Robustness for Space Knowledge

Eric Allender \square ペ(1)
Rutgers University, NJ, USA
Jacob Gray \square 수
University of Massachusetts, MA, USA
Saachi Mutreja \square
University of California, Berkeley, CA, USA
Harsha Tirumala \square 수 (D)
Rutgers University, NJ, USA
Pengxiang Wang \square
University of Michigan, MI, USA

Abstract

_ Abstract We show that the space-bounded Statistical Zero Knowledge classes SZK $_{\mathrm{L}}$ and NISZK $_{\mathrm{L}}$ are surprisingly robust, in that the power of the verifier and simulator can be strengthened or weakened without affecting the resulting class. Coupled with other recent characterizations of these classes [2], this can be viewed as lending support to the conjecture that these classes may coincide with the non-space-bounded classes SZK and NISZK, respectively.

2012 ACM Subject Classification Complexity Classes

Keywords and phrases Interactive Proofs
Funding Eric Allender: Supported in part by NSF Grants CCF-1909216 and CCF-1909683.
Jacob Gray: Supported in part by NSF grants CNS-215018 and CCF-1852215
Saachi Mutreja: Supported in part by NSF grants CNS-215018 and CCF-1852215
Harsha Tirumala: Supported in part by NSF Grants CCF-1909216 and CCF-1909683.
Pengxiang Wang: Supported in part by NSF grants CNS-215018 and CCF-1852215

1 Introduction

The complexity class SZK (Statistical Zero Knowledge) and its "non-interactive" subclass NISZK have been studied intensively by the research communities in cryptography and computational complexity theory. In [10], a space-bounded version of SZK, denoted SZK was introduced, primarily as a tool for understanding the complexity of estimating the entropy of distributions represented by very simple computational models (such as low-degree polynomials, and NC^{0} circuits). There, it was shown that $\mathrm{SZK}_{\mathrm{L}}$ contains many important problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and Decisional Diffie-Hellman. The corresponding "non-interactive" subclass of SZK ${ }_{\mathrm{L}}$, denoted NISZK $_{\mathrm{L}}$, was subsequently introduced in [1], primarily as a tool for clarifying the complexity of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such as projections). Just as every problem in SZK $\leq_{t t}^{\mathrm{AC}^{0}}$ reduces to problems in NISZK [12], so also every problem in $\mathrm{SZK}_{\mathrm{L}} \leq_{\mathrm{tt}}^{\mathrm{AC}^{0}}$ reduces to problems in NISZK $_{\mathrm{L}}$, and thus NISZK $_{\mathrm{L}}$ contains intractable problems if and only if $\mathrm{SZK}_{\mathrm{L}}$ does.

Very recently, all of these classes were given surprising new characterizations, in terms of efficient reducibility to the Kolmogorov random strings. Let \widetilde{R}_{K} be the promise problem $\left(Y_{\widetilde{R}_{K}}, N_{\widetilde{R}_{K}}\right)$ where $Y_{\widetilde{R}_{K}}$ contains all strings y such that $K(y) \geq|y| / 2$ and the NO instances
$N_{\widetilde{R}_{K}}$ consists of those strings y where $K(y) \leq|y| / 2-e(|y|)$ for some approximation error term $e(n)$, where $e(n)=\omega(\log n)$ and $e(n)=n^{o(1)}$.

- Theorem 1. [2] Let A be a decidable promise problem. Then
- $A \in$ NISZK if and only if A is reducible to \widetilde{R}_{K} by randomized polynomial time reductions.
- $A \in \mathrm{NISZK}_{L}$ if and only if A is reducible to \widetilde{R}_{K} by randomized AC^{0} or logspace reductions.
- $A \in \mathrm{SZK}$ if and only if A is reducible to \widetilde{R}_{K} by randomized polynomial time "Boolean formula" reductions.
- $A \in \mathrm{SZK}_{L}$ if and only if A is reducible to \widetilde{R}_{K} by randomized logspace "Boolean formula" reductions.

There are very few natural examples of computational problems A where the class of problems reducible to A via polynomial-time reductions differs (or is conjectured to differ) from the class or problems reducible to A via $A C^{0}$ reductions. For example the natural complete problems for NISZK under \leq_{m}^{P} reductions remain complete under $A C^{0}$ reductions. Thus Theorem 1 gives rise to speculation that NISZK and NISZK $_{L}$ might be equal. (This would also imply that $\mathrm{SZK}=\mathrm{SZK}_{\mathrm{L}}$.)

This motivates a closer examination of SZK $_{\mathrm{L}}$ and NISZK $_{\mathrm{L}}$, to answer questions that have not been addressed by earlier work on these classes.

Our main results are:

1. The verifier and simulator may be very weak. NISZK K_{L} and SZK $_{L}$ are defined in terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a computationally-unbounded prover, following the usual rules of an interactive proof, and (3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol. (More formal definitions are to be found in Section 2.) We show that the verifier and simulator can be restricted to lie in $A C^{0}$. Let us explain why this is surprising.
The proof presented in [1], showing that EA NC° is complete for $\mathrm{NISZK}_{\mathrm{L}}$, makes it clear that the verifier and simulator can be restricted to lie in $\mathrm{AC}^{0}[\oplus]$ (as was observed in [23]). But the proof in [1] (and a similar argument in [12]) relies heavily on hashing, and it is known that, although there are families of universal hash functions in $\mathrm{AC}^{0}[\oplus]$, no such families lie in AC^{0} [18]. We provide an alternative construction, which avoids hashing, and allows the verifier and simulator to be very weak indeed.
2. The verifier and simulator may be somewhat stronger. The proof presented in [1], showing that $E_{N C^{0}}$ is complete for NISZK $_{L}$, also makes it clear that the verifier and simulator can be as powerful as $\oplus \mathrm{L}$, without leaving NISZK $_{\mathrm{L}}$. This is because the proof relies on the fact that logspace computation lies in the complexity class PREN of functions that have perfect randomized encodings [5], and $\oplus \mathrm{L}$ also lies in PREN. Applebaum, Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical randomized encodings), in proving that there are one-way functions in SREN if and only if there are one-way functions in NC^{0}. They also showed that other important classes of functions, such as NL and GapL, are contained in SREN. ${ }^{1}$ We initially suspected that NISZK $_{\mathrm{L}}$ could be characterized using verifiers and simulators computable in GapL (or even in the slightly larger class DET, consisting of problems that are $\leq_{\mathrm{T}}^{\mathrm{NC}^{1}}$ reducible to GapL), since DET is known to be contained in $\operatorname{NISZK}_{\mathrm{L}}$ [1]. However, we were unable to reach that goal.
[^0]We were, however, able to show that the simulator and verifier can be as powerful as NL, without making use of the properties of SREN. In fact, we go further in that direction. We define the class PM, consisting of those problems that are \leq_{T}^{L}-reducible to the Perfect Matching problem. PM contains NL [17], and is not known to lie in (uniform) NC (and it is not known to be contained in SREN). We show that statistical zero knowledge protocols defined using simulators and verifiers that are computable in PM yield only problems in NISZK $_{\text {L }}$.
3. The complexity of the simulator is key. As part of our attempt to characterize NISZK $_{\mathrm{L}}$ using simulators and verifiers computable in DET, we considered varying the complexity of the simulator and the verifier separately. Among other things, we show that the verifier can be as complex as DET if the simulator is logspace-computable. In most cases of interest, the NISZK class defined with verifier and simulator lying in some complexity class remains unchanged if the rules are changed so that the verifier is significantly stronger or weaker.

We also establish some additional closure properties of NISZK $_{L}$ and SZK $_{\mathrm{L}}$, some of which are required for the characterizations given in [2].

The rest of the paper is organized as follows: Section 3 will show how NISZK $K_{\text {L }}$ can be defined equivalently using an AC^{0} verifier and simulator. Section 4 will show that increasing the power of the verifier and simulator to lie in PM does not increase the size of NISZK $_{L}$ (where PM is the class of problems (containing NL) that are logspace Turing reducible to Perfect Matching. Section 6 shows that in general we can weaken the power of the verifier without decreasing the power of the proof systems. Finally Section 7 will show that $\mathrm{SZK}_{\mathrm{L}}$ is closed under logspace Boolean formula truth-table reductions.

2 Preliminaries

We assume familiarity with basic complexity classes $L, N L, \oplus L$ and P, and circuit complexity classes NC^{0} and AC^{0}. We assume knowledge of m-reducibility (many-one-reducibility) and Turing-reducibility.

Many of the problems we consider deal with entropy (also known as Shannon entropy). The entropy of a distribution X (denoted $H(X))$ is the expected value of $\log (1 / \operatorname{Pr}[X=x])$. Given two distributions X and Y, the statistical difference between the two is denoted $\Delta(X, Y)$ and is equal to $\sum_{\alpha}|\operatorname{Pr}[X=\alpha]-\operatorname{Pr}[Y=\alpha]| / 2$. This quantity is also known as the total variation distance between X and Y.

A distribution is considered flat if it is uniform on its support. Goldreich et al. [12] formalized a relaxed notion of flatness, termed Γ-flatness, which relies on the concept of Γ-typical elements. The definitions of both concepts follow:

- Definition 2. [Γ-typical elements] Suppose X is a distribution with element x in its support. We say that x is Γ-typical if

$$
2^{-\Gamma} \cdot 2^{-H(X)}<\operatorname{Pr}[X=x]<2^{\Gamma} \cdot 2^{-H(X)}
$$

- Definition 3 (Γ-flatness). Suppose X is a distribution. We say that X is Γ-flat if for every $w>0$ the probability that an element of the support, x, is $w \cdot \Gamma$-typical is at least $1-2^{-w^{2}+1}$.
- Lemma 4 (Flattening Lemma). [12] Suppose X is a distribution such that for all x in its support $\operatorname{Pr}[X=x] \geq 2^{-m}$. Then X^{k} is $(\sqrt{k} \cdot m)$-flat.
- Definition 5. Promise Problem: a promise problem Π is a pair of disjoint sets $\left(\Pi_{Y}, \Pi_{N}\right)$ (the "YES" and "NO" instances, respectively). A solution for Π is any set S such that $\Pi_{Y} \subseteq S$, and $S \cap \Pi_{n}=\varnothing$.
- Definition 6. A branching program is a directed acyclic graph with a single source and two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a variable in $\left\{x_{1}, \ldots, x_{n}\right\}$ and has two edges leading out of it: one labeled 1 and one labeled 0. A branching program computes a Boolean function f on input $x=x_{1} \ldots x_{n}$ by first placing a pebble on the source node. At any time when the pebble is on a node v labeled x_{i}, the pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if $x_{i}=1$ (or by the edge labeled 0 if $x_{i}=0$). If the pebble eventually reaches the sink labeled b, then $f(x)=b$. Branching programs can also be used to compute functions $f:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$, by concatenating n branching programs p_{1}, \ldots, p_{n}, where p_{i} computes the function $f_{i}(x)=$ the i-th bit of $f(x)$. For more information on the definitions, backgrounds, and nuances of these complexity classes, circuits, and branching programs, see the text by Vollmer [25].
- Definition 7. Non-interactive zero-knowledge proof (NISZK) [Adapted from [12] and [1]]: A non-interactive statistical zero-knowledge proof system for a promise problem Π is defined by a pair of deterministic polynomial time machines ${ }^{2}(V, S)$ (the verifier and simulator, respectively) and a probabilistic routine P (the prover) that is computationally unbounded, together with a polynomial $r(n)$ (which will give the size of the random reference string σ), such that:

1. (Completeness): For all $x \in \Pi_{Y}$, the probability (over random σ, and over the random choices of P) that $V(x, \sigma, P(x, \sigma))$ accepts is at least $1-2^{-O(|x|)}$.
2. (Soundness): For all $x \in \Pi_{N}$, and for every possible prover P^{\prime}, the probability that $V\left(x, \sigma, P^{\prime}(x, \sigma)\right)$ accepts is at least $2^{-O(|x|)}$. (Note P^{\prime} here can be malicious, meaning it can try to fool the verifier)
3. (Zero Knowledge): For all $x \in \Pi_{Y}$, the statistical distance between the following two distributions is bounded by $2^{-|x|}$:
a. Choose $\sigma \leftarrow\{0,1\}^{r(|x|)}$ uniformly random, $p \leftarrow P(x, \sigma)$, and output (p, σ).
b. $S(x, r)$ (where the coins r for S are chosen uniformly at random).

It is known that changing the definition, to have the error probability in the soundness and completeness conditions and in the simulator's deviation be $\frac{1}{n^{\omega(1)}}$ results in an equivalent definition [1, 12]. (See the comments after [1, Claim 39].) We will occasionally make use of this equivalent formulation, when it is convenient.

NISZK is the class of promise problems for which there is a non-interactive statistical zero knowledge proof system.

NISZK $_{\mathcal{C}}$ denotes the class of problems in NISZK where the verifier V and simulator S lie in complexity class \mathcal{C}.

- Definition 8. [1, 12] (EA and $\mathrm{EA}_{\mathrm{NC}^{0}}$). Consider Boolean circuits $C_{X}:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ representing distribution X. The promise problem EA is given by:

$$
\mathrm{EA}_{Y}:=\left\{C_{X}: H(X)>k+1\right\}
$$

[^1]$$
\mathrm{EA}_{N}:=\left\{C_{X}: H(X)<k-1\right\}
$$

The subproblem of EA, where the distribution C_{x} is an NC^{0} circuit, where each output bit depends on at most 4 input bits, is denoted $\mathrm{EA}_{\mathrm{NC}^{0}}$.
\rightarrow Theorem 9. [1, 2]: $\mathrm{EA}_{\mathrm{NC}^{0}}$ is complete for $\mathrm{NISZK}_{\mathrm{L}}$. It remains complete, even if k is fixed to $k=n-3$.
\rightarrow Definition 10. [24, 10] (SD and $\mathrm{SD}_{\mathrm{BP}}$). Consider a pair of Boolean circuits C_{1}, C_{2} : $\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ representing distributions X_{1}, X_{2}. The promise problem SD is given by:

$$
\begin{aligned}
& \mathrm{SD}_{Y}:=\left\{\left(C_{1}, C_{2}\right): \Delta\left(C_{1}, C_{2}\right)>2 / 3\right\} \\
& \mathrm{SD}_{N}:=\left\{\left(C_{1}, C_{2}\right): \Delta\left(C_{1}, C_{2}\right)<1 / 3\right\}
\end{aligned}
$$

$\mathrm{SD}_{\mathrm{BP}}$ is the subproblem of SD , where the distribution C_{x} is represented by a branching program.

3 Simulators and Verifiers in AC^{0}

Our proof showing that NISZK $_{\mathrm{L}}=$ NISZK $_{\text {AC }}{ }^{0}$ relies on the following extractor construction of Goldreich, Viola, and Wigderson.

- Theorem 11. [14, Theorem 1.5] There exists a constant c and an AC^{0}-computable function $E:\{0,1\}^{q n} \times\{0,1\}^{q(n-3) / c} \rightarrow\{0,1\}^{q(n-3)(1+c)}$ (an extractor) such that, if X^{\prime} is a distribution on $\{0,1\}^{q n}$ with $H\left(X^{\prime}\right) \geq k=\frac{q(n-3)}{\log q n}$, then

$$
\Delta\left(E\left(X^{\prime}, U_{q(n-3) / c}\right), U_{q(n-3)(1+c)}\right) \leq \frac{1}{(q n)^{3}}
$$

To prove that $\operatorname{NISZK}_{A C^{0}}=$ NISZK $_{\mathrm{L}}$, it suffices to prove that $\mathrm{EA}_{\mathrm{NC}^{0}} \in \mathrm{NISZK}_{\mathrm{AC}^{0}}$, since it is complete for NISZK ${ }_{L}$ under uniform projections [1]. A key part of the proof is provided by the following lemma, which relies on Theorem 11. The proof is deferred until Section 3.3.

- Lemma 12. Let a circuit $C:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ represent a probability distribution X on $\{0,1\}^{n}$ induced by the uniform distribution on $\{0,1\}^{m}$, and let c be the constant defined in Theorem 11.
Then, there is an AC^{0}-computable function that takes an instance $(X, n-3)$ of $\mathrm{EA}_{\mathrm{NC}}{ }^{0}$ such that $|(X, n-3)|=s, q=4 s m^{2}, q^{\prime}=4 s(m q)^{2}$, and produces an AC^{0} circuit Z encoding a distribution (also called Z) on $\{0,1\}^{q^{\prime} q k+q^{\prime} q k / c+q^{\prime} q m}$ such that:

1. If $H(X) \geq n-2$, then Z has statistical difference at most $1 / \operatorname{poly}(s)$ from the uniform distribution on $\{0,1\}^{\ell}$.
2. If $H(X) \leq n-4$, then the support of Z is at most $a 2^{-s}$ fraction of $\{0,1\}^{\ell}$.
where $\ell=q^{\prime} q k+q^{\prime} q k / c+q^{\prime} q m$.

3.1 NISZK $_{\mathrm{L}}$ protocol for $\mathrm{EA}_{\text {NC }}{ }^{\circ}$ on input $(X, n-3)$

3.1.1 Non Interactive proof system

1. Let Z be the distribution on $\{0,1\}^{\ell}$ obtained from $(X, n-3)$ as in Lemma 12. Recall that s is the total description length of $(X, n-3)$ in bits. Let $\sigma=\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s}$ be the reference string of length ℓs, where each $\sigma_{i} \in\{0,1\}^{\ell}$.
2. The prover picks an i at random from $\left\{i \leq s:\left\{r_{i} \mid Z\left(r_{i}\right)=\sigma_{i}\right\} \neq \varnothing\right\}$. (If no such i exists, then the prover sends \perp.) Then, after fixing i, it picks a random r_{i} from $\left\{r_{i} \mid Z\left(r_{i}\right)=\sigma_{i}\right\}$. It sends r_{i} to the verifier.
3. V accepts iff $\exists j Z\left(r_{i}\right)=\sigma_{j}$.

3.1.2 Simulator for $E A_{N C^{0}}$ proof system, on input $(X, n-3)$

1. Let Z be obtained from $(X, n-3)$ as in Lemma 12 .
2. Sample an i uniformly at random from $\{1,2, \ldots, s\}$.
3. For this index i, sample r_{i} at random, and compute $Z\left(r_{i}\right)=\sigma_{i}$.
4. For all $j \in\{1,2, \ldots, i-1, i+1, \ldots, s\}$, sample σ_{j} uniformly at random.
5. Output $\left(r_{i}, \sigma_{1}, \ldots \sigma_{i}=Z\left(r_{i}\right), \ldots \sigma_{s}\right)$.

3.2 Proofs of Zero Knowledge, Completeness and Soundness

3.2.1 Completeness

\triangleright Claim 13. If $H(X) \geq n-2$, then the verifier accepts with probability $\geq 1-\frac{1}{2^{s}}$.
Proof. If $H(X \geq m-2)$, then by Lemma $12, \Delta\left(Z, U_{\{0,1\}^{\ell}}\right) \leq \frac{1}{\operatorname{poly}(s)}$. Thus,

$$
\begin{aligned}
\operatorname{Pr}\left[\exists i \exists r_{i} Z\left(r_{i}\right)=\sigma_{i}\right] & \geq 1-\operatorname{Pr}\left[\forall i \neg \exists r_{i} Z\left(r_{i}\right)=\sigma_{i}\right) \\
& \geq 1-\prod_{i=1}^{s} \frac{1}{\operatorname{poly}(s)} \\
& =1-\frac{1}{\operatorname{poly}(s)^{s}} \\
& >1-\frac{1}{2^{s}}
\end{aligned}
$$

Thus, with probability close to 1 , the prover can send a string r_{i} that will cause the verifier to accept.

3.2.2 Soundness

\triangleright Claim 14. If $H(X) \leq n-4$, then the verifier accepts with probability $\leq \frac{1}{2^{s / 2}}$.
Proof. If $H(X)<n-3$, then, by Lemma 12, the support of Z is at most a 2^{-s} fraction of $\{0,1\}^{\ell}$. Thus,

$$
\begin{aligned}
\operatorname{Pr}[\text { verifier accepts }] & =\operatorname{Pr}\left[\exists i \mid Z\left(r_{i}\right)=\sigma_{i}\right] \\
& \leq \sum_{i=1}^{s} \frac{1}{2^{s}} \\
& =s \cdot \frac{1}{2^{s}} \\
& <\frac{1}{2^{s / 2}}
\end{aligned}
$$

3.2.3 Zero Knowledge

To prove zero knowledge, we must show that, for an honest prover P, the distribution induced by (P, V) on a YES instance has statistical difference at most $\frac{1}{2^{s}}$ from the distribution induced by the simulator, S. Let B be the event $\forall i \neg \exists r_{i} Z\left(r_{i}\right)=\sigma_{i}$ (which is the same as the event that the prover sends \perp). Since, for any YES instance, $\operatorname{Pr}[B] \leq \frac{1}{2^{s}}$, it will suffice to analyze $\operatorname{Pr}[(r, \sigma)]$ conditioned on B not arising.
Distribution induced by (P, V), conditioned on $\neg B$:
Let $S_{i}=\left\{r: Z(r)=\sigma_{i}\right\}$. Since the prover picks i uniformly at random from $\left\{i \leq s: S_{i} \neq \varnothing\right\}$, and picks r_{i} uniformly at random from $S_{i}, \operatorname{Pr}\left[\right.$ prover chooses $r \mid$ prover chooses i and $\left.\sigma^{\prime}=\sigma_{i}\right\}$ is the same for each $i \in\{1, \ldots, s\}, \sigma^{\prime} \in\{0,1\}^{\ell}, r \in S_{i}$ (and is equal to 0 for each $r \notin S_{i}$). Also, since σ is chosen uniformly at random, $\operatorname{Pr}[$ prover picks $i]$ is the same for each i.
Distribution induced by the simulator S :
For the distribution induced by the simulator, since the simulator picks an i uniformly at random from $\{1,2, \ldots, s\}$, the probability that the simulator produces transcript $\left(r_{i}, \sigma=\right.$ $\left.\sigma_{1}, \ldots Z\left(r_{i}\right), \ldots \sigma_{s}\right)$ is equal to $\operatorname{Pr}\left[\right.$ transcript is $\left(r_{i}, \sigma\right) \mid$ prover chooses i and $\left.\sigma_{i}=Z\left(r_{i}\right)\right]$.

It follows that, conditioned on $\neg B$, the probability of each outcome (r, σ) is the same in the two distributions. Thus, $\left.\Delta(S,(P, V)) \leq \frac{1}{2^{s}}\right)$.

3.3 Construction of Distribution Z by AC^{0} Circuits

Let the threshold for the $\mathrm{EA}_{\mathrm{NC}}{ }^{0}$ problem be $k=n-3$.
STEP 1: Many copies of distribution X.
Let m (resp. n) be the number input (resp. output) gates to X. We take $q=4 s m^{2}$ independent copies of X to create distribution X^{\prime}. Observe that $H\left(X^{\prime}\right)=q \cdot H(X)$. For every $x, \operatorname{Pr}[X=x] \geq \frac{1}{2^{m}}$. So the flattening lemma (Lemma 4) implies that X^{\prime} is $\delta=\sqrt{q} \cdot m=2 \sqrt{s} \cdot m^{2}$ flat.
Thus,

1. if $H(X)>k+1$, then $H\left(X^{\prime}\right)>q \cdot k+q>q k$.
2. If $H(X)<k-1$, then $H\left(X^{\prime}\right)<q \cdot k-q$.

STEP 2: Using AC^{0} Randomness Extractor on X^{\prime}
Now, we use the randomness extractor as mentioned in Theorem 11 on $x^{\prime} \in X^{\prime}$. Note that $X^{\prime}:\{0,1\}^{q m} \rightarrow\{0,1\}^{q n}$. We use a randomness source $r \in\{0,1\}^{q k / c}$, where c is the constant mentioned in Theorem 11.
Now consider the distribution Y on $E\left(X^{\prime}, r\right):\{0,1\}^{q m} \times\{0,1\}^{q k / c} \rightarrow\{0,1\}^{q k+q k / c}$.
\triangleright Claim 15. 1. If $H(X)>k+1$, then the statistical difference of Y from the uniform distribution over $\{0,1\}^{q k+q k / c}$ is at most $1 /(q m)^{3}$.
2. If $H(X)<q k-1$, then $H(Y)<q \cdot k-q+q k / c$.

Proof. If $H(X)>k+1$, then $H\left(X^{\prime}\right)>q k+q>q k$. Now, given that $k=n-3>$ $n / \operatorname{poly}(\log (n))$, we have that $H\left(X^{\prime}\right)>n m-3 q>\frac{q n}{\operatorname{poly}(\log (q n))}$. This implies that $r \in$ $\{0,1\}^{\frac{q n-3 q}{c}}$. From Theorem 11, it follows that $\Delta\left(E\left(x^{\prime}, r\right), U_{q k+q k / c}\right) \leq 1 /(q m)^{3}$.
Item 2 follows since the entropy of Y is $\leq H\left(X^{\prime}\right)+q k / c<q k-q+q k / c$. Thus, $H(Y)<$ $q k \cdot\left(\frac{c+1}{c}\right)-q$

STEP 3: Many copies of distribution Y.
Let $q^{\prime}=4 s(q m)^{2}=4 s q^{2} m^{2}$. The distribution $Y^{\prime}=\otimes^{q^{\prime}} Y$, so that Y^{\prime} has $q^{\prime} q m=M$ input gates, and $q^{\prime} \cdot(q k+q k / c)=N$ output gates. For every $y, \operatorname{Pr}[Y=y] \geq \frac{1}{2^{q m}}$. Thus the flattening lemma implies that Y^{\prime} is $\delta^{\prime}=\sqrt{q^{\prime}} q m=2 \sqrt{s}(q m)^{2}$ flat.

1. If $H(X)>k+1$, then $\Delta\left(Y^{\prime}, U_{N}\right) \leq q^{\prime} \cdot \frac{1}{(q m)^{3}}=\left(4 s(q m)^{2}\right) \cdot \frac{1}{(q m)^{3}}=\frac{4 s}{q m}=\frac{1}{m^{3}}=\mathcal{O}\left(\frac{1}{\text { poly }(s)}\right)$.
2. If $H(X)<k-1$, then $H\left(Y^{\prime}\right)<q^{\prime} \cdot H(Y)<q^{\prime} \cdot q \cdot k \cdot\left(\frac{c+1}{c}\right)-q^{\prime} \cdot q$.

STEP 4: Bounding the size of the support, if $H\left(Y^{\prime}\right)$ is small
Consider a circuit Z that takes as input $r^{\prime} \in\{0,1\}^{M}$. It samples $r \in\{0,1\}^{M}$, and outputs $\left(Y^{\prime}\left(r^{\prime}\right), r\right)=\left(y^{\prime}, r\right)$.
\triangleright Claim 16. 1. If $H(X)>k+1$, then Z has statistical distance $\leq \frac{1}{\operatorname{poly}(s)}$ from the uniform distribution over $\{0,1\}^{q^{\prime} q k+q^{\prime} q k / c+q^{\prime} q m}$.
2. If $H(X)<k-1$, then the support of Z is at most a $\frac{1}{2^{\text {poly(s) }}}$ fraction of the distribution $D:\{0,1\}^{q^{\prime} q k+q^{\prime} q k / c+q^{\prime} q m}$

Proof. If $H(X)>k+1$, then from steps 1-3, we know that the statistical distance of Y^{\prime} from the uniform distribution over $\{0,1\}^{q^{\prime} \cdot(q k+q k / c)}$ is $\mathcal{O}(1 / \operatorname{poly}(s))$.
\triangleright Claim 17. [24, Fact 2.3] Suppose X_{1} and X_{2} are independent random variables on one probability space and Y_{1} and Y_{2} are independent random variables on another probability space. Then,

$$
\Delta\left(\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right) \leq \Delta\left(\left(X_{1}, Y_{1}\right)\right)+\Delta\left(\left(X_{2}, Y_{2}\right)\right)
$$

Thus, the statistical difference between the uniform distribution over $\{0,1\}^{q^{\prime} q k+q^{\prime} q k / c+q^{\prime} q m}$ and $\left(Y^{\prime}\left(r^{\prime}\right), r\right)$ is

$$
\begin{aligned}
\Delta\left(\left(Y^{\prime}\left(r^{\prime}\right), r\right), U_{q^{\prime} q k+q^{\prime} q k / c+q^{\prime} q m}\right) & \leq \Delta\left(\left[Y^{\prime}\left(r^{\prime}\right), U_{q^{\prime} q k+q^{\prime} q k / c}\right)+\Delta\left(r, U_{q^{\prime} q m}\right)\right. \\
& =\frac{1}{\operatorname{poly}(s)}+\Delta\left(r, U_{q^{\prime} q m}\right) \\
& =\frac{1}{\operatorname{poly}(s)}+0 \\
& =\frac{1}{\operatorname{poly}(s)}
\end{aligned}
$$

If $H(X)<k-1$
Let the set S be the support of Z. If $H(X)<k-1$, then we break S into 3 parts, depending on the probability mass given to y^{\prime} by the distribution Y^{\prime}.

Case 1:
$S 1:\left\{\left(Y^{\prime}\left(r^{\prime}\right), r\right) \mid \operatorname{Pr}\left[Y^{\prime}\left(r^{\prime}\right)=y^{\prime}\right] \leq 2^{-N-s}\right\}$. If $\operatorname{Pr}\left[Y^{\prime}\left(r^{\prime}\right)=y^{\prime}\right] \leq 2^{-N-s}$, then there are at most 2^{M-N-s} values of r such that $Y^{\prime}(r)=y^{\prime}$. Thus, $\frac{|S 1|}{|D|} \leq \frac{2^{M-N-s} \cdot 2^{N}}{2^{N+M}} \leq \frac{2^{M-N-s}}{2^{M}} \leq$ $2^{-N-s} \leq 2^{-\Omega(s)}$.

Case 2:
$S 2:\left\{\left(Y^{\prime}\left(r^{\prime}\right), r\right) \mid 2^{-N-s} \leq \operatorname{Pr}\left[Y^{\prime}\left(r^{\prime}\right)=y^{\prime}\right] \leq 2^{-N+s}\right\}$

Since $H\left(Y^{\prime}\right) \leq N-q q^{\prime}$, every $y^{\prime} \in S 2$ is $\approx q \cdot q^{\prime}-s=M / m-s$ light. (That is, y^{\prime} is not
$(M / m)-s$-typical, as per Definition 2.) By the $\delta^{\prime}=\sqrt{q^{\prime}} q m$ flatness of Y,

$$
\begin{aligned}
\operatorname{Pr}\left[Y^{\prime} \in S 2\right] & \leq 2^{-\left(\left(q \cdot q^{\prime}-s\right) / \delta^{\prime}\right)^{2}+1} \\
& =2^{-\left(\sqrt{q^{\prime}} / m-s / \delta^{\prime}\right)^{2}+1} \\
& =2^{-\left(q^{\prime} / m^{2}+s^{2} /\left(\delta^{\prime}\right)^{2}-2 \sqrt{q^{\prime}} s /\left(m \delta^{\prime}\right)\right)+1} \\
& =2^{-q^{\prime} / m^{2}-s^{2} /\left(\delta^{\prime}\right)^{2}+2 \sqrt{q^{\prime}} s /\left(m \delta^{\prime}\right)+1} \\
& =2^{-q^{\prime} / m^{2}-s^{2} /\left(\delta^{\prime}\right)^{2}+2 s /\left(q m^{2}\right)+1}
\end{aligned}
$$

Since every y^{\prime} in $S 2$ has probability mass $\geq 2^{-N-s}$ under $Y^{\prime},|S 2| \leq \frac{2^{-q^{\prime} / m^{2}-s^{2} /\left(\delta^{\prime}\right)^{2}+2 s /\left(q m^{2}\right)+1}}{2^{-N-s}}$. Thus,

$$
\begin{aligned}
|S 2| /|D| & \leq \frac{2^{-q^{\prime} / m^{2}-s^{2} /\left(\delta^{\prime}\right)^{2}+2 s /\left(q m^{2}\right)+1}}{2^{-N-s} \cdot 2^{N}} \\
& =\frac{2^{-q^{\prime} / m^{2}-s^{2} /\left(\delta^{\prime}\right)^{2}+2 s /\left(q m^{2}\right)+1}}{2^{-s}} \\
& =2^{s-q^{\prime} / m^{2}-s^{2} /\left(\delta^{\prime}\right)^{2}+2 s /\left(q m^{2}\right)+1} \\
& \leq 2^{-\Omega(s)} .
\end{aligned}
$$

Case 3:
$S 3:\left\{\left(Y^{\prime}\left(r^{\prime}\right), r\right) \mid \operatorname{Pr}\left[Y^{\prime}\left(r^{\prime}\right)=y^{\prime}\right] \geq 2^{-N+s}\right\}$
In this case, there are at most 2^{N-s} values of y^{\prime} such that $\operatorname{Pr}\left[Y^{\prime}\left(r^{\prime}\right)=y^{\prime}\right] \geq 2^{-N+s}$. (Otherwise, probability mass >1). Thus, $|S 3| /|D|=2^{N-s} / 2^{N}=2^{-\Omega(s)}$.
$S=S 1 \cup S 2 \cup S 3$, and since $\left|S_{i}\right| /|D| \leq 2^{-\Omega(s)}, \forall i \in 1,2,3$, it follows that $|S| /|D| \leq$ $3 \cdot 2^{-\Omega(s)}=2^{-\Omega(s)}$.

4 Increasing the power of the Verifier and Simulator: PM

The Perfect Matching problem is the well-known problem of deciding, given an undirected graph G with $2 n$ vertices, if there is set of n edges covering all of the vertices. We define a corresponding complexity class PM as follows:

$$
\mathrm{PM}:=\left\{A: A \leq_{T}^{L} \text { Perfect Matching }\right\}
$$

In this section, we show that NISZK $_{L}=$ NISZK $_{\text {PM }}$. That is, we can increase the computational power of the simulator and the verifier from L to $P M$ without affecting the power of noninteractive statistical zero knowledge protocols. We make use of the following equality, which was previously observed in [23]:

- Proposition 18. NISZK $_{\oplus \mathrm{L}}=$ NISZK $_{\mathrm{L}}$

Proof. It suffices to show NISZK $_{\oplus \mathrm{L}} \subseteq$ NISZK $_{\mathrm{L}}$. We do this by showing that the problem $E A_{N C^{0}}$ is hard for NISZK $_{\oplus L}$; this suffices since $E A_{N C^{0}}$ is complete for NISZK $_{L}$. The proof of [1, Theorem 26] (showing that $\mathrm{EA}_{N C^{\circ}}$ is complete for NISZK $_{\mathrm{L}}$ involves (a) building a branching program to simulate a logspace computation called M_{x} that is constructed from a
logspace-computable simulator and verifier, and (b) constructing an NC^{0}-computable perfect randomized encoding of M_{x}, using the fact that $\mathrm{L} \subset \mathcal{P} \mathcal{R E N}$, where $\mathcal{P} \mathcal{R E N}$ is the class defined in [5], consisting of all problems with perfect randomized encodings. But Theorem 4.18 in [5] shows the stronger result that $\oplus \mathrm{L}$ lies in $\mathcal{P} \mathcal{R E} \mathcal{N}$, and hence the argument of [1, Theorem 26] carries over immediately, to reduce any problem in NISZK $_{\oplus \mathrm{L}}$ to $\mathrm{EA}_{\mathrm{NC}^{0}}$ (by modifying step (a), to build a parity branching program for M_{x} that is constructed from a $\oplus \mathrm{L}$ simulator and verifier).

We also rely on the following lemma:

- Lemma 19. Adapted from [4, Section 3] and [20, Section 4]: Let $W=\left(w_{1}, w_{2}, \cdots, w_{n^{k+3}}\right)$ be a sequence of n^{k+3} weight functions, where each $w_{i}:\left[\binom{n}{2}\right] \rightarrow\left[4 n^{2}\right]$ is a distinct weight assignment to edges in n-vertex graphs. Let $\left(G, w_{i}\right)$ denote the result of weighting the edges of G using weight assignment w_{i}. Then there is a function f in GapL, such that, if (G, w_{i}) has a unique perfect matching of weight j, then $f(G, W, i, j) \in\{1,-1\}$, and if G has no perfect matching, then for every (W, i, j), it holds that $f(G, W, i, j)=0$. Furthermore, if W $i s$ chosen uniformly at random, then with probability $\geq 1-2^{-n^{k}}$, for each n-vertex graph G :
- If G has no perfect matching then $\forall i \forall j f(G, W, i, j)=0$.
- If G has a perfect matching then $\exists i$ such that $\left(G, w_{i}\right)$ has a unique minimum-weight matching, and hence $\exists i \exists j f(G, W, i, j) \in\{1,-1\}$.

Thus if we define $g(G, W)$ to be $1-\Pi_{i, j}\left(1-f(G, W, i, j)^{2}\right)$, we have that $g \in \operatorname{GapL}$ and with probability $\geq 1-2^{-n^{k}}$ (for randomly-chosen W), $g(G, W)=1$ if G has a perfect matching, and $g(G, W)=0$ otherwise.

- Corollary 20. For every language $A \in \mathrm{PM}$ there is a language $B \in \oplus \mathrm{~L}$ such that, if $x \in A$, then $\operatorname{Pr}_{W}[(x, W) \in B] \geq 1-2^{-n^{2}}$, and if $x \notin A$, then $\operatorname{Pr}_{W}[(x, W) \in B] \leq 2^{-n^{2}}$.

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an oracle for Perfect Matching. We may assume without loss of generality that all queries made by M on inputs of length n have the same number of vertices $p(n)$. This is because G has a perfect matching iff $G \cup\left\{x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{k}-y_{k}\right\}$ has a perfect matching. (I.e., we can "pad" the queries, to make them all the same length.)

Let $C=\{(G, W): g(G, W) \equiv 1 \bmod 2\}$, where g is the function from Lemma 19. Clearly, $C \in \oplus \mathrm{~L}$.

Now, a logspace oracle machine with input (x, W) and oracle C can simulate the computation of M on x, replacing each query G made by M by the query asking if $(G, W) \in C$, and with high probability (over the random choice of W) all of the queries will be answered correctly and hence this routine will accept if and only if $x \in A$, by Lemma 19 . Let B be the language accepted by this logspace oracle machine. We see that $B \in \mathbf{L}^{C} \subseteq \mathrm{~L}^{\oplus} \mathrm{L}=\oplus \mathrm{L}$, where the last equality is from [15].

- Theorem 21. NISZK $_{L}=$ NISZK $_{P M}$

Proof. We show that NISZK $_{\oplus \mathrm{L}}=$ NISZK $_{\text {PM }}$, and then appeal to Proposition 18.
Let Π be an arbitrary problem in NISZK $_{\text {PM }}$, and let (S, P, V) be the PM simulator, prover, and verifier for Π, respectively. Let S^{\prime} and V^{\prime} be the $\oplus \mathrm{L}$ languages that are probabilistic realizations of S, V, respectively, guaranteed by Corollary 20 .We now define a NISZK $_{\mathrm{L}}$ protocol $\left(S^{\prime \prime}, P^{\prime \prime}, V^{\prime \prime}\right)$ for Π.

On input x with shared randomness σW, the prover $P^{\prime \prime}$ sends the same message $p=$ $P(x, \sigma)$ as the original prover sends. The verifier $V^{\prime \prime}$, returns the value of $V^{\prime}((x, \sigma, p), W)$, which with high probability is equal to $V(x, \sigma, p)$. The simulator $S^{\prime \prime}$, given as input x and random sequence $r W$, executes $S^{\prime}((x, r, i), W)$ for each bit position i to obtain a bit that (with high probability) is equal to the $i^{\text {th }}$ bit of $S(x, r)$, which is a string of the form (σ, p), and outputs $(\sigma W, p)$.

Now we will analyze the properties of $\left(S^{\prime \prime}, P^{\prime \prime}, V^{\prime \prime}\right)$:

- Correctness: Suppose $x \in \Pi_{Y}$, then $\operatorname{Pr}_{\sigma}[V(x, \sigma, P(x, \sigma))=1] \geq 1-2^{-O(n)}$. Since $\forall y \in\{0,1\}^{n}: \operatorname{Pr}_{W}\left[V(y)=V^{\prime}(y, W)\right] \geq 1-2^{-n^{k}}$ we have:

$$
\operatorname{Pr}_{\sigma W}\left[V^{\prime}\left(\left(x, \sigma, P^{\prime \prime}(x, \sigma)\right), W\right)=1\right] \geq\left[1-2^{-O(n)}\right]\left[1-2^{-n^{k}}\right]=1-2^{-O(n)}
$$

- Soundness: Suppose $x \in \Pi_{N}$, then $\operatorname{Pr}_{\sigma}[\forall p: V(x, \sigma, p)=0] \geq 1-2^{-O(n)}$. Since $\forall y \in\{0,1\}^{n}: \operatorname{Pr}_{W}\left[V(y)=V^{\prime}(y, W)\right] \geq 1-2^{-n^{k}}$, we have:

$$
\underset{\sigma W}{\operatorname{Pr}}\left[\forall p: V^{\prime}((x, \sigma, p), W)=0\right] \geq\left[1-2^{-O(n)}\right]\left[1-2^{-n^{k}}\right]=1-2^{-O(n)}
$$

- Statistical Zero-Knowledge: Suppose $x \in \Pi_{Y}$. Let S^{*} denote the distribution on strings of the form (σ, p) that $S(x, r)$ produces, where r is uniformly generated, and let P^{*} denote the distribution on strings given by $(\sigma, P(x, \sigma))$ where σ is chosen uniformly at random. Similarly, let $S^{\prime \prime *}$ denote the distribution on strings of the form $(\sigma W, p)$ that $S^{\prime \prime}(x, r W)$ produces, where r and W are chosen uniformly, and let $P^{\prime \prime *}$ be the distribution given by $\left(\sigma W, P^{\prime \prime}(x, \sigma W)\right)$. Let $A=\left\{(\sigma W, p): \exists i \exists r S(x, r)_{i} \neq S^{\prime}((x, r, i), W)\right\}$. Since $\operatorname{Pr}_{W}\left[\forall i \forall r: S(x, r)_{i}=S^{\prime}((x, r, i), W)\right] \geq 1-2^{-O(n)}$ we have:

$$
\begin{gathered}
\Delta\left(S^{\prime \prime *}, P^{\prime \prime *}\right)=\frac{1}{2} \sum_{(\sigma W, p)}\left|\operatorname{Pr}\left[S^{\prime \prime *}=(\sigma W, p)\right]-\operatorname{Pr}\left[P^{\prime \prime *}=(\sigma W, p)\right]\right| \\
\left.\leq \frac{1}{2}\left(2^{-O(n)}+\sum_{(\sigma W, p) \in \bar{A}} \mid \operatorname{Pr}\left[S^{\prime \prime *}=(\sigma W, p)\right]-\operatorname{Pr}\left[P^{\prime \prime *}=(\sigma W, p)\right]\right) \right\rvert\, \\
=\frac{1}{2}\left(2^{-O(n)}+\sum_{(\sigma W, p) \in \bar{A}}\left|\operatorname{Pr}\left[S^{*}=(\sigma, p)\right]-\operatorname{Pr}\left[P^{*}=(\sigma, p)\right]\right| \operatorname{Pr}[W]\right) \\
\leq 2^{-O(n)}+\sum_{W} \operatorname{Pr}[W] \frac{1}{2} \sum_{(\sigma, p)}\left|\operatorname{Pr}\left[S^{*}=(\sigma, p)\right]-\operatorname{Pr}\left[P^{*}=(\sigma, p)\right]\right| \\
=2^{-O(n)}+\Delta\left(S^{*}, P^{*}\right)=2^{-O(n)}
\end{gathered}
$$

Therefore $\left(S^{\prime \prime}, P^{\prime \prime}, V^{\prime \prime}\right)$ is a $\operatorname{NISZK}_{\oplus \mathrm{L}}$ protocol deciding Π.

5 Additional problems in NISZK K_{L}

In this section, we give additional examples of problems in P that lie in NISZK $_{L}$. These problems are not known to lie in (uniform) NC. Our main tool is to show that NISZK K_{L} is closed under a class of randomized reductions.

The following definition is from [2]:

- Definition 22. A promise problem $A=(Y, N)$ is $\leq_{\mathrm{m}}^{\mathrm{BPL}}$-reducible to $B=\left(Y^{\prime}, N^{\prime}\right)$ with threshold θ if there is a logspace-computable function f and there is a polynomial p such that

```
- \(x \in Y\) implies \(\operatorname{Pr}_{r \in\{0,1\}^{p(|x|)}}\left[f(x, r) \in Y^{\prime}\right] \geq \theta\).
- \(x \in N\) implies \(\operatorname{Pr}_{r \in\{0,1\}^{p(|x|)}}\left[f(x, r) \in N^{\prime}\right] \geq \theta\).
```

Note, in particular, that the logspace machine computing the reduction has two-way access to the random bits r; this is consistent with the model of probabilistic logspace that is used in defining NISZK $_{\mathrm{L}}$.

- Theorem 23. NISZK $_{\mathrm{L}}$ is closed under \leq_{m}^{BPL} reductions with threshold $1-\frac{1}{n^{\omega(1)}}$.

Proof. Let $\Pi \leq_{\mathrm{m}}^{\mathrm{BPL}} \mathrm{EA}_{\mathrm{NC}}{ }^{0}$, via logspace-computable function f. Let $\left(S_{1}, V_{1}, P_{1}\right)$ be the $\mathrm{NISZK}_{\mathrm{L}}$ proof system for $E A_{N C^{0}}$.

Algorithm 1 Simulator $S\left(x, r \sigma^{\prime}\right)$

```
(\sigma,p)\leftarrowS S (f(x,\mp@subsup{\sigma}{}{\prime}),r);
```

 return \(\left(\left(\sigma, \sigma^{\prime}\right), p\right)\);
 Algorithm 2 Prover $P\left(x,\left(\sigma, \sigma^{\prime}\right)\right)$
return $P_{1}\left(\left(f\left(x, \sigma^{\prime}\right), \sigma\right)\right.$;

Algorithm 3 Verifier $V\left(x,\left(\sigma, \sigma^{\prime}\right), p\right)$
return $V_{1}\left(\left(f\left(x, \sigma^{\prime}\right), \sigma, p\right)\right.$
We now claim that (S, P, V) is a NISZK K_{L} protocol for Π.
It is apparent that S and V are computable in logspace. We just need to go through correctness, soundness, and statistical zero-knowledge of this protocol.

- Correctness: Suppose x is YES instance of Π. Then with probability $1-\frac{1}{n^{\omega(1)}}$ (over randomness of $\left.\sigma^{\prime}\right): f\left(x, \sigma^{\prime}\right)$ is a YES instance of $\mathrm{EA}_{N C^{0}}$. Thus for a randomly chosen σ :

$$
\operatorname{Pr}\left[V_{1}\left(f\left(x, \sigma^{\prime}\right), \sigma, P_{1}\left(f\left(x, \sigma^{\prime}\right), \sigma\right)\right)=1\right] \geq 1-\frac{1}{n^{\omega(1)}}
$$

- Soundness: Suppose x is NO instance of Π. Then with probability $1-\frac{1}{n^{\omega(1)}}$ (over randomness of $\left.\sigma^{\prime}\right): f\left(x, \sigma^{\prime}\right)$ is a NO instance of $\mathrm{EA}_{\mathrm{NC}^{0}}$. Thus for a randomly chosen σ :

$$
\operatorname{Pr}\left[V_{1}\left(f\left(x, \sigma^{\prime}\right), \sigma, P_{1}\left(f\left(x, \sigma^{\prime}\right), \sigma\right)\right)=0\right] \geq 1-\frac{1}{n^{\omega(1)}}
$$

- Statistical Zero-Knowledge: If x is a YES instance, $f\left(x, \sigma^{\prime}\right)$ is a YES instance of $\mathrm{EA}_{\mathrm{NC}^{0}}$ with probability close to 1 . For any YES instance y of $\mathrm{EA}_{\mathrm{NC}^{0}}$, the distribution given by S_{1} on input y is exponentially close the the distribution on transcripts (σ, p) induced by $\left(V_{1}, P_{1}\right)$ on input y. Thus the distribution on $\left(\sigma \sigma^{\prime}, p\right)$ induced by (V, P) has distance at most $\frac{1}{n^{\omega(1)}}$ from the distribution produced by S on input x. The claim now follows by the comments regarding error probabilities in Definition 7.

McKenzie and Cook [19] defined and studied the problems LCON, LCONX and LCONNULL. LCON is the problem of determining if a system of linear congruences over the integers mod q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL is the problem of computing a spanning set for the null space of the system.

These problems are known to lie in uniform NC^{3} [19], but are not known to lie in uniform NC^{2}, although Arvind and Vijayaraghavan showed that there is a set B in $\mathrm{L}^{\text {GapL }} \subseteq \mathrm{DET} \subseteq \mathrm{NC}^{2}$ such that $x \in$ LCON if and only if $(x, W) \in B$, where B is a randomly-chosen weight function
[6]. (The probability of error is exponentially small.) The mapping $x \mapsto(x, W)$ is clearly a $\leq_{\mathrm{m}}^{\mathrm{BPL}}$ reduction. Since DET \subseteq NISZK $_{\mathrm{L}}[1]$, it follows that

$$
\mathrm{LCON} \in \text { NISZK }_{\mathrm{L}}
$$

The arguments in [6] carry over to LCONX and LCONNULL as well.

- Corollary 24. LCON \in NISZK $_{\mathrm{L}} . \mathrm{LCONX} \in$ NISZK $_{\mathrm{L}} . \mathrm{LCONNULL} \in$ NISZK $_{\mathrm{L}}$.

6 Why we can allow for a stronger Verifier

We define NISZK $_{A, B}$ as the class of problems with a NISZK protocol where the simulator is in A and the verifier is in B (and hence $\operatorname{NISZK}_{A}=\operatorname{NISZK}_{A, A}$). We will consider the case where $A \subseteq B \subseteq \operatorname{NISZK}_{A}$ and A, B are both classes of functions that are closed under composition.

- Theorem 25. NISZK $_{A, B}=$ NISZK $_{A}$

Proof. Let Π be an arbitrary promise problem in $\operatorname{NISZK}_{A, B}$ with $\left(S_{1}, V_{1}, P_{1}\right)$ being the A simulator, B verifier, and prover for Π 's proof system, where the reference string has length $p_{1}(|x|)$ and the prover's messages have length $q_{1}(|x|)$. Since $V_{1} \in B \subseteq \operatorname{NISZK}_{A}, L\left(V_{1}\right)$ has a proof system $\left(S_{2}, V_{2}, P_{2}\right)$, where the reference string has length $p_{2}(|x|)$ and the prover's messages have length $q_{2}(|x|)$.

- Lemma 26. We may assume without loss of generality that $p_{1}(n)>p_{2}(n)+q_{2}(n)$.

Proof. If it is not the case that $p_{1}(n)>p_{2}(n)+q_{2}(n)$, then let $r(n)=p_{2}(n)+q_{2}(n)-p_{1}(n)$. Consider a new proof system $\left(S_{1}^{\prime}, V_{1}^{\prime}, P_{1}^{\prime}\right)$ that is identical to $\left(S_{1}, V_{1}, P_{1}\right)$, except that the reference string now has length $p_{1}(n)+r(n)$ (where P_{1}^{\prime} and V_{1}^{\prime} ignore the additional $r(n)$ random bits). The simulator S_{1}^{\prime} uses an additional $r(n)$ random bits and simply appends those bits to the output of S_{1}. The language $L\left(V_{1}^{\prime}\right)$ is still in NISZK $_{A}$, with a proof system $\left(S_{2}^{\prime}, V_{2}^{\prime}, P_{2}^{\prime}\right)$ where the reference string still has length $p_{2}(n)$, since membership in $L\left(V_{1}^{\prime}\right)$ does not depend on the "new" $r(n)$ random bits, and hence $S_{2}^{\prime}, V_{2}^{\prime}$ and P_{2}^{\prime}, given input $(x, \sigma r, p)$ behave exactly as S_{2}, V_{2} and P_{2} behave when given input (x, σ, p).

Then Π has the following NISZK $_{A}$ proof system:
Algorithm 4 Simulator $S\left(x, r_{1}, r_{2}\right)$

```
Data: }x\in\mp@subsup{\Pi}{Y}{}\cup\mp@subsup{\Pi}{N}{
(\sigma,p)\leftarrowS S (x, r
(\sigma',}\mp@subsup{p}{}{\prime})\leftarrow\mp@subsup{S}{2}{}((x,\sigma,p),\mp@subsup{r}{2}{})
return ((\sigma,\mp@subsup{\sigma}{}{\prime}),(p,\mp@subsup{p}{}{\prime}));
```

Algorithm 5 Prover $P\left(x, \sigma \sigma^{\prime}\right)$
Data: $x \in \Pi_{Y} \cup \Pi_{N} ; \sigma \in\{0,1\}^{p_{1}(|x|)}, \sigma^{\prime} \in\{0,1\}^{p_{2}(|x|)}$
if $x \in \Pi_{Y}$ then
$p \leftarrow P_{1}(x, \sigma) ;$
$p^{\prime} \leftarrow P_{2}\left((x, \sigma, p), \sigma^{\prime}\right) ;$
return $\left(p, p^{\prime}\right)$;
else
return \perp, \perp;
end
\square Algorithm 6 Verifier $V\left(x,\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$
return $V_{2}\left((x, \sigma, p), \sigma^{\prime}, p^{\prime}\right)$

- Correctness: Suppose $x \in \Pi_{Y}$, then given random σ, with probability $\left(1-\frac{1}{2^{O(|x|)}}\right)$: $\left(x, \sigma, P_{1}(x, \sigma)\right) \in L\left(V_{1}\right)$ which means with probability $\left(1-\frac{1}{2^{O\left(|x|+p_{1}(|x|)+|p|\right)}}\right)$ it holds that $\left((x, \sigma, p), \sigma^{\prime}, P_{2}\left(x, \sigma, P_{1}(x, \sigma)\right) \in L\left(V_{2}\right)\right.$. So the probability that V accepts is:

$$
\left(1-\frac{1}{2^{O(|x|)}}\right)\left(1-\frac{1}{2^{O\left(|x|+p_{1}(|x|)+q_{1}(|x|)\right)}}\right)=1-\frac{1}{2^{O(|x|)}}
$$

- Soundness: Suppose $x \in \Pi_{N}$. When given a random σ, we have that with probability less than $\frac{1}{2 O(|x|)}: \exists p$ such that $(x, \sigma, p) \in L\left(V_{1}\right)$. For $(x, \sigma, p) \notin L\left(V_{1}\right)$, the probability that there is a p such that $\left((x, \sigma, p), \sigma^{\prime}, p^{\prime}\right) \in L\left(V_{2}\right)$ is at most $\frac{1}{2^{O\left(|x|+p_{1}(|x|)+|p|\right)}}$ (given random $\left.\sigma^{\prime}\right)$. So the probability that V rejects is:

$$
\left(1-\frac{1}{2^{O(|x|)}}\right)\left(1-\frac{1}{2^{O(|x|+p(|x|)+|p|)}}\right)=1-\frac{1}{2^{O(|x|)}}
$$

- Statistical Zero-Knowledge: Let P_{1}^{*} denote the distribution that samples σ and outputs
 $\left(\sigma_{2}, P_{2}((x, \sigma, p)) . P^{*}\right.$ will be defined as the distribution $\left.\left(\left(\sigma, \sigma^{\prime}\right), P\left(x, \sigma, \sigma^{\prime}\right)\right)\right)$ where σ and σ^{\prime} are chosen uniformly at random. In the same way, let S^{*} refer to the distribution produced by S on input x, let S_{1}^{*} refer to the distribution produced by $S_{1}(x)$, and let $S_{2}^{*}(\sigma, p)$ be the distribution induced by S_{2} on input (x, σ, p). Now we can partition the set of possible outcomes $\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$ of S^{*} and P^{*} into 3 blocks:

1. $\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$ such that $V_{1}(x, \sigma, p)$ accepts and $V_{2}\left((x, \sigma, p), \sigma^{\prime}, p^{\prime}\right)$ accepts.
2. $\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$ such that $V_{1}(x, \sigma, p)$ accepts and $V_{2}\left((x, \sigma, p), \sigma^{\prime}, p^{\prime}\right)$ rejects.
3. $\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$ such that $V_{1}(x, \sigma, p)$ rejects.

We will call these blocks A_{1}, A_{2}, and A_{3} respectively. Then by definition:

$$
\begin{gathered}
\Delta\left(S^{*}, P^{*}\right)=\frac{1}{2} \sum_{j \in\{1,2,3\}} \sum_{y \in A_{j}(x)}\left|\underset{S^{*}}{\operatorname{Pr}}[y]-\underset{P^{*}}{\operatorname{Pr}}[y]\right| \\
\leq \frac{1}{2} \sum_{y \in A_{1}}\left|\underset{S^{*}}{\operatorname{Pr}}[y]-\underset{P^{*}}{\operatorname{Pr}}[y]\right|+\frac{1}{2} \sum_{j \in\{2,3\}} \sum_{y \in A_{j}(x)}\left[\underset{S^{*}}{\operatorname{Pr}}[y]+\underset{P^{*}}{\operatorname{Pr}}[y]\right]
\end{gathered}
$$

For A_{1}, we start with the definition of statistical difference:

$$
\begin{gather*}
\sum_{y \in A_{1}}\left|\underset{S^{*}}{\operatorname{Pr}}[y]-\underset{P^{*}}{\operatorname{Pr}}[y]\right| \\
=\sum_{\left(\sigma^{\prime}, p^{\prime}\right)}\left(\sum_{\left\{(\sigma, p): y=\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right) \in A_{1}\right\}}\left|\operatorname{Pr}_{S^{*}}\left[y \mid \sigma^{\prime}, p^{\prime}\right] \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\underset{P^{*}}{\operatorname{Pr}}\left[y \mid \sigma^{\prime}, p^{\prime}\right]{\underset{P}{*}}_{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right|\right) \tag{*}
\end{gather*}
$$

Here

$$
\underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]=\sum_{(\sigma, p)} \operatorname{Pr}_{S^{*}}\left[\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)\right]
$$

and

$$
\operatorname{Pr}_{P^{*}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]=\sum_{(\sigma, p)} \operatorname{Pr}_{P *}\left[\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)\right]
$$

. We define $\delta\left(\sigma^{\prime}, p^{\prime}\right):=\left|\operatorname{Pr}_{S^{*}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\operatorname{Pr}_{P^{*}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right|$.

Let us examine a single term of the sum $\left(^{*}\right)$, for $y=\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$:

$$
\begin{aligned}
& \left|\underset{S^{*}}{\operatorname{Pr}}\left[y \mid \sigma^{\prime}, p^{\prime}\right] \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\underset{P^{*}}{\operatorname{Pr}}\left[y \mid \sigma^{\prime}, p^{\prime}\right] \underset{P^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right| \\
& =\mid \operatorname{Pr}_{S^{*}}\left[y \mid \sigma^{\prime}, p^{\prime}\right] \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\operatorname{Pr}_{P^{*}}\left[y \mid \sigma^{\prime}, p^{\prime}\right]{\underset{S}{ }}^{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]+ \\
& \operatorname{Pr}_{P^{*}}\left[y \mid \sigma^{\prime}, p^{\prime}\right] \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\underset{P^{*}}{\operatorname{Pr}}\left[y \mid \sigma^{\prime}, p^{\prime}\right] \underset{P^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right] \mid \\
& =\mid\left(\operatorname{Pr}_{S_{1}^{*}}[(\sigma, p)]-\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)) \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]+\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]\left(\underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\underset{P^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right) \mid\right. \\
& \leq\left|\operatorname{Pr}_{S_{1}^{*}}[(\sigma, p)]-\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]\right| \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]+\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]\left|\operatorname{Pr}_{S^{*}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\underset{P^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right| \\
& =\left|\operatorname{Pr}_{S_{1}^{*}}[(\sigma, p)]-\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]\right| \underset{S^{*}}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]+\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)] \delta\left(\sigma^{\prime}, p^{\prime}\right)
\end{aligned}
$$

Thus $\left(^{*}\right)$ is no more than

$$
\begin{aligned}
& 2 \Delta\left(S_{1}^{*}(x), P_{1}^{*}(x)\right)+\sum_{\left\{\left(\sigma^{\prime}, p^{\prime}\right): \exists(\sigma, p)\right.} \sum_{\left.\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right) \in A_{1}\right\}} \delta\left(\sigma^{\prime}, p^{\prime}\right) \\
& \left.\leq \frac{2}{2^{|x|}}+\sum_{\left\{\left(\sigma^{\prime}, p^{\prime}\right): \exists(\sigma, p)\right.} \delta\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right) \in A_{1}\right\} \\
& \delta\left(\sigma^{\prime}\right) \quad(* *)
\end{aligned}
$$

Let us consider a single term $\delta\left(\sigma^{\prime}, p^{\prime}\right)$ in the summation in $\left(^{* *}\right)$. Recalling that the probability that $S(x)=\left(\left(\sigma, \sigma^{\prime}\right),\left(p, p^{\prime}\right)\right)$ is equal to the probability that $S_{1}(x)=(\sigma, p)$ and $S_{2}(x, \sigma, p)=\left(\sigma^{\prime}, p^{\prime}\right)$, we have

$$
\begin{aligned}
& \delta\left(\sigma^{\prime}, p^{\prime}\right)=\left|\operatorname{Pr}_{S^{*}}\left[\sigma^{\prime}, p^{\prime}\right]-\underset{P^{*}}{\operatorname{Pr}}\left[\sigma^{\prime}, p^{\prime}\right]\right| \\
& =\left|\sum_{(\sigma, p)} \operatorname{Pr}_{S_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right] \underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]-\sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right] \underset{P_{1}^{*}}{\operatorname{Pr}}[\sigma, p]\right| \\
& \left.=\mid \sum_{(\sigma, p)} \operatorname{Pr}_{S_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right] \underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]-\sum_{(\sigma, p)} \operatorname{Pr}_{2} P_{2}^{*}(\sigma, p)\right]\left[\left(\sigma^{\prime}, p^{\prime}\right)\right] \underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]+ \\
& \sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]{\underset{S}{1}}_{\operatorname{Pr}}^{*}[(\sigma, p)]-\sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right] \underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)] \mid \\
& =\mid \sum_{(\sigma, p)}\left(\operatorname{Pr}_{S_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right) \underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]+ \\
& \sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left(\underset{S_{1}^{r}}{\operatorname{Pr}}[(\sigma, p)]-\operatorname{Pr}_{P_{1}^{*}}[(\sigma, p)]\right) \mid \\
& \leq \sum_{(\sigma, p)}\left|\operatorname{Pr}_{S_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]-\underset{P_{2}^{*}(\sigma, p)}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\right| \underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]+ \\
& \sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left|\underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]-\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]\right| \\
& =\sum_{(\sigma, p)} 2 \Delta\left(S_{2}^{*}(\sigma, p), P_{2}^{*}(\sigma, p)\right) \underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]+\sum_{(\sigma, p)} \underset{P_{2}^{*}(\sigma, p)}{\operatorname{Pr}}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left|\underset{S_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]-\underset{P_{1}^{*}}{\operatorname{Pr}}[(\sigma, p)]\right|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sum_{(\sigma, p)} \frac{2}{2^{|(x, \sigma, p)|}} \operatorname{Pr}_{S_{1}^{\text {I }}}[(\sigma, p)]+\sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left|\operatorname{Pr}_{S_{1}^{4}}[(\sigma, p)]-\operatorname{Pr}_{P_{1}^{4}}[(\sigma, p)]\right| \\
& =\frac{2}{2^{|x|+p_{1}(|x|)+q_{1}(|x|)}}+\sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left|\operatorname{Pr}_{S_{1}^{*}}[(\sigma, p)]-\operatorname{Pr}_{P_{1}^{*}}[(\sigma, p)]\right|
\end{aligned}
$$

where the last inequality holds, since the summation in $\left({ }^{* *}\right)$ is taken over tuples, such that each (x, σ, p) is a YES instance of $L\left(V_{1}\right)$.
Replacing each term in $\left({ }^{* *}\right)$ with this upper bound, thus yields the following upper bound on (*):

$$
\begin{aligned}
& \frac{2}{2^{|x|}}+\sum_{\left(\sigma^{\prime}, p^{\prime}\right)}\left(\frac{2}{2^{|x|+p_{1}}(|x|)+q_{1}(|x|)}+\sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left|\operatorname{Pr}_{S_{1}^{4}}[(\sigma, p)]-{\underset{P}{P_{1}^{*}}}_{\operatorname{Pr}}[(\sigma, p)]\right|\right) \\
& \left.=\frac{2}{2^{|x|}}+\frac{2 \cdot 2^{p_{2}(|x|)+q_{2}(|x|)}}{2^{|x|+p_{1}(|x|)+q_{1}(|x|)}}+\sum_{\left(\sigma^{\prime}, p^{\prime}\right)} \sum_{(\sigma, p)} \operatorname{Pr}_{P_{2}^{*}(\sigma, p)}\left[\left(\sigma^{\prime}, p^{\prime}\right)\right]\left|\operatorname{Pr}_{S_{1}^{\Sigma}}[(\sigma, p)]-\underset{P_{1}^{\pi}}{\operatorname{Pr}}[(\sigma, p)]\right|\right) \\
& =\frac{2}{2^{|x|}}+\frac{2 \cdot 2^{p_{2}(|x|)+q_{2}(|x|)}}{2^{|x|+p_{1}(|x|)+q_{1}(|x|)}}+2 \Delta\left(S_{1}^{*}, P_{1}^{*}\right) \\
& \leq \frac{2}{2^{|x|}}+\frac{2 \cdot 2^{p_{2}(|x|)+q_{2}(|x|)}}{2^{|x|+p_{1}(|x|)+q_{1}(|x|)}}+\frac{2}{2^{|x|}} \\
& \leq \frac{2}{2^{|x|}}+\frac{2}{2^{|x|}}+\frac{2}{2^{|x|}}
\end{aligned}
$$

where the last inequality follows from Lemma 26.
Thus, A_{1} contributes only a negligible quantity to $\Delta\left(S^{*}, P^{*}\right)$. We now move on to consider A_{2} and A_{3}.

$$
\begin{gathered}
\operatorname{Pr}_{P^{*}}\left[y \in A_{2}\right]=\sum_{\left\{(\sigma, p):(x, \sigma, p) \in L\left(V_{1}\right)\right\}} \operatorname{Pr}\left[V_{2}(x, \sigma, p) \text { rejects }\right] \leq \sum_{(\sigma, p)} \frac{1}{2^{|x|+|\sigma|+|p|}} \leq \frac{1}{2^{|x|}} . \\
\operatorname{Pr}_{S^{*}}\left[y \in A_{2}\right]=\sum_{\left\{(\sigma, p):(x, \sigma, p) \in L\left(V_{1}\right)\right\}}\left(\operatorname{Pr}\left[V_{2}(x, \sigma, p) \text { rejects }\right]+\Delta\left(S_{2}^{*}(\sigma, p), P_{2}^{*}(\sigma, p)\right)\right) \leq \frac{2}{2^{|x|}} .
\end{gathered}
$$

A similar and simpler calculation shows that $\operatorname{Pr}_{P^{*}}\left[y \in A_{3}\right] \leq \frac{1}{2^{\mid x x}}$ and $\operatorname{Pr}_{S^{*}}\left[y \in A_{3}\right] \leq \frac{2}{2^{|x|}}$, to complete the proof.

- Corollary 27. NISZK $_{\mathrm{L}}=$ NISZK $_{\text {AC }}{ }^{0}=$ NISZK $_{\text {ACo }}{ }^{\text {DET }}$

The proof of Theorem 25 did not make use of the condition that the verifier is at least as powerful as the simulator. Thus, maintaining the condition that $A \subseteq B \subseteq \mathrm{NISZK}_{A}$, we also have the following corollary:

- Corollary 28. NISZK $_{B}=$ NISZK $_{B, A}$
- Corollary 29. $\mathrm{NISZK}_{A, B} \subseteq \mathrm{NISZK}_{B, A}$
- Corollary 30. NISZK ${ }_{\text {DET }}=$ NISZK $_{\text {DET,AC }}{ }^{\circ}$

7 SZK K_{L} closure under $\leq_{b f-t t}^{L}$ reductions

Although our focus in this paper has been on NISZK_{L}, in this section we report on a closure property of the closely-related class $\mathrm{SZK}_{\mathrm{L}}$.

The authors of [10], after defining the class SZK $_{L}$, wrote:
We also mention that all the known closure and equivalence properties of SZK (e.g. closure under complement [21], equivalence between honest and dishonest verifiers [13], and equivalence between public and private coins [21]) also hold for the class SZK ${ }_{L}$.

In this section, we consider a variant of a closure property of SZK (closure under $\leq_{\mathrm{bf}-\mathrm{tt}}^{\mathrm{P}}[24]$), and show that it also holds ${ }^{3}$ for SZK $_{\mathrm{L}}$. Although our proof follows the general approach of the proof of [24, Theorem 4.9], there are some technicalities with showing that certain computations can be accomplished in logspace (and for dealing with distributions represented by branching programs instead of circuits) that require proof. (The characterization of $\mathrm{SZK}_{\mathrm{L}}$ in terms of reducibility to the Kolmogorov-random strings presented in [2] relies on this closure property.)

- Definition 31. (From [24, Definition 4.7]) For a promise problem Π, the characteristic function of Π is the map $\mathcal{X}_{\Pi}:\{0,1\}^{*} \rightarrow\{0,1, *\}$ given by

$$
\mathcal{X}_{\Pi}(x)=\left\{\begin{array}{l}
1 \text { if } x \in \Pi_{Y} \\
0 \text { if } x \in \Pi_{N} \\
* \text { otherwise }
\end{array}\right.
$$

- Definition 32. Logspace Boolean formula truth-table reduction ($\leq_{\mathrm{bf}-\mathrm{tt}}^{\mathrm{L}}$ reduction): We say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there exists a logspace-computable function f, which on input x produces a tuple $\left(y_{1}, \ldots, y_{m}\right)$ and a Boolean formula ϕ (with m input gates) such that:

$$
\begin{aligned}
& x \in \Pi_{Y} \Longrightarrow \phi\left(\mathcal{X}_{\Gamma}\left(y_{1}\right), \ldots, \mathcal{X}_{\Gamma}\left(y_{m}\right)\right)=1 \\
& x \in \Pi_{N} \Longrightarrow \phi\left(\mathcal{X}_{\Gamma}\left(y_{1}\right), \ldots, \mathcal{X}_{\Gamma}\left(y_{m}\right)\right)=0
\end{aligned}
$$

We begin by proving a logspace analogue of a result from [24], used to make statistically close pairs of distributions closer and statistically far pairs of distributions farther.

- Lemma 33. (Polarization Lemma, adapted from [24, Lemma 3.3]) There is a logspacecomputable function that takes a triple $\left(P_{1}, P_{2}, 1^{k}\right)$, where P_{1} and P_{2} are branching programs, and outputs a pair of branching programs $\left(Q_{1}, Q_{2}\right)$ such that:

$$
\begin{gathered}
\Delta\left(P_{1}, P_{2}\right)<\frac{1}{3} \Longrightarrow \Delta\left(Q_{1}, Q_{2}\right)<2^{-k} \\
\Delta\left(P_{1}, P_{2}\right)>\frac{2}{3} \Longrightarrow \Delta\left(Q_{1}, Q_{2}\right)>1-2^{-k}
\end{gathered}
$$

[^2]To prove this, we adapt the same method as in [24] and alternate two different procedures, one to drive pairs with large statistical distance closer to 1 , and one to drive distributions with small statistical distance closer to 0 . The following lemma will do the former:

- Lemma 34. (Direct Product Lemma, from [24, Lemma 3.4]) Let X and Y be distributions such that $\Delta(X, Y)=\epsilon$. Then for all k,

$$
k \epsilon \geq \Delta\left(\otimes^{k} X, \otimes^{k} Y\right) \geq 1-2 \exp \left(-k \epsilon^{2} / 2\right)
$$

The proof of this statement follows from [24]. To use this for Lemma 33, we note that a branching program for $\otimes^{k} P$ can easily be created in logspace from a branching program P by simply copying and concatenating k independent copies of P together.

We now introduce a lemma to push close distributions closer:

- Lemma 35. (XOR Lemma, adapted from [24, Lemma 3.5]) There is a logspace-computable function that maps a triple $\left(P_{0}, P_{1}, 1^{k}\right)$, where P_{0} and P_{1} are branching programs, to a pair of branching programs $\left(Q_{0}, Q_{1}\right)$ such that $\Delta\left(Q_{0}, Q_{1}\right)=\Delta\left(P_{0}, P_{1}\right)^{k}$. Specifically, Q_{0} and Q_{1} are defined as follows:

$$
\begin{aligned}
& A=\left\{y \in\{0,1\}^{k}: \oplus_{i \in[k]} y_{i}=0\right\} \\
& B=\left\{y \in\{0,1\}^{k}: \oplus_{i \in[k]} y_{i}=1\right\} \\
& Q_{0}: y \leftarrow_{R} A, \text { Return } \bigotimes_{i \in[k]} P_{y_{i}} \\
& Q_{1}: y \leftarrow_{R} B, \text { Return } \bigotimes_{i \in[k]} P_{y_{i}}
\end{aligned}
$$

Proof. The proof that $\Delta\left(Q_{0}, Q_{1}\right)=\Delta\left(P_{0}, P_{1}\right)^{k}$ follows from [24, Proposition 3.6]. To finish proving this lemma, we show a logspace-computable mapping between ($P_{0}, P_{1}, 1^{k}$) and $\left(Q_{0}, Q_{1}\right)$.

Let ℓ and w be the max length and width between P_{0} and P_{1}. We describe the structure of Q_{0}, with Q_{1} differing in a small step: to begin with, Q_{0} reads the $k-1$ random bits y_{1}, \ldots, y_{k-1}. For each random bits, it can pick the correct of two different branches, one having P_{0} built in at the end and the other having P_{1}. We will read y_{1}, branch to P_{0} or P_{1} (and output the distribution accordingly), then unconditionally branch to reading y_{2} and repeat until we reach y_{k-1} and branch to P_{0} or P_{1}. We then unconditionally branch to y_{1} and start computing the parity, and at the end we will be able to decide the value of y_{k} which will allow us to branch to the final copy of P_{0} or P_{1}.

Figure 1 Branching program for Q_{0} of Lemma 35

Creating $\left(Q_{0}, Q_{1}\right)$ can be done in logspace, requiring logspace to create the section to compute y_{k} and logspace to copy the independent copies of P_{0} and P_{1}.

We now have the tools to prove Lemma 33.

Proof. From [24, Section 3.2], we know that we can polarize $\left(P_{0}, P_{1}, 1^{k}\right)$ by:

- Letting $l=\left\lceil\log _{4 / 3} 6 k\right\rceil, j=3^{l-1}$
- Applying Lemma 35 to $\left(P_{0}, P_{1}, 1^{l}\right)$ to get $\left(P_{0}^{\prime}, P_{1}^{\prime}\right)$
- Applying Lemma 34: $P_{0}^{\prime \prime}=\otimes^{j} P_{0}^{\prime}, P_{1}^{\prime \prime}=\otimes^{j} P_{1}^{\prime}$
- Applying Lemma 35 to $\left(P_{0}^{\prime \prime}, P_{1}^{\prime \prime}, 1^{k}\right)$ to get $\left(Q_{0}, Q_{1}\right)$

Each step is computable in logspace, and since logspace is closed under composition, this completes our proof.

We also mention the following lemma, which will be useful in evaluating the Boolean formula given by the $\leq_{b f-t t}^{L}$ reduction.

- Lemma 36. There is a function in NC^{1} that takes as input a Boolean formula ϕ (with m input bits) and produces as output an equivalent formula ψ with the following properties:

1. The depth of ψ is $O(\log m)$.
2. ψ is a tree with alternating levels of $A N D$ and $O R$ gates.
3. The tree's non-leaf structure is always the same for a fixed input length.
4. All NOT gates are located at the leaves.

Proof. Although this lemma does not seem to have appeared explicitly in the literature, it is known to researchers, and is closely related to results in [11] (see Theorems 5.6 and 6.3, and Lemma 3.3) and in [3] (see Lemma 5). Alternatively, one can derive this by using the fact that the Boolean formula evaluation problem lies in $\mathrm{NC}^{1}[7,8]$, and thus there is an alternating Turing machine M running in $O(\log n)$ time that takes as input a Boolean formula ψ and an assignment α to the variables of ψ, and returns $\psi(\alpha)$. We may assume without loss of generality that M alternates between existential and universal states at each step, and that M runs for exactly $c \log n$ steps on each path (for some constant c), and that M accesses its input (via the address tape that is part of the alternating Turing machine model) only at a halting step, and that M records the sequence of states that it has visited along the current path in the current configuration. Thus the configuration graph of M, on inputs of length n, corresponds to a formula of $O(\log n)$ depth having the desired structure, and this formula can be constructed in $N C^{1}$. Given a formula ϕ, a $N C^{1}$ machine can thus build this formula, and hardwire in the bits that correspond to the description of ϕ, and identify the remaining input variables (corresponding to M reading the bits of α) with the variables of ϕ. The resulting formula is equivalent to ϕ and satisfies the conditions of the lemma.

- Definition 37. (From [24, Definition 4.8]) For a promise problem Π, we define a new promise problem $\Phi(\Pi)$ as follows:

$$
\begin{aligned}
& \Phi(\Pi)_{Y}=\left\{\left(\phi, x_{1}, \ldots, x_{m}\right): \phi\left(\mathcal{X}_{\Pi}\left(x_{1}\right), \ldots, \mathcal{X}_{\Pi}\left(x_{m}\right)\right)=1\right\} \\
& \Phi(\Pi)_{N}=\left\{\left(\phi, x_{1}, \ldots, x_{m}\right): \phi\left(\mathcal{X}_{\Pi}\left(x_{1}\right), \ldots, \mathcal{X}_{\Pi}\left(x_{m}\right)\right)=0\right\}
\end{aligned}
$$

- Theorem 38. $\mathrm{SZK}_{\mathrm{L}}$ is closed under $\leq_{\mathrm{bf}-\mathrm{tt}}^{\mathrm{L}}$ reductions.

To begin the proof of this theorem, we first note that as in the proof of [24, Lemma 4.10], given two $S D_{B P}$ pairs, we can create a new pair which is in $S D_{B P, N}$ if both of the original two pairs are (which we will use to compute ANDs of queries.) We can also compute in logspace the OR query for two queries by creating a pair $\left(P_{1} \otimes S_{1}, P_{2} \otimes S_{2}\right)$. We prove that these operations produce an output with the correct statistical difference with the following two claims:
\triangleright Claim 39. $\left\{\left(y_{1}, y_{2}\right) \mid \mathcal{X}_{\mathrm{SD}_{\mathrm{BP}}}\left(y_{1}\right) \vee \mathcal{X}_{\mathrm{SD}_{\mathrm{BP}}}\left(y_{2}\right)=1\right\} \leq_{\mathrm{m}}^{\mathrm{L}} \mathrm{SD}_{\mathrm{BP}}$.
Proof. Let $y_{1}=\left(A_{1}, B_{1}\right)$ and $y_{2}=\left(A_{2}, B_{2}\right)$. Let $p>0$ be a parameter, where we are guaranteed that:

$$
\begin{gathered}
\left(A_{i}, B_{i}\right) \in \mathrm{SD}_{\mathrm{BP}, Y} \Longrightarrow \Delta\left(A_{i}, B_{i}\right)>1-p \\
\left(A_{i}, B_{i}\right) \in \mathrm{SD}_{\mathrm{BP}, N} \Longrightarrow \Delta\left(A_{i}, B_{i}\right)<p
\end{gathered}
$$

Then consider:

$$
y=\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right)
$$

Let us analyze the Yes and No instance of $\mathcal{X}_{\mathrm{SD}_{\mathrm{BP}}}\left(y_{1}\right) \vee \mathcal{X}_{\mathrm{SD}}^{\mathrm{BP}}\left(y_{2}\right)$:

- YES: $\Delta\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right) \geq \max \left\{\Delta\left(A_{1} \otimes B_{2}, B_{1} \otimes B_{2}\right), \Delta\left(B_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right)\right\}=$ $\max \left\{\Delta\left(A_{1}, B_{1}\right), \Delta\left(A_{2}, B_{2}\right)\right\}>1-p$
- NO: $\Delta\left(A_{1} \otimes A_{2}, B_{1} \otimes B_{2}\right) \leq \Delta\left(A_{1}, B_{1}\right)+\Delta\left(A_{2}, B_{2}\right)<2 p$

The second equality is from [24, Fact 2.3]. If p is polarized already the NO instance can still be decided.

In our Boolean formula, we will have only $d=O(\log m)$ depth, so we have this OR operation for at most $\frac{d+1}{2}$ levels (and the soundness gap doubles at every level). Since $p=\frac{1}{2^{m}}$ at the beginning, the gap (for NO instance) will be upper bounded at the end by:

$$
<2^{\frac{d+1}{2}} \frac{1}{2^{m}}=\frac{m^{O(1)}}{2^{m}}<1 / 3 .
$$

\triangleright Claim 40. $\left\{\left(y_{1}, y_{2}\right) \mid \mathcal{X}_{\mathrm{SD}_{\mathrm{BP}}}\left(y_{1}\right) \wedge \mathcal{X}_{\mathrm{SD}_{\mathrm{BP}}}\left(y_{2}\right)=1\right\} \leq_{\mathrm{m}}^{\mathrm{L}} \mathrm{SD}_{\mathrm{BP}}$.
Proof. Let $y_{1}=\left(A_{1}, B_{1}\right)$ and $y_{2}=\left(A_{2}, B_{2}\right)$. Let $p>0$ be a parameter, where we are guaranteed that:

$$
\begin{gathered}
\left(A_{i}, B_{i}\right) \in \mathrm{SD}_{\mathrm{BP}, Y} \Longrightarrow \Delta\left(A_{i}, B_{i}\right)>1-p \\
\left(A_{i}, B_{i}\right) \in \mathrm{SD}_{\mathrm{BP}, N} \Longrightarrow \Delta\left(A_{i}, B_{i}\right)<p
\end{gathered}
$$

We can construct a pair of BPs $y=(A, B)$ whose statistical difference is exactly

$$
\Delta\left(A_{1}, B_{1}\right) \cdot \Delta\left(A_{2}, B_{2}\right)
$$

(A, B) are analogous to (Q_{0}, Q_{1}) in Lemma 35 , and can be created in logspace with 2 random bits b_{0}, b_{1}. We have $A=\left(A_{1}, A_{2}\right)$ if $b_{0}=0$ and $A=\left(B_{1}, B_{2}\right)$ if $b_{0}=0$, while for B we have $b_{1}=0$ being $\left(A_{1}, B_{2}\right)$ and $b_{1}=1$ being $\left(A_{2}, B_{1}\right)$.

Let us analyze the Yes and No instance of $\mathcal{X}_{\text {SD }}^{\text {BP }}\left(y_{1}\right) \wedge \mathcal{X}_{\text {SD }}^{\text {BP }}\left(y_{2}\right)$:
$=$ YES: $\Delta\left(A_{1}, B_{1}\right) \cdot \Delta\left(A_{2}, B_{2}\right)>(1-p)^{2}$
= NO: $\Delta\left(A_{1}, B_{1}\right) \cdot \Delta\left(A_{2}, B_{2}\right) \leq \max \left\{\Delta\left(A_{1}, B_{1}\right), \Delta\left(A_{2}, B_{2}\right)\right\}<p$
If p is polarized already the YES instances can still be decided.

In our Boolean formula we will have only $d=O(\log m)$ depth, so we have this AND operation for at most $\frac{d+1}{2}$ levels (and the completeness gap squares itself at every level). Since $p=\frac{1}{2^{m}}$ at the beginning, the gap (for YES instance) will be lower bounded at the end by:

$$
>\left(1-\frac{1}{2^{m}}\right)^{2^{\frac{d+1}{2}}}=\left(1-\frac{1}{2^{m}}\right)^{m^{O(1)}}>\left(1-\frac{1}{2^{m}}\right)^{2^{m} / m} \approx\left(\frac{1}{e}\right)^{1 / m}>\frac{2}{3}
$$

Proof. (of Theorem 38) Now suppose that we are given a promise problem Π such that $\Pi \leq_{\mathrm{bf}-\mathrm{tt}}^{\mathrm{L}} \mathrm{SD}_{\mathrm{BP}}$. We want to show $\Pi \leq_{\mathrm{m}}^{\mathrm{L}} \mathrm{SD}_{\mathrm{BP}}$, which by $\mathrm{SZK}_{\mathrm{L}}$'s closure under $\leq_{\mathrm{m}}^{\mathrm{L}}$ reductions implies $\Pi \in S Z K_{L}$.

We follow the steps below on input x to create an $\mathrm{SD}_{\mathrm{BP}}$ instance $\left(F_{0}, F_{1}\right)$ which is in $\mathrm{SD}_{\mathrm{BP}, Y}$ if $x \in \Pi_{Y}$:

1. Run the L machine for the $\leq_{b f-t t}^{\mathrm{L}}$ reduction on x to get queries $\left(q_{1}, \ldots, q_{m}\right)$ and the formula ϕ.
2. Build ψ from ϕ using Lemma 36. Replace queries $\neg q_{i}$ that would be negated with the reduction from $\mathrm{SD}_{\mathrm{BP}, Y}$ to $\mathrm{SD}_{\mathrm{BP}, N}$ on q_{i}, and then apply Lemma 33 with $k=n$ on these queries to get $\left(y_{1}, \ldots, y_{k}\right)$. Pad the output bits of each branching program so each branching program has m output bits.
3. Build the template tree T. At the leaf level, for each variable in ψ, we will plug in the corresponding query y_{i}. By Lemma 36 the tree is full.
4. Given x and designated output position j of F_{0} or F_{1}, there is a logspace computation which finds the original output bit from $y_{1} \ldots y_{m}$ that bit j was copied from. This machine traverses down the template tree from the output bit and records the following:

- The node that the computation is currently at on the template tree, with the path taken depending on j.
- The position of the random bits used to decide which path to take when we reach nodes corresponding to AND.
This takes $O(\log m)$ space. We can use this algorithm to copy and compute each output bit of F_{0} and F_{1}, creating $\left(F_{0}, F_{1}\right)$ in logspace.

For step 4, we give an algorithm $\operatorname{Eval}\left(x, j, \psi, y_{1}, \ldots, y_{m}\right)$ to compute the j th output bit of F_{0} or F_{1} on x, for a formula ψ satisfying the properties of Lemma 36 , a list of $\mathrm{SD}_{\mathrm{BP}}$ queries $\left(y_{1}, \ldots, y_{m}\right)$, and j. Without loss of generality, we lay out the algorithm to compute only $F_{0}(x)$.

Outline of $\operatorname{Eval}\left(x, j, \psi, y_{1}, \ldots, y_{m}\right)$:
The idea is to compute the j th output bit of F_{0} by recursively calculating which query output bit it was copied from. To do this, first notice that the AND and OR operations produce branching programs where each output bit is copied from exactly one output bit of one of the query branching programs, so composing these operations together tells us that every output bit in F_{0} is copied from exactly one output bit from one query. By Lemma 36 and our AND and OR operations preserving the number of output bits, we also have that if every BP has l output bits, F_{0} will have $2^{a} l=|\psi| l$ output bits, where a is the depth of ψ. This can be used to recursively calculate which query the j th bit is from: for an OR gate, divide the output bits into fourths, and decide which fourth the j th bit falls into (with each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an AND gate, divide the output into fourths, decide which fourth the j th bit falls into, and then use the 4 random bits for the XOR operation to compute which fourth corresponds to which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2 fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,
then at the query level, we can directly return the j^{\prime} th output bit. This can be done in logspace, requiring a logspace path of "lefts" and "rights" to track the current gate, logspace to record and update j^{\prime}, logspace to compute $2^{a} l$ at each level, and logspace to compute which subtree/query the output bit comes from at each level.

The resulting BP will be two distributions that will be in $\mathrm{SD}_{\mathrm{BP}, Y} \Longleftrightarrow x \in \Pi_{Y}$. By this process $\Pi \leq_{\mathrm{m}}^{\mathrm{L}} \mathrm{SD}_{\mathrm{BP}}$.

Acknowledgments

EA and HT were supported in part by NSF Grants CCF-1909216 and CCF-1909683. This work was carried out while JG, SM, and PW were participants in the 2022 DIMACS REU program at Rutgers University, supported by NSF grants CNS-215018 and CCF-1852215. We thank Yuval Ishai for helpful conversations about SREN, and we thank Markus Lohrey, Sam Buss, and Dave Barrington for useful discussions about Lemma 36 .

___ References

1 Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic hardness under projections for time-bounded Kolmogorov complexity. In 32nd International Symposium on Algorithms and Computation (ISAAC), volume 212 of LIPIcs, pages 54:1-54:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.54.
2 Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov complexity characterizes statistical zero knowledge. Technical Report TR22-127, Electronic Colloquium on Computational Complexity (ECCC), 2022.
3 Eric Allender and Ian Mertz. Complexity of regular functions. Journal of Computer and System Sciences, 104:5-16, 2019. Language and Automata Theory and Applications - LATA 2015. doi:https://doi.org/10.1016/j.jcss.2016.10.005.

4 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164-181, 1999. doi:https://doi.org/10.1006/jcss.1999.1646.

5 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC ${ }^{0}$. SIAM Journal on Computing, 36(4):845-888, 2006. doi:10.1137/S0097539705446950.
6 V. Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and abelian permutation groups using logspace counting classes. computational complexity, 19(1):57-98, November 2009. doi:10.1007/s00037-009-0280-6.
7 Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pages 123-131. ACM, 1987. doi:10.1145/28395.28409.
8 Samuel R Buss. Algorithms for Boolean formula evaluation and for tree contraction. Arithmetic, Proof Theory, and Computational Complexity, 23:96-115, 1993.
9 Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party computation over rings. In Proc. International Conference on the Theory and Applications of Cryptographic Techniques; Advances in Cryptology (EUROCRYPT), volume 2656 of Lecture Notes in Computer Science, pages 596-613. Springer, 2003. doi:10.1007/3-540-39200-9_37.
10 Zeev Dvir, Dan Gutfreund, Guy N Rothblum, and Salil P Vadhan. On approximating the entropy of polynomial mappings. In Second Symposium on Innovations in Computer Science, pages 460-475. Tsinghua University Press, 2011.
11 Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. ACM Transactions on Computation Theory, 11(1):1:1-1:25, 2019. doi:10.1145/3278158.
12 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made non-interactive? or On the relationship of SZK and NISZK. In Annual International Cryptology Conference, pages 467-484. Springer, 1999. doi:10.1007/3-540-48405-1 _30.

13 Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on the Theory of Computing (STOC), pages 399-408. ACM, 1998. doi:10.1145/276698.276852.
14 Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in AC0. In 30th Conference on Computational Complexity (CCC, volume 33 of LIPIcs, pages 601-668. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CCC.2015.601.
15 Ulrich Hertrampf, Steffen Reith, and Heribert Vollmer. A note on closure properties of logspace MOD classes. Information Processing Letters, 75(3):91-93, 2000. doi:10.1016/ S0020-0190 (00) 00091-0.
16 Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect randomizing polynomials. In Proc. International Conference on Automata, Languages, and Programming (ICALP), volume 2380 of Lecture Notes in Computer Science, pages 244-256. Springer, 2002. doi:10.1007/3-540-45465-9_22.
17 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random NC. Combinatorica, 6(1):35-48, 1986. doi:10.1007/BF02579407.
18 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform, and learnability. J. $A C M, 40(3): 607-620$, 1993. doi:10.1145/174130.174138.
19 Pierre McKenzie and Stephen A. Cook. The parallel complexity of Abelian permutation group problems. SIAM Journal on Computing, 16(5):880-909, 1987. doi:10.1137/0216058.
20 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 345-354. ACM, 1987. doi: 10.1145/28395. 383347.

21 Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal of Computer and System Sciences, 60(1):47-108, 2000. doi:10.1006/jcss.1999.1664.
22 Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs for lattice problems. In Proc. Advances in Cryptology: 28th Annual International Cryptology Conference (CRYPTO), volume 5157 of Lecture Notes in Computer Science, pages 536-553. Springer, 2008. doi:10.1007/978-3-540-85174-5_30.
23 Vishal Ramesh, Sasha Sami, and Noah Singer. Simple reductions to circuit minimization: DIMACS REU report. Technical report, DIMACS, Rutgers University, 2021. Internal document.
24 Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM, 50(2):196-249, 2003. doi:10.1145/636865.636868.
25 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science \& Business Media, 1999. doi:10.1007/978-3-662-03927-4.

[^0]: ${ }^{1}$ This is not stated explicitly for GapL, but it follows from [16, Theorem 1]. See also [9, Section 4.2].

[^1]: ${ }^{2}$ In prior work on $\operatorname{NISZK}[12,1]$, the verifier and simulator were said to be probabilistic machines. We prefer to be explicit about the random input sequences provided to each machine, and thus the machines can be viewed as deterministic machines taking a sequence of random bits as input.

[^2]: 3 We observe that open questions about closure properties of NISZK also translate to open questions about NISZK $_{L}$. NISZK is not known to be closed under union [22], and neither is NISZK $_{L}$. Neither is known to be closed under complementation. Both are closed under conjunctive logspace-truth-table reductions.

