not radical. As (1´ 6δ)m3 ą 50, Corollary 3.24 implies that F P (Y).

We can assume that (F,Gi) is not radical for i P [r], where (1´ 6δ)m3 ď r ď t. Since F P (Y)z(Y1)
and s(F) ď 5, Corollary 4.17 implies that F is not in any fully linear algebra with dimension ď 9.
Moreover, Proposition 7.5 implies F R Ffactor(Gi) for any Gi P Γ . Thus, by Corollary 5.1 and
Corollary 5.7, we have that (F,Gi) Ă (Q, `2), where s(Q) ą 10 and Q, ` P K[Y]. In particular,
Gi P Fquad(F) for i P [r].

Writing F = xQ ´ `2z, where x R Y1, by Lemma 5.8 and the fact that Gi P (Y1), we have that
Gi P (Q, `

2) for all i P [r]. Thus, we can write Gi = xiQ´ `2zi, and by Corollary 3.34 we have that
the SG condition implies | rad(F,Gi)X F3| ě 3. However, Proposition 6.18 applied to F3 implies
that | rad(F,Gi)XF3| ě 3 for at most 29 ¨δ ¨m3 ď m/3/2 ă (1´6δ)m3 ď r, which is a contradiction.
Hence, we must have F3 Ă (Y1) and we are done with this part.

Concluding the proof: Now that we have shown that there is a (600, 8) wide vector space V such
that dimV = O(1) and F3 Ă K[V], we note that F1YF2 is a quadratic radical SG configuration over
K[V], which by Proposition 6.7 implies that dim spanK tF1 Y F2u = O(1). Therefore, we have that
dim spanK tFu ď dim spanK tF1 Y F2u+ dimV = O(1) as we wanted.

8 Conclusion and Open Problems

In this paper, we proved that cubic radical Sylvester-Gallai configurations must be low dimensional,
therefore solving Conjecture 1.3 for the case when d = 3. This generalizes the approach and results
of [Shp20], who first broke ground on this question by solving it for d = 2.

To solve the cubic radical Sylvester-Gallai problem, we devised a structure theorem for ideals
generated by two cubics, classifying when they are not radical. While such structure theorems may
be hard to generalize, given the richness in structure of prime ideals of codimension 2, the main
message of such structure theorems should be that two low-degree forms generate a non-radical
ideal only if they are "close to each other."

Once we have the structure theorem, we studied variants of the quadratic radical SG problem,
which allow us to "induct" onto these lower degree variants. However, one difficulty in the cubic
case, is that we have to consider a couple of distinct variants since now we may not guarantee at
first that all cubic forms are contained in a small prime ideal generated by forms of the same degree.
Thus, we have to work harder in order to be able to use the general projections to reduce the degree
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and proceed by induction. We believe this is the main technical issue that needs to be overcome for
the general case, in order to fully solve Conjecture 1.3, as our approach should generalize if one
proves the existence of a small prime sequence of forms of same degreewhich contains the part of
the configuration of highest degree.
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A Quadratic radical Sylvester-Gallai theorem over an algebra

In this section we prove that a quadratic radical SG configuration over an algebra of constant
dimension must be contained in a constant dimensional vector space. For convenience, we recall
the definition of a radical SG configuration over an algebra.

Definition 6.6 (Radical SG over an algebra). Let d P N˚ and V Ă Sďd be a graded vector space. Let
F = tF1, ¨ ¨ ¨ , Fmu Ă S be a set of irreducible forms such that deg(Fi) ď d and Fi R (Fj) for i ‰ j. We
say that F is a (δ, d, V)-radical-SG configuration if for every i P [m], there exist at least δ(m ´ 1)
values of j such that |F X rad(Fi, Fj)| ě 3 or | rad(Fi, Fj) X K[V]z(Fi) Y (Fj)| ě 1. If δ = 1 then we
simply call it a (d, V)-radical-SG configuration.

Our main result of this section, formally stated, is:

Proposition 6.7 (2-radical-SG configurations over small algebra). Let F Ă Sď2 be a finite set of
irreducible forms such that for any F,G P Fwe have F R (G). Additionally, letV = V1+V2 be a vector space of
forms of degree atmost 2. IfF is a (2, V)-radical-SG configuration, thendim spanK tFu = O(1+dim(W)2),
whereW is any (600, 8)-wide vector space such that K[V] Ă K[W].

Remark A.1. Note that by Proposition 4.11, there exists a (600, 8) wide vector space W such that
K[V] Ă K[W]. Also, for any suchW as above, we have that F is a (2,W)-radical-SG-configuration. Since
Proposition 6.7 bounds the dimension of the configuration by a function of the dimension of a wide algebra
containing K[V], we shall henceforth assume that V itself is a (600, 8)-wide vector space.

The main idea in the proof of the above proposition is to show that in a (2, V)-radical-SG
configuration, there exists a small wide subalgebra A which contains a constant fraction of the
forms in the configuration. The approach to show this is based on the following: if a constant
fraction forms a linear SG sub-configuration, then we can apply the linear SG theorems to construct
the subalgebra A. In case the configuration is not linear, then we can use the structure theorem for
ideals generated by two quadrics to construct the subalgebra A. Once we construct A, we can use
an iterative process to construct a slightly larger algebra that contains the entire configuration.

We will use the following definitions and notation throughout this section:

• F = F1 \ F2 is our (2, V)-radical-SG configuration, with |F| = m and |Fi| = mi, for i P [2]

• For x P S1, define L(x) = spanK txu and forQ P S2, define L(Q) =

#

Lin(Q), if s(Q) ď 3,

spanK tQu , otherwise

• in analogy with the cubics, given Q P F2, denote by

Fspan(Q) := tP P F2 | |(P,Q)X F2| ě 3 or |spanK tP,Qu XK[V]z(P)Y (Q)| ě 1u

Fnot´span(Q) := F2zFspan

• Whenever | rad(P,Q)XK[V]z(P)Y(Q)| ě 1, wewill say that rad(P,Q)meetsK[V] non-trivially.

• Given a parameter ν P (0, 1], define the set

Fspan := tQ P F2 | |Fspan(Q)| ě νm2u.
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We now state the structure theorem for ideals generated by two quadratics, whose proof can be
found in [GOS22, Proposition 1.4].

Proposition A.2 (Radical Structure Theorem for Quadratics). Let K be an algebraically closed field of
characteristic zero and Q1, Q2 P S = K[x1, ¨ ¨ ¨ , xn] be two forms of degree 2. Then one of the following
holds:

1. The ideal (Q1, Q2) is prime.

2. The ideal (Q1, Q2) is radical, but not prime. Furthermore, one of the following cases occur:

(a) There exist two linearly independent linear forms x, y P S1 such that xy P span(Q1, Q2).
(b) There exists a minimal prime p of (Q1, Q2), such that p = (x, y) for some linearly independent

forms x, y P S1

3. The ideal (Q1, Q2) is not radical and one of the following cases occur:

(a) Q1, Q2 have a common factor and Q1 = xy, Q2 = x(αx+ βy) for some linear forms x, y and
α,β P k. In this case, we have x2 P span(Q1, Q2).

(b) Q1, Q2 do not have a common factor. There exists a minimal prime p of (Q1, Q2) such
that p = (x,Q), where x P S1, Q P S2 and Q is irreducible modulo x, and we also have
x2 P span(Q1, Q2).

(c) Q1, Q2 do not have a common factor and there exists a minimal prime p of (Q1, Q2), such that
p = (x, y) for some linearly independent forms x, y P S1, and the (x, y)-primary ideal q has
multiplicity e(S/q) ě 2.

We now show how one can slightly augment a wide algebra to contain an extra quadratic form.

Lemma A.3. Let V be a (w, t)-wide vector space, wherew ą 6 and t ě 4. Given anyQ P S2, there exists a
(w, t1/2/2)-wide vector spaceW such that dimW ď 3(dimV +w), V ĂW and Q P K[W].

Proof. We have two cases to analyze:

Case 1: s(Q) ď 2.
In this case, just note thatW = V + L(Q) is a (w´ 6, t)-wide vector space, and since w ą 6,W

is also (w, t´ 2)-wide. Moreover, dimW ď dimV + dimL(Q) = dimV + 6.

Case 2: s(Q) ě 3.
If s(P) ě

?
t/2 ¨ (dim(V) + 1 +w) for every P P spanK tQ,V2u, thenW := V1 + spanK tQ,Vu

is (w,
?
t/2)-wide. Else, given that V is (w, t)-wide, then P = Q + R for some R P V2. Since

s(P) ă
?
t/2 ¨ (dim(V) + 1 + w), we have dimLin(P) ď

?
t ¨ (dim(V) + 1 + w) and therefore,

the space W := V + Lin(P) is (w,
?
t/2)-wide, as any element F P W2 = V2 is such that s(F) ě

t(dim(V) +w) ě
?
t/2dim(W) +w.

In both cases, we constructed a (w, t1/2/2)-wide vector spaceW such that V ĂW, Q P K[W]
and dim(W) ď 3(dim(V) +w).
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With the above at hand, we now address the quadratics in any (2, V)-radical-SG configuration.
From here onwards, we set ν = 1/20 and define Fspan with respect to ν.

We begin by first showing that if F2 ‰ Fspan, then we can construct a slightly larger algebra
such that each quadratic is “close” to it.

Proposition A.4. If F2 ‰ Fspan and Q P F2zFspan, then there exists a (600, 8)-wide algebraW such
that dimW = O(dimV + 1), K[Q,V] Ă K[W] and for every P P F2zK[W], there is RP P K[W] such that
s(P ´ RP) ď 3.

Proof. Let Q P F2zFspan and let Fnot´span(Q) = tQ1, . . . , Qru, where r ě (1 ´ ν)m2. By
Lemma A.3, there is (600, 8)-wideW such that dimW = O(dimV + 1), V Ă K[W] and Q P K[W].

We will now show that for each i P [r] such that Qi R K[W], there is αi P K such that
s(Qi ´ αiQ) ď 1. If this is not the case, w.l.o.g. we can assume Q1 is such that Q1 R K[W]
and s(Q1 ´ αQ) ě 2 for any α P K, which by Proposition A.2 implies (Q1, Q) is prime. As
Q1 P Fnot´span(Q), by the SG condition on (Q,Q1) the only possible case is that (Q1, Q) intersects
K[V] nontrivially. However, by Lemma 3.18 we have that (Q1, Q) X K[W] = (Q), which implies
(Q1, Q)XK[V] Ă (Q), which is a contradiction.

Now that we know that each Qi P Fnot´span(Q) is either in K[W] or satisfy s(Qi ´ αiQ) ď 1,
we are left with proving that any P P Fspan(Q)zK[W] is such that s(P ´ R) ď 3 for some R P K[W].
Suppose there is P P Fspan(Q) such that s(P´R) ě 4 for all R P K[W]. In particular, Proposition A.2
implies that (P,Qi) is a prime ideal for each i P [r], andhenceP P Fspan(Qi) or (P,Qi) intersectsK[V]
non-trivially. Since s(Qi´αiQ) ď 1 orQi P K[W], the vector spaceU :=W+L(Qi´αiQ) is (25, 8)-
wide, and hence Lemma 3.18 implies (P,Qi)XK[U] = (Qi), which implies (P,Qi)XK[V] Ă (Qi)
and therefore, we have P P Fspan(Qi) for every i P [t].

Note that spanK tP,Qiu X spanK
 

P,Qj
(

= spanK tPu, otherwise P P spanK
 

Qi, Qj
(

, which
contradicts s(P ´ R) ě 4 for all R P K[W]. Hence, there must exist Gi P Fspan(Q)ztPu such that
Gi P spanK tP,Qiu. By the pigeonhole principle, as |Fspan(Q)| ă νm2 ă (1 ´ ν)m2, there exist
Qi, Qj such that spanK tP,Qiu X spanK

 

P,Qj
(

‰ spanK tPu, which is a contradiction.

Proposition A.5. Let 0 ă ε ă 1 be a constant and F a (2, V)-radical-SG configuration such thatm ě 4/ε.
If w ě 24/ε+ 310 andW is a (w, 1)-wide AH-vector space such that

1. V Ă K[W]

2. (Close to algebra). For each F P F2, there is GF P K[W] such that s(F´GF) ď 3.

3. (constant fraction in the algebra). we have |F XK[W]| ě εm.

Then there exists a (10, 1)-wide vector space X such that F YK[W] Ă K[X] and dim(X) = dimW +O(1).

Proof. We will construct the vector space X iteratively. At each step of the iterative process we will
preserve the property that K[W] Ă K[X] and we will increase the cardinality of F XK[X].

1. Set X =W.

2. While F Ć K[X] :

• If F Ă (X), set XÐ X+ spanK

!

Ť

PPFzK[X] L(P ´GP)
)

.

• Else, pick P P Fz(X) and set XÐ X+ L(P ´GP).
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Termination. We show this iterative process terminates after ď 3/ε iterations of the While loop.
First, we note that each step of the iterative process preserves the inclusion K[W] Ă K[X]. Therefore
we always have |F XK[X]| ě εm. Let tF1, . . . , Ftu Ă F XK[W], where by assumption t ě εm.

Suppose we have F Ć (X) and let P P Fz(X). By assumption 2, there is GP P K[X] such that
s(P´GP) ď 3. Let U = X+ spanK tL(P ´GP)u. Note that P P K[U] and U is (w´ 8, 1)-wide, since
s(P ´GP) ď 3. By Corollary 3.24, we have that (P, Fi) is radical for ě t´ 20 forms i P [t].

Since P R (X) and s(P ´ GP) ď 3, there is a linear form x P U1/X1 such that P is monic on x.
Therefore, by Lemma 3.18, we know that rad(P, Fi)XK[X] = (Fi) for all i P [t]. Thus, we have just
showed that for ě t´ 20 indices i P [t], we have that (P, Fi) is radical and (P, Fi)XK[X] = (Fi), and
hence the SG condition implies that there is Gi P (P, Fi)X FztP, Fiu and such that Gi R K[X].

Without loss of generality, let us assume that the above holds for all 1 ď i ď t´20. Note that any
G P F can be in at most 2 ideals (P, Fi), since if degP = 2 and G P (P, Fi)X (P, Fj)X F ñ Fi, Fj P F1
and in this case there is α P K such that G´ αP P (FiFj) so Fi, Fj are uniquely defined. And in case
degP = 1, we have G P (P, Fi)X (P, Fj)XF ñ G P (P, FiFj) and since P R K[W] once again Fi, Fj are
uniquely defined. Since Gi P (P, Fi)ñ Gi P (U), we have shown

|F X (U)| ě |F X (X)|+ (t´ 20)/2 ě |F X (X)|+ εm/2´ 10.

Thus, in at most 3/ε iterations we will have constructed X such that F Ă (X).

Dimension bound. After a general projection ϕ of X1, we have that each P P FzK[W] is such that
ϕ(P) = FP + z`P, where FP PW2 (and therefore s(FP) ě w´ 24/ε) and `P R (z). Let L := tzuY t`P |
P P FzK[w]u, where we do not include forms with repetition (that is, if they are a scalar multiple
of a previously included linear form). The SG condition on F implies that L is a (1, 1/2)-linear-SG
configuration, thus Proposition B.6 implies dim spanK

 
Ť

PPF2
L(ϕ(P ´GP))

(

= dimL ď 50 and
hence by Proposition 2.10 we have that dim spanK

 
Ť

PPF2
L(P ´GP)

(

ď 300. Thus, we get the
following bound:

dim(X) ď dim(W) + 8 ¨ 3/ε+ 300 = dimW +O(1)

and X is (w´ 24/ε´ 300, 1)-wide, as we have added at most 24/ε+ 300 linear forms toW.

Remark A.6. Note that Proposition A.5 implies that dim spanK tFu = O((dimW+1)2), since F Ă K[X].

LemmaA.7. LetV be a (600, 3)-wide vector space andF be a (2, V)-radical-SG configuration. If 1 ď m2 ă
3m/10, then for any Q P F2 there exists a (600, 1)-wide vector spaceW with dimW ď 3(dimV + 600)
and K[Q,V] Ă K[W] such that |K[W]X F| ě m/10.

Proof. If Q P K[V] then we are done simply by settingW = V . So we can assume Q R K[V]. By
Lemma A.3 we can constructW which is (600, 1)-wide, dimW ď 3(dimV + 600), K[Q,V] Ă K[W].

For each ` P F1zK[W], Lemma 3.21 implies rad(Q, `) = (Q, `). Moreover, Lemma 3.18 implies
(Q, `) X K[W] = (Q), which implies (Q, `) X K[V] = 0, as Q R K[V]. Hence, we have that
|(Q, `)X F2| ě 2 and there is R P (Q, `)X F2z(Q). In particular, we have that R = Q+ `a, for some
a P S1, which implies that R can be in at most two ideals of the form (Q, `), for ` P F1zK[W]. Hence,
we have that |F1zK[W]| ď 2 ¨m2, which implies

m = |F| ď |F1 XK[W]|+ 3m2

and therefore either |F1 XK[W]| ě m/10 orm2 ě 3m/10.
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Lemma A.8. Let V be a (600, 8)-wide vector space and F be a (2, V)-radical-SG configuration. Let
U Ă S1 with dimU ď 6. There is a (600, 1)-wide vector spaceW such that dim(W) ď 8(dim(V) + 600),
U+ V Ă K[W] and F X (U) Ă F XK[W].

Proof. Let G := FX (U) = tG1, . . . , Gtu. Since (U) is a prime ideal, as it is generated by linear forms,
we have that G is also a (2, V)-radical-SG configuration. As G Ă (U), after a generic projection ϕ,
we have that ϕ(Gi) = z`i if Gi R K[U] or ϕ(Gi) = zdeg(Gi). Moreover, by Corollary 2.8 we have that
`i R (`j) for any i ‰ j.

Let L := t`1, . . . , `ru be the set of the linear forms that we get from ϕ(Gi) of all Gi R K[U]. Since
the non-linear SG dependencies from F imply linear dependencies for L over the vector space
V1, we have that L is a (1+ dimV1, 1)-linear-SG configuration. By Proposition 6.4, we have that
dim spanK tLu ď 26+ dimV1. Hence, Proposition 2.9 implies

dim spanK

$

&

%

ď

iP[t]

Lin(Gi)

,

.

-

ď 7 ¨ (26+ dimV1).

Let Z := spanK

!

Ť

iP[t] Lin(Gi)
)

. SettingW = V + Z, and noting that Z Ă S1, we have thatW is
(600, 1)-wide and dimW ď dimV + dimZ ď 8(dimV + 600).

For the remainder of the section, we will let ν = 1/20 and define Fspan with respect to ν.

Lemma A.9. Let V be a (600, 8)-wide vector space and F be a (2, V)-radical-SG configuration. If
Q P F2zK[V] then either Q P Fspan or there is a (600, 1)-wide vector space W such that dim(W) ď
8(dim(V) + 600), K[Q,V] Ă K[W] and |F XK[W]| ě m/10.

Proof. We begin by constructing a (600, 1)-wide vector space W such that F X (L(Q)) Ă K[W]
and V Ă W. If s(Q) ě 4 then L(Q) = spanK tQu and by Lemma A.3 there is W (600, 1)-wide,
dimW ď 3(dimV +600) andK[Q,V] Ă K[W]. If s(Q) ď 3, then L(Q) = Lin(Q) and dimL(Q) ď 8,
so byLemmaA.8 there isW (600, 1)-wide such that dimW ď 8(dimV+600) such thatL(Q)+V ĂW
and F X (L(Q)) Ă K[W].

By Lemma A.7 we can assume m2 ě 3m/10, otherwise we are done. Moreover, we can also
assume that |F XK[W]| ď m/10.

Note that F2 = tQu \ Fspan(Q)\ Fnot´span(Q). Partition Fnot´span(Q)zK[W]Y (L(Q)) as

Fbad(Q) := Fnot´span(Q)zK[W]Y (L(Q)) = tF1, . . . , Fru \ tG1, . . . , Gsu \ tH1, . . . , Htu,

where | rad(Q, Fi) X F2| ě 3; | rad(Q,Gi) X F2| = 2 but rad(Q,Gi) meets K[V] non-trivially; and
lastly | rad(Q,Hi)X F2| = 2, rad(Q,Hi) intersects K[V] trivially and | rad(Q,Hi)X F1| ě 1.

Since (Q, Fi) is not radical, otherwise Fi P Fspan(Q), and Fi R (L(Q)), Proposition A.2 implies
αiFi = Q+ `2i for some `i P S1zW and non-zero scalar αi. Let Ri P rad(Fi, Q)X F2ztQ, Fiu . Since
rad(Fi, Q) = (Q, `i), we have that Ri = βiQ+ `iai for some ai P S1 and non-zero scalar βi. Since
Fi R Fspan(Q), we must have that ai R (`i). Moreover, note that for any i ‰ j, we must have
that `i R (`j), and thus Ri P (Rj) ñ Ri = Rj and hence (βi ´ βj)Q = `jaj ´ `iai. If βi ´ βj ‰ 0,
then `i, `j, ai, aj P Lin(Q) = L(Q) Ă W, which is a contradiction. Hence βi = βj, and we have
ai P (`j) and `j P (ai). In particular, we must have that each Ri can be in at most two of the radicals
rad(Q, Fi), which implies r ď 2|Fspan(Q)|.
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Since rad(Q,Gi) meets K[V] non-trivially, we must have Gi P K[W], otherwise Lemma 3.18
implies rad(Q,Gi)XK[W] = (Q), which implies that rad(Q,Gi)XK[V] = 0. Thus, we have s = 0.

Since (Q,Hi) is not radical, as | rad(Q,Hi) X F1| ě 1, and since Hi R (L(Q)), there is `i P F1
such that rad(Q,Hi) = (Q, `i) and Hi = γiQ + `2i for some non-zero scalar αi. Since Hi R K[W],
we must have `i R K[W], and therefore s(Hi) ě 2. Indeed, if s(Q) ě 4 and `i P Lin(Q), then
s(Hi) = s(Q) ´ 1 ě 2. Otherwise if s(Q) ď 3 then Lin(Q) = L(Q) Ă W and we must have
`i R Lin(Q). Hence s(Hi) = s(Q) + 1 ě 2. Moreover, we must have that `i R (`j) for any i ‰ j

otherwiseHiwould be inFspan(Q). In particular, we have that (H1, Hi) = (H1, `1´`i)X(H1, `1+`i)
and since s(H1) ě 2 we have that (H1, Hi) is radical.

We will now show that (H1, Hi) intersects K[V] trivially. If (H1, Hi) intersect K[V] non-trivially,
then (H1, `1 ´ `i) and (H1, `1 + `i) also intersect K[V] non-trivially. Thus there exist irreducible
forms F,G of degree at most 3 such that F P (H1, `1 ´ `i) X K[V] and G P (H1, `1 + `i) X K[V].
If deg(F) = 3, then by Lemma 4.16, we must have `i P spanK t`1,W1u. If deg F = 1 , then
F P (`1 ´ `i) and hence `i P spanK t`1,W1u. If deg(F) = 2, then `21 P K[W] modulo (`1 ´ `i), and
hence `i P spanK t`1,W1u. Thus, `i = αi`1 + ui for αi P K˚ and ui P W1. In K[`1,W], we have
Res`1(Hi, `i´`1) = (αi´1)

2Q+u2i andRes`1(Hi, `i+`1) = (αi+1)
2Q+u2i . By Proposition 3.28, we

have rad(Res`1(Hi, `i´ `1)) = rad((H1, `i´ `1)`1) and rad(Res`1(Hi, `i+ `1)) = rad((H1, `i+ `1)`1).
SinceQ is irreducible, we have (αi´1)2Q+u2i is reduced ifαi´1 ‰ 0, and similarly forαi+1. Thus
we have, rad((H1, `i´ `1)`1) = ((αi´1)

2Q+u2i ) if αi´1 ‰ 0, otherwise rad((H1, `i+ `1)`1) = (ui),
and similarly forαi+1. Now F P rad((H1, `i´`1)`1)XK[V] andG P rad((H1, `i+`1)`1)XK[V]. Since
F,G are irreducible, we have F is a scalar multiple of (αi´1)2Q+u2i if αi´1 ‰ 0, otherwise a scalar
multiple of ui, and similarly for αi + 1 and G. Therefore (αi ´ 1)2Q+ u2i , (αi + 1)

2Q+ u2i P K[V],
which would imply that Q P K[V], a contradiction.

Hence (H1, Hi) do not intersect K[V] non-trivially, and since (H1, Hi) is radical we must have
Ri P (H1, Hi) X F2. This implies, after proper scalar multiplication, Ri = µiQ + α`21 + (1 ´ α)`2i ,
where α ‰ 0, 1 and µi ‰ 0. In particular, this implies Ri R tH1, . . . , HtuYK[W]Y (L(Q)), and hence
Ri P tF1, . . . , Fru Y Fspan(Q). Note that, Ri ‰ Rj, otherwise Hj P (H1, Hi) which is a contradiction
as above. This implies t´ 1 ď |Fspan(Q)|+ r.

Thus, we have

m2 ď |Fspan(Q)|+ |F2 XK[W]Y (L(Q))|+ |Fbad(Q)|

ď |Fspan(Q)|+m/10+ r+ t ď 2 ¨ |Fspan(Q)|+m/10+ 2r ď 6 ¨ |Fspan(Q)|+m2/3

which implies that Q P Fspan.

We are now ready to prove the main result of this section: that (2, V)-radical-SG configurations
over an algebra are low-dimensional. As a reminder to the reader, we are assuming that V is
(600, 8)-wide, ν = 1/20 and define Fspan with respect to ν.

Proof of Proposition 6.7. Suppose F2 = H. If (`i, `j) X F1 = H for some `i, `j P F1zV1, then there
exists F P K[V] of degree at most 3 such that F P (`i, `j). If deg(F) ą 1, then we have a minimal
collapse F = `if+ `jg. Therefore, by Lemma 4.16 and Proposition 2.2, we have `i, `j P V1 which is a
contradiction. Thus, deg(F) = 1 and then we have that F is a (1,dim(V))-linear-SG configuration,
which by Proposition 6.4 implies that dim spanK tFu = O(dimV) and we are done. Hence we can
assume that F2 ‰ H.

If F2 = Fspan, then F2 is a (O(dimV)2), ν)-linear-SG configuration, and by Proposition 6.4
we have dim spanK tF2u ď O(dim(V)2) + 25/ν. In particular, if G = tQ P F2 | s(Q) = 1u, we
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have that U =
ř

QPG L(Q) is such that dimU ď 4dim spanK tF2u ď 4dim(V) + 100/ν. Since two
linear forms x, y P F1 can only have dependencies Q P F2 where s(Q) = 1, we have that F1 is a
(dimV + dimU, 1)-linear-SG configuration, and thus dim spanK tFu = O(dim(V) + 1).

Now suppose F2 ‰ Fspan. If F2 Ă K[V], then dim(spanK tF2u) = O(dim(V)2). Hence,
by the argument above, we have F1 is a (O(dim(V)2), 1)-linear-SG configuration and hence
dim spanK tFu = O(dim(V)2 + 1). If F2 R K[V], then by Lemma A.9, there is a (600, 1)-wide
vector spaceW with dim(W) ď 8(dimV + 600) such that |FXK[W]| ě m/10. In this case, Proposi-
tion A.5 and Remark A.6 imply that dim spanK tFu = O((dimW + 1)2) = O((dimV + 1)2).

B Auxiliary Claims

Proposition B.1. If x, y, z,w, ` P S1 are such that dim spanK tx, yu = 2 and xy´ zw = `2, then we have
that z,w, ` P spanK tx, yu.

Proof. If xy P (`), then w.l.o.g. x = α` for some α ‰ 0 which implies that zw = `(αy ´ `) and
unique factorization implies that z,w P spanK t`, αyu = spanK tx, yu and we are done. If xy R (`),
then zw ” xy ı 0 mod (`), which by factoriality of S/(`) implies z = αx + β` and αw = y + γ`
for some α P K˚ and β, γ P K. Hence, we have α`2 = αxy ´ (αx + β`)(y + γ`), which implies
(α + βγ)` + αγx + βy = 0. Since dim spanK tx, yu = 2 and α ‰ 0, the last equation implies that
` P spanK tx, yu and we are done.

Proposition B.2. If x, y, z,w P S1 are such that dim spanK tx, yu = 2, xy R z and w R K[x, y, z], then
αxy+ βzw is irreducible for any α,β P K˚.

Proof. Let α,β P K˚. Since x, y are independent, we have that spanK tx, zu X spanK ty, zu =
spanK tzu. If αxy + βzw = ab for a, b P S1, note that a, b R spanK tzu, otherwise the equation
αxy + βzw = ab would imply that xy P (z). Hence we must have, w.l.o.g., that a P spanK tx, zu
and b P spanK ty, zu. Thus, βzw = ab´ αxy P K[x, y, z], which implies that w P K[x, y, z].

Proposition B.3. Let C P S3 be a cubic form such that s(C) ě 3. Let x, y P S1 be linearly independent
linear forms.

1. The minimal primes of the ideal (C, xy2) are (C, x), (C, y), and we have rad(C, xy2) = (C, xy)

2. The only minimal prime of the ideal (C, x3) is (C, x) and hence we have rad(C, x3) = (C, x).

Proposition B.4. If x, y, z,w P S are linear forms such that x3 ´ y3 = z3 ´ w3, then we must have,
z,w P (x)Y (y).

Proof. By factoriality of S, we have that z,w P (x, y). Suppose, for the sake of a contradiction, that
the conclusion does not hold. We can assume, w.l.o.g., that z R (x) Y (y). In this case, we must
have z = αx + βy, where α,β P K˚. Letting w = γx + δy, we have that x3 ´ y3 = z3 ´w3 iff the
following equations hold: α3 ´ γ3 = 1 = β3 ´ δ3 and α2β´ γ2δ = 0 = αβ2 ´ γδ2. Note that the
latter equations imply that γ, δ P K˚.

Now, multiplying the latter equations we obtain α3β3 = γ3δ3, which using the former equations
imply 1+ γ3 + δ3 = 0. In particular, we have α3 = ´δ3 and β3 = ´γ3. Ifω = eiπ/3, we have that
α = ωaδ and β = ωbγ, where a, b P t´1, 1, 3u.

70



Fromα2β = γ2δwe obtain thatω2a+bγδ2 = γ2δñ ω2a+bδ = γ. However, this latter equation
implies that γ3 = ´δ3, which contradicts the earlier equation 1+ γ3 + δ3 = 0. This concludes the
proof of our claim.

Proposition B.5. Let C = xQ+yP P S3 be irreducible, where x, y P S1 andQ,P P S2 such that s(Q) ě 8
and s(P) = minαPK s(P + αQ). If C P (G,a2), for some G P S2 and a P S1, then we must have α P K˚
such that C = αxG+ a2b for some b P S1, and αG´Q P (a, y).

Proof. From C P (G,a2) we have that xQ + yP = C = zG + a2b for some a, z P S1. Hence, we
have that xQ ” a2b mod (z, y), which by s(Q) ě 8 implies that x P (z, y) and a2b P (z, y). As
C is irreducible, we know that dim spanK tx, yu = 2 and thus we can write z = αx + βy, for
(α,β) P K2zt(0, 0)u. In particular, the above implies

x(Q´ αG) ” a2b mod (y)

y(P ´ βG) ” a2b mod (x).

Since dim spanK tx, yu = 2, the above congruences imply that rank(Q´αG) ď 2 and rank(P´βG) ď
2, which in turn imply rank(βQ´ αP) ď 4. As s(Q) ě 8, we must have α ‰ 0, which by definition
of P implies rank(P) ď rank(αP ´ βQ) ď 4. From rank(P) ď 4, we deduce that β = 0, otherwise
Q = 1

β(βQ´ αP) +
β
αP ñ rank(Q) ď rank(βQ´ αP) + rank(P) ď 8, contradicting s(Q) ě 8.

Therefore, we have that a2b P (x, y) and since yP R (x) as C is irreducible, we must have
0 ı yP ” a2b mod (x). This gives us two cases:

Case 1: if a R (x, y) the last congruence implies P = x`+ γa2 and b = γy+ δx for some γ P K˚
and δ P K. Hence, as x(Q ´ αG) = a2b ´ yP, we get x(Q ´ αG) = x(δa2 ´ y`), which implies
αG = Q+ y`´ δa2.

Case 2: if a P (x, y), then we have a = δx+ γy and the last congruence implies P = x`+ γ2yb
for some γ P K˚, δ P K. Using x(Q´ αG) = a2b´ yP, we get x(Q´ αG) = x(δ2x+ y(2δγb´ `)),
which implies αG = Q´ δ2x´ y(2δγb´ `).

B.1 Proof of Proposition 6.4

We give here a proof of Proposition 6.4. For the convenience of the reader, we restate the definition
of a (c, δ)-linear-SG configuration.

Definition 6.3 (Robust linear Sylvester-Gallai configurations over a vector space). Let c P N,
0 ă δ ď 1 and F := t`1, . . . , `mu Ă S1 be a set of linear forms such that `i R (`j) for any i ‰ j. We
say that F is a (c, δ)-linear-SG configuration if there exists a vector spaceW Ă S1 of dimension at
most c such that for any `i P FzW, there exist at least δ(m´ 1) indices j P [m]ztiu such that `j RW
and one of the following holds: |spanK

 

`i, `j
(

X F| ě 3 or spanK
 

`i, `j
(

XW ‰ 0.

We will need the corollary from [Shp20, Corollary 16].

Proposition B.6. A (1, δ)-linear-SG configuration has dimension at most 1+ 24/δ.

Proposition 6.4 (Robust Linear SG Configurations). Let F be a (c, δ)-linear-SG configuration. Then
dim spanK tFu ď c+ 25/δ.
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Proof. Let F = t`1, . . . , `mu, andW Ă S1 be the vector space given by Definition 6.3. Let ϕ : SÑ
S[z]/(W) be a generic projection, and let yi = ϕ(`i). We know that `i RW ñ yi R (z). Moreover, by
Corollary 2.8, for any pair `i, `j P FzW, we have yi R (yj). In particular, this implies that ϕ(F) is a
(1, δ)-linear-SG configuration, which by Proposition B.6 implies that dim spanK tϕ(F)u ď 1+ 24/δ.
Since F Ă spanK tϕ(F), z,Wu, we have dim spanK tFu ď c+ 1+ 24/δ ď c+ 25/δ.

72

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


