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Abstract. Denote by R the set of strings with high Kolmogorov com-
plexity. In [3] the idea of using R as an oracle for resource-bounded com-
putation models was presented. This idea was later developed in [1–3, 5,
6]. We prove new lower bounds for QPR

tt and QPR
sa:

– Oblivious NP ⊆ QPR
tt;

– Oblivious MA ⊆ QPR
sa.

Here QP means quazi-polynomial-time; “sa” means sub-adaptive reduction—
a new type of reduction that we introduce. This type of reduction is not
weaker than truth-table reduction and is not stronger than Turing re-
duction.
Also we prove upper bounds for BPPR

tt and PR
sa following [1]:

– PR
sa ⊆ EXP;

– BPPR
tt ⊆ AEXPpoly.

Here AEXPpoly is the class of languages decidable in exponential time
by an alternating Turing machine that switches from an existential to a
universal state or vice versa at most polynomial times.
Finally we analyze some games that originate in [1]. We prove complete-
ness of these games. These results show that methods in [1] can not prove
better upper bounds for PR, NPR and PR

tt than known.
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Introduction

Denote by KU (x) the prefix complexity of x with respect to a universal decom-
pressor U—the minimal length of a prefix-free program that outputs x. (For the
definition and properties of Kolmogorov complexity see for example [10] or [8].)
Denote by RU the oracle function that outputs KU (x) on input x. In [1–3, 5, 6]
the following results are proved:

EXPNP ⊆
⋂
U

PRU ,
⋂
U

NPRU ⊆ EXPSPACE,

BPP ⊆
⋂
U

PRU
tt ⊆ PSPACE,

NEXP ⊆
⋂
U

BPPRU
tt ⊆ EXPSPACE.

H ∈
⋂
U

PRU /poly.

Here H is a Halting problem; PA
tt is {L : L ≤P

tt A}, BPPA
tt is {L : L ≤BPP

tt A};
the intersection (everywhere) is by all universal decompressors U . 3

For convenience introduce the abbreviations: NPR :=
⋂

U NPRU ,

PR :=
⋂

U PRU , PR
tt :=

⋂
U PRU

tt , BPPR
tt :=

⋂
U BPPRU

tt .

In Section 1 we prove a lower bound for QPRU
tt . Here QP =

⋃
i Time2O(logi n).

Recall the definition of Oblivious NP.

Definition 1. A language L is in Oblivious NP if there exists a polynomial time
verifier V taking an input and a witness, so that: there is a witness for each n
of polynomial size, so that for any input of size n,

– if the input is in L, then the verifier accepts on that input and the witness.
– If the input is not in L, then for any witness, the verifier rejects on that

input.

We prove the following theorem.

Theorem 1.
Oblivious NP ⊆ QPR

tt.

Introduce new types of reductions.
Machine M with an oracle access defines a reduction tree—see Figure 1.

Definition 2. A machine M with an oracle access is called strictly sub-adaptive
if for every input string x all nodes in the reduction tree (all the oracle requests)
are different—see Figure 1.

The following type of reduction is of greater interest. This is a “mix” of tt
and strictly sub-adaptivity reductions.

3 In [2, 3] the plain complexity instead of prefix complexity was considered. However,
as was mentioned in [1] this change does not affect on the lower bounds for

⋂
U NPRU ,⋂

U PRU and
⋂

U PRU
tt .
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Fig. 1. For strictly sub-adaptivity reduction all nodes are different

Definition 3. A machine M with an oracle access is called sub-adaptive if for
every input string x the following holds. The computation of M(x) with an oracle
consists of two steps. In the first step M asks non-adaptively several requires to
an oracle. In the second step M works strictly sub-adaptivity. Moreover, in the
second step all oracle requests are different—see Figure 2.

This type of reduction is not stronger than Turing reduction and is not weaker
than tt-reduction. Denote by PRU

sa the class of languages that are recognized in
polynomial time by a sub-adaptive Turing machine using oracle function RU .
Denote

QPR
sa :=

⋂
universal U

QPRU
sa .

For QPR
sa we get some better lower bound than QPR

tt— Oblivious MA.

Definition 4. A language L is in Oblivious MA if there exists a randomized,
polynomial time verifier V taking an input and a witness, so that:

There is a witness for each n of polynomial size, so that for any input of size
n,

– if the input is is in L, then the verifier accepts on that input and the witness.
– If the input is not in L, then for any witness, the verifier rejects on that

input with probability at least 1
2 .

Theorem 2.
Oblivious MA ⊆ QPR

sa.
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Fig. 2. For sub-adaptive reduction at the second step all nodes are different.

In Section 2 we give a high-level outline of the proofs upper bounds for
NPR, PR and PR

tt from [1]. The idea is to reduce the problem to some finite
game between two players. The problem of finding a winning player belongs to
EXPSPACE (for NPR and PR) and to PSPACE (for PR

tt). This fact (by some
reasons) means that NPR,PR ⊆ EXPSPACE and PR

tt ⊆ PSPACE.
In Section 4 we prove that these games are complete for the corresponding

classes. This means that methods in [1] can not prove better upper bounds for
PR, NPR and PR

tt.
In Section 3 we analyze similar games in context sub-adaptive and randomize

tt-reductions. We prove the following theorems.

Theorem 3.
PR
sa ⊆ EXP.

Theorem 4. BPPR
tt ⊆ AEXPpoly.

Here AEXPpoly is the class of languages decidable in exponential time by an
alternating Turing machine that switches from an existential to a universal state
or vice versa at most polynomial times.

In Subsection 4.3 we discuss sub-adaptivity in the context of NP-Turing
reductions.

1 Lower bounds for QPR
tt and QPR

sa

Fix some universal U and denote K(x) = KU (x) and R = RU .
4

The key ingredient for proving Theorems 1 and 2 is the following fact.

4 The results of this section are valid for other types of Kolmogorov complexity (plane
complexity, monotone complexity,. . . ) that are equal each other with logarithmic
precision.
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Theorem 5. For every C there exists a quazi-polynomial in n algorithm using
non-adaptively oracle-function R that on input n outputs a quazi-polynomial size
list A of strings that contains all strings with length n and Kolmogorov complexity
at most C log n.

Proof. Consider a string x of length n as the truth-table of a function fx :
{0, 1}logn → {0, 1}. In [2] the following connection between K(x) and circuit-
complexity of fx is proved.

Theorem 6 ([2]). For every n and for every string x the function fx can be
computed by a circuit of size poly(K(x) + log n) with access to Halting problem
H as oracle.

Recall that Halting problem can be computed by poly-size circuits with oracle
R. Hence, for every x with length n and complexity O(log n) the function fx can
be computed by a poly(log n)-size circuit with oracle R.

The required algorithm on input n constructs all poly(log n)-size circuit with
oracle R and computes all truth tables of the resulting functions. Note that all
requires to oracle R in this algorithm has length poly(log n), so the requires can
be done non-adaptively.

Proof (Proof of Theorem 1). Let L be a string from Oblivious NP. Denote by
y the witness for strings of length n. Note that Kolmogorov complexity of y is
equal to O(log n) since y is restored from n in a computable way.

Let x be an input. Run the algorithm from Theorem 5 for n = |y| (the length
of y). Since |y| = poly(|x|) this algorithm works quasi-polynomial in |x| time.
Getting the required list of simple strings it remains to find there a witness if
such exists.

Proof (Proof of Theorem 2). The first step of the proof is the same as in the
proof above. It remains to derandomize the verifier. The idea is the same as
in the proof of PR = BPPR [2]. The algorithm construct (using oracle R sub-
adaptively) a string r with poly-logarithmic length such that K(r) = Ω(|r|).
After this we use fr as a hard-function in pseudo-random generator from [2, 7]
and derandomize the verifier.

Give more detailed proof. First we get the list of strings with simple complex-
ity from Theorem 5. For every string from the list do the following. Denote by
m a binary string that code the previous oracle requires, and the oracle answers.
First we ask K(m). Our further requires are continuations of word m. It guaran-
tees that in the reduction tree nodes from different sub-trees (that corresponds
to different values of m) are not intersected.

Now our goal is to construct a string r of length 2poly(logn) (here n is the
length of input) such that

K(mr) ≥ K(m) +
|r|
2
. (1)

For this we use the following well-known fact in Kolmogorov complexity
theory.
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Lemma 1 ([10]). For every string z and for every m there exists a string y of
length m such that K(zy) ≥ K(z) + |m| −O(logm).

From this lemma it follows that we can add tom a suffix of logarithmic length
such that the condition (1) holds (as it was done in [2]). To safe sub-adaptivity
we find the lexicographical first such suffix.

From 1 it follows that K(r) ≥ |r|/2−O(log |r|). Recall that |r| = 2poly(logn).
We argue (as it was mentioned in [2]) that the function fr can not be computed
by circuits with oracle R of size less than |r|ε for some positive ε. For oracle H
instead of R it immediately follows from the following theorem.

Theorem 7. There is a δ > 0 such that For every string r the minimal size of
a circuit with oracle H computing fr is at least K(r)δ.

It is not difficult to see that R can be computed by poly-size circuits with
oracle H—see [2]. Hence, fr can not be computed by small circuits with oracle
R. To derandomize the verifier it remains to use the following pseudo-random
generator.

Theorem 8. For any ε > 0, there exist constants c, c0 > 0 such that the fol-
lowing holds. Let A be a set and l > 1 be an integer. Let f : {0, 1}c log l → {0, 1}
be a boolean function that cannot be computed by oracle circuits of size lcε with
oracle A. Then Gf : {0, 1}c0 log l → {0, 1}l satisfies:

| Pr
r∈Ul

[CA(r) = 1]− Pr
x∈Uc0 log l

[CA(Gf (x)) = 1]| < 1/l,

for any oracle circuit CA of size at most l.

To derandomize the verifier it is enough to use this theorem for l = 2poly(logn).

2 The idea of proof upper bounds for classes containing
oracle R

Here we give the proof of the following theorem from [1].

Theorem 9. Let L be a decidable language not in EXPSPACE. Then there
exists an optimal prefix-free decompressor D such that L is not polynomially
Turing reducible to the corresponding complexity function K(·) = KD(·).

In [5] it was shown that PR and NPR contain only decidable languages.
Together with Theorem 9 it gives that PR ⊆ EXPSPACE.

This theorem can be reformulated as a game. The main idea is that the
2−KU (x) defines a universal semimeasure for suitable universal U .
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Game reformulation Fix some decidable L not in EXPSPACE. Consider
the following game with full information. Alice and Bob start with a function
k(x) = 2|x| + c where c is large enough constant such that

∑
2−k(x) ≤ 1/4. At

any moment each of the players may decrease the value of the function (replacing
this value by some smaller non-negative integer). The cost of this decrease is the
increase in

∑
x 2

−k(x). There is a total budget for Alice—1/2 and for Bob—1/4;
moves that violate the budget restriction are illegal.

The game is infinite; the winner is determined by the limit of the decreasing
function k. Namely, Bob wins if L is polynomially Turing reducible to the limit
function k, otherwise Alice wins.

Remark 1. We may assume that players alternate or use any other ordering
(where each player makes infinitely many moves), since the winner is determined
by a limit function and each player may postpone his/her move (this may only
save the player’s money and make the opponent spend more).

Lemma 2. If Alice has a computable winning strategy in this game, then the
statement of Theorem 9 is true.

Proof. Let Alice play against the blind strategy of Bob that decreases the values
of k(x) until K(x) + 2 (the constant 2 is needed not to exceed the budget of
1/4). This strategy is computable, so we get a computable sequence of moves
if Alice uses her computable strategy against this blind strategy. Therefore the
limit function will be upper semi-computable, the corresponding series has sum
at most 1 (since the initial function had sum at most 1/4, and players increase
it at most by 3/4), and the limit function is optimal since Bob guarantees this.
On the other hand, there is no reduction since Alice wins in the game.

A series of requirements The winning condition in the game is a conjunction
of a countable series of requirements: for each machine M there is a requirement
“M does not perform a truth table polynomial reduction of L to the limit func-
tion k”. We can effectively enumerate these requirements: we assume that for
each machine some bounding polynomial is declared (as part of its description),
and stop the computation when the time bound is reached (giving an arbitrary
output). Let Mi be the sequence of the bounded machines; the corresponding
requirement “Mi does not reduce L to k” we will also denote by Mi.

How to deal with one requirement For a start, let us consider the simplified
case when we have only one requirement (machine) M . Why can Alice win the
game in this case? To win the game, Alice should ensure that for some x the
output of the reduction machine M on x is different from the true answer L(x)
(true if x in L, false otherwise). Consider some x and let us see what Alice
can do to destroy the reduction at this x. The pair M and x defines a reduction
tree (see Figure 1). Since M is a polynomial-time machine the size of the tree
is exponential in the length of x. So, there are exponential many strings a1,
a2,. . . an whose limit values of k(a1), . . . , k(an) define the output M(x).
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Wemay consider a “local” version of the game that deals only with a1, . . . , an.
Initially we have a list of n numbers (2|a1|+c, . . . , 2|an|+c), Alice and Bob may
at any time decrease any of these numbers (paying the corresponding amount,
the increase in 2−k(ai)), each not exceeding his/her budget 1/4. Alice wins if she
may ensure that the reduction answer for the limit values is different from L(x).
If Alice can win in such a game for some x, this is enough: using the winning
strategy for the local game, she wins the global game. (She never decreases other
values of k, and if Bob does so, he just wastes his budget, since only the values
k(ai) matter.)

We arrive at the main point of the argument where the class EXPSPACE
appears: for each x we have a local game between two players who have sym-
metric rights. For such a game, either there is a strategy which guarantees that
M outputs 0, or there is a strategy that guarantees that M outputs 1. (We do
not say who uses this strategy, since the rules of the game are symmetric, only
the winning condition is different for Alice and Bob.) And one can decide in
EXPSPACE which of the two cases happens for a given x.

Lemma 3. The language containing all strings x such that there is a winning
strategy to get M(x) = 1 belongs to EXPSPACE.

The same is true if we change 1/4 (budget of players) to any other positive
constant.

Proof. Recall that the number of strings a1, a2, . . . , an is at most exponential in
the length of x. Therefore, the total number of steps in this game is also bounded
by some exponent. (A player can miss his or her step. However, we assume that
a player can do it only if they find the current value of M(x) acceptable.) Hence,
this game belongs to EXPSPACE by a standard argument.

Since L is not in EXPSPACE (by assumption), there is some x for which
L(x) is not equal to the answer that can be enforced by a strategy. For this x
Alice can enforce the answer that is opposite to what L says, so she can win the
local game (and the global one, if there were only one requirement). Since L is
decidable Alice can effectively find such an x.

We complete the proof of Theorem 9 in the Appendix (alternatively, a reader
can read [1]). The statement PR

tt ⊆ PSPACE has the same proof: one need
only use machines that implement truth-table reduction. For these machines the
corresponding game belongs to PSPACE.

Moreover, we can state the following general statement. Let M be some
enumerable family of Turing machines (for example, polynomial-time Turing
machines) with access to some oracle-function. Consider the local game for ma-
chines in this family as in Lemma 13. Assume that the language containing all
strings x such that there a is winning strategy to get M(x) = 1 belongs to some
complexity class C. Then we state the following theorem.

Theorem 10. Let L be a decidable language. Assume that for every universal
U language L is decidable by some machine M ∈ M with oracle RU . Then L
belongs to C.

We affirm that this theorem has the same proof as Theorem 9.
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3 Upper bounds for PR
sa and PR

tt

Prove that PR
sa ⊆ EXP. using the technique from the previous section.

Proof (Proof of Theorem 3). We know that PR
sa ⊆ PR ⊆ EXPSPACE, so every

language in PR
sa is decidable. Hence, due to Theorem 10 it is enough to prove that

the corresponding local game for sub-adaptive reduction belongs to EXP. There
is, however, a subtle point. There is no algorithm that can determine if a given
machine computes a sub-adaptive reduction. So we can not effectively enumer-
ate them. However this is not a problem. Instead of enumerating sub-adaptive
polynomial-time machines Alice can enumerate all polynomial-time machines.
For every machine M Alice can either find x MR(x) ←→ x /∈ L (for some
language L /∈ EXP) or figure that M is not sub-adaptive.

First we explore local game for strong sub-adaptivitely. Note that if a player
has a winning position then they can omit their move (it is not worse then
making any other move). Hence, we can change the rules—players in winning
position are not allowed to move. The current position can be described by a
path in a reduction tree—see Figure 3. A player (with a losing position) must
change the current value of f on the current path of the reduction tree. (In
Figure 3 it is not possible to change f(a1) or f(a3) (the value f(a10) is minimal
so it is possible to change this value)). It is possible that a player has to make
several steps successively to change the value of output.

Now we will use sub-adaptivity. The key note is that vertices that are to
the left of the current path will be not change (such moves do not have sense so
we can assume that players do not make such moves). Note that sub-adaptivity is
crucial: in general case this is not true (and the corresponding game is EXPSPASE-
complete by Theorem 12).

So, the current game position is completely specified by triple (the current
path, Alice’s current capital, Bob’s current capital). We claim that the number
of such triples is an is exponential in the size of the input. Indeed, the tree is
exponentially large. The capitals are binary-rational numbers with denominator
2max, where max is the maximal number among all numbers f(y) that the ma-
chine asks. Since f(y) ≤ 2|y|+ c and all lengths are bounded by poly(input size)
the same is true for max.

Therefore, it is possible to find a winner in exponential time by using dynamic
programming.

For general sub-adaptively the reasoning is the same: since at the first stage a
machine asks polynomially oracle requests non-adaptively the number of possible
game-positions is exponentially large for general sub-adaptively too.

Now we prove that BPPR
tt ⊆ AEXPpoly

Proof (Proof of Theorem 4). Let L ∈ BPPR
tt. Since BPPR

tt ⊆ BPPR = PR ⊆
EXPSPACE the language L is decidable. So, we can use the same technique.
As in the previous theorem we can not enumerate all polynomial-time machines
that provide a randomize tt-reduction. The problem is that for given randomize
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Fig. 3. The current values of oracle f : (f(a1) = 2,f(a3) = 3, f(a10) = 1) defines the
reduction path. This path defines the output of the machine (here it is 1).

machine M and oracle A the values Pr[MA(x) = 1] and Pr[MA(x) = 0] depend
on A.

But Alice can enumerate all randomize polynomial-time oracle machines that
use this oracle non-adaptively. As in the previous proof for every such machine
M she either finds x such that MR(x) ←→ x /∈ L′ for L′ /∈ AEXPpoly or figure
that MR is not provide a randomize tt-reduction.

Note that by an amplification argument if L ∈ BPPR
tt then there is a corre-

sponding machine M such that:

– if x ∈ L then Pr[MR(x) = 1] > 1− 2−|x|;
– if x /∈ L then Pr[MR(x) = 1] < 2−|x|.

Therefore, to complete the proof it is enough to show that the following local
BPPtt-game belongs to AEXPpoly.

Local game for BPPtt There are a polynomial-time randomize oracle ma-
chine MA that uses oracle A non-adaptively and its input x. Initially the value
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Pr[MA(x) = 1] is greater than 1 − 2−|x| or smaller than 2−|x|. There are two
players with some budgets that can change values of A by using their money.
Every value can be changed q(n) times only (here n is the length of x and q is
some polynomial).

The first player wants to Pr[MA(x) = 1] > 1−2−|x| and second player wants
to Pr[MA(x) = 1] < 2−|x|. One (big) move of a player is changing A to make
the value Pr[MA(x) = 1] “good” for a player.

Prove that BPPtt-game belongs to AEXPpoly. For this it is enough to show
the number of (big) moves in this game is bounded by poly(n). Indeed, every
big move is described by choosing exponentially many oracle requests.

Choose a polynomial p and show that this game can not continue more than
p(n) moves if p is large enough. Consider M as a deterministic machine depend-
ing on its input x and random bits r. Note that for every fixing r a machine
MA(x, r) can make at most poly(n) oracle requests; denote this polynomial as
h(n).

The game position is depending on fraction of r such that MA(x, r) = 1.
After every big move for at most every r the value MA(x, r) is changed: after
the first big move the fraction of such r is at least 1− 2−|x|+1; after p(n) moves
the value MA(x, r) is changed p(n) for 1 − 2−|x|+1p(n)-fraction of r. However,
the value of MA(x, r) can not be changed more than h(n)q(n) times (recall that
h(n) is an upper bound for oracle requests for fixing r and q(n) is an upper
bound for possible changing an oracle value by players). So, if p(n) > h(n)q(n)
then the number of big moves in this game is bounded by p(n).

4 Completeness of some games

4.1 Game for tt-reduction

Here we consider the game like a local game in Lemma 13 but for tt-reduction.
Let M be a polynomial time Turing machine having access to oracle O.

This machine implements tt-reduction, i.e. on inputs of length n machine M
asks poly(n) YES/NO-question to oracle O. After this machine outputs 1 or 0.
Initially O is empty. Let x be some string.

Consider the following game. The goal of Alice is MO(x) = 1, the goal of
Bob is MO(x) = 0. Alice and Bob can add strings to O for some money. Namely,
adding string y costs v(y), where v is some polynomial time computable function
{0, 1}∗ → N. The players moves alternate but they can omit their moves if the
current value MO(x) is OK for him or for her. Initially Alice has cA dollars, Bob
has cB dollars.

Theorem 11. There exists a polynomial-time Turing machine M that realizes
tt-reduction and a positive polynomial computable function v such that the fol-
lowing is true. The language

tt-GAME= {(x, cA, cB)| Alice has a winning strategy in the game described above }
is PSPACE-complete.
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The proof of this theorem is in Appendix. Note that here we consider an
oracle that outputs YES/NO question instead of oracle-function. It is clear that
completeness for a binary oracle implies completeness in the general case.

4.2 Game for Turing reduction

In this subsection we consider the similar game as in the previous subsection
with the following difference: here we consider polynomial time Turing machines
realizing Turing reductions instead of tt-reductions.

Theorem 12. There exists a polynomial-time Turing machine M that realizes
Turing reduction and a positive polynomial computable function v such the fol-
lowing is true. The language

T-GAME= {(x, cA, cB)| Alice has a winning strategy in the game described above }
is EXPSPACE-complete.

The proof of this theorem is in Appendix.

4.3 Non-deterministic sub-adaptivity

Define class NPR
sa by the following way. A non-deterministic polynomial Turing

machine with an oracle-function defines exponentially-many trees of reduction
(corresponding to different paths of the machine). A non-deterministic Turing
machine is called sub-adaptive if all queries in all of the trees are different. The
class of all languages that can be recognized by sub-adaptive polynomial-time
non-deterministic machines with oracle RU denotes as NPRU

sa . As for P we define
NPR

sa as
⋂

universal U NPRU
sa .

Clearly, NPR
sa ⊆ NPR ⊆ EXPSPACE, but can we get a better upper bound?

In this subsection we consider a similar game as in the previous subsection but
for NPRU

sa .
First, consider the following generalization of the game for PRU

sa . There is a
directed weighted graph G with a chip at some node. All nodes of G are marked
by A or B. There are two players Alice and Bob. The goal of Alice (Bob) is
to shift the chip to a node that is marked by A (B). Initially Alice and Bob
have mA and mB dollars respectively. If a player is in a losing position (i.e.,
current position of the chip is marked by opposite letter) he or she can move
the chip to a neighboring node. Such move costs some dollars (the weight of the
corresponding edge).The player loses if he or she is in a losing position and does
not have enough money to fix it. Now consider the language GRAPH-GAME
that consists of all directed weighted graphs G (all weights are positive integers),
initial position of the chip, and capitals of Alice and Bob that are given in the
unary representation such that Alice has a wining strategy at this game.

The language GRAPH-GAME belongs to P. Indeed, the current position of
the game is defined by the position of the chip and the current capitals of Alice
and Bob, so dynamic programming works (here it is important that initial capi-
tals are given in the unary representation). We claim that this is a generalization
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of the game in the previous subsection (note, that the size of a graph (a tree) in
the previous subsection was exponential, this is why we get there EXP, not P).

What kind of game corresponds to NPR
sa? Instead of one graph we need to

consider several directed weighted graphs G1, . . . Gn with a chip at each graph.
All nodes of all graphs are marked by A and B. Now Bob wins if all chips are
marked by B and Alice wins if at least one chip is marked by A.

Consider the language GENERAL-GRAPH-GAME that consists of all graphs
G1, . . . , Gn, initial positions and capitals mA and mB (in the unary represen-
tation) such that Alice wins at the corresponding game. Here it is important
that capitals are common for all graphs so, it is not just several independent
GRAPH-GAMEs.

Theorem 13. The language GENERAL-GRAPH-GAME is PSPACE-complete.

The proof of this theorem is also in Appendix.
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Appendix

Completion of proof of Theorem 9

Dealing with many requirements: the problem What are the problems if
we try to use the argument explained above against two machines (to guarantee
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that none of them reduces L to k)? There are two problems. First, the sets of
strings a1, . . . , ak (the k-values used for both reductions) may intersect, and the
change in one local game influences the other. Second, the budget in the global
game is shared between the local games, so the strategies in the local games that
assume a fixed budget do not work any more.

The solution is to deal with the machines Mi sequentially. Imagine we have
two machines M1 and M2. First we deal with M1 as if M2 did not exist at all.
When the game reaches the final stage, we start analyzing the local game for M2,
but use the current values of k as the initial configuration for M2. It is possible
since our argument (about symmetric games and EXPSPACE) does not depend
on the initial values of k. The we can treat M2 in the same way as before (for
one machine).

There are two problems with this argument. First, we do not know “when
the game reaches the final stage”: the blind strategy played by Bob may decrease
any value of k at any moment. This is not so bad, since we can restart the actions
against the second machine many times (and hope each time that the first game
is finished). In the same way one may treat countably many conditions (priority
argument).5

The second problem, with the common budget, is more serious. It is possible
that in the first game (against M1) Alice wins but uses almost all bugdet (1/4
in our example) while Bob used only a small part of his budget (also 1/4 in our
example). Then, if we use the remaining resources for the second game, it is no
more symmetric (and is biased in the wrong direction), so the game argument
cannot be used anymore. For two conditions we may allow Alice to use 1/4 in
the first game and (separately) 1/4 in the second game, while Bob is allowed to
use only 1/4 in total, and this almost saves the argument: it is OK that Alice
uses 1/4 + 1/4 = 1/2 in total. The only remaining problem is that the second
game is restarted many times (when a new move is made by Bob in the first
game), and if 1/4 is allocated for each restart, then the total spending of Alice
is unlimited. What can be done?

An economical way to deal with one requirement To solve these prob-
lems, we modify the argument for one requirement. Assume that some small ε is
chosen, and we consider a symmetric local game where both players are allowed
to spend at most ε. Alice chooses some x where the EXPSPACE-prediction of
the outcome of this ε-bounded game differs from L, and uses the winning strat-
egy to play with Bob. However, Bob does not know that his spending is bounded
by ε, and may — instead of losing the game — spend more. Then the game is
abandoned, and new game (again with symmetric bound ε, with new x where
L differs from EXPSPACE-set) is started. The main advantage of this approach

5 Imagine a knight who deals with infinitely many dragons; each dragon has only
finitely many lives (but the number is unknown); moreover, when the knight hits ith
dragon, all subsequent dragons are replaced with fresh instances. Still, the knight
can kill all the dragons in the limit.
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is that when the game is stopped, Bob spends more than Alice since it was him
who increasated the ε-bound.

Therefore, if Alice repeats this procedure, Bob will be the first who violated
the global spending limit 1/4. (We assume here that ε is a negative power of 2,
so 1/4 is a multiple of ε and there is no last game with reduced budget.) So this
approach works for one requirement. This is not directly useful (since we know
how to deal with one requirement anyway) but this improvement is important
when we combine strategies against different reductions.

Final argument The Alice’s strategy in the global game is the priority-type
combination of the economical strategies described in the previous section. We
assume that Bob’s budget in the global game is 1/4, while Alice’s budget is
1/2, so she has some reserve of size 1/4. (This increase in Alice’s budget is not
important in the global game as we have discussed.) This reserve is split into
pieces: we consider a computable series ε1, ε2, . . . such that

∑
εi < 1/2 − 1/4;

all εi are negative povers of 2 (e.g., one may use 1/16, 1/32, 1/64, . . .).

To beat the first reduction M1, Alice uses the economical strategy with pa-
rameter ε1. This means that she analyses the symmetric local game with budget
ε1, finds the point x where the corresponding EXPSPACE-language differs from
L and applies the winning strategy in the local game, considering the moves of
Bob in the global game as the moves in the local game while it is possible, i.e.,
while Bob does not exceed the bound ε1 of the local game. If and when this
happens, Alice forgets about this local game, repeats her analysis for the same
ε1 but with current values of k to find new x where the wrong answer can be
forced, starts applying the new local strategy until Bob exceeds ε1-limit, etc.

Alice will do something in parallel against other Mi, but we postpone this
discussion. Now we see that the number of restarts is finite, since each restart
uses the same ε1, and Bob cannot spend more than ε1 infinitely many times. (It
does not matter that ε1 is small as soon as it is not changed during the restart.)
And in each game that is abandoned Alice uses less weight than Bob, only in the
last game (that is not abandoned; Alice wins in this game) she may use more
weight than Bob, and the difference is bounded by ε1.

How Alice incorporates playing against the next machine M2 in this scheme?
At any moment she may look at the current values of k, perform EXPSPACE-
analysis in the ε2-bounded game against M2, and start (in parallel) playing this
game against M2-reduction. This game is interrupted if Bob exceeds ε2 (recall
that he does not know anything about εi and just plays the global game with
budget 1/4), or if M1-game changes some of the k-values that are used in both
games. In the first case the ε2-analysis is performed again and the game against
M2 is restarted — maybe, with different x and points where the k-values are
decreased, but with the same ε2. If only interrupts of the first kind happen, then
the second game always uses ε2 and therefore is restarted finitely many times,
and at each moment Alice spends (in all the games against M2) not more than
Bob, plus ε2.
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However, if an interrupt of the other type happens (due to the decrease in
k caused by the game against M1), then the second game is also restarted, but
with ε3, not ε2. (Now it is possible that in the abandoned game Alice used more
weight than Bob, but only by ε2). If again the M2-game is interrupted due to
M1-game, then the new instance of M2-game uses ε3, and so on. The priority
argument works: since we do not disturb the games against M1 by M2-games,
then finally the M1-game stabilizes. After that only the interrupts of the first
type are possible for M2-games, so they all have the same εi, and therefore only
finitely many interrupts are possible, and Alice wins the global game against
M2.

Some clarification about shared k-values is needed. When performing M2-
analysis, the value of all k(x) involved in M1-game are considered as fixed. If
Alice or Bob change one of them (in M1-game both players can do this), then
the analysis becomes invalid. In fact, it is easier to agree that any move in M1-
game (even in the place that is not used in the M2-game) causes the interrupt
of the second type for M2-game, so it is restarted (with new limit). Still Bob’s
moves in places that are not used in the M1-game do not cause the M2-game
to restart, they are just normal moves of Bob in the M2-game. The restart of
the M1-game also implies the interrupt of the second type for the M2-game (it
is needed since now M1-game uses other values of k that should be considered
as constants for M2-game). Note that the reverse direction is safe: in M2-games
the values used in the current M1-game are considered as constants, so M1-game
cannot be disturbed by their change in M2-game.

In the same way all the other Mi are added sequentially. When in Mi Bob
exceeds his budget (and the game is restarted), or if some move is made in the
Mi-game, then all following Mj (with j > i) get an interrupt of the second type
and should be restarted (sequentially, in the order of increasing j). In the first
case the Mi-game is restarted also (before all the Mj), using the same bound.
All other games use fresh values in the εi-sequence for restart.

In this way the total excess of Alice in the global game will never exceed the
sum of εi, and the global budget for Bob is 1/4, so Alice never uses more than
1/2 and wins against all Mi, as required.

Proof of Theorem 13

Clearly the language is in PSPACE, since the number of moves is bounded by
the (unary) capitals mA and mB .

To show PSPACE-hardness, we reduce from TQBF. (More precisely, we re-
duce from the complement of TQBF, since our reduction produces GENERAL-
GRAPH-GAME instances in which Bob has a winning strategy if and only if
the original TQBF instance is a ”yes” instance. But PSPACE is closed under
complementation so the distinction is immaterial.) The language TQBF consists
of true quantified boolean formulae of the form

∃x1∀x2 . . . f(x1, x2, . . . , xn),
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where f is a boolean formula composed of variables x1, x2, . . . , xn, and the oper-
ators ∧, ∨ and ¬. It suffices (due to the Tseytin transformation) to restrict our
attention to instances where f is in conjunctive normal form with 3 literals per
clause, i.e. where f takes the form

f(x1, x2, . . . , xn) = C1 ∧ C2 ∧ . . . ∧ Cm,

where each clause Ci is of the form

Ci = Li1 ∨ Li2 ∨ Li3,

and each literal Lik is either xj or ¬xj for some variable j.
Given such a TQBF instance, our reduction creates a GENERAL-GRAPH-

GAME instance consisting of n+ 1 games – one game for each variable, and an
auxiliary game known as the clause selection game.

The variable game graph Gj for each universally-quantified variable xj is
constructed as follows. Note that the exact move costs will be defined after the
graph construction has been outlined, though terms denoting these costs will be
assigned to edges in the graph construction.

1. Create vertex labeled xj marked with a B (i.e. a winning vertex for Bob).
The chip for Gj starts on vertex xj .

2. Create a vertex labeled TA and a vertex labeled FA, each marked with an
A (i.e. both are winning positions for Alice). Create directed edges from xj

to both TA and FA, both with cost t.
3. Create a vertex labeled TB, a vertex labeled FB, and a vertex labeled XB,

each marked with a B. Create edges (TA, TB) and (FA,FB), both marked
with cost t, and edges (TA,XB) and (TB,XB), both with cost t− 1.

4. Create a vertex labeled XA marked with an A, and an edge (XB,XA), with
cost mA − jt.

5. For each literal Lik of clause Ci, if Lik = xj or Lik = ¬xj , create vertices
labeled CiTA and CiFA marked with A and vertices labeled CiTB and
CiFB marked with B. Add edges (TB,CiTA) and (FB,CiFA) with costs
both set to lik.
Add edges (CiTA,CiTB) and (CiTA,CiTB). If Lik = xj , then set (CiTA,CiTB)’s
cost to lik−1 and (CiTA,CiTB)’s cost to lik. Otherwise set (CiTA,CiTB)’s
cost to lik and (CiTA,CiTB)’s cost to lik − 1.

For each existentially-quantified variable, the corresponding variable game’s
structure is mostly identical to that of universally-quantified variables. The ad-
justments we need to make are entirely to steps 2 and 3 of the preceeding con-
struction.

2’. Create a vertex labeled xjA marked with an A. Create a directed edge from
xj to xjA, with cost t.

3’. Create a vertex labeled TB, a vertex labeled FB, and a vertex labeled XB,
each marked with a B. Create edges (xjA, TB) and (xjA,FB), both marked
with cost t, and an edge (xjA,XB) with cost t− 1.
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Finally, we define the clause selection game:

1. Create a vertex labeled C, marked with B.
2. For each clause Ci, create a vertex labeled CiA marked with A, and a vertex

labeled CiB marked with B. Create an edge (C,CiA) with edge cost ci (again
to be determined below), and an edge (CiA,CiB) also with edge cost ci.

An example of the game graphs produced by applying the reduction to a
TQBF instance is supplied in the Appendix.

Intuitively, each variable game consists of a true subgame, a false subgame,
and an override subgame. (The latter being the subgame consisting of the XA
and XB vertices.) Alice always chooses which game to progress next – Bob must
always respond in the game Alice last moved in, since his victory criterion has
him losing if he is losing in any one game. In optimal play, Alice should take ex-
actly n+4 moves, and her first n moves should progress each variable game into
either its true subgame or its false subgame, in order corresponding to that which
the corresponding variables were quantified in the original TQBF instance. In
games corresponding to universally-quantified variables, Alice’s move itself de-
termines which subgame is entered into; in those corresponding to existentially-
quantified variables, Bob’s response determines the subgame entered into. The
override subgames exist to allow Bob to punish Alice for progressing a variable
game out-of-order. After each player has made n moves, the overall game state
corresponds to a truth assignment for the variables occurring in the formula f ,
and Alice should have a winning strategy if and only if some clause Ci is left
unsatisfied by said truth assignment.

We define the move costs and starting capitals as follows. Set b = 3(n+m)+
10, and set

t = b12

lik = b12 + 2b10 + ib2k for each k ∈ {1, 2, 3}

ci = b12 + 3b10 + b8 −
3∑

k=1

ib2k

mA = (n+ 4)b12 + 9b10 + b8

mB = mA − 1

Note that all of these values are polynomial in m and n, so the GENERAL-
GRAPH-GAME instance outputted by the reduction has size polynomial in the
size of the input TQBF instance even if these costs are encoded in unary.

The motivation for the terms appearing in the costs and starting capitals
is as follows. The terms of order b12 ensure that each player is only allowed to
make n + 4 moves. The terms of order b10 ensure that of Alice’s n + 4 moves,
only one move with a cost of form ci, and only three moves with costs of the
form lik, are made. (The other n moves made by Alice must cost exactly t.) The
terms of orders b2 through b8 are crafted such that Alice’s only winning strategy,
after the first n moves are made, consisting of making moves which correspond



Some Games on Turing Machines and Power from Random Strings 19

to scrutinizing a single clause left unsatisfied by the truth assignment generated
by the first 2n moves of play, is as follows:

Alice’s clause Ci strategy: let Ci = Li1 ∨ Li2 ∨ Li3. For each k ∈
{1, 2, 3}, if Lik = xj or ¬xj , move to Ci?A in the variable game for xj .
Also move to CiA in the clause selection game.

(Ci?A denotes either CiTA or CiFA, only one of which is reachable in a given
variable game after the first 2n moves have passed in optimal play.)

Finally, note that Bob’s starting capital differs from Alice’s starting capital
by 1, and that the moves available to Bob in response to any given move by Alice
either match the cost of Alice’s move, or are discounted by 1. Said discounts are
available to Bob either in situations where Alice had made a move corresponding
to scrutinizing a satisfied literal, or when Bob chooses to progress a variable game
to its override subgame. If Bob can ever make one of these discount moves, and
assuming such a move doesn’t allow Alice access to an affordable response in an
override subgame, then Bob subsequently has an easy winning strategy, since
from that point onwards his capital matches Alice’s. On the other hand, if Alice
can make n + 4 moves which exhaust her starting capital (only possible via
Alice’s clause Ci strategy stated above) and never allow Bob a safe discount,
then Alice wins.

Example for reduction in Theorem 13 Consider the TQBF instance of
form

∀x1∃x2∀x3∃x4(C1 ∧ C2 ∧ C3),

with clauses as follows:

C1 = x1 ∨ x2 ∨ ¬x3

C2 = x2 ∨ x3 ∨ ¬x4

C3 = ¬x1 ∨ ¬x3 ∨ x4

The reduction outlined in Theorem 4 produces the games illustrated in the
following diagrams.

Variable game for x1:
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x1

TA

TB

C1TA

C1TB

l1,1 − 1

l1,1

C3TA

C3TB

l3,1

l3,1

t

XB

XA

mA − t

t− 1

t

FA

XB

t− 1

FB

C1FA

C1FB

l1,1

l1,1

C3FA

C3FB

l3,1 − 1

l3,1

t

t
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Variable game for x2:

x2

x2A

TB

C1TA

C1TB

l1,2 − 1

l1,2

C2TA

C2TB

l2,1 − 1

l2,1

t

FB

C1FA

C1FB

l1,2

l1,2

C2FA

C2FB

l2,1

l2,1

t

XB

XA

mA − 2t

t− 1

t

Variable game for x3:

x3

TA

TB

C1TA

C1TB

l1,3

l1,3

C2TA

C2TB

l2,2 − 1

l2,2

C3TA

C3TB

l3,2

l3,2

t

XB

XA

mA − 3t

t− 1

t

FA

XB

t− 1

FB

C1FA

C1FB

l1,3 − 1

l1,3

C2FA

C2FB

l2,2

l2,2

C3FA

C3FB

l3,2 − 1

l3,2

t

t
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Variable game for x4:

x4

x4A

TB

C1TA

C1TB

l2,3

l2,3

C2TA

C2TB

l3,3 − 1

l3,3

t

FB

C1FA

C1FB

l2,3 − 1

l2,3

C2FA

C2FB

l3,3

l3,3

t

XB

XA

mA − 4t

t− 1

t

Clause selection game:

C

C1A

C1B

c1

c1

C2A

C2B

c2

c2

C3A

C3B

c3

c3

Completion of the proof of Theorem 4

The correctness of the reduction follows from a succession of claims, established
below. For succinctness, the statements of these results assume optimal play by
both Alice and Bob.

Alice cannot make more than n+4 moves. Clear from the fact that each
move costs ≥ b12 dollars, and (n+ 5)b12 exceeds Alice’s starting capital.
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Alice must make exactly n + 4 moves. Crucially for this claim, there are
play sequences involving Alice winning in fewer than n+ 4 moves involving her
winning a variable game’s override subgame (i.e. moving into a position labelled
XA) – however, in optimal play, we can assume this never happens, as Bob can
always choose to avoid progressing a variable’s game into its override subgame if
Alice has sufficient remaining capital to respond in that subgame. Having ruled
out this possibility, if Alice makes fewer than n+4 moves, then the total cost of
Bob’s response moves can’t be larger than (n + 4)b12, which is less than Bob’s
starting capital.

Alice must move at least once on each variable game. In particular,
exactly n of the aforementioned n + 4 moves which Alice must make, must
consist of making an initial move on a variable game, thereby progressing it to
either its true or false subgame. This follows from the fact that if fewer than n
of Alice’s moves consist of initial moves in variable games, then she must make
at least 5 moves with costs of forms either ci or lik, so the total cost of Alice’s
n+ 4 moves is ≥ (n+ 4)b12 + 10b10, which exceeds Alice’s starting capital.

Alice’s j-th move must be the initial move on the xj variable game.
We establish this by induction on j. Assuming true for 0, . . . , j−1, by the time of
Alice’s j-th move, no moves can have been made in the variable game for xj , as all
moves up until this point have happened in the games for variables x1, . . . , xj−1.
If Alice’s j-th move is not the initial move for variable game xj , then by the
previous claim, Alice must eventually move in the game for xj , so assume that
move is made on Alice’s j′-th turn, with j < j′. Then for Bob’s j′-th move, Bob
has a response available to him of moving to position XB (i.e. progressing to
the override subgame) in the xj game, obtaining for him a discount of 1, and
subsequently Alice’s remaining capital is < mA − jt, so she cannot progress the
subgame to the XA position. This gives Bob an easy winning strategy, as, having
obtained a discount of 1 on a response move, he is now able to afford to match
each of Alice’s subsequent moves with a move of equal cost.

Thus far we have established that, in optimal play, the first 2n moves will
consist of progressing each of the variable games into either its true subgame or
its false subgame, in an order which corresponds to the order of quantification
of the variables in the original TQBF instance. Thus, in optimal play, the first
2n moves will generate a game state where a subgame has been entered into
on each variable game, which corresponds to a truth assignment in which Alice
has determined the universally-quantified variables and Bob has determined the
existentially-quantified variables, and the determination of each variable xj has
been made with knowledge of the determinations of variables x1, . . . , xj−1.

It remains at this point to establish the following claim:
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Alice has a winning strategy if and only if the induced truth assign-
ment leaves some clause Ci unsatisfied. For the ”if” direction of this claim,
Alice can win with her clause Ci strategy, which we repeat here:

Alice’s clause Ci strategy: let Ci = Li1 ∨ Li2 ∨ Li3. For each k ∈
{1, 2, 3}, if Lik = xj or ¬xj , move to Ci?A in the variable game for xj .
Also move to CiA in the clause selection game.

Note that the order in which Alice makes her moves at this point is irrelevant,
as Bob’s responses are forced and the total capital Bob will require to respond
to Alice’s moves is unchanged by the order of Alice’s moves.

Implementing the strategy above costs Alice li1+li2+li3+ci = 4b12+9b10+b8

capital to implement, which is Alice’s entire remaining capital. Assuming Ci is
unsatisfied by the induced truth assignment, then by construction Bob’s response
also costs li1+ li2+ li3+ ci, which exceeds Bob’s remaining capital by exactly 1.

The above strategy fails if clause Ci is satisfied by the induced truth assign-
ment, as by construction Bob gets a discount on at least one of his variable game
responses. To establish the ”only if” direction of the above claim, it suffices to
establish that Alice’s clause Ci strategy, for some clause Ci, is the only possi-
ble winning strategy for Alice. We establish this via the following succession of
claims.

Alice must select a move from the clause selection game. If she doesn’t,
then she selects 4 moves from variable games, with total cost ≤ 4b12+8b10+4b7,
against which Bob can easily afford the counterplay.

From this stage onward, we disregard the b12, b10, and b8 terms in the remain-
ing capitals and move costs chosen, as they will always sum to 4b12 + 9b10 + b8.

Since Alice must choose exactly one move in the clause selection game, as-
sume that move is to CiA. Then Alice has

∑3
k=1 ib

2k capital remaining, Bob
has 1 less than this amount remaining, and Alice has (assuming w.l.o.g. that she
makes the move in the clause selection game first) 3 moves remaining.

Alice must select at least one move costing lj3 for some clause Cj. If
she doesn’t, then her moves cost ≤ 3b5, and Bob has more than enough capital
for counterplay.

Said move costing lj3 must be the move costing li3. It can’t be a move
costing lj3 for j > i, otherwise this move alone costs ≥ (i+1)b6 which is greater
than Alice’s remaining budget. If it’s lj3 for j < i, then the l(i−j)3 cost move
must also be chosen by Alice to exhaust the b6-order term in Bob’s remaining
budget. But that leaves Alice with one remaining move in which to exhaust
both the b4-order term and the b2-order term in Bob’s remaining budget, which
is impossible by construction, so Bob wins handily.
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At this point, analogous arguments establish that Alice must select the moves
costing li2 and li1, i.e. she must implement exactly her clause Ci strategy, as
required.

Proof of Theorem 12

First note that this language belongs to PSPACE because the number of moves
in the game is bounded by poly(n).

For proving PSPACE-hardness we first note the following. As in games before
we can assume that a player miss his or her move if the current value of MO(x)
suits for him or for her. Therefore we can assume the following. A losing player
adds strings a1, a2, . . . , ak until MO(x) does not change. Then the second player
adds b1, b2, . . . , bk until the value MO(x) does not change and so on. The set
of strings whose addition change the value of MO(x) is called a big move. Let
A,B be big moves and A ⊆ B. Then big move A is not worse than big move B
(if a player has a winning strategy with move B then he or she has a winning
strategy with move A).

We claim that language TQBF reduces to tt-GAME. The language TQBF
contains the following formulas:

∃x1∀y1 . . . ∃xn∀yn∃xn+1f(x1, y1, . . . , xn, yn, xn+1). (2)

(By technical reasons we consider formulas where ∃ one more than ∀. It is clear
that this language is still PSPACE-complete. )

Construct a function v and a machine with access to oracle O that inputs
x—formulas of kind (2). This formula is true iff (x, n + 1, (n + 1)2n+1) ∈ tt-
GAME.

This machine on input (2) makes requests to strings x1, ¬x1, y1, ¬y1 . . . , yn,
¬yn, xn+1, ¬xn+1, and also to additional strings r and a.

The function v defines by the following way: v(xi) = v(¬xi) = 1,v(yi) =
v(¬yi) = 2n+1 for every i, v(r) = 2n+1, v(a) = 1.

After these requests the machine works by the following way:

– if r /∈ O then the machine outputs
g(x1,¬x1, y1,¬y1 . . . , xn,¬xn, yn,¬yn, xn+1,¬xn+1), we describe function g
later.

– if r ∈ O and a ∈ O then the machine outputs 1.
– if r ∈ O and a /∈ O then machine outputs the following. If oracle O output

correct answers for every pair xi and ¬xi (this is mean that answers are
opposite) and for every pair yi and ¬yi then the machine outputs f at the
corresponding valuation of xi and yi.
If the oracle output non-correct answers then the machine outputs 1.

Now we describe function g: g := h(x′
1, . . . x

′
n+1, y

′
1, . . . y

′
n), where x′

i = xi ∨
¬xi and y′i = yi ∨ ¬yi. Finally, describe function h:

– if y′i = 0 for every i, then h equals x′
1.
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– else h is equal x′
i+1, where i is maximal number such that y′i = 1.

Now we show that this reduction is correct. For this we describe class ade-
quate strategies for Alice and Bob. An adequate strategy is the following: Alice
takes x1 or ¬x1, Bob takes y1 or ¬y1 and so on. Alice takes xn+1 or ¬xn+1,
Bob takes r and game over (the players ran out of money). A win defines by
f(x1, y1, . . . , xn, yn, xn+1).

To finish the proof it is enough to show that if a player has a winning strategy
then he or she has an adequate winning strategy.

First prove it for Alice. Indeed, if players made i adequate pair of moves
then the current value of MO(x) is equal to 0. So, to change the current value
of MO(x) Alice can only take xi+1 or ¬xi+1 (therefore, Alice will act according
an adequate strategy).

Now we prove that Bob also should not deviate from an adequate strategy.
Let players made adequate moves and Alice took xi or ¬xi by her last move.
According to an adequate strategy Bob must take yi or ¬yi, or r if i = n+ 1.

If i = n+1 then g is equal to 1 then the last chance of Bob is to take r (after
this game over because players ran out of money).

If i ≤ n then change the current value of MO(x) has to take yj or ¬yj , where
j ≥ i. We need to show that if Bob take j > i (and does not take yj or ¬yj)
then Bob definitely looses. Indeed, Alice can take xj+1, xj+2, . . .xn+1. After this
function g is equal to 1 and Alice has at least one dollar. Since g is equal to 1
Bob has to take r but then Alice can take a and win.

Proof of Theorem 12

6 First show that language T-GAME belongs to EXPSPACE. Indeed, a machine
can require strings of polynomial length. So, there is no sense to add strings with
higher length to an oracle. The number of such strings is exponent hence the
number of moves is bounded by exponent, So the game belongs to EXPSPACE.

To prove EXPSPACE-hardness consider language SUCCINCT-3-SAT-TQBF.
This language contains some circuits that code exponential size 3-CNF by the
following way: an input for a circuit are three literals, a circuit outputs 1 if the 3-
CNF has a disjunct consisting from these three literals and outputs 0 otherwise.
Let some circuit codes 3-CNF f(x1, . . . , xn). This circuit belongs to language
SUCCINCT-3-SAT-TQBF if the formula ∃x1∀x2 . . . f(x1, . . . , xn) is true.

We affirm that language SUCCINCT-3-SAT-TQBF is EXPSPACE-hard by
a standard argument.

Before constructing a reducibility we make some notes about T-GAME.
This is game on a marked tree—see Figute 4 Every path at this tree corre-

sponds to a calculation by a machine with some oracle O. Initially (when O is
empty) the path is the most left. During the game the path shifts to the right.

The notion about big moves for tt-GAME in proof of Theorem 11 holds also
for T-GAME. Here it means the following. We can assume that a player making a

6 In the proof we use ideas from [9]
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Fig. 4. The values of function v are at the right parts of vertices. The current path is
imaged by the red line

move had a losing position before this move. This move must change the current
path (In Figure 4 Bob must make a move because the current value is 1. He can
take a1 or a4.)

Now we describe reducibility.

Consider TQBF with variables x1, y1, . . . x2n , y2n , x2n+1 (we can assume that
TQBF has such number of variables this is not important for EXPSPACE-
hardness).

We construct a marked tree T ; at the game at T Alice wins if the TQBF is
true and Bob wins if the TQBF is false.

The players’ capitals: Alice has 2n +1 (by default she spends it on 2n +1
vertices xi or ¬xi that cost 1. Bob has 2n+1(2n + 1) + 2n (by default he spends
them on 2n vertices yi or ¬yi that cost 2n+1 + on vertex r that costs 2n+1 +
some poly(n) as “pocket money”).

First we describe a general plan of tree T . Instead of x ∈ O? we just write
x. The general plan is shown in the Figure 5. The idea is similar to the proof of
Theorem 11. In particular, the sense of vertices r and a the same is in that proof.
The sense of G is the same as the sense of function g. In the proof of Theorem 11
function g is expressed by function h; here tree G is some superstructute on tree
H—see Figure 6. The sense of this construction is the following. Players by
default make moves x′

1, y
′
1, . . . Alice can not make other moves to change the

current move. If Bob takes something wrong then Alice can win in this sub-tree
and does not spend all her money. Then she can take a and win in the game.
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r|2n+1

Tree G a|1

b|1

1 Tree F

1

Fig. 5. General plan

The tree G is similar to the tree H, however instead of asks about x′
i (or y

′
i)

it asks about xi and ¬xi and then take OR from the answers (see Figure 7) It
remains to describe tree F . It is a tree whose vertices at upper levels are some
fresh strings with cost 1. The paths of this tree codes all kinds of disjuncts with
tree literals. After this machine’s action depends on the input (recall that the
input is a succinct 3-CNF). The machine verifies existence of the corresponding
disjunct in the 3-CNF. If 3-CNF does not contain the disjunct then the machine
outputs 1. If 3-CNF contains the disjunct then machine asks oracle: does it has
at least one of corresponding literals. If the answer is “yes” then the machine
outputs 1; otherwise it outputs 0.

The description of the tree is complete. It is clear that this tree can be
modeled as a calculation of some polynomial-time Turing machine with oracle.
So, we construct a reducibility. Show that this reducibility is correct.

Describe the class of adequate strategies for the players. At first they are
similar to adequate strategies from the proof of Theorem 11: Alice takes xi or
¬xi, Bob takes yi or ¬yi. Then Bob takes r. If the current formula is false (i.e.
it contains false disjunct) then Bob takes b and then in tree F he chooses a path
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Fig. 6. Tree H.

corresponding to the false disjunct in the formula. Here Bob spend his “pocket
money”—since the depth of the tree is some polynomial he has enough money
for it.

It remains to show that players should use adequate strategies. For Alice it
is clear—she has not another choice (if Bob also use an adequate strategy). For
Bob we have a similar reasoning as in the proof of Theorem 11. If in tree G Bob
takes wrong vertex then Alice can win in G and then take a. Bob has not sense
to take Alice’s vertices in G because it can only mess up his situation.
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y1|2n+1
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Fig. 7. Tree G: the transformation of the left quarter of tree H.
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