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Abstract

Relations between the decision tree complexity and various other complexity measures of Boolean
functions is a thriving topic of research in computational complexity. While decision tree complexity is
long known to be polynomially related with many other measures, the optimal exponents of many of
these relations are not known. It is known that decision tree complexity is bounded above by the
cube of block sensitivity, and the cube of polynomial degree. However, the widest separation between
decision tree complexity and each of block sensitivity and degree that is witnessed by known Boolean
functions is quadratic.

Proving quadratic relations between these measures would resolve several open questions in decision
tree complexity. For example, we get a tight relation between decision tree complexity and square of
randomized decision tree complexity and a tight relation between zero-error randomized decision tree
complexity and square of fractional block sensitivity, resolving an open question raised by Aaronson
[Aar08]. In this work, we investigate the tightness of the existing cubic upper bounds.

We improve the cubic upper bounds for many interesting classes of Boolean functions. We show
that for graph properties and for functions with a constant number of alternations, both of the cubic
upper bounds can be improved to quadratic. We define a class of Boolean functions, which we call
the zebra functions, that comprises Boolean functions where each monotone path from 0n to 1n has
an equal number of alternations. This class contains the symmetric and monotone functions as its
subclasses. We show that for any zebra function, decision tree complexity is at most the square of
block sensitivity, and certificate complexity is at most the square of degree.

Finally, we show using a lifting theorem of communication complexity by Göös, Pitassi and Watson
that the task of proving an improved upper bound on the decision tree complexity for all functions is
in a sense equivalent to the potentially easier task of proving a similar upper bound on communication
complexity for each bi-partition of the input variables, for all functions. In particular, this implies
that to bound the decision tree complexity it suffices to bound smaller measures like parity decision
tree complexity, subcube decision tree complexity and decision tree rank, that are defined in terms of
models that can be efficiently simulated by communication protocols.

1 Introduction

The objective of computational complexity theory is to determine the amount of resources needed to solve
various computational problems. A central goal of computational complexity theory is to prove limitations
of general computational models meant to capture arbitrary computations that can be realized physically.
Examples of such models are Turing machines and Boolean circuits. However, proving unconditional
negative results for such general models seems far beyond the current reach of researchers. Hence, a
popular theme of research has been to analyze more restricted models of computation, whose examples
include Boolean circuits of bounded depth, communication complexity and decision trees. Such pursuits
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have borne fruits, and may serve as a stepping stone to build up towards a more complete understanding
of general models.

This paper deals with decision tree. Decision tree is amongst the simplest models of computation.
Unlike the more general models, it is often within the reach of researchers to determine the complexity
of various interesting tasks in this model. A rich body of work has emerged centering the study of
decision tree complexity, its variants and their connections with many other measures of complexity.
This pursuit has resulted in a large number of measures having been defined and related to decision
tree complexity. Interestingly, decision tree complexity and all of these measures have been shown to be
polynomially related to one another. We refer the readers to the survey of Buhrman and de Wolf [BDW02]
in this regard. Attention has focussed on determining the exact polynomial dependence between various
measures. Table 1 in [ABDK+21] records the current status of our knowledge of these relations.

We now informally define the measures relevant to this work. The formal definitions may be found in
Appendix A. Let f be a Boolean function and x be a generic input string. A decision tree that computes
f is an algorithm that queries various input bits of an input string x, possibly adaptively, to compute
f(x). The complexity of a decision tree A that computes f , is the maximum number of input bits that A
queries on any x (possibly adaptively) to compute f(x). The deterministic decision tree complexity of f ,
denoted by D(f), is the minimum complexity of any decision tree that computes f . A subset S ⊆ [n] of
indices is called a sensitive block for x if flipping all bits in x with indices in S flips the value of f . The
block sensitivity of f on x, denoted by bs(f, x), is the maximum number of disjoint sensitive blocks in x.
The block sensitivity bs(f) of f is maxx bs(f, x). bs(f, x) can be formulated as the value of an integer
linear program. The value of its fractional relaxation is the fractional block sensitivity fbs(f, x) on x.
The fractional block sensitivity fbs(x) is defined to be maxx fbs(f, x). The exact degree deg(f) of f is the
degree of the unique multi-linear polynomial Pf that computes f . Let f(x) = b. Then the b-certificate
complexity of f on x, denoted by Cb(f, x), is the minimum co-dimension of a subcube C that contains x,
such that f(y) = b for every y ∈ C. The certificate complexity (resp. minimum certificate complexity) of
f , denoted by C(f) (resp. Cmin(f)), is maxx{Cf(x)(f, x)} (resp. minx{Cf(x)(f, x)}). We define C∗

min(f)
to be maxC Cmin(f |C), where f |C denotes the restriction of f to C, and the maximum is over all subcubes
of the domain {0, 1}n.

It is known (see Table 1 in [ABDK+21]; also follows from Proposition A.16 parts (2), (3), (4) and (5))
that for all Boolean functions f , D(f) = O(bs(f)3) and D(f) = O(deg(f)3). It is also known that there
exist Boolean functions g, h such that D(g) = Ω(bs(g)2) and D(h) = Ω(deg(h)2). In light of the above,
the following is a natural question.

Question 1. Are the upper bounds (1) D(f) = O(bs(f)3) and (2) D(f) = O(deg(f)3) asymptotically
tight?

Question 1 forms the center of our study, with a special focus on the possibility of a negative answer.
If the first bound can be improved to D(f) = O(bs(f)2) to match the widest separation known, then
it would resolve several open questions in decision tree complexity. Most notably, it would imply the
following tight1 relations: D(f) = O(R(f)2) and quantum decision tree complexity is upper bounded by
the square of fractional block sensitivity i.e., Q(f) = Õ(fbs(f)2). It will also imply the tight relation:
R0(f) = O(fbs(f)2), resolving an open question by Aaronson [Aar08]. Similarly, if D(f) = O(deg(f)2) is
true, it will also improve several relations among measures in decision tree complexity e.g., the current
best upper bound of D(f) = O(s(f)6) would improve to D(f) = O(s(f)4), and we will achieve the tight
relation D(f) = O(QE(f)

2), where QE is the exact quantum decision tree complexity.

1.1 Our results

We now give an overview of our results. We divide our results into two parts.

1Some of the results will be tight up to poly-logarithmic factors
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1.1.1 Improved upper bounds for classes of functions

Our first category of results studies Question 1 for various classes of Boolean functions.

Graph properties A graph property is a Boolean function where the input bit string is the adjacency
matrix of an undirected graph, which is invariant under permutations of the vertices. The input to

a graph property of graphs with n vertices is a string in {0, 1}(
n
2). Each input bit is indexed by a

(unordered) pair of vertices. The value of the bit indicates whether or not there is an edge between
those vertices. Decision tree complexity of graph properties has seen a long and rich line of research
[Ros73, Kir74, RV76, BvEBL74, SW86, Yao87, Kin88, Haj91, CK07].

We provide strong negative answers to Questions 1 (1) and 1 (2) for graph properties.

Theorem 1.1. For any graph property P of graphs with n vertices, (1) D(P) = O(bs(P))2 and (2)
D(P) = O(deg(P))2.

Theorem 1.1 follows immediately from the following lemma and the observation that D(P) ≤
(
n
2

)
.

Lemma 1.2. For any non-trivial graph property P on any graph G = (V,E) with |V | = n, (1) bs(P) =
Ω(n) and (2) deg(P) = Ω(n).

Lemma 1.2 (1) and (2) are both asymptotically tight. Their tightness is witnessed by graph properties
SINK [Ros73] and SCORPION GRAPH [BvEBL74]. For both of these graph properties, bs(·),deg(·) ≤
D(·) = O(n).

Graph property is a subclass of the rich and important class of transitive Boolean functions, which is
the class of functions that are invariant under the action of some transitive group acting on the variables.
Various complexity measures of transitive functions have been analyzed in the literature. Sun [Sun07]
showed that for any non-trivial transitive Boolean function f on N variables, bs(f) = Ω(N1/3). Amano
[Ama11] constructed a transitive Boolean function f on N bits for which bs(f) = O(N3/7) holds. Thus,
the statement of Lemma 1.2 (1) does not hold for arbitrary transitive functions, and the underlying
graph structure and the invariance under permutations of vertices are crucial for the lemma to hold.
Kulkarni and Tal [KT16] showed that fractional block sensitivity of any non-trivial transitive function
on N variables is Ω(

√
N). Lemma 1.2 (1) proves the same lower bound on the smaller measure of block

sensitivity (Proposition A.16 (1)) for the special case of graph properties. We remark that for the special
case of non-trivial monotone graph properties, the bound in Lemma 1.2 (2) can be improved to Ω(n2)
[RV76, DK99].

Zebra functions We say that a function is a zebra function if in each monotone path in the Boolean
hypercube from 0n to 1n, the function value changes equal number of times. The class of zebra functions
contains symmetric and monotone Boolean functions as two important sub-classes. However, there are
interesting zebra functions that are neither monotone nor symmetric. One example is the Kushilevitz’s
function (Footnote 1 on page 560 of [NW95]), for which the value of the function is determined by
the Hamming weight of the input, unless the Hamming weight is 3 [Wat22]. Another set of examples
is functions expressible as g(⌈ℓ(x1, . . . , xn)⌉), where g : Z → {0, 1} is arbitrary, and ℓ(x1, . . . , xn) :=
ℓ0 +

∑n
i=1 ℓixi is an affine function where each coefficient ℓi lies in the interval (0, 1). Visually, a zebra

function induces a partition of the Boolean hypercube into monochromatic“stripes” (see Figure 1). The
value of the function is constant in each stripe, and different in adjacent stripes. We are optimistic that
zebra functions will turn out to be useful in future research in Boolean function complexity.

We prove the following theorem.

Theorem 1.3. For every zebra function f ,

1. D(f) = O(bs(f)2) and
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Figure 1: A zebra function with 5 stripes

2. C(f) = O(deg(f)2).

Theorem 1.3 (1) gives a negative answer to Question 1 (1) for zebra functions. Theorem 1.3 (1) is
tight, as witnessed by the monotone function TRIBES√n×

√
n (see Definition A.2). As for Theorem 1.3

(2), we do not know if there exists a zebra function f for which C(f) is polynomially larger than deg(f).
If C(·) = O(deg(·)) holds for all zebra functions, then it follows from Proposition A.16 (5) that D(·) =
O(deg(·)2) holds for all zebra functions. We leave the question of whether D(f) = O(deg(f))2 is true for
zebra functions f as an open question.

Functions with bounded alternation number The alternation number alt(f) of a Boolean function
f is the maximum number of times the function value changes in any monotone path of the Boolean
hypercube from 0n to 1n. Monotone functions are exactly those functions that are 0 on 0n and have
alternation number 1. Alternation number has received attention in the past as a measure of the extent
of non-monotonicity of a Boolean function. Markov [Mar58] related it to the number of not-gates that any
Boolean circuit realizing a Boolean function must use, which is yet another measure of non-monotonicity.
Alternation number has also been studied in the context of various restricted circuit models [SW93, ST04,
Mor09a, Mor09b], learning classes of circuits with bounded non-monotonicity [BCO+15] and cryptography
[GMOR15]. Lin and Zhang [LZ17] proved the Sensitivity Conjecture2 and the Log-Rank Conjecture, two
important conjectures in complexity theory, for the special case of functions with constant alternation
number. Krishnamoorthy and Sarma [DS19] has studied relations of alternation number with various
combinatorial, algebraic and analytic complexity measures of Boolean functions.

It follows from Proposition A.16 (4) and the fact that for monotone functions the measures certificate
complexity and block sensitivity are equal [BDW02] that for any monotone function f , D(f) = O(bs(f)2).
The following theorem generalizes the above result for the class of functions with bounded alternation. In
addition, it also proves a quadratic upper bound on D(f) in terms of deg(f) for functions with constant
alternation number. In particular, it gives a negative answer to Question 1 (1) and Question 1 (2) for
functions with constant alternation number.

Theorem 1.4. For every Boolean function f : {0, 1}n → {0, 1},

1. D(f) = O(alt(f) · bs(f)2) and

2. D(f) = O(alt(f) · deg(f)2).
2The Sensitivity Conjecture was later unconditionally proved by the seminal work of Huang; so it is not a conjecture any

more.
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In particular, if alt(f) = O(1), then D(f) = O(bs(f)2) and D(f) = O(deg(f)2).

As stated in the preceding section, TRIBES√n×
√
n witnesses the tightness of Theorem 1.4 (1).

1.1.2 Decision trees and communication protocols

In our second category of results, we reduce the task of proving improved upper bounds on D(·) for the
class of all functions to potentially easier tasks of bounding smaller measures.

Consider a bi-partition (x(1), x(2)) of the bits of x into two parts consisting of n1 and n2 bits respec-
tively. In the two-party communication model introduced by Yao [And79] there are two communicating
parties Alice and Bob, holding x(1) and x(2) respectively. The parties wish to compute f(x) by com-
municating bits. The objective is to accomplish this by communicating as few bits as possible. The
communication complexity of f , denoted by CC(f), is the number of bits that need to be exchanged in
the worst case by any protocol that computes f . See Section 2 for more details.

Suppose f has a shallow decision tree T of depth d. Then there also exists an efficient communication
protocol that computes f , in which the parties simulate T . Each query that T makes can be answered
by 1 bit of communication. Thus, the protocol exchanges d bits in the worst case. This gives us that
CC(f) ≤ D(f).

We make the following observation.

Observation 1.5.

1. If D(f) = O(bs(f)2), then CC(f) = O(bs(f)2), and

2. if D(f) = O(deg(f)2), then CC(f) = O(deg(f)2).

The question we ask is whether a converse of Observation 1.5 holds. We show that a “approximate
converse” of Observation 1.5 holds, up to a factor of polylog(n), when the antecedents and consequents
are universally quantified.

Theorem 1.6.

1. If for all Boolean functions f and all bi-partitions of the input bits CC(f) = O(deg(f)2 · polylog(n))
then for all f , D(f) = O(deg(f)2 · polylog(n)).

2. If for all Boolean functions f and all bi-partitions of the input bits CC(f) = O(bs(f)2 · polylog(n))
then for all f D(f) = O(fbs(f)2 · polylog(n)).

Theorem 1.6 opens up the possibility of deriving improved upper bounds on D(·) by designing cheap
communication protocols.3 For instance, to prove Aaronson’s conjecture (up to polylog(n)) that the
randomized query complexity is at most the fractional block sensitivity [Aar08] it is sufficient to show
that the communication complexity is at most square of the block sensitivity times polylog(n). Thus, our
task is reduced that of bounding CC(·). The latter is a potentially easier task; there are Boolean functions
f for which CC(f) << D(f). For example, for the majority function MAJn on n bits (see Definition A.4),
CC(MAJn) ≤ ⌈log n⌉ for any bi-partition of its input bits, but D(MAJn) = n. Furthermore, there are
upper bounds on CC(f) by measures that are bounded above by D(f), and are far lower than D(f) for
many f . One such measure is the decision tree rank of f , denoted by rank(f) (See Definition A.7).

Decision tree rank was introduced by Ehrenfeucht and Haussler [EH89] in the context of learning
(also see [ABD+10]). More recently, Dahiya and Mahajan studied decision tree rank in the context of
complexity measures of Boolean functions [DM21].

3In fact, it follows from our proof that it is sufficient to design cheap protocols only for functions of the form f◦INDc logn+nc

for some constant c > 0, where INDm+2m is the indexing function on m+ 2m bits (see Definition A.3).
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Decision tree rank is defined in terms of decision trees and is bounded above by D(·). Furthermore,
it can be arbitrarily smaller than D(·). For example, for the AND function on n bits, D(·) = n and
rank(·) = 1.

We show (see Proposition 6.1) that rank(·) is an upper bound on CC(·) up to a factor of log n. We
prove the proposition by relating rank to the subcube decision tree complexity, (see Definition A.9), which
is the least depth of a decision tree that computes f by querying indicator functions of subcubes at its
internal nodes. Such a tree is efficiently simulable by a communication protocol.

There are powerful decision tree models that can be efficiently simulated by communication protocols;
one such model is the subcube decision tree mentioned before. Another well-known model is the parity
decision tree (see Definition A.8), which is a decision tree that computes f by querying the parity of various
subsets of bits of the input string at its internal nodes [MO09, TWXZ13, STV14]. A parity decision tree
can be efficiently simulated by a communication protocol. Each parity query can be answered by an
exchange of two bits. Thus CC(·) = O(PDT(·)). Theorem 1.6 implies that bounds on the parity decision
tree complexity (denoted by PDT(·)) of the class of all Boolean functions translate to comparable bounds
on the decision tree complexity of all Boolean functions.

The following theorem is a direct consequence of Theorem 1.6, Proposition 6.1, and the preceding
discussion.

Theorem 1.7. LetM∈ {rank,PDT}. Then

1. If for all Boolean functions f , M(f) = O(deg(f)2 · polylog(n)) then for all f , D(f) = O(deg(f)2 ·
polylog(n)).

2. If for all Boolean functions f , M(f) = O(bs(f)2 · polylog(n)) then for all f , D(f) = O(fbs(f)2 ·
polylog(n)).

Theorem 1.6 is proved by a lifting theorem for communication complexity of composed functions where
the inner function is the indexing function on Θ(log n) bits (see Section 1.2 and Section 6). The arity
of the indexing gadget is the source of the polylog(n) factors in Theorem 1.6. A lifting theorem with
a gadget of constant size is a major open problem in communication complexity, with many interesting
consequences. It is apparent from our proof of Theorem 1.6 that such a lifting theorem will remove the
polylogarithmic factors. Our study thus strengthens the case for a lifting theorem with constant sized
inner function.

1.2 Proof Techniques

In this section we discuss at a high level the key ideas of our proofs.

Graph properties: To prove Lemma 1.2, we assume, by complementing the property P if necessary,
that the empty graph is not in the property. Then we split the proof into two parts based on the smallest
number of edges m of any graph G = (V,E) in the property.

If m > n/4, then we consider the restriction of P where each x{u,v} such that {u, v} /∈ P is set to 0.
We observe that the restricted function is the logical AND of the unset variables, and hence has block
sensitivity and degree both equal to m = Ω(n).

On the other hand, if m ≤ n/4, then we show that by carefully restricting and identifying variables, it
is possible to turn P into a non-trivial symmetric function on Ω(n) variables which, by known results, has
both degree and block sensitivity Ω(n) (see Proposition A.16 (9)). In this part of the proof, we crucially
use the invariance of P under permutation of vertices.

Zebra functions and functions with bounded alternation: In the proofs of Theorem 1.3 (1) as
well as Theorem 1.4 (1) and (2), the following lemma plays a central role.
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Lemma 1.8. For any Boolean function f : {0, 1}n → {0, 1},

1. D(f) = O(C∗
min(f) · bs(f)),

2. D(f) = O(C∗
min(f) · deg(f)).

Lemma 1.8 is proved by a natural adaptation of the proofs Proposition A.16 (3) and (4) [BDW02,
Mid04]. We provide a proof of Lemma 1.8 in Appendix C. In light of Lemma 1.8, the proofs of the
aforementioned results boil down to bounding the maximin certificate complexity of the functions in the
respective classes. To prove Theorem 1.3 (2), we bound the number of bits that need to be revealed to
certify the stripe a specific input belongs to. To do that, we consider the monotone and anti-monotone
functions obtained by treating the boundary of a specific stripe as a threshold, bound the certificate
complexities of these functions, and show how those certificates can be put together to certify membership
of a certain input in a specific stripe.

Communication complexity: The proof of Theorem 1.6 is based on a lifting theorem for deterministic
communication complexity (see Theorem 6.2), which essentially asserts that there for every function g,
the deterministic communication complexity of g ◦ INDc logn+nc is asymptotically the same as log n ·D(g),
where INDm+2m is the indexing function on m + 2m bits (see Definition A.3). The hypotheses of the
two parts of Theorem 1.6, coupled with the lifting theorem, immediately implies upper bounds on D(g)
in terms of the block sensitivity and degree of g ◦ INDc logn+nc . We finish the proof by bounding the
block sensitivity and degree of g ◦ INDc logn+nc in terms of the fractional block sensitivity and degree of g
respectively.

1.3 Organization of the paper

In Section 2 we lay down some notations that are used in this paper, and give some definitions. In Sec-
tion 3 we define graph properties, set some notations and prove Theorem 1.1. In Section 4 we formally
define zebra functions and related concepts, state some basic properties of zebra functions, and prove
Theorem 1.3. In Section 5 we prove the result about functions with bounded alternation number (Theo-
rem 1.4). In Section 6 we prove our main result (Theorem 1.6) pertaining to connections of Question 1 to
communication complexity and other decision tree models. The appendices contain missing proofs and a
section on preliminaries.

2 Definitions and Preliminaries

For any real number t > 0, log t stands for the logarithm of t to the base 2. We denote the set of
all integers by Z. For a natural number N , [N ] denotes the set {1, . . . , N}. Let x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ {0, 1}n. We say that x ≤ y (resp. x ≥ y) if for each i ∈ [n], xi ≤ yi (resp. xi ≥ yi). We
say that x < y (resp. x > y) if x ≤ y (resp. x ≥ y) and x ̸= y. |x| denotes the Hamming weight of x
defined as

∑n
i=1 xi. A 1-bit (resp. 0-bit) of x is an index i ∈ [n] such that xi = 1 (resp. xi = 0). For

S ⊆ [n], {0, 1}S denotes the set of all binary strings whose indices correspond to elements of S. For a set
of indices B ∈ [n], we denote the string obtained from x by negating the bits in the locations with indices
in B by x⊕B. If B = {i} is singleton, we abuse notation and write x⊕B as x⊕i.

Definition 2.1 (Monotone increasing path or monotone path, alternation number of monotone paths
and functions). Let p, q ∈ {0, 1}n such that p ≤ q. A monotone increasing path from p to q in the Boolean
hypercube {0, 1}n is a sequence (x(1), . . . , x(k)) such that

• Each element x(i) of the sequence is a bit string (x
(i)
1 , . . . , x

(i)
n ) ∈ {0, 1}n, for i = 1, . . . , k,

• p = x(1) and q = x(k),
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• for each i = 1, . . . , k − 1, there exists a j ∈ [n] such that

– x
(i)
j = 0 and x

(i+1)
j = 1,

– x
(i)
ℓ = x

(i+1)
ℓ for each ℓ ∈ [n] \ {j}.

We refer to such a path simply as a monotone path for convenience.
Let f : {0, 1}n → {0, 1} be a Boolean function. The alternation number of a monotone path P =

(x(1), . . . , x(k)) with respect to f , denoted by altf (P ), is the number of times f changes value on the path.
Formally,

altf (P ) = |{i ∈ [k − 1] | f(x(i)) ̸= f(x(i+1))}|.

We often drop the subscript f from the notation and denote alternation number of P simply by alt(P )
when the function is clear from the context.

The alternation number of f , denoted by alt(f), is defined to be the maximum alternation number of
any monotone path from 0n to 1n with respect to f .

Observation 2.2. Let x, y ∈ {0, 1}n and x ≤ y. Then there exists a monotone path from x to y.

Observation 2.3. The alternation number of a function f is at least the alternation number of any
restriction of f . That is, for every integer k ≥ 0 and every subcube C, if alt(f) ≤ k then alt(f |C) ≤ k.

3 Graph Properties

In this section, we first define graph properties and lay down few notations. We then proceed to prove
Lemma 1.2, which immediately implies Theorem 1.1.

Let Gn be the set of all simple undirected graphs on n-vertices. A graph property is a function
P : Gn → {0, 1} which is invariant under permutation of vertices. In other words, if two graphs are
isomorphic, then either both belong to the property, or both do not.

Example of a graph property is one that maps connected graphs to 1 and disconnected graphs to 0.
But, the Boolean function that maps exactly those graphs that have an edge between vertices 1 and 2 to
1, is not a graph property, as it is not invariant under relabling of vertices.

A non-constant graph property is also called non-trivial. A graph G ∈ Gn is often identified with a

string xG ∈ {0, 1}(
n
2). Each location of xG corresponds to a distinct unordered pair of distinct vertices of

G. (xG){u,v} := 1 if there is an edge in G between vertices u and v, and (xG){u,v} := 0 otherwise. We use
P(G) and P(xG) interchangeably.

Proof of Lemma 1.2. Wlog. we assume that the empty graph is not in P. Let m > 0 be the least number
of edges in any graph in P. Let G = (V,E) ∈ P have m edges. We consider the following cases.

Case 1 m > n
4 : Restrict P by setting (xG){u,v} to 0 for each {u, v} /∈ E. By the minimality of G, the

restriction is the AND function on the m variables corresponding to the edges in G. Thus the block
sensitivity and degree of the restriction are both at least n/4. Since degree and block sensitivity do not
increase under restriction (Proposition A.16 (7)), therefore bs(P) > n/4 and deg(P) > n/4.

Case 2 m ≤ n
4 : In the graph G, there are at least n

2 vertices that have degree zero. Let the vertices with
non-zero degrees be v1, v2, · · · vk, where k ≤ n

2 . Let the remaining vertices be vk+1, · · · vn. Without loss of
generality let vk be connected to v1, · · · , vd. Let G′ be the graph obtained from G by removing all edges
incident on vk. Since G′ has less than m edges, G′ /∈ P. Now for each j ∈ {k, k + 1, · · · , n}, consider the
graph Gj obtained by adding the edges {j, v1}, {j, v2), · · · {j, vd} to G′. All the Gjs formed this way are
isomorphic to G, and are thus all in P. Also note that Gk is the same as G.
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Now consider a function f : {0, 1}n−k+1 → {0, 1} defined as follows. Let x = (xk, xk+1, . . . , xn) ∈
{0, 1}n−k+1. We will now define a graph Gx on n vertices, and then define f(x) := P(Gx). Gx contains
exactly the following edges.

• All edges of G′.

• Edges {vi, v1}, . . . , {vi, vd} for each i ∈ {k, k + 1, . . . , n} such that xi = 1.

First, note that f(0n−k+1) = 0 (since G0n−k+1 = G′ /∈ P) and for any string x with |x| = 1, f(x) = 1 (since
in this case Gx is the same as Gj for some j ∈ {k, . . . , n}, and is hence in P). Thus, f is a non-constant
function.

Next, note that for any x, x′ ∈ {0, 1}n−k+1 such that |x| = |x′|, Gx and Gx′ are isomorphic, and hence
f(x) = P(Gx) = P(Gx′) = f(x′). Thus, f is a symmetric function.

Since any non-constant symmetric function has linear degree and block sensitivity (Proposition A.16
(8)), therefore deg(f) and bs(f) are both Ω(n− k + 1) = Ω(n) (since k ≤ n/2).

Finally, f is obtained from P by restriction and identification of variables, as follows. First, every
variable corresponding to a pair {vi, vj} such that 1 ≤ i < j ≤ k − 1 and {i, j} is not an edge of G′, is
set to 0. Next, for each i ∈ {k, k+1, . . . , n}, the variables corresponding to pairs {vi, v1}, . . . , {vi, vd} are
identified.

Since degree and block sensitivity do not increase under restriction and identification of variables
(Proposition A.16 parts (7) and (8)), therefore, deg(P) and bs(P) are both Ω(n).

4 Zebra functions

In this section, we first formally define zebra functions and some related concepts, and state some basic
facts about zebra functions. We then proceed to prove Theorem 1.3.

4.1 Definitions and basic concepts

Definition 4.1 (Zebra function). A function f : {0, 1}n → {0, 1} is called a zebra function if all monotone
paths from 0n to 1n have same alternation number.

Visually, a zebra function induces a partition of the Boolean hypercube into stripes. In each stripe,
the value of the function is constant (i.e., each stripe is monochromatic with respect to the function).
Furthermore, the value of the function is different in adjacent stripes. Each monotone path from 0n to
1n must pass through each stripe (See Figure 1). We now build up towards defining the stripes formally.

Proposition 4.2. Let f be a zebra function on n bits and x, y ∈ {0, 1}n be such that x ≤ y. Let P1 and
P2 be two monotone paths from x to y. Then, altf (P1) = altf (P2).

Proof. Towards a contradiction, assume that altf (P1) ̸= altf (P2). Consider any monotone paths Q1

and Q2 from 0n to x and from y to 1n respectively. Let R1 (resp. R2) be the the monotone path
from 0n to 1n obtained by concatenating Q1, P1 and Q2 (resp. Q1, P2 and Q2). Then, altf (R1) =
altf (Q1)+ altf (P1)+ altf (Q2) and altf (R2) = altf (Q1)+ altf (P2)+ altf (Q2). Thus, altf (R1) ̸= altf (R2),
contradicting the hypothesis that f is a zebra function.

In light of Proposition 4.2 we extend the definition of alternation number to points with respect to
zebra functions.

Definition 4.3 (Alternation number of a point with respect to a zebra function). Let f be a zebra function
on n bits and x ∈ {0, 1}n. The alternation number of x with respect to f , denoted by altf (x), is defined
as altf (P ) for any monotone path from 0n to x. Proposition 4.2 guarantees that altf (x) is well-defined.
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Now we are ready to define stripes of a zebra function. Let f be a zebra function on n bits and
alt(f) = k. For i = 0, . . . , k, the i-th stripe of f , STRIPEf (i), is defined to be the set {x ∈ {0, 1}n |
altf (x) = i}. An easy induction on i establishes that STRIPEf (i) is monochromatic with respect to f .
For i = 1, . . . , k, we denote by f(i) the value of f on any point in STRIPEf (i).

x ∈ STRIPEf (i) is called a minimal point of STRIPEf (i) if for each point y < x, y /∈ STRIPEf (i).
Similarly, x ∈ STRIPEf (i) is called a maximal point of STRIPEf (i) if for each point y > x, y /∈
STRIPEf (i).

The following proposition lists some useful facts about zebra functions; a proof may be found in
Appendix B.

Proposition 4.4. Let f be a zebra function on n bits and alt(f) = k. Then the following hold.

1. For 0 ≤ i < j ≤ k, STRIPEf (i) ∩ STRIPEf (j) = ∅. Also, ∪ki=1STRIPEf (i) = {0, 1}n. In other
words, the stripes form a partition of the Boolean hypercube.

2. For i = 0, . . . , k − 1, f(i) ̸= f(i+ 1).

3. Let i ∈ {0, . . . , k} and x ∈ STRIPEf (i). Then there exists a y ≤ x (resp. y ≥ x) such that y is a
minimal (resp. maximal) point of STRIPEf (i).

4. Let x = (x1, . . . , xn) be a minimal (resp. maximal) point of STRIPEf (i). Let xi = 1 (resp. xi = 0).
Let y be a point obtained from x by changing the value of xi and leaving other bits of x unchanged.
Then x ∈ STRIPEf (i− 1) (resp. x ∈ STRIPEf (i+ 1)). In particular, f(y) ̸= f(x).

5. For any j ∈ [n] and b ∈ {0, 1}, the function f |xj=b is a zebra function. In other words, the class of
all zebra functions is closed under restrictions of variables.

4.2 Proof of Theorem 1.3

We need the following lemma.

Lemma 4.5. Let f : {0, 1}n → {0, 1} be a zebra function and alt(f) = k. For i = 0, . . . , k, define

fi(x) =

{
1 if x ∈ ∪j≥iSTRIPEf (j),
0 otherwise.

Then, C(fi) = O(deg(f)2).

Proof. The Lemma is trivial for i = 0. So, we assume that 1 ≤ i ≤ k. We show that C1(fi) = O(deg(f)2).
The argument that C0(fi) = O(deg(f)2) is analogous. First, note that fi is a zebra (monotone) function
with stripes STRIPEfi(0) = ∪j<iSTRIPEf (j) and STRIPEfi(1) = ∪j≥iSTRIPEf (j). Next, fix an input x
such that fi(x) = 1. Thus x ∈ STRIPEf (j) for some j ≥ i. Let y ≤ x be a minimal input of STRIPEf (i)
(Proposition 4.4 (3)). y is also a minimal input of STRIPEfi(1). Thus fi(y) = 1. Since fi is monotone
the 1-bits of y form a certificate of x with respect to fi. By Proposition 4.4 (4), all the 1-bits of y are
sensitive with respect to f . This proves that C1(fi, x) ≤ s(f) ≤ deg(f)2 (Proposition A.16 (3)). Since x
is an arbitrary 1-input, the claim follows.

Proof of Theorem 1.3. Let f : {0, 1}n → {0, 1} be a non-constant zebra function.
(Part 1) By Lemma 1.8 it is sufficient to prove that C∗

min(f) ≤ bs(f). Let alt(f) = k ≥ 1, and let
x = (x1, . . . , xn) ∈ {0, 1}n be a minimal point in STRIPEf (k) (Proposition 4.4(3)). Let t be the number
of 1-bits in x. By Proposition 4.4(4), every 1-bit in x is sensitive. Thus, bs(f) ≥ s(f) ≥ t. On
the other hand, every input (y1, . . . , yn) such that yi = 1 whenever xi = 1, lies in STRIPEf (k), and
hence f(y) = f(x); thus the 1-bits of x form a certifcate of x. Hence Cmin(f) ≤ C(f, x) ≤ t ≤ bs(f).
Now since the class of zebra functions is closed under restriction of variables (Proposition 4.4(5)), and

10



block sensitivity does not grow under restriction of variables, therefore for any restriction f ′ of f to a
subcube, Cmin(f

′) ≤ bs(f ′) ≤ bs(f). Since, this holds for every restriction f ′ of f , we conclude that
C∗
min(f) ≤ bs(f), and the proof is complete.
(Part 2) Let x ∈ STRIPEf (i). Let the functions fi be as defined in Lemma 4.5. By Lemma 4.5, x has

a 1-certificate c1 of size O(deg(f))2 with respect to fi. If i = k, that also certifies that x ∈ STRIPEf (k).
Since, STRIPEf (k) is monochromatic with respect to f , we are through. If i < k, by Lemma 4.5 x has
a 0-certificate c0 of size O(deg(f))2 with respect to fi+1. The concatenation of c1 and c0 certifies that
x ∈ STRIPEf (i). Since, STRIPEf (i) is monochromatic with respect to f , the theorem follows.

5 Functions with bounded alternation number

In this Section, we prove Theorem 1.4.

Proof of Theorem 1.4. Let alt(f) ≤ k. We will show that Cmin(f) ≤ k · bs(f) and Cmin(f) ≤ k · deg(f).
Since, alternation number and block sensitivity does not increase unser restrictions (Observation 2.3 and
Proposition A.16 (7)), therefore we will have that C∗

min(f) ≤ k · bs(f) and C∗
min(f) ≤ k · deg(f). By

Lemma 1.8 the theorem will follow.
(Part (i): Cmin(f) ≤ k · bs(f)) Consider the subcube returned by Algorithm 1.

Algorithm 1:

1 Initialize S(0) ← ∅, C(0) ← {0, 1}n, t← 1, x(0) ← 0n.
2 while f |C(t−1) is not a constant function do

3 Let x(t) > x(t−1) be a point with minimum Hamming weight such that f(x(t)) ̸= f(x(t−1)).

4 S(t) ← {i ∈ [n] | x(t)i = 1}.
5 C(t) ← {z ∈ {0, 1}n | zi = 1 for all i ∈ S(t)}.
6 t← t+ 1.

7 end

8 Return C(t−1).

We first show that the step 3 of Algorithm 1 is well-defined: there exists an x(t) for the algorithm
to choose. Since f is non-constant on C(t−1) and x(t−1) ∈ C(t−1), therefore there exists another point

x(t) ∈ C(t−1) such that f(x(t)) ̸= f(x(t−1)). Next, note that x
(t−1)
i = 1 for all i ∈ S(t−1) and x

(t−1)
i = 0

otherwise. Thus, for any other point x(t) ∈ C(t−1), x(t) > x(t−1). Thus, an x(t) is guaranteed to exist for
the algorithm to pick.

Let ℓ be the number of iterations of Algorithm 1. Thus, C(ℓ) is the subcube returned by Algorithm 1.
Clearly, f |C(ℓ) is a constant function; thus Algorithm 1 indeed returns a certificate with co-dimension

codim(C(ℓ)) = |S(ℓ)|. Now by the choice of x(t), any index j such that x
(t)
j = 1 and x

(t−1)
j = 0 is sensitive for

x(t). Thus the number of such locations is at most s(f). Thus for each t = 1, . . . , ℓ, |S(t)| ≤ |S(t−1)|+s(f),
giving us codim(C(ℓ)) = |S(ℓ)| ≤ ℓ · s(f) ≤ ℓ · bs(f) (Proposition A.16 (1)).

Now, it follows from Observation 2.2 that there exists a monotone path from 0n to x(ℓ) that passes
through each x(t) for t = 1, . . . , ℓ − 1. The alternation number of the path is at least ℓ, giving us ℓ ≤ k.
Hence codim(C(ℓ)) ≤ k · bs(f).

(Part (ii): Cmin(f) ≤ k · deg(f)) Consider the subcube returned by Algorithm 2.
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Algorithm 2:

1 Initialize S(0) ← ∅, C(0) ← {0, 1}n, t← 1, x(0) ← 0n.
2 while f |C(t−1) is not a constant function do
3 Let M be a maximal monomial of Pf |

C(t−1)
.

4 Let x(t) > x(t−1) be a point such that x
(t)
i = 0 for all i /∈M ∪ S(t−1) and f(x(t)) ̸= f(x(t−1)).

5 S(t) ← {i ∈ [n] | x(t)i = 1}.
6 C(t) ← {z ∈ {0, 1}n | zi = 1 for all i ∈ S(t)}.
7 t← t+ 1.

8 end

9 Return C(t−1).

First, we show that step 4 of Algorithm 2 is well defined: there indeed exists an x(t) for the algorithm
to choose. Pf |

C(t−1)
is a polynomial on variables {xi | i /∈ S(t−1)} obtained by substituting 1 for the

variables xi for all i ∈ S(t−1). Now, substitute 0 for all variables outside of M in Pf |
C(t−1)

. Since M

is a maximal monomial of Pf |
C(t−1)

, we are left with a non-zero polynomial P ′, say, on the remaining

set of variables {xi | i ∈ M \ S(t−1)}. Since P ′ is non-constant, therefore there exists a non-zero input
z = (zi)i∈M\S(t−1) such that

P ′(z) ̸= P ′(0M\S(t−1)
) = Pf |

C(t−1)
(0[n]\S

(t−1)
) = Pf (x

(t−1)) = f(x(t−1)). (1)

Now, define x(t) as follows:

x
(t)
i =


zi if i ∈M \ S(t−1),

1 if i ∈ S(t−1),
0 otherwise.

Thus P ′(z) = Pf (x
(t)) = f(x(t)). Furthermore, since x

(t−1)
i = 1 if i ∈ S(t−1) and x

(t−1)
i = 0 otherwise, we

have that x(t) > x(t−1). Equation (1) now lets us conclude that x(t) satisfies the criteria to be chosen by
the algorithm in step 4.

Now we analyze the subcube output by Algorithm 2. Let ℓ be the number of iterations of Algorithm 2.
Hence C(ℓ) is the subcube returned by Algorithm 2. Clearly, f |C(ℓ) is a constant function; thus Algorithm 2
indeed returns a certificate with co-dimension codim(C(ℓ)) = |S(ℓ)|. Now by the choice of x(t), x(t) has at
most |M | ≤ deg(f) 1s more than x(t−1). Thus for each t = 1, . . . , ℓ, |S(t)| ≤ |S(t−1)| + deg(f), giving us
codim(C(ℓ)) = |S(ℓ)| ≤ ℓ · deg(f). Similar to Part (i), it follows that ℓ ≤ k, concluding the proof.

6 Connections to communication complexity and other measures

In this section we prove Theorem 1.6 and Theorem 1.7. First we state few results needed to prove the
theorem.

Proposition 6.1.

1. For every Boolean function f : {0, 1}n → {0, 1} and for any arbitrary bi-partition of the indices into
two disjoint sets S1, S2 ⊆ [n] such that S1 ∩ S2 = ∅ and S1 ∪ S2 = [n],

CC(f) ≤ 2 ·Dsc(f) ≤ 2 ·D(f).

2. For every Boolean function f , rank(f) ≤ Dsc(f) ≤ rank(f) · (log n+ 1).
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Proof of this proposition is deferred to Appendix D.
Let INDm+2m denote the indexing function on m + 2m bits (see Definition A.3). Göös, Pitassi and

Watson proved the following lifting theorem by using a simulation method by Raz and Mckenzie, which
essentially asserts that the communication protocol for f ◦ INDc logn+nc that simulates an optimal decision
tree of f , serving each query by solving the corresponding copy of the indexing function, is asymptotically
optimal.

Theorem 6.2. [GPW18, RM97] There exists a constant c > 0 such that for every Boolean function
f : {0, 1}n → {0, 1},

CC(f ◦ INDc logn+nc) = Θ(log n ·D(f)),

where the communication complexity is with respect to the bi-partition of the input variables where the
address bits of the input string of each copy of indexing are with Alice, and the corresponding target bits
are with Bob.

The following proposition gives an exact relation between the degree of composition of two functions
and the degrees of the individual functions.

Proposition 6.3. [Tal13] Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1} be two Boolean functions,
then deg(f ◦ g) = deg(f) · deg(g)

Proof. of Theorem 1.6: (Part 1) Assume the hypothesis of the statement of the theorem and let f :
{0, 1}n → {0, 1} be an arbitrary Boolean function. Let c be the constant from Theorem 6.2, and m =
c log n. Consider the function F = f ◦ INDm+2m . Consider the bi-partition of the input bits of F , in which
Alice gets the address bits and Bob gets the target bits of the inputs to each copy of the inner indexing
function. Invoking the hypothesis of the theorem on F with respect to this bi-partition, we have that
CC(F ) = O(deg(F )2 · polylog(n)). Combining this with Theorem 6.2 we get that D(f) = O(CC(F )/m) =
O(deg(F )2 · polylog(n)). Then using Proposition 6.3 and by noting that deg(IND) = m + 1 we get
D(f) = O(deg(f)2 · polylog(n)).

(Part 2) Assume the hypothesis of the statement of the theorem, let f : {0, 1}n → {0, 1} be any
arbitrary Boolean function, and let F be defined as in part 1. Invoking the hypothesis of the theorem on
F with respect to the bi-partition of part 1, we have that CC(F ) = O(bs(F )2 · polylog(n)). Combining
this with Theorem 6.2 we get that D(f) = O(CC(F )/m) = O(bs(F )2 · polylog(n)). We finish by showing
that bs(F ) ≤ (m+ 1) · fbs(f), which is what the rest of this proof focusses on.

Let bs(F ) = k. We will show that fbs(f) ≥ k
m+1 . Let x := (x(1), x(2), · · · , x(n)) be an input such that

bs(F, x) = k. Let B = {B1, B2, · · · , Bk} be a set of k minimal disjoint sensitive blocks of x.
We claim that for i ∈ [k], at most (m+1) blocks from B intersect x(i). To establish the claim, we start

by observing that to change the output of indexing function on x(i) it is necessary to either change an
address bit of x(i), or the unique target bit pointed to by the address bits. It follows from the minimality
of the blocks in B that if a Bj overlaps nontrivially with a x(i), then Bj must contain either an address
bit of x(i), or the unique target bit in x(i) that the address bits point to. Since there are m address bits,
one target bit, and the blocks in B are disjoint, the claim follows.

Define yi := INDm+2m(x
(i)) and define y = (y1, . . . , yn). Note that y is in the domain of f . For each

block Bj ∈ B define Aj = {ℓ ∈ [n] | x(ℓ) ∩ Bj ̸= ∅}. By the minimality of the blocks in B each Aj is a
sensitive block of y with respect to f .

Consider the following assignment of weights to the sensitive (with respect to f) blocks of y. Each

sensitive block A of y is assigned weight wA :=
|{j∈[k]|Aj=A}|

m+1 . We first show that this assignment is a
feasible point of the fractional block sensitivity LP. Fix an i ∈ [n]. Now, each sensitive block of y of
positive weight that contains i is in fact Aj for some j ∈ [k] such that Bj ∩ x(i) ̸= ∅. Now, since we have
shown that the number of such j’s is at most m+1, it follows that the sum of the weights of all sensitive

13



blocks of y containing i is at most 1. Thus the assignment is feasible for the fbs LP. Hence,

fbs(f) ≥
∑
A

wA

=
∑
A

|{j ∈ [k] | Aj = A}|
m+ 1

=
k

m+ 1

where the all the sums are over all the sensitive blocks of y.

We now prove Theorem 1.7 which is an immediate corollary of Theorem 1.6.

Proof. of Theorem 1.7: Assume the hypothesis of the theorem. By Proposition 6.1 (1) and (2) for any
Boolean function f , and for any bi-partition of f , CC(f) = O(Dsc(f)·polylog(n)) = O(rank(f)·polylog(n)).
It is easy to see that a communication protocol can answer each query of a parity decision tree by
exchanging 2 bits. Thus, CC(f) = O(PDT(f)). The theorem follows from Theorem 1.6.
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A Extended preliminaries

Throughout this section, we assume that f : {0, 1}n → {0, 1}is a generic Boolean function, and x =
(x1, . . . , xn) ∈ {0, 1}n a generic input to f . Restriction of f to a set S ⊆ {0, 1}n is denoted by f |S .

Definition A.1 (Subcube, co-dimension). A set C ⊆ {0, 1}n is called a subsube is there exist a set of
indices I ⊆ [n] and an assignment function A : I → {0, 1} such that C = {x ∈ {0, 1}n | ∀i ∈ I, xi = A(i)}.
Note that for every subcube C there is a unique such I and A. The co-dimension of C, denoted by
codim(C), is defined as |I|.

Restriction of f to a subcube C is also simply referred to as a restriction of f .

Definition A.2 (TRIBES). TRIBES√n×
√
n is a Boolean function on n bits that is defined as follows. Let

x := (xi,j)1≤i≤n,1≤j≤n ∈
(
{0, 1}

√
n
)√

n
. Then,

TRIBES√n×
√
n(x) = ∨ni=1(∧nj=1xi,j).

Definition A.3 (Indexing function). For m ≥ 1, the indexing function INDm+2m is defined to be a
function on m+2m bits defined as follows. Let y ∈ {0, 1}m and z = (z0, . . . , z2m−1) ∈ {0, 1}2

m
. Let bin(y)

denote the integer in {0} ∪ [2m − 1] whose binary expansion is y. Then

INDm+2m(y, z) = zbin(y).

Definition A.4 (Majority function). Let n be an odd positive integer. The majority function on n bits
is defined as follows.

MAJn(x) =

{
1 if |{i ∈ [n] | xi = 1}| > n

2 ,
0 otherwise.

Definition A.5 (Function composition). The composition of two Boolean functions f : {0, 1}m → {0, 1}
and g : {0, 1}n → {0, 1}, denoted as f ◦ g : {0, 1}mn → {0, 1} is defined as:

(f ◦ g)(x(1), x(2), · · ·x(m)) = f(g(x(1)), g(x(2)), · · · , g(x(m))),

where for each i ∈ [m], x(i) ∈ {0, 1}n.
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A.1 Decision tree complexity

Definition A.6 (Deterministic decision tree complexity). A deterministic decision tree T is a rooted
ordered binary tree. Each internal node of T has two children and is labelled by an index in [n]. Each leaf
is labelled 0 or 1. For an input x = (x1, . . . , xn) ∈ {0, 1}n, T is evaluated by starting from the root, and
navigating down the tree till we reach a leaf, as follows. In a time step, let i be the label of the current
internal node. Then, we move to the left child of the current node if xi = 0 and its right child if xi = 1.
When the computation reaches a leaf, the bit that labels the leaf is output. T is said to compute f if for
each x ∈ {0, 1}n, T outputs f(x). The cost of T on x, which we denote by cost(T, x), is the depth of the
leaf of T that x takes it to. The decision tree complexity of f is defined as:

D(f) = min
T

max
x

cost(T, x),

where the minimum is over all decision trees that compute f , and the maximum is over all strings in
{0, 1}n.

Clearly 0 ≤ D(f) ≤ n.

Definition A.7 (Decision tree rank). Let T be a decision tree. The rank of each node v of T , denoted
by rank(v), is defined recursively as follows. If v is a leaf, then rank(v) is 0. Let v be an internal
node with children vℓ and vr. If rank(vℓ) ̸= rank(vr) then rank(v) = max{rank(vℓ), rank(vr)}. Else,
rank(v) = rank(vℓ) + 1. The rank of T , denoted by rank(T ), is defined to be the rank of its root. the rank
of f is defined as

rank(f) = min
T

rank(T ),

where the minimum is over all decision trees that compute f .

It is easy to see that rank(f) ≤ D(f).

Definition A.8 (Parity decision tree complexity). A parity decision tree T is a rooted ordered binary
tree. Each internal node of T has two children and is labelled by a subset of indices S ⊆ [n]. Each leaf
is labelled 0 or 1. For an input x = (x1, . . . , xn) ∈ {0, 1}n, T is evaluated by starting from the root, and
navigating down the tree till we reach a leaf, as follows. In a time step, let S be the label of the current
internal node. Then, we move to the left child of the current node if ⊕i∈Sxi = 0 and its right child if
⊕i∈Sxi = 1. When the computation reaches a leaf, the bit that labels the leaf is output. T is said to
compute f if for each x ∈ {0, 1}n, T outputs f(x). The cost of T on x, which we denote by cost(T, x), is
the depth of the leaf of T that x takes it to. The parity decision tree complexity of f is defined as:

PDT(f) = min
T

max
x

cost(T, x),

where the minimum is over all parity decision trees that compute f , and the maximum is over all strings
in {0, 1}n.

Definition A.9 (Subcube decision tree complexity). A subcube decision tree T is a rooted ordered binary
tree. Each internal node of T has two children and is labelled by a subcube C ⊆ {0, 1}n. Each leaf is
labelled 0 or 1. For an input x = (x1, . . . , xn) ∈ {0, 1}n, T is evaluated by starting from the root, and
navigating down the tree till we reach a leaf, as follows. In a time step, let C be the label of the current
internal node. Then, we move to the left child of the current node if x /∈ C and its right child if x ∈ C.
When the computation reaches a leaf, the bit that labels the leaf is output. T is said to compute f if for
each x ∈ {0, 1}n, T outputs f(x). The cost of T on x, which we denote by cost(T, x), is the depth of the
leaf of T that x takes it to. The subcube decision tree complexity of f is defined as:

Dsc(f) = min
T

max
x

cost(T, x),

where the minimum is over all subcube decision trees that compute f , and the maximum is over all strings
in {0, 1}n.
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A.2 Complexity measures

Definition A.10 (Sensitivity). An index i ∈ [n] is said to be a sensitive index (or a sensitive bit) for x
is f(x) ̸= f(x⊕i). The sensitivity of f on x, denoted by s(f, x), is defined as the number of sensitive bits
for x. In other words,

s(f, x) = |{i ∈ [n] | f(x) ̸= f(xi)}|.

The sensitivity of f , denoted by s(f), is defined as

s(f) = max
x∈{0,1}n

s(f, x).

A set of indices B ∈ [n] is called a sensitive block of x if f(x) ̸= f(x⊕B).

Definition A.11 (Block sensitivity). The block sensitivity of f on input x, denoted by bs(f, x), is defined
as the maximum number of disjoint sensitive blocks of x.

The block sensitivity of f , denoted by bs(f), is defined as

bs(f) = max
x∈{0,1}n

bs(f, x).

Let {B1, . . . , Bt} be the set of all sensitive blocks of x. bs(f, x) is the value of the following integer
linear program.

bs(f, x) = max
t∑

j=1

wj

subject to
∑

j:Bj∋i
wj ≤ 1 ∀i ∈ [n]

wj ∈ {0, 1} ∀j ∈ [t]

The value of the linear program obtained by relaxing the integrality constraint of the above program is
called the fractional block sensitivity of f on input x, denoted by fbs(f, x).

Definition A.12 (Fractional block sensitivity [KT16, GSS16]). The fractional block sensitivity of f on
x, denoted by fbs(f, x), is defined as

fbs(f, x) = max
t∑

j=1

wj

subject to
∑

j:Bj∋i
wj ≤ 1 ∀i ∈ [n]

wj ∈ [0, 1] ∀j ∈ [t]

The fractional block sensitivity of f , denoted by fbs(f), is defined as

fbs(f) = max
x∈{0,1}n

fbs(f, x).

Definition A.13 (Certificate complexity, minimum certificate complexity and maximin certificate com-
plexity). A subcube C is called a 0-certificate (resp. 1-certificate) of f if f |C is the constant 0 (resp.
1) function. A subcube is called a certificate if it is a 0-certificate or a 1-certificate. The certificate
complexity of f on x, denoted by C(f, x), is the smallest co-dimension of a certificate C that contains x.
For a bit b ∈ {0, 1} the b-certificate complexity of f , denoted by Cb(f), is defined as

Cb(f) = max
x∈{0,1}n,f(x)=b

C(f, x).
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The certificate complexity of f , denoted by C(f), is defined as,

C(f) = max{C0(f),C1(f)}.

A minimum certificate of f is defined to be a subcube of minimum co-dimension on which f is con-
stant. The minimum certificate complexity of f , denoted by Cmin(f), is defined as the co-dimension of a
minimum certificate. Equivalently,

Cmin(f) = min
x∈{0,1}n

C(f, x).

The maximin certificate complexity of f , denoted by C∗
min(f), is defined as,

C∗
min(f) = max

C
Cmin(f |C).

Above, the maximum is over all subcubes of {0, 1}n, and f |C is viewed as a Boolean function on the
Boolean hypercube {0, 1}[n]\I .

We say that a set of indices S ⊆ [n] forms a certificate for x, to mean that {y ∈ {0, 1}n | yi = xi∀i ∈ S}
is a certificate.

Definition A.14 (Pf and degree). It is well known that every Boolean function f : {0, 1}n → {0, 1} can be
represented by a unique multi-linear polynomial Pf (x1, . . . , xn) with real coefficients such that P (x) = f(x)
for all x ∈ {0, 1}n. The exact degree of f , or simply the degree of f , denoted by deg(f), is defined to be
the degree of Pf .

Identification of variables Let i, j ∈ [n] be distinct indices in [n]. Let S := {x ∈ {0, 1}n | xi = xj}.
The restriction f |S of f to S is the function obtained from f by identifying variables xi and xj . f |S can
be thought of as a Boolean function defined on the hypercube {0, 1}[n]\{j}.

Definition A.15. f is a symmetric Boolean function if f(x) depends only on the Hamming weight of x,
i.e., there exists a function g : [n] ∪ {0} → {0, 1} suh that f(x) = g(|x|).

The following proposition lists some well-known facts about various complexity measures [BDW02,
KT16, GSS16].

Proposition A.16.

1. s(f, x) ≤ bs(f, x) ≤ fbs(f, x) ≤ C(f, x) ≤ D(f).

2. C(f) = O(bs(f)2). [Nis91]

3. bs(f) = O(deg(f)2). [NS94]

4. D(f) = O(C(f) · bs(f)). [BBC+01]

5. D(f) = O(deg(f) · bs(f)). [Mid04]

6. deg(f) ≤ D(f).

7. Measures s, bs, fbs,C,C∗
min, deg,D do not increase under restrictions to subcubes. That is, for any

M ∈ {s, bs, fbs,C,C∗
min, deg,D} and any subcube C, M(f |C) ≤ M(f).4

8. bs, deg,C and D do not increase under identification of variables. That is, for M ∈ {bs,degC,D},
distinct i, j ∈ [n] and S = {x ∈ {0, 1}n | xi = xj}, M(f |S) ≤ M(f).5

9. Let f be non-constant and symmetric. Then deg(f) = n−o(n) [vZGR97] and bs(f) = s(f) ≥ ⌈n+1
2 ⌉

[TUR84].
4Note that the same cannot be said aboutCmin.
5The same cannot be said about s.

20



A.3 Communication complexity

In the two-party communication model (introduced by Yao [And79]), two parties Alice and Bob jointly
hold an input to a Boolean function f : {0, 1}n1 × {0, 1}n2 → {0, 1}. There is a bi-partition of the set of
input indices [n] into two parts of sizes n1 and n2, say, where n1+n2 = n. Alice and Bob respectively hold
the input bits that correspond to the indices in these two parts. Let x(1) and x(2) be the input strings
held by Alice and Bob respectively. Alice and Bob are interested in computing f(x(1), x(2)), and they
are allowed to exchange bits in an interactive fashion via a communication channel. The objective is to
jointly compute f(x(1), x(2)) by exchanging as few bits as possible. A set of rules that the parties follow
to determine the messages that they send to each other in each step is called a protocol. A protocol for
f is correct if for every input (x(1), x(2)), at the end of the interaction, a party outputs f(x(1), x(2)).

The cost of a protocol Π on an input (x(1), x(2)) ∈ {0, 1}n1 × {0, 1}n2 , denoted by cost(Π, (x(1), x(2))),
is the number of bits exchanged by Π on input (x(1), x(2)). The deterministic communication complexity
of f , denoted by CC(f), is defined as follows:

CC(F ) = min
Π

max
(x(1),x(2))∈{0,1}n1×{0,1}n2

cost(Π, (x(1), x(2))).

where the minimum is over all correct protocols of f . The bi-partition of the inputs in the definition of
CC is implicit and will be clear from the context. See Section 2 and textbooks by Rao and Yehudayoff
[RY20] and by Kushilevitz and Nisan [KN97] for a comprehensive introduction to the subject.

B Useful facts about zebra functions

In this section, we prove Proposition 4.4.

Proof of Proposition 4.4. (Part 1) Follows immediately from the definition of stripes.
(Part 2) Suppose without loss of generality that f(0n) = 0. Now, one can show that x ∈ {0, 1}n,

f(x) = altf (x) mod 2 by an easy induction on |x| (|x|+1 is the number of points on any monotone path
from 0n to x). This completes the proof of this part.

(Part 3) Consider set S = {z : z ≤ and x ∈ STRIPEf (i)}. S ̸= ϕ as x ∈ S. The proof follows by
considering a point in S with minimum hamming weight.

(Part 4) Without loss of generality, let y be obtained by flipping a 1-bit of x to 0. Since x is a minimal
point of STRIPEf (i) we have y /∈ STRIPEf (i). Considering any monotone path from 0n to x through y,
we conclude that altf (x) = altf (y) + 1. the proof follows.

(Part 5) For any string x ∈ {0, 1}[n]\{j}, define a string ej(x) to be the following string in {0, 1}n:

∀k ∈ [n], (ej(x))k =

{
xk if k ̸= j,
b otherwise.

Then, for all y ∈ {0, 1}[n]\{j}, f |xj=b (y) = f(ej(y)). Thus the alternation number of a monotone path

from 0[n]\{j} to 1[n]\{j} with respect to f |xj=b is equal to the alternation number of some monotone path

from ej(0
[n]\{j}) to ej(1

[n]\{j}) with respect to f . The proof now follows by Proposition 4.2.

C Query complexity and maximin certificate complexity

In this section we prove Lemma 1.8.
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Proof of Lemma 1.8. Consider the following decision tree computing f .

Algorithm 3:

1 Input: x = (x1, . . . , xn) ∈ {0, 1}n.
2 D ← {0, 1}n, g ← f .
3 while g is not constant do
4 Let C = {y ∈ D | yi = ai∀i ∈ S} be a certificate of g with least co-dimension.
5 Query xi for all i ∈ S. let the outcomes be xi = a′i for all i ∈ S.
6 D ← D ∩ {y ∈ D | yi = a′i∀i ∈ S}.
7 g ← g |D.
8 end
9 Return value of constant function g.

Algorithm 3 is easily seen to always halt and compute f .
(Part 1) We will show that Algorithm 3 makes at most C∗

min(f)(bs
(0)(f) + bs(1)(f)) ≤ 2C∗

min(f)bs(f)
queries.

Towards a contradiction, suppose if possible that the number of iterations is strictly more than
bs(0)(f)+bs(1)(f) for some input. Then Algorithm 3 queries either at least bs(1)(f)+1 0-certificates or at
least bs(0)(f) + 1 1-certificates. We assume without loss of generality that the algorithm queries at least
bs(1)(f)+1 0-certificates. Consider the domain D right after the bs(1)(f)-th 0-certificate is queried. Since
f |D is not a constant function there exits an input z ∈ D such that f(z) = 1. Now, for each 0-certificate
C queried so far, the set of indices where z and C disagree is a sensitive block of z. Furthermore, these
blocks are all disjoint, as each time the algorithm chooses a certificate that is consistent with the query
outcomes so far. It follows that the algorithm has already fully queried bs(f) ≥ bs(f, z) may disjoint
blocks of z, and the answers are all consistent with z. Since these bits form a 1-certificate, we have
reached a contradiction to the fact the f |D is non-constant. This completes the proof.

(Part 2) We will show that Algorithm 3 makes at most C∗
min(f)deg(f) queries.

First we show that every certificate of f must intersect every maximum degree monomial of the unique
multilinear polynomial Pf that represents f . Suppose not, and there exists a certificate C = {y ∈ D |
yi = ai∀i ∈ S} and a maximum monomial M of Pf , such that S ∩M = ∅. For each i ∈ S, substitute ai
for yi. since M is a leading monomial and disjoint from S, the resultant polynomial is non-constant, that
contradicts the assumption that C is a certificate.

It follows that after every iteration of the while loop, deg(g) drops by at least 1. Hence the number
of iterations of the loop is at most deg(f). Since we make at most C∗

min(f) queries in each iteration, the
theorem follows.

D Decision tree rank and subcube decision tree

In this section we prove Proposition 6.1.

Proof. of 6.1 (1) (Part (1)) The first inequality follows from the observation that a communication protocol
can simulate a subcube decision tree of depth d by exchanging at most 2d bits. Each query of a subcube
decision tree can be evaluated by an exchange of 2 bits, as follows. Let the subcube queried at an internal
node be C = {x ∈ {0, 1}n | xi = bi∀i ∈ S}. For each i ∈ S, xi is held by one of the parties. Thus, each
party may separately check if the values of all the variables xi for i ∈ S that they hold match with ai,
exchange the outcomes of those checks, and thus answer the subcube query of membership in C. The
second inequality holds as a decision tree is a special kind of subcube decision tree where all the subcubes
queried have co-dimension 1.

(Part 2) For the first inequality, we prove by induction on t that for every subcube decision tree T of
depth t, there exists a decision tree T ′ of rank at most t that computes the same function. The base case
t = 0 is trivial. Now, let X be a subcube decision tree of f of depth t ≥ 1. Let a be its root, querying
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subcube {y ∈ {0, 1}n | yi1 = ai1 , . . . , yik = aik}, and the two subtrees of a be X1 and X2, each of depth
at most t − 1. By inductive hypothesis, there exist two decision trees T1 and T2, each of rank at most
t− 1, that compute same functions as X1 and X2 respectively. Next, we replace a by a decision tree T ′′

that queries the input variables with indices i1, . . . , ik and decides on the outcome of the subcube query.
T ′′ queries the variables in order, and outputs 0 if it finds a ij such that yij ̸= aij . If it finds no such ij it
outputs 1. Next, we replace each leaf of T ′′ by either X1 or X2 depending on the outcome of the subcube
query in that leaf. It is easy to check that the rank of the resulting tree is at most (t− 1) + 1 = t.

Now we prove the second inequality. Let T be a decision tree with rank rank(f) = r ≥ 1, say, and
depth d ≤ n, that computes f . We will show that there is a subcube decision tree T ′ of depth at most
r(log n+ 1) that computes f .

Let v be any node of T . Let the variables queried on the unique path from the root of T to v
be xi1 , . . . , xiℓ and the answers to these queries be ai1 , . . . , aiℓ . Thus, if T is run on an input x, the
computation visits node v if and only if x belongs to the subcube {y ∈ {0, 1}n | yi1 = ai1 , . . . , yik = aik}.
Thus, a single subcube query suffices to determine whether a particular node of T is visited. Extending
this idea, we may do a binary search on the unique path in T from its root to v to find out the first vertex
off the path that the computation visits when T is run on x. The number of subcube queries spent is at
most one more the logarithm of the depth of v; in particular, it is at most log n+ 1.

Now, we describe T ′ recursively. Let x be an input. Let v be a deepest vertex in T such that
rank(v) = r. Let P denote the path in T from its root to v. Using the idea of the preceding paragraph
T ′ first finds out, spending at most log n + 1 queries, the first vertex u /∈ P in T that the computation
visits when T is run on x. Next, we show that rank(u) ≤ r− 1. To see this, first note that u is a child of
a vertex w ∈ P . Now, if w ̸= v, then w has a child that is in P and hence has rank r. Since rank(w) = r,
therefore the rank of the other child u of w must be strictly less than r. On the other hand, if w = v,
then rank(u) ≤ r − 1 by the definition of v. Next, T ′ recursively runs the subtree of T rooted at u on x,
whose rank is at most r − 1 by the preceding argument. The complexity of T ′ is readily seen to be at
most r · (log n+ 1).
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