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Abstract13

A polynomial P ∈ F[x1, . . . , xn] is said to be symmetric if it is invariant under any permutation of its14

input variables. The study of symmetric polynomials is a classical topic in mathematics, specifically15

in algebraic combinatorics and representation theory. More recently, they have been studied in16

several works in computer science, especially in algebraic complexity theory.17

In this paper, we prove the computational hardness of one of the most basic kinds of symmetric18

polynomials: the monomial symmetric polynomials, which are obtained by summing all distinct19

permutations of a single monomial. This family of symmetric functions is a natural basis for the20

space of symmetric polynomials (over any field), and generalizes many well-studied families such as21

the elementary symmetric polynomials and the power-sum symmetric polynomials.22

We show that certain families of monomial symmetric polynomials are VNP-complete with23

respect to oracle reductions. This stands in stark contrast to the case of elementary and power24

symmetric polynomials, both of which have constant-depth circuits of polynomial size.25

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory; Computing26

methodologies → Representation of polynomials27

Keywords and phrases algebraic complexity, symmetric polynomial, permanent, Sidon set28

Digital Object Identifier 10.4230/LIPIcs...29

Funding Basic Algorithms Research Copenhagen is supported by Villum Foundation grant 16582.30

1 Introduction31

This paper considers the algebraic complexity of symmetric polynomials: a multivariate32

polynomial f ∈ F[x1, . . . , xn] is said to be symmetric if it is invariant under any permutation33

of its variables x1, . . . , xn. Standard examples of such polynomials include the elementary34

symmetric polynomials and the power-sum symmetric polynomials. The study of symmetric35

polynomials is a classical topic in mathematics, especially in algebraic combinatorics and36

representation theory (see, e.g. [18, 14]). In particular, standard bases of homogeneous37

symmetric polynomials of fixed degree d and the matrices of linear transformations that38

translate between these bases are studied. For many natural bases, the entries of these39

matrices encode interesting combinatorial and representation-theoretic quantities.40

An important example of such a basis of n-variate symmetric polynomials is the family of41

monomial symmetric polynomials, which are considered in this paper. In the following, we say42

that a partition λ of an integer d ∈ N is a non-increasingly ordered tuple of positive numbers43

λ = (λ1, λ2, . . . , λr) summing to d, i.e. λ1 ≥ λ2 ≥ . . . ≥ λr and
∑r
i λi = d. We write λ ` d44
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to indicate this fact. The monomial symmetric polynomial mλ is the polynomial obtained by45

summing all distinct monomials yλ1
1 · · · yλr

r that can be obtained by picking y1, . . . , yr out of46

x1, . . . , xn without repetitions. These generalize both the elementary symmetric polynomials47

(obtained by taking r = d and all λi = 1) and the power symmetric polynomials (obtained by48

taking r = 1 and λ1 = d). It is also easily seen that any symmetric polynomial is a unique49

linear combination of monomial symmetric polynomials.50

In this paper, we study monomial symmetric polynomials from the perspective of algebraic51

complexity. The complexity of general symmetric polynomials has already been investigated52

in various works, as summarized below.53

Many results in algebraic complexity concern the computational complexity of the54

elementary symmetric polynomials. Non-trivial upper bounds for computing these55

polynomials have been shown in various models [13, 16, 8], starting with the work of56

Nisan and Wigderson [13]. In particular, the upper bound by Shpilka and Wigderson [16]57

played a crucial role in recent work that proved the first superpolynomial lower bounds for58

constant-depth algebraic circuits [10]. Lower bounds for computing elementary symmetric59

polynomials have also been shown [13, 16, 15, 8, 6].60

The algebraic complexity of various symmetric polynomials in the monotone setting has61

been investigated [5, 7]. Here, the underlying field is the reals and we do not allow any62

negative constants in the underlying computation. In particular, the result of Grigoriev63

and Koshevoy [7] implies an exponential lower bound on monotone algebraic circuits64

computing certain monotone symmetric polynomials. However, this does not imply lower65

bounds for general (non-monotone) algebraic circuits, which are the focus of this paper.66

The fundamental theorem of symmetric polynomials states that any symmetric polynomial67

p(x1, . . . , xn) can be written uniquely as a polynomial felem in the elementary symmetric68

polynomials. A recent result of Bläser and Jindal [2] shows that, over fields of characteristic69

0, the polynomials p and felem have roughly the same algebraic circuit complexity. This70

implies the hardness of p when felem is a known hard polynomial such as the permanent,71

but it might be non-trivial to understand the complexity of felem in general. A variant72

of [2] was proved in [4], which holds for more general models of algebraic computation,73

but it requires technical conditions on felem.74

Monomial symmetric polynomials appear naturally in the context of learning theory, e.g.,75

when estimating properties of distributions. Here, the learning algorithm has access to76

samples from a discrete distribution and is required to estimate a symmetric property of77

the distribution, e.g., the entropy or support size. Acharya, Das, Orlitsky and Suresh [1]78

analyzed algorithms based on a particular estimator and showed their optimality in79

a variety of settings. This estimator seeks to optimize a given monomial symmetric80

polynomial over the space of probability distributions. The problem we study in this81

paper, that is, evaluating a monomial symmetric polynomial at a given input, intuitively82

appears to be an easier computational problem.83

Many of the above works try to understand the algebraic complexity of various families of84

monomial symmetric polynomials. However, to the best of our knowledge, it was not known85

if there are families of monomial symmetric polynomials that are hard for general algebraic86

circuits. We prove that, indeed, polynomial-sized circuits for certain monomial symmetric87

polynomials mλ would imply that VNP collapses to VP. More formally, we show that these88

monomial symmetric polynomials are VNP-hard under c-reductions; these reductions will be89

introduced in Section 2. (Containment in VNP is easily seen, so VNP-completeness follows.)90

91
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I Theorem 1 (Main theorem). Fix an algebraically closed field of characteristic 0 or q ≥ 3.92

There are two polynomial functions r, s : N → N and an explicit1 sequence of partitions93

λ1,λ2, . . . such that λn ` r(n) for n ∈ N and the following holds: If the polynomials94

mλn(x1, . . . , xs(n)) admit algebraic circuits of polynomial size, then so does the permanent.95

The permanent of order n is a polynomial in xi,j for 1 ≤ i, j ≤ n and can be seen as a96

sum over all perfect matchings in a complete bipartite graph with n + n vertices and an97

edge of weight xi,j between the i-th left and the j-th right vertex. Each perfect matching is98

weighted by the product of the weights of all involved edges. The hypergraph permanent is99

defined analogously for k-uniform hypergraphs.100

Over characteristic 0, the reduction by Bläser and Jindal [2], augmented by an observation101

due to Chaugule et al. [4], implies that to prove the theorem, it suffices to establish the102

hardness of the polynomial combination fpow that expresses mλ in terms of the power-sum103

symmetric polynomials. Towards this, we show that a particular sum-product fmatch over104

perfect matchings can be extracted from fpow. However, the weights of perfect matchings M105

in fmatch do not necessarily correspond to those in the permanent: A priori, it may not be106

possible to recover the edges present in M from the weight of M in fmatch. This property107

can however be ensured by choosing the parts in λ from a Sidon set, a notion from additive108

combinatorics. In a Sidon set, any pair of distinct numbers is uniquely identified by its sum.109

We can apply this to uniquely recover the edges present in a matching from their weight in110

fmatch.111

Over characteristic q ≥ 3, the proof is similar, but more involved: First, we need to cast112

fpow as a polynomial combination felem in the elementary symmetric polynomials in order to113

invoke a known reduction by Chaugule et al. [4] that applies to fields of characteristic q. In114

this form, it will however be less obvious how to extract a sum-product over perfect matchings.115

Focussing on the homogeneous component of minimum degree in felem and carefully choosing116

λ will eventually allow us to extract a (q − 1)-uniform hypergraph permanent from felem.117

Here, we also crucially exploit the characteristic of the field, along with basic properties of the118

transformation that expresses power-sum symmetric polynomials in terms of the elementary119

symmetric polynomials.120

2 Preliminaries121

We use boldface notation x, y for vectors. Throughout, λ will denote a partition, i.e. a122

sequence of weakly decreasing positive integers λ1 ≥ λ2 ≥ · · ·λr ≥ 1. Here, r is called the123

number of parts of λ.124

Symmetric polynomials125

In the following, let F be any field and let x = (x1, . . . , xn). We say that P (x) ∈ F[x] is126

symmetric if it is invariant under all permutations of the underlying variables. Examples of127

symmetric polynomials include the following:128

The elementary symmetric polynomials en,d =
∑
S

∏
i∈S xi for d ≤ n, where S ranges129

over all d-element subsets of [n]. If n is implicit from context, we set ed := en,d.130

The power-sum symmetric polynomials pn,d =
∑n
i=1 x

d
i . If n is implicit from context, we131

denote this polynomial by pd.132

1 The sequence of partitions is explicit in the sense that there is a polynomial-time algorithm that
computes λn on input 1n.
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More generally, given a partition λ with r ≤ n parts, the monomial symmetric polynomial133

mλ is the sum of all monomials where the distinct exponents are exactly λ1, . . . , λr. In134

particular, when λ1, . . . , λr are all distinct, we can define this polynomial by135

mλ =
∑

i1,...,ir∈[n]
distinct

xλ1
i1
· · ·xλr

ir
.136

As noted in the introduction, the elementary and power-sum symmetric polynomials are137

special cases of monomial symmetric polynomials.138

The following basic theorem regarding symmetric polynomials will be important.139

I Theorem 2 (Fundamental theorem of symmetric polynomials (see, e.g., [11])). For any140

symmetric polynomial f ∈ F[x1, . . . , xn], there is a unique polynomial felem(y1, . . . , yn) with141

felem(e1, . . . , en) = f(x). If F has characteristic zero, then there is also a unique polyno-142

mial fpow(y1, . . . , yn) that represents f analogously in terms of the power-sum symmetric143

polynomials.144

Further, both felem and fpow (the latter over characteristic 0) have degree at most deg(f)145

and do not depend on yi for i > deg(f).146

Algebraic circuits and Oracle reductions147

We work throughout with the standard algebraic circuit model. We refer the reader to148

standard resources [3, 17] for definitions and basic results regarding the model. We recall149

also the notion of c-reductions between two polynomials f and g: We define Lg(f) to be the150

smallest s such that the polynomial f is computed by an algebraic circuit C of size at most151

s that is additionally allowed to use gates for the polynomial g. If Lg(f) is bounded by a152

polynomial in the number of variables and degree of f and g, we also say that f admits a153

c-reduction to g and write f �c g.154

A result of Bläser and Jindal [2] relates the algebraic complexity of a symmetric polynomial155

f with its associated polynomial felem, when the underlying field is the field of complex156

numbers. Chaugule et al. [4, Theorem 4.16] extended the result to fpow.157

I Theorem 3 ([2, 4]). Any symmetric polynomial f ∈ C[x] admits the reductions felem �c f158

and fpow �c f.159

We also need the following variant of Theorem 3 due to [4]. While the results of [4] are160

stated for characteristic zero, we show in Section 5 how to modify them to work for positive161

characteristic in the setting we are interested in.162

In the following, given a polynomial f ∈ F[x] and an integer d, we use Hd(f) to denote163

the homogeneous degree-d component of f . We say that a polynomial f has min-degree t if164

Ht(f) 6= 0 and Hi(f) = 0 for all i < t, and we define the min-degree of the zero polynomial165

to be +∞.166

I Theorem 4 (Adaptation of [4], see Section 5). Let F be an algebraically-closed field of167

characteristic q > 0. Let f ∈ F[x1, . . . , xn] be a non-zero symmetric polynomial such that the168

min-degree of felem is t. Furthermore, assume that felem(y1, . . . , yn) does not depend on the169

variables yn−1 and yn. Then Ht(felem) �c f .170

In the above statement we say that felem must not depend on the variables yn−1 and yn.171

This is a mere technical condition required in our proof of this theorem. Finally, we also172

need the following standard fact:173

I Lemma 5 (Homogeneous component extraction. Folklore, see [17, 2]). Let F be any field.174

For any f ∈ F[x] and integer d ≥ 0, we have Hd(f) �c f .175
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Permanents176

The canonical VNP-complete polynomial family is given by the polynomials Pern for n ∈ N,177

each defined on n2 variables xi,j for i, j ∈ [n], such that178

Pern =
∑
σ∈Sn

x1,σ(1) . . . xn,σ(n),179

where Sn is the set of all permutations of the set {1, 2, . . . , n}. When the variables xi,j180

take Boolean values, the underlying input to Pern defines a bipartite graph and the above181

polynomial computes the number of perfect matchings in this graph.182

An analogous polynomial can be defined for not necessarily bipartite graphs. Assume183

that n is an even integer and fix the set of
(
n
2
)
variables x{i,j} for all distinct i, j ∈ [n]. Then,184

we define the perfect matching polynomial PerfMatchn over these variables by185

PerfMatchn =
∑

perfect matchings
M of Kn

∏
{i,j}∈M

x{i,j}.186

We can also define analogues of the above for hypergraphs. Let k ≥ 2 be an integer and let187

K
(k)
n denote the complete k-uniform hypergraph on n vertices. For n divisible by k, we define188

the hypergraph perfect matching polynomial hPerfMatch(k)
n over the

(
n
k

)
many variables xS189

for S ∈
([n]
k

)
by190

hPerfMatch(k)
n =

∑
perfect matchings

M of Kk
n

∏
S∈M

xS .191

Note that PerfMatchn = hPerfMatch(2)
n .192

We have the following simple reductions from permanents to their variants.193

I Lemma 6. For even n ∈ N, we have Pern/2 �c PerfMatchn. More generally, for any fixed194

k ∈ N and any n divisible by k, we have Pern/k �c hPerfMatch(k)
n .195

Proof sketch. For even n, reduce Pern/2 to PerfMatchn as follows: For i, j ∈ [n/2], substitute196

x{i,n/2+j} ← xi,j and xS ← 0 for all remaining variables xS . This results in Pern/2.197

More generally, for n divisible by k, reduce Pern/k to hPerfMatch(k)
n as follows: For198

i, j ∈ [n/k], let Si,j = {i} ∪ {tn/k + j | t = 1, . . . , k − 1} and substitute xSi,j
← xi,j . Then199

substitute xS ← 0 for all remaining variables xS . This results in Pern/k. J200

Finally, we recall a generalization of the permanent to rectangular matrices. Fix an r× n201

matrix X where r ≤ n and the (i, j)-th entry of X is a variable xi,j . For a subset J ⊆ [n] of202

size r, we define XJ to be the submatrix obtained by keeping only the columns indexed by203

the indices in J . Now, we define the rectangular permanent rPerr,n by204

rPerr,n =
∑

J∈([n]
r )

Perr(XJ).205

The following polynomial identity will be crucial to our main results.206

I Theorem 7 (Binet-Minc Identity [12]). Let F be any field. Fix an r× n matrix X as above.207

For any non-empty I ⊆ [n], define the polynomial SI by SI =
∑n
j=1

∏
i∈I xi,j . Then, we have208

rPerr,n =
∑
I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · SI ,209

where Pr denotes the set of all partitions of [r] into non-empty subsets.210
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Sidon sets and variants211

Our hardness proofs for the monomial symmetric functions mλ require certain conditions212

on λ: In Section 3, any unordered pair of numbers in λ must be uniquely identified from213

its sum, i.e., the parts in λ form a so-called Sidon set. Additionally, sums composed of the214

parts in λ are stratified by the number of terms involved in the sum. Section 4 requires more215

generally that sets of fixed size q ∈ N are identifiable, and that all parts must have remainder216

1 modulo q. We capture these requirements in the following definition:217

I Definition 8. Given a set of integers L = {λ1, . . . , λr} and a subset S ⊆ [r], define218

λS :=
∑
i∈S λi. We say that L (or a partition λ whose multiset of parts equals L) is q-good219

for an integer q ≥ 2 if the following conditions hold:220

q-wise Sidon set: For any two distinct sets S, S′ ⊆ [r] of size q, we have λS 6= λS′ .221

Stratification: For sets S, T ⊆ [r] with |S| < q and |T | = q, we have λS < λT .222

Units modulo q + 1: For each i ∈ [r], we have λi ≡ 1 (mod q + 1) .223

Existing constructions of q-wise Sidon sets can be adapted to construct such sets:224

I Lemma 9. For all r, q ∈ N, there exists a q-good set of r integers that are bounded by225

rO(q). Such a set can be constructed deterministically in time rO(q).226

Proof. Let s ∈ N be the smallest perfect square that is larger or equal to r. By Lemma 2.5227

in [9], there is a q-wise Sidon set {λ1, . . . , λs} with elements bounded by sO(q) = rO(q) that228

can be constructed in sO(q) = rO(q) time. Then the r-element subset {λ1, . . . , λr} trivially is229

a q-wise Sidon set as well.230

Now take µi = (q + 1)λi + 1 for all i ∈ [r]; this trivially ensures that µi ≡ 1 (mod q + 1)231

for all i, as required in the third property from Definition 8. As the map x 7→ (q + 1)x+ 1 is232

injective, the set {µ1, . . . , µr} is a q-wise Sidon set.233

Finally, to ensure the stratification property, let Σ be the smallest multiple of q + 1 that234

is strictly larger than µ1 + . . .+ µr, define µ′i = Σ + µi for i ∈ [r], and set L := {µ′1, . . . , µ′r}.235

As the map x 7→ Σ + x is injective, L is a q-wise Sidon set. As Σ is a multiple of q + 1, we236

have µ′i ≡ µi ≡ 1 (mod q + 1) for all i. We show that µ′I < µ′I′ for I, I ′ ⊆ [r] with |I| < |I ′|:237

Note that µ′i can be interpreted as a 2-digit number (1, µi) in base Σ. For I ⊆ [r], the238

representation of µ′I =
∑
i∈I µ

′
i in base Σ is (|I|, µI); this is because Σ is large enough to239

avoid an overflow of the least significant digit. The stratification property follows.240

From the above construction, it follows that L is a q-good set, all numbers in L are241

bounded by rO(q), and that L can be constructed deterministically in rO(q) time. J242

3 Main result in characteristic zero243

We present our main reduction from permanents to monomial symmetric functions mλ. The244

reduction shown in this section applies to the field C. In the next section, we show how to245

handle fields of characteristic strictly greater than 2; this introduces additional technical246

difficulties that are not present in this section.247

Fix a 2-good partition λ = (λ1, . . . , λr) with r parts, non-increasingly ordered, and248

λ ` d for d ∈ N. Recall our notation λI :=
∑
i∈I λi for I ⊆ [r]. We first express249

mλ(x1, . . . , xn) for n ∈ N as a polynomial combination of the power-sum symmetric polyno-250

mials pj := pn,j(x1, . . . , xn) for 1 ≤ j ≤ d. That is, we obtain a polynomial fpow(y1, . . . , yd)251

in indeterminates y1, . . . , yd such that252

mλ(x1, . . . , xn) = fpow(p1, . . . , pd).253
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Known reductions will allow us to reduce directly (in characteristic 0) or with extra steps254

(for characteristic > 2) from fpow to mλ. It therefore remains to establish hardness of fpow.255

Towards this, we give a combinatorial interpretation of fpow as a sum over partitions of [r];256

this sum will later be restricted to partitions that are actually perfect matchings of Kr.257

I Fact 10. If λ = (λ1, . . . , λr) is a partition of some integer d ∈ N, and the parts of λ are258

pairwise distinct, then we have mλ(x1, . . . , xn) = fpow(p1, . . . , pd) with259

fpow(y1, . . . , yd) =
∑
I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI
. (1)260

Proof. If all parts of λ are pairwise distinct, then mλ can be expressed as the rectangular261

permanent of a generalized Vandermonde matrix Vλ defined from λ:262

mλ = rPerr,n

 xλ1
1 xλ1

2 . . . xλ1
n

...
...

. . .
...

xλr
1 xλr

2 . . . xλr
n


︸ ︷︷ ︸

=:Vλ

(2)263

The Binet-Minc formula (Theorem 7) then readily yields (1): When invoked on Vλ, the264

polynomial SI in the statement of Theorem 7 equals265

SI =
n∑
j=1

∏
i∈I

Vλ(i, j) =
n∑
j=1

∏
i∈I

xλi
j =

n∑
j=1

xλI
j = pλI

.266

This concludes the proof. J267

Note that all parts of λ are indeed distinct, since λ is 2-good and thus cannot feature a part268

of multiplicity strictly larger than 1; this follows from the Sidon set property.269

Theorem 2 shows that fpow is uniquely determined over characteristic 0, and Theorem 3270

yields a reduction from fpow to mλ, so we establish hardness of fpow: We define a new271

polynomial fmatch by restricting the sum over partitions I ∈ Pr in (1) to perfect matchings,272

i.e., to partitions of [r] in which all parts have cardinality 2. We write Mr for the set of273

perfect matchings of [r] and define274

fmatch(y1, . . . , yd) :=
∑
I∈Mr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI

= (−1)r/2
∑
I∈Mr

∏
I∈I

yλI
.

(3)275

The last identity holds because every I ∈ Mr has exactly r/2 parts, each of cardinality 2.276

We will show later that fmatch can be reduced to fpow. First, we establish the hardness of277

fmatch by reducing the perfect matching polynomial to it. Here, we crucially use that λ is a278

Sidon set in order to switch between the variables yλ{u,v} present in fmatch and the variables279

x{u,v} present in PerfMatchr.280

B Claim 11. There is a c-reduction from PerfMatchr to fmatch.281

Proof. Since λ is a 2-good set, its parts form a 2-wise Sidon set, so the map {u, v} 7→ λ{u,v}282

from 2-subsets of [r] into N is injective. This in turn implies that substituting yλ{u,v} ← x{u,v}283

for all {u, v} ⊆ [r] into fmatch yields the polynomial284

(−1)r/2
∑
I∈Mr

∏
I∈I

x{u,v} = (−1)r/2PerfMatchr.285

Multiplication with (−1)r/2 then yields the desired c-reduction. J286
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Finally, we reduce fmatch to fpow. This reduction proceeds in two steps: We first show287

that the homogeneous component of degree r/2 in fpow enumerates the perfect matchings288

and some additional structures; these additional structures are then removed through the289

stratification property of λ.290

B Claim 12. There is a c-reduction from fmatch to fpow.291

Proof. Consider the homogeneous component Hr/2(fpow) in fpow. Lemma 5 gives a c-292

reduction from Hr/2(fpow) to fpow. By inspecting (1), we see that the monomials of293

Hr/2(fpow) correspond to the partitions I ∈ Pr with exactly r/2 parts. Such a partition is a294

perfect matching iff it contains no parts of size 1, as every part must then be of cardinality295

at least 2, and thus, of cardinality exactly 2.296

We thus aim to restrict the sum further to partitions with r/2 parts and no parts of297

cardinality 1. To this end, substitute pλ{u} ← 0 for all u ∈ [d]: By the stratification property298

of λ, this eliminates precisely those partitions from Hr/2(fpow) that contain a singleton part299

{u}. Overall, this yields a c-reduction from fmatch over Hr/2(fpow) to fpow. J300

We have now collected all parts of the reduction and summarize it below.301

I Lemma 13. Let F = C. Let λ ` d for d ∈ N be a 2-good partition with r parts. Then302

Perr/2 �c mλ(x1, . . . , xn)303

provided that n ≥ d.304

Proof. Let fpow(y1, . . . , yd) and fmatch(y1, . . . , yd) denote the polynomials defined from λ in305

(1) and (3) above. We have the following chain of reductions:306

Perr/2 �c PerfMatchr by Lemma 6
�c fmatch(y1, . . . , yd) by Claim 12
�c fpow(y1, . . . , yd) by Claim 11
�c mλ(x1, . . . , xn) by Theorem 4.

307

The lemma follows. J308

Combining Lemma 13 and Lemma 9, we obtain a proof of Theorem 1 in the case when309

the underlying field is C.310

Proof of Theorem 1 (characteristic 0). By Lemma 9, there is a sequence of 2-good parti-311

tions λ1,λ2,λ3, . . . such that λn ` dn has n parts and dn ≤ s(n) for a polynomial s : N→ N.312

By Lemma 13, we have Pern/2 �c mλn(x1, . . . , xs(n)). The theorem follows. J313

4 Main result in positive characteristic314

In this section, we adapt the proof from Section 3 to prove the main theorem for fields of315

positive characteristic. Throughout this section, F denotes an infinite and algebraically closed316

field of characteristic q > 2. Rather than reducing from the perfect matching polynomial for317

graphs, we reduce from the perfect matching polynomial in (q − 1)-uniform hypergraphs. In318

the following, let λ be a (q − 1)-good partition with r parts and λ ` d for d ∈ N.319
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The proof begins again by expressing mλ(x1, . . . , xn) = fpow(p1, . . . , pd) as a polynomial320

combination of power-sum polynomials pi for 1 ≤ j ≤ d. Since λ is (q − 1)-good, it contains321

only pairwise distinct parts, so we can use Fact 10 again and obtain322

fpow(y1, . . . , yd) =
∑
I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · yλI
. (4)323

At this point, we exploit the field characteristic: We have (|I| − 1)! ≡ 0 (mod q) if |I| > q,324

implying that only partitions with parts of cardinality ≤ q appear in the above sum. Write325

P≤qr for the set of these partitions, and furthermore write Pq−1
r for the set of partitions326

whose parts all have cardinality q − 1. Our goal is to restrict the sum in (4) to partitions327

from Pq−1
r , that is, to perfect matchings in the complete (q− 1)-uniform r-vertex hypergraph.328

This resembles the restriction to graph perfect matchings in Section 3.329

To achieve this restriction and to invoke Theorem 4 later, we express the power-sum330

polynomials pk for 1 ≤ k ≤ d as polynomials in the elementary symmetric polynomials. In331

contrast to the converse direction (of expressing the elementary symmetric polynomials in332

terms of the power-sum polynomials), such expressions exist even in positive characteristic:333

For all k ∈ N, there is a unique polynomial fk(z1, . . . , zk) with pk = fk(e1, . . . , ek), even over334

fields of characteristic q > 0. Combined with (4), we obtain mλ = felem(e1, . . . , ed) with335

felem(z1, . . . , zd) =
∑
I∈Pr

(−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI
(z1, . . . , zd). (5)336

The polynomial felem is unique, since the elementary symmetric polynomials form a337

basis for the symmetric polynomials over every field. Let t denote the min-degree of felem.338

Theorem 4 shows that the homogeneous component of degree t in felem admits a c-reduction339

to the polynomial mλ, so we will focus on this homogeneous component. First, we show that340

the polynomial fk, which expresses the power-sum symmetric polynomial pk in terms of the341

elementary symmetric polynomials, has min-degree at least 2 whenever k is divisible by q.342

Note that fk has no constant term.343

B Claim 14. The only linear monomial in fk is (−1)k+1k · yk. In particular, if q | k, then344

the min-degree of fk over characteristic q is at least 2.345

Proof. Given a partition µ ` k and i ∈ N, write si(µ) for the multiplicity of i in µ. We346

have [18, Chapter 7] that347

fk(y1, . . . , yk) = (−1)kk
∑
µ`k

(s1(µ) + s2(µ) + · · ·+ sk(µ)− 1)!
s1(µ)! s2(µ)! · · · sk(µ)!

k∏
i=1

(−yi)si(µ). (6)348

Note that every partition µ ` k with at least two parts contributes a term of total degree at349

least two. Only the partition µ = (k) can therefore contribute a linear monomial, and the350

contributed monomial is (−1)kk · 0!/1! · (−yk) = (−1)k+1k · yk. J351

Using this claim, we can analyze the min-degree of the contribution to felem from a352

partition I ∈ P≤qr . That is, we write felem =
∑
I bI with I ranging over P≤qr and353

bI := (−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI
.354

It turns out that the min-degree of bI is minimized for partitions I ∈ Pq−1
r . This will allow355

us to isolate these partitions via Theorem 4.356
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B Claim 15. Let I ∈ P≤qr .357

If I ∈ Pq−1
r , then the min-degree of bI is equal to r/(q − 1).358

Otherwise, the min-degree of bI is strictly larger than r/(q − 1).359

Proof. Parts of size q in I contribute 2 to the min-degree of bI , while parts of size ≤ q − 1360

contribute 1. Consider a Knapsack instance K with items S1, . . . , Sq, and item repetitions361

allowed, where item Sj for 1 ≤ j ≤ q − 1 has weight 1 and profit j, while item Sq has weight362

2 and profit q. The min-degree of bI for I ∈ P≤qr can be viewed as the minimum weight of a363

solution with profit r for K. Greedily choosing copies of the item Sq−1 with strictly (since364

q > 2) largest profit-weight ratio yields an optimal fractional solution for K that consists of365

r/(q− 1) copies of item Sq−1. This is an optimal integral solution to K, and by optimality of366

the greedy algorithm, any solution including other items has strictly higher weight.367

It follows that the min-degree of bI over all I ∈ P≤qr is at least r/(q− 1), and this bound368

is attained with (and only with) the partitions I ∈ Pq−1
r . J369

It follows that the min-degree of felem is t := r/(q − 1). Since only partitions I ∈ Pq−1
r370

have this min-degree t, the homogeneous component of degree t in felem depends only on371

these partitions. We obtain372

Ht(felem) = Ht

 ∑
I∈Pq−1

r

bI

 = Ht

 ∑
I∈Pq−1

r

(−1)r−|I|
∏
I∈I

(|I| − 1)! · fλI

 . (7)373

Since all partitions I ∈ Pq−1
r have t parts, each of size q − 1, we obtain furthermore that374

Ht(felem) = (−1)r−t(q − 2)! ·Ht

 ∑
I∈Pq−1

r

∏
I∈I

fλI

 . (8)375

The min-degree of fλI
for I ∈ I ∈ Pq−1

r is 1, and the unique linear monomial is (−1)λI +1λI ·376

yλI
. Since λ is (q − 1)-good and |I| = q − 1, we have λI ≡ q − 1 (mod q). It follows that377

H1(fλI
) ≡ (−1)q(q − 1) · yλI

. (mod q) (9)378

For I ∈ Pq−1
r , the degree-t homogeneous component of

∏
I∈I fλI

is the product of these379

linear monomials H1(fλI
). That is,380

Ht

(∏
I∈I

fλI

)
≡
∏
I∈I

H1(fλI
) ≡ (−1)(q+1)t

∏
I∈I

yλI
. (mod q) (10)381

It follows that382

Ht(felem) ≡ (−1)r−t+(q+1)t(q − 2)!
∑
I∈Pq−1

r

∏
I∈I

yλI
. (mod q) (11)383

Using the (q − 1)-wise Sidon set property of λ, we can substitute yλI
← xI for all sets384

I ⊆ [r] of cardinality q − 1 into (11) as in Claim 11, so as to obtain:385

B Claim 16. The polynomial hPerfMatchq−1
r admits a c-reduction to Ht(felem).386

It remains to invoke Theorem 4. We collect the proof steps in the following lemma that387

parallels Lemma 13 for characteristic 0.388
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I Lemma 17. Let F be an algebraically closed field of characteristic q > 2. Let λ ` d for389

d ∈ N be a (q − 1)-good partition with r parts. Then390

Perr/(q−1) �c mλ(x1, . . . , xn),391

provided that n ≥ d+ 2.392

Proof. Let felem(y1, . . . , yd) denote the polynomial defined from λ in (5). We have the393

following chain of reductions:394

Perr/(q−1) �c hPerfMatch(q−1)
r by Lemma 6

�c Ht(felem(y1, . . . , yd)) by Claim 16
�c mλ(x1, . . . , xn) by Theorem 4.

395

To invoke Theorem 4, we use that n ≥ d + 2. This means that indeed felem(y1, . . . , yd)396

depends on two variables less than mλ(x1, . . . , xn), as required. J397

The proof of Theorem 1 for characteristic q now follows as in Section 3: Use Lemma 9 to398

find (q − 1)-good partitions, then reduce from the family of permanents via Lemma 17.399

5 Proof of Theorem 4400

In this section, we outline how to modify the result of [4] to show Theorem 4 over an401

algebraically closed field F of any characteristic (we will only require that the size of the field402

F is large enough and contains primitive roots of unity of large enough order).403

High-level Idea.404

The modification is based on a very simple idea. [4] prove a result for any algebraically405

independent polynomials satisfying a (simple) technical condition. To apply this result, the406

underlying field is required to have characteristic zero in order to apply the Jacobian criterion,407

which states that the Jacobian of a collection of algebraically independent polynomials is full408

rank over fields of characteristic zero. While this fact fails for fields of positive characteristic,409

the proof still works if we are independently able to show that the polynomials under410

consideration induce a Jacobian of full rank. We use this fact to prove their result in411

the setting that the underlying polynomials are the elementary symmetric polynomials412

e1, . . . , en−2.413

The following is implicit in [4, Lemma 27]. The proof is only stated for homogeneous414

polynomials g but easily works in the following more general setting as well.415

I Lemma 18. Let k, n be positive integers with k ≤ n. Assume that Q1, . . . , Qk ∈416

F[x1, . . . , xn] are polynomials of degree at most D such that for some a ∈ Fn, we have417

Q1(a) = · · · = Qk(a) = 0, and418

the k × n Jacobian matrix J (Q1, . . . , Qk) has rank k, when evaluated at the point a.419

Further, assume that g ∈ F[y1, . . . , yk] is a degree-d polynomial of min-degree t and let420

G = g(Q1, . . . , Qk). Then, LG(Ht(g)) ≤ poly(n, d,D).421

We only sketch the proof, as it is quite similar to [4, Lemma 27].422

Proof sketch. By shifting the input x by a, we assume without loss of generality that a is423

the origin (note that this does not affect the Jacobian at all). Now, by a Taylor expansion424

around the origin, we have for each i ∈ [k]425

Qi(x) = `i(x) +Ri(x)426
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where `i(x) is a homogeneous linear polynomial and Ri(x) is a polynomial of min-degree427

at least 2. Further, the polynomials `1, . . . , `k are linearly independent as the Jacobian is428

full-rank at a (i.e. the origin). Thus, we have429

G(x) = g(Q1(x), . . . , Qk(x))430

=
d∑
j=t

Hj(g)(`1(x) +R1(x), . . . , `k(x) +Rk(x))431

= Ht(g)(`1(x), . . . , `k(x)) +R(x)432
433

where R(x) has min-degree strictly greater than t and degree at most deg(G). Note that434

the second equality uses the fact that the min-degree of g is t. Since `1, . . . , `k are linearly435

independent, there exists a homogeneous linear transformation T of the variables x1, . . . , xn436

such that `i(T (x)) = xi for each i ∈ [k]. Applying this linear transformation to the input437

variables, we have438

G′(x) := G(T (x)) = Ht(g)(`1(T (x)), . . . , `k(T (x)))+R(T (x)) = Ht(g)(x1, . . . , xk)+R′(x)439

where R′ has min-degree strictly greater than t and degree at most deg(G).440

The above clearly implies that LG(G′) ≤ poly(n). Furthermore, by Lemma 5, we have441

that LG′(Ht(g)) ≤ poly(n,deg(G)) ≤ poly(n, d,D) as the degree of G is at most d ·D.442

Composing the two reductions, we have LG(Ht(g)) ≤ poly(n, d,D). J443

We will apply Lemma 18 to the setting when Q1, . . . , Qk are e1, . . . , ek for some k < n−1.444

To do this, we need to show that these polynomials satisfy the hypotheses required of445

Q1, . . . , Qk in the statement of Lemma 18. We do this now, using ideas from Lemma 30 and446

31 of [4].447

I Lemma 19. Let k, n be positive integers with k < n− 1. Then the polynomials e1, . . . , ek448

satisfy the conditions required of Q1, . . . , Qk in the hypothesis of Lemma 18.449

Proof sketch. Define ` = k+ 1 if q does not divide k+ 1 and ` = k+ 2 otherwise. Note that450

k < ` ≤ n. As q does not divide `, the algebraically-closed field F contains ` distinct `-th451

roots of unity 1, ω, . . . , ω`−1. Let a = (1, ω, . . . , ω`−1, 0, . . . , 0). It is a standard observation452

(see e.g. [4, Lemma 31]) that e1(a) = · · · = e`−1(a) = 0. As ` > k, this implies the first453

hypothesis from the statement of Lemma 18 above.454

For the second hypothesis, we consider the Jacobian matrix J (e1, . . . , ek). To show that455

this matrix is full-rank when evaluated at a, it suffices to argue that some k × k minor of456

this matrix is non-zero when evaluated at a. We consider the minor Jk defined by the first k457

columns of J (e1, . . . , ek) (containing the partial derivatives w.r.t. variables x1, . . . , xk).458

The proof of Lemma 30 in [4] shows that Jk is divisible by the polynomial
∏
i<j≤k(xi −459

xj). By comparing the degrees of these polynomials, we see immediately that J must be460

c ·
∏
i<j≤k(xi − xj) for some scalar c ∈ F. As the first k co-ordinates of a are distinct, we461

see that Jk(a) = c · α for some non-zero α ∈ F. So it suffices to show that c is non-zero.462

To argue this, we only need to show that Jk is a non-zero polynomial. To see this,463

consider the coefficient of xk−1
1 xk−2

2 · · ·xk−1 in the minor Jk. We claim that this coefficient464

is non-zero. In particular, this implies that Jk is a non-zero polynomial.465

It remains to prove the claim regarding the monomial mk := xk−1
1 xk−2

2 · · ·xk−1. We have466

Jk =
∑
σ∈Sn

sgn(σ)
k∏
i=1
J (e1, . . . , ek)i,σ(i).467
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To argue that mk has a non-zero coefficient in Jk, we can argue by induction on k. Note468

that the (i, j)th entry of J (e1, . . . , ek) is the partial derivative of the polynomial ei w.r.t.469

variable xj . It is thus the sum of all multilinear monomials of degree i− 1 not divisible by xj .470

In particular, the only entry in the kth row that has a monomial involving only the variables471

x1, . . . , xk−1 (the set of variables of mk) is the entry J (e1, . . . , ek)k,k, and furthermore, the472

unique such monomial is x1 · · ·xk−1.473

Expanding the determinant Jk by the Laplace expansion along the kth row, we see that474

the coefficient of mk in Jk is also the coefficient of mk in475

x1 · · ·xk−1 · J ′k476

where the latter term J ′k represents the co-factor of J (e1, . . . , ek)k,k in Jk, which is exactly477

the minor corresponding to the first k − 1 columns of J (e1, . . . , ek−1), which is Jk−1. By478

induction, the coefficient of mk−1 = xk−2
1 · · ·xk−2 in J ′k is non-zero, hence implying that the479

coefficient of mk in Jk is non-zero as well. J480

To prove Theorem 4, we apply Lemma 18 to the case when G = f(x1, . . . , xn) and481

g = felem(y1, . . . , yn−2). Note that, by the hypothesis of Theorem 4, felem does not depend482

on yn−1 and yn. By Lemma 19, the polynomials e1, . . . , en−2 satisfy the hypotheses of483

Lemma 18. Applying the latter lemma and using the fact that e1, . . . , en−2 have degree at484

most n, we immediately get Ht(felem) �c f, implying Theorem 4.485
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