
Robustness for Space-Bounded Statistical Zero1

Knowledge∗
2

Eric Allender ! Ï �3

Rutgers University, NJ, USA4

Jacob Gray ! Ï5

University of Toronto, Canada6

Saachi Mutreja !7

Columbia University, NY, USA8

Harsha Tirumala ! Ï �9

Rutgers University, NJ, USA10

Pengxiang Wang !11

EPFL, Swiss Federal Institute of Technology, Lausanne, Switzerland12

Abstract13

We show that the space-bounded Statistical Zero Knowledge classes SZKL and NISZKL are surprisingly14

robust, in that the power of the verifier and simulator can be strengthened or weakened without15

affecting the resulting class. Coupled with other recent characterizations of these classes [5], this16

can be viewed as lending support to the conjecture that these classes may coincide with the17

non-space-bounded classes SZK and NISZK, respectively.18

2012 ACM Subject Classification Complexity Classes19

Keywords and phrases Interactive Proofs20

Funding Eric Allender : Supported in part by NSF Grants CCF-1909216 and CCF-1909683.21

Jacob Gray: Supported in part by NSF grants CNS-215018 and CCF-185221522

Saachi Mutreja: Supported in part by NSF grants CNS-215018 and CCF-185221523

Harsha Tirumala: Supported in part by NSF Grants CCF-1909216 and CCF-1909683.24

Pengxiang Wang: Supported in part by NSF grants CNS-215018 and CCF-185221525

∗ An abbreviated version of this work, with some proofs omitted, appeared previously as [3].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 138 (2022)

mailto:allender@cs.rutgers.edu
http://www.cs.rutgers.edu/~allender
https://orcid.org/0000-0002-0650-028X
mailto:jacob.gray@mail.utoronto.ca
http://reu.dimacs.rutgers.edu/~jg1884/
mailto:saachi@berkeley.edu
mailto:harsha1469@gmail.com
https://sites.google.com/view/harsha-srimath-tirumala/
https://orcid.org/0000-0002-4600-3675
mailto:wang.cs@yahoo.com

2 Robustness for Space-Bounded Statistical Zero Knowledge

1 Introduction26

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass27

NISZK have been studied intensively by the research communities in cryptography and28

computational complexity theory. In [15], a space-bounded version of SZK, denoted SZKL29

was introduced, primarily as a tool for understanding the complexity of estimating the30

entropy of distributions represented by very simple computational models (such as low-degree31

polynomials, and NC0 circuits). There, it was shown that SZKL contains many important32

problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and33

Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted34

NISZKL, was subsequently introduced in [2], primarily as a tool for clarifying the complexity35

of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such36

as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [17], so37

also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains38

intractable problems if and only if SZKL does.39

Very recently, all of these classes were given surprising new characterizations, in terms40

of efficient reducibility to the Kolmogorov random strings. Let R̃K be the (undecidable)41

promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that K(y) ≥ |y|/2 and42

the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2 − e(|y|) for some43

approximation error term e(n), where e(n) = ω(logn) and e(n) = no(1).44

I Theorem 1. [5] Let A be a decidable promise problem. Then45

A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.46

A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.47

A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean48

formula” reductions.49

A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”50

reductions.51

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of52

length n all queries are of length ≥ nε.53

There are very few natural examples of computational problems A where the class of54

problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)55

from the class or problems reducible to A via AC0 reductions. For example the natural56

complete problems for NISZK under ≤P
m reductions remain complete under AC0 reductions.57

Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This58

would also imply that SZK = SZKL.)59

This motivates a closer examination of SZKL and NISZKL, to answer questions that have60

not been addressed by earlier work on these classes.61

Our main results are:62

1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in63

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a64

computationally-unbounded prover, following the usual rules of an interactive proof, and65

(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.66

(More formal definitions are to be found in Section 2.) We show that the verifier and67

simulator can be restricted to lie in AC0. Let us explain why this is surprising.68

The proof presented in [2], showing that EANC0 is complete for NISZKL, makes it clear69

that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [27]).70

But the proof in [2] (and a similar argument in [17]) relies heavily on hashing, and it is71

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 3

known that, although there are families of universal hash functions in AC0[⊕], no such72

families lie in AC0 [22]. We provide an alternative construction, which avoids hashing,73

and allows the verifier and simulator to be very weak indeed.74

2. The verifier and simulator may be somewhat stronger. The proof presented in75

[2], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and76

simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof77

relies on the fact that logspace computation lies in the complexity class PREN of functions78

that have perfect randomized encodings [9], and ⊕L also lies in PREN. Applebaum,79

Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical80

randomized encodings), in proving that there are one-way functions in SREN if and only81

if there are one-way functions in NC0. They also showed that other important classes82

of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that83

NISZKL could be characterized using verifiers and simulators computable in GapL (or84

even in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to85

GapL), since DET is known to be contained in NISZKL [2].2 However, we were unable to86

reach that goal.87

We were, however, able to show that the simulator and verifier can be as powerful as NL,88

without making use of the properties of SREN. In fact, we go further in that direction.89

We define the class PM, consisting of those problems that are ≤L
T-reducible to the Perfect90

Matching problem. PM contains NL [21], and is not known to lie in (uniform) NC (and it91

is not known to be contained in SREN). We show that statistical zero knowledge protocols92

defined using simulators and verifiers that are computable in PM yield only problems in93

NISZKL.94

3. The complexity of the simulator is key. As part of our attempt to characterize95

NISZKL using simulators and verifiers computable in DET, we considered varying the96

complexity of the simulator and the verifier separately. Among other things, we show97

that the verifier can be as complex as DET if the simulator is logspace-computable.98

In most cases of interest, the NISZK class defined with verifier and simulator lying in99

some complexity class remains unchanged if the rules are changed so that the verifier is100

significantly stronger or weaker.101

We also establish some additional closure properties of NISZKL and SZKL, some of which are102

required for the characterizations given in [5]. The rest of the paper is organized as follows;103

In Section 3, we show how NISZKL can be defined equivalently using an AC0 verifier104

and simulator. Formally, we prove that NISZKL = NISZKAC0 . Our proof involves defining a105

modification of the complete problem for NISZKL, which remains complete for the class under106

a suitably weak form of reduction. The proof that this problem is in NISZKL involves hashing107

with a logspace verifier, which we cannot perform in AC0. To get around this problem, we108

use a randomized encoding of a logspace machine computing this hashing. The randomized109

encoding is both computable by an AC0 verifier and preserves several important properties110

of the original post-hashing distribution, which allows the modified complete problem to be111

solved in NISZKAC0 and establish the stated result.112

Section 4 involves showing that increasing the power of the verifier and simulator to lie in113

PM does not increase the size of NISZKL (where PM is the class of problems (containing NL)114

that are logspace Turing reducible to Perfect Matching). We show that NISZKL = NISZKPM115

1 This is not stated explicitly for GapL, but it follows from [20, Theorem 1]. See also [13, Section 4.2].
2 More precisely, as observed in [4], the Rigid Graph (non-) Isomorphism problem is hard for DET [29],

and the Rigid Graph Non-Isomorphism problem is in NISZKL [2, Corollary 23].

4 Robustness for Space-Bounded Statistical Zero Knowledge

in two steps: first, we begin by showing that NISZKL = NISZK⊕L, using that problems in ⊕L116

have easily computable (AC0) randomized encodings that retain some important statistical117

properties of the original distribution. The second step is to prove that NISZKPM ⊆ NISZK⊕L.118

To do this, we utilize ideas from [8] to show how strings chosen uniformly at random can119

help in reducing instances of problems in PM to instances of a language in ⊕L. This allows120

us to prove that NISZKPM ⊆ NISZK⊕L and completes the proof.121

Section 5 expands the list of problems known to lie in NISZKL. McKenzie and Cook [23]122

studied different formulations of the problem of solving linear congruences. These problems123

are not known to lie in DET, which is the largest well-studied subclass of P known to be124

contained in NISZKL. However, these problems are randomly logspace-reducible to DET [10].125

We show that NISZKL is closed under randomized logspace reductions, and hence show that126

these problems also reside in NISZKL.127

Section 6 shows that the complexity of the simulator is more important than the128

complexity of the verifier in non-interactive zero-knowledge protocols. In particular, the129

verifier can be as powerful as DET, while still defining only problems in NISZKL. In general,130

we show that if classes A,B satisfy A ⊆ B ⊆ NISZKA, then the verifier of the class NISZKA131

can be boosted to class B without increasing the power of the class. Since the proof system132

can compute what the stronger B verifier can compute, the idea is to use the proof system133

as a replacement for the stronger verifier. We then obtain some concrete equalities by134

substituting in different choices of A and B.135

Finally, Section 7 will show that SZKL is closed under logspace Boolean formula truth-136

table reductions. The proof is an adaptation of [28] and primarily involves making circuit137

constructions into branching program constructions while also ensuring that they can be138

computed in logspace as opposed to polynomial time. The complete problem for SZKL is139

to compute the statistical distance of a pair of branching programs, so the proof details140

how to combine pairs of branching programs to compute the “AND” or “OR” of pairs of141

branching programs.Using these constructions, given a desired Boolean formula, a final pair142

of branching programs can be created which are statistically distant iff the statistical distance143

of each of the original pairs satisfies the formula. Since this can be done in logspace, this144

establishes that the closure property holds.145

2 Preliminaries146

We assume familiarity with the basic complexity classes L,NL,⊕L and P, and the circuit com-147

plexity classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility)148

and Turing-reducibility. We also will need to refer to projection reducibility (≤proj
m). A149

projection is a function f that is computed by a circuit that has no gates (other than NOT150

gates). Thus each output gate is either a constant, or it is connected via a wire to an151

input bit or a negated input bit. The ≤proj
m reductions that we consider in this paper are all152

special cases of uniform AC0 reductions. #L is the class of functions that count the number153

of accepting paths of NL machines, and GapL = {f − g : f, g ∈ #L}. The determinant is154

complete for GapL under ≤AC0

m reductions3, and the complexity class DET is the class of155

languages NC1-Turing reducible to functions in GapL.4156

3 See, for instance [7, Theorem 1] for a discussion of the history of this result.
4 It is an interesting question, whether one needs to consider NC1-Turing reductions in order to define

the class DET. We refer the reader to [1, Open Question 6] for a discussion of this point.

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 5

We use the notation q ∼ S to denote that element q is chosen uniformly at random from157

the finite set S.158

Many of the problems we consider deal with entropy (also known as Shannon entropy).159

The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).160

Given two distributions X and Y , the statistical difference between the two is denoted161

∆(X,Y) and is equal to
∑
α

∣∣Pr[X = α]− Pr[Y = α]
∣∣/2. Equivalently, for finite domains D,162

∆(X,Y) = maxS⊆D{
∣∣PrX [S]− PrY [S]

∣∣}. This quantity is also known as the total variation163

distance between X and Y . The support of X, denoted supp(X), is {x : Pr[X = x] > 0}.164

I Definition 2. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN)165

(the “YES” and “NO” instances, respectively). A solution for Π is any set S such that166

ΠY ⊆ S, and S ∩ΠN = Ø.167

I Definition 3. A branching program is a directed acyclic graph with a single source and168

two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a169

variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.170

A branching program computes a Boolean function f on input x = x1 . . . xn by first placing171

a pebble on the source node. At any time when the pebble is on a node v labeled xi, the172

pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or173

by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then174

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,175

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =176

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of177

these complexity classes, circuits, and branching programs, see the text by Vollmer [30].178

I Definition 4. Non-interactive zero-knowledge proof (NISZK) [Adapted from [2, 17]]: A179

non-interactive statistical zero-knowledge proof system for a promise problem Π is defined180

by a pair of deterministic polynomial time machines5 (V, S) (the verifier and simulator,181

respectively) and a probabilistic routine P (the prover) that is computationally unbounded,182

together with a polynomial r(n) (which will give the size of the random reference string σ),183

such that:184

1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random185

choices of P) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).186

2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability that187

V (x, σ, P ′(x, σ)) accepts is at most 2−O(|x|). (Note P ′ here can be malicious, meaning it188

can try to fool the verifier)189

3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two190

distributions is bounded by 2−|x|:191

a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).192

b. S(x, r) (where the coins r for S are chosen uniformly at random).193

It is known that changing the definition, to have the error probability in the soundness and194

completeness conditions and in the simulator’s deviation be 1
nω(1) results in an equivalent195

definition [2, 17]. (See the comments after [2, Claim 39].) We will occasionally make use of196

this equivalent formulation, when it is convenient.197

NISZK is the class of promise problems for which there is a non-interactive statistical198

zero knowledge proof system.199

5 In prior work on NISZK [17, 2], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.

6 Robustness for Space-Bounded Statistical Zero Knowledge

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie200

in complexity class C.201

I Definition 5. [2, 17] (EA and EANC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n202

representing distribution X. (That is, Pr[X = x] = Pr[C(y) = x] where y is chosen uniformly203

at random.) The promise problem EA is given by:204

EAY := {(CX , k) : H(X) > k + 1}205

206

EAN := {(CX , k) : H(X) < k − 1}207

EANC0 is the variant of EA where the distribution CX is an NC0 circuit with each output bit208

depending on at most 4 input bits.209

I Definition 6 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n210

representing distributions X. The promise problem SDU = (SDUY ,SDUN) is given by:211

SDUY := {CX : ∆(X,Un) < 1/n}212

213

SDUN := {CX : ∆(X,Un) > 1− 1/n}.214

SDUNC0 is the analogous problem, where the distributions X are represented by NC0 circuits215

where no output bit depends on more than four input bits.216

I Theorem 7. [2, 5]: EANC0 and SDUNC0 are complete for NISZKL under ≤proj
m . EANC0217

remains complete, even if k is fixed to k = n− 3.218

I Definition 8. [15, 28] (SD and SDBP). Consider a pair of Boolean circuits C1, C2 :219

{0, 1}m → {0, 1}n representing distributions X1, X2. The promise problem SD is given by:220

SDY := {(C1, C2) : ∆(X1, X2) > 2/3}221

222

SDN := {(C1, C2) : ∆(X1, X2) < 1/3}.223

SDBP is the variant of SD where the distributions X1, X2 are represented by branching224

programs.225

2.1 Perfect Randomized Encodings226

We will make use of the machinery of perfect randomized encodings [9].227

I Definition 9. Let f : {0, 1}n → {0, 1}` be a function. We say that f̂ : {0, 1}n × {0, 1}m →228

{0, 1}s is a perfect randomized encoding of f with blowup b if it is:229

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random230

variables f̂(x, Um) and f̂(x′, Um) are identically distributed.231

Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) 6= f(x′), supp(f̂(x, Um)) ∩232

supp(f̂(x′, Um)) = Ø.233

Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over the set234

supp(f̂(x, Um)).235

Balanced: for every x, x′ ∈ {0, 1}n |supp(f̂(x, Um))| = |supp(f̂(x′, Um))| = b.236

The following property of perfect randomized encodings is established in [15].237

I Lemma 10. Let f : {0, 1}n → {0, 1}` be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s238

be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) = H(f(Un))+log b.239

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 7

3 Simulators and Verifiers in AC0
240

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators241

that are computable in AC0. The standard complete problems for NISZK and NISZKL take a242

circuit C as input, where the circuit is viewed as representing a probability distribution X;243

the goal is to approximate the entropy of X, or to estimate how far X is from the uniform244

distribution. Earlier work [18, 2, 27] that had presented non-interactive zero-knowledge245

protocols for these problems had made use of the fact that the verifier could compute hash246

functions, and thereby convert low-entropy distributions to distributions with small support.247

But an AC0 verifier cannot compute hash functions [22].248

Our approach is to “delegate” the problem of computing hash functions to a logspace249

verifier, and then to make use of the uniform encoding of this verifier to obtain the desired250

distributions via an AC0 reduction.6 To this end, we begin by defining a suitably restricted251

version of SDUNC0 and show (in Section 3.1) that this restricted version remains complete for252

NISZKL under AC0 reductions (and even under projections).7253

With this new complete problem in hand, we provide (in Section 3.2) a NISZKAC0 protocol254

for the complete problem, proving its correctness in Section 3.3, to conclude with the main255

result of this section:256

I Theorem 11. NISZKL = NISZKAC0 .257

I Definition 12. Consider an NC0 circuit C : {0, 1}m → {0, 1}n and the probability distri-258

bution X on {0, 1}n defined as C(Um) - where Um denotes m uniformly random bits. For259

some fixed ε > 0 (chosen later in Remark 17), we define:260

SDU’NC0,Y = {X : ∆(C,Un) < 1
2nε }261

262

SDU’NC0,N = {X : | supp(X)| ≤ 2n−n
ε

}263

We will show that SDU’NC0 is complete for NISZKL under uniform ≤proj
m reductions. In264

order to do so, we first show that SDU’NC0 is in NISZKL by providing a reduction to SDUNC0 .265

B Claim 13. SDU’NC0≤proj
m SDUNC0 , and thus SDU’NC0 ∈ NISZKL.266

Proof. On a given probability distribution X defined on {0, 1}n for SDU’NC0 , we claim that267

the identity function f(X) = X is a reduction of SDU’NC0 to SDUNC0 . If X is a YES instance268

for SDU’NC0 , then ∆(X,Un) < 1
2nε , which clearly is a YES instance of SDUNC0 . If X is a269

NO instance for SDU’NC0 , then | supp(X)| ≤ 2n−nε . Thus, if we let T be the complement of270

supp(X), we have that, under the uniform distribution, a string α is in T with probability271

≥ 1− 1
2nε , whereas this event has probability zero under X. Thus ∆(X,Un) ≥ 1− 1

2nε , easily272

making it a NO instance of SDUNC0 . J273

3.1 Hardness for SDU’NC0274

I Theorem 14. SDU’NC0 is hard for NISZKL under ≤proj
m reductions.275

6 In retrospect, the proof of the one-sided-error part of [5, Theorem 32] implicitly requires that this
restriction be complete for NISZKL. Hence we are now providing a missing part of that proof.

7 This restricted version of SDUNC0 can be seen as a version of the “image density” problem that was
defined and studied in [14].

8 Robustness for Space-Bounded Statistical Zero Knowledge

Proof. In order to show that SDU’NC0 is hard for NISZKL, we will show that the reduction276

given in [2] proving the hardness of SDUNC0 for NISZKL actually produces an instance of277

SDU’NC0 .278

Let Π be an arbitrary promise problem in NISZKL with proof system (P, V) and simulator279

S. Let x be an instance of Π. Let Mx(r) denote a machine that simulates S(x) with280

randomness r to obtain a transcript (σ, p) - if V (x, σ, p) accepts then Mx(r) outputs σ; else281

it outputs 0|σ|. We will assume without loss of generality that |σ| = nk for some constant k.282

283

It was shown in [18, Lemma 3.1] that for the promise problem EA, there is an NISZK284

protocol with completeness error, soundness error and simulator deviation all bounded from285

above by 2−m for inputs of length m. Furthermore, as noted in the paragraph before Claim286

38 in [2], the proof carries over to show that EABP has an NISZKL protocol with the same287

parameters. Thus, any problem in NISZKL can be recognized with exponentially small288

error parameters by reducing the problem to EABP and then running the above protocol for289

EABP on that instance. In particular, this holds for EANC0 . In what follows, let Mx be the290

distribution described in the preceding paragraph, assuming that the simulator S and verifier291

V yield a protocol with these exponentially small error parameters.292

B Claim 15. If x ∈ ΠY ES then ∆(Mx(r), Unk) ≤ 1/2n−1. And if x ∈ ΠNO then293

| supp(Mx(r))| ≤ 2nk−nεk for ε < 1
k .294

Proof. For x ∈ ΠY ES , claim 38 of [2] shows that ∆(Mx(r), Unk) ≤ 1/2n−1, establishing the295

first part of the claim.296

For x ∈ ΠNO, from the soundness guarantee of the NISZKL protocol for EANC0 , we know297

that, for at least a 1− 1
2n fraction of the shared reference strings σ ∈ {0, 1}nk , there is no298

message p that the prover can send that will cause V to accept. Thus there are at most299

2nk−n outputs of Mx(r) other than 0nk . For ε < 1
k , we have | supp(Mx(r))| ≤ 2nk−nεk . J300

The above claim talks about the distribution Mx(r) where M is a logspace machine. We301

will instead consider an NC0 distribution with similar properties that can be constructed302

using projections. This distribution (denoted by Cx) is a perfect randomized encoding of303

Mx(r). We make use of the following construction:304

I Lemma 16. [2, Lemma 35]. There is a function computable in AC0 (in fact, it can be a305

projection) that takes as input a branching program8 Q of size l computing a function f and306

produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function f̂307

that is a perfect randomized encoding of f that has blowup b = 2((l2)−1)2((l−1)2−1) (and thus308

the length of f̂(r) = log b+ |f(r)|). Each pi depends on at most four input bits from (x, r)309

(where r is the sequence of random bits in the randomized encoding).310

The properties of perfect randomized encodings (see Definition 9) imply that the range of f̂311

(and thus also the range of Cx) can be partitioned into equal sized pieces corresponding to each312

value of f(r). Thus, let α1, α2, .., αz be the range of f(r), and let [α] = {f̂(r, s) : f(r) = α}.313

It follows that |[α]| = b. For a given α, and for a given β of length log b we denote by αβ314

the β-th element of [α]. Since the simulator S runs in logspace, each bit of Mx(r) can be315

simulated with a branching program Qx. Furthermore, it is straightforward to see that there316

8 The reviewers have requested additional detail, regarding the format in which a branching program is
presented. In the context of [2, Lemma 35], the branching program can be presented as a matrix A,
where Ai,j is (b, k) if there is a transition from node i to node j if bit position xk is equal to b, and Ai,j

is equal to 1 (0) if there is unconditionally (not) a transition from node i to node j.

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 9

is an AC0-computable function that takes x as input and produces an encoding of Qx as317

output, and it can even be seen that this function can be a projection. Let the list of NC0
318

circuits produced from Qx by the construction of Lemma 16 be denoted Cx.319

We show that this distribution Cx is an instance of SDU’NC0 if x ∈ Π. For x ∈ ΠY ES , we320

have ∆(Mx(r), Unk) ≤ 1/2n−1, and we want to show ∆(Cx(r), Ulog b+nk) ≤ 1/2n−1. Thus it321

will suffice to observe that ∆(Mx(r), Unk) = ∆(Cx(r), Ulog b+nk) ≤ 1/2n−1.322

To see this, note that

∆(Cx(r), Ulog b+nk) =
∑
αβ

∣∣Pr[Cx = αβ]− 1
2nk+b

∣∣/2 =
∑
β

∑
α

∣∣Pr[Mx = α] 1
2b −

1
2b

1
2nk

∣∣/2
=
∑
α

∣∣Pr[Mx = α]− 1
2nk

∣∣/2 = ∆(Mx(r),Unk).

Thus, for x ∈ ΠY ES , Cx is a YES instance for SDU’NC0 .323

For x ∈ ΠNO, Claim 15 shows that | supp(Mx(r))| ≤ 2nk−n. Since the NC0 circuit Cx324

is a perfect randomized encoding of Mx(r), we have that the size of the support of Cx325

for x ∈ ΠNO is bounded from above by b × 2nk−n. Note that log b is polynomial in n; let326

q(n) = log b. Let r(n) denote the length of the output of C; r(n) = q(n) + nk. Thus the size327

of supp(Cx) ≤ 2nk−n+q(n) = 2r(n)−n < 2r(n)−r(n)ε (if 1/ε is chosen to be greater than the328

degree of r(n)), and hence Cx is a NO instance for SDU’NC0 . J329

I Remark 17. Here is how we pick ε in the definition of SDU’NC0 . SDUNC0 is in NISZKL330

via some simulator and verifier, where the error parameters are exponentially small, and331

the shared reference strings σ have length nk on inputs of length n. Now we pick ε > 0 so332

that ε < 1/k (as in Claim 15) and also 1/ε is greater than the degree of r(n) (as in the last333

sentence of the proof of Theorem 14).334

3.2 NISZKAC0 protocol for SDU’NC0335

In this section, we provide an NISZKAC0 protocol for SDU’NC0 to conclude the proof of Theorem336

11. We then prove the correctness of this protocol in Section 3.3. As above, we will consider337

the input distribution X on {0, 1}n defined by some NC0 circuit C : {0, 1}m → {0, 1}n.338

I Theorem 18. SDU’NC0 ∈ NISZKAC0 .339

Proof. We first provide an NISZKAC0 protocol for SDU’NC0 by specifying the behavior of the340

Prover, Verifier and Simulator machines. The proofs of zero knowledge, completeness and341

soundness follow in section 3.3.342

3.2.1 Non Interactive proof system for SDU’NC0343

1. Let C take inputs of length m and produce outputs of length n, and let σ be the reference344

string of length n.345

2. If there is no r such that C(r) = σ, then the prover sends ⊥. Otherwise, the prover picks346

an element r uniformly at random from the set {r|C(r) = σ} and sends it to the verifier.347

3. V accepts iff C(r) = σ. (Since C is an NC0 circuit, this can be accomplished in AC0 –348

this step can not be accomplished in NC0 since it depends on all of the bits of σ.)349

3.2.2 Simulator for SDU’NC0 proof system350

1. Pick a random s of length m and compute γ = C(s).351

2. Output (s, γ).352

10 Robustness for Space-Bounded Statistical Zero Knowledge

3.3 Proofs of Zero Knowledge, Completeness and Soundness353

3.3.1 Completeness354

B Claim 19. If X ∈ SDU’NC0,Y , then the verifier accepts with probability ≥ 1− 1
2nε .355

Proof. If X is a YES instance, then ∆(X,Un) < 1
2nε . This implies | supp(X)| > 2n(1− 1

2nε),356

which immediately implies the stated lower bound on the verifier’s probability of acceptance.357

J358

3.3.2 Soundness359

B Claim 20. If X ∈ SDU’NC0,N , then for every prover, the probability that the verifier360

accepts is at most 1
2nε .361

Proof. For every σ 6∈ supp(X), no prover can make the verifier accept. If X ∈ SDU’NC0,N ,362

the probability that σ 6∈ supp(X) is greater than 1− 1
2nε . J363

3.3.3 Statistical Zero-Knowledge364

B Claim 21. For X ∈ SDU’NC0,Y , ∆((p, σ), (s, γ)) = O(1
2nε).365

Proof. Since we are considering only YES instances X ∈ SDU’NC0,Y , we have that Pr[σ 6∈366

range(C)] ≤ 1
2nε . Thus Pr[(⊥, σ)] ≤ 1

2nε . Thus, in the subsequent analysis, we consider only367

the case where the prover’s message is not equal to ⊥.368

Recall that σ ∼ {0, 1}n, s ∼ {0, 1}m, p ∼ {r : C(r) = σ} and γ = C(s). In order to369

provide an upper bound on ∆((p, σ), (s, γ)), we consider the element wise probability of370

each distribution and show that for X ∈ SDU’NC0,Y the claim holds. For a ∈ {0, 1}m and371

b ∈ {0, 1}n we have :372

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2 |Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|373

Let us consider an element b ∈ {0, 1}n. Let Ab = {a1, a2, .., akb} be the pre-images of b under374

C; that is, for 1 ≤ i ≤ kb it holds that C(ai) = b. Let βb = Pr
y∼Um

[C(y) = b]. Then kb2−m = βb375

(since exactly kb elements of {0, 1}m are mapped to b under C). Let B = {b|¬∃y : C(y) = b}.376

Since ∆(C(Um), Un) ≤ 1
2nε , it follows that

|B|
2m ≤

1
2nε . We have :377

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2(|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|)378

= 1
2

∑
(a,b):b∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|379

+ 1
2

∑
(a,b):b6∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|380

381

For (a, b) satisfying b ∈ B, we have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For b 6∈ B382

and a satisfying C(a) 6= b we again have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For (a, b)383

satisfying C(a) = b we have Pr[(s, γ) = (a, b)] = 2−m since s ∼ Um and picking s fixes b. We384

also have Pr[(p, σ) = (a, b)] = 2−n
kb

since σ ∼ Un and then the prover picks p uniformly from385

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 11

Ab. This gives us386

∆((p, σ), (s, γ)) = 1
2

∑
(a,b):C(a)=b

∣∣2−m − 2−n

kb

∣∣387

= 1
2

∑
(a,b):C(a)=b

∣∣∣∣2−m − 2−m−n

βb

∣∣∣∣388

= 1
2

∑
(a,b):C(a)=b

2−m

βb

∣∣βb − 2−n
∣∣389

≤ 1
2

∑
(a,b):C(a)=b

∣∣βb − 2−n
∣∣ = ∆(C(Um), Un) ≤ 1

2nε390

391

where the first inequality holds since βb ≥ 2−m whenever βb 6= 0. Thus we have :392

∆((p, σ), (s, γ)) = O(1
2nε).393

J394

This concludes the proof of Theorem 18 - SDU’NC0 ∈ NISZKAC0 . Combining this with Theorem395

14, we conclude the proof of Theorem 11 - NISZKL = NISZKAC0 . J396

4 Simulator and Verifier in PM397

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators398

that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM399

is not known to lie in (uniform) NC.) That is, we can increase the computational power of400

the simulator and the verifier from L to PM without affecting the power of noninteractive401

statistical zero knowledge protocols.402

The Perfect Matching problem is the well-known problem of deciding, given an undirected403

graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a404

corresponding complexity class PM as follows:405

PM := {A : A ≤LT Perfect Matching}406

It is known that NL ⊆ PM [21].407

Our argument proceeds by first observing9 that NISZKL = NISZK⊕L, and then making408

use of the details of the argument that Perfect Matching is in ⊕L/poly [8].409

I Proposition 22. NISZK⊕L = NISZKL410

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem411

EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof412

of [2, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a413

branching program to simulate a logspace computation called Mx that is constructed from a414

logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect415

randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class416

defined in [9], consisting of all problems with perfect randomized encodings. But Theorem417

9 This equality was previously observed in [27].

12 Robustness for Space-Bounded Statistical Zero Knowledge

4.18 in [9] shows the stronger result that ⊕L lies in PREN , and hence the argument of418

[2, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by419

modifying step (a), to build a parity branching program for Mx that is constructed from a420

⊕L simulator and verifier). J421

We also rely on the following lemma:422

I Lemma 23. Adapted from [8, Section 3] and [24, Section 4]: Let W = (w1, w2, · · · , wnk+3)423

be a sequence of nk+3 weight functions, where each wi : [
(
n
2
)
] → [4n2] is a distinct weight424

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges425

of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)426

has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no427

perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W428

is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:429

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.430

If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight431

matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.432

Thus if we define g(G,W) to be 1−Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL (by the433

closure properties of GapL established in [7, Section 4]) and with probability ≥ 1− 2−nk (for434

randomly-chosen W), g(G,W) = 1 if G has a perfect matching, and g(G,W) = 0 otherwise.435

Note that this lemma is saying that most W constitute a good “advice string”, in the sense436

that g(G,W) provides the correct answer to the question “Does G have a perfect matching?”437

for every graph G with n vertices.438

I Corollary 24. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,439

then PrW←[4n2]n5 [(x,W) ∈ B] ≥ 1 − 2−n2 , and if x 6∈ A, then PrW←[4n2]n5 [(x,W) ∈ B] ≤440

2−n2 .441

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an442

oracle P for Perfect Matching. We may assume without loss of generality that all queries443

made by M on inputs of length n have the same number of vertices p(n). This is because G444

has a perfect matching iff G∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we445

can “pad” the queries, to make them all the same length.)446

Let C = {(G,W) : g(G,W) ≡ 1 mod 2}, where g is the function from Lemma 23. Clearly,447

C ∈ ⊕L. Now, a logspace oracle machine with input (x,W) and oracle C can simulate448

the computation of MP on x; each time M poses the query “Is G ∈ P”, instead we ask if449

(G,W) ∈ C. Then with high probability (over the random choice of W) all of the queries450

will be answered correctly and hence this routine will accept if and only if x ∈ A, by451

Lemma 23. Let B be the language accepted by this logspace oracle machine. We see that452

B ∈ LC ⊆ L⊕L = ⊕L, where the last equality is from [19]. J453

I Theorem 25. NISZKL = NISZKPM454

Proof. We show that NISZKPM ⊆ NISZK⊕L, and then appeal to Proposition 22.455

Let Π be an arbitrary problem in NISZKPM, and let (S, P, V) be the PM simulator, prover,456

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic457

realizations of S, V , respectively, guaranteed by Corollary 24. We now define a NISZKL458

protocol (S′′, P ′′, V ′′) for Π.459

On input x with shared randomness σW , the prover P ′′ sends the same message p =460

P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W),461

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 13

which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and462

random sequence rW , executes S′((x, r, i),W) for each bit position i to obtain a bit that463

(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),464

and outputs (σW, p).465

Now we will analyze the properties of (S′′, P ′′, V ′′):466

Completeness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since467

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W)] ≥ 1− 2−nk we have:468

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W) = 1] ≥ [1− 2−O(n)][1− 2−n
k

] = 1− 2−O(n)
469

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since470

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W)] ≥ 1− 2−nk , we have:471

Pr
σW

[∀p : V ′((x, σ, p),W) = 0] ≥ [1− 2−O(n)][1− 2−n
k

] = 1− 2−O(n)
472

Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings473

of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote474

the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.475

Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW)476

produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by477

(σW,P ′′(x, σW)). Let A = {(σW, p) : ∃i∃r S(x, r)i 6= S′((x, r, i),W)}.478

Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W)] ≥ 1− 2−O(n) we have:479

∆(S′′∗, P ′′∗) = 1
2
∑

(σW,p)

∣∣Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣480

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣481

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣Pr[W])482

≤ 2−O(n) +
∑
W

Pr[W] 12
∑
(σ,p)

∣∣Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣483

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)
484
485

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. J486

5 Additional problems in NISZKL487

In this section, we give additional examples of problems in P that lie in NISZKL. These488

problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is489

closed under a class of randomized reductions.490

The following definition is from [5]:491

I Definition 26. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with492

threshold θ if there is a logspace-computable function f and there is a polynomial p such that493

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.494

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.495

Note, in particular, that the logspace machine computing the reduction has two-way access496

to the random bits r; this is consistent with the model of probabilistic logspace that is used497

in defining NISZKL.498

14 Robustness for Space-Bounded Statistical Zero Knowledge

I Theorem 27. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .499

Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL500

proof system for EANC0 .501

Algorithm 1 Simulator S(x, rσ′)

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

Algorithm 2 Verifier
V (x, (σ, σ′), p)

return V1((f(x, σ′), σ, p))
502

Algorithm 3 Prover P (x, (σ, σ′))

return P1((f(x, σ′), σ));
503

We now claim that (S, P, V) is a NISZKL protocol for Π.504

It is apparent that S and V are computable in logspace. We just need to go through505

completeness, soundness, and statistical zero-knowledge of this protocol.506

Completeness: Suppose x is YES instance of Π. Then with probability 1− 1
nω(1) (over507

randomness of σ′), we have that f(x, σ′) is a YES instance of EANC0 . Thus for a randomly508

chosen σ:509

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)510

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over511

randomness of σ′), we have that f(x, σ′) is a NO instance of EANC0 . Thus for a randomly512

chosen σ:513

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)514

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0515

with probability close to 1. For any YES instance y of EANC0 , the distribution given by516

S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by517

(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P) has distance at518

most 1
nω(1) from the distribution produced by S on input x. The claim now follows by519

the comments regarding error probabilities in Definition 4.520

J521

McKenzie and Cook [23] defined and studied the problems LCON, LCONX and LCONNULL.522

LCON is the problem of determining if a system of linear congruences over the integers mod523

q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL524

is the problem of computing a spanning set for the null space of the system.525

These problems are known to lie in uniform NC3 [23], but are not known to lie in uniform526

NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2
527

such that x ∈ LCON if and only if (x,W) ∈ B, whereW is a randomly-chosen weight function528

[10]. (The probability of error is exponentially small.) The mapping x 7→ (x,W) is clearly a529

≤BPL
m reduction. Since DET ⊆ NISZKL [2], it follows that530

LCON ∈ NISZKL531

The arguments in [10] carry over to LCONX and LCONNULL as well.532

I Corollary 28. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.533

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 15

6 Varying the Power of the Verifier534

In this section, we show that the computational complexity of the simulator is more important535

than the computational complexity of the verifier, in non-interactive protocols. The results in536

this section were motivated by our attempts to show that NISZKL = NISZKDET. Although we537

were unable to reach this goal, we were able to show that the verifier could be as powerful as538

DET, if the simulator was restricted to be no more powerful than NL. The general approach539

here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide540

a proof to convince a weak verifier that the more powerful verifier would accept.541

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator542

is in A and the verifier is in B (and hence NISZKA = NISZKA,A).543

I Theorem 29. Let A and B be classes of functions that are closed under composition,544

where A ⊆ B ⊆ NISZKA. Then NISZKA,B = NISZKA.545

Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A546

simulator, B verifier, and prover for Π’s proof system, where the reference string has length547

p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has548

a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s549

messages have length q2(|x|).550

I Lemma 30. We may assume without loss of generality that p1(n) > p2(n) + q2(n).551

Proof. If it is not the case that p1(n) > p2(n) + q2(n), then let r(n) = p2(n) + q2(n)− p1(n).552

Consider a new proof system (S′1, V ′1 , P ′1) that is identical to (S1, V1, P1), except that the553

reference string now has length p1(n) + r(n) (where P ′1 and V ′1 ignore the additional r(n)554

random bits). The simulator S′1 uses an additional r(n) random bits and simply appends555

those bits to the output of S1. The language L(V ′1) is still in NISZKA, with a proof system556

(S′2, V ′2 , P ′2) where the reference string still has length p2(n), since membership in L(V ′1) does557

not depend on the “new” r(n) random bits, and hence S′2, V ′2 and P ′2, given input (x, σr, p)558

behave exactly as S2, V2 and P2 behave when given input (x, σ, p). J559

Then Π has the following NISZKA proof system:560

Algorithm 4 Simulator
S(x, r1, r2)

Data: x ∈ ΠY es ∪ΠNo

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

Algorithm 5 Verifier
V (x, (σ, σ′), (p, p′))

return V2((x, σ, p), σ′, p′)
561

Algorithm 6 Prover P (x, σσ′)

Data: x ∈ ΠY es ∪ΠNo, σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY es then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

562

16 Robustness for Space-Bounded Statistical Zero Knowledge

Correctness: Suppose x ∈ ΠY es, then given random σ, with probability (1− 1
2O(|x|)), we563

have that (x, σ, P1(x, σ)) ∈ L(V1), which means with probability (1− 1
2O(|x|+p1(|x|)+|p|)) it564

holds that ((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is565

at least:566

(1− 1
2O(|x|))(1− 1

2O(|x|+p1(|x|)+q1(|x|))) = 1− 1
2O(|x|)567

Soundness: Suppose x ∈ ΠN . When given a random σ, we have that with probability less568

than 1
2O(|x|) : ∃p such that (x, σ, p) ∈ L(V1). For (x, σ, p) 6∈ L(V1), the probability that569

there is a p such that ((x, σ, p), σ′, p′) ∈ L(V2) is at most 1
2O(|x|+p1(|x|)+|p|) (given random570

σ′). So the probability that V rejects is at least:571

(1− 1
2O(|x|))(1− 1

2O(|x|+p(|x|)+|p|)) = 1− 1
2O(|x|)572

Statistical Zero-Knowledge: Let P ∗1 denote the distribution that samples σ and outputs573

(σ, P1(x, σ)). Similarly, let P ∗2 (σ, p) denote the distribution that samples σ′ and outputs574

(σσ′, P2((x, σ, p), σ′). P ∗ will be defined as the distribution ((σσ′), P (x, σ, σ′))) where σ575

and σ′ are chosen uniformly at random. In the same way, let S∗ refer to the distribution576

produced by S on input x, let S∗1 refer to the distribution produced by S1(x), and let577

S∗2 (σ, p) be the distribution induced by S2 on input (x, σ, p). Now we can partition the578

set of possible outcomes ((σ, σ′), (p, p′)) of S∗ and P ∗ into 3 blocks:579

1. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) accepts.580

2. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) rejects.581

3. ((σ, σ′), (p, p′)) such that V1(x, σ, p) rejects.582

We will call these blocks A1, A2, and A3 respectively. Then by definition:583

∆(S∗, P ∗) = 1
2

∑
j∈{1,2,3}

∑
y∈Aj

∣∣Pr
S∗

[y]− Pr
P∗

[y]
∣∣584

= 1
2
∑
y∈A1

∣∣Pr
S∗

[y]− Pr
P∗

[y]
∣∣+ 1

2
∑

j∈{2,3}

∑
y∈Aj

[
Pr
S∗

[y] + Pr
P∗

[y]
]

585

586

We concentrate first on A1.587 ∑
y∈A1

∣∣Pr
S∗

[y]− Pr
P∗

[y]
∣∣588

589

=
∑

(σ′,p′)

(∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

∣∣Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]−Pr
P∗

[y|σ′, p′] Pr
P∗

[(σ′, p′)]
∣∣) (∗)590

Here591

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]592

and593

Pr
P∗

[(σ′, p′)] =
∑
(σ,p)

Pr
P∗

[((σ, σ′), (p, p′))].594

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 17

We define δ(σ′, p′) :=
∣∣PrS∗ [(σ′, p′)]−PrP∗ [(σ′, p′)]

∣∣. Let us examine a single term of the595

sum (∗), for y = ((σ, σ′), (p, p′)):596

∣∣Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P∗

[y|σ′, p′] Pr
P∗

[(σ′, p′)]
∣∣597

=
∣∣(Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)])+598

(Pr
P∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P∗

[y|σ′, p′] Pr
P∗

[(σ′, p′)])
∣∣599

=
∣∣(Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)) Pr
S∗

[(σ′, p′)] + Pr
P∗1

[(σ, p)](Pr
S∗

[(σ′, p′)]− Pr
P∗

[(σ′, p′)])
∣∣600

≤
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣Pr
S∗

[(σ′, p′)] + Pr
P∗1

[(σ, p)]
∣∣Pr
S∗

[(σ′, p′)]− Pr
P∗

[(σ′, p′)]
∣∣601

=
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣Pr
S∗

[(σ′, p′)] + Pr
P∗1

[(σ, p)]δ(σ′, p′)602

603

Thus (*) is no more than604

∑
(σ′,p′)

∑
(σ,p)

∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣Pr
S∗

[(σ′, p′)]605

+
∑

(σ′,p′)

∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

Pr
P∗1

[(σ, p)]δ(σ′, p′)606

≤
∑
(σ,p)

∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣+

∑
{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)607

= 2∆(S∗1 (x), P ∗1 (x)) +
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)608

≤ 2
2|x|

+
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′) (∗∗)609

610

Let us consider a single term δ(σ′, p′) in the summation in (∗∗). Recalling that the611

probability that S(x) = ((σ, σ′), (p, p′)) is equal to the probability that S1(x) = (σ, p)612

and S2(x, σ, p) = (σ′, p′), we have613

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]614

=
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))|(σ, p)] Pr
S∗

[(σ, p)]615

=
∑
(σ,p)

Pr
S∗2 (σ,p)

[(σ′p′)] Pr
S∗1

[(σ, p)]616

617

and similarly PrP∗ [(σ′, p′)] =
∑

(σ,p) PrP∗2 (σ,p)[(σ′p′)] PrP∗1 [(σ, p)]. Thus618

18 Robustness for Space-Bounded Statistical Zero Knowledge

δ(σ′, p′) =
∣∣Pr
S∗

[σ′, p′]− Pr
P∗

[σ′, p′]
∣∣619

=
∣∣ ∑

(σ,p)

Pr
S∗2 (σ,p)

[(σ′, p′)] Pr
S∗1

[(σ, p)]−
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)] Pr
P∗1

[σ, p]
∣∣620

=
∣∣ ∑

(σ,p)

Pr
S∗2 (σ,p)

[(σ′, p′)] Pr
S∗1

[(σ, p)]−
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)] Pr
S∗1

[(σ, p)]621

+
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)] Pr
S∗1

[(σ, p)]−
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)] Pr
P∗1

[(σ, p)]
∣∣622

=
∣∣ ∑

(σ,p)

(Pr
S∗2 (σ,p)

[(σ′, p′)]− Pr
P∗2 (σ,p)

[(σ′, p′)]) Pr
S∗1

[(σ, p)]623

+
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)](Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)])
∣∣624

≤
∑
(σ,p)

∣∣ Pr
S∗2 (σ,p)

[(σ′, p′)]− Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]625

+
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣626

=
∑
(σ,p)

2∆(S∗2 (σ, p), P ∗2 (σ, p)) Pr
S∗1

[(σ, p)]627

+
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣628

≤
∑
(σ,p)

2
2|(x,σ,p)|

Pr
S∗1

[(σ, p)] +
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣629

= 2
2|x|+p1(|x|)+q1(|x|) +

∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣630

631

where the last inequality holds, since the summation in (∗∗) is taken over tuples, such632

that each (x, σ, p) is a YES instance of L(V1).633

Replacing each term in (∗∗) with this upper bound, thus yields the following upper bound634

on (∗):635

2
2|x|

+
∑

(σ′,p′)

(
2

2|x|+p1(|x|)+q1(|x|) +
∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣)636

637

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) +
∑

(σ′,p′)

∑
(σ,p)

Pr
P∗2 (σ,p)

[(σ′, p′)]
∣∣Pr
S∗1

[(σ, p)]− Pr
P∗1

[(σ, p)]
∣∣)638

639

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2∆(S∗1 , P ∗1)640

641

≤ 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2
2|x|

642

643

≤ 2
2|x|

+ 2
2|x|

+ 2
2|x|

644

where the last inequality follows from Lemma 30. Thus, A1 contributes only a negligible645

quantity to ∆(S∗, P ∗).646

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 19

We now move on to consider A2 and A3.647

Pr
P∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

Pr[V2(x, σ, p) rejects] ≤
∑
(σ,p)

1
2|x|+|σ|+|p|

≤ 1
2|x|

.648

Pr
S∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

(Pr[V2(x, σ, p) rejects] + ∆(S∗2 (σ, p), P ∗2 (σ, p))) ≤ 2
2|x|

.649

A similar and simpler calculation shows that PrP∗ [y ∈ A3] ≤ 1
2|x| and PrS∗ [y ∈ A3] ≤ 2

2|x| ,650

to complete the proof.651

J652

I Corollary 31. NISZKL = NISZKAC0 = NISZKAC0,DET = NISZKNL,DET653

Proof. DET contains AC0 and is contained in NISZKL. By Theorem 11, NISZKL = NISZKAC0 ,654

and thus by Theorem 29 NISZKAC0,DET = NISZKAC0 . Also, since AC0 ⊆ NL ⊆ PM and655

NISZKL = NISZKPM (by Theorem 25), it follows that NISZKNL ⊆ NISZKPM = NISZKAC0 =656

NISZKNL. Thus, again by Theorem 29, NISZKNL,DET = NISZKNL = NISZKL. J657

The proof of Theorem 29 did not make use of the condition that the verifier is at least as658

powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also659

have the following corollaries:660

I Corollary 32. NISZKB = NISZKB,A661

I Corollary 33. NISZKA,B ⊆ NISZKB,A662

I Corollary 34. NISZKDET = NISZKDET,AC0663

7 SZKL closure under ≤L
bf−tt reductions664

Although our focus in this paper has been on NISZKL, in this section we report on a closure665

property of the closely-related class SZKL.666

The authors of [15], after defining the class SZKL, wrote:667

We also mention that all the known closure and equivalence properties of SZK (e.g.668

closure under complement [25], equivalence between honest and dishonest verifiers669

[18], and equivalence between public and private coins [25]) also hold for the class670

SZKL.671

In this section, we consider a variant of a closure property of SZK (closure under ≤P
bf−tt672

[28]), and show that it also holds10 for SZKL. Although our proof follows the general approach673

of the proof of [28, Theorem 4.9], there are some technicalities with showing that certain674

computations can be accomplished in logspace (and for dealing with distributions represented675

by branching programs instead of circuits) that require proof. (The characterization of SZKL676

in terms of reducibility to the Kolmogorov-random strings presented in [5, Theorem 34] relies677

on this closure property.)678

10We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [26], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.

20 Robustness for Space-Bounded Statistical Zero Knowledge

I Definition 35. (From [28, Definition 4.7]) For a promise problem Π, the characteristic679

function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by680

XΠ(x) =

1 if x ∈ ΠY es,

0 if x ∈ ΠNo,

∗ otherwise.
681

I Definition 36. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We682

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there683

exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and684

a Boolean formula φ (with m input gates) such that:685

x ∈ ΠY es =⇒ φ(XΓ(y1), . . . ,XΓ(ym)) = 1686

687

x ∈ ΠNo =⇒ φ(XΓ(y1), . . . ,XΓ(ym)) = 0688

We begin by proving a logspace analogue of a result from [28], used to make statistically689

close pairs of distributions closer and statistically far pairs of distributions farther.690

I Lemma 37. (Polarization Lemma, adapted from [28, Lemma 3.3]) There is a logspace-691

computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,692

and outputs a pair of branching programs (Q1, Q2) such that:693

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k694

695

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k696

To prove this, we adapt the same method as in [28] and alternate two different procedures,697

one to drive pairs with large statistical distance closer to 1, and one to drive distributions698

with small statistical distance closer to 0. The following lemma will do the former:699

I Lemma 38. (Direct Product Lemma, from [28, Lemma 3.4]) Let X and Y be distributions700

such that ∆(X,Y) = ε. Then for all k,701

kε ≥ ∆(⊗kX,⊗kY) ≥ 1− 2 exp(−kε2/2)702

The proof of this statement follows from [28]. To use this for Lemma 37, we note that a703

branching program for ⊗kP can easily be created in logspace from a branching program P704

by simply copying and concatenating k independent copies of P together.705

We now introduce a lemma to push close distributions closer:706

I Lemma 39. (XOR Lemma, adapted from [28, Lemma 3.5]) There is a logspace-computable707

function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair708

of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1709

are defined as follows:710

Q0 =
⊗
i∈[k]

Pyi : y ∼ {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}711

712

Q1 =
⊗
i∈[k]

Pyi : y ∼ {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}713

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 21

Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [28, Proposition 3.6]. To finish714

proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and715

(Q0, Q1).716

Let ` and w be the max length and width between P0 and P1. We describe the structure717

of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits718

y1, . . . , yk−1. For each of the random bits, it can pick the correct of two different branches,719

one having P0 built in at the end and the other having P1. We will read y1, branch to P0720

or P1 (and output the distribution accordingly), then unconditionally branch to reading y2721

and repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to722

y1 and start computing the parity, and at the end we will be able to decide the value of yk723

which will allow us to branch to the final copy of P0 or P1.724

y1

P0

P1

y2

. . .

. . .

yk−1

P0

P1

y1

y2

y2

. . .

. . .

yk−1

yk−1

P0

P1

0/1 1 0

Figure 1 Branching program for Q0 of Lemma 39

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to725

compute yk and logspace to copy the independent copies of P0 and P1.726

J727

We now have the tools to prove Lemma 37.728

Proof. (of Lemma 37) From [28, Section 3.2], we know that we can polarize (P0, P1, 1k) by:729

Letting l = dlog4/3 6ke, j = 3l−1
730

Applying Lemma 39 to (P0, P1, 1l) to get (P ′0, P ′1)731

Applying Lemma 38: P ′′0 = ⊗jP ′0, P ′′1 = ⊗jP ′1732

Applying Lemma 39 to (P ′′0 , P ′′1 , 1k) to get (Q0, Q1)733

Each step is computable in logspace, and since logspace is closed under composition, this734

completes our proof. J735

We also mention the following lemma, which will be useful in evaluating the Boolean736

formula given by the ≤L
bf−tt reduction.737

I Lemma 40. There is a function in NC1 that takes as input a Boolean formula φ (with m738

input bits) and produces as output an equivalent formula ψ with the following properties:739

1. The depth of ψ is O(logm).740

2. ψ is a tree with alternating levels of AND and OR gates.741

3. The tree’s non-leaf structure is always the same for a fixed input length, and is a complete742

binary tree.743

4. All NOT gates are located just before the leaves.744

Proof. Although this lemma does not seem to have appeared explicitly in the literature, it745

is known to researchers, and is closely related to results in [16] (see Theorems 5.6 and 6.3,746

and Lemma 3.3) and in [6] (see Lemma 5).747

The Boolean formula that is given as input may be encoded in the usual infix notation748

over the alphabet {0, 1, x,), (}, where leaf nodes connected to variable xi are expressed by749

22 Robustness for Space-Bounded Statistical Zero Knowledge

the string (xb) (where the string b is the binary representation of the number i), and where750

leaf nodes connected to the constants 0 and 1 are expressed by the strings (0) and (1),751

respectively, and more complicated expressions can be built from formulae α and β as (α∨β),752

(α ∧ β), and (¬α). Since the formula produced as output has a very restricted form (with an753

AND gate at the root, and alternating layers of AND and OR gates forming a full binary754

tree) the output formula can simply be encoded as a list of 2d leaf nodes. Thus 0,¬x10, x11, 1755

would be a representation of the formula (((0) ∨ (¬(x2))) ∧ ((x3) ∨ (1))).756

The lemma is proved by using the fact that the Boolean formula evaluation problem757

lies in NC1 [11, 12], and thus there is an alternating Turing machine M running in O(logn)758

time that takes as input a Boolean formula ψ and an assignment α to the variables of ψ,759

and returns ψ(α). We may assume without loss of generality that M alternates between760

existential and universal states at each step, and that M runs for exactly c logn steps on761

each path (for some constant c), and that M accesses its input (via the address tape that is762

part of the alternating Turing machine model) only at a halting step, and that M records763

the sequence of states that it has visited along the current path in the current configuration.764

Thus the configuration graph of M , on inputs of length n, corresponds to a formula of765

O(logn) depth having the desired structure, and this formula can be constructed in NC1.766

Given a formula φ, an NC1 machine can thus build this formula, and hardwire in the bits that767

correspond to the description of φ, and identify the remaining input variables (corresponding768

to M reading the bits of α) with the variables of φ. The resulting formula is equivalent to φ769

and satisfies the conditions of the lemma. J770

I Definition 41. (From [28, Definition 4.8]) For a promise problem Π, we define a new771

promise problem Φ(Π) as follows:772

Φ(Π)Y es = {(φ, x1, . . . , xm) : φ(XΠ(x1), . . . ,XΠ(xm)) = 1}773

774

Φ(Π)No = {(φ, x1, . . . , xm) : φ(XΠ(x1), . . . ,XΠ(xm)) = 0}775

I Theorem 42. SZKL is closed under ≤L
bf−tt reductions.776

To begin the proof of this theorem, we first note that as in the proof of [28, Lemma 4.10],777

given two SDBP pairs, we can create a new pair which is in SDBP,No if both of the original778

two pairs are (which we will use to compute ANDs of queries.) We can also compute in779

logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that780

these operations produce an output with the correct statistical difference with the following781

two claims:782

B Claim 43. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.783

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are784

guaranteed that:785

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p786

787

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p788

Then consider:789

y = (A1 ⊗A2, B1 ⊗B2)790

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):791

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 23

YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =792

max{∆(A1, B1),∆(A2, B2)} > 1− p.793

NO11: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p.794

J795

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR operation796

for at most d+1
2 levels (and the soundness gap doubles at every level). Since p = 1

2m at the797

beginning, the gap (for NO instance) will be upper bounded at the end by:798

< 2
d+1

2
1

2m = mO(1)

2m < 1/3.799

B Claim 44. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.800

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are801

guaranteed that:802

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p803

804

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p805

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly806

∆(A1, B1) ·∆(A2, B2)807

The pair (A,B) we construct is analogous to (Q0, Q1) in Lemma 39, and can be created808

in logspace with 2 random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if809

b0 = 1, while B = (A1, B2) if b2 is 0 and (A2, B1) if b1 = 1.810

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):811

YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2.812

NO: ∆(A1, B1) ·∆(A2, B2) ≤ min{∆(A1, B1),∆(A2, B2)} < p.813

J814

In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation815

for at most d+1
2 levels (and the completeness gap squares itself at every level). Since p = 1

2m816

at the beginning, the gap (for YES instance) will be lower bounded at the end by:817

> (1− 1
2m)2

d+1
2 = (1− 1

2m)m
O(1)

> (1− 1
2m)2m/m ≈ (1

e
)1/m >

2
3 .818

Proof. (of Theorem 42) Now suppose that we are given a promise problem Π such that819

Π ≤L
bf−tt SDBP. We want to show Π ≤L

m SDBP, which by SZKL’s closure under ≤L
m reductions820

implies Π ∈ SZKL.821

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in822

SDBP,Y if x ∈ ΠY , and is in SDBP,N if x ∈ ΠN :823

1. Run the L machine for the ≤L
bf−tt reduction on x to get queries (q1, . . . , qm) and the824

formula φ.825

11For the first inequality here, see [28, Fact 2.3].

24 Robustness for Space-Bounded Statistical Zero Knowledge

2. Build ψ from φ using Lemma 40. Recalling that there is a ≤L
m reduction f reducing826

SDBP to its complement, replace each negated query ¬qi with f(qi), so that we can now827

view ψ as a monotone Boolean formula reducing Π to SDBP. Since the Polarization828

Lemma (Lemma 37) maps YES instances to YES instances and NO instances to NO829

instances, we can also use the same formula ψ on the polarized instances that we obtain830

by applying Lemma 37 with k = n to these queries, to obtain a new list of queries831

(y1, . . . , ym). Furthermore we may pad these queries, so that each query yi consists of a832

pair of branching programs (instances of SDBP) where all of the branching programs have833

the same number of output bits.834

3. Using the formula ψ, build a “template tree” T . At the leaf level, for each variable in ψ,835

we will plug in the corresponding query yi; interior nodes are labeled AND or OR. By836

Lemma 40 the tree T is full. Using Claims 43 and 44, each node of the template tree is837

associated with a pair of branching programs, with the pair (F0, F1) at the root being the838

output of our ≤L
m reduction. It is important to note that the constructions in Claims 43839

and 44 produce distributions, where each output bit is simply a copy of one of the output840

bits of the distributions that feed into it. Thus each output bit of F0 and F1 is simply a841

copy of one of the output bits of one of the pairs of branching programs that constitute842

one of the input queries yi.843

4. Given x and designated output position j of F0 or F1, there is a logspace computation844

which finds the original output bit from y1 . . . ym that bit j was copied from. This machine845

traverses down the template tree from the output bit and records the following:846

The node that the computation is currently at on the template tree, with the path847

taken depending on j.848

The position of the random bits used to decide which path to take when we reach849

nodes corresponding to AND.850

This takes O(logm) space. We can use this algorithm to copy and compute each output851

bit of F0 and F1, creating (F0, F1) in logspace.852

For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of853

F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 40, a list of SDBP queries854

(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only855

F0(x).856

Outline of Eval(x, j, ψ, y1, . . . , ym) :857

The idea is to compute the jth output bit of F0 by recursively calculating which query858

output bit it was copied from. To do this, first notice that the AND and OR operations859

produce branching programs where each output bit is copied from exactly one output bit of860

one of the query branching programs, so composing these operations together tells us that861

every output bit in F0 is copied from exactly one output bit from one query. By Lemma 40862

and our AND and OR operations preserving the number of output bits, we also have that863

if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of864

ψ. This can be used to recursively calculate which query the jth bit is from: for an OR865

gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with866

each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an867

AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and868

then use the 4 random bits for the XOR operation to compute which fourth corresponds to869

which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2870

fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,871

then at the query level, we can directly return the j′th output bit. This can be done in872

logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace873

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 25

to record and update j′, logspace to compute 2al at each level, and logspace to compute874

which subtree/query the output bit comes from at each level.875

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this876

process Π ≤L
m SDBP. J877

8 Open Questions878

The main open question is whether NISZK is equal to NISZKL. Partial progress on this879

problem can be achieved by finding additional subclasses of P that lie in NISZKL (extending880

the work presented in Section 5).881

On a more concrete level, can the results of Section 6 be improved, in order to show882

that NISZKL = NISZKDET? Or, more ambitiously, given the role that randomized encodings883

play in our results, is it possible that all problems in the class SREN (problems with884

statistical randomized encodings) lie in NISZKL, or even (as suggested by the referees) that885

NISZKL = NISZKSREN?886

The referees have also suggested that it would be interesting to consider classes defined887

in terms of non-uniform verifiers and simulators.888

Acknowledgments889

This work was done in part while EA and HT were visiting the Simons Institute for the890

Theory of Computing. This work was carried out while JG, SM, and PW were participants891

in the 2022 DIMACS REU program at Rutgers University. We thank Yuval Ishai for helpful892

conversations about SREN, and we thank Markus Lohrey, Sam Buss, and Dave Barrington893

for useful discussions about Lemma 40. We also thank the anonymous referees for helpful894

comments.895

References896

1 Eric Allender. Guest column: Parting thoughts and parting shots (read on for details on how897

to win valuable prizes! SIGACT News, 54(1):63–81, 2023. doi:10.1145/3586165.3586175.898

2 Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic hardness899

under projections for time-bounded Kolmogorov complexity. Theoretical Computer Science,900

940:206–224, 2023. doi:10.1016/j.tcs.2022.10.040.901

3 Eric Allender, Jacob Gray, Saachi Mutreja, Harsha Tirumala, and Pengxiang Wang. Robustness902

for space-bounded statistical zero knowledge. In Nicole Megow and Adam Smith, editors, Proc.903

International Workshop on Randomization and Computation (RANDOM 2023), volume 275904

of LIPIcs, pages 56:1–56:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum905

fuer Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.56.906

4 Eric Allender and Shuichi Hirahara. New insights on the (non-) hardness of circuit minimization907

and related problems. ACM Transactions on Computation Theory (TOCT), 11(4):1–27, 2019.908

5 Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov complexity characterizes909

statistical zero knowledge. In 14th Innovations in Theoretical Computer Science Confer-910

ence (ITCS), volume 251 of LIPIcs, pages 3:1–3:19. Schloss Dagstuhl - Leibniz-Zentrum für911

Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.3.912

6 Eric Allender and Ian Mertz. Complexity of regular functions. Journal of Computer and913

System Sciences, 104:5–16, 2019. Language and Automata Theory and Applications - LATA914

2015. doi:https://doi.org/10.1016/j.jcss.2016.10.005.915

7 Eric Allender and Mitsunori Ogihara. Relationships among PL, #L, and the determinant.916

RAIRO Theor. Informatics Appl., 30(1):1–21, 1996. doi:10.1051/ita/1996300100011.917

https://doi.org/10.1145/3586165.3586175
https://doi.org/10.1016/j.tcs.2022.10.040
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.56
https://doi.org/10.4230/LIPIcs.ITCS.2023.3
https://doi.org/https://doi.org/10.1016/j.jcss.2016.10.005
https://doi.org/10.1051/ita/1996300100011

26 Robustness for Space-Bounded Statistical Zero Knowledge

8 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform918

and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164–181,919

1999. doi:https://doi.org/10.1006/jcss.1999.1646.920

9 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM Journal921

on Computing, 36(4):845–888, 2006. doi:10.1137/S0097539705446950.922

10 V. Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and abelian923

permutation groups using logspace counting classes. computational complexity, 19(1):57–98,924

November 2009. doi:10.1007/s00037-009-0280-6.925

11 Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the926

19th Annual ACM Symposium on Theory of Computing (STOC), pages 123–131. ACM, 1987.927

doi:10.1145/28395.28409.928

12 Samuel R Buss. Algorithms for Boolean formula evaluation and for tree contraction. Arithmetic,929

Proof Theory, and Computational Complexity, 23:96–115, 1993.930

13 Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party com-931

putation over rings. In Proc. International Conference on the Theory and Applications of932

Cryptographic Techniques; Advances in Cryptology (EUROCRYPT), volume 2656 of Lecture933

Notes in Computer Science, pages 596–613. Springer, 2003. doi:10.1007/3-540-39200-9_37.934

14 Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image density935

is complete for non-interactive-SZK (extended abstract). In Proc. International Conference on936

Automata, Languages, and Programming (ICALP), volume 1443 of Lecture Notes in Computer937

Science, pages 784–795. Springer, 1998. This paper claims that NISZK is closed under938

complement, but this claim was later retracted. doi:10.1007/BFb0055102.939

15 Zeev Dvir, Dan Gutfreund, Guy N Rothblum, and Salil P Vadhan. On approximating the940

entropy of polynomial mappings. In Second Symposium on Innovations in Computer Science,941

pages 460–475. Tsinghua University Press, 2011.942

16 Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. ACM Transactions943

on Computation Theory, 11(1):1:1–1:25, 2019. doi:10.1145/3278158.944

17 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made945

non-interactive? or On the relationship of SZK and NISZK. In Annual International Cryptology946

Conference, pages 467–484. Springer, 1999. doi:10.1007/3-540-48405-1_30.947

18 Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge948

equals general statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on949

the Theory of Computing (STOC), pages 399–408. ACM, 1998. doi:10.1145/276698.276852.950

19 Ulrich Hertrampf, Steffen Reith, and Heribert Vollmer. A note on closure properties of951

logspace MOD classes. Information Processing Letters, 75(3):91–93, 2000. doi:10.1016/952

S0020-0190(00)00091-0.953

20 Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect954

randomizing polynomials. In Proc. International Conference on Automata, Languages, and955

Programming (ICALP), volume 2380 of Lecture Notes in Computer Science, pages 244–256.956

Springer, 2002. doi:10.1007/3-540-45465-9_22.957

21 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random958

NC. Combinatorica, 6(1):35–48, 1986. doi:10.1007/BF02579407.959

22 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,960

and learnability. J. ACM, 40(3):607–620, 1993. doi:10.1145/174130.174138.961

23 Pierre McKenzie and Stephen A. Cook. The parallel complexity of Abelian permutation group962

problems. SIAM Journal on Computing, 16(5):880–909, 1987. doi:10.1137/0216058.963

24 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix964

inversion. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing965

(STOC), pages 345–354. ACM, 1987. doi:10.1145/28395.383347.966

25 Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal of967

Computer and System Sciences, 60(1):47–108, 2000. doi:10.1006/jcss.1999.1664.968

https://doi.org/https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1007/s00037-009-0280-6
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/BFb0055102
https://doi.org/10.1145/3278158
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1145/276698.276852
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/BF02579407
https://doi.org/10.1145/174130.174138
https://doi.org/10.1137/0216058
https://doi.org/10.1145/28395.383347
https://doi.org/10.1006/jcss.1999.1664

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 27

26 Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs969

for lattice problems. In Proc. Advances in Cryptology: 28th Annual International Cryptology970

Conference (CRYPTO), volume 5157 of Lecture Notes in Computer Science, pages 536–553.971

Springer, 2008. doi:10.1007/978-3-540-85174-5_30.972

27 Vishal Ramesh, Sasha Sami, and Noah Singer. Simple reductions to circuit minimization:973

DIMACS REU report. Technical report, DIMACS, Rutgers University, 2021. Internal974

document.975

28 Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,976

50(2):196–249, 2003. doi:10.1145/636865.636868.977

29 Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Computing,978

33(5):1093–1108, 2004. doi:10.1137/S009753970241096X.979

30 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &980

Business Media, 1999. doi:10.1007/978-3-662-03927-4.981

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1145/636865.636868
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1007/978-3-662-03927-4

