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1 Introduction26

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass27

NISZK have been studied intensively by the research communities in cryptography and28

computational complexity theory. In [10], a space-bounded version of SZK, denoted SZKL29

was introduced, primarily as a tool for understanding the complexity of estimating the30

entropy of distributions represented by very simple computational models (such as low-degree31

polynomials, and NC0 circuits). There, it was shown that SZKL contains many important32

problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and33

Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted34

NISZKL, was subsequently introduced in [1], primarily as a tool for clarifying the complexity35

of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such36

as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [12], so37

also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains38

intractable problems if and only if SZKL does.39

Very recently, all of these classes were given surprising new characterizations, in terms of40

efficient reducibility to the Kolmogorov random strings. Let R̃K be the promise problem41

(Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that K(y) ≥ |y|/2 and the NO instances42
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2 Robustness for Space-Bounded Statistical Zero Knowledge

N
R̃K

consists of those strings y where K(y) ≤ |y|/2− e(|y|) for some approximation error43

term e(n), where e(n) = ω(logn) and e(n) = no(1).44

▶ Theorem 1. [2] Let A be a decidable promise problem. Then45

A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.46

A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.47

A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean48

formula” reductions.49

A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”50

reductions.51

There are very few natural examples of computational problems A where the class of52

problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)53

from the class or problems reducible to A via AC0 reductions. For example the natural54

complete problems for NISZK under ≤P
m reductions remain complete under AC0 reductions.55

Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This56

would also imply that SZK = SZKL.)57

This motivates a closer examination of SZKL and NISZKL, to answer questions that have58

not been addressed by earlier work on these classes.59

Our main results are:60

1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in61

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a62

computationally-unbounded prover, following the usual rules of an interactive proof, and63

(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.64

(More formal definitions are to be found in Section 2.) We show that the verifier and65

simulator can be restricted to lie in AC0. Let us explain why this is surprising.66

The proof presented in [1], showing that EANC0 is complete for NISZKL, makes it clear67

that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [23]).68

But the proof in [1] (and a similar argument in [12]) relies heavily on hashing, and it is69

known that, although there are families of universal hash functions in AC0[⊕], no such70

families lie in AC0 [18]. We provide an alternative construction, which avoids hashing,71

and allows the verifier and simulator to be very weak indeed.72

2. The verifier and simulator may be somewhat stronger. The proof presented in73

[1], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and74

simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof75

relies on the fact that logspace computation lies in the complexity class PREN of functions76

that have perfect randomized encodings [5], and ⊕L also lies in PREN. Applebaum,77

Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical78

randomized encodings), in proving that there are one-way functions in SREN if and only79

if there are one-way functions in NC0. They also showed that other important classes80

of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that81

NISZKL could be characterized using verifiers and simulators computable in GapL (or82

even in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to83

GapL), since DET is known to be contained in NISZKL [1]. However, we were unable to84

reach that goal.85

1 This is not stated explicitly for GapL, but it follows from [16, Theorem 1]. See also [9, Section 4.2].
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We were, however, able to show that the simulator and verifier can be as powerful as NL,86

without making use of the properties of SREN. In fact, we go further in that direction.87

We define the class PM, consisting of those problems that are ≤L
T-reducible to the Perfect88

Matching problem. PM contains NL [17], and is not known to lie in (uniform) NC (and it89

is not known to be contained in SREN). We show that statistical zero knowledge protocols90

defined using simulators and verifiers that are computable in PM yield only problems in91

NISZKL.92

3. The complexity of the simulator is key. As part of our attempt to characterize93

NISZKL using simulators and verifiers computable in DET, we considered varying the94

complexity of the simulator and the verifier separately. Among other things, we show95

that the verifier can be as complex as DET if the simulator is logspace-computable.96

In most cases of interest, the NISZK class defined with verifier and simulator lying in97

some complexity class remains unchanged if the rules are changed so that the verifier is98

significantly stronger or weaker.99

We also establish some additional closure properties of NISZKL and SZKL, some of which are100

required for the characterizations given in [2].101

The rest of the paper is organized as follows: Section 3 will show how NISZKL can be102

defined equivalently using an AC0 verifier and simulator. Section 4 will show that increasing103

the power of the verifier and simulator to lie in PM does not increase the size of NISZKL104

(where PM is the class of problems (containing NL) that are logspace Turing reducible to105

Perfect Matching. Section 6 shows that in general we can weaken the power of the verifier106

without decreasing the power of the proof systems. Finally Section 7 will show that SZKL is107

closed under logspace Boolean formula truth-table reductions.108

2 Preliminaries109

We assume familiarity with basic complexity classes L,NL,⊕L and P, and circuit complexity110

classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility) and111

Turing-reducibility.112

Many of the problems we consider deal with entropy (also known as Shannon entropy).113

The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).114

Given two distributions X and Y , the statistical difference between the two is denoted115

∆(X,Y ) and is equal to
∑

α

∣∣ Pr[X = α]− Pr[Y = α]
∣∣/2. This quantity is also known as the116

total variation distance between X and Y .117

A distribution is considered flat if it is uniform on its support. Goldreich et al. [12]118

formalized a relaxed notion of flatness, termed Γ-flatness, which relies on the concept of119

Γ-typical elements. The definitions of both concepts follow:120

▶ Definition 2. [Γ-typical elements] Suppose X is a distribution with element x in its support.121

We say that x is Γ-typical if122

2−Γ · 2−H(X) < Pr[X = x] < 2Γ · 2−H(X).123

▶ Definition 3 (Γ-flatness). Suppose X is a distribution. We say that X is Γ-flat if for every124

w > 0 the probability that an element of the support, x, is w · Γ-typical is at least 1− 2−w2+1.125

▶ Lemma 4 (Flattening Lemma). [12] Suppose X is a distribution such that for all x in its126

support Pr[X = x] ≥ 2−m. Then Xk is (
√
k ·m)-flat.127
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▶ Definition 5. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN )128

(the "YES" and "NO" instances, respectively). A solution for Π is any set S such that129

ΠY ⊆ S, and S ∩Πn = Ø.130

▶ Definition 6. A branching program is a directed acyclic graph with a single source and131

two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a132

variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.133

A branching program computes a Boolean function f on input x = x1 . . . xn by first placing134

a pebble on the source node. At any time when the pebble is on a node v labeled xi, the135

pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or136

by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then137

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,138

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =139

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of140

these complexity classes, circuits, and branching programs, see the text by Vollmer [25].141

▶ Definition 7. Non-interactive zero-knowledge proof (NISZK) [Adapted from [12] and [1]]:142

A non-interactive statistical zero-knowledge proof system for a promise problem Π is defined143

by a pair of deterministic polynomial time machines2 (V, S) (the verifier and simulator,144

respectively) and a probabilistic routine P (the prover) that is computationally unbounded,145

together with a polynomial r(n) (which will give the size of the random reference string σ),146

such that:147

1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random148

choices of P ) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).149

2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability that150

V (x, σ, P ′(x, σ)) accepts is at least 2−O(|x|). (Note P ′ here can be malicious, meaning it151

can try to fool the verifier)152

3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two153

distributions is bounded by 2−|x|:154

a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).155

b. S(x, r) (where the coins r for S are chosen uniformly at random).156

It is known that changing the definition, to have the error probability in the soundness and157

completeness conditions and in the simulator’s deviation be 1
nω(1) results in an equivalent158

definition [1, 12]. (See the comments after [1, Claim 39].) We will occasionally make use of159

this equivalent formulation, when it is convenient.160

NISZK is the class of promise problems for which there is a non-interactive statistical161

zero knowledge proof system.162

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie163

in complexity class C.164

▶ Definition 8. [1, 12] (EA and EANC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
165

representing distribution X. The promise problem EA is given by:166

EAY := {CX : H(X) > k + 1}

2 In prior work on NISZK [12, 1], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.
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EAN := {CX : H(X) < k − 1}

The subproblem of EA, where the distribution Cx is an NC0 circuit, where each output bit167

depends on at most 4 input bits, is denoted EANC0 .168

▶ Theorem 9. [1, 2]: EANC0 is complete for NISZKL. It remains complete, even if k is fixed169

to k = n− 3.170

▶ Definition 10. [24, 10] (SD and SDBP). Consider a pair of Boolean circuits C1, C2 :171

{0, 1}m → {0, 1}n representing distributions X1, X2. The promise problem SD is given by:172

SDY := {(C1, C2) : ∆(C1, C2) > 2/3}

SDN := {(C1, C2) : ∆(C1, C2) < 1/3}.

SDBP is the subproblem of SD, where the distribution Cx is represented by a branching173

program.174

3 Simulators and Verifiers in AC0
175

Our proof showing that NISZKL = NISZKAC0 relies on the following extractor construction of176

Goldreich, Viola, and Wigderson.177

▶ Theorem 11. [14, Theorem 1.5] There exists a constant c and an AC0-computable func-
tion E : {0, 1}qn × {0, 1}q(n−3)/c → {0, 1}q(n−3)(1+c) (an extractor) such that, if X ′ is a
distribution on {0, 1}qn with H(X ′) ≥ k = q(n−3)

log qn , then

∆(E(X ′, Uq(n−3)/c), Uq(n−3)(1+c)) ≤
1

(qn)3 .

To prove that NISZKAC0 = NISZKL, it suffices to prove that EANC0 ∈ NISZKAC0 , since it is178

complete for NISZKL under uniform projections [1]. A key part of the proof is provided by179

the following lemma, which relies on Theorem 11. The proof is deferred until Section 3.3.180

▶ Lemma 12. Let a circuit C : {0, 1}m → {0, 1}n represent a probability distribution X on181

{0, 1}n induced by the uniform distribution on {0, 1}m, and let c be the constant defined in182

Theorem 11.183

Then, there is an AC0-computable function that takes an instance (X,n− 3) of EANC0 such184

that |(X,n − 3)| = s, q = 4sm2, q′ = 4s(mq)2, and produces an AC0 circuit Z encoding a185

distribution (also called Z) on {0, 1}q′qk+q′qk/c+q′qm such that:186

187

1. If H(X) ≥ n− 2, then Z has statistical difference at most 1/poly(s) from the uniform188

distribution on {0, 1}ℓ.189

2. If H(X) ≤ n− 4, then the support of Z is at most a 2−s fraction of {0, 1}ℓ.190

where ℓ = q′qk + q′qk/c+ q′qm.191

3.1 NISZKL protocol for EANC0 on input (X, n− 3)192

3.1.1 Non Interactive proof system193

1. Let Z be the distribution on {0, 1}ℓ obtained from (X,n− 3) as in Lemma 12. Recall194

that s is the total description length of (X,n− 3) in bits. Let σ = σ1, σ2, . . . , σs be the195

reference string of length ℓs, where each σi ∈ {0, 1}ℓ.196
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2. The prover picks an i at random from {i ≤ s : {ri|Z(ri) = σi} ≠ Ø}. (If no such i exists,197

then the prover sends ⊥.) Then, after fixing i, it picks a random ri from {ri|Z(ri) = σi}.198

It sends ri to the verifier.199

3. V accepts iff ∃jZ(ri) = σj .200

3.1.2 Simulator for EANC0 proof system, on input (X, n− 3)201

1. Let Z be obtained from (X,n− 3) as in Lemma 12.202

2. Sample an i uniformly at random from {1, 2, . . . , s}.203

3. For this index i, sample ri at random, and compute Z(ri) = σi.204

4. For all j ∈ {1, 2, . . . , i− 1, i+ 1, . . . , s}, sample σj uniformly at random.205

5. Output (ri, σ1, . . . σi = Z(ri), . . . σs).206

3.2 Proofs of Zero Knowledge, Completeness and Soundness207

3.2.1 Completeness208

▷ Claim 13. If H(X) ≥ n− 2, then the verifier accepts with probability ≥ 1− 1
2s .209

Proof. If H(X ≥ m− 2), then by Lemma 12, ∆(Z,U{0,1}ℓ) ≤ 1
poly(s) . Thus,210

Pr[∃i∃ri Z(ri) = σi] ≥ 1− Pr[∀i¬∃ri Z(ri) = σi)211

≥ 1−
s∏

i=1

1
poly(s)212

= 1− 1
poly(s)s

213

> 1− 1
2s

214
215

Thus, with probability close to 1, the prover can send a string ri that will cause the216

verifier to accept. ◀217

3.2.2 Soundness218

▷ Claim 14. If H(X) ≤ n− 4, then the verifier accepts with probability ≤ 1
2s/2 .219

Proof. If H(X) < n− 3, then, by Lemma 12, the support of Z is at most a 2−s fraction of220

{0, 1}ℓ. Thus,221

Pr[verifier accepts] = Pr[∃i|Z(ri) = σi]222

≤
s∑

i=1

1
2s

223

= s · 1
2s

224

<
1

2s/2225
226

◀227
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3.2.3 Zero Knowledge228

To prove zero knowledge, we must show that, for an honest prover P , the distribution induced229

by (P, V ) on a YES instance has statistical difference at most 1
2s from the distribution induced230

by the simulator, S. Let B be the event ∀i¬∃ri Z(ri) = σi (which is the same as the event231

that the prover sends ⊥). Since, for any YES instance, Pr[B] ≤ 1
2s , it will suffice to analyze232

Pr[(r, σ)] conditioned on B not arising.233

Distribution induced by (P, V ), conditioned on ¬B:234

Let Si = {r : Z(r) = σi}. Since the prover picks i uniformly at random from {i ≤ s : Si ̸= Ø},235

and picks ri uniformly at random from Si, Pr[prover chooses r | prover chooses i and σ′ = σi}236

is the same for each i ∈ {1, . . . , s}, σ′ ∈ {0, 1}ℓ, r ∈ Si (and is equal to 0 for each r ̸∈ Si).237

Also, since σ is chosen uniformly at random, Pr[prover picks i] is the same for each i.238

Distribution induced by the simulator S:239

For the distribution induced by the simulator, since the simulator picks an i uniformly at240

random from {1, 2, . . . , s}, the probability that the simulator produces transcript (ri, σ =241

σ1, . . . Z(ri), . . . σs) is equal to Pr[transcript is (ri, σ)| prover chooses i and σi = Z(ri)].242

It follows that, conditioned on ¬B, the probability of each outcome (r, σ) is the same in243

the two distributions. Thus, ∆(S, (P, V )) ≤ 1
2s ).244

3.3 Construction of Distribution Z by AC0 Circuits245

Let the threshold for the EANC0 problem be k = n− 3.246

STEP 1: Many copies of distribution X.247

Let m (resp. n) be the number input (resp. output) gates to X. We take q = 4sm2
248

independent copies of X to create distribution X ′. Observe that H(X ′) = q · H(X).249

For every x,Pr[X = x] ≥ 1
2m . So the flattening lemma (Lemma 4) implies that X ′ is250

δ = √q ·m = 2
√
s ·m2 flat.251

Thus,252

1. if H(X) > k + 1, then H(X ′) > q · k + q > qk.253

2. If H(X) < k − 1, then H(X ′) < q · k − q.254

STEP 2: Using AC0 Randomness Extractor on X ′
255

Now, we use the randomness extractor as mentioned in Theorem 11 on x′ ∈ X ′. Note that256

X ′ : {0, 1}qm → {0, 1}qn. We use a randomness source r ∈ {0, 1}qk/c, where c is the constant257

mentioned in Theorem 11.258

Now consider the distribution Y on E(X ′, r) : {0, 1}qm × {0, 1}qk/c → {0, 1}qk+qk/c.259

▷ Claim 15. 1. If H(X) > k + 1, then the statistical difference of Y from the uniform260

distribution over {0, 1}qk+qk/c is at most 1/(qm)3.261

2. If H(X) < qk − 1, then H(Y ) < q · k − q + qk/c.262

Proof. If H(X) > k + 1, then H(X ′) > qk + q > qk. Now, given that k = n − 3 >263

n/poly(log(n)), we have that H(X ′) > nm − 3q > qn
poly(log(qn)) . This implies that r ∈264

{0, 1}
qn−3q

c . From Theorem 11, it follows that ∆(E(x′, r), Uqk+qk/c) ≤ 1/(qm)3 .265

Item 2 follows since the entropy of Y is ≤ H(X ′) + qk/c < qk − q + qk/c. Thus, H(Y ) <266

qk · ( c+1
c )− q ◀267

STEP 3: Many copies of distribution Y .268

Let q′ = 4s(qm)2 = 4sq2m2. The distribution Y ′ = ⊗q′
Y , so that Y ′ has q′qm = M input269

gates, and q′ · (qk + qk/c) = N output gates. For every y,Pr[Y = y] ≥ 1
2qm . Thus the270

flattening lemma implies that Y ′ is δ′ =
√
q′qm = 2

√
s(qm)2 flat.271
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1. If H(X) > k+1, then ∆(Y ′, UN ) ≤ q′ · 1
(qm)3 = (4s(qm)2)· 1

(qm)3 = 4s
qm = 1

m3 = O( 1
poly(s) ).272

2. If H(X) < k − 1, then H(Y ′) < q′ ·H(Y ) < q′ · q · k · ( c+1
c )− q′ · q.273

STEP 4: Bounding the size of the support, if H(Y ′) is small274

Consider a circuit Z that takes as input r′ ∈ {0, 1}M . It samples r ∈ {0, 1}M , and outputs275

(Y ′(r′), r) = (y′, r).276

▷ Claim 16. 1. If H(X) > k+ 1, then Z has statistical distance ≤ 1
poly(s) from the uniform277

distribution over {0, 1}q′qk+q′qk/c+q′qm.278

2. If H(X) < k − 1, then the support of Z is at most a 1
2poly(s) fraction of the distribution279

D : {0, 1}q′qk+q′qk/c+q′qm
280

Proof. If H(X) > k + 1, then from steps 1-3, we know that the statistical distance of Y ′
281

from the uniform distribution over {0, 1}q′·(qk+qk/c) is O(1/poly(s)).282

283

▷ Claim 17. [24, Fact 2.3] Suppose X1 and X2 are independent random variables on one284

probability space and Y1 and Y2 are independent random variables on another probability285

space. Then,286

∆((X1, X2), (Y1, Y2)) ≤ ∆((X1, Y1)) + ∆((X2, Y2))287

Thus, the statistical difference between the uniform distribution over {0, 1}q′qk+q′qk/c+q′qm
288

and (Y ′(r′), r) is289

∆((Y ′(r′), r), Uq′qk+q′qk/c+q′qm) ≤ ∆([Y ′(r′), Uq′qk+q′qk/c) + ∆(r, Uq′qm).290

= 1
poly(s) + ∆(r, Uq′qm)291

= 1
poly(s) + 0292

= 1
poly(s)293

294

If H(X) < k − 1295

Let the set S be the support of Z. If H(X) < k− 1, then we break S into 3 parts, depending296

on the probability mass given to y′ by the distribution Y ′.297

298

Case 1:299

S1 : {(Y ′(r′), r)|Pr[Y ′(r′) = y′] ≤ 2−N−s}. If Pr[Y ′(r′) = y′] ≤ 2−N−s, then there are300

at most 2M−N−s values of r such that Y ′(r) = y′. Thus, |S1|
|D| ≤

2M−N−s·2N

2N+M ≤ 2M−N−s

2M ≤301

2−N−s ≤ 2−Ω(s).302

303

Case 2:304

S2 : {(Y ′(r′), r)|2−N−s ≤ Pr[Y ′(r′) = y′] ≤ 2−N+s}305

306

Since H(Y ′) ≤ N − qq′, every y′ ∈ S2 is ≈ q · q′ − s = M/m− s light. (That is, y′ is not307
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(M/m)− s-typical, as per Definition 2.) By the δ′ =
√
q′qm flatness of Y ,308

Pr[Y ′ ∈ S2] ≤ 2−((q·q′−s)/δ′)2+1
309

= 2−(
√

q′/m−s/δ′)2+1
310

= 2−(q′/m2+s2/(δ′)2−2
√

q′s/(mδ′))+1
311

= 2−q′/m2−s2/(δ′)2+2
√

q′s/(mδ′)+1
312

= 2−q′/m2−s2/(δ′)2+2s/(qm2)+1
313

314
315

Since every y′ in S2 has probability mass ≥ 2−N−s under Y ′, |S2| ≤ 2−q′/m2−s2/(δ′)2+2s/(qm2)+1

2−N−s .316

Thus,317

|S2|/|D| ≤ 2−q′/m2−s2/(δ′)2+2s/(qm2)+1

2−N−s · 2N
318

= 2−q′/m2−s2/(δ′)2+2s/(qm2)+1

2−s
319

= 2s−q′/m2−s2/(δ′)2+2s/(qm2)+1
320

≤ 2−Ω(s).321

322
323

Case 3:324

S3 : {(Y ′(r′), r)|Pr[Y ′(r′) = y′] ≥ 2−N+s}325

In this case, there are at most 2N−s values of y′ such that Pr[Y ′(r′) = y′] ≥ 2−N+s. (Other-326

wise, probability mass > 1). Thus, |S3|/|D| = 2N−s/2N = 2−Ω(s).327

328

S = S1 ∪ S2 ∪ S3, and since |Si|/|D| ≤ 2−Ω(s),∀i ∈ 1, 2, 3, it follows that |S|/|D| ≤329

3 · 2−Ω(s) = 2−Ω(s).330

◀331

4 Increasing the power of the Verifier and Simulator: PM332

The Perfect Matching problem is the well-known problem of deciding, given an undirected333

graph G with 2n vertices, if there is set of n edges covering all of the vertices. We define a334

corresponding complexity class PM as follows:335

PM := {A : A ≤L
T Perfect Matching}

In this section, we show that NISZKL = NISZKPM. That is, we can increase the computa-336

tional power of the simulator and the verifier from L to PM without affecting the power of337

noninteractive statistical zero knowledge protocols. We make use of the following equality,338

which was previously observed in [23]:339

▶ Proposition 18. NISZK⊕L = NISZKL340

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem341

EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof342

of [1, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a343

branching program to simulate a logspace computation called Mx that is constructed from a344
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logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect345

randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class346

defined in [5], consisting of all problems with perfect randomized encodings. But Theorem347

4.18 in [5] shows the stronger result that ⊕L lies in PREN , and hence the argument of348

[1, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by349

modifying step (a), to build a parity branching program for Mx that is constructed from a350

⊕L simulator and verifier). ◀351

We also rely on the following lemma:352

▶ Lemma 19. Adapted from [4, Section 3] and [20, Section 4]: Let W = (w1, w2, · · · , wnk+3)353

be a sequence of nk+3 weight functions, where each wi : [
(

n
2
)
] → [4n2] is a distinct weight354

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges355

of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)356

has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no357

perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W358

is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:359

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.360

If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight361

matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.362

Thus if we define g(G,W ) to be 1− Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL and with363

probability ≥ 1− 2−nk (for randomly-chosen W ), g(G,W ) = 1 if G has a perfect matching,364

and g(G,W ) = 0 otherwise.365

▶ Corollary 20. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,366

then PrW [(x,W ) ∈ B] ≥ 1− 2−n2 , and if x ̸∈ A, then PrW [(x,W ) ∈ B] ≤ 2−n2 .367

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an368

oracle for Perfect Matching. We may assume without loss of generality that all queries made369

by M on inputs of length n have the same number of vertices p(n). This is because G has a370

perfect matching iff G ∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we can371

“pad” the queries, to make them all the same length.)372

Let C = {(G,W ) : g(G,W ) ≡ 1 mod 2}, where g is the function from Lemma 19. Clearly,373

C ∈ ⊕L.374

Now, a logspace oracle machine with input (x,W ) and oracle C can simulate the compu-375

tation of M on x, replacing each query G made by M by the query asking if (G,W ) ∈ C,376

and with high probability (over the random choice of W ) all of the queries will be answered377

correctly and hence this routine will accept if and only if x ∈ A, by Lemma 19. Let B be the378

language accepted by this logspace oracle machine. We see that B ∈ LC ⊆ L⊕L = ⊕L, where379

the last equality is from [15].380

◀381

▶ Theorem 21. NISZKL = NISZKPM382

Proof. We show that NISZK⊕L = NISZKPM, and then appeal to Proposition 18.383

Let Π be an arbitrary problem in NISZKPM, and let (S, P, V ) be the PM simulator, prover,384

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic385

realizations of S, V , respectively, guaranteed by Corollary 20 .We now define a NISZKL386

protocol (S′′, P ′′, V ′′) for Π.387
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On input x with shared randomness σW , the prover P ′′ sends the same message p =388

P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W ),389

which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and390

random sequence rW , executes S′((x, r, i),W ) for each bit position i to obtain a bit that391

(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),392

and outputs (σW, p).393

Now we will analyze the properties of (S′′, P ′′, V ′′):394

Correctness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since395

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk we have:396

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W ) = 1] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since397

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk , we have:398

Pr
σW

[∀p : V ′((x, σ, p),W ) = 0] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)

Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings399

of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote400

the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.401

Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW )402

produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by403

(σW,P ′′(x, σW )). Let A = {(σW, p) : ∃i∃r S(x, r)i ̸= S′((x, r, i),W )}.404

Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W )] ≥ 1− 2−O(n) we have:405

∆(S′′∗, P ′′∗) = 1
2

∑
(σW,p)

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣ Pr[W ])

≤ 2−O(n) +
∑
W

Pr[W ] 12
∑
(σ,p)

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. ◀406

5 Additional problems in NISZKL407

In this section, we give additional examples of problems in P that lie in NISZKL. These408

problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is409

closed under a class of randomized reductions.410

The following definition is from [2]:411

▶ Definition 22. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with412

threshold θ if there is a logspace-computable function f and there is a polynomial p such that413
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x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.414

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.415

Note, in particular, that the logspace machine computing the reduction has two-way access416

to the random bits r; this is consistent with the model of probabilistic logspace that is used417

in defining NISZKL.418

▶ Theorem 23. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .419

Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL420

proof system for EANC0 .421

Algorithm 1 Simulator S(x, rσ′)

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

422

Algorithm 2 Prover P (x, (σ, σ′))

return P1((f(x, σ′), σ);
423

Algorithm 3 Verifier V (x, (σ, σ′), p)

return V1((f(x, σ′), σ, p)
424

We now claim that (S, P, V ) is a NISZKL protocol for Π.425

It is apparent that S and V are computable in logspace. We just need to go through426

correctness, soundness, and statistical zero-knowledge of this protocol.427

Correctness: Suppose x is YES instance of Π. Then with probability 1 − 1
nω(1) (over

randomness of σ′): f(x, σ′) is a YES instance of EANC0 . Thus for a randomly chosen σ:

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over

randomness of σ′): f(x, σ′) is a NO instance of EANC0 . Thus for a randomly chosen σ:

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0428

with probability close to 1. For any YES instance y of EANC0 , the distribution given by429

S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by430

(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P ) has distance at431

most 1
nω(1) from the distribution produced by S on input x. The claim now follows by432

the comments regarding error probabilities in Definition 7.433

◀434

McKenzie and Cook [19] defined and studied the problems LCON, LCONX and LCONNULL.435

LCON is the problem of determining if a system of linear congruences over the integers mod436

q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL437

is the problem of computing a spanning set for the null space of the system.438

These problems are known to lie in uniform NC3 [19], but are not known to lie in uniform439

NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2
440

such that x ∈ LCON if and only if (x,W ) ∈ B, where B is a randomly-chosen weight function441
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[6]. (The probability of error is exponentially small.) The mapping x 7→ (x,W ) is clearly a442

≤BPL
m reduction. Since DET ⊆ NISZKL [1], it follows that443

LCON ∈ NISZKL

The arguments in [6] carry over to LCONX and LCONNULL as well.444

▶ Corollary 24. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.445

6 Why we can allow for a stronger Verifier446

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator is in447

A and the verifier is in B (and hence NISZKA = NISZKA,A). We will consider the case where448

A ⊆ B ⊆ NISZKA and A,B are both classes of functions that are closed under composition.449

▶ Theorem 25. NISZKA,B = NISZKA450

Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A451

simulator, B verifier, and prover for Π’s proof system, where the reference string has length452

p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has453

a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s454

messages have length q2(|x|).455

▶ Lemma 26. We may assume without loss of generality that p1(n) > p2(n) + q2(n).456

Proof. If it is not the case that p1(n) > p2(n) + q2(n), then let r(n) = p2(n) + q2(n)− p1(n).457

Consider a new proof system (S′
1, V

′
1 , P

′
1) that is identical to (S1, V1, P1), except that the458

reference string now has length p1(n) + r(n) (where P ′
1 and V ′

1 ignore the additional r(n)459

random bits). The simulator S′
1 uses an additional r(n) random bits and simply appends460

those bits to the output of S1. The language L(V ′
1) is still in NISZKA, with a proof system461

(S′
2, V

′
2 , P

′
2) where the reference string still has length p2(n), since membership in L(V ′

1) does462

not depend on the “new” r(n) random bits, and hence S′
2, V

′
2 and P ′

2, given input (x, σr, p)463

behave exactly as S2, V2 and P2 behave when given input (x, σ, p). ◀464

Then Π has the following NISZKA proof system:465

Algorithm 4 Simulator S(x, r1, r2)

Data: x ∈ ΠY ∪ΠN

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

466

Algorithm 5 Prover P (x, σσ′)

Data: x ∈ ΠY ∪ΠN ;σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

467
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Algorithm 6 Verifier V (x, (σ, σ′), (p, p′))

return V2((x, σ, p), σ′, p′)
468

Correctness: Suppose x ∈ ΠY , then given random σ, with probability (1 − 1
2O(|x|) ):469

(x, σ, P1(x, σ)) ∈ L(V1) which means with probability (1− 1
2O(|x|+p1(|x|)+|p|) ) it holds that470

((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is:471

(1− 1
2O(|x|) )(1− 1

2O(|x|+p1(|x|)+q1(|x|)) ) = 1− 1
2O(|x|)

Soundness: Suppose x ∈ ΠN . When given a random σ, we have that with probability less472

than 1
2O(|x|) : ∃p such that (x, σ, p) ∈ L(V1). For (x, σ, p) ̸∈ L(V1), the probability that473

there is a p such that ((x, σ, p), σ′, p′) ∈ L(V2) is at most 1
2O(|x|+p1(|x|)+|p|) (given random474

σ′). So the probability that V rejects is:475

(1− 1
2O(|x|) )(1− 1

2O(|x|+p(|x|)+|p|) ) = 1− 1
2O(|x|)

Statistical Zero-Knowledge: Let P ∗
1 denote the distribution that samples σ and outputs476

(σ, P1(x, σ)). Similarly, let P ∗
2 (σ, p) denote the distribution that samples σ′ and outputs477

(σ2, P2((x, σ, p)). P ∗ will be defined as the distribution ((σ, σ′), P (x, σ, σ′))) where σ and478

σ′ are chosen uniformly at random. In the same way, let S∗ refer to the distribution479

produced by S on input x, let S∗
1 refer to the distribution produced by S1(x), and let480

S∗
2 (σ, p) be the distribution induced by S2 on input (x, σ, p). Now we can partition the481

set of possible outcomes ((σ, σ′), (p, p′)) of S∗ and P ∗ into 3 blocks:482

1. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) accepts.483

2. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) rejects.484

3. ((σ, σ′), (p, p′)) such that V1(x, σ, p) rejects.485

We will call these blocks A1, A2, and A3 respectively. Then by definition:486

∆(S∗, P ∗) = 1
2

∑
j∈{1,2,3}

∑
y∈Aj(x)

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣

≤ 1
2

∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣ + 1

2
∑

j∈{2,3}

∑
y∈Aj(x)

[
Pr
S∗

[y] + Pr
P ∗

[y]
]

For A1, we start with the definition of statistical difference:487 ∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣

=
∑

(σ′,p′)

( ∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣) (∗)

Here
Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]

and
Pr
P ∗

[(σ′, p′)] =
∑
(σ,p)

Pr
P ∗

[((σ, σ′), (p, p′))]

. We define δ(σ′, p′) :=
∣∣ PrS∗ [(σ′, p′)]− PrP ∗ [(σ′, p′)]

∣∣.488



E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 15

Let us examine a single term of the sum (*), for y = ((σ, σ′), (p, p′)):∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣

=
∣∣ Pr

S∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)]− Pr

P ∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)]+

Pr
P ∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣

=
∣∣(Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)) Pr
S∗

[(σ′, p′)] + Pr
P ∗

1

[(σ, p)](Pr
S∗

[(σ′, p′)]− Pr
P ∗

[(σ′, p′)])
∣∣

≤
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]− Pr

P ∗
[(σ′, p′)]

∣∣
=

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]δ(σ′, p′)

Thus (*) is no more than

2∆(S∗
1 (x), P ∗

1 (x)) +
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)

≤ 2
2|x| +

∑
{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′) (∗∗)

Let us consider a single term δ(σ′, p′) in the summation in (**). Recalling that the489

probability that S(x) = ((σ, σ′), (p, p′)) is equal to the probability that S1(x) = (σ, p)490

and S2(x, σ, p) = (σ′, p′), we have491

δ(σ′, p′) =
∣∣ Pr

S∗
[σ′, p′]− Pr

P ∗
[σ′, p′]

∣∣
=

∣∣ ∑
(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[σ, p]
∣∣

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]+

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[(σ, p)]
∣∣

=
∣∣ ∑

(σ,p)

( Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]) Pr
S∗

1

[(σ, p)]+

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)](Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)])
∣∣

≤
∑
(σ,p)

∣∣ Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]
∣∣ Pr

S∗
1

[(σ, p)]+

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣

=
∑
(σ,p)

2∆(S∗
2 (σ, p), P ∗

2 (σ, p)) Pr
S∗

1

[(σ, p)] +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣
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≤
∑
(σ,p)

2
2|(x,σ,p)| Pr

S∗
1

[(σ, p)] +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣

= 2
2|x|+p1(|x|)+q1(|x|) +

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣

where the last inequality holds, since the summation in (**) is taken over tuples, such492

that each (x, σ, p) is a YES instance of L(V1).493

Replacing each term in (**) with this upper bound, thus yields the following upper bound494

on (*):495

2
2|x| +

∑
(σ′,p′)

(
2

2|x|+p1(|x|)+q1(|x|) +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)

= 2
2|x| + 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) +
∑

(σ′,p′)

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)

= 2
2|x| + 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2∆(S∗
1 , P

∗
1 )

≤ 2
2|x| + 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2
2|x|

≤ 2
2|x| + 2

2|x| + 2
2|x|

where the last inequality follows from Lemma 26.496

Thus, A1 contributes only a negligible quantity to ∆(S∗, P ∗).497

We now move on to consider A2 and A3.498

Pr
P ∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

Pr[V2(x, σ, p) rejects] ≤
∑
(σ,p)

1
2|x|+|σ|+|p| ≤

1
2|x| .

Pr
S∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

(Pr[V2(x, σ, p) rejects] + ∆(S∗
2 (σ, p), P ∗

2 (σ, p))) ≤ 2
2|x| .

A similar and simpler calculation shows that PrP ∗ [y ∈ A3] ≤ 1
2|x| and PrS∗ [y ∈ A3] ≤ 2

2|x| ,499

to complete the proof.500

◀501

▶ Corollary 27. NISZKL = NISZKAC0 = NISZKAC0,DET502

The proof of Theorem 25 did not make use of the condition that the verifier is at least as503

powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also504

have the following corollary:505

▶ Corollary 28. NISZKB = NISZKB,A506

▶ Corollary 29. NISZKA,B ⊆ NISZKB,A507

▶ Corollary 30. NISZKDET = NISZKDET,AC0508
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7 SZKL closure under ≤L
bf−tt reductions509

Although our focus in this paper has been on NISZKL, in this section we report on a closure510

property of the closely-related class SZKL.511

The authors of [10], after defining the class SZKL, wrote:512

We also mention that all the known closure and equivalence properties of SZK (e.g.513

closure under complement [21], equivalence between honest and dishonest verifiers514

[13], and equivalence between public and private coins [21]) also hold for the class515

SZKL.516

In this section, we consider a variant of a closure property of SZK (closure under ≤P
bf−tt [24]),517

and show that it also holds3 for SZKL. Although our proof follows the general approach518

of the proof of [24, Theorem 4.9], there are some technicalities with showing that certain519

computations can be accomplished in logspace (and for dealing with distributions represented520

by branching programs instead of circuits) that require proof. (The characterization of SZKL521

in terms of reducibility to the Kolmogorov-random strings presented in [2] relies on this522

closure property.)523

▶ Definition 31. (From [24, Definition 4.7]) For a promise problem Π, the characteristic
function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by

XΠ(x) =


1 if x ∈ ΠY

0 if x ∈ ΠN

* otherwise

▶ Definition 32. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We524

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there525

exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and526

a Boolean formula ϕ (with m input gates) such that:527

x ∈ ΠY =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 1

x ∈ ΠN =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 0

We begin by proving a logspace analogue of a result from [24], used to make statistically528

close pairs of distributions closer and statistically far pairs of distributions farther.529

▶ Lemma 33. (Polarization Lemma, adapted from [24, Lemma 3.3]) There is a logspace-530

computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,531

and outputs a pair of branching programs (Q1, Q2) such that:532

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k

3 We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [22], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.
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To prove this, we adapt the same method as in [24] and alternate two different procedures,533

one to drive pairs with large statistical distance closer to 1, and one to drive distributions534

with small statistical distance closer to 0. The following lemma will do the former:535

▶ Lemma 34. (Direct Product Lemma, from [24, Lemma 3.4]) Let X and Y be distributions536

such that ∆(X,Y ) = ϵ. Then for all k,537

kϵ ≥ ∆(⊗kX,⊗kY ) ≥ 1− 2 exp(−kϵ2/2)

The proof of this statement follows from [24]. To use this for Lemma 33, we note that a538

branching program for ⊗kP can easily be created in logspace from a branching program P539

by simply copying and concatenating k independent copies of P together.540

We now introduce a lemma to push close distributions closer:541

▶ Lemma 35. (XOR Lemma, adapted from [24, Lemma 3.5]) There is a logspace-computable542

function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair543

of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1544

are defined as follows:545

A = {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}

B = {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}

Q0 : y ←R A,Return
⊗
i∈[k]

Pyi

Q1 : y ←R B,Return
⊗
i∈[k]

Pyi

Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [24, Proposition 3.6]. To finish546

proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and547

(Q0, Q1).548

Let ℓ and w be the max length and width between P0 and P1. We describe the structure549

of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits550

y1, . . . , yk−1. For each random bits, it can pick the correct of two different branches, one551

having P0 built in at the end and the other having P1. We will read y1, branch to P0 or P1552

(and output the distribution accordingly), then unconditionally branch to reading y2 and553

repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to y1554

and start computing the parity, and at the end we will be able to decide the value of yk555

which will allow us to branch to the final copy of P0 or P1.556

y1

P0

P1

y2

. . .

. . .

yk−1

P0

P1

y1

y2

y2

. . .

. . .

yk−1

yk−1

P0

P1

0/1 1 0

Figure 1 Branching program for Q0 of Lemma 35

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to557

compute yk and logspace to copy the independent copies of P0 and P1.558

◀559
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We now have the tools to prove Lemma 33.560

Proof. From [24, Section 3.2], we know that we can polarize (P0, P1, 1k) by:561

Letting l = ⌈log4/3 6k⌉, j = 3l−1
562

Applying Lemma 35 to (P0, P1, 1l) to get (P ′
0, P

′
1)563

Applying Lemma 34: P ′′
0 = ⊗jP ′

0, P ′′
1 = ⊗jP ′

1564

Applying Lemma 35 to (P ′′
0 , P

′′
1 , 1k) to get (Q0, Q1)565

Each step is computable in logspace, and since logspace is closed under composition, this566

completes our proof. ◀567

We also mention the following lemma, which will be useful in evaluating the Boolean568

formula given by the ≤L
bf−tt reduction.569

▶ Lemma 36. There is a function in NC1 that takes as input a Boolean formula ϕ (with m570

input bits) and produces as output an equivalent formula ψ with the following properties:571

1. The depth of ψ is O(logm).572

2. ψ is a tree with alternating levels of AND and OR gates.573

3. The tree’s non-leaf structure is always the same for a fixed input length.574

4. All NOT gates are located at the leaves.575

Proof. Although this lemma does not seem to have appeared explicitly in the literature,576

it is known to researchers, and is closely related to results in [11] (see Theorems 5.6 and577

6.3, and Lemma 3.3) and in [3] (see Lemma 5). Alternatively, one can derive this by using578

the fact that the Boolean formula evaluation problem lies in NC1 [7, 8], and thus there is579

an alternating Turing machine M running in O(logn) time that takes as input a Boolean580

formula ψ and an assignment α to the variables of ψ, and returns ψ(α). We may assume581

without loss of generality that M alternates between existential and universal states at each582

step, and that M runs for exactly c logn steps on each path (for some constant c), and that583

M accesses its input (via the address tape that is part of the alternating Turing machine584

model) only at a halting step, and that M records the sequence of states that it has visited585

along the current path in the current configuration. Thus the configuration graph of M , on586

inputs of length n, corresponds to a formula of O(logn) depth having the desired structure,587

and this formula can be constructed in NC1. Given a formula ϕ, a NC1 machine can thus588

build this formula, and hardwire in the bits that correspond to the description of ϕ, and589

identify the remaining input variables (corresponding to M reading the bits of α) with the590

variables of ϕ. The resulting formula is equivalent to ϕ and satisfies the conditions of the591

lemma. ◀592

▶ Definition 37. (From [24, Definition 4.8]) For a promise problem Π, we define a new593

promise problem Φ(Π) as follows:594

Φ(Π)Y = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 1}

Φ(Π)N = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 0}

▶ Theorem 38. SZKL is closed under ≤L
bf−tt reductions.595
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To begin the proof of this theorem, we first note that as in the proof of [24, Lemma 4.10],596

given two SDBP pairs, we can create a new pair which is in SDBP,N if both of the original597

two pairs are (which we will use to compute ANDs of queries.) We can also compute in598

logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that599

these operations produce an output with the correct statistical difference with the following600

two claims:601

▷ Claim 39. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.602

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p

Then consider:603

y = (A1 ⊗A2, B1 ⊗B2)

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):604

YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =605

max{∆(A1, B1),∆(A2, B2)} > 1− p606

NO: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p607

The second equality is from [24, Fact 2.3]. If p is polarized already the NO instance can still608

be decided. ◀609

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR operation610

for at most d+1
2 levels (and the soundness gap doubles at every level). Since p = 1

2m at the611

beginning, the gap (for NO instance) will be upper bounded at the end by:612

< 2
d+1

2
1

2m
= mO(1)

2m
< 1/3.

▷ Claim 40. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.613

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly614

∆(A1, B1) ·∆(A2, B2)

(A,B) are analogous to (Q0, Q1) in Lemma 35, and can be created in logspace with 2615

random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if b0 = 0, while for B616

we have b1 = 0 being (A1, B2) and b1 = 1 being (A2, B1).617

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):618

YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2
619

NO: ∆(A1, B1) ·∆(A2, B2) ≤ max{∆(A1, B1),∆(A2, B2)} < p620

If p is polarized already the YES instances can still be decided. ◀621
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In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation622

for at most d+1
2 levels (and the completeness gap squares itself at every level). Since p = 1

2m623

at the beginning, the gap (for YES instance) will be lower bounded at the end by:624

> (1− 1
2m

)2
d+1

2 = (1− 1
2m

)mO(1)
> (1− 1

2m
)2m/m ≈ (1

e
)1/m >

2
3 .

Proof. (of Theorem 38) Now suppose that we are given a promise problem Π such that625

Π ≤L
bf−tt SDBP. We want to show Π ≤L

m SDBP, which by SZKL’s closure under ≤L
m reductions626

implies Π ∈ SZKL.627

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in628

SDBP,Y if x ∈ ΠY :629

1. Run the L machine for the ≤L
bf−tt reduction on x to get queries (q1, . . . , qm) and the630

formula ϕ.631

2. Build ψ from ϕ using Lemma 36. Replace queries ¬qi that would be negated with the632

reduction from SDBP,Y to SDBP,N on qi, and then apply Lemma 33 with k = n on633

these queries to get (y1, . . . , yk). Pad the output bits of each branching program so each634

branching program has m output bits.635

3. Build the template tree T . At the leaf level, for each variable in ψ, we will plug in the636

corresponding query yi. By Lemma 36 the tree is full.637

4. Given x and designated output position j of F0 or F1, there is a logspace computation638

which finds the original output bit from y1 . . . ym that bit j was copied from. This machine639

traverses down the template tree from the output bit and records the following:640

The node that the computation is currently at on the template tree, with the path641

taken depending on j.642

The position of the random bits used to decide which path to take when we reach643

nodes corresponding to AND.644

This takes O(logm) space. We can use this algorithm to copy and compute each output645

bit of F0 and F1, creating (F0, F1) in logspace.646

For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of647

F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 36, a list of SDBP queries648

(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only649

F0(x).650

Outline of Eval(x, j, ψ, y1, . . . , ym) :651

The idea is to compute the jth output bit of F0 by recursively calculating which query652

output bit it was copied from. To do this, first notice that the AND and OR operations653

produce branching programs where each output bit is copied from exactly one output bit of654

one of the query branching programs, so composing these operations together tells us that655

every output bit in F0 is copied from exactly one output bit from one query. By Lemma 36656

and our AND and OR operations preserving the number of output bits, we also have that657

if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of658

ψ. This can be used to recursively calculate which query the jth bit is from: for an OR659

gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with660

each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an661

AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and662

then use the 4 random bits for the XOR operation to compute which fourth corresponds to663

which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2664

fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,665
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then at the query level, we can directly return the j′th output bit. This can be done in666

logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace667

to record and update j′, logspace to compute 2al at each level, and logspace to compute668

which subtree/query the output bit comes from at each level.669

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this670

process Π ≤L
m SDBP. ◀671
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