
Robustness for Space-Bounded Statistical Zero1

Knowledge∗
2

Eric Allender # Ñ �3

Rutgers University, NJ, USA4

Jacob Gray # Ñ5

University of Toronto, Canada6

Saachi Mutreja #7

Columbia University, NY, USA8

Harsha Tirumala # Ñ �9

University of Illinois, Urbana-Champagne, IL, USA10

Pengxiang Wang #11

EPFL, Swiss Federal Institute of Technology, Lausanne, Switzerland12

Abstract13

We show that the space-bounded Statistical Zero Knowledge classes SZKL and NISZKL are surprisingly14

robust, in that the power of the verifier and simulator can be strengthened or weakened without15

affecting the resulting class. Coupled with other recent characterizations of these classes [5], this16

can be viewed as lending support to the conjecture that these classes may coincide with the17

non-space-bounded classes SZK and NISZK, respectively.18

2012 ACM Subject Classification Complexity Classes19

Keywords and phrases Interactive Proofs20

Funding Eric Allender : Supported in part by NSF Grants CCF-1909216 and CCF-1909683.21

Jacob Gray: Supported in part by NSF grants CNS-215018 and CCF-185221522

Saachi Mutreja: Supported in part by NSF grants CNS-215018 and CCF-185221523

Harsha Tirumala: Supported in part by NSF Grants CCF-1909216 and CCF-1909683.24

Pengxiang Wang: Supported in part by NSF grants CNS-215018 and CCF-185221525

∗ An abbreviated version of this work, with some proofs omitted, appeared previously as [3].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 4 of Report No. 138 (2022)

mailto:allender@cs.rutgers.edu
http://www.cs.rutgers.edu/~allender
https://orcid.org/0000-0002-0650-028X
mailto:jacob.gray@mail.utoronto.ca
http://reu.dimacs.rutgers.edu/~jg1884/
mailto:saachi@berkeley.edu
mailto:harsha1649@gmail.com
https://sites.google.com/view/harsha-srimath-tirumala/
https://orcid.org/0000-0002-4600-3675
mailto:wang.cs@yahoo.com

2 Robustness for Space-Bounded Statistical Zero Knowledge

1 Introduction26

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass27

NISZK have been studied intensively by the research communities in cryptography and28

computational complexity theory. In [15], a space-bounded version of SZK, denoted SZKL29

was introduced, primarily as a tool for understanding the complexity of estimating the30

entropy of distributions represented by very simple computational models (such as low-degree31

polynomials, and NC0 circuits). There, it was shown that SZKL contains many important32

problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and33

Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZKL, denoted34

NISZKL, was subsequently introduced in [2], primarily as a tool for clarifying the complexity35

of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such36

as projections). Just as every problem in SZK ≤AC0

tt reduces to problems in NISZK [17], so37

also every problem in SZKL≤AC0

tt reduces to problems in NISZKL, and thus NISZKL contains38

intractable problems if and only if SZKL does.39

Very recently, all of these classes were given surprising new characterizations, in terms40

of efficient reducibility to the Kolmogorov random strings. Let R̃K be the (undecidable)41

promise problem (Y
R̃K

, N
R̃K

) where Y
R̃K

contains all strings y such that K(y) ≥ |y|/2 and42

the NO instances N
R̃K

consists of those strings y where K(y) ≤ |y|/2 − e(|y|) for some43

approximation error term e(n), where e(n) = ω(logn) and e(n) = no(1).44

▶ Theorem 1. [5] Let A be a decidable promise problem. Then45

A ∈ NISZK if and only if A is reducible to R̃K by randomized polynomial time reductions.46

A ∈ NISZKL if and only if A is reducible to R̃K by randomized AC0 or logspace reductions.47

A ∈ SZK if and only if A is reducible to R̃K by randomized polynomial time “Boolean48

formula” reductions.49

A ∈ SZKL if and only if A is reducible to R̃K by randomized logspace “Boolean formula”50

reductions.51

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of52

length n all queries are of length ≥ nϵ.53

There are very few natural examples of computational problems A where the class of54

problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)55

from the class or problems reducible to A via AC0 reductions. For example the natural56

complete problems for NISZK under ≤P
m reductions remain complete under AC0 reductions.57

Thus Theorem 1 gives rise to speculation that NISZK and NISZKL might be equal. (This58

would also imply that SZK = SZKL.)59

This motivates a closer examination of SZKL and NISZKL, to answer questions that have60

not been addressed by earlier work on these classes.61

Our main results are:62

1. The verifier and simulator may be very weak. NISZKL and SZKL are defined in63

terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a64

computationally-unbounded prover, following the usual rules of an interactive proof, and65

(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.66

(More formal definitions are to be found in Section 2.) We show that the verifier and67

simulator can be restricted to lie in AC0. Let us explain why this is surprising.68

The proof presented in [2], showing that EANC0 is complete for NISZKL, makes it clear69

that the verifier and simulator can be restricted to lie in AC0[⊕] (as was observed in [27]).70

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 3

But the proof in [2] (and a similar argument in [17]) relies heavily on hashing, and it is71

known that, although there are families of universal hash functions in AC0[⊕], no such72

families lie in AC0 [22]. We provide an alternative construction, which avoids hashing,73

and allows the verifier and simulator to be very weak indeed.74

2. The verifier and simulator may be somewhat stronger. The proof presented in75

[2], showing that EANC0 is complete for NISZKL, also makes it clear that the verifier and76

simulator can be as powerful as ⊕L, without leaving NISZKL. This is because the proof77

relies on the fact that logspace computation lies in the complexity class PREN of functions78

that have perfect randomized encodings [9], and ⊕L also lies in PREN. Applebaum,79

Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical80

randomized encodings), in proving that there are one-way functions in SREN if and only81

if there are one-way functions in NC0. They also showed that other important classes82

of functions, such as NL and GapL, are contained in SREN.1 We initially suspected that83

NISZKL could be characterized using verifiers and simulators computable in GapL (or84

even in the slightly larger class DET, consisting of problems that are ≤NC1

T reducible to85

GapL), since DET is known to be contained in NISZKL [2].2 However, we were unable to86

reach that goal.87

We were, however, able to show that the simulator and verifier can be as powerful as NL,88

without making use of the properties of SREN. In fact, we go further in that direction.89

We define the class PM, consisting of those problems that are ≤L
T-reducible to the Perfect90

Matching problem. PM contains NL [21], and is not known to lie in (uniform) NC (and it91

is not known to be contained in SREN). We show that statistical zero knowledge protocols92

defined using simulators and verifiers that are computable in PM yield only problems in93

NISZKL.94

3. The complexity of the simulator is key. As part of our attempt to characterize95

NISZKL using simulators and verifiers computable in DET, we considered varying the96

complexity of the simulator and the verifier separately. Among other things, we show97

that the verifier can be as complex as DET if the simulator is logspace-computable.98

In most cases of interest, the NISZK class defined with verifier and simulator lying in99

some complexity class remains unchanged if the rules are changed so that the verifier is100

significantly stronger or weaker.101

We also establish some additional closure properties of NISZKL and SZKL, some of which102

are required for the characterizations given in [5]. The rest of the paper is organized as103

follows;104

In Section 3, we show how NISZKL can be defined equivalently using an AC0 verifier105

and simulator. Formally, we prove that NISZKL = NISZKAC0 . Our proof involves defining a106

modification of the complete problem for NISZKL, which remains complete for the class under107

a suitably weak form of reduction. The proof that this problem is in NISZKL involves hashing108

with a logspace verifier, which we cannot perform in AC0. To get around this problem, we109

use a randomized encoding of a logspace machine computing this hashing. The randomized110

encoding is both computable by an AC0 verifier and preserves several important properties111

of the original post-hashing distribution, which allows the modified complete problem to be112

solved in NISZKAC0 and establish the stated result.113

1 This is not stated explicitly for GapL, but it follows from [20, Theorem 1]. See also [13, Section 4.2].
2 More precisely, as observed in [4], the Rigid Graph (non-) Isomorphism problem is hard for DET [29],

and the Rigid Graph Non-Isomorphism problem is in NISZKL [2, Corollary 23].

4 Robustness for Space-Bounded Statistical Zero Knowledge

Section 4 involves showing that increasing the power of the verifier and simulator to lie in114

PM does not increase the size of NISZKL (where PM is the class of problems (containing NL)115

that are logspace Turing reducible to Perfect Matching). We show that NISZKL = NISZKPM116

in two steps: first, we begin by showing that NISZKL = NISZK⊕L, using that problems in ⊕L117

have easily computable (AC0) randomized encodings that retain some important statistical118

properties of the original distribution. The second step is to prove that NISZKPM ⊆ NISZK⊕L.119

To do this, we utilize ideas from [8] to show how strings chosen uniformly at random can120

help in reducing instances of problems in PM to instances of a language in ⊕L. This allows121

us to prove that NISZKPM ⊆ NISZK⊕L and completes the proof.122

Section 5 expands the list of problems known to lie in NISZKL. McKenzie and Cook [23]123

studied different formulations of the problem of solving linear congruences. These problems124

are not known to lie in DET, which is the largest well-studied subclass of P known to be125

contained in NISZKL. However, these problems are randomly logspace-reducible to DET [10].126

We show that NISZKL is closed under randomized logspace reductions, and hence show that127

these problems also reside in NISZKL.128

Section 6 shows that the complexity of the simulator is more important than the complexity129

of the verifier in non-interactive zero-knowledge protocols. In particular, the verifier can130

be as powerful as DET, while still defining only problems in NISZKL. In general, we show131

that if classes A,B satisfy A ⊆ B ⊆ NISZKA, then the verifier of the class NISZKA can be132

boosted to class B without increasing the power of the class. Since the proof system can133

compute what the stronger B verifier can compute, the idea is to use the proof system as a134

replacement for the stronger verifier. We then obtain some concrete equalities by substituting135

in different choices of A and B.136

Finally, Section 7 will show that SZKL is closed under logspace Boolean formula truth-137

table reductions. The proof is an adaptation of [28] and primarily involves making circuit138

constructions into branching program constructions while also ensuring that they can be139

computed in logspace as opposed to polynomial time. The complete problem for SZKL is140

to compute the statistical distance of a pair of branching programs, so the proof details141

how to combine pairs of branching programs to compute the “AND” or “OR” of pairs of142

branching programs.Using these constructions, given a desired Boolean formula, a final pair143

of branching programs can be created which are statistically distant iff the statistical distance144

of each of the original pairs satisfies the formula. Since this can be done in logspace, this145

establishes that the closure property holds.146

2 Preliminaries147

We assume familiarity with the basic complexity classes L,NL,⊕L and P, and the circuit com-148

plexity classes NC0 and AC0. We assume knowledge of m-reducibility (many-one-reducibility)149

and Turing-reducibility. We also will need to refer to projection reducibility (≤proj
m). A150

projection is a function f that is computed by a circuit that has no gates (other than NOT151

gates). Thus each output gate is either a constant, or it is connected via a wire to an152

input bit or a negated input bit. The ≤proj
m reductions that we consider in this paper are all153

special cases of uniform AC0 reductions. #L is the class of functions that count the number154

of accepting paths of NL machines, and GapL = {f − g : f, g ∈ #L}. The determinant is155

complete for GapL under ≤AC0

m reductions3, and the complexity class DET is the class of156

3 See, for instance [7, Theorem 1] for a discussion of the history of this result.

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 5

languages NC1-Turing reducible to functions in GapL.4157

We use the notation q ∼ S to denote that element q is chosen uniformly at random from158

the finite set S.159

Many of the problems we consider deal with entropy (also known as Shannon entropy).160

The entropy of a distribution X (denoted H(X)) is the expected value of log(1/Pr[X = x]).161

Given two distributions X and Y , the statistical difference between the two is denoted162

∆(X,Y) and is equal to
∑

α

∣∣ Pr[X = α]− Pr[Y = α]
∣∣/2. Equivalently, for finite domains D,163

∆(X,Y) = maxS⊆D{
∣∣ PrX [S]− PrY [S]

∣∣}. This quantity is also known as the total variation164

distance between X and Y . The support of X, denoted supp(X), is {x : Pr[X = x] > 0}.165

▶ Definition 2. Promise Problem: a promise problem Π is a pair of disjoint sets (ΠY ,ΠN)166

(the “YES” and “NO” instances, respectively). A solution for Π is any set S such that167

ΠY ⊆ S, and S ∩ΠN = Ø.168

▶ Definition 3. A branching program is a directed acyclic graph with a single source and169

two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled with a170

variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one labeled 0.171

A branching program computes a Boolean function f on input x = x1 . . . xn by first placing172

a pebble on the source node. At any time when the pebble is on a node v labeled xi, the173

pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1 (or174

by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then175

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,176

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =177

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of178

these complexity classes, circuits, and branching programs, see the text by Vollmer [30].179

▶ Definition 4. Non-interactive zero-knowledge proof (NISZK) [Adapted from [2, 17]]: A180

non-interactive statistical zero-knowledge proof system for a promise problem Π is defined181

by a pair of deterministic polynomial time machines5 (V, S) (the verifier and simulator,182

respectively) and a probabilistic routine P (the prover) that is computationally unbounded,183

together with a polynomial r(n) (which will give the size of the random reference string σ),184

such that:185

1. (Completeness): For all x ∈ ΠY , the probability (over random σ, and over the random186

choices of P) that V (x, σ, P (x, σ)) accepts is at least 1− 2−O(|x|).187

2. (Soundness): For all x ∈ ΠN , and for every possible prover P ′, the probability of acceptance188

for V (x, σ, P ′(x, σ)) is at most 2−O(|x|). (Note P ′ here can be malicious, meaning it can189

try to fool the verifier)190

3. (Zero Knowledge): For all x ∈ ΠY , the statistical distance between the following two191

distributions is bounded by 2−|x|:192

a. Choose σ ← {0, 1}r(|x|) uniformly random, p← P (x, σ), and output (p, σ).193

b. S(x, r) (where the coins r for S are chosen uniformly at random).194

It is known that changing the definition, to have the error probability in the soundness and195

completeness conditions and in the simulator’s deviation be 1
nω(1) results in an equivalent196

4 It is an interesting question, whether one needs to consider NC1-Turing reductions in order to define
the class DET. We refer the reader to [1, Open Question 6] for a discussion of this point.

5 In prior work on NISZK [17, 2], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.

6 Robustness for Space-Bounded Statistical Zero Knowledge

definition [2, 17]. (See the comments after [2, Claim 37].) We will occasionally make use of197

this equivalent formulation, when it is convenient.198

NISZK is the class of promise problems for which there is a non-interactive statistical199

zero knowledge proof system.200

NISZKC denotes the class of problems in NISZK where the verifier V and simulator S lie201

in complexity class C.202

▶ Definition 5. [2, 17] (EA and EANC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
203

representing distribution X. (That is, Pr[X = x] = Pr[C(y) = x] where y is chosen uniformly204

at random.) The promise problem EA is given by:205

EAY := {(CX , k) : H(X) > k + 1}206
207

EAN := {(CX , k) : H(X) < k − 1}208

EANC0 is the variant of EA where the distribution CX is an NC0 circuit with each output bit209

depending on at most four input bits.210

▶ Definition 6 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
211

representing distributions X. The promise problem SDU = (SDUY ,SDUN) is given by:212

SDUY := {CX : ∆(X,Un) < 1/n}213
214

SDUN := {CX : ∆(X,Un) > 1− 1/n}.215

SDUNC0 is the analogous problem, where the distributions X are represented by NC0 circuits216

where no output bit depends on more than four input bits.217

▶ Theorem 7. [2, 5]: EANC0 and SDUNC0 are complete for NISZKL under ≤proj
m . EANC0218

remains complete, even if k is fixed to k = n− 3.219

▶ Definition 8. [15, 28] (SD and SDBP). Consider a pair of Boolean circuits C1, C2 :220

{0, 1}m → {0, 1}n representing distributions X1, X2. The promise problem SD is given by:221

SDY := {(C1, C2) : ∆(X1, X2) > 2/3}222
223

SDN := {(C1, C2) : ∆(X1, X2) < 1/3}.224

SDBP is the variant of SD where the distributions X1, X2 are represented by branching225

programs.226

2.1 Perfect Randomized Encodings227

We will make use of the machinery of perfect randomized encodings [9].228

▶ Definition 9. Let f : {0, 1}n → {0, 1}ℓ be a function. We say that f̂ : {0, 1}n × {0, 1}m →229

{0, 1}s is a perfect randomized encoding of f with blowup b if it is:230

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random231

variables f̂(x, Um) and f̂(x′, Um) are identically distributed.232

Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) ̸= f(x′), supp(f̂(x, Um)) ∩233

supp(f̂(x′, Um)) = Ø.234

Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over the set235

supp(f̂(x, Um)).236

Balanced: for every x, x′ ∈ {0, 1}n |supp(f̂(x, Um))| = |supp(f̂(x′, Um))| = b.237

The following property of perfect randomized encodings is established in [15].238

▶ Lemma 10. Let f : {0, 1}n → {0, 1}ℓ be a function and let f̂ : {0, 1}n × {0, 1}m → {0, 1}s
239

be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) = H(f(Un))+log b.240

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 7

3 Simulators and Verifiers in AC0
241

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators242

that are computable in AC0. The standard complete problems for NISZK and NISZKL take a243

circuit C as input, where the circuit is viewed as representing a probability distribution X;244

the goal is to approximate the entropy of X, or to estimate how far X is from the uniform245

distribution. Earlier work [18, 2, 27] that had presented non-interactive zero-knowledge246

protocols for these problems had made use of the fact that the verifier could compute hash247

functions, and thereby convert low-entropy distributions to distributions with small support.248

But an AC0 verifier cannot compute hash functions [22].249

Our approach is to “delegate” the problem of computing hash functions to a logspace250

verifier, and then to make use of the uniform encoding of this verifier to obtain the desired251

distributions via an AC0 reduction.6 To this end, we begin by defining a suitably restricted252

version of SDUNC0 and show (in Section 3.1) that this restricted version remains complete for253

NISZKL under AC0 reductions (and even under projections).7254

With this new complete problem in hand, we provide (in Section 3.2) a NISZKAC0 protocol255

for the complete problem, proving its correctness in Section 3.3, to conclude with the main256

result of this section:257

▶ Theorem 11. NISZKL = NISZKAC0 .258

▶ Definition 12. Consider an NC0 circuit C : {0, 1}m → {0, 1}n and the probability distri-259

bution X on {0, 1}n defined as C(Um) - where Um denotes m uniformly random bits. For260

some fixed ϵ > 0 (chosen later in Remark 17), we define:261

SDU’NC0,Y = {X : ∆(C,Un) < 1
2nϵ }262

263

SDU’NC0,N = {X : | supp(X)| ≤ 2n−nϵ

}264

We will show that SDU’NC0 is complete for NISZKL under uniform ≤proj
m reductions. In265

order to do so, we first show that SDU’NC0 is in NISZKL by providing a reduction to SDUNC0 .266

▷ Claim 13. SDU’NC0≤proj
m SDUNC0 , and thus SDU’NC0 ∈ NISZKL.267

Proof. On a given probability distribution X defined on {0, 1}n for SDU’NC0 , we claim that268

the identity function f(X) = X is a reduction of SDU’NC0 to SDUNC0 . If X is a YES instance269

for SDU’NC0 , then ∆(X,Un) < 1
2nϵ , which clearly is a YES instance of SDUNC0 . If X is a270

NO instance for SDU’NC0 , then | supp(X)| ≤ 2n−nϵ . Thus, if we let T be the complement of271

supp(X), we have that, under the uniform distribution, a string α is in T with probability272

≥ 1− 1
2nϵ , whereas this event has probability zero under X. Thus ∆(X,Un) ≥ 1− 1

2nϵ , easily273

making it a NO instance of SDUNC0 . ◀274

3.1 Hardness for SDU’NC0275

▶ Theorem 14. SDU’NC0 is hard for NISZKL under ≤proj
m reductions.276

6 In retrospect, the proof of the one-sided-error part of [5, Theorem 32] implicitly requires that this
restriction be complete for NISZKL. Hence we are now providing a missing part of that proof.

7 This restricted version of SDUNC0 can be seen as a version of the “image density” problem that was
defined and studied in [14].

8 Robustness for Space-Bounded Statistical Zero Knowledge

Proof. In order to show that SDU’NC0 is hard for NISZKL, we will show that the reduction277

given in [2] proving the hardness of SDUNC0 for NISZKL actually produces an instance of278

SDU’NC0 .279

Let Π be an arbitrary promise problem in NISZKL with proof system (P, V) and simulator280

S. Let x be an instance of Π. Let Mx(r) denote a machine that simulates S(x) with281

randomness r to obtain a transcript (σ, p) - if V (x, σ, p) accepts then Mx(r) outputs σ; else282

it outputs 0|σ|. We will assume without loss of generality that |σ| = nk for some constant k.283

284

It was shown in [18, Lemma 3.1] that for the promise problem EA, there is an NISZK285

protocol with completeness error, soundness error and simulator deviation all bounded from286

above by 2−m for inputs of length m. Furthermore, as noted in the paragraph before Claim287

38 in [2], the proof carries over to show that EABP has an NISZKL protocol with the same288

parameters. Thus, any problem in NISZKL can be recognized with exponentially small289

error parameters by reducing the problem to EABP and then running the above protocol for290

EABP on that instance. In particular, this holds for EANC0 . In what follows, let Mx be the291

distribution described in the preceding paragraph, assuming that the simulator S and verifier292

V yield a protocol with these exponentially small error parameters.293

▷ Claim 15. If x ∈ ΠY ES then ∆(Mx(r), Unk) ≤ 1/2n−1. And if x ∈ ΠNO then294

| supp(Mx(r))| ≤ 2nk−nϵk for ϵ < 1
k .295

Proof. For x ∈ ΠY ES , claim 38 of [2] shows that ∆(Mx(r), Unk) ≤ 1/2n−1, establishing the296

first part of the claim.297

For x ∈ ΠNO, from the soundness guarantee of the NISZKL protocol for EANC0 , we know298

that, for at least a 1− 1
2n fraction of the shared reference strings σ ∈ {0, 1}nk , there is no299

message p that the prover can send that will cause V to accept. Thus there are at most300

2nk−n outputs of Mx(r) other than 0nk . For ϵ < 1
k , we have | supp(Mx(r))| ≤ 2nk−nϵk . ◀301

The above claim talks about the distribution Mx(r) where M is a logspace machine. We302

will instead consider an NC0 distribution with similar properties that can be constructed303

using projections. This distribution (denoted by Cx) is a perfect randomized encoding of304

Mx(r). We make use of the following construction:305

▶ Lemma 16. [2, Lemma 35]. There is a function computable in AC0 (in fact, it can be a306

projection) that takes as input a branching program Q of size l computing a function f and307

produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function f̂308

that is a perfect randomized encoding of f that has blowup b = 2((l
2)−1)2((l−1)2−1) (and thus309

the length of f̂(r) = log b+ |f(r)|). Each pi depends on at most four input bits from (x, r)310

(where r is the sequence of random bits in the randomized encoding).311

In order to have a precise understanding of Lemma 16, it is helpful to have more detail312

regarding the format in which a branching program is presented. In the context of [2, Lemma313

35], the branching program can be presented as a matrix A, where Ai,j is (b, k) if there is a314

transition from node i to node j if bit position xk is equal to b, and Ai,j is equal to 1 (0) if315

there is unconditionally (not) a transition from node i to node j.316

The properties of perfect randomized encodings (see Definition 9) imply that the range of f̂317

(and thus also the range of Cx) can be partitioned into equal sized pieces corresponding to each318

value of f(r). Thus, let α1, α2, .., αz be the range of f(r), and let [α] = {f̂(r, s) : f(r) = α}.319

It follows that |[α]| = b. For a given α, and for a given β of length log b we denote by αβ320

the β-th element of [α]. Since the simulator S runs in logspace, each bit of Mx(r) can be321

simulated with a branching program Qx. Furthermore, it is straightforward to see that there322

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 9

is an AC0-computable function that takes x as input and produces an encoding of Qx as323

output, and it can even be seen that this function can be a projection. Let the list of NC0
324

circuits produced from Qx by the construction of Lemma 16 be denoted Cx.325

We show that this distribution Cx is an instance of SDU’NC0 if x ∈ Π. For x ∈ ΠY ES , we326

have ∆(Mx(r), Unk) ≤ 1/2n−1, and we want to show ∆(Cx(r), Ulog b+nk) ≤ 1/2n−1. Thus it327

will suffice to observe that ∆(Mx(r), Unk) = ∆(Cx(r), Ulog b+nk) ≤ 1/2n−1.328

To see this, note that

∆(Cx(r), Ulog b+nk) =
∑
αβ

∣∣ Pr[Cx = αβ]− 1
2nk+b

∣∣/2 =
∑

β

∑
α

∣∣ Pr[Mx = α] 1
2b
− 1

2b

1
2nk

∣∣/2
=

∑
α

∣∣ Pr[Mx = α]− 1
2nk

∣∣/2 = ∆(Mx(r),Unk).

Thus, for x ∈ ΠY ES , Cx is a YES instance for SDU’NC0 .329

For x ∈ ΠNO, Claim 15 shows that | supp(Mx(r))| ≤ 2nk−n. Since the NC0 circuit Cx330

is a perfect randomized encoding of Mx(r), we have that the size of the support of Cx331

for x ∈ ΠNO is bounded from above by b × 2nk−n. Note that log b is polynomial in n; let332

q(n) = log b. Let r(n) denote the length of the output of C; r(n) = q(n) + nk. Thus the size333

of supp(Cx) ≤ 2nk−n+q(n) = 2r(n)−n < 2r(n)−r(n)ϵ (if 1/ϵ is chosen to be greater than the334

degree of r(n)), and hence Cx is a NO instance for SDU’NC0 . ◀335

▶ Remark 17. Here is how we pick ϵ in the definition of SDU’NC0 . SDUNC0 is in NISZKL336

via some simulator and verifier, where the error parameters are exponentially small, and337

the shared reference strings σ have length nk on inputs of length n. Now we pick ϵ > 0 so338

that ϵ < 1/k (as in Claim 15) and also 1/ϵ is greater than the degree of r(n) (as in the last339

sentence of the proof of Theorem 14).340

3.2 NISZKAC0 protocol for SDU’NC0341

In this section, we provide an NISZKAC0 protocol for SDU’NC0 to conclude the proof of Theorem342

11. We then prove the correctness of this protocol in Section 3.3. As above, we will consider343

the input distribution X on {0, 1}n defined by some NC0 circuit C : {0, 1}m → {0, 1}n.344

▶ Theorem 18. SDU’NC0 ∈ NISZKAC0 .345

Proof. We first provide an NISZKAC0 protocol for SDU’NC0 by specifying the behavior of the346

Prover, Verifier and Simulator machines. The proofs of zero knowledge, completeness and347

soundness follow in section 3.3.348

3.2.1 Non Interactive proof system for SDU’NC0349

1. Let C take inputs of length m and produce outputs of length n, and let σ be the reference350

string of length n.351

2. If there is no r such that C(r) = σ, then the prover sends ⊥. Otherwise, the prover picks352

an element r uniformly at random from the set {r|C(r) = σ} and sends it to the verifier.353

3. V accepts iff C(r) = σ. (Since C is an NC0 circuit, this can be accomplished in AC0 –354

this step can not be accomplished in NC0 since it depends on all of the bits of σ.)355

3.2.2 Simulator for SDU’NC0 proof system356

1. Pick a random s of length m and compute γ = C(s).357

2. Output (s, γ).358

10 Robustness for Space-Bounded Statistical Zero Knowledge

3.3 Proofs of Zero Knowledge, Completeness and Soundness359

3.3.1 Completeness360

▷ Claim 19. If X ∈ SDU’NC0,Y , then the verifier accepts with probability ≥ 1− 1
2nϵ .361

Proof. If X is a YES instance, then ∆(X,Un) < 1
2nϵ . This implies | supp(X)| > 2n(1− 1

2nϵ),362

which immediately implies the stated lower bound on the verifier’s probability of acceptance.363

◀364

3.3.2 Soundness365

▷ Claim 20. If X ∈ SDU’NC0,N , then for every prover, the probability that the verifier366

accepts is at most 1
2nϵ .367

Proof. For every σ ̸∈ supp(X), no prover can make the verifier accept. If X ∈ SDU’NC0,N ,368

the probability that σ ̸∈ supp(X) is greater than 1− 1
2nϵ . ◀369

3.3.3 Statistical Zero-Knowledge370

▷ Claim 21. For X ∈ SDU’NC0,Y , ∆((p, σ), (s, γ)) = O(1
2nϵ).371

Proof. Since we are considering only YES instances X ∈ SDU’NC0,Y , we have that Pr[σ ̸∈372

range(C)] ≤ 1
2nϵ . Thus Pr[(⊥, σ)] ≤ 1

2nϵ . Thus, in the subsequent analysis, we consider only373

the case where the prover’s message is not equal to ⊥.374

Recall that σ ∼ {0, 1}n, s ∼ {0, 1}m, p ∼ {r : C(r) = σ} and γ = C(s). In order to375

provide an upper bound on ∆((p, σ), (s, γ)), we consider the element wise probability of376

each distribution and show that for X ∈ SDU’NC0,Y the claim holds. For a ∈ {0, 1}m and377

b ∈ {0, 1}n we have :378

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2 |Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|379

Let us consider an element b ∈ {0, 1}n. Let Ab = {a1, a2, .., akb
} be the pre-images of b under380

C; that is, for 1 ≤ i ≤ kb it holds that C(ai) = b. Let βb = Pr
y∼Um

[C(y) = b]. Then kb2−m = βb381

(since exactly kb elements of {0, 1}m are mapped to b under C). Let B = {b|¬∃y : C(y) = b}.382

Since ∆(C(Um), Un) ≤ 1
2nϵ , it follows that |B|2m ≤ 1

2nϵ . We have :383

∆((p, σ), (s, γ)) =
∑
(a,b)

1
2(|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|)384

= 1
2

∑
(a,b):b∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|385

+ 1
2

∑
(a,b):b̸∈B

|Pr[(p, σ) = (a, b)]− Pr[(s, γ) = (a, b)]|386

For (a, b) satisfying b ∈ B, we have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For b ̸∈ B387

and a satisfying C(a) ̸= b we again have Pr[(s, γ) = (a, b)] = Pr[(p, σ) = (a, b)] = 0. For (a, b)388

satisfying C(a) = b we have Pr[(s, γ) = (a, b)] = 2−m since s ∼ Um and picking s fixes b. We389

also have Pr[(p, σ) = (a, b)] = 2−n

kb
since σ ∼ Un and then the prover picks p uniformly from390

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 11

Ab. This gives us391

∆((p, σ), (s, γ)) = 1
2

∑
(a,b):C(a)=b

∣∣2−m − 2−n

kb

∣∣392

= 1
2

∑
(a,b):C(a)=b

∣∣∣∣2−m − 2−m−n

βb

∣∣∣∣393

= 1
2

∑
(a,b):C(a)=b

2−m

βb

∣∣βb − 2−n
∣∣394

≤ 1
2

∑
(a,b):C(a)=b

∣∣βb − 2−n
∣∣ = ∆(C(Um), Un) ≤ 1

2nϵ395

where the first inequality holds since βb ≥ 2−m whenever βb ̸= 0. Thus we have :396

∆((p, σ), (s, γ)) = O(1
2nϵ).397

◀398

This concludes the proof of Theorem 18 - SDU’NC0 ∈ NISZKAC0 . Combining this with Theorem399

14, we conclude the proof of Theorem 11 - NISZKL = NISZKAC0 . ◀400

4 Simulator and Verifier in PM401

In this section, we show that NISZKL can be defined equivalently using verifiers and simulators402

that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM403

is not known to lie in (uniform) NC.) That is, we can increase the computational power of404

the simulator and the verifier from L to PM without affecting the power of noninteractive405

statistical zero knowledge protocols.406

The Perfect Matching problem is the well-known problem of deciding, given an undirected407

graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a408

corresponding complexity class PM as follows:409

PM := {A : A ≤L
T Perfect Matching}410

It is known that NL ⊆ PM [21].411

Our argument proceeds by first observing8 that NISZKL = NISZK⊕L, and then making412

use of the details of the argument that Perfect Matching is in ⊕L/poly [8].413

▶ Proposition 22. NISZK⊕L = NISZKL414

Proof. It suffices to show NISZK⊕L ⊆ NISZKL. We do this by showing that the problem415

EANC0 is hard for NISZK⊕L; this suffices since EANC0 is complete for NISZKL. The proof416

of [2, Theorem 26] (showing that EANC0 is complete for NISZKL involves (a) building a417

branching program to simulate a logspace computation called Mx that is constructed from a418

logspace-computable simulator and verifier, and (b) constructing an NC0-computable perfect419

randomized encoding of Mx, using the fact that L ⊂ PREN , where PREN is the class420

defined in [9], consisting of all problems with perfect randomized encodings. But Theorem421

8 This equality was previously observed in [27].

12 Robustness for Space-Bounded Statistical Zero Knowledge

4.18 in [9] shows the stronger result that ⊕L lies in PREN , and hence the argument of422

[2, Theorem 26] carries over immediately, to reduce any problem in NISZK⊕L to EANC0 (by423

modifying step (a), to build a parity branching program for Mx that is constructed from a424

⊕L simulator and verifier). ◀425

We also rely on the following lemma:426

▶ Lemma 23. Adapted from [8, Section 3] and [24, Section 4]: Let W = (w1, w2, · · · , wnk+3)427

be a sequence of nk+3 weight functions, where each wi : [
(

n
2
)
] → [4n2] is a distinct weight428

assignment to edges in n-vertex graphs. Let (G,wi) denote the result of weighting the edges429

of G using weight assignment wi. Then there is a function f in GapL, such that, if (G,wi)430

has a unique perfect matching of weight j, then f(G,W, i, j) ∈ {1,−1}, and if G has no431

perfect matching, then for every (W, i, j), it holds that f(G,W, i, j) = 0. Furthermore, if W432

is chosen uniformly at random, then with probability ≥ 1− 2−nk , for each n-vertex graph G:433

If G has no perfect matching then ∀i∀j f(G,W, i, j) = 0.434

If G has a perfect matching then ∃i such that (G,wi) has a unique minimum-weight435

matching, and hence ∃i∃j f(G,W, i, j) ∈ {1,−1}.436

Thus if we define g(G,W) to be 1−Πi,j(1− f(G,W, i, j)2), we have that g ∈ GapL (by the437

closure properties of GapL established in [7, Section 4]) and with probability ≥ 1− 2−nk (for438

randomly-chosen W), g(G,W) = 1 if G has a perfect matching, and g(G,W) = 0 otherwise.439

Note that this lemma is saying that most W constitute a good “advice string”, in the sense440

that g(G,W) provides the correct answer to the question “Does G have a perfect matching?”441

for every graph G with n vertices.442

▶ Corollary 24. For every language A ∈ PM there is a language B ∈ ⊕L such that, if x ∈ A,443

then PrW←[4n2]n5 [(x,W) ∈ B] ≥ 1 − 2−n2 , and if x ̸∈ A, then PrW←[4n2]n5 [(x,W) ∈ B] ≤444

2−n2 .445

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an446

oracle P for Perfect Matching. We may assume without loss of generality that all queries447

made by M on inputs of length n have the same number of vertices p(n). This is because G448

has a perfect matching iff G∪ {x1 − y1, x2 − y2, ..., xk − yk} has a perfect matching. (I.e., we449

can “pad” the queries, to make them all the same length.)450

Let C = {(G,W) : g(G,W) ≡ 1 mod 2}, where g is the function from Lemma 23. Clearly,451

C ∈ ⊕L. Now, a logspace oracle machine with input (x,W) and oracle C can simulate452

the computation of MP on x; each time M poses the query “Is G ∈ P”, instead we ask if453

(G,W) ∈ C. Then with high probability (over the random choice of W) all of the queries454

will be answered correctly and hence this routine will accept if and only if x ∈ A, by455

Lemma 23. Let B be the language accepted by this logspace oracle machine. We see that456

B ∈ LC ⊆ L⊕L = ⊕L, where the last equality is from [19]. ◀457

▶ Theorem 25. NISZKL = NISZKPM458

Proof. We show that NISZKPM ⊆ NISZK⊕L, and then appeal to Proposition 22.459

Let Π be an arbitrary problem in NISZKPM, and let (S, P, V) be the PM simulator, prover,460

and verifier for Π, respectively. Let S′ and V ′ be the ⊕L languages that are probabilistic461

realizations of S, V , respectively, guaranteed by Corollary 24. We now define a NISZKL462

protocol (S′′, P ′′, V ′′) for Π.463

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 13

On input x with shared randomness σW , the prover P ′′ sends the same message p =464

P (x, σ) as the original prover sends. The verifier V ′′, returns the value of V ′((x, σ, p),W),465

which with high probability is equal to V (x, σ, p). The simulator S′′, given as input x and466

random sequence rW , executes S′((x, r, i),W) for each bit position i to obtain a bit that467

(with high probability) is equal to the ith bit of S(x, r), which is a string of the form (σ, p),468

and outputs (σW, p).469

Now we will analyze the properties of (S′′, P ′′, V ′′):470

Completeness: Suppose x ∈ ΠY , then Prσ[V (x, σ, P (x, σ)) = 1] ≥ 1 − 2−O(n). Since471

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W)] ≥ 1− 2−nk we have:472

Pr
σW

[V ′((x, σ, P ′′(x, σ)),W) = 1] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)
473

Soundness: Suppose x ∈ ΠN , then Prσ[∀p : V (x, σ, p) = 0] ≥ 1 − 2−O(n). Since474

∀y ∈ {0, 1}n : PrW [V (y) = V ′(y,W)] ≥ 1− 2−nk , we have:475

Pr
σW

[∀p : V ′((x, σ, p),W) = 0] ≥ [1− 2−O(n)][1− 2−nk

] = 1− 2−O(n)
476

Statistical Zero-Knowledge: Suppose x ∈ ΠY . Let S∗ denote the distribution on strings477

of the form (σ, p) that S(x, r) produces, where r is uniformly generated, and let P ∗ denote478

the distribution on strings given by (σ, P (x, σ)) where σ is chosen uniformly at random.479

Similarly, let S′′∗ denote the distribution on strings of the form (σW, p) that S′′(x, rW)480

produces, where r and W are chosen uniformly, and let P ′′∗ be the distribution given by481

(σW,P ′′(x, σW)). Let A = {(σW, p) : ∃i∃r S(x, r)i ̸= S′((x, r, i),W)}.482

Since PrW [∀i∀r : S(x, r)i = S′((x, r, i),W)] ≥ 1− 2−O(n) we have:483

∆(S′′∗, P ′′∗) = 1
2

∑
(σW,p)

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)]
∣∣484

≤ 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S′′∗ = (σW, p)]− Pr[P ′′∗ = (σW, p)])
∣∣485

= 1
2(2−O(n) +

∑
(σW,p)∈A

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣ Pr[W])486

≤ 2−O(n) +
∑
W

Pr[W] 12
∑
(σ,p)

∣∣ Pr[S∗ = (σ, p)]− Pr[P ∗ = (σ, p)]
∣∣487

= 2−O(n) + ∆(S∗, P ∗) = 2−O(n)
488

Therefore (S′′, P ′′, V ′′) is a NISZK⊕L protocol deciding Π. ◀489

5 Additional problems in NISZKL490

In this section, we give additional examples of problems in P that lie in NISZKL. These491

problems are not known to lie in (uniform) NC. Our main tool is to show that NISZKL is492

closed under a class of randomized reductions.493

The following definition is from [5]:494

▶ Definition 26. A promise problem A = (Y,N) is ≤BPL
m -reducible to B = (Y ′, N ′) with495

threshold θ if there is a logspace-computable function f and there is a polynomial p such that496

x ∈ Y implies Prr∈{0,1}p(|x|) [f(x, r) ∈ Y ′] ≥ θ.497

14 Robustness for Space-Bounded Statistical Zero Knowledge

x ∈ N implies Prr∈{0,1}p(|x|) [f(x, r) ∈ N ′] ≥ θ.498

Note, in particular, that the logspace machine computing the reduction has two-way access499

to the random bits r; this is consistent with the model of probabilistic logspace that is used500

in defining NISZKL.501

▶ Theorem 27. NISZKL is closed under ≤BPL
m reductions with threshold 1− 1

nω(1) .502

Proof. Let Π≤BPL
m EANC0 , via logspace-computable function f . Let (S1, V1, P1) be the NISZKL503

proof system for EANC0 .504

Algorithm 1 Simulator S(x, rσ′)

(σ, p)← S1(f(x, σ′), r);
return ((σ, σ′), p);

Algorithm 2 Verifier V (x, (σ, σ′), p)

return V1((f(x, σ′), σ, p))
505

Algorithm 3 Prover P (x, (σ, σ′))

return P1((f(x, σ′), σ));
506

We now claim that (S, P, V) is a NISZKL protocol for Π.507

It is apparent that S and V are computable in logspace. We just need to go through508

completeness, soundness, and statistical zero-knowledge of this protocol.509

Completeness: Suppose x is YES instance of Π. Then with probability 1− 1
nω(1) (over510

randomness of σ′), we have that f(x, σ′) is a YES instance of EANC0 . Thus for a randomly511

chosen σ:512

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 1] ≥ 1− 1
nω(1)513

Soundness: Suppose x is NO instance of Π. Then with probability 1 − 1
nω(1) (over514

randomness of σ′), we have that f(x, σ′) is a NO instance of EANC0 . Thus for a randomly515

chosen σ:516

Pr[V1(f(x, σ′), σ, P1(f(x, σ′), σ)) = 0] ≥ 1− 1
nω(1)517

Statistical Zero-Knowledge: If x is a YES instance, f(x, σ′) is a YES instance of EANC0518

with probability close to 1. For any YES instance y of EANC0 , the distribution given by519

S1 on input y is exponentially close the the distribution on transcripts (σ, p) induced by520

(V1, P1) on input y. Thus the distribution on (σσ′, p) induced by (V, P) has distance at521

most 1
nω(1) from the distribution produced by S on input x. The claim now follows by522

the comments regarding error probabilities in Definition 4.523

◀524

McKenzie and Cook [23] defined and studied the problems LCON, LCONX and LCONNULL.525

LCON is the problem of determining if a system of linear congruences over the integers mod526

q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL527

is the problem of computing a spanning set for the null space of the system.528

These problems are known to lie in uniform NC3 [23], but are not known to lie in uniform529

NC2, although Arvind and Vijayaraghavan showed that there is a set B in LGapL ⊆ DET ⊆ NC2
530

such that x ∈ LCON if and only if (x,W) ∈ B, where W is a randomly-chosen weight function531

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 15

[10]. (The probability of error is exponentially small.) The mapping x 7→ (x,W) is clearly a532

≤BPL
m reduction. Since DET ⊆ NISZKL [2], it follows that533

LCON ∈ NISZKL534

The arguments in [10] carry over to LCONX and LCONNULL as well.535

▶ Corollary 28. LCON ∈ NISZKL. LCONX ∈ NISZKL. LCONNULL ∈ NISZKL.536

6 Varying the Power of the Verifier537

In this section, we show that the computational complexity of the simulator is more important538

than the computational complexity of the verifier, in non-interactive protocols. The results in539

this section were motivated by our attempts to show that NISZKL = NISZKDET. Although we540

were unable to reach this goal, we were able to show that the verifier could be as powerful as541

DET, if the simulator was restricted to be no more powerful than NL. The general approach542

here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide543

a proof to convince a weak verifier that the more powerful verifier would accept.544

We define NISZKA,B as the class of problems with a NISZK protocol where the simulator545

is in A and the verifier is in B (and hence NISZKA = NISZKA,A).546

▶ Theorem 29. Let A and B be classes of functions that are closed under composition, where547

A ⊆ B ⊆ NISZKA. In addition, assume that each problem in B has a NISZKA-protocol with548

soundness error at most 2−n on inputs of length n.9 Then NISZKA,B = NISZKA.549

Proof. Let Π be an arbitrary promise problem in NISZKA,B with (S1, V1, P1) being the A550

simulator, B verifier, and prover for Π’s proof system, where the reference string has length551

p1(|x|) and the prover’s messages have length q1(|x|). Since V1 ∈ B ⊆ NISZKA, L(V1) has552

a proof system (S2, V2, P2), where the reference string has length p2(|x|) and the prover’s553

messages have length q2(|x|).554

▶ Lemma 30. We may assume without loss of generality that p1(n) > p2(n) + q2(n).555

Proof. If it is not the case that p1(n) > p2(n) + q2(n), then let r(n) = p2(n) + q2(n)− p1(n).556

Consider a new proof system (S′1, V ′1 , P ′1) that is identical to (S1, V1, P1), except that the557

reference string now has length p1(n) + r(n) (where P ′1 and V ′1 ignore the additional r(n)558

random bits). The simulator S′1 uses an additional r(n) random bits and simply appends559

those bits to the output of S1. The language L(V ′1) is still in NISZKA, with a proof system560

(S′2, V ′2 , P ′2) where the reference string still has length p2(n), since membership in L(V ′1) does561

not depend on the “new” r(n) random bits, and hence S′2, V ′2 and P ′2, given input (x, σr, p)562

behave exactly as S2, V2 and P2 behave when given input (x, σ, p). ◀563

9 We are confident that this condition will hold for most classes A, B of interest. For the specific classes
in {L, NL, DET} that are mentioned in the corollaries at the end of this section, and even for smaller
classes such as AC0[⊕], this can be seen to follow using the techniques of [17, Lemma 3.1]. For the case
of AC0, the proof of Theorem 18 shows that there is a NISZKAC0 protocol for SDU’NC0 that achieves error
2−nϵ

on inputs consisting of a circuit with m inputs and n output bits. But any problem in NISZKAC0

is reducible to SDU’NC0 via a length-increasing reduction that takes inputs of length r to instances of
SDU’NC0 that have r1/ϵ output bits, and thus there is a NISZKAC0 protocol that achieves error 2−r on
inputs of length r.

16 Robustness for Space-Bounded Statistical Zero Knowledge

Then Π has the following NISZKA proof system:564

Algorithm 4 Simulator S(x, r1, r2)

Data: x ∈ ΠY es ∪ΠNo

(σ, p)← S1(x, r1);
(σ′, p′)← S2((x, σ, p), r2);
return ((σ, σ′), (p, p′));

Algorithm 5 Verifier
V (x, (σ, σ′), (p, p′))

return V2((x, σ, p), σ′, p′)
565

Algorithm 6 Prover P (x, σσ′)

Data: x ∈ ΠY es ∪ΠNo, σ ∈ {0, 1}p1(|x|), σ′ ∈ {0, 1}p2(|x|)

if x ∈ ΠY es then
p← P1(x, σ);
p′ ← P2((x, σ, p), σ′);
return (p, p′);

else
return ⊥,⊥;

end

566

Correctness: Suppose x ∈ ΠY es, then given random σ, with probability (1− 1
2O(|x|)), we567

have that (x, σ, P1(x, σ)) ∈ L(V1), which means with probability (1− 1
2O(|x|+p1(|x|)+|p|)) it568

holds that ((x, σ, p), σ′, P2(x, σ, P1(x, σ)) ∈ L(V2). So the probability that V accepts is569

at least:570

(1− 1
2O(|x|))(1− 1

2O(|x|+p1(|x|)+q1(|x|))) = 1− 1
2O(|x|)571

Soundness: Suppose x ∈ ΠN . When given a random σ, let us say that σ is good if ∀p572

(x, σ, p) ̸∈ L(V1); otherwise, we say that σ is bad (because in this case the prover can cause573

the verifier V1 to accept erroneously). Since x ∈ ΠN , we have that the probability that σ574

is bad is less than 1
2O(|x|) . For a given σ, let us say that σ′ is bad for σ if there exists a p575

and p′ such that verifier V2 accepts ((x, σ, p), σ′, p′) (meaning that σ′ can cause verifier V2576

to accept erroneously). Furthermore, we have that V2 rejects (x, σ, p) with probability at577

least 1− 1
2|(x,p)| = 1− 1

2|x|+q1(|x|) for any (x, σ, p) ̸∈ L(V1) (for random σ′). Thus for any578

good σ, the probability that σ′ is bad for σ is at most
∑

p
1

2|x|+q1(|x|) = 2q1(|x|)

2|x|+q1(|x|) = 1
2|x| .579

We have that verifier V rejects x if σ is good, or if σ′ is not bad for σ. Thus the probability580

that V rejects x is at least581

(1− 1
2O(|x|))(1− 1

2|x|
) = 1− 1

2O(|x|)582

Statistical Zero-Knowledge: Let P ∗1 denote the distribution that samples σ and produces583

as output (σ, P1(x, σ)). Similarly, let P ∗2 (σ, p) denote the distribution that samples σ′ and584

outputs (σσ′, P2((x, σ, p), σ′). P ∗ will be defined as the distribution ((σσ′), P (x, σ, σ′)))585

where σ and σ′ are chosen uniformly at random. In the same way, let S∗ refer to the586

distribution produced by S on input x, let S∗1 refer to the distribution produced by S1(x),587

and let S∗2 (σ, p) be the distribution induced by S2 on input (x, σ, p).588

Now we can partition the set of possible outcomes ((σ, σ′), (p, p′)) of S∗ and P ∗ into 3589

blocks:590

1. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) accepts.591

2. ((σ, σ′), (p, p′)) such that V1(x, σ, p) accepts and V2((x, σ, p), σ′, p′) rejects.592

3. ((σ, σ′), (p, p′)) such that V1(x, σ, p) rejects.593

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 17

We will call these blocks A1, A2, and A3 respectively. Then by definition:594

∆(S∗, P ∗) = 1
2

∑
j∈{1,2,3}

∑
y∈Aj

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣595

= 1
2

∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣ + 1

2
∑

j∈{2,3}

∑
y∈Aj

[
Pr
S∗

[y] + Pr
P ∗

[y]
]

596

We concentrate first on A1.597 ∑
y∈A1

∣∣ Pr
S∗

[y]− Pr
P ∗

[y]
∣∣598

599

=
∑

(σ′,p′)

(∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]−Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣) (∗)600

Here601

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]602

and603

Pr
P ∗

[(σ′, p′)] =
∑
(σ,p)

Pr
P∗

[((σ, σ′), (p, p′))].604

We define δ(σ′, p′) :=
∣∣ PrS∗ [(σ′, p′)]−PrP ∗ [(σ′, p′)]

∣∣. Let us examine a single term of the605

sum (∗), for y = ((σ, σ′), (p, p′)):606

∣∣ Pr
S∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)]
∣∣607

=
∣∣(Pr

S∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)]− Pr

P ∗
[y|σ′, p′] Pr

S∗
[(σ′, p′)])+608

(Pr
P ∗

[y|σ′, p′] Pr
S∗

[(σ′, p′)]− Pr
P ∗

[y|σ′, p′] Pr
P ∗

[(σ′, p′)])
∣∣609

=
∣∣(Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)) Pr
S∗

[(σ′, p′)] + Pr
P ∗

1

[(σ, p)](Pr
S∗

[(σ′, p′)]− Pr
P ∗

[(σ′, p′)])
∣∣610

≤
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]− Pr

P ∗
[(σ′, p′)]

∣∣611

=
∣∣ Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)] + Pr

P ∗
1

[(σ, p)]δ(σ′, p′)612

Thus (*) is no more than613 ∑
(σ′,p′)

∑
(σ,p)

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ Pr

S∗
[(σ′, p′)]614

+
∑

(σ′,p′)

∑
{(σ,p):y=((σ,σ′),(p,p′))∈A1}

Pr
P ∗

1

[(σ, p)]δ(σ′, p′)615

≤
∑
(σ,p)

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣ +

∑
{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)616

= 2∆(S∗1 (x), P ∗1 (x)) +
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′)617

≤ 2
2|x|

+
∑

{(σ′,p′):∃(σ,p) ((σ,σ′),(p,p′))∈A1}

δ(σ′, p′) (∗∗)618

18 Robustness for Space-Bounded Statistical Zero Knowledge

Let us consider a single term δ(σ′, p′) in the summation in (∗∗). Recalling that the619

probability that S(x) = ((σ, σ′), (p, p′)) is equal to the probability that S1(x) = (σ, p)620

and S2(x, σ, p) = (σ′, p′), we have621

Pr
S∗

[(σ′, p′)] =
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))]622

=
∑
(σ,p)

Pr
S∗

[((σ, σ′), (p, p′))|(σ, p)] Pr
S∗

[(σ, p)]623

=
∑
(σ,p)

Pr
S∗

2 (σ,p)
[(σ′p′)] Pr

S∗
1

[(σ, p)]624

and similarly PrP ∗ [(σ′, p′)] =
∑

(σ,p) PrP ∗
2 (σ,p)[(σ′p′)] PrP ∗

1
[(σ, p)]. Thus625

δ(σ′, p′) =
∣∣ Pr

S∗
[σ′, p′]− Pr

P ∗
[σ′, p′]

∣∣626

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[σ, p]
∣∣627

=
∣∣ ∑

(σ,p)

Pr
S∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]628

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

S∗
1

[(σ, p)]−
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)] Pr

P ∗
1

[(σ, p)]
∣∣629

=
∣∣ ∑

(σ,p)

(Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]) Pr
S∗

1

[(σ, p)]630

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)](Pr

S∗
1

[(σ, p)]− Pr
P ∗

1

[(σ, p)])
∣∣631

≤
∑
(σ,p)

∣∣ Pr
S∗

2 (σ,p)
[(σ′, p′)]− Pr

P ∗
2 (σ,p)

[(σ′, p′)]
∣∣ Pr

S∗
1

[(σ, p)]632

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣633

=
∑
(σ,p)

2∆(S∗2 (σ, p), P ∗2 (σ, p)) Pr
S∗

1

[(σ, p)]634

+
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣635

≤
∑
(σ,p)

2
2|(x,σ,p)| Pr

S∗
1

[(σ, p)] +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣636

= 2
2|x|+p1(|x|)+q1(|x|) +

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣637

where the last inequality holds, since the summation in (∗∗) is taken over tuples, such638

that each (x, σ, p) is a YES instance of L(V1).639

Replacing each term in (∗∗) with this upper bound, thus yields the following upper bound640

on (∗):641

2
2|x|

+
∑

(σ′,p′)

(
2

2|x|+p1(|x|)+q1(|x|) +
∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)642

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 19

643

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) +
∑

(σ′,p′)

∑
(σ,p)

Pr
P ∗

2 (σ,p)
[(σ′, p′)]

∣∣ Pr
S∗

1

[(σ, p)]− Pr
P ∗

1

[(σ, p)]
∣∣)644

645

= 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2∆(S∗1 , P ∗1)646

647

≤ 2
2|x|

+ 2 · 2p2(|x|)+q2(|x|)

2|x|+p1(|x|)+q1(|x|) + 2
2|x|

648

649

≤ 2
2|x|

+ 2
2|x|

+ 2
2|x|

650

where the last inequality follows from Lemma 30. Thus, A1 contributes only a negligible651

quantity to ∆(S∗, P ∗).652

We now move on to consider A2 and A3.653

Pr
P ∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

Pr[V2(x, σ, p) rejects] ≤
∑
(σ,p)

1
2|x|+|σ|+|p|

≤ 1
2|x|

.654

Pr
S∗

[y ∈ A2] =
∑

{(σ,p):(x,σ,p)∈L(V1)}

(Pr[V2(x, σ, p) rejects] + ∆(S∗2 (σ, p), P ∗2 (σ, p))) ≤ 2
2|x|

.655

A similar and simpler calculation shows that PrP ∗ [y ∈ A3] ≤ 1
2|x| and PrS∗ [y ∈ A3] ≤ 2

2|x| ,656

to complete the proof.657

◀658

▶ Corollary 31. NISZKL = NISZKAC0 = NISZKAC0,DET = NISZKNL,DET659

Proof. DET contains AC0 and is contained in NISZKL. By Theorem 11, NISZKL = NISZKAC0 ,660

and thus by Theorem 29 NISZKAC0,DET = NISZKAC0 . Also, since AC0 ⊆ NL ⊆ PM and661

NISZKL = NISZKPM (by Theorem 25), it follows that NISZKNL ⊆ NISZKPM = NISZKAC0 =662

NISZKNL. Thus, again by Theorem 29, NISZKNL,DET = NISZKNL = NISZKL.663

◀664

The proof of Theorem 29 did not make use of the condition that the verifier is at least as665

powerful as the simulator. Thus, maintaining the condition that A ⊆ B ⊆ NISZKA, we also666

have the following corollaries:667

▶ Corollary 32. NISZKB = NISZKB,A668

▶ Corollary 33. NISZKA,B ⊆ NISZKB,A669

▶ Corollary 34. NISZKDET = NISZKDET,AC0670

7 SZKL closure under ≤L
bf−tt reductions671

Although our focus in this paper has been on NISZKL, in this section we report on a closure672

property of the closely-related class SZKL.673

The authors of [15], after defining the class SZKL, wrote:674

20 Robustness for Space-Bounded Statistical Zero Knowledge

We also mention that all the known closure and equivalence properties of SZK (e.g.675

closure under complement [25], equivalence between honest and dishonest verifiers676

[18], and equivalence between public and private coins [25]) also hold for the class677

SZKL.678

In this section, we consider a variant of a closure property of SZK (closure under ≤P
bf−tt679

[28]), and show that it also holds10 for SZKL. Although our proof follows the general approach680

of the proof of [28, Theorem 4.9], there are some technicalities with showing that certain681

computations can be accomplished in logspace (and for dealing with distributions represented682

by branching programs instead of circuits) that require proof. (The characterization of SZKL683

in terms of reducibility to the Kolmogorov-random strings presented in [5, Theorem 34] relies684

on this closure property.)685

▶ Definition 35. (From [28, Definition 4.7]) For a promise problem Π, the characteristic686

function of Π is the map XΠ : {0, 1}∗ → {0, 1, ∗} given by687

XΠ(x) =


1 if x ∈ ΠY es,

0 if x ∈ ΠNo,

∗ otherwise.
688

▶ Definition 36. Logspace Boolean formula truth-table reduction (≤L
bf−tt reduction): We689

say a promise problem Π logspace Boolean formula truth-table reduces to Γ if there690

exists a logspace-computable function f , which on input x produces a tuple (y1, . . . , ym) and691

a Boolean formula ϕ (with m input gates) such that:692

x ∈ ΠY es =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 1693

694

x ∈ ΠNo =⇒ ϕ(XΓ(y1), . . . ,XΓ(ym)) = 0695

We begin by proving a logspace analogue of a result from [28], used to make statistically696

close pairs of distributions closer and statistically far pairs of distributions farther.697

▶ Lemma 37. (Polarization Lemma, adapted from [28, Lemma 3.3]) There is a logspace-698

computable function that takes a triple (P1, P2, 1k), where P1 and P2 are branching programs,699

and outputs a pair of branching programs (Q1, Q2) such that:700

∆(P1, P2) < 1
3 =⇒ ∆(Q1, Q2) < 2−k

701

702

∆(P1, P2) > 2
3 =⇒ ∆(Q1, Q2) > 1− 2−k

703

To prove this, we adapt the same method as in [28] and alternate two different procedures,704

one to drive pairs with large statistical distance closer to 1, and one to drive distributions705

with small statistical distance closer to 0. The following lemma will do the former:706

▶ Lemma 38. (Direct Product Lemma, from [28, Lemma 3.4]) Let X and Y be distributions707

such that ∆(X,Y) = ϵ. Then for all k,708

kϵ ≥ ∆(⊗kX,⊗kY) ≥ 1− 2 exp(−kϵ2/2)709

10We observe that open questions about closure properties of NISZK also translate to open questions
about NISZKL. NISZK is not known to be closed under union [26], and neither is NISZKL. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 21

The proof of this statement follows from [28]. To use this for Lemma 37, we note that a710

branching program for ⊗kP can easily be created in logspace from a branching program P711

by simply copying and concatenating k independent copies of P together.712

We now introduce a lemma to push close distributions closer:713

▶ Lemma 39. (XOR Lemma, adapted from [28, Lemma 3.5]) There is a logspace-computable714

function that maps a triple (P0, P1, 1k), where P0 and P1 are branching programs, to a pair715

of branching programs (Q0, Q1) such that ∆(Q0, Q1) = ∆(P0, P1)k. Specifically, Q0 and Q1716

are defined as follows:717

Q0 =
⊗
i∈[k]

Pyi : y ∼ {y ∈ {0, 1}k : ⊕i∈[k]yi = 0}718

719

Q1 =
⊗
i∈[k]

Pyi
: y ∼ {y ∈ {0, 1}k : ⊕i∈[k]yi = 1}720

Proof. The proof that ∆(Q0, Q1) = ∆(P0, P1)k follows from [28, Proposition 3.6]. To finish721

proving this lemma, we show a logspace-computable mapping between (P0, P1, 1k) and722

(Q0, Q1).723

Let ℓ and w be the max length and width between P0 and P1. We describe the structure724

of Q0, with Q1 differing in a small step: to begin with, Q0 reads the k − 1 random bits725

y1, . . . , yk−1. For each of the random bits, it can pick the correct of two different branches,726

one having P0 built in at the end and the other having P1. We will read y1, branch to P0727

or P1 (and output the distribution accordingly), then unconditionally branch to reading y2728

and repeat until we reach yk−1 and branch to P0 or P1. We then unconditionally branch to729

y1 and start computing the parity, and at the end we will be able to decide the value of yk730

which will allow us to branch to the final copy of P0 or P1.731

Figure 1 Branching program for Q0 of Lemma 39

Creating (Q0, Q1) can be done in logspace, requiring logspace to create the section to732

compute yk and logspace to copy the independent copies of P0 and P1.733

◀734

We now have the tools to prove Lemma 37.735

Proof. (of Lemma 37) From [28, Section 3.2], we know that we can polarize (P0, P1, 1k) by:736

Letting l = ⌈log4/3 6k⌉, j = 3l−1
737

Applying Lemma 39 to (P0, P1, 1l) to get (P ′0, P ′1)738

Applying Lemma 38: P ′′0 = ⊗jP ′0, P ′′1 = ⊗jP ′1739

Applying Lemma 39 to (P ′′0 , P ′′1 , 1k) to get (Q0, Q1)740

Each step is computable in logspace, and since logspace is closed under composition, this741

completes our proof. ◀742

22 Robustness for Space-Bounded Statistical Zero Knowledge

We also mention the following lemma, which will be useful in evaluating the Boolean743

formula given by the ≤L
bf−tt reduction.744

▶ Lemma 40. There is a function in NC1 that takes as input a Boolean formula ϕ (with m745

input bits) and produces as output an equivalent formula ψ with the following properties:746

1. The depth of ψ is O(logm).747

2. ψ is a tree with alternating levels of AND and OR gates.748

3. The tree’s non-leaf structure is always the same for a fixed input length, and is a complete749

binary tree.750

4. All NOT gates are located just before the leaves.751

Proof. Although this lemma does not seem to have appeared explicitly in the literature, it752

is known to researchers, and is closely related to results in [16] (see Theorems 5.6 and 6.3,753

and Lemma 3.3) and in [6] (see Lemma 5).754

The Boolean formula that is given as input may be encoded in the usual infix notation755

over the alphabet {0, 1, x,), (}, where leaf nodes connected to variable xi are expressed by756

the string (xb) (where the string b is the binary representation of the number i), and where757

leaf nodes connected to the constants 0 and 1 are expressed by the strings (0) and (1),758

respectively, and more complicated expressions can be built from formulae α and β as (α∨β),759

(α ∧ β), and (¬α). Since the formula produced as output has a very restricted form (with an760

AND gate at the root, and alternating layers of AND and OR gates forming a full binary761

tree) the output formula can simply be encoded as a list of 2d leaf nodes. Thus 0,¬x10, x11, 1762

would be a representation of the formula (((0) ∨ (¬(x2))) ∧ ((x3) ∨ (1))).763

The lemma is proved by using the fact that the Boolean formula evaluation problem764

lies in NC1 [11, 12], and thus there is an alternating Turing machine M running in O(logn)765

time that takes as input a Boolean formula ψ and an assignment α to the variables of ψ,766

and returns ψ(α). We may assume without loss of generality that M alternates between767

existential and universal states at each step, and that M runs for exactly c logn steps on768

each path (for some constant c), and that M accesses its input (via the address tape that is769

part of the alternating Turing machine model) only at a halting step, and that M records770

the sequence of states that it has visited along the current path in the current configuration.771

Thus the configuration graph of M , on inputs of length n, corresponds to a formula of772

O(logn) depth having the desired structure, and this formula can be constructed in NC1.773

Given a formula ϕ, an NC1 machine can thus build this formula, and hardwire in the bits that774

correspond to the description of ϕ, and identify the remaining input variables (corresponding775

to M reading the bits of α) with the variables of ϕ. The resulting formula is equivalent to ϕ776

and satisfies the conditions of the lemma. ◀777

▶ Definition 41. (From [28, Definition 4.8]) For a promise problem Π, we define a new778

promise problem Φ(Π) as follows:779

Φ(Π)Y es = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 1}780

781

Φ(Π)No = {(ϕ, x1, . . . , xm) : ϕ(XΠ(x1), . . . ,XΠ(xm)) = 0}782

▶ Theorem 42. SZKL is closed under ≤L
bf−tt reductions.783

To begin the proof of this theorem, we first note that as in the proof of [28, Lemma 4.10],784

given two SDBP pairs, we can create a new pair which is in SDBP,No if both of the original785

two pairs are (which we will use to compute ANDs of queries.) We can also compute in786

logspace the OR query for two queries by creating a pair (P1 ⊗ S1, P2 ⊗ S2). We prove that787

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 23

these operations produce an output with the correct statistical difference with the following788

two claims:789

▷ Claim 43. {(y1, y2)|XSDBP(y1) ∨ XSDBP(y2) = 1}≤L
mSDBP.790

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are791

guaranteed that:792

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p793

794

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p795

Then consider:796

y = (A1 ⊗A2, B1 ⊗B2)797

Let us analyze the Yes and No instance of XSDBP(y1) ∨ XSDBP(y2):798

YES: ∆(A1 ⊗ A2, B1 ⊗ B2) ≥ max{∆(A1 ⊗ B2, B1 ⊗ B2),∆(B1 ⊗ A2, B1 ⊗ B2)} =799

max{∆(A1, B1),∆(A2, B2)} > 1− p.800

NO11: ∆(A1 ⊗A2, B1 ⊗B2) ≤ ∆(A1, B1) + ∆(A2, B2) < 2p.801

◀802

In our Boolean formula, we will have only d = O(logm) depth, so we have this OR operation803

for at most d+1
2 levels (and the soundness gap doubles at every level). Since p = 1

2m at the804

beginning, the gap (for NO instance) will be upper bounded at the end by:805

< 2
d+1

2
1

2m
= mO(1)

2m
< 1/3.806

▷ Claim 44. {(y1, y2)|XSDBP(y1) ∧ XSDBP(y2) = 1} ≤L
m SDBP.807

Proof. Let y1 = (A1, B1) and y2 = (A2, B2). Let p > 0 be a parameter, where we are808

guaranteed that:809

(Ai, Bi) ∈ SDBP,Y =⇒ ∆(Ai, Bi) > 1− p810

811

(Ai, Bi) ∈ SDBP,N =⇒ ∆(Ai, Bi) < p812

We can construct a pair of BPs y = (A,B) whose statistical difference is exactly813

∆(A1, B1) ·∆(A2, B2)814

The pair (A,B) we construct is analogous to (Q0, Q1) in Lemma 39, and can be created815

in logspace with 2 random bits b0, b1. We have A = (A1, A2) if b0 = 0 and A = (B1, B2) if816

b0 = 1, while B = (A1, B2) if b2 is 0 and (A2, B1) if b1 = 1.817

Let us analyze the Yes and No instance of XSDBP(y1) ∧ XSDBP(y2):818

YES: ∆(A1, B1) ·∆(A2, B2) > (1− p)2.819

NO: ∆(A1, B1) ·∆(A2, B2) ≤ min{∆(A1, B1),∆(A2, B2)} < p.820

◀821

11 For the first inequality here, see [28, Fact 2.3].

24 Robustness for Space-Bounded Statistical Zero Knowledge

In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation822

for at most d+1
2 levels (and the completeness gap squares itself at every level). Since p = 1

2m823

at the beginning, the gap (for YES instance) will be lower bounded at the end by:824

> (1− 1
2m

)2
d+1

2 = (1− 1
2m

)mO(1)
> (1− 1

2m
)2m/m ≈ (1

e
)1/m >

2
3 .825

Proof. (of Theorem 42) Now suppose that we are given a promise problem Π such that826

Π ≤L
bf−tt SDBP. We want to show Π ≤L

m SDBP, which by SZKL’s closure under ≤L
m reductions827

implies Π ∈ SZKL.828

We follow the steps below on input x to create an SDBP instance (F0, F1) which is in829

SDBP,Y if x ∈ ΠY , and is in SDBP,N if x ∈ ΠN :830

1. Run the L machine for the ≤L
bf−tt reduction on x to get queries (q1, . . . , qm) and the831

formula ϕ.832

2. Build ψ from ϕ using Lemma 40. Recalling that there is a ≤L
m reduction f reducing SDBP833

to its complement, replace each negated query ¬qi with f(qi), so that we can now view ψ834

as a monotone Boolean formula reducing Π to SDBP. Since the Polarization Lemma (37)835

maps YES instances to YES instances and NO instances to NO instances, we can also836

use the same formula ψ on the polarized instances that we obtain by applying Lemma 37837

with k = n to these queries, to obtain a new list of queries (y1, . . . , ym). Furthermore we838

may pad these queries, so that each query yi consists of a pair of branching programs839

(instances of SDBP) where all of the branching programs have the same number of output840

bits.841

3. Using the formula ψ, build a “template tree” T . At the leaf level, for each variable in ψ,842

we will plug in the corresponding query yi; interior nodes are labeled AND or OR. By843

Lemma 40 the tree T is full. Using Claims 43 and 44, each node of the template tree is844

associated with a pair of branching programs, with the pair (F0, F1) at the root being the845

output of our ≤L
m reduction. It is important to note that the constructions in Claims 43846

and 44 produce distributions, where each output bit is simply a copy of one of the output847

bits of the distributions that feed into it. Thus each output bit of F0 and F1 is simply a848

copy of one of the output bits of one of the pairs of branching programs that constitute849

one of the input queries yi.850

4. Given x and designated output position j of F0 or F1, there is a logspace computation851

which finds the original output bit from y1 . . . ym that bit j was copied from. This machine852

traverses down the template tree from the output bit and records the following:853

The node that the computation is currently at on the template tree, with the path854

taken depending on j.855

The position of the random bits used to decide which path to take when we reach856

nodes corresponding to AND.857

This takes O(logm) space. We can use this algorithm to copy and compute each output858

bit of F0 and F1, creating (F0, F1) in logspace.859

For step 4, we give an algorithm Eval(x, j, ψ, y1, . . . , ym) to compute the jth output bit of860

F0 or F1 on x, for a formula ψ satisfying the properties of Lemma 40, a list of SDBP queries861

(y1, . . . , ym), and j. Without loss of generality, we lay out the algorithm to compute only862

F0(x).863

Outline of Eval(x, j, ψ, y1, . . . , ym) :864

The idea is to compute the jth output bit of F0 by recursively calculating which query865

output bit it was copied from. To do this, first notice that the AND and OR operations866

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 25

produce branching programs where each output bit is copied from exactly one output bit of867

one of the query branching programs, so composing these operations together tells us that868

every output bit in F0 is copied from exactly one output bit from one query. By Lemma 40869

and our AND and OR operations preserving the number of output bits, we also have that870

if every BP has l output bits, F0 will have 2al = |ψ|l output bits, where a is the depth of871

ψ. This can be used to recursively calculate which query the jth bit is from: for an OR872

gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with873

each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an874

AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and875

then use the 4 random bits for the XOR operation to compute which fourth corresponds to876

which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2877

fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,878

then at the query level, we can directly return the j′th output bit. This can be done in879

logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace880

to record and update j′, logspace to compute 2al at each level, and logspace to compute881

which subtree/query the output bit comes from at each level.882

The resulting BP will be two distributions that will be in SDBP,Y ⇐⇒ x ∈ ΠY . By this883

process Π ≤L
m SDBP. ◀884

8 Open Questions885

The main open question is whether NISZK is equal to NISZKL. Partial progress on this886

problem can be achieved by finding additional subclasses of P that lie in NISZKL (extending887

the work presented in Section 5).888

On a more concrete level, can the results of Section 6 be improved, in order to show889

that NISZKL = NISZKDET? Or, more ambitiously, given the role that randomized encodings890

play in our results, is it possible that all problems in the class SREN (problems with891

statistical randomized encodings) lie in NISZKL, or even (as suggested by the referees) that892

NISZKL = NISZKSREN?893

The referees have also suggested that it would be interesting to consider classes defined894

in terms of non-uniform verifiers and simulators.895

Acknowledgments896

This work was done in part while EA and HT were visiting the Simons Institute for the897

Theory of Computing. This work was carried out while JG, SM, and PW were participants898

in the 2022 DIMACS REU program at Rutgers University. We thank Yuval Ishai for helpful899

conversations about SREN, and we thank Markus Lohrey, Sam Buss, and Dave Barrington900

for useful discussions about Lemma 40. We also thank the anonymous referees for helpful901

comments.902

References903

1 Eric Allender. Guest column: Parting thoughts and parting shots (read on for details on how904

to win valuable prizes!). SIGACT News, 54(1):63–81, 2023. doi:10.1145/3586165.3586175.905

2 Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic hardness906

under projections for time-bounded Kolmogorov complexity. Theoretical Computer Science,907

940:206–224, 2023. doi:10.1016/j.tcs.2022.10.040.908

https://doi.org/10.1145/3586165.3586175
https://doi.org/10.1016/j.tcs.2022.10.040

26 Robustness for Space-Bounded Statistical Zero Knowledge

3 Eric Allender, Jacob Gray, Saachi Mutreja, Harsha Tirumala, and Pengxiang Wang. Robustness909

for space-bounded statistical zero knowledge. In Nicole Megow and Adam Smith, editors, Proc.910

International Workshop on Randomization and Computation (RANDOM 2023), volume 275911

of LIPIcs, pages 56:1–56:21, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum912

fuer Informatik. doi:10.4230/LIPIcs.APPROX/RANDOM.2023.56.913

4 Eric Allender and Shuichi Hirahara. New insights on the (non-) hardness of circuit minimization914

and related problems. ACM Transactions on Computation Theory (TOCT), 11(4):1–27, 2019.915

doi:10.1145/3349616.916

5 Eric Allender, Shuichi Hirahara, and Harsha Tirumala. Kolmogorov complexity characterizes917

statistical zero knowledge. In 14th Innovations in Theoretical Computer Science Confer-918

ence (ITCS), volume 251 of LIPIcs, pages 3:1–3:19. Schloss Dagstuhl - Leibniz-Zentrum für919

Informatik, 2023. doi:10.4230/LIPIcs.ITCS.2023.3.920

6 Eric Allender and Ian Mertz. Complexity of regular functions. Journal of Computer and921

System Sciences, 104:5–16, 2019. Language and Automata Theory and Applications - LATA922

2015. doi:10.1016/j.jcss.2016.10.005.923

7 Eric Allender and Mitsunori Ogihara. Relationships among PL, #L, and the determinant.924

RAIRO Theor. Informatics Appl., 30(1):1–21, 1996. doi:10.1051/ita/1996300100011.925

8 Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting uniform926

and nonuniform upper bounds. Journal of Computer and System Sciences, 59(2):164–181,927

1999. doi:10.1006/jcss.1999.1646.928

9 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM Journal929

on Computing, 36(4):845–888, 2006. doi:10.1137/S0097539705446950.930

10 V. Arvind and T. C. Vijayaraghavan. Classifying problems on linear congruences and abelian931

permutation groups using logspace counting classes. computational complexity, 19(1):57–98,932

November 2009. doi:10.1007/s00037-009-0280-6.933

11 Samuel R. Buss. The Boolean formula value problem is in ALOGTIME. In Proceedings of the934

19th Annual ACM Symposium on Theory of Computing (STOC), pages 123–131. ACM, 1987.935

doi:10.1145/28395.28409.936

12 Samuel R Buss. Algorithms for Boolean formula evaluation and for tree contraction. Arithmetic,937

Proof Theory, and Computational Complexity, 23:96–115, 1993.938

13 Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party com-939

putation over rings. In Proc. International Conference on the Theory and Applications of940

Cryptographic Techniques; Advances in Cryptology (EUROCRYPT), volume 2656 of Lecture941

Notes in Computer Science, pages 596–613. Springer, 2003. doi:10.1007/3-540-39200-9_37.942

14 Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung. Image density943

is complete for non-interactive-SZK (extended abstract). In Proc. International Conference on944

Automata, Languages, and Programming (ICALP), volume 1443 of Lecture Notes in Computer945

Science, pages 784–795. Springer, 1998. This paper claims that NISZK is closed under946

complement, but this claim was later retracted. doi:10.1007/BFb0055102.947

15 Zeev Dvir, Dan Gutfreund, Guy N Rothblum, and Salil P Vadhan. On approximating the948

entropy of polynomial mappings. In Second Symposium on Innovations in Computer Science,949

pages 460–475. Tsinghua University Press, 2011.950

16 Moses Ganardi and Markus Lohrey. A universal tree balancing theorem. ACM Transactions951

on Computation Theory, 11(1):1:1–1:25, 2019. doi:10.1145/3278158.952

17 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made953

non-interactive? or On the relationship of SZK and NISZK. In Annual International Cryptology954

Conference, pages 467–484. Springer, 1999. doi:10.1007/3-540-48405-1_30.955

18 Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Honest-verifier statistical zero-knowledge956

equals general statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on957

the Theory of Computing (STOC), pages 399–408. ACM, 1998. doi:10.1145/276698.276852.958

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.56
https://doi.org/10.1145/3349616
https://doi.org/10.4230/LIPIcs.ITCS.2023.3
https://doi.org/10.1016/j.jcss.2016.10.005
https://doi.org/10.1051/ita/1996300100011
https://doi.org/10.1006/jcss.1999.1646
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1007/s00037-009-0280-6
https://doi.org/10.1145/28395.28409
https://doi.org/10.1007/3-540-39200-9_37
https://doi.org/10.1007/BFb0055102
https://doi.org/10.1145/3278158
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1145/276698.276852

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang 27

19 Ulrich Hertrampf, Steffen Reith, and Heribert Vollmer. A note on closure properties of959

logspace MOD classes. Information Processing Letters, 75(3):91–93, 2000. doi:10.1016/960

S0020-0190(00)00091-0.961

20 Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect962

randomizing polynomials. In Proc. International Conference on Automata, Languages, and963

Programming (ICALP), volume 2380 of Lecture Notes in Computer Science, pages 244–256.964

Springer, 2002. doi:10.1007/3-540-45465-9_22.965

21 Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random966

NC. Combinatorica, 6(1):35–48, 1986. doi:10.1007/BF02579407.967

22 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,968

and learnability. J. ACM, 40(3):607–620, 1993. doi:10.1145/174130.174138.969

23 Pierre McKenzie and Stephen A. Cook. The parallel complexity of Abelian permutation group970

problems. SIAM Journal on Computing, 16(5):880–909, 1987. doi:10.1137/0216058.971

24 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix972

inversion. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing973

(STOC), pages 345–354. ACM, 1987. doi:10.1145/28395.383347.974

25 Tatsuaki Okamoto. On relationships between statistical zero-knowledge proofs. Journal of975

Computer and System Sciences, 60(1):47–108, 2000. doi:10.1006/jcss.1999.1664.976

26 Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-knowledge proofs977

for lattice problems. In Proc. Advances in Cryptology: 28th Annual International Cryptology978

Conference (CRYPTO), volume 5157 of Lecture Notes in Computer Science, pages 536–553.979

Springer, 2008. doi:10.1007/978-3-540-85174-5_30.980

27 Vishal Ramesh, Sasha Sami, and Noah Singer. Simple reductions to circuit minimization:981

DIMACS REU report. Technical report, DIMACS, Rutgers University, 2021. Internal982

document.983

28 Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,984

50(2):196–249, 2003. doi:10.1145/636865.636868.985

29 Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal on Computing,986

33(5):1093–1108, 2004. doi:10.1137/S009753970241096X.987

30 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &988

Business Media, 1999. doi:10.1007/978-3-662-03927-4.989

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1016/S0020-0190(00)00091-0
https://doi.org/10.1007/3-540-45465-9_22
https://doi.org/10.1007/BF02579407
https://doi.org/10.1145/174130.174138
https://doi.org/10.1137/0216058
https://doi.org/10.1145/28395.383347
https://doi.org/10.1006/jcss.1999.1664
https://doi.org/10.1007/978-3-540-85174-5_30
https://doi.org/10.1145/636865.636868
https://doi.org/10.1137/S009753970241096X
https://doi.org/10.1007/978-3-662-03927-4

