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Abstract

We consider the problem of finding a maximal independent set (MIS) in the shared black-
board communication model with vertex-partitioned inputs. There are n players corresponding
to vertices of an undirected graph, and each player sees the edges incident on its vertex – this
way, each edge is known by both its endpoints and is thus shared by two players. The players
communicate in simultaneous rounds by posting their messages on a shared blackboard visible
to all players, with the goal of computing an MIS of the graph. While the MIS problem is
well studied in other distributed models, and while shared blackboard is, perhaps, the simplest
broadcast model, lower bounds for our problem were only known against one-round protocols.

We present a lower bound on the round-communication tradeoff for computing an MIS
in this model. Specifically, we show that when r rounds of interaction are allowed, at least
one player needs to communicate Ωpn1{20r`1

q bits. In particular, with logarithmic bandwidth,
finding an MIS requires Ωplog log nq rounds. This lower bound can be compared with the
algorithm of Ghaffari, Gouleakis, Konrad, Mitrović, and Rubinfeld [PODC 2018] that solves MIS
in Oplog log nq rounds but with a logarithmic bandwidth for an average player. Additionally,
our lower bound further extends to the closely related problem of maximal bipartite matching.

The presence of edge-sharing gives the algorithms in our model a surprising power and
numerous algorithmic results exploiting this power are known. For a similar reason, proving
lower bounds in this model is much more challenging, as this sharing in the players’ inputs
prohibits the use of standard number-in-hand communication complexity arguments. Thus, to
prove our results, we devise a new round elimination framework, which we call partial-input
embedding, that may also be useful in future work for proving round-sensitive lower bounds
in the presence of shared inputs.

Finally, we discuss several implications of our results to multi-round (adaptive) distributed
sketching algorithms, broadcast congested clique, and to the welfare maximization problem in
two-sided matching markets.
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1 Introduction

Consider the following communication model: there are n players corresponding to vertices of an
undirected graph G “ pV,Eq and each player only sees the edges incident on its vertex – this way,
each edge of the graph is shared by the two players at its endpoints. The goal of the players is to
solve some fixed problem on G, for instance, finding a spanning forest of G. To do so, the players
communicate in synchronous rounds wherein all parties simultaneously write a message on a shared
blackboard visible to all. The messages communicated by the players are only functions of their
own inputs and the content of the blackboard. When the protocol concludes, an additional party,
called the referee, computes the output of the protocol as a function of the blackboard content.
We are interested in the tradeoff between the number of rounds of the protocol and the per-player
communication, defined as the worst-case length of any message sent by any player in any round.

In the communication complexity terminology, this model is referred to as the multi-party com-
munication model with shared blackboard and vertex-partitioned inputs. However, it has also been
studied by different communities under different names, such as broadcast congested clique [DKO14,
BMRT18,JLN18a,JN18], or (adaptive) distributed sketching [AGM12a,AGM12b,AKO20,FKN21].
At this point, there is quite a large body of algorithmic results in this model [AGM12a,AGM12a,
AGM12b,AGM13,KLM`14,GMT15,MTVV15,ACK19,AKM22,LMSV11,KW14,FKN21,ACG`15]
(see Section 1.2 for more details). The source of power behind these results is a crucial aspect of
this model: edge-sharing, or in other words, the fact that each edge of the graph is seen by both
its endpoints1. This sharing in the players’ inputs makes this model an “intermediate” model
lying between the number-in-hand model (with no input sharing) and the notorious number-on-
forehead model (with arbitrary input sharing). As a result, lower bounds are more scarce in this
model [BMN`11,DKO14,BMRT14,BMRT18,JLN18b,NY19,Yu21,AKO20].

We study the maximal independent set (MIS) problem in this model. While MIS is one of
the most studied problems in other distributed models (see, e.g., [Lub85, Lin87,KMW16,Gha16,
BBH`19]), and while shared blackboard is, perhaps, the simplest broadcast model, not much is
known about MIS in this model. We do note that Luby’s celebrated MIS algorithm [Lub85] implies
an Oplog nq-round Op1q-per-player communication algorithm in this model. Ghaffari, Gouleakis,
Konrad, Mitrovic, and Rubinfeld [GGK`18] gave an algorithm that runs in Oplog log nq rounds,
but only bounds the communication of an average player by Oplog nq. I.e., the total communication
by all players in a round is Opn log nq, but some players may need to communicate ωplog nq bits2.
Moreover, Assadi, Kol, and Oshman proved that any one-round protocol requires almost pn1{2q

per-player communication. This state-of-affairs raises the following question:

What is the complexity of MIS in the shared blackboard model with vertex-partitioned in-
puts? In particular, what are the possible round-communication tradeoffs in this model?

We make progress on this fundamental open question by presenting a new lower bound on the
round-communication tradeoff for the MIS problem. The key contribution of our work is a new
technique for proving multi-round lower bounds, even in the presence of edge-sharing. This also
allows us to prove a similar lower bound for another fundamental problem, namely, the maximal
bipartite matching problem.

1The interested reader is referred to [AGM12a] to see this in a surprising algorithm that solves graph connectivity
using only a single round and Oplog3 nq communication bits per player.

2This algorithm is designed for the (unicast) congested clique model, but given its connection to the distributed
sketching/dynamic streaming algorithm of [ACG`15]—that solves MIS as a subroutine in correlation clustering—it
can be directly implemented in our model with the mentioned bounds.
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Our work can be viewed as a direct continuation of two lines of work: the first line of work is on
number-in-hand multi-round communication complexity, where we follow up on the result of Alon,
Nisan, Raz, and Weinstein [ANRW15]. They give lower bounds for the bipartite maximal matching
problem, where only parties on one side of the partition are allowed to communicate. The second
line of work is the aforementioned lower bound of Assadi, Kol, and Oshman [AKO20], which works
in our model, but only considers one-round protocols. In the following, we elaborate more on our
results, techniques, and their connections to other settings.

1.1 Our Contributions

Our main result is a multi-round lower bound for computing MIS in the shared blackboard model.

Result 1. Any r-round multi-party protocol (deterministic or randomized) in the shared black-
board model for finding a maximal independent set on n-vertex graphs requires Ωpn1{20r`1

q bits
of communication per player. In particular, Ωplog log nq rounds are needed for protocols with
polylogpnq per-player communication.

Previously, the only known lower bound for MIS in our model was the (almost) Ωpn1{2q-
communication lower bound of [AKO20] for one-round protocols. Indeed, to the best of our knowl-
edge, there has been no prior communication lower bound in this model for any natural problem
that is sensitive to the number of rounds (the lower bounds were either for one-round protocols,
e.g., [NY19,AKO20,Yu21], or arbitrary number of rounds, e.g., [DKO14,BMRT18]3).

The tradeoff achieved in Result 1 asymptotically matches the aforementioned Oplog lognq-round
algorithm of [GGK`18] for finding MIS, except that, as mentioned before, the protocol of [GGK`18]
only bounds the communication of an average player by Oplog nq bits and a few players need to
communicate way more than polylogpnq bits. Thus, the two results do not directly match. It
remains an interesting open question to either improve the guarantee of the algorithm of [GGK`18]
to per-player communication bound or improve our lower bound to average-case communication.

Our techniques in establishing Result 1 are quite general and, as a corollary to our proof, also
allow us to prove a lower bound for another fundamental problem, namely, maximal matching.

Result 2. Any r-round multi-party protocol (deterministic or randomized) in the shared black-
board model for finding a maximal matching or any constant factor approximation to maximum
matching on n-vertex (bipartite) graphs requires Ωpn1{20r`1

q bits of communication per player.
As such, Ωplog log nq rounds are needed for protocols with polylogpnq per-player communication.

As in the case of MIS, the only known lower bound prior to our work was the one-round lower
bound of [AKO20]. However, for the number-in-hand variant of our communication model, wherein
each edge of the graph is only seen by one of its endpoints, a series of papers [DNO14,ANRW15,
BO17] proved a nearly-logarithmic round lower bound for the matching problem (we elaborate on
this line of work later). Yet, the number-in-hand model is algorithmically much weaker than the
edge-sharing model studied in our paper; for instance, the lower bound of [BO17] also holds for
finding a spanning forest of the input in that model, while finding spanning forests in our model
can be done with Oplog3 nq communication in just one round [AGM12a]. We refer the reader
to [AKO20] for discussions on the inherit difference of number-in-hand model and our model that
allows for edge-sharing and thus is “one step closer” to the notorious number-on-forehead model.

3Specifically, the latter ones bound the total communication needed to solve the problem and use this to get a
lower bound on the number of rounds times communication per round. Such lower bounds cannot capture more
nuanced round-communication tradeoffs (e.g., like the ones exhibited by [Lub85] or [GGK`18] for MIS).
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Our techniques. We shall go over our techniques in detail in the streamlined overview of our
approach in Section 3. For now, we only mention the high level bits of our techniques.

Our techniques unify and generalize the lower bounds of [AKO20] for one-round protocols in
our model, as well as the lower bounds of [ANRW15] for multi-round protocols in the number-
in-hand model. To this end, we need several substantially new ideas4. The main novelty of our
work is in developing a new round elimination argument that is tailored to our edge-sharing model.
Similar to standard round elimination arguments, say, the one in [ANRW15], our approach is
also based on simulating an r-round protocol on “large” instances in only pr ´ 1q rounds for
smaller “embedded” instances (with fewer players and smaller inputs). Prior work perform such a
simulation by generating an input for the “missing” players of the large r-round instance with low
correlation with the actual embedded pr ´ 1q-round hard instance. As we argue, such an approach
is doomed to fail for our model with its edge-sharing aspects. Instead, we introduce a partial-
input embedding argument that implements this simulation via generating only the messages of
the missing players. We then use information-theoretic tools to track the gradual increase in the
correlation of these messages with the embedded hard instance throughout the entire simulation
(not only the first round which is sufficient for “input-sampling” protocols of prior work).

1.2 Further Implications of Our Results to Related Models

We conclude this section by listing further implications of our results to other well-studied settings.

Broadcast congested clique. The communication model studied in our paper is equivalent to
the broadcast congested clique model studied in various prior work, e.g., in [DKO14, BMRT18,
JLN18a, JN18]. Specifically, our Result 1 and Result 2 imply Ωplog lognq round lower bounds for
both MIS and maximal matching on any broadcast congested clique algorithm with polylogpnq

bandwidth. Incidentally, in the stronger unicast congested clique model, Oplog log nq-round algo-
rithms are known for both MIS [GGK`18] and maximal matching [BHH19]. We note that, as
shown in [DKO14], proving lower bounds in the unicast model implies strong circuit lower bounds
and thus is beyond the reach of current techniques.

Distributed sketching. Our model is also equivalent to the distributed sketching model that
was initiated in the breakthrough work of [AGM12a]. Starting from the connectivity sketch
of [AGM12a], there has been tremendous progress on efficient distributed sketching algorithms for
various other problems in one round, e.g., cut sparsifiers [AGM12b], spectral sparsifiers [AGM13,
KLM`14], vertex connectivity [GMT15], densest subgraph [MTVV15], p∆ ` 1q-coloring [ACK19],
∆-coloring [AKM22], and in multiple rounds, e.g., minimum spanning trees [AGM12a], match-
ings [LMSV11,AGM12a], spanners [KW14,FKN21], and MIS and correlation clustering [ACG`15].
Given the strength of this model, proving lower bounds in this model has been a highly challenging
task (see, e.g. [AKO20,FKN21]), and only a handful of lower bounds are known including Ωplog3 nq

bits for connectivity [NY19,Yu21] and Ωpn1{2q bits for MIS and maximal matching [AKO20] for
one-round sketches. Our results contribute to this line of work by providing the first round-sensitive
lower bounds in this model, and our techniques can be of independent interest here as well.

Dynamic streaming algorithms. One key motivation of [AGM12a] in introducing graph sketch-
ing was their application to dynamic (semi-)streaming algorithms that can process streams of inser-
tions and deletions of edges with Opn¨poly log pnqq memory (all sketches mentioned above also imply

4Braverman and Oshman [BO17] gave stronger lower bounds than [ANRW15], that work for nearly logarithmic
number of rounds. However, their techniques seem “too tailored” to the number-in-hand model and approximate
matchings, and thus are not suitable for us (given the algorithm of [GGK`18] for MIS, which, even though not
exactly in our model, seem quite close, it is not clear if one can get a logarithmic lower bound in our model).
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dynamic streaming algorithms). Multi-round sketching protocols, similar to the ones in our model,
then correspond to multi-pass streaming algorithms. Currently, the best known multi-pass dynamic
semi-streaming algorithms for MIS and maximal matching require Oplog log nq passes [ACG`15]
and Oplog nq passes [LMSV11, AGM12a], respectively. On the lower bound front however, only
single-pass lower bounds are known for either problem [AKLY16, ACK19, CDK19, DK20] (there
has been recent progress on multi-pass lower bounds for computing exact maximum matchings
[GO13,AR20,CKP`21] in logarithmic passes or even p1` op1qq-approximation in two passes [A22]
but they do not apply to maximal matching in any way). While our results do not imply streaming
lower bounds, they do rule out certain popular techniques of vertex-partitioned graph sketching for
obtaining oplog log nq-pass algorithms for either problem. Thus, they can form a starting point for
proving multi-pass lower bounds for all dynamic streaming algorithms as well.

Welfare maximization and interaction. A beautiful line of work initiated by [DNO14] and
followed up in [ANRW15,BO17,Nis21,A17], studies the role played by the interaction of partici-
pating agents in the efficiency of markets. One formalization, corresponding to unit-demand agents
in a matching market, is as follows: we have n agents who are interested in getting any one of their
private subset of n items; the goal is to allocate these items in a way that maximizes the welfare,
defined as the number of agents who receive an item of their liking. The market proceeds in rounds
wherein the agents communicate polylogpnq-bit messages about their desired items. How many
rounds of interaction are needed to maximize the welfare to within a constant factor?

This problem can be seen as approximating matchings on the bipartite graph consisting of agents
on one side that have edges to their preferred items on the other side. The model of communication
is also identical to the one in our paper with the crucial difference that only vertices on one side of
the bipartition, namely, the agents, are communicating. In this model, [DNO14] gave an Oplog nq-
round algorithm and ruled out one-round algorithms. [ANRW15] improved the lower bound to
Ωplog lognq rounds and subsequently [BO17] obtained a nearly tight Ωp

logn
log lognq lower bound (similar

lower bounds are also obtained for the more general setting of combinatorial auctions in [A17]).

All these results are restricted to one-sided markets. Our Result 2 generalizes (some of) these
results to two-sided matching markets [RS92], wherein both sides of the market consist of com-
municative agents that know in advance if they make a good match. A canonical example of
two-sided matching markets is college admissions and the celebrated Gale-Shapley algorithm for
stable marriage [GS62]. Another example, perhaps more closely related to the setting of our paper,
is assigning users to servers in a large distributed Internet service [MS15]. Our Result 2 suggests
that even when both sides of the market are able to communicate with a limited bandwidth, at
least a modest amount of interaction is necessary for maximizing welfare (approximately).
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2 Preliminaries

Notation. For an integer t P N, we write rts as a shorthand for the set t1, . . . , tu. Let h : A Ñ B
be an arbitrary function for two sets A,B. For any subset Z Ď A, we use hpZq “ thpzq | z P Zu.
For a tuple X “ pX1, . . . , Xtq and integer i P rts, we define Xăi “ pX1, . . . , Xi´1q (we also define
X´i and Xďi analogously). For a graph G “ pV,Eq and a permutation σ over V , we denote by σpGq

the graph on the same vertex set in which σpuq and σpvq are connected if and only if pu, vq P E.

When there is room for confusion, we use sans-serif letters for random variables (e.g. A) and
the same normal letters for their realizations (e.g. A). For random variables A,B, we use supppAq

as the support of A, HpAq as the Shannon entropy, IpA ;Bq as the mutual information, DpA || Bq

as the KL-divergence, and }A ´ B}tvd as the total variation distance. Necessary background on
information theory, including the definitions and basic tools, is provided in Appendix A.

2.1 Multi-Party Shared Blackboard Model with Vertex-Partitioned Inputs

We work in the multi-party shared blackboard model with vertex-partitioned inputs, also known
as the broadcast congested clique model in the literature. The communication model is defined
formally as follows. Consider a simple graph G “ pV,Eq with one player assigned to each of the
n “ |V | vertices. For convenience, we identify a vertex with its associated player in the rest of this
paper and use the two terms interchangeably. There is a shared blackboard, initially empty, that is
readable and writable by all players. The player associated to a vertex v P V is presented as input
with n, a unique ID of v in the range rns, and IDs of all of v’s neighborsNGpvq “ tu P V | pv, uq P Eu.
Thus, each edge pu, vq P E is shared by both players u and v.

Communication proceeds in r P N synchronous rounds. For each round t P rrs, the players
compute their messages based on their initial input as well as the current content of the blackboard,
and post them to the blackboard simultaneously. In a randomized protocol, the players may also
use both public and private randomness. After the last round, the final content of the blackboard
constitutes the transcript, denoted by Π, of the protocol. Then, a referee computes the output of
the protocol depending on Π (and possibly public randomness of all players and its own private
randomness). The bandwidth of a protocol is defined to be the maximum number of bits ever
communicated by any player in any round.

We are interested in round-communication tradeoff of the following problems:

Maximal Independent Set. We say a protocol computes a maximal independent set (MIS)
with error probability δ P r0, 1s if the output of the referee is a valid MIS of G with probability at
least 1 ´ δ over the randomness of the protocol. The protocol may err by outputting a subset of
vertices which is not independent or not maximal.

Approximate Matching. We say a protocol computes an α-approximate matching (α ě 1) if
the output ΓpΠq of the referee: p1q is always a set of disjoint pairs of vertices; and p2q satisfies
E |ΓpΠq X E| ě µpGq{α, where µpGq is the size of the maximum matching of G and expectation is
taken over the randomness of the protocol. This definition allows the referee to output non-existing
edges as long as they are disjoint but only the correct ones in E are counted. This is a less restrictive
error-model than requiring the algorithm to output a valid matching with certain probability and
our lower bound holds even in this less restrictive setting; see also [ANRW15].
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3 Technical Overview

As our proof is quite dense and technical and involves various information theoretic maneuvers that
are daunting to parse, we use this section to unpack our main ideas and give a streamlined overview
of our approach. We emphasize that this section oversimplifies many details and the discussions
will be informal for the sake of intuition.

The starting point of our approach is a lower bound of [ANRW15] for approximate matchings
in the number-in-hand multi-party communication model. We first give a detailed discussion of
this result as our techniques need to inevitably subsume this work (since our result implies theirs
as well). We then discuss the challenges of extending this result to our model that allows for edge-
sharing and present a technical overview of our work. We stick with approximate matchings in this
overview as it is easier to work with and to compare with [ANRW15].

3.1 A Detailed Overview of [ANRW15]

[ANRW15] considers the same communication setting as ours on bipartite graphs G “ pL \ R,Eq

with the key difference that the players are only associated with vertices in L, and thus each edge
is seen by only a single player. They prove that any protocol that uses polylogpnq communication
per player and computes an Op1q-approximate matching requires Ωplog lognq rounds in this model.

The proof in [ANRW15] is via round elimination: to lower bound polylog pnq-communication
r-round protocols πr, they start with pr « n4{5 independent pr ´ 1q-round “hard” instances
I1, . . . , Ipr , called principal instances. These instances are supported on disjoint sets of « n1{5

vertices each, and are then “embedded” in a single graph G to form an r-round instance I. This in-
stance is such that the first message of πr cannot reveal much information about principal instances
and thus πr cannot solve them in its remaining r ´ 1 rounds given their (inductive) hardness.

R:

L:

I1 I2 I3 I4 I5 I6
J1,1 J1,2 J1,3

Figure 1: An illustration of the lower bound instances of [ANRW15] with parameters fr “ 3 and pr “ 6. The top
right vertices (blue) are used in principal instances, while top left vertices (gray) are fooling instances. The heavy
(blue) edges are from principal instances and the light (gray) edges are from fooling instances – to avoid clutter, only
the edges in fooling instances of the first principal instance are drawn (solid black edges). To find a large matching
in this graph, one needs to find sufficiently large matchings in many of the principal instances.

To limit the information revealed by πr about principal instances, [ANRW15] further “packs”
the graph, for every principal instance i P rprs, with fr « n2{5 fooling instances Ji,˚ :“ Ji,1, . . . , Ji,fr .
This packing ensures that: p1q these fooling instances are supported on a small set of vertices on
the R-side of the bipartition and so πr still has to solve most of the underlying principal instances
in order to solve I; and p2q each player in I “plays” in fr ` 1 instances, consisting of only one
principal instance, while being oblivious to which instance is the principal one. An ingenious
idea in [ANRW15] is that these fooling instances need not actually be hard pr´1q-round instances!
Instead, they form a product distribution where for each vertex v P L, only the marginal distribution
of v is the same under fooling and principal instances. This ensures that in the first round (and
only in this round), v cannot distinguish between principal and fooling instances.
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Round elimination embedding. We can now discuss how [ANRW15] eliminates the first round
of πr and obtains an pr ´ 1q-round protocol σ for solving an pr ´ 1q-round hard instance I‹.

Embedding argument of [ANRW15]:

piq The players in σ sample the first message M p1q of πr using public randomness.

piiq Then, they will sample an index i P rprs uniformly and let Ii “ I‹ in the instance I.

piiiq Next, they sample Ji,1, . . . , Ji,fr conditioned on M p1q and Ii “ I‹ using private randomness.
This is a non-trivial sampling process which, on a high level, is doable only because fooling
instances are product distributions (with only the marginals matching principal ones).

More specifically, each player v independently sample its own input Ji,˚pvq in all the fooling
instances, conditioned on only its actual input Iipvq in its principal instance Ii, and M p1q.

pivq Finally, the players of σ sample the remaining pr ´1 principal instances I´i and ppr ´1q ¨fr
fooling instances J´i,˚ conditioned on M p1q to have a complete instance I.

At this point, the players in σ already have the first message M p1q of πr as well as inputs of
all underlying instances without any communication. So, they can continue running πr from its
second round, by each player of σ on I‹ communicating the messages of corresponding player of πr
in Ii, and simulating messages of πr for players outside Ii with no communication. As πr will also
need to solve Ii for a random i P rprs, this gives a pr ´ 1q-round protocol σ for I‹ “ Ii.

At a high level, the correctness of this approach can be argued as follows:

• The right distribution of all underlying variables for πr can be expressed as (by chain rule):

Mp1q ˆ pIi | Mp1qq ˆ pJi,˚ | Ii,M
p1qq ˆ pI´i, J´i,˚ | Ji,˚, Ii,M

p1qq. (1)

• The distribution sampled from in the protocol σ on the other hand is:

Mp1q
loomoon

publicly

ˆ Ii
loomoon

input

ˆp
ą

v
Ji,˚pvq | Iipvq,Mp1q

looooooooooooomooooooooooooon

privately

q ˆ pI´i, J´i,˚ | Mp1qq
looooooooomooooooooon

publicly

. (2)

Let us show that these distributions are op1q-close in total variation distance, which implies
that πr also works (almost) as good on sampled instances (see Fact A.5), giving us the desired
pr ´ 1q-round protocol σ for I‹. Here, the first terms are the same. For the second terms,

}Ii ´ pIi | Mp1qq}2tvd ď IpIi ;Mp1qq ď
1

fr ` 1
¨ IpJi,˚, Ii ;M

p1q

i q ď op1q. (3)

In Eq (3), the first inequality is standard (see Fact A.4 and Fact A.8). The second inequality
uses the fact that the players in Ii in πr are oblivious to origins of their edges in Ii vs. Ji,˚ “

Ji,1, . . . , Ji,fr (by the marginal indistinguishability of these instances); thus, the information revealed

by their messages M
p1q

i is “spread” over these instances; also, other players of πr cannot reveal any
information about these instances as they do not see them. The final inequality holds because the
messages communicated by « n1{5 players in Ii have collective size much smaller than fr « n2{5.

Finally, the third and fourth terms in Eq (1) and (2) also have the same distributions in both
cases, which at a high level, follows from the rectangle property of communication protocols: for
instance, since Ji,˚puq and Ji,˚pvq were independent originally, they remain independent even after
conditioning on M p1q – this is sufficient to show the equivalence of corresponding distributions.
This concludes the closeness of these distributions and our overview of the work of [ANRW15].
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3.2 Our Approach and New Ideas

The very first obvious challenge in using construction of [ANRW15] in our model is that it can be
easily solved in just a single round once both sides of the bipartite graph can speak (the maximum
matching of instances created is incident on vertices with degree one in R who can just communicate
their edge directly on the blackboard). This brings us to the first and most obvious of our ideas.

3.2.1 Idea One: Symmetrizing the Input Distribution

The first step is to symmetrize the input distribution in [ANRW15]. Basically, to create a hard
r-round instance, we again start with pr ´ 1q-round hard principal instances I1, . . . , Ipr . We then
also add fr sets of vertices F1, . . . ,Ffr called the fooling blocks and use vertices on both sides of
each principal instance Ii, called principal block Pi, and the fooling blocks to form fooling instances
Ji,1, . . . , Ji,fr – as before, these fooling instances are not hard pr ´ 1q-round distributions, but only
that the input of principal blocks match the “right” distribution marginally.

F1 F2 F3

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

I1 I2 I3 I4 I5 I6
J1,1

J1,1

J1,2

J1,2

J1,3

J1,3

Figure 2: An illustration of our lower bound instances with parameters fr “ 3 and pr “ 6. The top and bottom
vertices (blue) are principal blocks, while middle left vertices (gray) are fooling blocks. The heavy (blue) edges are
from principal instances and the light (gray) edges are from fooling instances – to avoid clutter, only the edges in
fooling instances of the first principal instance are drawn (solid black edges). Note that fooling blocks participate
only in fooling instances while principal blocks participate both in principal and fooling instances.

This step of symmetrizing the input distribution is a straightforward extension of [ANRW15],
and we claim no novelty in this part. The interesting part is how to analyze this distribution in our
model in light of the following key differences from [ANRW15]: (1) in addition to principal blocks,
vertices in F1, . . . ,Ffr can now also communicate; and (2) there is an edge-sharing aspect in our
model; in particular, sharing of edges between fooling blocks and principal blocks allows fooling
blocks to communicate even about edges directly inside principal instances (!), and yet fooling
blocks themselves are not even fooled anymore in the distribution. We discuss our approach for
handling these parts in the following three subsections.

3.2.2 Idea Two: Bounding Revealed Information on Average

Our goal as before is to do a round elimination argument and embed an pr ´ 1q-round instance
inside an r-round one. Our embedding argument in the first round is going to be the same as that

of [ANRW15], except that we also sample the first message M
p1q

F of fooling blocks using public
randomness (there are no such players in [ANRW15]). We will then have all the messages of round

one, namely, M p1q “ pM
p1q

P ,M
p1q

F q, as well as edges incident on the principal block Pi, namely,
Ii, Ji,˚, inside I without having done any communication.

Specifically, we design a protocol σ that given an pr ´ 1q-round instance I‹, creates an r-round
instance I and uses a polylogpnq-communication r-round protocol πr on I to solve I‹ as follows.
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Our embedding argument – first round:

piq Players in σ sample the first message M
p1q

P ,M
p1q

F of principal and fooling blocks publicly.

piiq Then, they will sample an index i P rprs uniformly and let Ii “ I‹ in the instance I; thus,
players in σ will play the role of principal block Pi in πr from now on.

piiiq Next, they sample Ji,˚ conditioned only on M
p1q

P and Ii “ I‹ using private randomness by

each vertex v of σ independently sampling Ji,˚pvq only conditioned on Iipvq,M
p1q

P .

Let us argue that the joint distribution of obtained random variables at this point is close to
that of the actual distribution induced by πr (similar to Eq (1) and (2) for [ANRW15]):

• The right distribution of the underlying variables for πr can be expressed as:

pM
p1q

P ,M
p1q

F q ˆ pIi | M
p1q

P ,M
p1q

F q ˆ pJi,˚ | Ii,M
p1q

P ,M
p1q

F q. (4)

• The distribution sampled from in the protocol σ is:

pM
p1q

P ,M
p1q

F q
looooomooooon

publicly

ˆ Ii
loomoon

input

ˆp
ą

v
Ji,˚pvq | Iipvq,M

p1q

P
looooooooooooomooooooooooooon

privately

q. (5)

The first terms are the same. For the second terms, similar to Eq (3), we have,

}Ii ´ pIi | M
p1q

P ,M
p1q

F q}2tvd ď IpIi ;M
p1q

P ,M
p1q

F q “ IpIi ;M
p1q

P q ` IpIi ;M
p1q

F | M
p1q

P q, (6)

using the chain rule of mutual information (Fact A.1-(6)) in the equality. The first term in RHS
above can still be bounded by op1q by the same logic that principal blocks are oblivious to identity
of principal instance edges in their input. But such a statement is not true about fooling blocks in
the second term, as those vertices themselves are not fooled. Consider the following 1-bit protocol.

Example. Suppose we direct each edge of the graph randomly to one of its endpoints using
public randomness. Principal blocksa send the XOR of their outgoing edges and fooling blocks
send the XOR of their incoming edges incident on Ji,˚ for some i P rprs. Taking the XOR of

messages sent by Pi, M
p1q

P,i , and fooling blocks, M
p1q

F , reveals XOR of all edges inside Ii as each
such edge will be outgoing for exactly one endpoint and edges in J´i,˚ cancel out in this XOR.

This reveals one bit of information about Ii, making IpIi ;M
p1q

F | M
p1q

P q ě 1. (Ideas like this are
used in actual distributed sketching protocols, e.g., in [AGM12a,KLM`14].)

aA player can know whether it is principal or fooling simply based on its degree.

Instead, we show that fooling blocks cannot reveal much about Ii for an average i P rprs:

E
i
rIpIi ;M

p1q

F | M
p1q

P qs ď
1

pr
¨ IpI1, . . . , Ipr ;M

p1q

F | M
p1q

P q ď op1q, (7)

where in the second inequality we used the fact that the polylogpnq-bit messages of all fr « n2{5

fooling blocks of size « n1{5 cannot reveal more than opprq information as pr « n4{5 (this idea is
similar to the “public-vs-private” vertices of [AKO20] for one-round lower bounds in the distributed
sketching model). This allows us to bound the LHS of Eq (6) on average for i P rprs. A similar
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type of argument can be applied to the third terms also to “drop” the conditioning on M
p1q

F , while
changing the distribution only by op1q in total variation distance. This implies that

E
i

}pJi,˚ | Ii,M
p1q

P ,M
p1q

F q ´ pJi,˚ | Ii,M
p1q

P q}tvd ď op1q.

By [ANRW15], the second distribution here matches the product distribution sampled privately by
the players (the third term of Eq (5)). This is now sufficient for simulating the first round of πr
(almost) faithfully with no communication as i P rprs is also chosen randomly in the embedding5.

It is tempting to consider our job done as we successfully simulated the first round of πr with no
communication, and thus we eliminated a round. But in fact, this is just the start of the unique
challenges of our model. Unlike [ANRW15], it is not clear how we can continue running πr
in the subsequent rounds: in σ, we have only decided on the input of principal block Pi in I –
the input to other principal blocks and all fooling blocks are still undecided, and so πr is not well
defined for the subsequent rounds. We now need to deviate entirely from [ANRW15] to handle this.

3.2.3 Idea Three: Partial-Input Embedding and Non-Simultaneous Simulation

To continue running πr from its second round onwards, we should be able to simulate all players
in I, not only the principal block Pi responsible for Ii “ I‹. Let us consider a standard approach.

Standard approach for handling remaining instances. The standard approach is to sample
input of remaining players in πr using public randomness and let the “actual” players of σ sim-
ulate them “in their head” with no communication (this corresponds to step pivq of embedding
of [ANRW15]). This approach fails completely for us. Consider the fooling blocks first: at this
point in the protocol σ, the players have sampled Ji,˚ privately which was necessary in the first

round (given the correlation of Ji,˚pvq with Iipvq via M
p1q

P and that Iipvq was only known to v).
But given that the other endpoints of these edges are in fooling blocks, this means that no single
player of σ can even know the edges incident on a single vertex in fooling blocks, leaving no player
to simulate players of πr in fooling blocks (or sampling rest of their inputs).

A more subtle issue happens when it comes to the rest of principal blocks, which on the surface,
should be fine given they share no edges with principal block Pi. To be able to sample instances
I´i, J´i,˚ publicly in the last step of embedding, we need the following two distributions to be close:

pI´i, J´i,˚ | Ji,˚, Ii,M
p1q

P ,M
p1q

F q
loooooooooooooooooomoooooooooooooooooon

right distribution

vs. pI´i, J´i,˚ | M
p1q

P ,M
p1q

F q
looooooooooooomooooooooooooon

“input-sampling”-protocol distribution

.

Yet, even a 1-bit communication protocol can turn these two distributions far from each other:

Example. Suppose principal blocks remain silent and each fooling block sends the XOR of

their incident edges. Then conditioned on the messages M
p1q

F , once we additionally know Ji,˚,
we learn the parity of edges in J´i,˚ which changes the distribution of J´i,˚ by Ωp1q.

All in all, when it comes to our edge-sharing model, the standard approach of sampling the
remaining instances inherently fails: piq fooling blocks are directly incident on edges in Ji,˚ which
are part of the input to players in Pi in πr; piiq worse yet, the messages of fooling blocks even
correlate inputs of the rest of principal vertices with those of Pi, meaning that all principal players
can reveal information about Ii not only the ones in Pi that are directly incident on it.

5 [ANRW15] also works with a random i P rprs but only to ensure that the underlying instance Ii needs to be
solved by πr as most but not all principal instances are solved in πr – all information-theoretic guarantees for πr

mentioned for the embedding of [ANRW15] hold for arbitrary i P rprs unlike ours.
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Our approach for handling remaining instances. A key idea we use in the rest of our protocol
is what we call partial-input embedding: we only generate the rest of the input for players Pi

and for all the remaining players, we will simulate them solely by sampling their messages without
ever committing to their input. Thus, our embedding keeps going even beyond the first round as
we will need to generate the messages of remaining players throughout the entire execution of πr.

In particular, after running the embedding part of the first round, for any round t ą 1, the
players in the protocol σ will simulate the t-th round of πr as follows:

Our embedding argument – after first round:

piq The players in σ communicate messages of Pi using the current content of the blackboard

M pătq, and their inputs Ji,˚, Ii sampled for the first round, and send the messages M
ptq
P,i.

piiq After this message is revealed, the players use public randomness to sample the t-th message

of remaining players M
ptq
´i :“ pM

ptq
P,´i,M

ptq
F q conditioned on public knowledge M pătq,M

ptq
P,i.

It is worth pointing out a rather strange aspect of this embedding. In πr itself, the messages

M
ptq
P,i and M

ptq
´i are communicated simultaneously with each other. Yet, in our simulation of πr, we

are crucially using messages principal block Pi to help us generate the remaining messages! We will
discuss the necessity of this non-simultaneous simulation of a round in the next subsection.

As before, let us examine the underlying distributions in the first t rounds for t ą 1:

• The right distribution of the underlying variables up until this point in πr is:

pMpătq, Ji,˚, Iiq
looooooomooooooon

prior rounds

ˆpM
ptq
P,i | Mpătq, Ji,˚, Iiq ˆ pM

ptq
´i | M

ptq
P,i,M

pătq, Ji,˚, Iiq. (8)

• The distribution sampled from in the protocol σ is:

pMpătq, Ji,˚, Iiq
looooooomooooooon

prior rounds

ˆ p
ą

v
M

ptq
P,ipvq | Mpătq, Ji,˚pvq, Iipvqq

looooooooooooooooooooomooooooooooooooooooooon

communication

ˆ pM
ptq
´i | M

ptq
P,i,M

pătqq
looooooooooomooooooooooon

publicly

. (9)

The first terms can be shown to be op1q-close inductively (with base case being success of our

simulation in the first round). The second terms are identical since the messages M
ptq
P,i in πr are

simply generated simultaneously by each vertex v P Pi looking at its own neighborhood Ji,˚pvq, Iipvq

and the blackboard M pătq. For the last terms to be close, similar to Eq (3) and (6), we need to

bound the mutual information between M
ptq
´i and Ji,˚, Ii at this point of the protocol, namely:

}pM
ptq
´i | M

ptq
P,i,M

pătqq ´ pM
ptq
´i | M

ptq
P,i,M

pătq, Ji,˚, Iiq}2tvd ď IpMptq
´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq. (10)

Yet, while the RHS of this equation may seem similar to that of Eq (7), this is a much more
challenging term to bound as we shall discuss in the next subsection. For now, we only mention
that our proof eventually bounds this information term on average for i P rprs with op1q which
allows us to continue the simulation.

Having shown the op1q-closeness of the distribution of πr and the one used in our embedding,
the proof ends as follows. The players of σ can continue running πr by playing the role of principal
block Pi in πr explicitly with proper communication and keep sampling messages of remaining
players as done in the embedding. At the end of the last round, they will obtain an almost faithful
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simulation of the entire protocol πr which allows them to solve I‹ “ Ii as πr likely needs to solve Ii
for a random i P rprs. This will then give us an pr ´ 1q-round protocol for I‹ which in turn allows
us to use the inductive hardness of these instances to infer the lower bound for r-round protocols.

3.2.4 Idea Four: Bounding Gradual Correlation of Players’ Inputs

The main technical part of our proof is to bound the information term in the RHS of Eq (10),
namely, the information other players can reveal about the input of principal block Pi in a single

round. By the definition of M
ptq
´i “ pM

ptq
P,´i,M

ptq
F q and chain rule (Fact A.1-(6)), we have,

RHS of Eq (10) “ IpMptq
P,´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq ` IpMptq
F ; Ji,˚, Ii | M

ptq
P ,Mpătqq. (11)

Recall that by the construction of the instance I, we have Ji,˚, Ii K J´i,˚, I´i. By the rectangle
property of communication protocols, if the input of players are independent of each other, then
even after communication, their corresponding input remains independent. Assuming we have this
conditional independence here, one can easily prove both of the following properties:

IpMptq
P,´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq “ 0, (by Fact A.1-(2))

E
i
rIpMptq

F ; Ji,˚, Ii | M
ptq
P ,Mpătqqs ď

1

pr
¨ IpMptq

F ; J, I | M
ptq
P ,Mpătqq ď op1q. (similar to Eq (7))

So then what is the problem here? Short answer: edge-sharing between the players!

While Ji,˚, Ii K J´i,˚, I´i is true initially, having fooling blocks that are able to see (subsets of)
both these sets from the other endpoints, means that their messages can correlate these inputs as

well. In other words, it can be that Ji,˚, Ii M J´i,˚, I´i | M
pătq
F already from the second round. What

is even more problematic is that even principal blocks in Pi and P´i will see messages of these
fooling blocks, so after the second round, even messages of other principal blocks correlate their

originally independent inputs – more formally, this means that Ji,˚, Ii M J´i,˚, I´i | M
ptq
P (with no

direct conditioning on fooling blocks’ messages) can also happen after the second round!

The following example helps to motivate our approach.

Example. Consider the following two protocols:

• Protocol 1: in the second round, every principal block except for Pi sends XOR of their
edges to fooling blocksa J´i,˚, while fooling blocks send XOR of all their edges in J .

• Protocol 2: in the second round, every principal block sends XOR of their edges in J while
fooling blocks send XOR of all their edges in J .

In the first protocol, conditioned on M
p2q

F , the messages M
p2q

P,´i reveal the XOR of edges in Ji,˚,

and thus the first mutual information term in Eq (11) is 1 bit (note that here M
p2q

P,i “ H).

In the second protocol, while M
p2q

P,´i,M
p2q

F still reveal the XOR of Ji,˚, given that M
p2q

P,i is already
this XOR itself, the mutual information term in Eq (11) is 0 bit.

aIdentity of fooling blocks can be known to everyone in the second round.

This example shows that one can have protocols that for some values of i P rprs, principal blocks
in P´i can reveal non-trivial information about inputs of a principal block Pi also. But the given
protocol (Protocol 1) is quite sensitive to the choice of index i, and for other indices j ‰ i, this
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revealing of information no longer happens in this specific protocol. On the other hand, making
the protocol less sensitive to the choice of i by “symmetrizing” the actions of players breaks its
information-revealing property as players in Pi themselves will reveal the information offered by
others. We exploit this by bounding the first term of Eq (11) on average for i P rprs. Note that this
is precisely the step that our non-simultaneous simulation of a round, alluded to in Section 3.2.3,

kicks in: the messages of M
p2q

P,´i are still correlated heavily with Ji,˚, Ii even in Protocol 2; but

conditioning on M
p2q

P,i allows us to “break” this correlation and thus generate these messages even
in the absence of public knowledge of Ji,˚, Ii. We argue this is true for all protocols in the following.

To continue, by using chain rule (Fact A.1-(6)) on the first term of Eq (11), we get that,

IpMptq
P,´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq “ IpMpătq,M
ptq
P ; Ji,˚, Iiq ´ IpMpătq,M

ptq
P,i ; Ji,˚, Iiq (12)

where RHS is all the information revealed by the protocol about Ji,˚, Ii minus the information re-
vealed already by players Pi and content of the blackboard. Now, in the absence of any conditioning,
one can use the fact that Ji,˚, Ii K J´i,˚, Ii to bound:

First term of Eq (12) on average: E
i
rIpMpătq,M

ptq
P ; Ji,˚, Iiqs ď op1q `

1

pr
¨ IpMpďtq

P ; J, I | M
pătq
F q,

i.e., argue that fooling blocks can only reveal op1q bits about the input of an average principal block
and the rest is the average information revealed by principal blocks themselves about the entire
input. The second term of Eq (12) is lower bounded by (via a simple application of chain rule and
non-negativity of mutual information),

Second term of Eq (12) on average: E
i
rIpMpătq,M

ptq
P,i ; Ji,˚, Iiqs ě E

i
rIpMpďtq

P ; Ji,˚, Iiq | M
pătq
F s.

Last step of the proof is to bound the second terms of the two equations above by showing that

IpMpďtq
P ; J, I | M

pătq
F q ď

pr
ÿ

i“1

IpMpďtq
P ; Ji,˚, Ii | M

pătq
F q.

In words, this means that the total information revealed by principal blocks about the entire instance
is bounded by the sum of the information revealed by them about each individual principal block’s
input Ji,˚, Ii for i P rprs after we condition on the messages of fooling blocks. This step requires

a detailed calculation that at its core boils down to the fact that once we condition on M
pătq
F ,

we can “isolate” the information revealed by each message M
ptq
P,i solely to Ji,˚, Ii – in other words,

the principal blocks cannot generate correlation with other principal blocks’ inputs on their own
beyond what is already forced by fooling blocks.

Plugging in these bounds all together in Eq (12) bounds the RHS by op1q. A similar exercise,
allows us to bound the second term in Eq (11) by op1q also, which bounds the total information
revealed about Ji,˚, Ii by players other than the ones in Pi by op1q. This concludes the op1q bound
on the mutual information term in Eq (10), and implies the correctness of our simulation.

To conclude, we managed to simulate all rounds of πr almost faithfully by continuing the
embedding throughout the protocol and as a result solve the underlying instance I‹ in pr ´ 1q

rounds using a protocol with polylogpnq-size messages. We can now repeat this argument for
pr ´ 1q-round protocols and since in each recursion, the size of underlying instances drops by a
factor of « n1{5, we will end up with a non-trivial instance for any r “ oplog lognq that needs to
be solved by a 0-round protocol – a contradiction that implies our desired lower bound.
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4 A Hard Distribution for Maximal Independent Set

The following is a formal restatement of Result 1.

Theorem 1 (Result 1, formal). For r ě 0 and any r-round multi-party protocol (deterministic
or randomized) in the shared blackboard model for computing a maximal independent set on n-
vertex graphs with constant error probability, there must exist some vertex communicating at least
Ωpn1{20r`1

q bits in some round.

In this section, we give a recursive definition of the hard distribution for maximal independent
set that we are going to use for our proofs in Section 5. The base case is the following hard

distribution Dp0q

MIS for protocols without any communication.

Distribution 1. The hard distribution Dp0q

MIS for protocols computing a maximal independent
set without any communication.
Parameters: bandwidth k, number of vertices n0 “ 2k.

1. Let E be an arbitrary, fixed perfect matching over n0 vertices.

2. For e P E, drop e with probability 1{2 independently.

3. Return the graph G sampled above.

An immediate observation about Dp0q

MIS is that any valid maximal independent set uniquely
determines the set of matching edges that is dropped from E: for e “ pu, vq P E, e is dropped from
E if and only if both of u, v are present in the maximal independent set. So for any deterministic

referee, it can output a valid maximal independent set with probability at most 2´k over Dp0q

MIS if it
gets no information from the vertices. Note that this distributional bound naturally generalizes to
randomized referees by an averaging argument, which is summarized in the following lemma.

Lemma 4.1 (Base Case). Any 0-round protocol for computing a maximal independent set can only

succeed with probability 2´k over Dp0q

MIS.

Building upon Dp0q

MIS, we construct the r-round hard distribution Dprq

MIS recursively. Assume we

are given the pr ´ 1q-round hard distribution Dpr´1q

MIS over nr´1 vertices. The construction consists

of two steps: first defining an auxiliary “half distribution” Hprq

MIS and then using Hprq

MIS to get the

desired Dprq

MIS, as shown below. The “half instances” roughly correspond to the hard instances we
talk about in Section 3. See Figure 3 for an illustration.
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FU,1FU,2

PU,1PU,2PU,3PU,4

V

FV,1 FV,2

PV,1 PV,2 PV,3 PV,4

Figure 3: An illustration of our lower bound instances for maximal independent set with parameters f̂r “ 2 and
p̂r “ 4. The bottom vertices (blue) are principal blocks, while top vertices (gray) are fooling blocks. The heavy
(solid black) edges fully connect fooling vertices from two “half instances” (yellow boxes). Note that these are the
only edges across two “half instances”. To find a maximal independent set in this graph, one needs to find maximal
independent sets in all principal instances of at least one of “half instances”.

Distribution 2. The “half distribution” Hprq

MIS over graphs with vertex set V (r ě 1).

Parameters: bandwidth k, number of fooling blocks f̂r “ k6 ¨ n3
r´1, number of principal

blocks p̂r “ k6 ¨ n3
r´1 ¨ f̂r, number of vertices n̂r “ pnr´1 ´ 1q ¨ f̂r ` nr´1 ¨ p̂r, and vertex set V

with |V | “ n̂r.

1. Partition V into disjoint sets of vertices P1, . . . ,Pp̂r ,F1, . . . ,Ff̂r
such that @i P rp̂rs : |Pi| “

nr´1 and @j P rf̂rs : |Fj | “ nr´1 ´ 1. Define PpV q :“
Ť

iPrp̂rs Pi and FpV q :“
Ť

jPrf̂rs
Fj .

2. For i P rp̂rs, sample an independent instance of Dpr´1q

MIS on Pi.

3. For u P PpV q and j P rf̂rs, sample an independent instance of Dpr´1q

MIS on Fj Y tuu and
only keep the edges adjacent to u (dropping all the edges between vertices in Fj).

4. Return the graph G sampled above.

Distribution 3. The hard distribution Dprq

MIS for r-round protocols computing a maximal in-
dependent set (r ě 1).
Parameters: bandwidth k, number of fooling blocks fr “ 2f̂r, number of principal blocks
pr “ 2p̂r, number of vertices nr “ 2n̂r.

1. Let U and V be two disjoint sets of vertices, each of size n̂r. Sample two independent

instances of Hprq

MIS on U and V .

2. For u P FpUq and v P FpV q, add an edge pu, vq.

3. Let G1 be the graph sampled above. Sample a uniformly random permutation σ over
U Y V and return G “ σpG1q.

Remark 4.2. A few remarks are in order.
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1. In the construction of the “half distribution” Hprq

MIS, we call the sets of vertices P1, . . . ,Pp̂r the
principal blocks, and the sets of vertices F1, . . . ,Ff̂r

the fooling blocks. All vertices in PpV q

and FpV q are the principal vertices and the fooling vertices, respectively.

2. With a slight abuse of notation, we write σpP1q, . . . , σpPprq to denote all pr principal blocks
of σpU Y V q, and similarly σpF1q, . . . , σpFfrq for all fooling blocks, in the construction of the

hard distribution Dprq

MIS.

3. It is not hard to see that nr ď k20
r`1

for r ě 0. Indeed, n0 “ 2k ď k20 and by induction,
the number of fooling blocks is f̂r ď k6 ¨ k3¨20r ď k9¨20r , the number of principal blocks is
p̂r ď k6 ¨ k3¨20r ¨ f̂r ď k18¨20r , and thus nr ď 2 ¨ 2 ¨ k20

r
¨ p̂r ď k20

r`1
for r ě 1. Throughout the

paper we assume the bandwidth parameter k is at least some sufficiently large constant.

One important property about Dprq

MIS, which justifies our use of two “half instances”, is that any
valid maximal independent set for G must also be maximal for the induced subgraph on either

σpPpUqq or σpPpV qq. The implication is that solving a hard instance drawn from Dprq

MIS requires to

solve at least one of the “half instances” drawn from Hprq

MIS. Formally, we have the following claim.

Claim 4.3. Let Γ be any valid maximal independent set for a graph G drawn from Dprq

MIS. Then at
least one of the following must hold:

1. Γ X σpPpUqq is a valid maximal independent set for the induced subgraph on σpPpUqq.

2. Γ X σpPpV qq is a valid maximal independent set for the induced subgraph on σpPpV qq.

Proof. Without loss of generality we assume σ is simply the identity permutation throughout the
proof. Suppose for now that Γ contains one fooling vertex f P FpUq. Note that our construction
in Distribution 3 fully connects FpUq to FpV q so none of FpV q is contained in Γ. Furthermore,
those are the only edges between the two “half instances” on U and V . Altogether, it shows PpV q

has no neighbor chosen by Γ. Since Γ is a valid maximal independent set for G, its restriction to
PpV q, i.e. Γ X PpV q, must be a valid maximal independent set for the induced subgraph on PpV q.

The case is symmetric when Γ contains one fooling vertex f P FpV q. It is also not hard to see
that both statements in the claim must hold if none of the fooling vertices is contained in Γ. This
concludes the proof.

Note that our construction in Distribution 3 has no edge between principal blocks, so Claim 4.3
further implies that solving an r-round instance requires to solve at least half of the principal
pr ´ 1q-round instances.
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5 The Lower Bound for Maximal Independent Set

We prove the following theorem in this section. Theorem 1 is a straightforward corollary by an
averaging argument, namely the easy direction of Yao’s minimax principle [Yao77]. Note that by

the third statement of Remark 4.2, nr ď k20
r`1

so we know k ě n
1{20r`1

r .

Theorem 2. For r “ oplog kq, any r-round protocol for computing a maximal independent set that
communicates at most k bits per vertex in every round can only succeed with probability less than

0.1 over Dprq

MIS.

Our proof to Theorem 2 for r-round protocols in general is by repeatedly applying the following
round elimination lemma.

Lemma 5.1 (Round Elimination). For r “ oplog kq and δ P r0, 1s, if there exists an r-round
protocol for computing a maximal independent set that communicates at most k bits per vertex

in every round and succeeds with probability δ over Dprq

MIS, then there also exists an pr ´ 1q-round
protocol for computing a maximal independent set that communicates at most k bits per vertex in

every round and succeeds with probability δ{2 ´ 1{nr´1 over Dpr´1q

MIS .

Before proving Lemma 5.1, which is the main part of this section, we first show it easily
implies Theorem 2.

Proof of Theorem 2. Suppose for the purpose of contradiction that there exists an r-round protocol
that communicates at most k bits per vertex in every round and that has success probability 0.1 over

Dprq

MIS. Applying Lemma 5.1 for r times, we obtain a 0-round protocol having success probability

0.1

2r
´

ÿ

tPrrs

1

2t´1 ¨ nt´1
ě

0.1

2r
´

1

n0
¨

ÿ

tPrrs

1

2t´1
(as nt´1 is increasing)

ě
0.1

2r
´

2

n0

“
1

kop1q
,

over Dp0q

MIS, where the last step follows from the assumption r “ oplog kq. Recall that n0 “ 2k so
the second term above is Θp1{kq and can be ignored. However, the existence of such a 0-round
protocol contradicts the lower bound of Lemma 4.1. This concludes the proof of the theorem.

We prove Lemma 5.1 in the rest of this section. To this end, fix any r-round protocol π on nr

vertices that communicates at most k bits per vertex in every round and succeeds with probability δ

over Dprq

MIS. By an averaging argument, we may assume without loss of generality π is deterministic.
Before proceeding to the actual proof, let us first define the following random variables with respect

to π when its input is drawn from Dprq

MIS.

• Σ: the random permutation σ over nr vertices;

• Bi: the edges within the i-th principal block ΣpPiq for i P rprs;

• Ti: the edges between the i-th principal block ΣpPiq and all fooling vertices ΣpFpU Y V qq for
i P rprs;
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• Gi :“ pBi,Tiq: all edges incident to the i-th principal block ΣpPiq for i P rprs (there is no edge
between principal blocks by our construction in Distribution 3);

• G :“ pG1, . . . ,Gprq: the set of all sampled edges (the edges between ΣpFpUqq and ΣpFpV qq

are always present and thus not included here; there is no other edge between fooling blocks
by our construction in Distribution 3);

• M
ptq
P,i: the messages sent by the i-th principal block ΣpPiq in the t-th round for i P rprs and

t P rrs;

• M
ptq
P :“ pM

ptq
P,1, . . . ,M

ptq
P,pr

q: the messages sent by all principal blocks in the t-th round for
t P rrs;

• M
ptq
F : the messages sent by all fooling blocks in the t-th round for t P rrs;

• Mptq :“ pM
ptq
P ,M

ptq
F q: all messages sent in the t-th round for t P rrs.

Note that Mpătq is exactly the content of the blackboard at the beginning of the t-th round. For
any vertex u P ΣpPiq, we further define Bipuq as the subset of Bi representing only edges incident

to u. Tipuq,Gipuq are similarly defined. Let M
ptq
P,ipuq be the message sent by u P ΣpPiq in the t-th

round. Fix any Σ, M
ptq
P,i is a function of Mpătq and Gi while M

ptq
P,ipuq is only a function of Mpătq and

Gipuq. After all r rounds of communication, the referee has to output the solution based solely on
Mpďrq since we have assumed π to be deterministic.

Algorithm 1 presents the complete simulation protocol for round elimination, formalizing our
discussion in Section 3. At a high level, we construct the following pr ´ 1q-round (randomized)
protocols τ1, . . . , τpr on nr´1 vertices that are essentially simulating π on nr vertices. At the end of
the proof, we will show there exists some index i˚ P rprs such that τi˚ simulates π sufficiently well

and is able to solve instances of Dpr´1q

MIS with the desired probability.
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Algorithm 1. The pr´ 1q-round protocol τi, for any fixed i P rprs, simulating π for computing
a maximal independent set.

1. Sample Σ uniformly at random using public randomness. Identify the vertices of τi with
ΣpPiq in π, and with a slight abuse of notation, any vertex u of τi is used interchangeably
with its counterpart in ΣpPiq

a. In addition, each vertex u of τi identifies its input given
in τi with Bipuq in π.

2. Do the following without any communication:

(a) Sample M
p1q

P,i, conditioned on Σ, using public randomness.

(b) For each vertex u of τi, independently sample Tipuq, conditioned on Bipuq,M
p1q

P,i,Σ,
using private randomness.

(c) Sample M
p1q

P,´i, conditioned on M
p1q

P,i,Σ, using public randomness.

(d) Sample M
p1q

F , conditioned on M
p1q

P ,Σ, using public randomness.

3. For every t P r2, rs, do the following with one round of communication:

(a) For each vertex u of τi, generate and broadcast M
ptq
P,ipuq as in π, based on

Gipuq,Mpătq,Σ.

(b) Sample M
ptq
P,´i, conditioned on Mpătq,M

ptq
P,i,Σ, using public randomness.

(c) Sample M
ptq
F , conditioned on Mpătq,M

ptq
P ,Σ, using public randomness.

4. Let Γ be the output of the referee of π when given Mpďrq. The referee of τi finally outputs
Γ X ΣpPiq.

aAt a high level, the vertices of τi are going to play the role of the i-th principal block in π and jointly simulate
all other vertices of π using public randomness. That is, they proceed with π as if they were ΣpPiq.

As discussed in Section 3, to prove Lemma 5.1, our goal is to find an index i˚ P rprs such
that τi˚ simulates π almost perfectly. Concretely, it is sufficient to have the distribution of the
final blackboard Mpďrq sampled by τi˚ be close to the true distribution generated by π. These two
distributions would be identical if τi˚ were able to do the sampling process in Algorithm 1 such that
each random variable newly sampled in any step is drawn conditioned on all previously sampled
random variables. Unfortunately, this is impossible because Bi˚ is the input to τi˚ , which is not
publicly known by all vertices: each vertex is only given the edges incident to it, essentially its “local
view”. What τi˚ can actually do is to sample new random variables conditioned on all random
variables previously sampled using public randomness. The hope is that the joint distribution of
all sampled random variables is not affected by much as τi˚ drops conditioning on Bi˚ as well as
all random variables sampled using private randomness, namely Ti˚ in Algorithm 1. In fact, we
will show this is true on average over all possible i P rprs, and thus it is sufficient to pick the best
index as i˚.

Table 1 makes a detailed comparison between the sampled distribution by τi and the true
distribution in π. Note that Bi is given as the input to τi and by our construction in Distribution 3,
it has exactly the same distribution as any principal block in π.

19



Sampled r.v.

Conditioning r.v. Distribution
Sampled distribution by τi True distribution in π

Bi

M
p1q

P,i Σ Bi,Σ

Tipuq Bipuq,M
p1q

P,i,Σ

Ti Bi,M
p1q

P,i,Σ

M
ptq
P,´i Mpătq,M

ptq
P,i,Σ Gi,M

pătq,M
ptq
P,i,Σ

M
ptq
F Mpătq,M

ptq
P ,Σ Gi,M

pătq,M
ptq
P ,Σ

Table 1: Sampled distribution by τi v.s. True distribution in π

Remark 5.2. A couple of remarks about Algorithm 1 and Table 1.

1. In Algorithm 1, Tipuq is sampled independently by each vertex u using private randomness.

This means the sampled Ti in fact follows a product distribution, conditioned on Bi,M
p1q

P,i,Σ.
We will prove in Lemma 5.3 that this generates precisely the true distribution of Ti.

2. Recall that π is assumed to be deterministic so M
ptq
P,i is a function of Gi,M

pătq,Σ. More

specifically, M
ptq
P,ipuq is a function of Gipuq,Mpătq,Σ for each vertex u. τi indeed generates

them using this approach as shown in Algorithm 1.

Our next step is to prove every pair of the conditional distributions are close. At the end, we
will put them together to show the final blackboards Mpďrq are also close. The comparison between
the conditional distributions is split into three parts. Lemma 5.3 proves we can indeed sample

the first round message M
p1q

P,i publicly and thus eliminate the first round of communication. The
first statement of Remark 5.2 is made precise by Lemma 5.4. A similar conditional decomposition
lemma is established in [ANRW15]. Lemma 5.5 formalizes the intuition of directly sampling the
messages of all other blocks.

With a slight abuse of notation, we may also use ă u to denote all vertices v ă u in ΣpPiq for
some i P rprs that can be inferred from context. Similarly, ´u is used as a shorthand for ΣpPiqz tuu.

Lemma 5.3. Let ϵr “ r{pk4 ¨ n2
r´1q. For each i P rprs,

IpMp1q

P,i ;Bi | Σq ď ϵr.

Proof. Assume without loss of generality that i P rp̂rs. That is, we only consider the principal
blocks on the side of U in Distribution 3. For any u P ΣpPiq, Tipuq is independent of Tipă uq

given Bi,Σ by our construction in Distribution 3. This implies Gipuq and Gipă uq are independent

conditioned on Bi,Σ. Using the second statement of Remark 5.2, we know M
p1q

P,ipuq and M
p1q

P,ipă uq

are independent conditioned on Bi,Σ as well by the data processing inequality (Fact A.1-(7)). Then
we can get

IpMp1q

P,i ;Bi | Σq

“
ÿ

uPΣpPiq

IpMp1q

P,ipuq ;Bi | M
p1q

P,ipă uq,Σq (by the chain rule of mutual information (Fact A.1-(6)))
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ď
ÿ

uPΣpPiq

IpMp1q

P,ipuq ;Bi | Σq. (as M
p1q

P,ipuq K M
p1q

P,ipă uq | Bi,Σ and by Proposition A.3)

Since the vertices are symmetric, it suffices to show an individual term above is upper bounded by
ϵr{nr´1 as ΣpPiq contains nr´1 vertices. So we fix the vertex u in the following.

One crucial observation is that u is simultaneously participating in f̂r `1 independent instances

drawn from Dpr´1q

MIS : the principal one with ΣpPiqz tuu and f̂r fooling ones with each of the fooling

blocks ΣpFjq for j P rf̂rs. Collectively these f̂r `1 instances constitute Gipuq. Fix an ordering Λ for

subsets of vertices with size nr´1 ´ 1. Let S1, . . . ,Sf̂r`1 denote these f̂r ` 1 instances in the order

consistent with Λ and Săj “ pS1, . . . ,Sj´1q for j P rf̂r`1s. Note that Gipuq “ pS1, . . . ,Sf̂r`1q. Define

Z to be the set of all these f̂r ` 1 blocks of vertices, i.e. Z :“ tΣpPiqz tuuu Y

!

ΣpFjq | j P rf̂rs

)

.

We emphasize that Z records the partition of all u’s possible neighbors into f̂r ` 1 blocks, but
not which one corresponds to the principal instance. This is important because Sj are mutually
independent conditioned on Z whereas they are not necessarily independent conditioned only on
the set of all u’s possible neighbors. Let W be the rank of the principal block among Z according
to the order defined by Λ, so SW “ Bi. Given Z, W is uniformly distributed over rf̂r ` 1s because Σ
is a uniformly random permutation. Intuitively, u cannot distinguish between all f̂r ` 1 instances

by itself, implying that M
p1q

P,ipuq should only reveal little information about the principal instance
Bi. Formally, we have

IpMp1q

P,ipuq ;Bi | Σq

“ IpMp1q

P,ipuq ;SW | Σ,Z,Wq (as Z,W are completely determined by Σ for any fixed i, u)

ď IpMp1q

P,ipuq ;SW | Z,Wq (as M
p1q

P,ipuq K Σ | SW,Z,W and by Proposition A.3)

“
ÿ

jPrf̂r`1s

Pr pW “ jq ¨ IpMp1q

P,ipuq ; Sj | Z,W “ jq

“
1

f̂r ` 1
¨

ÿ

jPrf̂r`1s

IpMp1q

P,ipuq ; Sj | Zq,

as the joint distribution of pM
p1q

P,ipuq,Sj ,Zq is independent of the event W “ j. Continuing,

IpMp1q

P,ipuq ;Bi | Σq

ď
1

f̂r ` 1
¨

ÿ

jPrf̂r`1s

IpMp1q

P,ipuq ;Sj | Zq

ď
1

f̂r ` 1
¨

ÿ

jPrf̂r`1s

IpMp1q

P,ipuq ;Sj | Săj ,Zq (as Sj K Săj | Z and by Proposition A.2)

“
1

f̂r ` 1
¨ IpMp1q

P,ipuq ;Gipuq | Zq (by the chain rule of mutual information (Fact A.1-(6)))

ď
1

f̂r
¨ HpM

p1q

P,ipuq | Zq

(by the definition of mutual information and non-negativity of entropy (Fact A.1-(1)))

ď
1

f̂r
¨ HpM

p1q

P,ipuqq (as conditioning can only reduce entropy (Fact A.1-(3)))
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ď
k

f̂r
. (by the assumption on π’s communication and Fact A.1-(1))

Plugging in f̂r as defined in Distribution 3, we finally get the desired upper bound k{f̂r “ 1{pk5 ¨

n3
r´1q ď ϵr{nr´1. This concludes the proof by our argument at the beginning.

Lemma 5.4. For each i P rprs, and fixed Bi,M
p1q

P,i,Σ,

distpTi | Bi,M
p1q

P,i,Σq „
ą

uPΣpPiq

distpTipuq | Bipuq,M
p1q

P,i,Σq.

Proof. Let Bipuq denote the subset of Bi representing edges not incident to u6 for u P ΣpPiq. So

Bi “ pBipuq,Bipuqq. It suffices to show IpTipuq ;Tip´uq,Bipuq | Bipuq,M
p1q

P,i,Σq “ 0. Using the
second statement of Remark 5.2, we have

IpMp1q

P,ipuq ;Tip´uq,Bipuq | Tipuq,Bipuq,M
p1q

P,ip´uq,Σq “ 0, (13)

because M
p1q

P,ipuq is completely determined by Gipuq “ pBipuq,Tipuqq,Σ. Similarly, we also have

IpMp1q

P,ip´uq ;Tipuq | Tip´uq,Bipuq,Bipuq,Σq “ 0, (14)

because M
p1q

P,ip´uq is completely determined by Bi “ pBipuq,Bipuqq,Tip´uq,Σ. Combining Eq (13)
and (14), we then get

IpTipuq ;Tip´uq,Bipuq | Bipuq,M
p1q

P,i,Σq

“ IpTipuq ;Tip´uq,Bipuq | Bipuq,M
p1q

P,ipuq,M
p1q

P,ip´uq,Σq

ď IpTipuq ;Tip´uq,Bipuq | Bipuq,M
p1q

P,ip´uq,Σq (by Eq (13) and Proposition A.3)

ď IpTipuq ;Tip´uq,Bipuq | Bipuq,Σq (by Eq (14) and Proposition A.3)

“ 0,

by our construction in Distribution 3.

Lemmas 5.3 and 5.4 together ensure Algorithm 1 simulates the input and the first round of com-
munication with little bias. Building upon this, Lemma 5.5 takes care of all remaining rounds. This
is accomplished using the novel idea of non-simultaneous simulation as discussed in Section 3.2.3.

Lemma 5.5. Let ϵr “ 1{pk4 ¨ n2
r´1q. For each t P rrs,

1. EiPrprs IpM
ptq
P,´i ;Gi | Mpătq,M

ptq
P,i,Σq ď ϵr.

2. EiPrprs IpM
ptq
F ;Gi | Mpătq,M

ptq
P ,Σq ď ϵr.

Before going into the actual proof of Lemma 5.5, we first present the following technical claim.
Roughly, it shows what is revealed about G as a whole is no more than the sum of the information
revealed about individual Gi by each principal block itself, justifying Section 3.2.4.

6Note that Bipuq ‰ Bip´uq since each edge pu, vq appears in both Bipuq and Bipvq.
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Claim 5.6. For each t P rrs,

IpMpďtq
P ;G | M

pătq
F ,Σq ď

ÿ

iPrprs

IpMpătq
P ,M

ptq
P,i ;Gi | M

pătq
F ,Σq. (15)

Proof. The proof is by rewriting both sides of the above inequality using the chain rule of mutual
information (Fact A.1-(6)) for multiple times. For the left hand side of Eq (15), we have

IpMpďtq
P ;G | M

pătq
F ,Σq

“
ÿ

t1Prts

IpMpt1q

P ;G | M
păt1q

P ,M
pătq
F ,Σq

“
ÿ

t1Prts

ÿ

iPrprs

IpMpt1q

P,i ;G | M
pt1q

P,ăi,M
păt1q

P ,M
pătq
F ,Σq

ď
ÿ

t1Prts

ÿ

iPrprs

IpMpt1q

P,i ;G | M
păt1q

P ,M
pătq
F ,Σq, (by Proposition A.3)

where we use the observation that M
pt1q

P,i is fully determined by G,Σ, as π is deterministic, and thus

conditionally independent of M
pt1q

P,ăi. Continuing,

IpMpďtq
P ;G | M

pătq
F ,Σq

ď
ÿ

t1Prts

ÿ

iPrprs

IpMpt1q

P,i ;G | M
păt1q

P ,M
pătq
F ,Σq

“
ÿ

t1Prts

ÿ

iPrprs

IpMpt1q

P,i ;Gi,G´i | M
păt1q

P ,M
pătq
F ,Σq

“
ÿ

t1Prts

ÿ

iPrprs

”

IpMpt1q

P,i ;Gi | M
păt1q

P ,M
pătq
F ,Σq ` IpMpt1q

P,i ;G´i | Gi,M
păt1q

P ,M
pătq
F ,Σq

ı

“
ÿ

t1Prts

ÿ

iPrprs

IpMpt1q

P,i ;Gi | M
păt1q

P ,M
pătq
F ,Σq,

as M
pt1q

P,i is fully determined by Gi,M
păt1q,Σ using the second statement of Remark 5.2. The right

hand side of Eq (15) can be bounded as follows.

ÿ

iPrprs

IpMpătq
P ,M

ptq
P,i ;Gi | M

pătq
F ,Σq

“
ÿ

iPrprs

IpMptq
P,i ;Gi | M

pătq
P ,M

pătq
F ,Σq `

ÿ

iPrprs

IpMpătq
P ;Gi | M

pătq
F ,Σq

“
ÿ

iPrprs

IpMptq
P,i ;Gi | M

pătq
P ,M

pătq
F ,Σq `

ÿ

iPrprs

ÿ

t1Prt´1s

IpMpt1q

P ;Gi | M
păt1q

P ,M
pătq
F ,Σq

“
ÿ

iPrprs

IpMptq
P,i ;Gi | M

pătq
P ,M

pătq
F ,Σq `

ÿ

iPrprs

ÿ

t1Prt´1s

IpMpt1q

P,i ,M
pt1q

P,´i ;Gi | M
păt1q

P ,M
pătq
F ,Σq

ě
ÿ

iPrprs

IpMptq
P,i ;Gi | M

pătq
P ,M

pătq
F ,Σq `

ÿ

iPrprs

ÿ

t1Prt´1s

IpMpt1q

P,i ;Gi | M
păt1q

P ,M
pătq
F ,Σq

(by the non-negativity and chain rule of mutual information (Fact A.1-(6)))
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“
ÿ

iPrprs

ÿ

t1Prts

IpMpt1q

P,i ;Gi | M
păt1q

P ,M
pătq
F ,Σq.

We finally reach the desired conclusion by putting the two sides together.

Now we are ready to prove Lemma 5.5.

Proof of Lemma 5.5.

Proof of the first statement: Instead of bounding the expectation directly, for convenience,
we are going to work with the following summation:

ÿ

iPrprs

IpMptq
P,´i ;Gi | Mpătq,M

ptq
P,i,Σq

“
ÿ

iPrprs

IpMpătq,M
ptq
P ;Gi | Σq ´

ÿ

iPrprs

IpMpătq,M
ptq
P,i ;Gi | Σq, (16)

as M
ptq
P “ pM

ptq
P,i,M

ptq
P,´iq and by the chain rule of mutual information (Fact A.1-(6)). The first term

above can be upper bounded as
ÿ

iPrprs

IpMpătq,M
ptq
P ;Gi | Σq

ď
ÿ

iPrprs

IpMpătq,M
ptq
P ;Gi | Găi,Σq (as Gi K Găi | Σ and by Proposition A.2)

“ IpMpătq,M
ptq
P ;G | Σq (by the chain rule of mutual information (Fact A.1-(6)))

“ IpMpďtq
P ,M

pătq
F ;G | Σq

ď HpM
pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq. (by the chain-rule of mutual information (Fact A.1-(6)))

Plugging into Eq (16), we have
ÿ

iPrprs

IpMptq
P,´i ;Gi | Mpătq,M

ptq
P,i,Σq

ď HpM
pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq ´

ÿ

iPrprs

IpMpătq,M
ptq
P,i ;Gi | Σq

“ HpM
pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq ´

ÿ

iPrprs

IpMpătq
P ,M

pătq
F ,M

ptq
P,i ;Gi | Σq

ď HpM
pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq ´

ÿ

iPrprs

IpMpătq
P ,M

ptq
P,i ;Gi | M

pătq
F ,Σq

(by the non-negativity and chain rule of mutual information (Fact A.1-(6)))

ď HpM
pătq
F q (by Claim 5.6)

ď k ¨ pnr´1 ´ 1q ¨ fr ¨ pt ´ 1q, (by the subadditivity of entropy (Fact A.1-(4)))

since there are fr fooling blocks of nr´1 ´ 1 fooling vertices each, and every fooling vertex commu-
nicates at most k bits in each of the first t ´ 1 rounds. Going back to the expectation, we finally
get

E
iPrprs

IpMptq
P,´i ;Gi | Mpătq,M

ptq
P,i,Σq
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“
1

pr
¨

ÿ

iPrprs

IpMptq
P,´i ;Gi | Mpătq,M

ptq
P,i,Σq

ď
k ¨ nr´1 ¨ fr ¨ r

pr

ď ϵr,

by the assumption r “ oplog kq.

Proof of the second statement: The proof is quite similar to the first one. Our goal is still to
the bound the following summation:

ÿ

iPrprs

IpMptq
F ;Gi | Mpătq,M

ptq
P ,Σq

“
ÿ

iPrprs

IpMpďtq ;Gi | Σq ´
ÿ

iPrprs

IpMpătq,M
ptq
P ;Gi | Σq, (17)

as Mptq “ pM
ptq
P ,M

ptq
F q and by the chain rule of mutual information (Fact A.1-(6)). Again we bound

the first term above as follows.

ÿ

iPrprs

IpMpďtq ;Gi | Σq

ď
ÿ

iPrprs

IpMpďtq ;Gi | Găi,Σq (as Gi K Găi | Σ and by Proposition A.2)

“ IpMpďtq ;G | Σq (by the chain rule of mutual information (Fact A.1-(6)))

“ IpMpďtq
P ,M

pătq
F ,M

ptq
F ;G | Σq

ď HpM
ptq
F q ` IpMpďtq

P ,M
pătq
F ;G | Σq (by the chain-rule of mutual information (Fact A.1-(6)))

ď HpM
ptq
F q ` HpM

pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq.
(by the chain-rule of mutual information (Fact A.1-(6)))

Plugging into Eq (17), we have

ÿ

iPrprs

IpMptq
F ;Gi | Mpătq,M

ptq
P ,Σq

ď HpM
ptq
F q ` HpM

pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq ´

ÿ

iPrprs

IpMpătq,M
ptq
P ;Gi | Σq

“ HpM
ptq
F q ` HpM

pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq ´

ÿ

iPrprs

IpMpătq
P ,M

pătq
F ,M

ptq
P,i,M

ptq
P,´i ;Gi | Σq

ď HpM
ptq
F q ` HpM

pătq
F q ` IpMpďtq

P ;G | M
pătq
F ,Σq ´

ÿ

iPrprs

IpMpătq
P ,M

ptq
P,i ;Gi | M

pătq
F ,Σq.

(by the non-negativity and chain rule of mutual information (Fact A.1-(6)))

ď HpM
ptq
F q ` HpM

pătq
F q (by Claim 5.6)

ď k ¨ pnr´1 ´ 1q ¨ fr ¨ t, (by the subadditivity of entropy (Fact A.1-(4)))

by counting the total communication of all fooling vertices. The desired upper bound on the
expectation is derived similarly to the first statement.
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Technically, it is actually possible to prove the following similar to Claim 5.6:

IpMptq
P ;G | Mpătq,Σq ď

ÿ

iPrprs

IpMptq
P,i ;Gi | Mpătq,Σq,

which would justify the intuition we provided for Claim 5.6 even better. However, the proof

of Lemma 5.5 is complicated by the fact that neither Gi K Găi | M
pďtq
P ,Σ nor Gi K Găi | Mpďtq,Σ is

true. In general M
ptq
P depends on M

pătq
F , which in turn is able to correlate Gi and G´i. At the core

of the proof of Lemma 5.5 is applying the chain rule of mutual information (Fact A.1-(6)) over all
Gi. To have the chain rule go through in the correct direction, what we need is the conditional
independence between all Gi. As a result, we are forced to rewrite the summation as in Eq (16)
and (17) such that the conditional independence between all Gi hold, and then conduct a more
careful analysis to bound the amount of correlation caused by the messages of fooling vertices. The
current form of Claim 5.6 turns out to be more appropriate for this purpose.

Combining Lemmas 5.3 to 5.5, the following corollary follows directly from Pinsker’s inequal-
ity (Fact A.8). It essentially captures our initial intuition that the final blackboard Mpďrq sampled
by τi is close to the true distribution on average over all possible i P rprs.

Corollary 5.7. Let µ be the true distribution for pG,Mpďrq,Σq in π and for i P rprs, µi be the
marginal distribution of µ for pGi,M

pďrq,Σq. For i P rprs, let νi be the distribution of pGi,M
pďrq,Σq

defined by

νipGi,M
pďrq,Σq :“ µpBi,Σq ¨ µpM

p1q

P,i | Σq ¨
ź

uPΣpPiq

µpTipuq | Bipuq,M
p1q

P,i,Σq

¨
ź

tPrrs

µpM
ptq
P,´i | Mpătq,M

ptq
P,i,Σq ¨

ź

tPrrs

µpM
ptq
F | Mpătq,M

ptq
P ,Σq

¨
ź

tPr2,rs

ź

uPΣpPiq

µpM
ptq
P,ipuq | Gipuq,Mpătq,Σq.

It holds that

E
iPrprs

E
Bi„µ

}µipM
pďrq,Σ | Biq ´ νipM

pďrq,Σ | Biq}tvd ď
1

k ¨ nr´1
.

Proof. Firstly, we convert the statements of Lemmas 5.3 and 5.5 to the language of total variation
distance. For each i P rprs, we have

E
pBi,Σq„µ

}µipM
p1q

P,i | Bi,Σq ´ νipM
p1q

P,i | Bi,Σq}tvd

“ E
pBi,Σq„µ

}µpM
p1q

P,i | Bi,Σq ´ µpM
p1q

P,i | Σq}tvd

ď E
pBi,Σq„µ

b

DpµpM
p1q

P,i | Bi,Σq || µpM
p1q

P,i | Σqq (by Pinsker’s inequality (Fact A.8))

ď

c

E
pBi,Σq„µ

DpµpM
p1q

P,i | Bi,Σq || µpM
p1q

P,i | Σqq (by the concavity of
?

¨)

“

b

IpMp1q

P,i ;Bi | Σq (by Fact A.4)

ď ϵ1{2
r . (by Lemma 5.3)
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Meanwhile, for each t P rrs, we can get

E
iPrprs

E
pGi,Mpătq,M

ptq

P,i,Σq„µ

}µipM
ptq
P,´i | Gi,M

pătq,M
ptq
P,i,Σq ´ νipM

ptq
P,´i | Gi,M

pătq,M
ptq
P,i,Σq}tvd

“ E
iPrprs

E
pGi,Mpătq,M

ptq

P,i,Σq„µ

}µpM
ptq
P,´i | Gi,M

pătq,M
ptq
P,i,Σq ´ µpM

ptq
P,´i | Mpătq,M

ptq
P,i,Σq}tvd

ď E
iPrprs

E
pGi,Mpătq,M

ptq

P,i,Σq„µ

b

DpµpM
ptq
P,´i | Gi,Mpătq,M

ptq
P,i,Σq || µpM

ptq
P,´i | Mpătq,M

ptq
P,i,Σqq

(by Pinsker’s inequality (Fact A.8))

ď

d

E
iPrprs

E
pGi,Mpătq,M

ptq

P,i,Σq„µ

DpµpM
ptq
P,´i | Gi,Mpătq,M

ptq
P,i,Σq || µpM

ptq
P,´i | Mpătq,M

ptq
P,i,Σqq

(by the concavity of
?

¨)

“

c

E
iPrprs

IpMptq
P,´i ;Gi | Mpătq,M

ptq
P,i,Σq (by Fact A.4)

ď ϵ1{2
r , (by Lemma 5.5)

and similarly

E
iPrprs

E
pGi,Mpătq,M

ptq

P ,Σq„µ

}µipM
ptq
F | Gi,M

pătq,M
ptq
P ,Σq ´ νipM

ptq
F | Gi,M

pătq,M
ptq
P ,Σq}tvd ď ϵ1{2

r .

We also trivially have

E
pBi,M

p1q

P,i,Σq„µ

}µipTi | Bi,M
p1q

P,i,Σq ´ νipTi | Bi,M
p1q

P,i,Σq}tvd “ 0,

by Lemma 5.4 for each i P rprs, and

E
pGi,Mpătq,Σq„µ

}µipM
ptq
P,i | Gi,M

pătq,Σq ´ νipM
ptq
P,i | Gi,M

pătq,Σq}tvd “ 0,

by the second statement of Remark 5.2 for each t P r2, rs. Additionally observe that

E
Bi„µ

}µipΣ | Biq ´ νipΣ | Biq}tvd “ 0,

since Σ is a uniformly random permutation drawn independent of Bi. Combining all these condi-
tional distributions using the chain rule of total variation distance (Fact A.6), it holds that

E
iPrprs

E
Bi„µ

}µipM
pďrq,Ti,Σ | Biq ´ νipM

pďrq,Ti,Σ | Biq}tvd

ď ϵ1{2
r ¨ p2r ` 1q

“
p2r ` 1q

k2 ¨ nr´1

ď
1

k ¨ nr´1
,

by the linearity of expectation and the assumption r “ oplog kq. This concludes the proof as
marginalization can never increase total variation distance (Fact A.7).
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In Corollary 5.7, note that µ and µi are the true distributions in π while νi is the distribution
sampled by τi. We conclude this section by finishing the proof of Lemma 5.1.

Proof of Lemma 5.1. For each i P rprs, define Oπ
i P t0, 1u to be 1 if and only if the referee of π

outputs a valid maximal independent set Γ for an r-round instance such that Γ X ΣpPiq is also a
valid maximal independent set for the induced subgraph on ΣpPiq. Also define Oτ

i P t0, 1u to be 1 if
and only if the referee of τi outputs a valid maximal independent set for an pr ´ 1q-round instance.
Recall that the referee of π is a deterministic function of Mpďrq, so for each i P rprs, the referee of
τi is a deterministic function of Mpďrq and Σ, by Algorithm 1.

Firstly imagine the idealized situation where τi were able to sample Mpďrq,Σ | Bi precisely

following µi. Since the marginal distribution for each principal instance in Dprq

MIS is the same as

Dpr´1q

MIS , by the linearity of expectation we get

E
iPrprs

E
Bi„µi

Pr
pMpďrq,Σ|Biq„µi

pOτ
i “ 1q

“ E
iPrprs

E
Bi„µ

Pr
pMpďrq,Σ|Biq„µ

pOτ
i “ 1q (as µipM

pďrq,Bi,Σq “ µpMpďrq,Bi,Σq)

“ E
iPrprs

Pr
pMpďrq,G,Σq„µ

pOπ
i “ 1q (by Algorithm 1)

“ E
pG,Σq„µ

Pr
iPrprs

pOπ
i “ 1q (as Mpďrq is fully determined by G,Σ)

ě δ{2, (18)

because π succeeds with probability δ by assumption, and conditioned on this event, at least half
of the principal instances are solved by Claim 4.3. Now consider the real success probability of τi
over νi. By Fact A.5, we have for each i P rprs,

E
Bi„νi

Pr
pMpďrq,Σ|Biq„νi

pOτ
i “ 1q

“ E
Bi„µi

Pr
pMpďrq,Σ|Biq„νi

pOτ
i “ 1q (as νipBiq “ µipBiq)

ě E
Bi„µi

Pr
pMpďrq,Σ|Biq„µi

pOτ
i “ 1q ´ E

Bi„µi

}µipM
pďrq,Σ | Biq ´ νipM

pďrq,Σ | Biq}tvd. (19)

Combining Corollary 5.7 with Eq (18) and (19), we finally get

E
iPrprs

E
Bi„νi

Pr
pMpďrq,Σ|Biq„νi

pOτ
i “ 1q

ě E
iPrprs

E
Bi„µi

Pr
pMpďrq,Σ|Biq„µi

pOτ
i “ 1q ´ E

iPrprs
E

Bi„µi

}µipM
pďrq,Σ | Biq ´ νipM

pďrq,Σ | Biq}tvd

ě δ{2 ´ 1{nr´1,

as desired. Picking the index i˚ P rprs that maximizes the success probability of τi˚ concludes the
proof.
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6 The Lower Bound for Approximate Bipartite Matching

In this section we adapt the techniques for maximal independent set to prove the following formal
version of Result 2.

Theorem 3 (Result 2, formal). For r ě 0 and any r-round multi-party protocol (deterministic
or randomized) in the shared blackboard model for computing a maximal matching or any constant
factor approximation to maximum matching on n-vertex (bipartite) graphs, there must exist some
vertex communicating at least Ωpn1{20r`1

q bits in some round.

Intuitively, Distribution 3 and Algorithm 1 make little use of any property specific to indepen-
dent sets so most of the lemmas hold for matchings as well. For convenience, we first make minor
adjustment to the hard distributions in Section 6.1 to better fit the need of approximation, and
then present the lower bound proof for approximate matching for general graphs in Section 6.2.
It is worth noticing that our constructed instances may not be bipartite in general. Fortunately,
Section 6.3 gives a simple reduction to the bipartite case, concluding the proof of Theorem 3.

6.1 A Hard Distribution for Approximate Matching

We use the following base case for approximate matching. The idea is to have maximum matchings
of a fixed size that remain hard to approximate. This will help simplify the calculation in later
proofs a lot.

Distribution 4. The hard distribution Dp0q

MM for protocols computing an approximate matching
without any communication.
Parameters: bandwidth k, number of vertices n0 “ 2k.

1. Let U and V be two disjoint sets of vertices, each of size k. Sample two vertices u P U, v P

V uniformly at random and independently.

2. Add an edge pu, vq.

3. Return the graph G sampled above.

It is easy to see any graph G drawn from Dp0q

MM always has a maximum matching of size 1.
Recall that protocols for approximate matching are required to output a valid matching (though
potentially containing non-existing edges), which is of size at most k. Since the chosen edge pu, vq

is sampled uniformly at random from k2 possibilities, no protocols can achieve an approximation
ratio better than k2{k “ k if no information is revealed by the vertices. This is summarized in the
following lemma.

Lemma 6.1 (Base Case). Any 0-round protocol for computing an approximate matching has an

approximation ratio no better than k over Dp0q

MM.

The construction for r-round hard distributions Dprq

MM is almost the same as for Dprq

MIS. In fact,
it can be even simplified in the sense that the “half instances” are sufficient for the purpose of

constructing a hard distribution. Concretely, we construct Dprq

MM recursively as follows.
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Distribution 5. The hard distribution Dprq

MM for r-round protocols computing an approximate
matching (r ě 1).
Parameters: bandwidth k, number of fooling blocks fr “ k6 ¨n3

r´1, number of principal blocks
pr “ k6 ¨ n3

r´1 ¨ fr, number of vertices nr “ pnr´1 ´ 1q ¨ fr ` nr´1 ¨ pr, and vertex set V with
|V | “ nr.

1. Partition V into disjoint sets of vertices P1, . . . ,Ppr ,F1, . . . ,Ffr such that @i P rprs : |Pi| “

nr´1 and @j P rfrs : |Fj | “ nr´1 ´ 1. Define PpV q :“
Ť

iPrprs Pi and FpV q :“
Ť

jPrfrs Fj .

2. For i P rprs, sample an independent instance of Dpr´1q

MM on Pi.

3. For u P PpV q and j P rfrs, sample an independent instance of Dpr´1q

MM on Fj Y tuu and
only keep the edges adjacent to u (dropping all the edges between vertices in Fj).

4. Let G1 be the graph sampled above. Sample a uniformly random permutation σ over V
and return G “ σpG1q.

It is not hard to verify that nr ď k20
r`1

still holds for r ě 0. At a high level, the number of
fooling vertices is rather small as fr ! pr, so their contribution to the size of maximum matchings
is limited. On the other hand, a vast majority of matching edges should come from within the
principal blocks so a good approximation ratio for r-round instances implies good approximation
ratios over all principal pr´1q-round instances on average. Claim 6.2 provides a useful lower bound

on the size of maximum matchings for graphs drawn from Dprq

MM. It will be used in the proof at the
very end of this section.

Claim 6.2. Let Γ be any valid maximum matching for a graph G drawn from Dprq

MM. Then,

|Γ| ě
nr

2k
¨

¨

˝1 ´
ÿ

tPrrs

ft
pt

˛

‚ě
nr

4k
. (20)

Proof. The base case of r “ 0 holds trivially. For r ě 1, we know by induction that any principal
pr ´ 1q-round instance has a maximum matching of size at least nr´1

2k ¨ p1 ´
ř

tPrr´1s ft{ptq. Since
all pr principal blocks are disjoint by our construction in Distribution 5, we get

|Γ| ě pr ¨
nr´1

2k
¨

¨

˝1 ´
ÿ

tPrr´1s

ft
pt

˛

‚

ě
pr

fr ` pr
¨
nr

2k
¨

¨

˝1 ´
ÿ

tPrr´1s

ft
pt

˛

‚ (as nr ď nr´1 ¨ pfr ` prq)

ě

ˆ

1 ´
fr
pr

˙

¨
nr

2k
¨

¨

˝1 ´
ÿ

tPrr´1s

ft
pt

˛

‚

ě
nr

2k
¨

¨

˝1 ´
ÿ

tPrrs

ft
pt

˛

‚.
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The last inequality of Eq (20) follows from the simple fact that

ÿ

tPrrs

ft
pt

“
ÿ

tPrrs

1

k6 ¨ n3
t´1

ď
1

2
,

since r “ oplog kq by assumption. This concludes the proof.

6.2 Proof of the Lower Bound for Approximate Matching

The version of Theorem 3 for general graphs is a straightforward corollary of the following distri-
butional lower bound by Yao’s minimax principal [Yao77]. We point out that since any maximal
matching is also a 2-approximate matching, it is sufficient to prove the hardness of approximate
matching.

Theorem 4. For r “ oplog kq, any r-round protocol for computing an approximate matching for
general graphs that communicates at most k bits per vertex in every round has an approximation

ratio no better than Ωpkq over Dprq

MM.

The proof of Theorem 4 is again via a round elimination lemma as shown in Lemma 6.3.

Lemma 6.3 (Round Elimination). For r “ oplog kq and α “ ωp1{nr´1q, if there exists an r-round
protocol for computing an approximate matching that communicates at most k bits per vertex in

every round and has an approximation ratio of α´1 over Dprq

MM, then there also exists an pr ´ 1q-
round protocol for computing an approximate matching that communicates at most k bits per vertex

in every round and has an approximation ratio of pα ´ C{nr´1q´1 over Dpr´1q

MM , for some universal
constant C ą 0.

Before proving Lemma 6.3, which is the main part of this section, we first show it easily
implies Theorem 4.

Proof of Theorem 4. Suppose for the purpose of contradiction that there exists an r-round protocol
that communicates at most k bits per vertex and that has an approximation ratio of α´1 “ opkq

over Dprq

MM. Applying Lemma 6.3 for r times, we obtain a 0-round protocol having an approximation
ratio of

¨

˝α ´ C ¨
ÿ

tPrrs

1

nt´1

˛

‚

´1

ď

ˆ

α ´
2C

n0

˙´1

“ opkq,

over Dp0q

MM, as nt´1 is doubly exponentially increasing, and α “ ωp1{kq, n0 “ 2k. However, the
existence of such a 0-round protocol contradicts the lower bound of Lemma 6.1, concluding the
proof.

To prove Lemma 6.3, we use the same approach for simulation as in Algorithm 1. Fix a
deterministic r-round protocol π on nr vertices that communicates at most k bits per vertex in

every round and has an approximation ratio of α´1 over Dprq

MM. We define exactly the same set of
random variables as in Section 5 and construct the pr´1q-round (randomized) protocols τ1, . . . , τpr
on nr´1 vertices, which are identical to Algorithm 1 except for the processing of the final output.
Specifically, let Γ be the output of the referee of π when given Mpďrq. The referee of τi finally
outputs ΓXpΣpPiq ˆ ΣpPiqq, namely the edges within ΣpPiq, for computing approximate matchings.
See Algorithm 2 for a recap of the complete simulation protocol for round elimination.
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Algorithm 2. The pr´ 1q-round protocol τi, for any fixed i P rprs, simulating π for computing
an approximate matching.

1. Sample Σ uniformly at random using public randomness. Identify the vertices of τi with
ΣpPiq in π, and with a slight abuse of notation, any vertex u of τi is used interchangeably
with its counterpart in ΣpPiq. In addition, each vertex u of τi identifies its input given in
τi with Bipuq in π.

2. Do the following without any communication:

(a) Sample M
p1q

P,i, conditioned on Σ, using public randomness.

(b) For each vertex u of τi, independently sample Tipuq, conditioned on Bipuq,M
p1q

P,i,Σ,
using private randomness.

(c) Sample M
p1q

P,´i, conditioned on M
p1q

P,i,Σ, using public randomness.

(d) Sample M
p1q

F , conditioned on M
p1q

P ,Σ, using public randomness.

3. For every t P r2, rs, do the following with one round of communication:

(a) For each vertex u of τi, generate and broadcast M
ptq
P,ipuq as in π, based on

Gipuq,Mpătq,Σ.

(b) Sample M
ptq
P,´i, conditioned on Mpătq,M

ptq
P,i,Σ, using public randomness.

(c) Sample M
ptq
F , conditioned on Mpătq,M

ptq
P ,Σ, using public randomness.

4. Let Γ be the output of the referee of π when given Mpďrq. The referee of τi finally outputs
Γ X pΣpPiq ˆ ΣpPiqq.

It is not hard to verify that Lemmas 5.3 to 5.5 and Corollary 5.7 also hold for approximate
matching. In fact, each of them follows verbatim as the proofs work in a black-box way. Using all
these results, we conclude this section with the proof of Lemma 6.3.

Proof of Lemma 6.3. For any r-round instance, let O be the size of its maximum matching and
for each i P rprs, Oi be the size of the maximum matching for the induced subgraph on ΣpPiq. It
always holds that

O ě
ÿ

iPrprs

Oi, (21)

since the union of maximum matchings for all principal pr ´ 1q-round instances is always a valid
matching for the r-round instance. Define Oπ to be the number of valid edges in ΓXE, where E is
the set of input edges of the r-round instance, and for each i P rprs, Oπ

i to be the number of valid
edges in Γ X E X pΣpPiq ˆ ΣpPiqq. It holds that

Oπ ď nr´1 ¨ fr `
ÿ

iPrprs

Oπ
i , (22)

because of the fact that the number of disjoint edges incident to fooling vertices is bounded by the
total number of fooling vertices. (Recall that the output Γ of the referee of π must be a set of
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disjoint edges.) Also define Oτ
i to be the number of valid edges (i.e. excluding non-existing edges)

output by the referee of τi for an pr´1q-round instance. Note that the referee of π is a deterministic
function of Mpďrq by assumption, so for each i P rprs, the referee of τi is a deterministic function of
Mpďrq and Σ, by Algorithm 2.

Again imagine the idealized situation where τi were able to sample Mpďrq,Σ | Bi precisely
following µi. By the linearity of expectation, we have

E
iPrprs

E
Bi„µi

E
pMpďrq,Σ|Biq„µi

rOτ
i s

“ E
iPrprs

E
Bi„µ

E
pMpďrq,Σ|Biq„µ

rOτ
i s (as µipM

pďrq,Bi,Σq “ µpMpďrq,Bi,Σq)

“ E
iPrprs

E
pMpďrq,G,Σq„µ

rOπ
i s (by Algorithm 2)

“ E
pG,Σq„µ

E
iPrprs

rOπ
i s (as Mpďrq is fully determined by G,Σ)

ě E
pG,Σq„µ

„

Oπ ´ nr´1 ¨ fr
pr

ȷ

(by Eq (22))

“ E
pG,Σq„µ

„

Oπ

pr

ȷ

´
nr´1 ¨ fr

pr

ě α ¨ E
pG,Σq„µ

„

O

pr

ȷ

´
nr´1 ¨ fr

pr
(as π has an approximation ratio of α´1)

ě α ¨ E
pG,Σq„µ

E
iPrprs

rOis ´
nr´1 ¨ fr

pr
(by Eq (21))

“ α ¨ E
iPrprs

E
Bi„νi

rOis ´
nr´1 ¨ fr

pr
, (23)

as µpBiq “ νipBiq. Meanwhile, for each i P rprs, Fact A.5 bounds the real expected matching size
of τi over νi as

E
Bi„νi

E
pMpďrq,Σ|Biq„νi

rOτ
i s

“ E
Bi„µi

E
pMpďrq,Σ|Biq„νi

rOτ
i s (as νipBiq “ µipBiq)

ě E
Bi„µi

E
pMpďrq,Σ|Biq„µi

rOτ
i s ´

nr´1

2
¨ E
Bi„µi

}µipM
pďrq,Σ | Biq ´ νipM

pďrq,Σ | Biq}tvd, (24)

since the size of any matching is at most half of the total number of vertices. Combining Corol-
lary 5.7 with Eq (23) and (24), we have

E
iPrprs

E
Bi„νi

E
pMpďrq,Σ|Biq„νi

rOτ
i s

ě E
iPrprs

E
Bi„µi

E
pMpďrq,Σ|Biq„µi

rOτ
i s ´

nr´1

2
¨ E
iPrprs

E
Bi„µi

}µipM
pďrq,Σ | Biq ´ νipM

pďrq,Σ | Biq}tvd

ě α ¨ E
iPrprs

E
Bi„νi

rOis ´
nr´1 ¨ fr

pr
´

nr´1

2
¨

1

k ¨ nr´1

ě

ˆ

α ´
nr´1 ¨ fr

pr ¨ nr´1{p4kq
´

1{p2kq

nr´1{p4kq

˙

¨ E
iPrprs

E
Bi„νi

rOis ,

as Oi ě nr´1{p4kq for each i P rprs by Claim 6.2. Therefore, picking the best index i˚ P rprs shows
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τi˚ has an approximation ratio of at most

ˆ

α ´
nr´1 ¨ fr

pr ¨ nr´1{p4kq
´

1{p2kq

nr´1{p4kq

˙´1

ď

ˆ

α ´ Op
1

nr´1
q

˙´1

,

as claimed.

6.3 A Reduction to Bipartite Graphs

The following reduction, together with the lower bound for approximate matching for general graphs
shown in Section 6.2, concludes the proof of Theorem 3.

Lemma 6.4. For r, α ě 1, if there exists an r-round protocol for computing an α-approximate
bipartite matching for bipartite graphs, then there also exists an r-round protocol for computing a
2α-approximate matching for general graphs, with exactly the same bandwidth.

Proof. Let π be a protocol for bipartite graphs. We construct a corresponding protocol π1 for
general graphs as follows. On a given input graph G “ pV,Eq with n vertices, the vertices in π1

jointly sample z P t0, 1u
n uniformly at random using public randomness. Let L “ tv P V | zv “ 0u

and R “ tv P V | zv “ 1u. Note that all vertices agree on L,R since they can be easily computed
from z. Also let G1 “ pV,E1q be the bipartite subgraph of G where only edges across the cut pL,Rq

are preserved, i.e. E1 “ tpu, vq P E | zu ‰ zvu. Then all vertices run π on G1 as if the neighbors of
a vertex v P V are NG1pvq “ tu P NGpvq | zu ‰ zvu. The referee of π1 simply outputs the answer
given by the referee of π.

It is easy to see π1 has the same number of rounds and exactly the same bandwidth as π.
Moreover, observe that G1 is essentially a random bipartition of G so half of the original edges are
dropped in expectation. In particular, we have EzrµpG1qs ě µpGq{2. (Recall that µp¨q denotes the
size of the maximum matching.) Therefore, an α-approximate bipartite matching for G1 (over the
randomness of z) is also a 2α-approximate matching for G by definition.
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In M. M. Halldórsson, editor, Structural Information and Communication Complexity
- 21st International Colloquium, SIROCCO 2014, Takayama, Japan, July 23-25, 2014.
Proceedings, volume 8576 of Lecture Notes in Computer Science, pages 83–95. Springer,
2014. 1

[BMRT18] F. Becker, P. Montealegre, I. Rapaport, and I. Todinca. The impact of locality on the
detection of cycles in the broadcast congested clique model. In M. A. Bender, M. Farach-
Colton, and M. A. Mosteiro, editors, LATIN 2018: Theoretical Informatics - 13th
Latin American Symposium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings,
volume 10807 of Lecture Notes in Computer Science, pages 134–145. Springer, 2018. 1,
2, 3

[BO17] M. Braverman and R. Oshman. A rounds vs. communication tradeoff for multi-party set
disjointness. In 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 144–155, 2017. 2, 3, 4

[CDK19] G. Cormode, J. Dark, and C. Konrad. Independent sets in vertex-arrival streams. In
46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, pages 45:1–45:14, 2019. 4

[CKP`21] L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, and H. Yu. Almost optimal
super-constant-pass streaming lower bounds for reachability. In S. Khuller and V. V.

36



Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 570–583. ACM, 2021. 4

[CT06] T. M. Cover and J. A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.
40

[DK20] J. Dark and C. Konrad. Optimal lower bounds for matching and vertex cover in dynamic
graph streams. In S. Saraf, editor, 35th Computational Complexity Conference, CCC
2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 4

[DKO14] A. Drucker, F. Kuhn, and R. Oshman. On the power of the congested clique model. In
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Appendix

A Basic Tools From Information Theory

We now briefly introduce some definitions from information theory that are needed in this paper.
For a random variable A, we use supppAq to denote the support of A and distpAq to denote its
distribution. When it is clear from context, we may abuse the notation and use A directly instead
of distpAq, for example, write A „ A to mean A „ distpAq, i.e., A is sampled from the distribution
of random variable A.

We denote the Shannon entropy of a random variable A by HpAq, which is defined as:

HpAq “
ÿ

APsupppAq

Pr pA “ Aq ¨ log
1

Pr pA “ Aq
.

The conditional entropy of A conditioned on B is denoted by HpA | Bq and defined as:

HpA | Bq “ E
B„B

rHpA | B “ Bqs ,

where HpA | B “ Bq is defined in a standard way by using the distribution of A conditioned on the
event B “ B in the previous equation. The mutual information of two random variables A and B
is denoted by IpA ;Bq and defined as:

IpA ;Bq “ HpAq ´ HpA | Bq “ HpBq ´ HpB | Aq.

The conditional mutual information IpA ;B | Cq is HpA | Cq ´ HpA | B,Cq and hence by linearity of
expectation:

IpA ;B | Cq “ E
C„C

rIpA ;B | C “ Cqs .

We also use the following standard measures of distance (or divergence) between distributions.

KL-divergence. For two distributions µ and ν, the Kullback-Leibler divergence between µ and
ν is denoted by Dpµ || νq and defined as:

Dpµ || νq “ E
a„µ

”

log
µpaq

νpaq

ı

.

Total variation distance. We denote the total variation distance between two distributions µ
and ν on the same support Ω by }µ ´ ν}tvd, defined as:

}µ ´ ν}tvd “ max
Ω1ĎΩ

`

µpΩ1q ´ νpΩ1q
˘

“
1

2
¨

ÿ

xPΩ

|µpxq ´ νpxq| .

We refer the interested readers to the textbook by Cover and Thomas [CT06] for an excellent
introduction to the field of information theory.

A.1 Useful Properties of Entropy and Mutual Information

We use the following basic properties of entropy and mutual information throughout.

Fact A.1 (cf. [CT06]). Let A, B, C, and D be four (possibly correlated) random variables.
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1. 0 ď HpAq ď log |supppAq|. The right equality holds iff distpAq is uniform.

2. IpA ;B | Cq ě 0. The equality holds iff A and B are independent conditioned on C.

3. Conditioning on a random variable reduces entropy: HpA | B,Cq ď HpA | Bq. The equality
holds iff A K C | B.

4. Subadditivity of entropy: HpA,B | Cq ď HpA | Cq ` HpB | Cq.

5. Chain rule for entropy: HpA,B | Cq “ HpA | Cq ` HpB | C,Aq.

6. Chain rule for mutual information: IpA,B ;C | Dq “ IpA ;C | Dq ` IpB ;C | A,Dq.

7. Data processing inequality: for a deterministic function fpAq, IpfpAq ;B | Cq ď IpA ;B | Cq.

We also use the following propositions, regarding the effect of conditioning on mutual information.

Proposition A.2. For random variables A,B,C,D, if A K D | C, then,

IpA ;B | Cq ď IpA ;B | C,Dq.

Proof. Since A and D are independent conditioned on C, by Fact A.1-(3), HpA | Cq “ HpA | C,Dq

and HpA | C,Bq ě HpA | C,B,Dq. We have,

IpA ;B | Cq “ HpA | Cq ´ HpA | C,Bq “ HpA | C,Dq ´ HpA | C,Bq

ď HpA | C,Dq ´ HpA | C,B,Dq “ IpA ;B | C,Dq.

Proposition A.3. For random variables A,B,C,D, if A K D | B,C, then,

IpA ;B | Cq ě IpA ;B | C,Dq.

Proof. Since A K D | B,C, by Fact A.1-(3), HpA | B,Cq “ HpA | B,C,Dq. Moreover, since
conditioning can only reduce the entropy (again by Fact A.1-(3)),

IpA ;B | Cq “ HpA | Cq ´ HpA | B,Cq ě HpA | D,Cq ´ HpA | B,Cq

“ HpA | D,Cq ´ HpA | B,C,Dq “ IpA ;B | C,Dq.

A.2 Measures of Distance Between Distributions

The following states the relation between mutual information and KL-divergence.

Fact A.4. For random variables A,B,C,

IpA ;B | Cq “ E
pb,cq„pB,Cq

”

DpdistpA | B “ b,C “ cq || distpA | C “ cqq

ı

.

We use the following basic properties of total variation distance.

Fact A.5. Suppose µ and ν are two distributions for a random variable X, then,

E
µ

rXs ď E
ν

rXs ` }µ ´ ν}tvd ¨ max
X0PsupppXq

X0.
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Fact A.6. Suppose µ and ν are two distributions for the tuple pX1, . . . ,Xtq, then,

}µpX1, . . . ,Xtq´νpX1, . . . ,Xtq}tvd ď

n
ÿ

i“1

E
pX1,...,Xi´1q„µ

}µpXi | X1, . . . , Xi´1q´νpXi | X1, . . . , Xi´1q}tvd.

Fact A.7. Suppose µ and ν are two distributions for the pair pX,Yq, then,

}µpXq ´ νpXq}tvd ď }µpX,Yq ´ νpX,Yq}tvd.

The following Pinsker’s inequality bounds the total variation distance between two distributions
based on their KL-divergence.

Fact A.8 (Pinsker’s inequality). For any distributions µ and ν, }µ ´ ν}tvd ď

b

1
2 ¨ Dpµ || νq.
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