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Abstract. A matrix is blocky if it is a “blowup” of a permutation matrix. The
blocky rank of a matrix M is the minimum number of blocky matrices that linearly
span M . Hambardzumyan, Hatami and Hatami defined blocky rank and showed
that it is connected to communication complexity and operator theory. We describe
additional connections to circuit complexity and combinatorics, and we prove upper
and lower bounds on blocky rank in various contexts.

1. Introduction

Matrices serve as a model for many objects; linear operators in algebra, communication
problems in computational complexity, concept classes in machine learning, and more.
There are many ways to measure the complexity of matrices; there are various notions
of rank (the “usual” rank, approximate rank, non-negative rank, sign rank, etc.), there
are various notions of communication complexity (deterministic, randomized, quantum,
etc.), there are various notions in learning theory (VC dimension, Littlestone dimension,
margin complexity, etc.), and more. We focus on the notion of blocky rank recently
defined by Hambardzumyan, Hatami and Hatami [10].

A standard mechanism for defining a complexity measure has two stages. In the first
stage, we define the building blocks of the model (in our case, matrices of blocky rank
one). In the second stage, complexity is defined as the minimum number of operations
that are needed to generate the target (in our case, sum operations).

Definition. All identity matrices have blocky rank one. The set of matrices of blocky
rank one is also closed under three operations: duplicating a row or a column, permuting
the rows or columns, and adding a zero row or a zero column. In other word, a matrix
has blocky rank one if up to a permutation of the rows and columns it has blocks of ones
of different sizes on the “diagonal” followed by some amount of zeros.

Definition. The blocky rank blocky(M) of a matrix M is the minimum integer R so
that M can be written as a linear combination of R matrices B1, . . . , BR, each of blocky
rank one. In this work, we always work over the field R.

Motivation to study blocky rank, and its relatives, comes from various areas. In
communication complexity, it is related to understanding randomized communication
problems [10]. In operator theory, it is related to idempotents in Schur algebras (see [10]
and references within). In circuit complexity, it is related to depth-two threshold circuits.
In combinatorics, it is related to covering problems in graphs. In machine learning, it is
related to closure properties of Littlestone classes.
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1.1. Generic matrices. A typical first question about complexity is “what is the
complexity of a random object?” The “obvious” upper bound on the blocky rank of an
n× n boolean matrix is n, because a boolean matrix with one non-zero row has blocky
rank one. The following theorem provides a lower bound for random matrices.

Theorem 1. If M is a uniformly random n× n boolean matrix then

Pr[blocky(M) ≥ n
4 log(2n)

] ≥ 1− 2−
n2

2 .

Theorem 1 is proved in Section 2. The lower bound has a factor of log n compared
to the obvious upper bound. This factor turns out to be needed. The blocky rank of
all boolean matrices is much smaller than n.

Theorem 2. For every boolean n× n matrix M ,

blocky(M) ≤ O(n log logn
logn

).

The proof of Theorem 2 is algorithmic; see Section 3. We describe an algorithm that
gets as input a boolean matrix M and outputs a decomposition of M into a sum of
O(n log logn

logn
) blocky matrices.

The two theorems are reminiscent of Shannon’s lower bounds and Lupanov’s upper
bound in the context of boolean circuit complexity. Shannon proved that the circuit
complexity of a random n-variate boolean function is at least Ω(2

n

n
), while the obvious

upper bound is larger. Lupanov proved that in fact the lower bound is sharp; every
n-variate boolean function has a boolean circuit of size at most O(2

n

n
).

The theorems above have the following additional combinatorial interpretation. The
clique cover number of a graph is the least number of (induced) cliques that are required
to cover it. The intersection number of a graph is the least k so that the graph can
be represented as the intersection graphs over a universe of size k. An intersection
graph consists of a set Sv ⊆ [k] for each vertex v, so that every two vertices u 6= v are
connected by an edge iff Sv ∩ Su 6= ∅.

Erdös, Goodman and Pósa showed that the clique number is equal to the intersection
number [4]. Bollobás, Erdős, Spencer and West proved that the clique cover number of

a uniformly random graph on n vertices is at least Ω( n2

log2 n
) and at most O(n

2 log logn
log2 n

) [3].

Part of their motivation was to understand the interval number of random graphs.
Frieze and Reed improved the upper bound to a sharp O( n2

log2 n
) [5]. Roughly speaking,

the connection between their n2

log2 n
and our n

logn
is that a typical clique is of size log n,

and n
logn

cliques can (sometimes) be glued to a single blocky matrix, so the total number

of blocky matrices becomes ≈ n2

log2 n
/ n
logn

. It is worth noting that the upper bounds

from [3, 5] hold for random graphs and are false for some graphs, whereas our upper
bound holds for all matrices.

Let us now make the connection more formal. We work with bipartite graphs, because
they correspond to (general) boolean matrices. A blocky graph is a bipartite graph that
consists of a disjoint union of full bipartite graphs. Equivalently, the adjacency matrix
of a blocky graph has blocky rank one. The blocky cover number of a bipartite graph is
the minimum number of (induced) blocky graphs that are required to cover it.
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The blocky cover number can be thought of as a variant of the intersection number.
A different way to view an intersection graph is as a map σ that assigns to each
vertex v a vector s(v) ∈ {0, 1}k, and two vertices v 6= u are connected by an edge
if there is i ∈ [k] so that s(v)i = s(u)i > 0. We can extend this definition to larger
alphabets. An agreement graph consists a map σ that assigns to each vertex v a vector
s(v) ∈ {0, 1, . . . , L}k, so that every two vertices v 6= u are connected by an edge if there
is i ∈ [k] so that s(v)i = s(u)i > 0. The integer k is called the universe size of the
graph (the integer L is not assumed to be bounded).

If G is a bipartite graph, then G has an agreement representation with universe size
one iff G is blocky. More generally, the cover number of G using blocky graphs is equal
to the least universe size of an agreement representation of G. This is analogous to the
fact that the clique cover number is equal to the intersection number [4].

Instead of covering the edges of a graph, we can ask to partition them to structured
parts. The blocky partition number of a bipartite graph is the minimum number of
pairwise edge-disjoint (induced) blocky graphs that are required to cover it. The proof
of Theorem 2 actually shows that the blocky partition number of every bipartite graph
with n vertices is Õ( n

logn
).

1.2. The greater-than matrix. A more interesting but often more difficult question
is understanding the complexity of specific objects (and not of random objects). We
move to investigating the blocky rank of specific matrices.

The first matrix we consider is the n × n greater-than matrix GTn defined by
GTn(x, y) = 1x≤y, where we think of the rows and columns of GTn as integers in [n].
The greater-than matrix is the adjacency matrix of the half graph.

Theorem 3. blocky(GTn) = Θ(log n).

The upper bound is relatively straightforward and was proved a long time ago in
the context of Schur algebras [13]. It actually states that the blocky partition number
of the half graph is at most dlog ne + 1; see Claim 15 below. In particular, even the
monotone blocky rank of GTn is at most order log n (in monotone ranks, we only allow
to use positive coefficients).

A variant of the blocky rank of the greater-than matrix was studied in the context
of closure properties of “threshold classes” in machine learning [1, 6]. There are
many variants of blocky rank we can study: a monotone version where the linear
combination just uses positive numbers, an approximate version where we just need
to approximate the target matrix, a signed version where we just need to get the sign
pattern correctly, and so forth. Here is a variant that is related to closure properties
in machine learning. For a tuple B = (B1, . . . , BR) of n× n boolean matrices, and a
function F : {0, 1}R → {0, 1}, let F (B) be the n× n matrix obtained by applying F
entry-wise: for all i, j,

(F (B))i,j = F ((B1)i,j, . . . , (BR)i,j).

Definition. The functional blocky rank fun-blocky(M) of a boolean matrix M is the
minimum number R so that there is a tuple B = (B1, . . . , BR) of blocky matrices and
F : {0, 1}R → {0, 1} so that M = F (B).
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The lower bound fun-blocky(GTn) ≥ Ω(log log n) is implicit in the work of Alon,
Beimel, Moran, and Stemmer [1]. The better lower bound fun-blocky(GTn) ≥ Ω( logn

log logn
)

is implicit in the work of Ghazi, Golowich, Kumar and Manurangsi [6]. These two
works consider a more general framework, and their arguments are based on Ramsey
theory. And even the stronger lower bound is off by a log log n factor. We remove this
factor, and get a sharp bound.

Theorem 4. fun-blocky(GTn) ≥ 1
8

log n.

The lower bound is proved in Section 4. This argument too is related to covering
graphs. The Graham–Pollak theorem states that the edges of the full graph on n
vertices can not be partitioned to less than n− 1 complete bipartite graphs [7]. In [15],
Orlin suggested to study the problem of covering the cocktail party graph (a full graph
minus a perfect matching). Part of his motivation came from computational complexity
theory (see Remark 3.7 in his paper). In [8], Gregory and Pullman proved that the
clique cover number of the cocktail party graph is Θ(log n).

We consider the following bipartite strengthening of their result. The bipartite cocktail
party graph is the full bipartite graph minus a perfect matching.

Theorem 5. The blocky cover number of the bipartite cocktail party graph with n
vertices on each side is at least 1

4
log n.

This is quantitively weaker but more general than the lower bound of Gregory and
Pullman. The cocktail party graph contains a copy of the bipartite cocktail party graph.
And a clique in the cocktail party graph corresponds to a connected blocky graph in
that copy. Our lower bound holds also when we are allowed to cover the bipartite
cocktail party graph by any blocky graphs (not necessarily connected).

Avishay Tal shared with us the following observation. For every n×n Boolean matrix
M , the functional blocky rank of M is at most O(log n). The reason is that the matrix
B defined by Bx,y = xi for some fixed i is blocky, and with 2dlog ne such matrices we
can encode both x, y. This shows that, somewhat unusually, GTn is an explicit matrix
of essentially maximum functional blocky rank.

1.3. The inner-product matrix. The second matrix we consider is the inner-product
matrix; let IPn be the {0, 1}n × {0, 1}n matrix defined by IPn(x, y) =

∑
i xiyimod 2.

This matrix has been studied in various contexts, like circuit complexity, communication
complexity, margin complexity and more. We focus here on its connection to circuit
complexity; in particular, to depth-two threshold circuits. There is a long line of research
on this topic; see [9, 16, 18, 11, 19, 14, 2] and references within.

A linear threshold function (LTF) function is of the form T (z) = sign(b +
∑

i aizi)
for a1, . . . , an, b ∈ Z where sign is 1 on [0,∞) and 0 on (−∞, 0). A majority gate is a
special kind of LTFs in which all constants a1, . . . , an are in {−1, 0, 1}. A MAJ ◦ LTF
circuit computes a function of the form D(z) = m(T1(z), . . . , Ts(z)) where each Ti is an
LTF and m is a majority gate. The size of the circuit is |D| = s.

Hajnal, Maass, Pudlák, Szegedy and Turán proved a lower bound of roughly 2n/3

for the size of MAJ ◦ LTF circuits computing the inner product function [9]. Amano
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constructed a MAJ ◦ LTF circuit of size (1.899)n computing inner product [2]. The
blocky rank perspective allows to improve the lower bound.

Theorem 6. If D ∈ MAJ ◦ LTF and D = IPn then |D| ≥ Ω(2
n/2

n
).

The theorem is proved in Section 5.1. The proof proceeds by bounding the correlation
between IPn and a threshold gate. An upper bound of ≈ 2−n/3 on the correlation was
proved in [9]. We improve the bound to ≈ 2−n/2 which is basically sharp; see Claim ??
below.

1.4. Depth-two threshold circuits. Finally, we describe a general connection between
blocky rank and circuit complexity, specifically, depth-two threshold circuits. Proving
strong lower bound for LTF ◦ LTF circuits is a long-standing open problem. Kane and
Williams proved the best known lower bound for this model [11]. They proved that the
size of every LTF ◦ LTF circuit computing the n-variate Andreev function must be of
size Ω(n3/2).

Roychowdhury, Orlitsky, and Siu observed that we do not even know how to prove
lower bounds for Σ ◦ LTF circuits, where the upper gate just computes a linear function
(with arbitrary coefficients); see [18, 19]. We observe that lower bounds on blocky rank
yield circuit lower bounds in this model.

Theorem 7. Let M be a {0, 1}n×{0, 1}n matrix. If M =
∑s

i=1wiTi where each wi ∈ R
and each Ti is an LTF then

s ≥ blocky(M)

2(n+ 1)
.

The theorem is proved in Section 5.2. It shows that proving strong lower bound on
the blocky rank of explicit boolean matrices might be difficult but rewarding. A similar
theorem holds for the signed version of blocky rank and general LTF ◦ LTF circuits.

The theorem suggests that even proving relative weak lower bounds (say, polynomial
in n) on the blocky rank of an explicit 2n × 2n matrix is interesting. The lower bound
from [11] relies on the anti-concentration phenomenon, which does not seem directly
relevant to blocky rank. So, even obtaining an Ω(n5/2) lower bound on the blocky rank
(which would yield the same circuit lower bound) seems interesting to us.

2. A lower bound for random matrices

The lower bounds follows from a counting argument showing that there are few
boolean matrices with low blocky rank.

Lemma 8. If V ⊂ Rn is a linear subspace of dimension k, then∣∣V ∩ {0, 1}n∣∣ ≤ 2k.

Proof. We can choose a basis for V in echelon form. That is, there are v1, . . . , vk ∈ V
and i1 < . . . < ik in [n] so that (vj)ij = 1 and (vj)i` = 0 for all ` < j. If

∑
i aivi ∈ {0, 1}n,

it follows that given a1, . . . , ai, there are at most two possible options for ai+1. The
total number of possibilities for a1, . . . , ak is at most 2k. �

Lemma 9. For n > 2, the number of blocky matrices of size n× n is at most 1
2
(2n)2n.
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Proof. By permuting the rows and columns, every blocky matrix can be brought into a
block diagonal form. A matrix in block diagonal form can be represented by two sets
{i1 < i2 < . . . < ir} and {j1 < j2 < . . . < jr} in [n] so that the first block is of size
i1 · j1, the second (i2 − i1) · (j2 − j1) and so on. The case when there are zero rows or
columns is encoded by ir < n or jr < n. There is at most 2n · 2n = 22n ways to choose
this representation and n! · n! ≤ 1

2
n2n ways to order the rows and columns. �

Proof of Theorem 1. For fixed blocky matrices B1, . . . , BR,∣∣span{B1, . . . , BR} ∩ {0, 1}n×n
∣∣ ≤ 2R.

The number of boolean blocky matrices of rank at most R is therefore at most
2R(1

2
(2n)2n)R = (2n)2nR. If R ≤ n

4 log(2n)
then (2n)2nR ≤ 2n

2/2. �

3. An upper bound for all matrices

We now provide a non-trivial upper bound for all boolean matrices. We start by
dealing with matrices with few ones. For a boolean matrix M , denote by |M | the
number of one entries in M .

Lemma 10. For every n× n boolean matrix M so that |M | ≤ n2

log2 n
,

blocky(M) ≤ 2n
logn

.

Proof. Denote by a(M) the number of non-zero rows in M , and by b(M) the number
of non-zero columns. And let z(M) = min{a(M), b(M)}. We can always bound
blocky(M) ≤ z(M). So, if z(M) ≤ 2n

logn
, we are done.

We inductively construct a sequence of matrices M0 = M,M1,M2, . . . ,MT as follows.
Assume we have already constructed Mt. If z(MT ) ≤ n

logn
then we stop. Otherwise, if

a(Mt) = z(Mt), choose a single one-entry in each row in Mt and put all these ones into
a blocky matrix Bt. Otherwise, choose a single one-entry in each column in Mt and put
all these ones into the blocky matrix Bt. Let Mt+1 = Mt −Bt.

For all t < T , we have |Bt| = z(Mt) >
n

logn
. It follows by induction that for all

t < T , we have |Mt| ≤ |M0| − t n
logn

. Because M0 has few ones, we know T ≤ n
logn

.

The blocky rank of MT is at most z(MT ) ≤ n
logn

. The blocky rank of M is at most

blocky(M) ≤ T + blocky(MT ). �

The upper bound on the blocky rank of general matrices uses the following well-known
combinatorial result. A one-submatrix of an n×n boolean M is a submatrix of M so that
all of its entries are one. The famous solution of Kövári–Sós–Turán of the Zarankiewicz
problem says that if |M | is large then M contains a large one-submatrix [12]. The
following lemma is a special case.

Lemma 11. If n is large enough and M is an n×n boolean matrix so that |M | ≥ n2

log2 n
,

then there exist a one-submatrix of M with at least logn
5 log logn

rows and at least
√
n

columns.
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Proof. The reference we use is Lemma 5.4 in [17], which says that if ε > 0 and k are so
that εn ≥ 2k and k ≤ logn

2 log(2e/ε)
then every matrix M with |M | ≥ εn2 contains a one-

submatrix with at least k rows and
√
n columns. Apply this lemma with ε = 1

log2 n
. �

Proof of Theorem 2. We describe an algorithm that gets as input an n × n boolean
matrix M , and efficiently decomposes it to blocky matrices. Throughout the proof,

k =
⌈

logn
5 log logn

⌉
and ` = d

√
ne and h = d 2n

logn
e and τ = n2

log2 n
.

Denote by b(M) the number of non-zero columns in M . Denote by Φ(n) the maximum
blocky rank of an n× n boolean matrix (we can assume without loss of generality that
n is a power of two).

We are going to prove that for all n′ ≤ n,

Φ(n′) ≤ 2(2n
′

k
+ k`

2
+ h) + Φ(n

′

2
).(1)

This indeed completes the proof because we can apply the above J ≤ O(log log n) times
for all n′ of the form n

2j
between n and h, and deduce that

Φ(n) ≤ 4n
k

+ 4(n/2)
k

+ . . .+ 4(n/2J−1)
k

+ 2J(k`
2

+ h) + Φ(h) ≤ O(n log logn
logn

).

Fix an n′ × n′ boolean matrix M . We are going to construct

Q ≤ 2n′

k
+ k`

2
+ h

blocky matrices B1, . . . , BQ so that the matrix M (Q) =
∑Q

q=1Bq is entry-wise at most

M (that is, M
(Q)
ij ≤Mij for all i, j) and the matrix M −M (Q) is so that

b(M −M (Q)) ≤ n′

2
.

We can apply the same procedure to the matrix (M −M (Q))T so that we now reach
a matrix with at most n

2
non-zero rows and columns (where T denotes transposition).

This proves (1).
Assume we have already constructed B0, . . . , Bq and we want to construct Bq+1,

where B0 = 0. Let

M ′ = M −
∑
i≤q

Bi.

Run the following procedure:

(1) t = 0 and N0 = M ′.
(2) while |Nt| ≥ τ by Lemma 11 define Nt+1 via

Nt =

(
1k×` ∗
∗ Nt+1

)
.

(3) t = t+1 . (end while)

Let T denote the final value of t. Let B be the n′ × n′ blocky matrix with the T
one-blocks of size k × ` that were found above. It could sometimes be the zero matrix.
Let L be the n′ × n′ matrix defined by

L =

(
0 0
0 NT

)
.
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There are two options to consider.

The first options is that T` ≥ n′

2
: In this case, we set

Bq+1 = B.

There are at least T` non-zero columns in B and each column has k non-zero
entries. So, |Bq+1| ≥ n′k

2
. This means that this first option can occur at most

2n′

k
times because |M | ≤ n′2.

The second options is that T` < n′

2
: Denote by B′ the matrix obtained from M ′ by

zeroing out every zero row in B. Because the total number of non-zero rows in
B is at most k n

′

2`
≤ k`

2
,

blocky(B′) ≤ k`
2
.

Because |L| < τ , Lemma 10 implies

blocky(L) ≤ h.

The matrix M ′ − L−B′ satisfies

b(M ′ − L−B′) ≤ T` < n′

2
.

We thus reduced the number of columns by a factor of two.

�

4. The functional blocky rank of greater-than

Let C be the n×n matrix with zeros on the diagonal and ones elsewhere; it corresponds
to the bipartite cocktail party graph.

Lemma 12. If C = ∨(B) where ∨ denotes the OR function and B = (B1, . . . , BR) is
a tuple of n× n blocky matrices then R ≥ 1

2
log n.

Proof of Lemma 12. The proof is by induction on n. For n = 1, the claim is trivial.
For the inductive step, the ones of the matrix B1 correspond to pairwise disjoint sets
S1, . . . , SA ⊆ [n] and T1, . . . , TA ⊆ [n]. That is, (B1)i,j = 1 iff i ∈ Sa and j ∈ Ta for
some a ∈ [A].

Define two random subsets S and T of [n] as follows. Let ε1, . . . , εA be i.i.d. uniformly
distributed in {0, 1}. Let S be the complement of

⋃
a:εa=1 Sa and T be the complement

of
⋃
a:εa=0 Ta. Let I = {i ∈ [n] : (i, i) ∈ S × T}.

The projection of B1 to S × T is the zero matrix (with probability one). For each
i ∈ [n], the probability that (i, i) ∈ S × T is one quarter, because (B1)i,i = 0. There is
a choice for S × T so that |I| ≥ n

4
.

Let C ′ be the matrix C after deleting all rows and columns not in I. The matrix C ′

is a cocktail party matrix of dimension |I|, and the matrix B1 does not contribute to
its representation. The inductive hypothesis completes the proof. �

Proof of Theorem 4. Assume that GTn = F (B) for B = (B1, . . . , BR) where each Br is
blocky. Assume towards a contradiction that R < 1

8
log n. There are m ≥

√
n values of

i ∈ [n] so that the values of Bi,i ∈ {0, 1}R are all equal. Delete the rest n−m rows and
columns from GTn and from B, and focus on the remaining m×m part. Denote by
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G the obtained copy of GTm, and denote by B′ the obtained tuple of matrices so that
G = F (B′).

There is f ∈ {0, 1}R so that for each i ∈ [m], we have B′i,i = f . Order B′ so that the
first k entries in f are ones, and the last R− k are zeros.

Claim 13. For every i 6= j in [m], there is r > k so that (exactly) one of (B′r)i,j and
(B′r)j,i is one.

Proof. For each r ≤ k, because B′r is blocky and (B′r)i,i = (B′r)j,j = 1, we know
that (B′r)i,j = (B′r)j,i. Because Gi,j 6= Gj,i, the two lists ((B′k+1)i,j, . . . , (B

′
R)i,j) and

((B′k+1)j,i, . . . , (B
′
R)j,i) must be different. �

The matrix ∨(B′k+1, . . . , B
′
R, B

′T
k+1, . . . , B

′T
R) is therefore zero on the diagonal and

one elsewhere (where T denotes transposition). Lemma 12 implies that 2(R − k) ≥
1
2

logm. �

5. Circuit complexity

5.1. MAJ ◦ LTF circuits. In this subsection, we use the blocky rank persepective to
prove circuit lower bounds for inner-product.

Definition. The nuclear norm of the matrix M is

‖M‖ν = inf
{ t∑

i=1

pi : M =
t∑
i=1

piBi ∀i pi > 0, rank(Bi) = 1, ‖Bi‖∞ ≤ 1
}
.

Claim 14. If B is a blocky matrix then ‖B‖ν ≤ 1.

Proof. The claim follows from the well-known fact that the nuclear norm of the unit
matrix is at most one (see e.g. [10]). We include a proof for completeness. It is sufficient
to consider n× n identity matrices for n+ 1 prime. Then, for all x, y ∈ [n],

1x=y =
∑

z∈{0,1,...,n}

1
n+1
· e2πi(x−y)z/(n+1). �

Consider the following generalization of LTFs.

Definition. An [n]× [n] matrix M is monotone if for every x and y < y′ in [n],

Mx,y ≤Mx,y′ .

Claim 15. If M is a boolean n × n monotone matrix then M is a sum of at most
dlog ne+ 1 blocky matrices.

Proof. Because duplicating rows and columns do not increase the blocky rank, we can
consider the matrix GTn. The blocky rank of GTn is at most dlog ne+ 1; see e.g. [13].
We include a proof for completeness. We prove the claim for GTn for n = 2k. The proof
is by induction on k. For the base case k = 0, we have blocky(G1) ≤ 1. The matrix
GT2k+1 can be written as

GT2k+1 =

(
GT2k J

0 GT2k

)
,
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where J is the all-ones matrix. Let B1, . . . , Bk+1 be the matrices so that GT2k =
B1 + . . .+Bk+1. We can write GT2k+1 as

GT2k+1 =

(
B1 0
0 B1

)
+ . . .+

(
Bk+1 0

0 Bk+1

)
+

(
0 J
0 0

)
. �

Corollary 16. The nuclear norm of an n × n boolean monotone matrix is at most
dlog(n)e+ 1

The property of inner-product we rely on is Lindsey’s lemma. This was done in many
works, including [9]. The proof of the lemma uses the fact that the rows of IPn are
orthogonal using the Cauchy-Schwarz inequality.

Lemma 17. If M is a {0, 1}n × {0, 1}n matrix of rank one so that ‖M‖∞ ≤ 1 then∣∣∣ ∑
x,y∈{0,1}n

(−1)IPn(x,y)M(x, y)
∣∣∣ ≤ 2

3n
2 .

We can conclude the following strengthening of the correlation bound from [9].

Lemma 18. If T is an LTF then∣∣∣ ∑
x,y∈{0,1}n

(−1)IPn(x,y)T (x, y)
∣∣∣ ≤ (n+ 1)2

3n
2 .

Proof. The matrix T is monotone (up to a permutation of the rows and columns).
Corollary 16 bounds the nuclear norm of T from above; we can write

T =
∑
i

piBi

where each pi > 0, where each Bi is of rank one and ‖Bi‖∞ ≤ 1, and where
∑

i pi ≤
(n+ 1). Lemma 17 implies∣∣∣ ∑

x,y∈{0,1}n
(−1)IPn(x,y)T (x, y)

∣∣∣ =
∣∣∣ ∑
x,y∈{0,1}n

(−1)IPn(x,y)
∑
i

piBi(x, y)
∣∣∣

≤
∑
i

pi

∣∣∣ ∑
x,y∈{0,1}n

(−1)IPn(x,y)Bi(x, y)
∣∣∣

≤ (n+ 1)2
3n
2 . �

Proof of Theorem 6. Assume that IPn(x, y) = sign(−b+
∑s

i=1wiTi(x, y)) where each Ti
is an LTF and wi ∈ {−1, 0, 1}. It follows that |b| ≤ s because otherwise the right hand
side is constant. For all x, y,

(−1)1+IPn(x,y)
(
− 1 + 2

(
− b+

∑
i

wiTi(x, y)
))
≥ 1.

Summing over all x, y,∣∣∣∑
x,y

(−1)IPn(x,y)
(
− 1 + 2

(
− b+

∑
i

wiTi(x, y)
))∣∣∣ ≥ 22n.
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Lemma 18 implies that∣∣∣∑
x,y

(−1)IPn(x,y)
(
− 1 + 2

(
− b+

∑
i

wiTi(x, y)
))∣∣∣

≤ 2(s+ 1)2n + 2 ·
∑
i

wi

∣∣∣∑
x,y

(−1)IPn(x,y)Ti(x, y)
∣∣∣

≤ s · 2(n+ 2)2
3n
2 . �

5.2. Σ◦LTF circuits. In this subsection, we show that blocky rank lower bounds imply
circuit lower bounds.

Proof of Theorem 7. If M =
∑s

i=1wiTi then by Claim 15 we have

blocky(M) ≤
∑
i

blocky(Ti) ≤ s · (n+ 1). �
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