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2 Robustness for Space-Bounded Statistical Zero Knowledge

1 Introduction26

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass27

NISZK have been studied intensively by the research communities in cryptography and28

computational complexity theory. In [11], a space-bounded version of SZK, denoted SZKL29

was introduced, primarily as a tool for understanding the complexity of estimating the30

entropy of distributions represented by very simple computational models (such as low-degree31

polynomials, and NC0 circuits). There, it was shown that SZKL contains many important32

problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and33

Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted34

NISZKL, was subsequently introduced in [1], primarily as a tool for clarifying the complexity35

of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such36

as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [13], so37

also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains38

intractable problems if and only if SZKL does.39

Very recently, all of these classes were given surprising new characterizations, in terms40

of efficient reducibility to the Kolmogorov random strings. Let R̃K be the (undecidable)41

promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that K(y) ≥ |y|/2 and42

the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2 − e(|y|) for some43

approximation error term e(n), where e(n) = ω(logn) and e(n) = no(1).44

▶ Theorem 1. [3] Let A be a decidable promise problem. Then45

A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.46

A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.47

A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean48

formula” reductions.49

A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”50

reductions.51

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of52

length n all queries are of length ≥ nϵ.53

There are very few natural examples of computational problems A where the class of54

problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)55

from the class or problems reducible to A via AC0 reductions. For example the natural56

complete problems for NISZK under ≤P
m reductions remain complete under AC0 reductions.57

Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This58

would also imply that SZK = SZKL.)59

This motivates a closer examination of SZKL and NISZKL, to answer questions that have60

not been addressed by earlier work on these classes.61

Our main results are:62

1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in63

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a64

computationally-unbounded prover, following the usual rules of an interactive proof, and65

(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.66

(More formal definitions are to be found in Section 2.) We show that the verifier and67

simulator can be restricted to lie in AC0. Let us explain why this is surprising.68

The proof presented in [1], showing that EANC0 is complete for NISZKL, makes it clear69

that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [23]).70
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But the proof in [1] (and a similar argument in [13]) relies heavily on hashing, and it is71

known that, although there are families of universal hash functions in AC0[⊕], no such72

families lie in AC0 [18]. We provide an alternative construction, which avoids hashing,73

and allows the verifier and simulator to be very weak indeed.74

2. The verifier and simulator may be somewhat stronger. The proof presented in75

[1], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and76

simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof77

relies on the fact that logspace computation lies in the complexity class PREN of functions78

that have perfect randomized encodings [6], and ⊕L also lies in PREN. Applebaum,79

Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical80

randomized encodings), in proving that there are one-way functions in SREN if and only81

if there are one-way functions in NC0. They also showed that other important classes82

of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that83

NISZKL could be characterized using verifiers and simulators computable in GapL (or84

even in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to85

GapL), since DET is known to be contained in NISZKL [1].2 However, we were unable to86

reach that goal.87

We were, however, able to show that the simulator and verifier can be as powerful as NL,88

without making use of the properties of SREN. In fact, we go further in that direction.89

We define the class PM, consisting of those problems that are ≤L
T-reducible to the Perfect90

Matching problem. PM contains NL [17], and is not known to lie in (uniform) NC (and it91

is not known to be contained in SREN). We show that statistical zero knowledge protocols92

defined using simulators and verifiers that are computable in PM yield only problems in93

NISZKL.94

3. The complexity of the simulator is key. As part of our attempt to characterize95

NISZKL using simulators and verifiers computable in DET, we considered varying the96

complexity of the simulator and the verifier separately. Among other things, we show97

that the verifier can be as complex as DET if the simulator is logspace-computable.98

In most cases of interest, the NISZK class defined with verifier and simulator lying in99

some complexity class remains unchanged if the rules are changed so that the verifier is100

significantly stronger or weaker.101

We also establish some additional closure properties of NISZKL and SZKL, some of which are102

required for the characterizations given in [3].103

The rest of the paper is organized as follows: Section 3 will show how NISZKL can be104

defined equivalently using an AC0 verifier and simulator. Section 4 will show that increasing105

the power of the verifier and simulator to lie in PM does not increase the size of NISZKL106

(where PM is the class of problems (containing NL) that are logspace Turing reducible to107

Perfect Matching). Section 5 expands the list of problems known to lie in NISZKL. McKenzie108

and Cook [19] studied different formulations of the problem of solving linear congruences.109

These problems are not known to lie in DET, which is the largest well-studied subclass of P110

known to be contained in NISZKL. However, these problems are randomly logspace-reducible111

to DET [7]. We show that NISZKL is closed under randomized logspace reductions, and112

hence show that these problems also reside in NISZKL. Section 6 shows that the complexity113

of the simulator is more important than the complexity of the verifier, in non-interactive114

1 This is not stated explicitly for GapL, but it follows from [16, Theorem 1]. See also [10, Section 4.2].
2 More precisely, as observed in [2], the Rigid Graph (non-) Isomorphism problem is hard for DET [25],

and the Rigid Graph Non-Isomorphism problem is in NISZKL [1, Corollary 23].
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zero-knowledge protocols. In particular, the verifier can be as powerful as DET, while still115

defining only problems in NISZKL. Finally Section 7 will show that SZKL is closed under116

logspace Boolean formula truth-table reductions.117

2 Preliminaries118

We assume familiarity with basic complexity classes L,NL,⊕L and P, and circuit complexity119

classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility) and120

Turing-reducibility. #L is the class of functions that count the number of accepting paths121

of NL machines, and GapL = {f − g : f, g ∈ #L}. The determinant is complete for GapL,122

and the complexity class DET is the class of languages NC1-Turing reducible to functions in123

GapL.124

Many of the problems we consider deal with entropy (also known as Shannon entropy).125

The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).126

Given two distributions X and Y , the statistical difference between the two is denoted127

∆(X,Y ) and is equal to
∑

α

∣∣ Pr[X = α]− Pr[Y = α]
∣∣/2. Equivalently, for finite domains D,128

∆(X,Y ) = maxS⊆D{
∣∣ PrX [S]− PrY [S]

∣∣}. This quantity is also known as the total variation129

distance between X and Y . The support of X, denoted supp(X), is {x : Pr[X = x] > 0}.130

▶ Definition 2. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN )131

(the "YES" and "NO" instances, respectively). A solution for Π is any set S such that132

ΠY ⊆ S, and S ∩Πn = Ø.133

▶ Definition 3. A branching program is a directed acyclic graph with a single source and134

two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a135

variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.136

A branching program computes a Boolean function f on input x = x1 . . . xn by first placing137

a pebble on the source node. At any time when the pebble is on a node v labeled xi, the138

pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or139

by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then140

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,141

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =142

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of143

these complexity classes, circuits, and branching programs, see the text by Vollmer [26].144

▶ Definition 4. Non-interactive zero-knowledge proof (NISZK) [Adapted from [1, 13]]: A145

non-interactive statistical zero-knowledge proof system for a promise problem Π is defined146

by a pair of deterministic polynomial time machines3 (V, S) (the verifier and simulator,147

respectively) and a probabilistic routine P (the prover) that is computationally unbounded,148

together with a polynomial r(n) (which will give the size of the random reference string σ),149

such that:150

1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random151

choices of P ) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).152

2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability that153

V (x, σ, P ′(x, σ)) accepts is at most 2−O(|x|). (Note P ′ here can be malicious, meaning it154

can try to fool the verifier)155

3 In prior work on NISZK [13, 1], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.
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3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two156

distributions is bounded by 2−|x|:157

a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).158

b. S(x, r) (where the coins r for S are chosen uniformly at random).159

It is known that changing the definition, to have the error probability in the soundness and160

completeness conditions and in the simulator’s deviation be 1
nω(1) results in an equivalent161

definition [1, 13]. (See the comments after [1, Claim 39].) We will occasionally make use of162

this equivalent formulation, when it is convenient.163

NISZK is the class of promise problems for which there is a non-interactive statistical164

zero knowledge proof system.165

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie166

in complexity class C.167

▶ Definition 5. [1, 13] (EA and EANC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
168

representing distribution X. The promise problem EA is given by:169

EAY := {(CX , k) : H(X) > k + 1}170

171

EAN := {(CX , k) : H(X) < k − 1}172

EANC0 is the variant of EA where the distribution Cx is an NC0 circuit with each output bit173

depending on at most 4 input bits.174

▶ Definition 6 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
175

representing distributions X. The promise problem SDU = (SDUY ,SDUN ) is given by:176

SDUY := {CX : ∆(X,Un) < 1/n}177

178

SDUN := {CX : ∆(X,Un) > 1− 1/n}.179

SDUNC0 is the analogous problem, where the distributions X are represented by NC0 circuits180

where no output bit depends on more than four input bits.181

▶ Theorem 7. [1, 3]: EANC0 and SDUNC0 are complete for NISZKL. EANC0 remains complete,182

even if k is fixed to k = n− 3.183

▶ Definition 8. [11, 24] (SD and SDBP). Consider a pair of Boolean circuits C1, C2 :184

{0, 1}m → {0, 1}n representing distributions X1, X2. The promise problem SD is given by:185

SDY := {(C1, C2) : ∆(X1, X2) > 2/3}186

187

SDN := {(C1, C2) : ∆(X1, X2) < 1/3}.188

SDBP is the variant of SD where the distributions X1, X2 are represented by branching189

programs.190

2.1 Perfect Randomized Encodings191

We will make use of the machinery of perfect randomized encodings [6].192

▶ Definition 9. Let f : {0, 1}n → {0, 1}ℓ be a function. We say that f̂ : {0, 1}n × {0, 1}m →193

{0, 1}s is a perfect randomized encoding of f with blowup b if it is:194
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Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random195

variables f̂(x, Um) and f̂(x′, Um) are identically distributed.196

Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) ̸= f(x′), supp(f̂(x, Um)) ∩197

supp(f̂(x′, Um)) = Ø.198

Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over the set199

supp(f̂(x, Um)).200

Balanced: for every x, x′ ∈ {0, 1}n |supp(f̂(x, Um))| = |supp(f̂(x′, Um))| = b201

The following property of perfect randomized encodings is established in [11].202

▶ Lemma 10. Let f : {0, 1}n → {0, 1}ℓ be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s
203

be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) = H(f(Un))+log b.204

3 Simulators and Verifiers in AC0
205

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators206

that are computable in AC0. The standard complete problems for NISZK and NISZKL take a207

circuit C as input, where the circuit is viewed as representing a probability distribution X;208

the goal is to approximate the entropy of X, or to estimate how far X is from the uniform209

distribution. Earlier work [14, 1, 23] that had presented non-interactive zero-knowledge210

protocols for these problems had made use of the fact that the verifier could compute hash211

functions, and thereby convert low-entropy distributions to distributions with small support.212

But an AC0 verifier cannot compute hash functions [18].213

Our approach is to “delegate” the problem of computing hash functions to a logspace214

verifier, and then to make use of the uniform encoding of this verifier to obtain the desired215

distributions via an AC0 reduction. To this end, we begin by defining a suitably restricted216

version of SDUNC0 and show that this restricted version remains complete for NISZKL under217

AC0 reductions (and even under projections).218

With this new complete problem in hand, we provide a NISZKAC0 protocol for the complete219

problem, to conclude NISZKL = NISZKAC0 .220

▶ Definition 11. Consider an NC0 circuit C : {0, 1}m → {0, 1}n and the probability distri-221

bution X on {0, 1}n defined as C(Um) - where Um denotes m uniformly random bits. For222

some fixed ϵ > 0 (chosen later in Remark 16), we define:223

SDU’NC0,Y = {X : ∆(C,Un) < 1
2nϵ }224

225

SDU’NC0,N = {X : | supp(X)| ≤ 2n−nϵ

}226

We will show that SDU’NC0 is complete for NISZKL under uniform ≤proj
m reductions. In227

order to do so, we first show that SDU’NC0 is in NISZKL by providing a reduction to SDUNC0 .228

▷ Claim 12. SDU’NC0≤proj
m SDUNC0 , and thus SDU’NC0 ∈ NISZKL.229

Proof. On a given probability distribution X defined on {0, 1}n for SDU’NC0 , we claim that230

the identity function f(X) = X is a reduction of SDU’NC0 to SDUNC0 . If X is a YES instance231

for SDU’NC0 , then ∆(X,Un) < 1
2nϵ , which clearly is a YES instance of SDUNC0 . If X is a232

NO instance for SDU’NC0 , then | supp(X)| ≤ 2n−nϵ . Thus, if we let T be the complement of233

supp(X), we have that, under the uniform distribution, a string α is in T with probability234

≥ 1− 1
2nϵ , whereas this event has probability zero under X. Thus ∆(X,Un) ≥ 1− 1

2nϵ , easily235

making it a NO instance of SDUNC0 . ◀236
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3.1 Hardness for SDU’NC0237

▶ Theorem 13. SDU’NC0 is hard for NISZKL under ≤proj
m reductions.238

Proof. In order to show that SDU’NC0 is hard for NISZKL, we will show that the reduction239

given in [1] proving the hardness of SDUNC0 for NISZKL actually produces an instance of240

SDU’NC0 .241

Let Π be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator242

S. Let x be an instance of Π. Let Mx(r) denote a machine that simulates S(x) with243

randomness r to obtain a transcript (σ, p) - if V (x, σ, p) accepts then Mx(r) outputs σ; else244

it outputs 0|σ|. We will assume without loss of generality that |σ| = nk for some constant k.245

246

It was shown in [14, Lemma 3.1] that for the promise problem EA, there is an NISZK247

protocol with completeness error, soundness error and simulator deviation all bounded from248

above by 2−m for inputs of length m. Furthermore, as noted in the paragraph before Claim249

38 in [1], the proof carries over to show that EABP has an NISZKL protocol with the same250

parameters. Thus, any problem in NISZKL can be recognized with exponentially small251

error parameters by reducing the problem to EABP and then running the above protocol for252

EABP on that instance. In particular, this holds for EANC0 . In what follows, let Mx be the253

distribution described in the preceding paragraph, assuming that the simulator S and verifier254

V yield a protocol with these exponentially small error parameters.255

▷ Claim 14. If x ∈ ΠY ES then ∆(Mx(r), Unk ) ≤ 1/2n−1. And if x ∈ ΠNO then256

| supp(Mx(r))| ≤ 2nk−nϵk for ϵ < 1
k .257

Proof. For x ∈ ΠY ES , claim 38 of [1] shows that ∆(Mx(r), Unk ) ≤ 1/2n−1, establishing the258

first part of the claim.259

For x ∈ ΠNO, from the soundness guarantee of the NISZKL protocol for EANC0 , we know260

that, for at least a 1− 1
2n fraction of the shared reference strings σ ∈ {0, 1}nk , there is no261

message p that the prover can send that will cause V to accept. Thus there are at most262

2nk−n outputs of Mx(r) other than 0nk . For ϵ < 1
k , we have | supp(Mx(r))| ≤ 2nk−nϵk . ◀263

The above claim talks about the distribution Mx(r) where M is a logspace machine. We264

will instead consider an NC0 distribution with similar properties that can be constructed265

using projections. This distribution (denoted by Cx) is a perfect randomized encoding of266

Mx(r). We make use of the following construction:267

▶ Lemma 15. [1, Lemma 35]. There is a function computable in AC0 (in fact, it can be a268

projection) that takes as input a branching program Q of size l computing a function f and269

produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function f̂270

that is a perfect randomized encoding of f that has blowup b = 2((l
2)−1)2((l−1)2−1) (and thus271

the length of f̂(r) = log b+ |f(r)|). Each pi depends on at most four input bits from (x, r)272

(where r is the sequence of random bits in the randomized encoding).273

The properties of perfect randomized encodings (see Definition 9) imply that the range of f̂274

(and thus also the range of Cx) can be partitioned into equal sized pieces corresponding to each275

value of f(r). Thus, let α1, α2, .., αz be the range of f(r), and let [α] = {f̂(r, s) : f(r) = α}.276

It follows that |[α]| = b. For a given α, and for a given β of length log b we denote by αβ277

the β-th element of [α]. Since the simulator S runs in logspace, each bit of Mx(r) can be278

simulated with a branching program Qx. Furthermore, it is straightforward to see that there279

is an AC0-computable function that takes x as input and produces an encoding of Qx as280
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output, and it can even be seen that this function can be a projection. Let the list of NC0
281

circuits produced from Qx by the construction of Lemma 15 be denoted Cx.282

We show that this distribution Cx is an instance of SDU’NC0 if x ∈ Π. For x ∈ ΠY ES , we283

have ∆(Mx(r), Unk ) ≤ 1/2n−1, and we want to show ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1. Thus it284

will suffice to observe that ∆(Mx(r), Unk ) = ∆(Cx(r), Ulog b+nk ) ≤ 1/2n−1.285

To see this, note that

∆(Cx(r), Ulog b+nk ) =
∑
αβ

∣∣ Pr[Cx = αβ]− 1
2nk+b

∣∣/2 =
∑

β

∑
α

∣∣ Pr[Mx = α] 1
2b
− 1

2b

1
2nk

∣∣/2
=

∑
α

∣∣ Pr[Mx = α]− 1
2nk

∣∣/2 = ∆(Mx(r),Unk ).

Thus, for x ∈ ΠY ES , Cx is a YES instance for SDU’NC0 .286

For x ∈ ΠNO, Claim 14 shows that | supp(Mx(r))| ≤ 2nk−n. Since the NC0 circuit Cx is287

a perfect randomized encoding of Mx(r), we have that the support of Cx for x ∈ ΠNO is288

bounded from above by b× 2nk−n Note that log b is polynomial in n; let q(n) = log b. Let289

r(n) denote the length of the output of C; r(n) = q(n) + nk. Thus the size of supp(Cx) ≤290

2nk−n+q(n) = 2r(n)−n < 2r(n)−r(n)ϵ (if 1/ϵ is chosen to be greater than the degree of r), and291

hence Cx is a NO instance for SDU’NC0 . ◀292

▶ Remark 16. Here is how we pick ϵ in the definition of SDU’NC0 . SDUNC0 is in NISZKL via293

some simulator and verifier, where the error parameters are exponentially small, and the294

shared reference strings σ have length nk on inputs of length n. Now we pick ϵ > 0 so that295

ϵ < 1/k (as in Claim 14) and also 1/ϵ is greater than the degree of r (as in the last sentence296

of the proof of Theorem 13).297

3.2 NISZKAC0 protocol for SDU’NC0 on input X represented by circuit C298

3.2.1 Non Interactive proof system299

1. Let C take inputs of length m and produce outputs of length n, and let σ be the reference300

string of length n.301

2. If there is no r such that C(r) = σ, then the prover sends ⊥. Otherwise, the prover picks302

an element r uniformly at random from p ∼ {r|C(r) = σ} and sends it to the verifier.303

3. V accepts iff C(r) = σ. (Since C is an NC0 circuit, this can be accomplished in AC0 –304

this step can not be accomplished in NC0 since it depends on all of the bits of σ.)305

3.2.2 Simulator for SDU’NC0 proof system, on input X represented by306

circuit C307

1. Pick a random s of length m and compute γ = C(s).308

2. Output (s, γ).309

3.3 Proofs of Zero Knowledge, Completeness and Soundness310

3.3.1 Completeness311

▷ Claim 17. If X ∈ SDU’NC0,Y , then the verifier accepts with probability ≥ 1− 1
2nϵ .312

Proof. If X is a YES instance, then ∆(X,Un) < 1
2nϵ . This implies | supp(X)| > 2n(1− 1

2nϵ ),313

which immediately implies the stated lower bound on the verifier’s probability of acceptance.314

◀315
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3.3.2 Soundness316

▷ Claim 18. If X ∈ SDU’NC0,N , then for every prover, the probability that the verifier317

accepts is at most 1
2nϵ .318

Proof. For every σ ̸∈ supp(X), no prover can make the verifier accept. If X ∈ SDU’NC0,N ,319

the probability that σ ̸∈ supp(X) is greater than 1− 1
2nϵ . ◀320

3.3.3 Statistical Zero-Knowledge321

▷ Claim 19. For X ∈ SDU’NC0,Y , ∆((p, σ), (s, γ)) = O( 1
2nϵ ).322

Proof. Recall that σ ∼ {0, 1}n, s ∼ {0, 1}m, p ∼ {r : C(r) = σ} and γ = C(s). In order323

to provide an upper bound on ∆((p, σ), (s, γ)), we consider the element wise probability of324

each distribution and show that for X ∈ SDU’NC0,Y the claim holds. For a ∈ {0, 1}m and325

b ∈ {0, 1}n we have :326

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2 |Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|327

Let us consider an element b ∈ {0, 1}n. Let Ab = {a1, a2, .., akb
} be the pre-images of b under328

C i.e. for 1 ≤ i ≤ kb it holds that C(ai) = b. Let βb = Pr
y∼Um

[C(y) = b]. Then kb2−m = βb329

(since exactly kb elements of {0, 1}m are mapped to b under C). Let B = {b|¬∃y : C(y) = b}.330

Since ∆(C(Um), Un) ≤ 1
2nϵ , it follows that |B|2m ≤ 1

2nϵ . We have :331

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2(|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|)332

= 1
2

∑
(a,b):b∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|333

+ 1
2

∑
(a,b):b̸∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|334

335

For (a, b) satisfying b ∈ B, we have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For b ̸∈ B336

and a satisfying C(a) ̸= b we again have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For337

(a, b) : C(a) = b we have Pr[(s, γ) = (a, b)] = 2−m since s ∼ Um and picking s fixes b. We338

also have Pr[(p, σ) = (a, b)] = 2−n

kb
since σ ∼ Un and then the prover picks p uniformly from339

Ab. This gives us340

∆((p, σ), (s, γ)) = 1
2

∑
(a,b):C(a)=b

∣∣2−m − 2−n

kb

∣∣341

= 1
2

∑
(a,b):C(a)=b

∣∣∣∣2−m − 2−m−n

βb

∣∣∣∣342

= 1
2

∑
(a,b):C(a)=b

2−m

βb

∣∣βb − 2−n
∣∣343

≤ 1
2

∑
(a,b):C(a)=b

∣∣βb − 2−n
∣∣ = ∆(C(Um), Un) ≤ 1

2nϵ344

345

where the first inequality holds since βb ≥ 2−m whenever βb ̸= 0. Thus we have :346

∆((p, σ), (s, γ)) = O( 1
2nϵ ).347

◀348
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4 Simulator and Verifier in PM349

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators350

that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM351

is not known to lie in (uniform) NC.) That is, we can increase the computational power of352

the simulator and the verifier from L to PM without affecting the power of noninteractive353

statistical zero knowledge protocols.354

The Perfect Matching problem is the well-known problem of deciding, given an undirected355

graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a356

corresponding complexity class PM as follows:357

PM := {A : A ≤L
T Perfect Matching}358

It is known that NL ⊆ PM [17].359

Our argument proceeds by first observing4 that NISZKL = NISZK⊕L, and then making360

use of the details of the argument that Perfect Matching is in ⊕L/poly [5].361

▶ Proposition 20. NISZK⊕L = NISZKL362

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem363

EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof364

of [1, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a365

branching program to simulate a logspace computation called Mx that is constructed from a366

logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect367

randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class368

defined in [6], consisting of all problems with perfect randomized encodings. But Theorem369

4.18 in [6] shows the stronger result that ⊕L lies in PREN , and hence the argument of370

[1, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by371

modifying step (a), to build a parity branching program for Mx that is constructed from a372

⊕L simulator and verifier). ◀373

We also rely on the following lemma:374

▶ Lemma 21. Adapted from [5, Section 3] and [20, Section 4]: Let W = (w1, w2, · · · , wnk+3)375

be a sequence of nk+3 weight functions, where each wi : [
(

n
2
)
] → [4n2] is a distinct weight376

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges377

of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)378

has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no379

perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W380

is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:381

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.382

If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight383

matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.384

Thus if we define g(G,W ) to be 1− Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL and with385

probability ≥ 1− 2−nk (for randomly-chosen W ), g(G,W ) = 1 if G has a perfect matching,386

and g(G,W ) = 0 otherwise.387

4 This equality was previously observed in [23].
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Note that this lemma is saying that most W constitute a good “advice string”, in the sense388

that g(G,W ) provides the correct answer to the question “Does G have a perfect matching?”389

for every graph G with n vertices.390

▶ Corollary 22. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,391

then PrW←[4n2]n5 [(x,W ) ∈ B] ≥ 1 − 2−n2 , and if x ̸∈ A, then PrW←[4n2]n5 [(x,W ) ∈ B] ≤392

2−n2 .393

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an394

oracle P for Perfect Matching. We may assume without loss of generality that all queries395

made by M on inputs of length n have the same number of vertices p(n). This is because G396

has a perfect matching iff G∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we397

can “pad” the queries, to make them all the same length.)398

Let C = {(G,W ) : g(G,W ) ≡ 1 mod 2}, where g is the function from Lemma 21. Clearly,399

C ∈ ⊕L. Now, a logspace oracle machine with input (x,W ) and oracle C can simulate400

the computation of MP on x; each time M poses the query “Is G ∈ P”, instead we ask if401

(G,W ) ∈ C. Then with high probability (over the random choice of W ) all of the queries402

will be answered correctly and hence this routine will accept if and only if x ∈ A, by403

Lemma 21. Let B be the language accepted by this logspace oracle machine. We see that404

B ∈ LC ⊆ L⊕L = ⊕L, where the last equality is from [15]. ◀405

▶ Theorem 23. NISZKL = NISZKPM406

Proof. We show that NISZKPM ⊆ NISZK⊕L, and then appeal to Proposition 20.407

Let Π be an arbitrary problem in NISZKPM, and let (S, P, V ) be the PM simulator, prover,408

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic409

realizations of S, V , respectively, guaranteed by Corollary 22. We now define a NISZKL410

protocol (S′′, P ′′, V ′′) for Π.411

On input x with shared randomness σW , the prover P ′′ sends the same message p =412

P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W ),413

which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and414

random sequence rW , executes S′((x, r, i),W ) for each bit position i to obtain a bit that415

(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),416

and outputs (σW, p).417

Now we will analyze the properties of (S′′, P ′′, V ′′):418

Completeness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since419

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk we have:420

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W ) = 1] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)
421

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since422

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W )] ≥ 1− 2−nk , we have:423

Pr
σW

[∀p : V ′((x, σ, p),W ) = 0] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)
424

Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings425

of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote426

the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.427

Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW )428
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produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by429

(σW,P ′′(x, σW )). Let A = {(σW, p) : ∃i∃r S(x, r)i ̸= S′((x, r, i),W )}.430

Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W )] ≥ 1− 2−O(n) we have:431

∆(S′′∗, P ′′∗) = 1
2

∑
(σW,p)

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣432

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣433

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣ Pr[W ])434

≤ 2−O(n) +
∑
W

Pr[W ] 12
∑
(σ,p)

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣435

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)
436
437

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. ◀438

5 Additional problems in NISZKL439

In this section, we give additional examples of problems in P that lie in NISZKL. These440

problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is441

closed under a class of randomized reductions.442

The following definition is from [3]:443

▶ Definition 24. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with444

threshold θ if there is a logspace-computable function f and there is a polynomial p such that445

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.446

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.447

Note, in particular, that the logspace machine computing the reduction has two-way access448

to the random bits r; this is consistent with the model of probabilistic logspace that is used449

in defining NISZKL.450

▶ Theorem 25. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .451

Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL452

proof system for EANC0 .453

Algorithm 1 Simulator S(x, rσ′)

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

Algorithm 2 Verifier V (x, (σ, σ′), p)

return V1((f(x, σ′), σ, p))
454

Algorithm 3 Prover P (x, (σ, σ′))

return P1((f(x, σ′), σ));
455

We now claim that (S, P, V ) is a NISZKL protocol for Π.456

It is apparent that S and V are computable in logspace. We just need to go through457

completeness, soundness, and statistical zero-knowledge of this protocol.458
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Completeness: Suppose x is YES instance of Π. Then with probability 1− 1
nω(1) (over459

randomness of σ′): f(x, σ′) is a YES instance of EANC0 . Thus for a randomly chosen σ:460

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)461

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over462

randomness of σ′): f(x, σ′) is a NO instance of EANC0 . Thus for a randomly chosen σ:463

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)464

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0465

with probability close to 1. For any YES instance y of EANC0 , the distribution given by466

S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by467

(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P ) has distance at468

most 1
nω(1) from the distribution produced by S on input x. The claim now follows by469

the comments regarding error probabilities in Definition 4.470

◀471

McKenzie and Cook [19] defined and studied the problems LCON, LCONX and LCONNULL.472

LCON is the problem of determining if a system of linear congruences over the integers mod473

q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL474

is the problem of computing a spanning set for the null space of the system.475

These problems are known to lie in uniform NC3 [19], but are not known to lie in uniform476

NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2
477

such that x ∈ LCON if and only if (x,W ) ∈ B, where W is a randomly-chosen weight function478

[7]. (The probability of error is exponentially small.) The mapping x 7→ (x,W ) is clearly a479

≤BPL
m reduction. Since DET ⊆ NISZKL [1], it follows that480

LCON ∈ NISZKL481

The arguments in [7] carry over to LCONX and LCONNULL as well.482

▶ Corollary 26. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.483

6 Varying the Power of the Verifier484

In this section, we show that the computational complexity of the simulator is more important485

than the computational complexity of the verifier, in non-interactive protocols. The results in486

this section were motivated by our attempts to show that NISZKL = NISZKDET. Although we487

were unable to reach this goal, we were able to show that the verifier could be as powerful as488

DET, if the simulator was restricted to be no more powerful than NL. The general approach489

here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide490

a proof to convince a weak verifier that the more powerful verifier would accept.491

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator492

is in A and the verifier is in B (and hence NISZKA = NISZKA,A). We will consider the493

case where A ⊆ B ⊆ NISZKA and A,B are both classes of functions that are closed under494

composition.495

▶ Theorem 27. NISZKA,B = NISZKA496
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Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A497

simulator, B verifier, and prover for Π’s proof system, where the reference string has length498

p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has499

a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s500

messages have length q2(|x|).501

▶ Lemma 28. We may assume without loss of generality that p1(n) > p2(n) + q2(n).502

Proof. If it is not the case that p1(n) > p2(n) + q2(n), then let r(n) = p2(n) + q2(n)− p1(n).503

Consider a new proof system (S′1, V ′1 , P ′1) that is identical to (S1, V1, P1), except that the504

reference string now has length p1(n) + r(n) (where P ′1 and V ′1 ignore the additional r(n)505

random bits). The simulator S′1 uses an additional r(n) random bits and simply appends506

those bits to the output of S1. The language L(V ′1) is still in NISZKA, with a proof system507

(S′2, V ′2 , P ′2) where the reference string still has length p2(n), since membership in L(V ′1) does508

not depend on the “new” r(n) random bits, and hence S′2, V ′2 and P ′2, given input (x, σr, p)509

behave exactly as S2, V2 and P2 behave when given input (x, σ, p). ◀510

Then Π has the following NISZKA proof system:511

Algorithm 4 Simulator S(x, r1, r2)

Data: x ∈ ΠY es ∪ΠNo

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

Algorithm 5 Verifier
V (x, (σ, σ′), (p, p′))

return V2((x, σ, p), σ′, p′)
512

Algorithm 6 Prover P (x, σσ′)

Data: x ∈ ΠY es ∪ΠNo, σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY es then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

513

Correctness: Suppose x ∈ ΠY es, then given random σ, with probability (1 − 1
2O(|x|) ):514

(x, σ, P1(x, σ)) ∈ L(V1) which means with probability (1− 1
2O(|x|+p1(|x|)+|p|) ) it holds that515

((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is at least:516

(1− 1
2O(|x|) )(1− 1

2O(|x|+p1(|x|)+q1(|x|)) ) = 1− 1
2O(|x|)517

Soundness: Suppose x ∈ ΠN . When given a random σ, we have that with probability less518

than 1
2O(|x|) : ∃p such that (x, σ, p) ∈ L(V1). For (x, σ, p) ̸∈ L(V1), the probability that519

there is a p such that ((x, σ, p), σ′, p′) ∈ L(V2) is at most 1
2O(|x|+p1(|x|)+|p|) (given random520

σ′). So the probability that V rejects is at least:521

(1− 1
2O(|x|) )(1− 1

2O(|x|+p(|x|)+|p|) ) = 1− 1
2O(|x|)522

Statistical Zero-Knowledge: Let P ∗1 denote the distribution that samples σ and outputs523

(σ, P1(x, σ)). Similarly, let P ∗2 (σ, p) denote the distribution that samples σ′ and outputs524

(σσ′, P2((x, σ, p), σ′). P ∗ will be defined as the distribution ((σσ′), P (x, σ, σ′))) where σ525
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and σ′ are chosen uniformly at random. In the same way, let S∗ refer to the distribution526

produced by S on input x, let S∗1 refer to the distribution produced by S1(x), and let527

S∗2 (σ, p) be the distribution induced by S2 on input (x, σ, p). Now we can partition the528

set of possible outcomes ((σ, σ′), (p, p′)) of S∗ and P ∗ into 3 blocks:529

1. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) accepts.530

2. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) rejects.531

3. ((σ, σ′), (p, p′)) such that V1(x, σ, p) rejects.532

We will call these blocks A1, A2, and A3 respectively. Then by definition:533

∆(S∗, P ∗) = 1
2

∑
j∈{1,2,3}

∑
y∈Aj

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣534

= 1
2

∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣ + 1

2
∑

j∈{2,3}

∑
y∈Aj

[
Pr
S∗

[y] + Pr
P ∗

[y]
]

535

536

We concentrate first on A1.537 ∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣538

539

=
∑

(σ′,p′)

( ∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]−Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣) (∗)540

Here541

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]542

and543

Pr
P ∗

[(σ′, p′)] =
∑
(σ,p)

Pr
P∗

[((σ, σ′), (p, p′))].544

We define δ(σ′, p′) :=
∣∣ PrS∗ [(σ′, p′)]−PrP ∗ [(σ′, p′)]

∣∣. Let us examine a single term of the545

sum (∗), for y = ((σ, σ′), (p, p′)):546

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣547

=
∣∣(Pr

S∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)]− Pr

P ∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)])+548

(Pr
P ∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)])
∣∣549

=
∣∣(Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)) Pr
S∗

[(σ′, p′)] + Pr
P ∗

1

[(σ, p)](Pr
S∗

[(σ′, p′)]− Pr
P ∗

[(σ′, p′)])
∣∣550

≤
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]− Pr

P ∗
[(σ′, p′)]

∣∣551

=
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]δ(σ′, p′)552

553



16 Robustness for Space-Bounded Statistical Zero Knowledge

Thus (*) is no more than554

∑
(σ′,p′)

∑
(σ,p)

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]555

+
∑

(σ′,p′)

∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

Pr
P ∗

1

[(σ, p)]δ(σ′, p′)556

≤
∑
(σ,p)

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ +

∑
{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)557

= 2∆(S∗1 (x), P ∗1 (x)) +
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)558

≤ 2
2|x|

+
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′) (∗∗)559

560

Let us consider a single term δ(σ′, p′) in the summation in (∗∗). Recalling that the561

probability that S(x) = ((σ, σ′), (p, p′)) is equal to the probability that S1(x) = (σ, p)562

and S2(x, σ, p) = (σ′, p′), we have563

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]564

=
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))|(σ, p)] Pr
S∗

[(σ, p)]565

=
∑
(σ,p)

Pr
S∗

2 (σ,p)
[(σ′p′)] Pr

S∗
1

[(σ, p)]566

567

and similarly PrP ∗ [(σ′, p′)] =
∑

(σ,p) PrP ∗
2 (σ,p)[(σ′p′)] PrP ∗

1
[(σ, p)]. Thus568
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δ(σ′, p′) =
∣∣ Pr

S∗
[σ′, p′]− Pr

P ∗
[σ′, p′]

∣∣569

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[σ, p]
∣∣570

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]571

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[(σ, p)]
∣∣572

=
∣∣ ∑

(σ,p)

( Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]) Pr
S∗

1

[(σ, p)]573

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)](Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)])
∣∣574

≤
∑
(σ,p)

∣∣ Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]
∣∣ Pr

S∗
1

[(σ, p)]575

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣576

=
∑
(σ,p)

2∆(S∗2 (σ, p), P ∗2 (σ, p)) Pr
S∗

1

[(σ, p)]577

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣578

≤
∑
(σ,p)

2
2|(x,σ,p)| Pr

S∗
1

[(σ, p)] +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣579

= 2
2|x|+p1(|x|)+q1(|x|) +

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣580

581

where the last inequality holds, since the summation in (∗∗) is taken over tuples, such582

that each (x, σ, p) is a YES instance of L(V1).583

Replacing each term in (∗∗) with this upper bound, thus yields the following upper bound584

on (∗):585

2
2|x|

+
∑

(σ′,p′)

(
2

2|x|+p1(|x|)+q1(|x|) +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)586

587

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) +
∑

(σ′,p′)

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)588

589

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2∆(S∗1 , P ∗1 )590

591

≤ 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2
2|x|

592

593

≤ 2
2|x|

+ 2
2|x|

+ 2
2|x|

594

where the last inequality follows from Lemma 28. Thus, A1 contributes only a negligible595

quantity to ∆(S∗, P ∗).596



18 Robustness for Space-Bounded Statistical Zero Knowledge

We now move on to consider A2 and A3.597

Pr
P ∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

Pr[V2(x, σ, p) rejects] ≤
∑
(σ,p)

1
2|x|+|σ|+|p|

≤ 1
2|x|

.598

Pr
S∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

(Pr[V2(x, σ, p) rejects] + ∆(S∗2 (σ, p), P ∗2 (σ, p))) ≤ 2
2|x|

.599

A similar and simpler calculation shows that PrP ∗ [y ∈ A3] ≤ 1
2|x| and PrS∗ [y ∈ A3] ≤ 2

2|x| ,600

to complete the proof.601

◀602

▶ Corollary 29. NISZKL = NISZKAC0 = NISZKAC0,DET = NISZKNL,DET603

The proof of Theorem 27 did not make use of the condition that the verifier is at least as604

powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also605

have the following corollary:606

▶ Corollary 30. NISZKB = NISZKB,A607

▶ Corollary 31. NISZKA,B ⊆ NISZKB,A608

▶ Corollary 32. NISZKDET = NISZKDET,AC0609

7 SZKL closure under ≤L
bf−tt reductions610

Although our focus in this paper has been on NISZKL, in this section we report on a closure611

property of the closely-related class SZKL.612

The authors of [11], after defining the class SZKL, wrote:613

We also mention that all the known closure and equivalence properties of SZK (e.g.614

closure under complement [21], equivalence between honest and dishonest verifiers615

[14], and equivalence between public and private coins [21]) also hold for the class616

SZKL.617

In this section, we consider a variant of a closure property of SZK (closure under ≤P
bf−tt618

[24]), and show that it also holds5 for SZKL. Although our proof follows the general approach619

of the proof of [24, Theorem 4.9], there are some technicalities with showing that certain620

computations can be accomplished in logspace (and for dealing with distributions represented621

by branching programs instead of circuits) that require proof. (The characterization of SZKL622

in terms of reducibility to the Kolmogorov-random strings presented in [3] relies on this623

closure property.)624

5 We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [22], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.
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▶ Definition 33. (From [24, Definition 4.7]) For a promise problem Π, the characteristic625

function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by626

XΠ(x) =


1 if x ∈ ΠY es,

0 if x ∈ ΠNo,

∗ otherwise.
627

▶ Definition 34. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We628

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there629

exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and630

a Boolean formula ϕ (with m input gates) such that:631

x ∈ ΠY es =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 1632

633

x ∈ ΠNo =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 0634

We begin by proving a logspace analogue of a result from [24], used to make statistically635

close pairs of distributions closer and statistically far pairs of distributions farther.636

▶ Lemma 35. (Polarization Lemma, adapted from [24, Lemma 3.3]) There is a logspace-637

computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,638

and outputs a pair of branching programs (Q1, Q2) such that:639

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k

640

641

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k

642

To prove this, we adapt the same method as in [24] and alternate two different procedures,643

one to drive pairs with large statistical distance closer to 1, and one to drive distributions644

with small statistical distance closer to 0. The following lemma will do the former:645

▶ Lemma 36. (Direct Product Lemma, from [24, Lemma 3.4]) Let X and Y be distributions646

such that ∆(X,Y ) = ϵ. Then for all k,647

kϵ ≥ ∆(⊗kX,⊗kY ) ≥ 1− 2 exp(−kϵ2/2)648

The proof of this statement follows from [24]. To use this for Lemma 35, we note that a649

branching program for ⊗kP can easily be created in logspace from a branching program P650

by simply copying and concatenating k independent copies of P together.651

We now introduce a lemma to push close distributions closer:652

▶ Lemma 37. (XOR Lemma, adapted from [24, Lemma 3.5]) There is a logspace-computable653

function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair654

of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1655

are defined as follows:656

Q0 =
⊗
i∈[k]

Pyi
: y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}657

658

Q1 =
⊗
i∈[k]

Pyi
: y ←R {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}659
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Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [24, Proposition 3.6]. To finish660

proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and661

(Q0, Q1).662

Let ℓ and w be the max length and width between P0 and P1. We describe the structure663

of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits664

y1, . . . , yk−1. For each of the random bits, it can pick the correct of two different branches,665

one having P0 built in at the end and the other having P1. We will read y1, branch to P0666

or P1 (and output the distribution accordingly), then unconditionally branch to reading y2667

and repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to668

y1 and start computing the parity, and at the end we will be able to decide the value of yk669

which will allow us to branch to the final copy of P0 or P1.670

y1

P0

P1

y2

. . .

. . .

yk−1

P0

P1

y1

y2

y2

. . .

. . .

yk−1

yk−1

P0

P1

0/1 1 0

Figure 1 Branching program for Q0 of Lemma 37

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to671

compute yk and logspace to copy the independent copies of P0 and P1.672

◀673

We now have the tools to prove Lemma 35.674

Proof. (of Lemma 35) From [24, Section 3.2], we know that we can polarize (P0, P1, 1k) by:675

Letting l = ⌈log4/3 6k⌉, j = 3l−1
676

Applying Lemma 37 to (P0, P1, 1l) to get (P ′0, P ′1)677

Applying Lemma 36: P ′′0 = ⊗jP ′0, P ′′1 = ⊗jP ′1678

Applying Lemma 37 to (P ′′0 , P ′′1 , 1k) to get (Q0, Q1)679

Each step is computable in logspace, and since logspace is closed under composition, this680

completes our proof. ◀681

We also mention the following lemma, which will be useful in evaluating the Boolean682

formula given by the ≤L
bf−tt reduction.683

▶ Lemma 38. There is a function in NC1 that takes as input a Boolean formula ϕ (with m684

input bits) and produces as output an equivalent formula ψ with the following properties:685

1. The depth of ψ is O(logm).686

2. ψ is a tree with alternating levels of AND and OR gates.687

3. The tree’s non-leaf structure is always the same for a fixed input length.688

4. All NOT gates are located just before the leaves.689

Proof. Although this lemma does not seem to have appeared explicitly in the literature,690

it is known to researchers, and is closely related to results in [12] (see Theorems 5.6 and691

6.3, and Lemma 3.3) and in [4] (see Lemma 5). Alternatively, one can derive this by using692

the fact that the Boolean formula evaluation problem lies in NC1 [8, 9], and thus there is693

an alternating Turing machine M running in O(logn) time that takes as input a Boolean694
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formula ψ and an assignment α to the variables of ψ, and returns ψ(α). We may assume695

without loss of generality that M alternates between existential and universal states at each696

step, and that M runs for exactly c logn steps on each path (for some constant c), and that697

M accesses its input (via the address tape that is part of the alternating Turing machine698

model) only at a halting step, and that M records the sequence of states that it has visited699

along the current path in the current configuration. Thus the configuration graph of M , on700

inputs of length n, corresponds to a formula of O(logn) depth having the desired structure,701

and this formula can be constructed in NC1. Given a formula ϕ, an NC1 machine can thus702

build this formula, and hardwire in the bits that correspond to the description of ϕ, and703

identify the remaining input variables (corresponding to M reading the bits of α) with the704

variables of ϕ. The resulting formula is equivalent to ϕ and satisfies the conditions of the705

lemma. ◀706

▶ Definition 39. (From [24, Definition 4.8]) For a promise problem Π, we define a new707

promise problem Φ(Π) as follows:708

Φ(Π)Y es = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 1}709

710

Φ(Π)No = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 0}711

▶ Theorem 40. SZKL is closed under ≤L
bf−tt reductions.712

To begin the proof of this theorem, we first note that as in the proof of [24, Lemma 4.10],713

given two SDBP pairs, we can create a new pair which is in SDBP,No if both of the original714

two pairs are (which we will use to compute ANDs of queries.) We can also compute in715

logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that716

these operations produce an output with the correct statistical difference with the following717

two claims:718

▷ Claim 41. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.719

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are720

guaranteed that:721

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p722

723

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p724

Then consider:725

y = (A1 ⊗A2, B1 ⊗B2)726

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):727

YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =728

max{∆(A1, B1),∆(A2, B2)} > 1− p.729

NO: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p.730

The second equality is from [24, Fact 2.3]. ◀731

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR operation732

for at most d+1
2 levels (and the soundness gap doubles at every level). Since p = 1

2m at the733

beginning, the gap (for NO instance) will be upper bounded at the end by:734

< 2
d+1

2
1

2m
= mO(1)

2m
< 1/3.735
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▷ Claim 42. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.736

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are737

guaranteed that:738

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p739

740

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p741

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly742

∆(A1, B1) ·∆(A2, B2)743

The pair (A,B) we construct is analogous to (Q0, Q1) in Lemma 37, and can be created744

in logspace with 2 random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if745

b0 = 1, while B = (A1, B2) if b2 is 0 and (A2, B1) if b1 = 1.746

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):747

YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2.748

NO: ∆(A1, B1) ·∆(A2, B2) ≤ max{∆(A1, B1),∆(A2, B2)} < p.749

◀750

In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation751

for at most d+1
2 levels (and the completeness gap squares itself at every level). Since p = 1

2m752

at the beginning, the gap (for YES instance) will be lower bounded at the end by:753

> (1− 1
2m

)2
d+1

2 = (1− 1
2m

)mO(1)
> (1− 1

2m
)2m/m ≈ (1

e
)1/m >

2
3 .754

Proof. (of Theorem 40) Now suppose that we are given a promise problem Π such that755

Π ≤L
bf−tt SDBP. We want to show Π ≤L

m SDBP, which by SZKL’s closure under ≤L
m reductions756

implies Π ∈ SZKL.757

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in758

SDBP,Y if x ∈ ΠY :759

1. Run the L machine for the ≤L
bf−tt reduction on x to get queries (q1, . . . , qm) and the760

formula ϕ.761

2. Build ψ from ϕ using Lemma 38. Replace negated queries ¬qi with the query produced by762

the reduction from SDBP,Y to SDBP,N on qi, and then apply Lemma 35 (the Polarization763

Lemma) with k = n on these queries to get (y1, . . . , yk). Pad the output bits of each764

branching program so each branching program has m output bits.765

3. Build the template tree T . At the leaf level, for each variable in ψ, we will plug in the766

corresponding query yi. By Lemma 38 the tree is full.767

4. Given x and designated output position j of F0 or F1, there is a logspace computation768

which finds the original output bit from y1 . . . ym that bit j was copied from. This machine769

traverses down the template tree from the output bit and records the following:770

The node that the computation is currently at on the template tree, with the path771

taken depending on j.772

The position of the random bits used to decide which path to take when we reach773

nodes corresponding to AND.774

This takes O(logm) space. We can use this algorithm to copy and compute each output775

bit of F0 and F1, creating (F0, F1) in logspace.776
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For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of777

F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 38, a list of SDBP queries778

(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only779

F0(x).780

Outline of Eval(x, j, ψ, y1, . . . , ym) :781

The idea is to compute the jth output bit of F0 by recursively calculating which query782

output bit it was copied from. To do this, first notice that the AND and OR operations783

produce branching programs where each output bit is copied from exactly one output bit of784

one of the query branching programs, so composing these operations together tells us that785

every output bit in F0 is copied from exactly one output bit from one query. By Lemma 38786

and our AND and OR operations preserving the number of output bits, we also have that787

if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of788

ψ. This can be used to recursively calculate which query the jth bit is from: for an OR789

gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with790

each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an791

AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and792

then use the 4 random bits for the XOR operation to compute which fourth corresponds to793

which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2794

fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,795

then at the query level, we can directly return the j′th output bit. This can be done in796

logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace797

to record and update j′, logspace to compute 2al at each level, and logspace to compute798

which subtree/query the output bit comes from at each level.799

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this800

process Π ≤L
m SDBP. ◀801
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