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——— Abstract

We show that the space-bounded Statistical Zero Knowledge classes SZK and NISZK| are surprisingly
robust, in that the power of the verifier and simulator can be strengthened or weakened without
affecting the resulting class. Coupled with other recent characterizations of these classes [5], this
can be viewed as lending support to the conjecture that these classes may coincide with the
non-space-bounded classes SZK and NISZK, respectively.
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Robustness for Space-Bounded Statistical Zero Knowledge

1 Introduction

The complexity class SZK (Statistical Zero Knowledge) and its “non-interactive” subclass
NISZK have been studied intensively by the research communities in cryptography and
computational complexity theory. In [15], a space-bounded version of SZK, denoted SZK_
was introduced, primarily as a tool for understanding the complexity of estimating the
entropy of distributions represented by very simple computational models (such as low-degree
polynomials, and NC° circuits). There, it was shown that SZK| contains many important
problems previously known to lie in SZK, such as Graph Isomorphism, Discrete Log, and
Decisional Diffie-Hellman. The corresponding “non-interactive” subclass of SZK| , denoted
NISZK|, was subsequently introduced in [2], primarily as a tool for clarifying the complexity
of computing time-bounded Kolmogorov complexity under very restrictive reducibilities (such
as projections). Just as every problem in SZK g@fo reduces to problems in NISZK [17], so
also every problem in SZKLgﬁtCO reduces to problems in NISZK| , and thus NISZK| contains
intractable problems if and only if SZK| does.

Very recently, all of these classes were given surprising new characterizations, in terms
of efficient reducibility to the Kolmogorov random strings. Let EK be the (undecidable)
promise problem (YEK’NEK) where Y7 contains all strings y such that K (y) > |y|/2 and
the NO instances Ng - consists of those strings y where K(y) < |y|/2 — e(|y|) for some

approximation error term e(n), where e(n) = w(logn) and e(n) = n°™).
» Theorem 1. [5] Let A be a decidable promise problem. Then

A € NISZK if and only if A is reducible to Ry by randomized polynomial time reductions.
A € NISZKy, if and only if A is reducible to Ry by randomized AC° or logspace reductions.
A € SZK if and only if A is reducible to Ry by randomized polynomial time “Boolean
formula” reductions.

A € SZKy, if and only if A is reducible to Ry by randomized logspace “Boolean formula
reductions.

»”

In all cases, the randomized reductions are restricted to be “honest”, so that on inputs of
length n all queries are of length > ne.

There are very few natural examples of computational problems A where the class of
problems reducible to A via polynomial-time reductions differs (or is conjectured to differ)
from the class or problems reducible to A via AC® reductions. For example the natural
complete problems for NISZK under <P reductions remain complete under AC? reductions.
Thus Theorem 1 gives rise to speculation that NISZK and NISZK| might be equal. (This
would also imply that SZK = SZK| .)

This motivates a closer examination of SZK, and NISZK, to answer questions that have
not been addressed by earlier work on these classes.

Our main results are:

1. The verifier and simulator may be very weak. NISZK, and SZK| are defined in
terms of three algorithms: (1) A logspace-bounded verifier, who interacts with (2) a
computationally-unbounded prover, following the usual rules of an interactive proof, and
(3) a logspace-bounded simulator, who ensures the zero-knowledge aspects of the protocol.
(More formal definitions are to be found in Section 2.) We show that the verifier and
simulator can be restricted to lie in AC®. Let us explain why this is surprising.

The proof presented in [2], showing that EAyco is complete for NISZK|, makes it clear
that the verifier and simulator can be restricted to lie in AC’[@] (as was observed in [27]).
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But the proof in [2] (and a similar argument in [17]) relies heavily on hashing, and it is
known that, although there are families of universal hash functions in AC’[@®], no such
families lie in AC” [22]. We provide an alternative construction, which avoids hashing,
and allows the verifier and simulator to be very weak indeed.

2. The verifier and simulator may be somewhat stronger. The proof presented in

[2], showing that EAnco is complete for NISZK|, also makes it clear that the verifier and
simulator can be as powerful as ®L, without leaving NISZK| . This is because the proof
relies on the fact that logspace computation lies in the complexity class PREN of functions
that have perfect randomized encodings [9], and @L also lies in PREN. Applebaum,
Ishai, and Kushilevitz defined PREN and the somewhat larger class SREN (for statistical
randomized encodings), in proving that there are one-way functions in SREN if and only
if there are one-way functions in NC°. They also showed that other important classes
of functions, such as NL and GapL, are contained in SREN.! We initially suspected that
NISZK_ could be characterized using verifiers and simulators computable in GapL (or
even in the slightly larger class DET, consisting of problems that are S%‘«Cl reducible to
Gapl), since DET is known to be contained in NISZK| [2].? However, we were unable to
reach that goal.
We were, however, able to show that the simulator and verifier can be as powerful as NL,
without making use of the properties of SREN. In fact, we go further in that direction.
We define the class PM, consisting of those problems that are S%—reducible to the Perfect
Matching problem. PM contains NL [21], and is not known to lie in (uniform) NC (and it
is not known to be contained in SREN). We show that statistical zero knowledge protocols
defined using simulators and verifiers that are computable in PM yield only problems in
NISZK|.

3. The complexity of the simulator is key. As part of our attempt to characterize
NISZK| using simulators and verifiers computable in DET, we considered varying the
complexity of the simulator and the verifier separately. Among other things, we show
that the verifier can be as complex as DET if the simulator is logspace-computable.
In most cases of interest, the NISZK class defined with verifier and simulator lying in
some complexity class remains unchanged if the rules are changed so that the verifier is
significantly stronger or weaker.

We also establish some additional closure properties of NISZK, and SZK|, some of which
are required for the characterizations given in [5]. The rest of the paper is organized as
follows;

In Section 3, we show how NISZK, can be defined equivalently using an AC® verifier
and simulator. Formally, we prove that NISZK| = NISZK,co. Our proof involves defining a
modification of the complete problem for NISZK| , which remains complete for the class under
a suitably weak form of reduction. The proof that this problem is in NISZK| involves hashing
with a logspace verifier, which we cannot perform in AC’. To get around this problem, we
use a randomized encoding of a logspace machine computing this hashing. The randomized
encoding is both computable by an AC? verifier and preserves several important properties
of the original post-hashing distribution, which allows the modified complete problem to be
solved in NISZKco and establish the stated result.

! This is not stated explicitly for GapL, but it follows from [20, Theorem 1]. See also [13, Section 4.2].
2 More precisely, as observed in [4], the Rigid Graph (non-) Isomorphism problem is hard for DET [29],
and the Rigid Graph Non-Isomorphism problem is in NISZK [2, Corollary 23].
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Section 4 involves showing that increasing the power of the verifier and simulator to lie in
PM does not increase the size of NISZK| (where PM is the class of problems (containing NL)
that are logspace Turing reducible to Perfect Matching). We show that NISZK_ = NISZKpp
in two steps: first, we begin by showing that NISZK_ = NISZK g, using that problems in &L
have easily computable (ACO) randomized encodings that retain some important statistical
properties of the original distribution. The second step is to prove that NISZKpy C NISZK g, .
To do this, we utilize ideas from [8] to show how strings chosen uniformly at random can
help in reducing instances of problems in PM to instances of a language in L. This allows
us to prove that NISZKpm C NISZKg and completes the proof.

Section 5 expands the list of problems known to lie in NISZK,. McKenzie and Cook [23]
studied different formulations of the problem of solving linear congruences. These problems
are not known to lie in DET, which is the largest well-studied subclass of P known to be
contained in NISZK|. However, these problems are randomly logspace-reducible to DET [10].
We show that NISZK| is closed under randomized logspace reductions, and hence show that
these problems also reside in NISZK| .

Section 6 shows that the complexity of the simulator is more important than the complexity
of the verifier in non-interactive zero-knowledge protocols. In particular, the verifier can
be as powerful as DET, while still defining only problems in NISZK|. In general, we show
that if classes A, B satisfy A C B C NISZK 4, then the verifier of the class NISZK 4 can be
boosted to class B without increasing the power of the class. Since the proof system can
compute what the stronger B verifier can compute, the idea is to use the proof system as a
replacement for the stronger verifier. We then obtain some concrete equalities by substituting
in different choices of A and B.

Finally, Section 7 will show that SZK| is closed under logspace Boolean formula truth-
table reductions. The proof is an adaptation of [28] and primarily involves making circuit
constructions into branching program constructions while also ensuring that they can be
computed in logspace as opposed to polynomial time. The complete problem for SZK| is
to compute the statistical distance of a pair of branching programs, so the proof details
how to combine pairs of branching programs to compute the “AND” or “OR” of pairs of
branching programs.Using these constructions, given a desired Boolean formula, a final pair
of branching programs can be created which are statistically distant iff the statistical distance
of each of the original pairs satisfies the formula. Since this can be done in logspace, this
establishes that the closure property holds.

2 Preliminaries

We assume familiarity with the basic complexity classes L, NL, &L and P, and the circuit com-
plexity classes NC? and AC®. We assume knowledge of m-reducibility (many-one-reducibility)
and Turing-reducibility. We also will need to refer to projection reducibility (<P©). A
projection is a function f that is computed by a circuit that has no gates (other than NOT
gates). Thus each output gate is either a constant, or it is connected via a wire to an
input bit or a negated input bit. The <P reductions that we consider in this paper are all
special cases of uniform AC® reductions. #L is the class of functions that count the number
of accepting paths of NL machines, and GapL = {f — g : f,g € #L}. The determinant is
complete for GaplL under Sﬁlco reductions®, and the complexity class DET is the class of

3 See, for instance [7, Theorem 1] for a discussion of the history of this result.
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languages NC!-Turing reducible to functions in GapL.4

We use the notation ¢ ~ S to denote that element g is chosen uniformly at random from
the finite set S.

Many of the problems we consider deal with entropy (also known as Shannon entropy).
The entropy of a distribution X (denoted H (X)) is the expected value of log(1/Pr[X = x]).
Given two distributions X and Y, the statistical difference between the two is denoted
A(X,Y) and is equal to ), ’ Pr[X = a] — Pr[Y = q] ’/2 Equivalently, for finite domains D,
A(X,Y) = maxgscp{| Prx[S] — Pry[S]|}. This quantity is also known as the total variation
distance between X and Y. The support of X, denoted supp(X), is {z : Pr[X = z] > 0}.

» Definition 2. Promise Problem: a promise problem Il is a pair of disjoint sets (Ily, )
(the “YES” and “NO” instances, respectively). A solution for Il is any set S such that
Iy CS, and SNIly = @.

» Definition 3. A branching program is a directed acyclic graph with a single source and
two sinks labeled 1 and 0, respectively. Fach non-sink node in the graph is labeled with a
variable in {x1,...,2,} and has two edges leading out of it: one labeled 1 and one labeled 0.
A branching program computes a Boolean function f on input x = x1...x, by first placing
a pebble on the source node. At any time when the pebble is on a node v labeled x;, the
pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if v; =1 (or
by the edge labeled 0 if x; = 0). If the pebble eventually reaches the sink labeled b, then
f(z) = b. Branching programs can also be used to compute functions f : {0,1}™ — {0,1}",
by concatenating n branching programs p1, ..., pn, where p; computes the function f;(x) =
the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of
these complexity classes, circuits, and branching programs, see the text by Vollmer [30].

» Definition 4. Non-interactive zero-knowledge proof (NISZK) [Adapted from [2, 17]]: A
non-interactive statistical zero-knowledge proof system for a promise problem II is defined
by a pair of deterministic polynomial time machines® (V,S) (the verifier and simulator,
respectively) and a probabilistic routine P (the prover) that is computationally unbounded,
together with a polynomial r(n) (which will give the size of the random reference string o),
such that:

1. (Completeness): For all x € My, the probability (over random o, and over the random
choices of P) that V(x,0, P(x,0)) accepts is at least 1 —2-0Uz),

2. (Soundness): For allx € Ty, and for every possible prover P’ the probability of acceptance
for V(z,o,P'(x,0)) is at most 2-°U=D) . (Note P’ here can be malicious, meaning it can
try to fool the verifier)

3. (Zero Knowledge): For all x € Iy, the statistical distance between the following two
distributions is bounded by 27 1*1:

a. Choose o < {0,1}"0=D) uniformly random, p < P(x,0), and output (p,o).
b. S(z,r) (where the coins r for S are chosen uniformly at random,).

It is known that changing the definition, to have the error probability in the soundness and
completeness conditions and in the simulator’s deviation be ﬁ results in an equivalent

4 Tt is an interesting question, whether one needs to consider NC!'-Turing reductions in order to define
the class DET. We refer the reader to [1, Open Question 6] for a discussion of this point.

5 In prior work on NISZK [17, 2], the verifier and simulator were said to be probabilistic machines. We
prefer to be explicit about the random input sequences provided to each machine, and thus the machines
can be viewed as deterministic machines taking a sequence of random bits as input.
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definition [2, 17]. (See the comments after [2, Claim 37].) We will occasionally make use of
this equivalent formulation, when it is convenient.

NISZK is the class of promise problems for which there is a mon-interactive statistical
zero knowledge proof system.

NISZKs denotes the class of problems in NISZK where the verifier V' and simulator S lie
in complexity class C.

» Definition 5. /2, 17] (EA and EAnco). Consider Boolean circuits Cx : {0,1}™ — {0,1}"
representing distribution X. (That is, Pr[X = z] = Pr[C(y) = z] where y is chosen uniformly
at random.) The promise problem EA is given by:

EAy = {(Cx,k): H(X) >k + 1}
EAy == {(Cx.k): H(X) <k —1}

EAnco is the variant of EA where the distribution Cx is an NCY circuit with each output bit
depending on at most four input bits.

» Definition 6 (SDU and SDUyco). Consider Boolean circuits Cx : {0,1}™ — {0,1}"
representing distributions X. The promise problem SDU = (SDUy-,SDUy) is given by:
SDUy :={Cx : A(X,U,) < 1/n}
SDUy :={Cx : A(X,U,) > 1—1/n}.
SDUyco is the analogous problem, where the distributions X are represented by NC® circuits

where no output bit depends on more than four input bits.

» Theorem 7. /2, 5]: EAnco and SDUyco are complete for NISZK. under <P™. EAyco
remains complete, even if k is fized to k = n — 3.

» Definition 8. [15, 28] (SD and SDgp). Consider a pair of Boolean circuits C1,Cy :
{0,1}™ — {0, 1}™ representing distributions X1, Xo. The promise problem SD is given by:

SDy = {(01,02) : A(Xl,XQ) > 2/3}
SDN = {(Cl,CQ) : A(Xl,XQ) < 1/3}

SDgp is the variant of SD where the distributions X1, Xo are represented by branching
programs.

2.1 Perfect Randomized Encodings

We will make use of the machinery of perfect randomized encodings [9].

» Definition 9. Let f: {0,1}" — {0,1} be a function. We say that f : {0,1}" x {0,1}™ —
{0,1}* is a perfect randomized encoding of f with blowup b if it is:

Input independent: for every xz,x’ € {0,1}" such that f(z) = f(z'), the random
variables f(x,Up,) and f(z',Uy,) are identically distributed.
Output Disjoint: for every x,z’ € {0,1}"™ such that f(z) # f(z'), supp(f(z,Uy)) N

supp(f (@', Up)) = 0. R
Uniform: for every x € {0,1}" the random variable f(x,Uy,) is uniform over the set

A

supp(f(z, Un)). R R
Balanced: for every xz,z’ € {0,1}" |supp(f(z,Uy))| = |supp(f(2’,Un))| = b.

The following property of perfect randomized encodings is established in [15].
» Lemma 10. Let f: {0,1}" — {0,1}¢ be a function and let f : {0,1}" x {0,1}™ — {0,1}*

be a perfect randomized encoding of f with blowup b. Then H(f(Uyn,Up)) = H(f(U,))+logb.
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3 Simulators and Verifiers in AC°

In this section, we show that NISZK| can be defined equivalently using verifiers and simulators
that are computable in AC®. The standard complete problems for NISZK and NISZK take a
circuit C' as input, where the circuit is viewed as representing a probability distribution X;
the goal is to approximate the entropy of X, or to estimate how far X is from the uniform
distribution. Earlier work [18, 2, 27] that had presented non-interactive zero-knowledge
protocols for these problems had made use of the fact that the verifier could compute hash
functions, and thereby convert low-entropy distributions to distributions with small support.
But an AC” verifier cannot compute hash functions [22].

Our approach is to “delegate” the problem of computing hash functions to a logspace
verifier, and then to make use of the uniform encoding of this verifier to obtain the desired
distributions via an AC® reduction.® To this end, we begin by defining a suitably restricted
version of SDUyco and show (in Section 3.1) that this restricted version remains complete for
NISZK_ under AC® reductions (and even under projections).”

With this new complete problem in hand, we provide (in Section 3.2) a NISZK o protocol
for the complete problem, proving its correctness in Section 3.3, to conclude with the main
result of this section:

» Theorem 11. NISZK| = NISZKpco.

» Definition 12. Consider an NC° circuit C : {0,1}" — {0,1}" and the probability distri-
bution X on {0,1}"™ defined as C(Uy,) - where Uy, denotes m uniformly random bits. For
some fized € > 0 (chosen later in Remark 17), we define:

1

SDU'Nco7y = {X : A(C, Un) < 277

}

SDU'nco,v = {X : [supp(X)| < 2"}

We will show that SDU'yco is complete for NISZK| under uniform <P reductions. In
order to do so, we first show that SDU'yco is in NISZK| by providing a reduction to SDUyco.

> Claim 13.  SDU’yco <P SDUpco, and thus SDU’yco € NISZK, .

m

Proof. On a given probability distribution X defined on {0,1}" for SDU'nco, we claim that
the identity function f(X) = X is a reduction of SDU'yco to SDUnco. If X is a YES instance
for SDU"yco, then A(X,U,,) < 2%, which clearly is a YES instance of SDUyco. If X is a
NO instance for SDU’yco, then | supp(X)| < 27~ Thus, if we let T be the complement of
supp(X ), we have that, under the uniform distribution, a string « is in 7" with probability
>1- %, whereas this event has probability zero under X. Thus A(X,U,,) > 1— %, easily
making it a NO instance of SDUyco. <

3.1 Hardness for SDU'\co

» Theorem 14. SDU'\co is hard for NISZK, under <P™ reductions.

6 In retrospect, the proof of the one-sided-error part of [5, Theorem 32] implicitly requires that this
restriction be complete for NISZK . Hence we are now providing a missing part of that proof.

7 This restricted version of SDUyco can be seen as a version of the “image density” problem that was
defined and studied in [14].
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Proof. In order to show that SDU'yco is hard for NISZK, , we will show that the reduction
given in [2] proving the hardness of SDUyco for NISZK| actually produces an instance of
SDU’nco.

Let II be an arbitrary promise problem in NISZK| with proof system (P, V') and simulator
S. Let z be an instance of II. Let M, (r) denote a machine that simulates S(z) with
randomness r to obtain a transcript (o, p) - if V(z, 0, p) accepts then M, (r) outputs o; else
it outputs 01°l. We will assume without loss of generality that |o| = n* for some constant k.

It was shown in [18, Lemma 3.1] that for the promise problem EA, there is an NISZK
protocol with completeness error, soundness error and simulator deviation all bounded from
above by 27 for inputs of length m. Furthermore, as noted in the paragraph before Claim
38 in [2], the proof carries over to show that EAgp has an NISZK| protocol with the same
parameters. Thus, any problem in NISZK| can be recognized with exponentially small
error parameters by reducing the problem to EAgp and then running the above protocol for
EAgp on that instance. In particular, this holds for EAyce. In what follows, let M, be the
distribution described in the preceding paragraph, assuming that the simulator S and verifier
V' yield a protocol with these exponentially small error parameters.

> Claim 15. If @ € Hyggs then A(My(r),U,x) < 1/2771. And if 2 € Tlyo then
[ supp(My(r))| < 27"~ for e < £.

Proof. For z € Iy gg, claim 38 of [2] shows that A(M,(r),U,x) < 1/2"71, establishing the
first part of the claim.

For x € Il o, from the soundness guarantee of the NISZK| protocol for EAyco, we know
that, for at least a 1 — Qi fraction of the shared reference strings o € {0, 1}"k, there is no
message p that the prover can send that will cause V' to accept. Thus there are at most
27" =" outputs of M, (r) other than 0", For e < 1+, we have |supp(M,(r))| < o' -n 4

The above claim talks about the distribution M, (r) where M is a logspace machine. We
will instead consider an NC° distribution with similar properties that can be constructed
using projections. This distribution (denoted by C.) is a perfect randomized encoding of
M (r). We make use of the following construction:

» Lemma 16. /2, Lemma 35]. There is a function computable in AC® (in fact, it can be a
projection) that takes as input a branching program Q of size | computing a function f and
produces as output a list p; of NC* circuits, where p; computes the i-th bit of a function f
that is a perfect randomized encoding of f that has blowup b = 2((a)-12(0-1)*-1) (and thus
the length of f(r) =logb+ |f(r)|). Each p; depends on at most four input bits from (z,r)
(where T is the sequence of random bits in the randomized encoding).

In order to have a precise understanding of Lemma 16, it is helpful to have more detail
regarding the format in which a branching program is presented. In the context of [2, Lemma
35], the branching program can be presented as a matrix A, where A; ; is (b, k) if there is a
transition from node ¢ to node j if bit position xj, is equal to b, and A, ; is equal to 1 (0) if
there is unconditionally (not) a transition from node 4 to node j.

The properties of perfect randomized encodings (see Definition 9) imply that the range of f
(and thus also the range of C;) can be partitioned into equal sized pieces corresponding to each
value of f(r). Thus, let ay,as, .., a, be the range of f(r), and let [a] = {f(r,s) : f(r) = a}.
It follows that |[a]| = b. For a given «, and for a given S of length logb we denote by af
the 8-th element of [@]. Since the simulator S runs in logspace, each bit of M, (r) can be
simulated with a branching program @),. Furthermore, it is straightforward to see that there
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is an AC%-computable function that takes z as input and produces an encoding of Q. as
output, and it can even be seen that this function can be a projection. Let the list of NC°
circuits produced from @, by the construction of Lemma 16 be denoted C'.

We show that this distribution C, is an instance of SDU'yco if 2 € II. For = € Iy gg, we
have A(M,(r), Uyr) < 1/2"1, and we want to show A(Cy(r), Uipgpnr) < 1/2"71. Thus it
will suffice to observe that A(M,(r), Uyk) = A(Coy(r), Upg pinr) < 1/2771

To see this, note that

1 1 11
A(Cy(r), Uiggpnr) = _ | Pr[Cy = aff] - WW => > | Pr[M, = 55 = ?WW
af B«

= Z | Pr[M, = a] — 2%|/2 = A(M,(r),Upr).

Thus, for z € Ilygg, C, is a YES instance for SDU"\co.

For z € Tyo, Claim 15 shows that | supp(M,(r))] < 27" ~". Since the NC° circuit C,
is a perfect randomized encoding of M, (r), we have that the size of the support of C,
for x € llyo is bounded from above by b x 2™ ~™. Note that logb is polynomial in n; let
q(n) =logb. Let 7(n) denote the length of the output of C; r(n) = g(n) +n*. Thus the size
of supp(Cy) < gn*—nta(n) = gr(n)—n < gr(n)—r(n)* (if 1/€ is chosen to be greater than the
degree of r(n)), and hence C,, is a NO instance for SDU'yco. <

» Remark 17. Here is how we pick € in the definition of SDU"yco. SDUpco is in NISZK,
via some simulator and verifier, where the error parameters are exponentially small, and
the shared reference strings o have length n* on inputs of length n. Now we pick € > 0 so
that € < 1/k (as in Claim 15) and also 1/e is greater than the degree of r(n) (as in the last
sentence of the proof of Theorem 14).

3.2 NISZK,co protocol for SDU'yco

In this section, we provide an NISZK o protocol for SDU"\co to conclude the proof of Theorem
11. We then prove the correctness of this protocol in Section 3.3. As above, we will consider
the input distribution X on {0,1}" defined by some NC? circuit C : {0,1}™ — {0,1}".

» Theorem 18. SDU'\co € NISZK zco.

Proof. We first provide an NISZK,co protocol for SDU'yco by specifying the behavior of the
Prover, Verifier and Simulator machines. The proofs of zero knowledge, completeness and
soundness follow in section 3.3.

3.2.1 Non Interactive proof system for SDU'yco

1. Let C take inputs of length m and produce outputs of length n, and let o be the reference
string of length n.

2. If there is no r such that C(r) = o, then the prover sends L. Otherwise, the prover picks
an element r uniformly at random from the set {r|C(r) = o} and sends it to the verifier.

3. V accepts iff C(r) = 0. (Since C is an NC° circuit, this can be accomplished in AC® —
this step can not be accomplished in NC since it depends on all of the bits of o.)

3.2.2 Simulator for SDU'\co proof system

1. Pick a random s of length m and compute v = C(s).
2. Output (s,7).
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3.3 Proofs of Zero Knowledge, Completeness and Soundness
3.3.1 Completeness

> Claim 19. If X € SDU'nco,y, then the verifier accepts with probability > 1 — %

Proof. If X is a YES instance, then A(X,U,) < . This implies |supp(X)| > 2"(1 — 5=),
which immediately implies the stated lower bound on the verifier’s probability of acceptance.

<

3.3.2 Soundness

> Claim 20. If X € SDU'yco v, then for every prover, the probability that the verifier

accepts is at most %

Proof. For every o ¢ supp(X), no prover can make the verifier accept. If X € SDU'yco n,

the probability that o & supp(X) is greater than 1 — 2% <

3.3.3 Statistical Zero-Knowledge
> Claim 21. For X € SDU'ncoy, A((p,0), (5,7)) = O(5).

Proof. Since we are considering only YES instances X € SDU'yco y, we have that Pr[o ¢
range(C)] < 5=. Thus Pr[(L,0)] < st=. Thus, in the subsequent analysis, we consider only
the case where the prover’s message is not equal to L.

Recall that o ~ {0,1}", s ~ {0,1}™, p ~ {r : C(r) = o} and v = C(s). In order to
provide an upper bound on A((p,0),(s,7)), we consider the element wise probability of
each distribution and show that for X € SDU'yco y the claim holds. For a € {0,1}™ and

b€ {0,1}"™ we have :

A(p, o), (5,7) =D % [Pr{(p, o) = (a,b)] = Pr{(s,7) = (a,b)]]

(a;b)

Let us consider an element b € {0,1}". Let A, = {a1, az, .., a, } be the pre-images of b under

C; that is, for 1 <4 < ky, it holds that C'(a;) = b. Let 8, = P(g [C(y) =b]. Then ky2™™ = S,
y~Upm

(since exactly ky elements of {0, 1} are mapped to b under C). Let B = {b|-3y : C(y) = b}.
Since A(C(Un),Un) < 5, it follows that Bl < _1_ We have :

2m — 9n€

Al(p,0), (7)) = Y %(l Pr((p, o) = (a,b)] = Pr[(s,7) = (a,)]])

(a,b)
=2 Y IP@.0) = (@)~ Prl(s.7) = (a,5)]
(a,b):beB
b3S P.0) = (a,b)] - Pr{(s.7) = (a.)]

(a,b):b¢B

For (a,b) satisfying b € B, we have Pr[(s,v) = (a,b)] = Pr[(p,0) = (a,b)] =0. For b ¢ B
and a satisfying C(a) # b we again have Pr[(s,v) = (a,b)] = Pr[(p, o) = (a,b)] = 0. For (a,b)

satisfying C(a) = b we have Pr[(s,7) = (a,b)] = 27™ since s ~ U,, and picking s fixes b. We
also have Pr[(p,o) = (a,b)] = 2,;: since o ~ U, and then the prover picks p uniformly from
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Ap. This gives us

1 o2
A((p, o), (s,7) = 5 Z |2 T Th
(a,b):C(a)=b b
1 2—7”—”
— 9—m
;> |
(a,b):C(a)=b

1 2—m
- 9 Z 3 |Bb - 2_n|
(a,):C(a)=b °
1 . 1
=3 Y. B2 = ACUN),Un) < o
(a,b):C(a):b

where the first inequality holds since 8, > 27™ whenever [, # 0. Thus we have :

1

Al(p,0), (5,7)) = Ol

)
<

This concludes the proof of Theorem 18 - SDU’yco € NISZK pco. Combining this with Theorem
14, we conclude the proof of Theorem 11 - NISZK| = NISZKco. |

4  Simulator and Verifier in PM

In this section, we show that NISZK| can be defined equivalently using verifiers and simulators
that lie in the class PM of problems that logspace-Turing reduce to Perfect Matching. (PM
is not known to lie in (uniform) NC.) That is, we can increase the computational power of
the simulator and the verifier from L to PM without affecting the power of noninteractive
statistical zero knowledge protocols.

The Perfect Matching problem is the well-known problem of deciding, given an undirected
graph G with 2n vertices, if there is a set of n edges covering all of the vertices. We define a
corresponding complexity class PM as follows:

PM := {A: A <L Perfect Matching}

It is known that NL C PM [21].
Our argument proceeds by first observing® that NISZK_ = NISZKg_, and then making
use of the details of the argument that Perfect Matching is in &L /poly [8].

» Proposition 22. NISZKg = NISZK,

Proof. It suffices to show NISZKg C NISZK_ . We do this by showing that the problem
EAnce is hard for NISZKg,; this suffices since EAnco is complete for NISZK,. The proof
of [2, Theorem 26] (showing that EAyco is complete for NISZK| involves (a) building a
branching program to simulate a logspace computation called M, that is constructed from a
logspace-computable simulator and verifier, and (b) constructing an NC°-computable perfect
randomized encoding of M,, using the fact that L € PREN, where PREN is the class
defined in [9], consisting of all problems with perfect randomized encodings. But Theorem

8 This equality was previously observed in [27].

11
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4.18 in [9] shows the stronger result that &L lies in PREN, and hence the argument of
[2, Theorem 26] carries over immediately, to reduce any problem in NISZKg to EAyco (by
modifying step (a), to build a parity branching program for M, that is constructed from a
@L simulator and verifier). <

We also rely on the following lemma:

» Lemma 23. Adapted from [8, Section 8] and [24, Section 4]: Let W = (w1, wa, - , Wpk+s)
be a sequence of n* 3 weight functions, where each w; : [(})] — [4n?] is a distinct weight
assignment to edges in n-vertex graphs. Let (G,w;) denote the result of weighting the edges
of G using weight assignment w;. Then there is a function f in GapL, such that, if (G, w;)
has a unique perfect matching of weight j, then f(G,W,i,j) € {1,—1}, and if G has no
perfect matching, then for every (W,i,j), it holds that f(G,W,i,5) = 0. Furthermore, if W
is chosen uniformly at random, then with probability > 1 — 2_”k, for each n-vertex graph G:

If G has no perfect matching then Vivj f(G,W,i,j) = 0.
If G has a perfect matching then 3i such that (G,w;) has a unique minimum-weight
matching, and hence 335 f(G,W,1i,5) € {1,—1}.

Thus if we define g(G, W) to be 1 —11; ;(1 — f(G,W,i,5)?), we have that g € GapL (by the
closure properties of GapL established in [7, Section 4]) and with probability > 1 — 2" (for
randomly-chosen W), g(G,W) =1 if G has a perfect matching, and g(G, W) = 0 otherwise.

Note that this lemma is saying that most W constitute a good “advice string”, in the sense
that g(G, W) provides the correct answer to the question “Does G have a perfect matching?”
for every graph G with n vertices.

» Corollary 24. For every language A € PM there is a language B € ®L such that, if x € A,

then Pry, (4,200 [(2, W) € B] 2 1 — 2" and if x € A, then Pryy (aneps [(@, W) € B <
2

27",

Proof. Let A be in PM, where there is a logspace oracle machine M accepting A with an
oracle P for Perfect Matching. We may assume without loss of generality that all queries
made by M on inputs of length n have the same number of vertices p(n). This is because G
has a perfect matching iff GU {x1 — y1, 22 — Yo, ..., 2, — Yy} has a perfect matching. (L.e., we
can “pad” the queries, to make them all the same length.)

Let C = {(G,W) : g(G,W) =1 mod 2}, where g is the function from Lemma 23. Clearly,
C € &L. Now, a logspace oracle machine with input (z, W) and oracle C' can simulate
the computation of M? on z; each time M poses the query “Is G € P”, instead we ask if
(G,W) € C. Then with high probability (over the random choice of W) all of the queries
will be answered correctly and hence this routine will accept if and only if x € A, by
Lemma 23. Let B be the language accepted by this logspace oracle machine. We see that

Belc Lok = @L, where the last equality is from [19]. <
» Theorem 25. NISZK_ = NISZKppm

Proof. We show that NISZKpym C NISZKg, and then appeal to Proposition 22.

Let IT be an arbitrary problem in NISZKpp, and let (S, P, V') be the PM simulator, prover,
and verifier for II, respectively. Let S’ and V' be the &L languages that are probabilistic
realizations of S,V respectively, guaranteed by Corollary 24. We now define a NISZK
protocol (S”, P", V") for II.
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On input z with shared randomness cW, the prover P’ sends the same message p =
P(z,0) as the original prover sends. The verifier V", returns the value of V'((x,0,p), W),
which with high probability is equal to V(x, o, p). The simulator S”, given as input 2 and
random sequence W, executes S’((z,r,4), W) for each bit position ¢ to obtain a bit that
(with high probability) is equal to the i*! bit of S(z,r), which is a string of the form (o, p),
and outputs (cW, p).

Now we will analyze the properties of (S”, P”, V"):

Completeness: Suppose = € Ily, then Pr,[V(z,0, P(z,0)) = 1] > 1 — 279 Since
Vy € {0,137 : Pryy [V(y) = V/(y, W)] > 1 — 27" we have:

Pr V(2,0 P (2,0)), W) = 1] > [1 = 27O0[1 — 27" = 1 — 200

Soundness: Suppose x € Iy, then Pr,[Vp : V(z,0,p) = 0] > 1 — 279" Since
Yy € {0,1}" : Priy [V (y) = V' (y, W)] > 1 — 2" we have:

Pr|vp: V/((z,0,p), W) = 0] > [1 = 270)[1 — 27" = 1 — 2700

Statistical Zero-Knowledge: Suppose x € Ily. Let S* denote the distribution on strings
of the form (o, p) that S(z,r) produces, where 7 is uniformly generated, and let P* denote

the distribution on strings given by (o, P(x,0)) where o is chosen uniformly at random.

Similarly, let S”* denote the distribution on strings of the form (¢W,p) that S”(z,rW)
produces, where r and W are chosen uniformly, and let P"”* be the distribution given by
(oW, P"(z,oW)). Let A ={(cW,p): FiTr S(x,r); # S ((z,r,i), W)}.

Since Pryy [ViVr : S(x,r); = S'((x,r,i), W)] > 1 — 279 we have:

1
A(S”*,PN*) _ 5 Z |Pr[S//* — (O'VV,p)] — PI‘[P//* - (O'W,p)”
(cW,p)

1
<@ YT [P = (oW, p)] — Pr[P" = (oW, p)])]
(cW,p)EA

— %(2”(”) + Y | Pr[S* = (0,p)] — Pr[P* = (0, p)]| Pr[W])
(cW,p)EA

<2700 £ S PWIL 3 [Pr{S” = (0,9)] ~ PH{P" = (0.1)]
w (o,p)

=270 L A(S*, P*) =279

Therefore (S”, P”, V") is a NISZKg protocol deciding II. <

5 Additional problems in NISZK,

In this section, we give additional examples of problems in P that lie in NISZK|. These
problems are not known to lie in (uniform) NC. Our main tool is to show that NISZK is
closed under a class of randomized reductions.

The following definition is from [5]:

» Definition 26. A promise problem A = (Y,N) is <BPl_reducible to B = (Y',N') with
threshold 0 if there is a logspace-computable function f and there is a polynomial p such that

x €Y dmplies Pr,.cio 130020 [f(7,7) € Y] > 0.

13
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r € N implies Pr (o 13e0=n [f(z,7) € N'] > 0.

Note, in particular, that the logspace machine computing the reduction has two-way access
to the random bits r; this is consistent with the model of probabilistic logspace that is used
in defining NISZK.

» Theorem 27. NISZK, is closed under §S’1PL reductions with threshold 1 — —L

nw(l) *

Proof. Let II<BPLEAco, via logspace-computable function f. Let (S, Vi, Py) be the NISZK
proof system for EAyco.
Algorithm 1 Simulator S(z,ro’)

Algorithm 2 Verifier V(z, (0,0"),p)

(o,p) < Sl(f(xval)v'r); roturn pp
return ((o,0’),p); t Vi((f(z,0'),0,p))

Algorithm 3 Prover P(x, (0,0"))
return Py ((f(z,0'),0));

We now claim that (S, P,V) is a NISZK| protocol for II.
It is apparent that S and V are computable in logspace. We just need to go through
completeness, soundness, and statistical zero-knowledge of this protocol.

Completeness: Suppose x is YES instance of II. Then with probability 1 — ﬁ (over

randomness of ¢'), we have that f(z,¢’) is a YES instance of EAyco. Thus for a randomly
chosen o:

1
Pr[Vl(f(:z:,a'),o, Pl(f(x70/),0)) = 1] > 1- W
Soundness: Suppose x is NO instance of II. Then with probability 1 — ﬁ (over
randomness of ¢’), we have that f(z,0’) is a NO instance of EAyco. Thus for a randomly
chosen o:

1

nw(l)

PrVi(f(z,0'),0, Pi(f(z,0"),0)) = 0] > 1 -

Statistical Zero-Knowledge: If z is a YES instance, f(z,0¢’) is a YES instance of EAyco
with probability close to 1. For any YES instance y of EAyco, the distribution given by
S7 on input y is exponentially close the the distribution on transcripts (o, p) induced by
(V1, P1) on input y. Thus the distribution on (co’, p) induced by (V, P) has distance at
most ﬁ from the distribution produced by S on input . The claim now follows by
the comments regarding error probabilities in Definition 4.

<

McKenzie and Cook [23] defined and studied the problems LCON, LCONX and LCONNULL.
LCON is the problem of determining if a system of linear congruences over the integers mod
q has a solution. LCONX is the problem of finding a solution, if one exists, and LCONNULL
is the problem of computing a spanning set for the null space of the system.

These problems are known to lie in uniform NC? [23], but are not known to lie in uniform
NC?, although Arvind and Vijayaraghavan showed that there is a set B in L¢Pl C DET C NC?
such that € LCON if and only if (z, W) € B, where W is a randomly-chosen weight function
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[10]. (The probability of error is exponentially small.) The mapping = — (z, W) is clearly a
<BPL reduction. Since DET C NISZK [2], it follows that

LCON e NISZK,
The arguments in [10] carry over to LCONX and LCONNULL as well.

» Corollary 28. LCON € NISZK,. LCONX &€ NISZK,. LCONNULL & NISZK,.

6 Varying the Power of the Verifier

In this section, we show that the computational complexity of the simulator is more important
than the computational complexity of the verifier, in non-interactive protocols. The results in
this section were motivated by our attempts to show that NISZK_ = NISZKpgt. Although we
were unable to reach this goal, we were able to show that the verifier could be as powerful as
DET, if the simulator was restricted to be no more powerful than NL. The general approach
here is to replace a powerful verifier with a weaker verifier, by requiring the prover to provide
a proof to convince a weak verifier that the more powerful verifier would accept.

We define NISZK 4 g as the class of problems with a NISZK protocol where the simulator
is in A and the verifier is in B (and hence NISZK 4 = NISZK 4 4).

» Theorem 29. Let A and B be classes of functions that are closed under composition, where
A C B CNISZK 4. In addition, assume that each problem in B has a NISZK 4-protocol with
soundness error at most 2™ on inputs of length n.° Then NISZK 4 g = NISZK 4.

Proof. Let II be an arbitrary promise problem in NISZK 4 g with (S1, V1, P1) being the A
simulator, B verifier, and prover for II's proof system, where the reference string has length
p1(]z|) and the prover’s messages have length ¢ (|z|). Since V; € B C NISZK 4, L(V}) has
a proof system (Sa, Va, P3), where the reference string has length ps(|z|) and the prover’s
messages have length go(]z]).

» Lemma 30. We may assume without loss of generality that p1(n) > pa(n) + g2(n).

Proof. If it is not the case that p1(n) > p2(n) + g2(n), then let r(n) = p2(n) + g2(n) — p1(n).
Consider a new proof system (S, V{, P{) that is identical to (Sy, Vi, P1), except that the
reference string now has length p;(n) + r(n) (where P/ and V{ ignore the additional r(n)
random bits). The simulator S; uses an additional r(n) random bits and simply appends
those bits to the output of S;. The language L(VY) is still in NISZK 4, with a proof system
(S5, V3, Ps) where the reference string still has length ps(n), since membership in L(VY) does
not depend on the “new” r(n) random bits, and hence S}, V3 and Pj, given input (z,or,p)
behave exactly as S, Vo and P, behave when given input (z, o, p). <

9 We are confident that this condition will hold for most classes A, B of interest. For the specific classes
in {L,NL,DET} that are mentioned in the corollaries at the end of this section, and even for smaller
classes such as AC°[@], this can be seen to follow using the techniques of [17, Lemma 3.1]. For the case
of AC?, the proof of Theorem 18 shows that there is a NISZK yco protocol for SDU’yco that achieves error
27" on inputs consisting of a circuit with m inputs and n output bits. But any problem in NISZK pco
is reducible to SDU’\co via a length-increasing reduction that takes inputs of length r to instances of
SDU’nco that have r'/€ output bits, and thus there is a NISZKaco protocol that achieves error 27" on
inputs of length r.
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Then II has the following NISZK 4 proof system:
Algorithm 4 Simulator S(z,r1,72)

Data: z € IIy., Uy, Algorithm 5 Verifier
(0‘71’)) $— 51(3777’1); V(l‘, (070/)v(pap,))
(o/,p") « Sa((x,0,p),72); return V5((z,0,p),0’,p’)

return ((o,0’), (p,p));

Algorithm 6 Prover P(z,00')

Data: x € Ily., UTly,, 0 € {0,1}7(2D & ¢ {0, 1}P2(=D
if x € IIy.s then

p <+ Pi(z,0);

P« Py((z,0,p),0');

return (p,p’);

else
| return 1, 1;

end

Correctness: Suppose = € Ily.g, then given random o, with probability (1 — 20(%), we
have that (x, 0, Pi(x,0)) € L(V1), which means with probability (1 — m) it
holds that ((z,0,p),0’, Po(z,0, Pi(x,0)) € L(V2). So the probability that V accepts is
at least:

) 1 ) 1 . 1
( __QOUM)X "200m+pmun+mum»)“ ~ 90(|z])

Soundness: Suppose x € II. When given a random o, let us say that o is good if Vp
(z,0,p) & L(V1); otherwise, we say that o is bad (because in this case the prover can cause
the verifier V] to accept erroneously). Since x € Iy, we have that the probability that o
is bad is less than 20(% For a given o, let us say that ¢’ is bad for o if there exists a p
and p’ such that verifier V5 accepts ((z,0,p),o’,p’) (meaning that o’ can cause verifier V,
to accept erroneously). Furthermore, we have that V5 rejects (x, o, p) with probability at

least 1 — W =1- m for any (x,0,p) ¢ L(V7) (for random o¢’). Thus for any
good o, the probability that ¢’ is bad for o is at most Zp 2\:\+§1(\z\> = 2@&;'&“;) = le\

We have that verifier V' rejects z if o is good, or if ¢’ is not bad for o. Thus the probability
that V rejects x is at least

1 1 1
(= Zo0en) — 357) = 1~ 560D

Statistical Zero-Knowledge: Let P;* denote the distribution that samples o and produces
as output (o, Py(z,0)). Similarly, let P5 (o, p) denote the distribution that samples ¢’ and
outputs (oo’, Po((z,0,p),o’). P* will be defined as the distribution ((c0”), P(z,0,0")))
where o and ¢’ are chosen uniformly at random. In the same way, let S* refer to the
distribution produced by S on input x, let S§ refer to the distribution produced by Si(z),
and let S5 (o, p) be the distribution induced by S2 on input (z, o, p).

Now we can partition the set of possible outcomes ((o,0"), (p,p’)) of S* and P* into 3
blocks:

1. ((o,0"),(p,p")) such that Vi (z, o, p) accepts and Va((x,0,p), o', p’) accepts.
2. ((o,0"),(p,p')) such that Vi (z,0,p) accepts and Va((x, o, p),o’,p’) rejects.
3. ((o,0"),(p,p")) such that Vi(x,0,p) rejects.
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We will call these blocks Ap, As, and As respectively. Then by definition:

A(S*P*—% > D [Pyl - Pyl

j€{1,2,3} y€A;

= Y (Bl Prlyl| 45 S0 3T [Brl) + el

yeEA; je{2,3} y€A;

We concentrate first on Aj.

> | Brlyl - Brfy]]

yEAL
-y ( > | Prlylo’ ) Prl(o”, )]~ Prlylo’, o] g;[(«ﬂ,p’)n) (+)
(o/,p") “{(o.p):y=((c,0"),(p,p’))EAL}
Here
Z Pr(((o,0"), (p,7))]
cfp)
and
/N / /
a,p

We define 6(0”,p') := | Prg-[(0’,p')] = Prp-[(0’,p)]|. Let us examine a single term of the
sum (x), for y = ((o,0"), (p,p')):

| Prlyle’, p' Pr{(o”,p')] = Prlylo’, '] Pr((o”, p')]]
= |(rlyle’, 1 Pr{(o”, p')] = Prlylo’, o' Px((o”, p)]) +

(Prlylo’,p'| Pr((o, p)] = Prlylo’, p' Px((o”,p)])|
= !(I;Ir[(o, p)] — 1;;[(0, p)) Pr((o”, )] + 1;1&(07 p)(Pr((o”, )] = Pr((o", p)])]
< | Brllovp)] ~ Billo: )| Bal(o". )] + Brl(o )] [ Bel(e", 1)) - B2{(0". )]

= | Prl(e.p)] - Bxl(o, )| Prl(o", )] + Prl(ep)Io(o",5")

Thus (*) is no more than

> 2 | Brlep)] = Brl(op)]| Bri(e, )]

(0".p") (op)

! /
+ ) > Elz[(a,p)wa,p)
(o’,p") {(o.p):y=((0,0"),(p,p’))EAL}
< Pr| —P "y
2 [ Brl(o.p)] = Br{(op)]| + > 3(o’,p')
(o,p) {(e’,p"):3(e,p) ((0,07),(p.p"))EAL}
= 2A(S7 (), P{ () + > 5(o’,p')
{(o’.p"):3(a.p) ((0.0"),(p.p"))EAL}
2 ! /
< Sl + Z 6(o’,p")  (xx)

{(e’,p"):3(e:p) ((0,0"),(pp’))EAL}
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Let us consider a single term §(o”,
probability that S(z) = ((o,

and So(x,0,p) = (¢/,p'), we have

Pri(’.p)] = Y Prl((.0"), (p.2)

and similarly Prp«[(c’,p)]

6o’ p') =

(o.p)

=3 Prl((o,

(o,p)

= Pr
S (o,p)

a’), (p,p")

)]

)|(o. p)] Pr{(o,

[(e"P")] Prl(o, p)]

’ Pr[a’,p’] — Pr[o’,p’”

=Y om Prrsem (P

p’) in the summation in (xx). Recalling that the
o'), (p,p")) is equal to the probability that Si(z) = (o, p)

)]

)] Prp«[(c,p)]. Thus

= | Z Pr (", # ) Exl(op)] - > P (0] Elf[o,p]!

5 (,p)
(o,p)
= (Z) S;;gp)[(a PIEew)= 3 B (0]l
L R e iglen = 3 By (el i)
=122 I = Pr (o9 Bxl(e.p)]

<3| P (0] -

P.

O

Pr |(o
5(0710)[(

p)| —

/’p/)]|

Pr((a,p)))|

1

1;1{[(07 )]

+ Z e (", )| x{(o. )] ~ Erl(o.p)]

SN (S5(008) P08 Prl(o,p)]

(o.p)

+ Pr [(o

pr
(o:p)

_ZQ\wo,p\S* Up +ZP(¢7

2

2 (va)

= Qlelpi(z))+a

Ten T (Z

)

) P (o,

)| Brl(o.)]

Pr

P)

@)

- 1P3§[(J’ p)]’

)l Brl(o.p)] ~ Prl(ep)]]

| Brl(.p)) = Brl( )|

where the last inequality holds, since the summation in (xx) is taken over tuples, such
that each (z,0,p) is a YES instance of L(V;).
Replacing each term in (%) with this upper bound, thus yields the following upper bound

on (x):

2
olal T

2

2. <2T|+p1<|

(o7,p")

z|)+q1(|z])

"2

a,p

Pr |(o
) P;(U,p)[(

)| Brllo )] - Prlte. )



643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

E. Allender, J. Gray, S. Mutreja, H. Tirumala and P. Wang

9 . 9p2(|z))+q2(l=])

2
= ol T glter (D ra () +2>. P

(o7.p") 0)2

)| Brio.p)) = Pr{ie.p)]

(6 p)

2 9 . 9p2(lz)+az2(l=|)

= 3%l T S Genragen T 28051, 1)

9 9 . op2(lz)+a2(|z)) 2
ol T Qe (e Fan(aD) | gkl
2 2 2
ol ol g
where the last inequality follows from Lemma 30. Thus, A; contributes only a negligible
quantity to A(S*, P*).
We now move on to consider Ay and Ag.

<

<

. 1 1
E{[y S AQ] = Z PI‘[‘/Q(J},U,p) I‘eJeCtS] < Z m < w
{(op):(w,0,p)EL(V1)} (o:p)
2
Prly € As] = > (Pr[Va(w, 0, p) rejects] + A(S3 (0, p), P5 (0,0))) < 577

{(o,p):(z,0.p)€L(V1)}

A similar and simpler calculation shows that Prp-[y € As] < 57 and Prg-[y € As] <
to complete the proof.

» Corollary 31. NISZK, = NISZKxco = NISZKaco pet = NISZKni pET

Proof. DET contains AC® and is contained in NISZK . By Theorem 11, NISZK; = NISZKpco,
and thus by Theorem 29 NISZKaco per = NISZKpco. Also, since AC’ C NL C PM and
NISZK_ = NISZKpp (by Theorem 25), it follows that NISZKy. C NISZKpp = NISZKpco =
NISZKni. Thus, again by Theorem 29, NISZKn pet = NISZKnL = NISZK|.

<«

The proof of Theorem 29 did not make use of the condition that the verifier is at least as
powerful as the simulator. Thus, maintaining the condition that A C B C NISZK 4, we also
have the following corollaries:

» Corollary 32. NISZKp = NISZKp 4
» Corollary 33. NISZK4 g C NISZKp 4

» Corollary 34. NlSZKDET = NISZKDET,ACO

7 SZK| closure under <}; . reductions

Although our focus in this paper has been on NISZK| ;| in this section we report on a closure
property of the closely-related class SZK|.
The authors of [15], after defining the class SZK, wrote:
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We also mention that all the known closure and equivalence properties of SZK (e.g.
closure under complement [25], equivalence between honest and dishonest verifiers
[18], and equivalence between public and private coins [25]) also hold for the class
SZK..

In this section, we consider a variant of a closure property of SZK (closure under gf)’f_tt
[28]), and show that it also holds!'® for SZK| . Although our proof follows the general approach
of the proof of [28, Theorem 4.9], there are some technicalities with showing that certain
computations can be accomplished in logspace (and for dealing with distributions represented
by branching programs instead of circuits) that require proof. (The characterization of SZK|
in terms of reducibility to the Kolmogorov-random strings presented in [5, Theorem 34] relies
on this closure property.)

» Definition 35. (From [28, Definition 4.7]) For a promise problem 11, the characteristic
function of 11 is the map Xy : {0,1}* — {0,1,%} given by

1 Zfl‘ € Hyes,
XH(.’E) =<0 Zfl‘ € Ilno,

*  otherwise.

» Definition 36. Logspace Boolean formula truth-table reduction (<t .. reduction): We
say a promise problem Il logspace Boolean formula truth-table reduces to I if there
exists a logspace-computable function f, which on input x produces a tuple (y1,...,Yym) and
a Boolean formula ¢ (with m input gates) such that:

HARS HYes - ¢(Xr(y1), .. aXF(ym)) =1

zelly, = d)(XF(yl), .. ,Xr(ym)) =0

We begin by proving a logspace analogue of a result from [28], used to make statistically
close pairs of distributions closer and statistically far pairs of distributions farther.

» Lemma 37. (Polarization Lemma, adapted from [28, Lemma 3.3]) There is a logspace-
computable function that takes a triple (Py, Py, 1¥), where Py and Py are branching programs,
and outputs a pair of branching programs (Q1,Q2) such that:

A(Pl,PQ) < é = A(Ql,Qg) < 271C

2
A(Pl,PQ) > g — A(Qth) >1 —2_k

To prove this, we adapt the same method as in [28] and alternate two different procedures,
one to drive pairs with large statistical distance closer to 1, and one to drive distributions
with small statistical distance closer to 0. The following lemma will do the former:

» Lemma 38. (Direct Product Lemma, from [28, Lemma 3.4]) Let X and Y be distributions
such that A(X,Y) =e. Then for all k,

ke > A(@"X,@%Y) > 1 — 2exp(—ke?/2)

10We observe that open questions about closure properties of NISZK also translate to open questions
about NISZK,. NISZK is not known to be closed under union [26], and neither is NISZK_. Neither is
known to be closed under complementation. Both are closed under conjunctive logspace-truth-table
reductions.
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The proof of this statement follows from [28]. To use this for Lemma 37, we note that a
branching program for ®*P can easily be created in logspace from a branching program P
by simply copying and concatenating k independent copies of P together.

We now introduce a lemma to push close distributions closer:

» Lemma 39. (XOR Lemma, adapted from [28, Lemma 8.5]) There is a logspace-computable
function that maps a triple (Py, Py, 1¥), where Py and Py are branching programs, to a pair
of branching programs (Qo, Q1) such that A(Qo, Q1) = A(Po, Py)F. Specifically, Qo and Q;
are defined as follows:

Qo= Py :y~{yc{0,1}": @icpyyi = 0}
i€ k]

Q1= ®Pi y~{ye{0,1}": Dicryi = 1}
i€ k]

Proof. The proof that A(Qo, @1) = A(Py, P1)* follows from [28, Proposition 3.6]. To finish
proving this lemma, we show a logspace-computable mapping between (Py, P;,1%) and
(Qo, Q1)

Let ¢ and w be the max length and width between Py and P;. We describe the structure
of Qq, with @, differing in a small step: to begin with, Qy reads the k — 1 random bits
Y1,--.,Yk_1. For each of the random bits, it can pick the correct of two different branches,
one having Py built in at the end and the other having P;. We will read y;, branch to Fy
or P; (and output the distribution accordingly), then unconditionally branch to reading yo
and repeat until we reach y;_; and branch to Py or P;. We then unconditionally branch to
y1 and start computing the parity, and at the end we will be able to decide the value of yy
which will allow us to branch to the final copy of Py or P;.

Figure 1 Branching program for Qo of Lemma 39

Creating (Qo, Q1) can be done in logspace, requiring logspace to create the section to
compute y, and logspace to copy the independent copies of Py and P;.
<

We now have the tools to prove Lemma 37.
Proof. (of Lemma 37) From [28, Section 3.2], we know that we can polarize (Py, Py, 1¥) by:

Letting I = [log, /3 6k], j = 3'"!

Applying Lemma 39 to (Py, Py, 1%) to get (P}, P})
Applying Lemma 38: P} = @/ P}, P]' = @/ P]
Applying Lemma 39 to (PY, P/, 1%) to get (Qo, Q1)

Each step is computable in logspace, and since logspace is closed under composition, this
completes our proof. <
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We also mention the following lemma, which will be useful in evaluating the Boolean
formula given by the <t. .. reduction.

» Lemma 40. There is a function in NC that takes as input a Boolean formula ¢ (with m
input bits) and produces as output an equivalent formula v with the following properties:

1. The depth of ¥ is O(logm).

2. 1) is a tree with alternating levels of AND and OR gates.

3. The tree’s non-leaf structure is always the same for a fixed input length, and is a complete
binary tree.

4. All NOT gates are located just before the leaves.

Proof. Although this lemma does not seem to have appeared explicitly in the literature, it
is known to researchers, and is closely related to results in [16] (see Theorems 5.6 and 6.3,
and Lemma 3.3) and in [6] (see Lemma 5).

The Boolean formula that is given as input may be encoded in the usual infix notation
over the alphabet {0,1,z,), (}, where leaf nodes connected to variable x; are expressed by
the string (ab) (where the string b is the binary representation of the number 7), and where
leaf nodes connected to the constants 0 and 1 are expressed by the strings (0) and (1),
respectively, and more complicated expressions can be built from formulae o and § as (aV ),
(a A ), and (—a). Since the formula produced as output has a very restricted form (with an
AND gate at the root, and alternating layers of AND and OR gates forming a full binary
tree) the output formula can simply be encoded as a list of 27 leaf nodes. Thus 0, =210, x11, 1
would be a representation of the formula (((0) V (=(x2))) A ((z3) V (1))).

The lemma is proved by using the fact that the Boolean formula evaluation problem
lies in NC' [11, 12], and thus there is an alternating Turing machine M running in O(logn)
time that takes as input a Boolean formula 1 and an assignment « to the variables of v,
and returns ¥ («). We may assume without loss of generality that M alternates between
existential and universal states at each step, and that M runs for exactly clogn steps on
each path (for some constant c¢), and that M accesses its input (via the address tape that is
part of the alternating Turing machine model) only at a halting step, and that M records
the sequence of states that it has visited along the current path in the current configuration.
Thus the configuration graph of M, on inputs of length n, corresponds to a formula of
O(logn) depth having the desired structure, and this formula can be constructed in NC!.
Given a formula ¢, an NC' machine can thus build this formula, and hardwire in the bits that
correspond to the description of ¢, and identify the remaining input variables (corresponding
to M reading the bits of «) with the variables of ¢. The resulting formula is equivalent to ¢
and satisfies the conditions of the lemma. <

» Definition 41. (From [28, Definition 4.8]) For a promise problem II, we define a new
promise problem ®(II) as follows:

CI)(H)YBS = {(¢,$1, o 7xm) : ¢(XH($1), ey Xn(fm)) = 1}
S no = {(d, 215, Tm)  ¢(AXn(z1), ..., Xni(2m)) = 0}
» Theorem 42. SZK, is closed under SIBf—tt reductions.

To begin the proof of this theorem, we first note that as in the proof of [28, Lemma 4.10],
given two SDgp pairs, we can create a new pair which is in SDgp y, if both of the original
two pairs are (which we will use to compute ANDs of queries.) We can also compute in
logspace the OR query for two queries by creating a pair (P; ® S1, P> ® S2). We prove that
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these operations produce an output with the correct statistical difference with the following
two claims:

> Claim 43. {(y17y2)‘XSDBP(y1) \ XSDBP (yQ) = 1}§Ir_nSDBP

Proof. Let y; = (A1, B1) and y2 = (Ag, B). Let p > 0 be a parameter, where we are
guaranteed that:

(A;,B;) € SDgp,y = A(A;,B;)) >1—p
(A;,B;) € SDgp.n = A(A;,B;) <p
Then consider:
y = (A1 ® Az, B1 ® By)
Let us analyze the Yes and No instance of Xspg. (y1) V Xspge (y2):

YES: A(A; ® Ay, B1 ® Bs) > max{A(A1 ® By, B1 ® B2)7A(Bl ® Ag, B1 ® BQ)} =
max{A(Al, Bl), A(AQ, B2)} >1—p.
NOM: A(Al ® Az, B1 ® Bz) < A(A17B1) + A(A27B2) < 2p.

<

In our Boolean formula, we will have only d = O(log m) depth, so we have this OR operation
for at most % levels (and the soundness gap doubles at every level). Since p = 21 at the
beginning, the gap (for NO instance) will be upper bounded at the end by:

at1 1 mO
<2727 — = <1/3.
Com T Tom /

> Claim 44.  {(y1,y2)|Xspge (1) A Xspgp (y2) = 1} <5, SDgp.

Proof. Let y; = (A;,B1) and y2 = (As, B3). Let p > 0 be a parameter, where we are
guaranteed that:

(Ai,Bi) S SDBP,Y — A(A“Bl) >1 —p
(A,,Bz) S SDBP,N — A(A,,Bz) <p

We can construct a pair of BPs y = (A4, B) whose statistical difference is exactly
A(A1, By) - A(Az, Bs)

The pair (4, B) we construct is analogous to (Qo, Q1) in Lemma 39, and can be created
in logspace with 2 random bits by, b;. We have A = (A1, Ag) if b = 0 and A = (B, Bs) if
b() = ].7 while B = (Al,BQ) if bg is 0 and (AQ,Bl) if bl =1.

Let us analyze the Yes and No instance of Xspg, (y1) A Xspgp (y2):

YES: A(Al,Bl) . A(AQ,BQ) > (1 _p)2.
NO: A(A1, By) - A(Az, By) < min{A(Ay, B1), A(Ag, Bo)} < p.

1 For the first inequality here, see [28, Fact 2.3].
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In our Boolean formula we will have only d = O(logm) depth, so we have this AND operation
for at most % levels (and the completeness gap squares itself at every level). Since p =
at the beginning, the gap (for YES instance) will be lower bounded at the end by:

1
Sm

1 o 1 1
>(1-gm) 7 == Q—m)mo“) > (1

m, 1 2
)2 /m (7)1/m > Z

~om e 3
Proof. (of Theorem 42) Now suppose that we are given a promise problem II such that
II §}'3f_tt SDgp. We want to show II §l‘n SDgp, which by SZK|’s closure under g';n reductions
implies IT € SZK|.

We follow the steps below on input x to create an SDgp instance (Fp, F) which is in
SDBP,Y ifre Hy, and is in SDBP,N ifxelly:

1. Run the L machine for the <t .. reduction on z to get queries (qi,...,qmn) and the
formula ¢.

2. Build v from ¢ using Lemma 40. Recalling that there is a <l reduction f reducing SDgp
to its complement, replace each negated query —g¢; with f(g;), so that we can now view
as a monotone Boolean formula reducing II to SDgp. Since the Polarization Lemma (37)
maps YES instances to YES instances and NO instances to NO instances, we can also
use the same formula ¢ on the polarized instances that we obtain by applying Lemma 37
with k& = n to these queries, to obtain a new list of queries (y1, ..., ¥ym). Furthermore we
may pad these queries, so that each query y; consists of a pair of branching programs
(instances of SDgp) where all of the branching programs have the same number of output
bits.

3. Using the formula ), build a “template tree” T. At the leaf level, for each variable in ),
we will plug in the corresponding query y;; interior nodes are labeled AND or OR. By
Lemma 40 the tree T is full. Using Claims 43 and 44, each node of the template tree is
associated with a pair of branching programs, with the pair (Fpy, F1) at the root being the
output of our <t reduction. It is important to note that the constructions in Claims 43
and 44 produce distributions, where each output bit is simply a copy of one of the output
bits of the distributions that feed into it. Thus each output bit of Fy and F} is simply a
copy of one of the output bits of one of the pairs of branching programs that constitute
one of the input queries y;.

4. Given z and designated output position j of Fy or Fi, there is a logspace computation
which finds the original output bit from ¥ ... y,, that bit j was copied from. This machine
traverses down the template tree from the output bit and records the following;:

The node that the computation is currently at on the template tree, with the path
taken depending on j.

The position of the random bits used to decide which path to take when we reach
nodes corresponding to AND.

This takes O(logm) space. We can use this algorithm to copy and compute each output
bit of Fy and F}, creating (Fy, Fy) in logspace.

For step 4, we give an algorithm Eval(z, j,%,y1,...,ym) to compute the jth output bit of
Fy or Fy on x, for a formula 1 satisfying the properties of Lemma 40, a list of SDgp queries
(y1,---,Ym), and j. Without loss of generality, we lay out the algorithm to compute only
Fo (.13)

Outline of Eval(x, j, ¥, Y1, .-, Ym) :

The idea is to compute the jth output bit of Fjy by recursively calculating which query
output bit it was copied from. To do this, first notice that the AND and OR operations
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produce branching programs where each output bit is copied from exactly one output bit of
one of the query branching programs, so composing these operations together tells us that
every output bit in Fj is copied from exactly one output bit from one query. By Lemma 40
and our AND and OR operations preserving the number of output bits, we also have that
if every BP has [ output bits, Fy will have 2¢] = |9 |l output bits, where a is the depth of
1. This can be used to recursively calculate which query the jth bit is from: for an OR
gate, divide the output bits into fourths, and decide which fourth the jth bit falls into (with
each fourth corresponding to one BP, or two fourths corresponding to a subtree.) For an
AND gate, divide the output into fourths, decide which fourth the jth bit falls into, and
then use the 4 random bits for the XOR operation to compute which fourth corresponds to
which branching programs (2 fourths will correspond to 1 BP or subtree, and the other 2
fourths will correspond to the 2 BPs from the other subtree.) If j is updated recursively,
then at the query level, we can directly return the j'th output bit. This can be done in
logspace, requiring a logspace path of “lefts” and “rights” to track the current gate, logspace
to record and update j’, logspace to compute 2% at each level, and logspace to compute
which subtree/query the output bit comes from at each level.

The resulting BP will be two distributions that will be in SDgpy <= « € Ily. By this
process I1 San SDgp. <

8 Open Questions

The main open question is whether NISZK is equal to NISZK_. Partial progress on this
problem can be achieved by finding additional subclasses of P that lie in NISZK| (extending
the work presented in Section 5).

On a more concrete level, can the results of Section 6 be improved, in order to show
that NISZK| = NISZKpgt? Or, more ambitiously, given the role that randomized encodings
play in our results, is it possible that all problems in the class SREN (problems with
statistical randomized encodings) lie in NISZK| , or even (as suggested by the referees) that
NISZK| = NISZKsren?

The referees have also suggested that it would be interesting to consider classes defined
in terms of non-uniform verifiers and simulators.
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