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Abstract

What does it mean to commit to a quantum state? In this work, we propose a simple answer:
a commitment to quantum messages is binding if, after the commit phase, the committed state
is hidden from the sender’s view. We accompany this new definition with several instantiations.
We build the first non-interactive succinct quantum state commitments, which can be seen as an
analogue of collision-resistant hashing for quantum messages. We also show that hiding quantum
state commitments (QSCs) are implied by any commitment scheme for classical messages. All
of our constructions can be based on quantum-cryptographic assumptions that are implied by
but are potentially weaker than one-way functions.

Commitments to quantum states open the door to many new cryptographic possibilities. Our
flagship application of a succinct QSC is a quantum-communication version of Kilian’s succinct
arguments for any language that has quantum PCPs with constant error and polylogarithmic
locality. Plugging in the PCP theorem, this yields succinct arguments for NP under significantly
weaker assumptions than required classically; moreover, if the quantum PCP conjecture holds,
this extends to QMA. At the heart of our security proof is a new rewinding technique for
extracting quantum information.
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1 Introduction

Is it possible to commit to a quantum state? There is a simple “folklore” proposal: apply a quan-
tum one-time pad XrZs to the state ρ, and send the resulting state along with a commitment to
the classical string (r, s). While this scheme has appeared implicitly in several quantum crypto-
graphic protocols [BJSW16, CVZ20, BG20], our understanding of commitments to quantum states
is extremely limited. For example, consider the following basic questions:

• How should binding even be defined for commitments to quantum messages? A proper
definition of binding for quantum messages should capture the semantic meaning of binding,
while also being useful for cryptographic applications.

• The commitment in the folklore construction is always larger than the original message. Is
it possible to succinctly commit to a quantum state? (For example, is it possible to commit
to a 2n-qubit state with an n-qubit commitment?)

• What kinds of cryptographic protocols are enabled by commitments to quantum states?

More broadly, commitments are central to cryptography and appear in many different forms
and contexts. Does an analogous picture exist in the quantum setting?

This work. We initiate a formal study of quantum-state commitments (QSCs) and their appli-
cations. We develop general techniques to answer the above questions and position QSCs to play
a vital role in quantum cryptography. Our contributions are the following:

• Definitions. We provide a definition of binding for QSCs: informally, committing to a
quantum state ρ should erase it from the sender’s view. Our definition captures compu-
tational and statistical security, composes across multiple commitments, and we show that
it naturally generalizes Unruh’s collapse-binding definition for (quantum-secure) classical
commitments [Unr16]. Perhaps most surprisingly, we show that the notions of binding and
hiding for QSCs satisfy a duality that has no known analogue in classical cryptography.

• Constructions. Our new definition directly enables new constructions. We build the first
non-interactive succinct QSCs, which can be seen as an analogue of collision-resistant hashing
for quantum messages. We also formalize the “folklore” proposal to show that hiding and
binding QSCs exist if and only if hiding and binding quantum bit commitments (QBCs)
exist (i.e., commitments to classical messages). All of our constructions can be based on
assumptions that are implied by but are potentially weaker than one-way functions.

• Applications. Finally, we use QSCs to build protocols. Our flagship application of a succinct
QSC is a quantum version of Kilian’s succinct arguments [Kil92, CM21] for any language that
has quantum PCPs with constant error and polylogarithmic locality. Plugging in the PCP
theorem, this yields succinct arguments for NP from significantly weaker assumptions than
in the classical setting; moreover, if the quantum PCP conjecture holds, this result extends
to all of QMA. Proving security is the most technical component of this work. Our proof
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develops a new rewinding technique for extracting quantum information, combining ideas
from [CMSZ21] (which handles quantum attacks on classical protocols) with new tools and
abstractions designed for quantum protocols.

We now give a more detailed description of our results.

1.1 Our results

1.1.1 Definitions

Syntax for quantum state commitments. Before we present our binding definition, we es-
tablish some basic syntax for non-interactive QSCs:

• The sender commits to a state |ψ⟩ by applying a public unitary Com to |ψ⟩ |0λ⟩, obtaining
a state on registers (C,D). The commitment is the state on register C.

• The sender can later open the commitment by sending the register D. The receiver verifies by
applying Com† and checking that the last λ qubits are 0. If verification succeeds, the receiver
recovers the committed state |ψ⟩ from the unmeasured registers.1

There is a simple transformation that turns any interactive QSC into a non-interactive one:
define Com to run the honest interactive commit phase coherently (see Appendix A for more
details).2 We will therefore focus our attention on non-interactive QSCs.

Swap binding: a definition for quantum messages. Our new binding definition — which we
call swap binding — requires that once the adversary has sent the commitment C, it can no longer
distinguish its original decommitment from one where the committed message has been swapped
with junk. In other words, sending C erases the committed message from the sender’s view. We
make this concrete with the following security game:

1. The adversary sends (C,D) to the challenger.

2. The challenger applies Com† and verifies that the last λ qubits are 0, and if not, aborts.3

Next, it samples a random bit b← {0, 1} and does one of the following:

• If b = 0, it applies Com and sends D back to the adversary.
1A similar syntax appeared in prior work of Chen and Movassagh [CM21], who proposed applying a Haar random

unitary to |ψ⟩
∣∣0λ〉. However, since their goal was to build quantum tree commitments (see Section 2.4 for further

discussion), they did not formalize this syntax for individual commitments.
2In the setting of quantum bit commitments, i.e., quantum commitments to one-bit classical messages, a similar

transformation and syntax for non-interactive commitments previously appeared in [Yan22].
3Since a successful verification measurement completely collapses the last λ qubits, it would be equivalent to

consider a security game where, instead of sending (C,D), the adversary sends the challenger the committed message
in the clear; indeed, this fact is crucial for our results on the “hiding-binding duality.” However, allowing the adversary
to specify (C,D) yields a more robust binding definition, since it would also capture schemes where verification does
not completely collapse the last λ qubits.
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• If b = 1, it initializes an ancilla register to |0⟩, and applies SWAP to replace the com-
mitted message with |0⟩.4 Then it applies Com and sends D back to the adversary.

3. Finally, the adversary wins if it can guess b.

Definition 1.1 (Swap binding; see Definition 4.2). A non-interactive QSC is computationally
(resp. statistically) binding if no efficient (resp. inefficient) adversary can guess b with
advantage greater than 1/2 + negl(λ).5

Swap binding satisfies a number of desirable properties:

• It handles both computational and statistical binding.

• It works for message spaces of any dimension.

• It composes in parallel and in sequence across multiple commitments (see Sections 4.5, 5.2
and 7.2).

• It encompasses binding for classical messages. In fact, we show that our definition can be
viewed as a natural generalization of Unruh’s collapse-binding definition [Unr16], which was
originally defined for post-quantum-secure classical commitments (see the discussion in
Section 2.1.2).

A particularly interesting property of swap binding is that it guarantees that QSCs respect
entanglement across multiple commitments. For instance, if a sender prepares an EPR pair
(|00⟩+ |11⟩)/

√
2 and commits to the two qubits with two independent QSCs, our definition ensures

that if the sender opens both commitments, it must be to the same entangled state (|00⟩+|11⟩)/
√
2.

This “entanglement-respecting” property will be crucial for all of our applications, which involve
committing to a large global state using many commitments.

Hiding-binding duality. A surprising property of swap binding is that it is dual to existing
notions of hiding for quantum messages (hiding was previously defined for quantum messages in
prior works on quantum encryption, e.g., [BJ15, Definition 3.3]) in the following sense: hiding
requires that C alone reveals no information about the committed message |ψ⟩, while binding
requires that D alone reveals no information about |ψ⟩.

This has several interesting consequences that have no analogue in classical cryptography. For
instance, given a computationally binding, statistically hiding QSC with commitment C and de-
commitment D, there is a simple “dual” scheme satisfying statistical binding and computational
hiding: just send D as the commitment and use C as the opening! We give further details in Sec-
tion 4.4. We also point out a duality between hiding and binding for quantum commitments to
classical messages (see Section 4.4.1).

4Recall that SWAP maps |ψ⟩ |ϕ⟩ to |ϕ⟩ |ψ⟩ for all pure states |ψ⟩, |ϕ⟩.
5Our swap-binding definition is stated for non-interactive QSCs. Despite the fact that any interactive QSC can

be made non-interactive, we believe it could still be useful to have a definition that directly handles interactive QSCs.
In Appendix B.1, we give an alternative definition of binding for QSCs that we call “Pauli binding” and show that (1)
Pauli binding is equivalent to swap binding for non-interactive QSCs and (2) Pauli binding captures both interactive
and non-interactive QSCs. However, it is unclear how to use interactive QSCs that satisfy Pauli binding to build
secure interactive protocols. We leave this as an open question for future work.
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1.1.2 Constructions

Our new definition directly enables new constructions of QSCs. We build the first succinct QSC,
which allows a sender to commit to a poly(λ)-qubit quantum state with a λ-qubit commitment C.
These succinct QSCs behave like a quantum analogue of collision-resistant hash functions (CRHFs)
for quantum states; for instance, we show that classical techniques for composing CRHFs such as
Merkle-Damgård and Merkle tree commitments naturally generalize to succinct QSCs.

However, unlike CRHFs, our succinct QSCs are un-keyed and thus are completely non-interactive.6

Moreover, the assumptions required for succinct QSCs appear to be much weaker than those re-
quired for CRHFs.

Theorem 1.2 (Succinct QSCs from encryption; see Section 5.1). Assume the existence of one-
time secure private-key encryption for (λ + 1)-qubit quantum messages with λ-bit classical
keys. Then for any k = poly(λ), there exists a non-interactive succinct QSC for committing
to k-qubit quantum messages with commitments of only λ qubits.

Such one-time secure encryption schemes are implied by one-way functions, and even
potentially weaker assumptions such as (one-time secure) pseudorandom unitaries.

We also use our definition to formalize security of the “folklore” scheme described above. As a
consequence, hiding and binding QSCs exist as long as hiding and binding quantum bit commit-
ments (QBCs) — i.e., quantum commitments to classical messages — exist. Since QSCs encompass
commitments to classical messages, this implies that the existence of QBCs and QSCs are equivalent
assumptions.

Theorem 1.3 (Section 5.3). Quantum state commitments exist (satisfying hiding and binding
for quantum messages) if and only if quantum bit commitments exist (satisfying hiding and
binding for classical messages).

Quantum bit commitments are implied by one-way functions, and even potentially weaker
assumptions [Yan22, Kre21, AQY22, MY22, BCQ22].

1.1.3 Applications

Our flagship application is a three-message quantum succinct argument based on succinct QSCs.
The protocol is a direct quantum analogue of Kilian’s PCP-based succinct arguments [Kil92]. Recall
that Kilian’s protocol assumes the existence of a succinct classical commitment (i.e., a collision-
resistant/collapsing hash function) and can be instantiated for any language that has classical
PCPs with constant error and polylogarithmic locality, i.e., any NP language [BFLS91, FGL+91,
AS98, ALM+98]. Correspondingly, our quantum Kilian protocol assumes the existence of a succinct
QSC and can be instantiated for any language that has quantum PCPs7 with constant error and
polylogarithmic locality.8 The set of such languages includes NP, and is famously conjectured to
include all of QMA [AALV09, AAV13].

6While un-keyed CRHFs are impossible classically due to non-uniform attacks, such attacks can be ruled out in
the quantum setting by monogamy of entanglement!

7A quantum PCP is a quantum proof that can be probabilistically checked by measuring a few qubits.
8Our protocol is inspired by a proposal of Chen and Movassagh [CM21], who showed that Kilian’s protocol has

a syntactic quantum analogue and conjecture (but do not prove) its security in the “Haar Random Oracle Model.”
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Theorem 1.4 (Quantum succinct arguments; see Theorem 8.1). Assuming the existence of suc-
cinct QSCs, there is a three-message quantum-communication succinct argument for any
language that has quantum PCPs with constant error and polylogarithmic locality.

Corollary 1.5. Assuming the existence of succinct QSCs, there is a three-message quantum
succinct argument for NP.9

Corollary 1.6. If the quantum PCP conjecture holds [AALV09, AAV13], then assuming the
existence of succinct QSCs, there is a three-message quantum succinct argument for QMA.

Even in the context of succinct arguments for NP, Corollary 1.5 lowers the round complexity10

and relies on weaker assumptions than Kilian’s result.

Swap-based rewinding for quantum protocols. Proving Theorem 8.1 is the most technical
component of this work. At a high level, proving soundness requires extracting quantum informa-
tion from the malicious prover. This is qualitatively different from prior works on extracting from
quantum adversaries [Unr12, Unr16, CMSZ21] which only needed to extract classical information
and relied heavily on the ability to record (i.e., copy) the adversary’s responses.

Our rewinding procedure works by swapping out the messages underlying the adversary’s re-
sponses. This explains how QSCs make cryptographic applications possible: swap binding enables
undetectable extraction of quantum information in a rewinding-based security analysis.

While the swapping idea is simple, it introduces a fundamental problem that was not present
in the classical setting. In our setting, by swapping out the adversary’s message, we have implicitly
forced the adversary to forget part of its committed PCP. As a result, [CMSZ21]-style state repair
— the only known technique for rewinding succinct protocols — is now information-theoretically
impossible. We explain our new rewinding approach in Section 2.3.

Quantum sigma protocols. Finally, as an additional application of our techniques, we prove
in Section 9 that any [GMW86, BG20]-style quantum sigma protocol is sound when instanti-
ated with our hiding and binding QSCs. We formalize this using a quantum version of the zero-
knowledge PCP framework of [IKOS07]. This also provides a proof of computational soundness for
a quantum sigma protocol due to [BG20], which was missing a security analysis (see Section 2.4
for additional details).

9This follows by combining Theorem 1.4 with the classical PCP theorem [BFLS91, FGL+91, AS98, ALM+98],
since quantum PCPs encompass classical PCPs.

10[BKP18] constructs three message succinct arguments for NP under a non-standard assumption called “keyless
multi-collision-resistant hash functions” and the hardness of learning with errors.
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2 Technical overview

2.1 Definitions

Syntax. Recall our syntax for non-interactive quantum state commitments from Section 1.1.1:

• The sender commits to a state |ψ⟩ by applying a public unitary Com to |ψ⟩ |0λ⟩, obtaining a
state on registers (C,D). The commitment is the register C.

• The sender can later open the commitment by sending the register D. The receiver verifies by
applying Com† and checking that the last λ qubits are 0. If verification succeeds, the receiver
recovers the committed message |ψ⟩ from the unmeasured registers.

We emphasize one important difference from the classical setting: classically, the decommitment
d can always be assumed to containm in the clear, i.e., d = (m, r) wherem is the committed message
and r is the randomness/opening information. For QSCs, however, the D register crucially does
not contain the committed message in the clear.

2.1.1 What does binding mean?

Our first goal in this overview is to answer the following question:

What does binding mean for a commitment to quantum messages?

To understand the subtleties that arise, we first recall the classical definition of binding.

Definition 2.1 (Classical binding, informal). A commitment scheme is binding if an adversary
cannot generate a commitment c along with two valid decommitments d1 = (m1, r1) and
d2 = (m2, r2) for two different messages m1 ̸= m2.

What happens if we try to use this definition for commitments to quantum states? Two closely
related issues arise:

• First, this definition requires the challenger to verify that the two messages are actually
different. If the messages are arbitrary quantum states, how should the challenger implement
this check? A natural idea is to run a swap test11, but performing the swap test on message
registers M1,M2 requires the challenger to obtain two openings simultaneously. This brings
us to our second issue.

• A quantum adversary does not have to produce two openings simultaneously. Consider a
quantum adversary that prepares a valid commitment-decommitment pair (C,D) correspond-
ing to a message |ψ⟩, and suppose it has the ability to modify the state on D so that the
commitment opens to a completely different message

∣∣ψ⊥〉. This adversary clearly violates
any reasonable notion of binding, but since it produces the two openings sequentially rather
than in parallel, it is not captured by the classical-style definition.12

11The swap test on two quantum states |ψ⟩ , |ϕ⟩ outputs 1 with probability 1
2
+ 1

2
|⟨ψ|ϕ⟩|2.

12This issue was first observed by [ARU14, Unr16] in the setting of classical commitments secure against quantum
attacks.
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At first glance, it may seem impossible to handle both issues at once. How can a challenger
possibly verify that two arbitrary quantum states are different if it only gets to see one state at a
time?

We propose the following solution. In the security game, the adversary will open the commit-
ment twice in sequence, i.e., it sends registers (C,D) to the challenger (corresponding to the first
opening), the challenger later returns register D to the adversary, and finally the adversary sends
the challenger a new state on D (corresponding to a second opening). Meanwhile, the challenger
picks one of the openings at random and swaps out the committed message M into an internal
register M′, replacing the committed message with a junk |0⟩ state. At the end of the experiment,
the challenger sends M′ to the adversary and asks the adversary to distinguish whether it came
from its first opening or its second opening. If the adversary can distinguish the two cases, the
challenger can be convinced the two messages are different!

Remark 2.2. This idea is reminiscent of the [GMW87] zero-knowledge protocol for graph
non-isomorphism (in which the prover demonstrates that two graphs are not isomorphic by
showing that it can distinguish them), except that we are using it to define a security property
rather than to build a protocol.

In slightly more detail, the security game is the following:

DoubleOpenExpt:

1. The adversary sends (C,D).

2. The challenger checks that the decommitment is valid by applying Com† and measuring
the last λ qubits (and aborts if it’s not 0λ). The challenger samples a bit b← {0, 1} and
does one the following:

– (If b = 0) It applies Com to recompute the commitment/decommitment.
– (If b = 1) It applies SWAPM,M′ where M is the opened message, and M′ is initialized

to |0⟩. It then applies Com to recompute the commitment/decommitment.

Finally, it sends D back to the adversary (but not C).

3. The adversary sends another decommitment on D back to the challenger.

4. The challenger checks that the decommitment is valid by applying Com† and measuring
the last λ qubits (and aborts if it’s not 0λ). Then:

– (If b = 0) It applies SWAPM,M′ where M is the opened message, and M′ is initialized
to |0⟩. It then applies Com to recompute the commitment/decommitment.

– (If b = 1) It applies Com to recompute the commitment/decommitment.

Finally, it sends all of its registers (including M′) back to the adversary.

5. The adversary outputs a guess b′ and wins if b′ = b.

Definition 2.3 (Binding for QSCs, Attempt 1). A quantum state commitment is binding if it
is hard to win DoubleOpenExpt with advantage better than 1/2 + negl(λ).
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Intuitively, this definition captures the semantic meaning of binding for quantum states. If
an adversary can change its committed quantum state across two openings, it should also be able
to distinguish between the two opened messages. But this definition requires several rounds of
back-and-forth interaction — can we make it any simpler?

A simpler definition: swap binding. It turns out that the second opening in DoubleOpenExpt
is unnecessary, and a simpler “single opening” game suffices:

BindExpt:

1. The adversary sends the registers (C,D).

2. The challenger checks that the decommitment is valid by applying Com† and measuring
the last λ qubits (and aborts if it’s not 0λ). The challenger samples a bit b← {0, 1} and
does one of the following:

– (If b = 0) It applies Com to recompute the commitment/decommitment.
– (If b = 1) It applies SWAPM,M′ where M is the opened message, and M′ is initialized

to |0⟩. It then applies Com to recompute the commitment/decommitment.

Finally, it sends the D register back to the adversary.

3. The adversary outputs a guess b′ and wins if b′ = b.

This gives our final definition, which we call swap binding.

Definition 2.4 (Swap binding). A quantum state commitment is swap binding if it is hard to
win BindExpt with advantage better than 1/2 + negl(λ).

Why is this definition equivalent to Definition 2.3? At a very high level, any adversary for the
double-opening game can be “folded” into an adversary for the single opening game by running
the first and second opening rounds in superposition. In slightly more detail, let |ψ⟩C,D,E (where
E is the internal register of the double opening adversary) be the initial state of the adversary for
the double opening game, and let U denote the unitary the adversary applies before sending the
second opening. Consider the following adversary for the single opening game:

• The adversary prepares a control qubit initialized to |+⟩, and applies U controlled on |+⟩ to
obtain the state (|0⟩ |ψ⟩C,D,E + |1⟩U |ψ⟩C,D,E)/

√
2. It then sends the registers (C,D) to the

challenger.

• Upon receiving the D register back from the challenger, it applies controlled-U †, measures
the control qubit in the Hadamard basis, and uses the resulting outcome to guess b.

It is possible to show that if the original adversary can win the double opening game, this adversary
will win the single opening game.

2.1.2 Consequences

We briefly discuss some consequences of our new definition:

8



• Relationship to classical binding. Since quantum information encompasses classical in-
formation, we should expect our definition to capture binding for classical messages. Indeed,
we can show this is the case:

– By a hybrid argument, we can replace the SWAPM,M′ operation in BindExpt with any
other quantum operation P that acts on M and an ancilla held by the challenger.13

– Define P to be the operation that applies Zs to M for a random s; this is equivalent to
measuring M in the standard basis and discarding the outcome. Our definition implies
that the adversary cannot distinguish its original decommitment from a decommitment
in which the message has been measured in the standard basis. This is essentially
Unruh’s definition [Unr16] of collapse-binding for classical messages!14

In fact, we can say more. In BindExpt, we could initialize M′ to the maximally mixed state
(instead of |0⟩), and the definition would remain the same. From the adversary’s point of
view, SWAPM,M′ is equivalent to the challenger applying XrZs to M for uniformly random
strings r, s, since this also maximally mixes the message. This gives an alternative view of
our definition: a QSC is binding for quantum states if it is (collapse-)binding for classical
messages in both the standard and Hadamard bases!

• Hiding-binding duality. We have not yet defined hiding for QSCs, but it is not hard to
write down a definition: the adversarial receiver sends a register M containing its message
|ψ⟩, the challenger either sends a commitment to |ψ⟩ or a commitment to an unrelated
message, and the adversary must guess which one it received.15 Perhaps the most surprising
consequence of our definition is that for non-interactive QSCs, this hiding experiment is the
same as our binding experiment — except that the challenger sends C instead of D to the
adversary. Indeed, sending registers (C,D) containing a valid commitment/decommitment
state is equivalent to sending a register M containing the committed message state in the
clear, since a valid commitment/decommitment is Com |ψ⟩M |0λ⟩.

One consequence of this duality is that if we have, for example, a statistically binding and
computationally hiding QSC, there is a simple “dual” QSC satisfying computationally binding
and statistical hiding: just send D as the commitment and use C as the opening!

13We sketch the argument here. In Hybrid 0, the challenger simply sends D back to the adversary after verifying
the commitment. In Hybrid 1, the challenger performs SWAPM,M′ before sending D back; this is indistinguishable
from Hybrid 0 by our binding definition. In Hybrid 2, the challenger applies P to M and then applies SWAPM,M′ ;
this is perfectly indistinguishable from Hybrid 1 since the register P acts on is independent of the adversary’s view.
Finally, in Hybrid 3, the challenger only applies P ; this is indistinguishable from Hybrid 2 by our definition, which
allows us to undetectably remove SWAPM,M′ .

14Technically, Unruh’s definition is for classical commitments to classical messages. However, it is not hard to
adapt his definition to the syntax of quantum-communication commitments.

15This hiding definition is virtually identical to existing definitions of semantic security for quantum encryption
schemes [BJ15, Definition 3.3].
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2.2 Constructions

2.2.1 Warm-up: hiding and binding QSCs

Having defined the security guarantees of QSCs, we will now prove that the “folklore” construction
is secure. Recall that the sender commits to |ψ⟩ by sampling random r, s and sending XrZs |ψ⟩
together with a commitment |cr,s⟩ to the classical string (r, s). Writing this as a non-interactive
QSC (which requires replacing the randomness of r, s with a corresponding superposition), the
commitment/decommitment state is (up to normalization)∑

r,s

(|r, s⟩ |dr,s⟩)D(XrZs |ψ⟩ |cr,s⟩)C,

where |dr,s⟩ is the decommitment for |cr,s⟩.

• For hiding, we must show that the C register alone does not reveal |ψ⟩. This can be easily
formalized with a hybrid argument. First, we can replace |cr,s⟩ with |c0,0⟩ by the hiding
of the commitment to (r, s). Then, because the superposition over r, s is held on the chal-
lenger’s registers, the adversary’s view in this hybrid is just a maximally mixed state and a
commitment to (0, 0).

• For binding, we must show that the D register alone does not reveal |ψ⟩. By collapse-binding
security of the |cr,s⟩ commitment, the adversary cannot distinguish a superposition of valid
decommitments from one in which the message (r, s) is measured. In particular, this means
the adversary’s decommitment D is indistinguishable from

∑
r,s |r, s⟩⟨r, s| ⊗ |dr,s⟩⟨dr,s|. But

this mixed state is just a uniform mixture of valid decommitments to uniformly random r, s

and is therefore independent of |ψ⟩.

We therefore conclude the following.

Theorem 2.5. Hiding and binding QSCs exist if and only if hiding and binding QBCs exist
(i.e., quantum-communication commitments to classical bits).

A pair of recent works [MY22, AQY22] showed that hiding and binding QBCs — which were
previously known assuming one-way functions — can be built from quantum assumptions that are
potentially weaker than one-way functions [Kre21]. Consequently, hiding and binding QSCs exist
under the same weak assumptions.

2.2.2 Beyond the folklore construction: succinct QSCs.

While we have successfully formalized the security of the folklore construction using swap binding,
a definition really begins to shine when it enables new constructions. As mentioned in Section 1,
the folklore construction requires the commitment C to be at least as large as the committed
message. We will now see how to construct a succinct QSC, meaning a binding QSC for n-qubit
messages where the commitment C is smaller than n qubits.16

16Notice that we have dropped the hiding property; as in the classical setting, many applications of succinct
commitments do not explicitly require hiding. We remark that in the classical setting, succinct commitments are
known to imply standard hiding-binding commitments (and thus one-way functions).
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A succinct QSC from any collapsing hash function. A natural starting point is to assume the
existence of collision-resistant hash functions, or rather, their post-quantum analogue: collapsing
hash functions [Unr16]. Collapsing hash functions are succinct, collapse-binding commitments to
classical messages. That is, given a hash function description h ← Hλ, a sender can succinctly
commit to a message m by sending the classical string h(m) = y, and can open by revealing m.

How can we turn a succinct commitment h for classical messages into one for quantum messages?
Our idea is simple: use h to commit to the quantum state in both the standard and Hadamard
bases. Concretely, given a collapsing hash function h : {0, 1}n → {0, 1}n/4, the sender commits to
an n-qubit message M as follows:

1. Interpret M in the standard basis and evaluate h coherently, writing the output onto a fresh
register C0.

2. Apply the n-bit Hadamard transform H⊗n to M.

3. Apply h again, this time writing the output onto another fresh register C1. Finally, send the
(n/2)-qubit state C = (C0,C1) as the commitment.

4. To decommit, the sender provides the D = M register. This allows the receiver to uncompute
the commitment, check validity, and recover the original message.

Our swap-binding definition makes it easy to prove this scheme secure assuming that h is
collapse-binding. Recall that collapse-binding of h guarantees that if an adversary sends a super-
position of inputs for h to a challenger, then it cannot distinguish between the following:

• the challenger evaluates h in superposition, measures the output, and then returns the input
registers, or

• the challenger simply measures the input registers and returns them.

In our scheme, since the challenger keeps the register C = (C0,C1), from the adversary’s point
of view, both C0 and C1 are measured (in the standard basis). By carefully invoking collapse-
binding security twice, once for each coherent evaluation of h in our scheme, we can show that the
decommitment held by the adversary is indistinguishable from one that is generated as follows:
measure M in the standard basis, apply H⊗n, and measure M again. But this gives a totally mixed
state, and so the decommitment completely hides the original quantum message.

Succinct QSCs from even weaker assumptions. The above construction demonstrates that
succinct QSCs can be built from collapsing hash functions (succinct classical commitments). Per-
haps surprisingly, we show something stronger: succinct QSCs can even exist in a world where
succinct classical commitments do not!

For instance, suppose we are only given a (post-quantum) one-way function, or equivalently,
a (post-quantum) pseudorandom generator (PRG) G : {0, 1}n/2 → {0, 1}2n [HILL99, Zha12]. We
show that it is still possible to commit to an n-qubit state |ψ⟩, as follows:

1. Initialize an n/2-qubit register to |0⟩ and apply H⊗
n
2 to obtain 2−n/4

∑
k∈{0,1}n/2 |k⟩.
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2. Controlled on k, apply XG0(k)ZG1(k) to |ψ⟩, where G0(k), G1(k) are the first and last n/2 bits
of G(k), respectively. The resulting state is

1

2n/4

∑
k∈{0,1}n/2

|k⟩CX
G0(k)ZG1(k) |ψ⟩D ,

where the registers containing k are the succinct commitment C, and the one-time padded
message is the decommitment D.

Our swap-binding definition makes it easy to prove this scheme secure:

• When the challenger holds the C register (i.e., it is traced out in the adversary’s view), the
decommitment for |ψ⟩ is the mixed state resulting from applying a XG0(k)ZG1(k) to |ψ⟩ for a
uniformly random k.

• By PRG security, this is indistinguishable from XrZs |ψ⟩ for uniformly random r, s, which is
the maximally mixed state so swap-binding follows.

More generally, all we need is a one-time secure encryption scheme for n-qubit quantum mes-
sages with short keys. In fact, any scheme with keys shorter than n bits will suffice, since it turns
out that using a quantum analogue of Merkle-Damgård domain extension (see Section 5.2), succinct
QSCs with 1 qubit of compression can be composed to achieve any desired compression!

As we just saw, one-way functions give one possible instantiation of such an encryption scheme:
to encrypt a state |ψ⟩ with key k, just apply XG0(k)ZG1(k). However, there are other instantiations
from assumptions that may be even weaker than one-way functions. In particular, we show that one-
time secure quantum encryption with short keys is implied by any pseudorandom unitary [JLS18]
(see Claim 5.5), and the latter is known to be black-box separated from one-way functions [Kre21].
In summary, we have the following theorem.

Theorem 2.6 (Succinct QSCs from encryption). Assuming the existence of one-time secure
encryption for n-bit quantum messages with (n − 1)-bit classical keys, succinct QSCs exist.
Such one-time encryption schemes are implied by one-way functions, but their existence is
a potentially weaker assumption.

2.3 Applications

So far, we have proposed a definition and argued that it captures the semantic meaning of binding
for quantum messages. We have also shown several instantiations of schemes achieving this defini-
tion. However, there is still a crucial missing piece to our theory: can commitments satisfying our
definition actually be used to achieve cryptographic ends?

In this section, we describe our flagship application: a three-message quantum succinct argu-
ment system based on succinct QSCs. Recall that a succinct argument is a protocol that enables
a prover to convince a verifier that a claim is true (e.g., an NP statement), where the total com-
munication and verifier runtime is extremely short. Our protocol is a direct quantum analogue of
Kilian’s classical succinct argument protocol [Kil92] and is based on a recent proposal of Chen and
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Movassagh [CM21] (see Section 2.4 for more details). While the protocol is simple to state, proving
security will be far more difficult. Even for Kilian’s classical protocol, security against quantum
attacks was a long-standing open question that was only recently settled by [CMSZ21]. Moreover,
the [CMSZ21] technique fundamentally relies on the ability to copy information and is therefore
limited to extracting classical information from classical protocols.

In this work, we resolve several challenges unique to the quantum setting and obtain a general
framework for proving security of quantum protocols via rewinding. This is our most technically
involved contribution. For this overview, we will present these techniques in the context of quantum
succinct arguments (see Section 9 for applications to quantum sigma protocols).

2.3.1 The quantum succinct argument protocol

Kilian’s protocol. Kilian’s protocol [Kil92] is a compiler that uses succinct commitments to
turn a probabilistically checkable proof (PCP) into a four-message interactive succinct argument.
At the start of the protocol, the verifier samples a classical key for the succinct commitment, i.e.,
a hash function description h, and sends it to the prover. The prover uses h to generate a tree
commitment c to the PCP and sends c to the verifier.17 Next, the verifier samples random coins
corresponding to the randomness of the PCP verifier. Finally, the prover sends local openings for
the indices S specified by the random coins, which are at most |S| · poly(λ) bits long in total. The
verifier accepts if the PCP verifier accepts and the openings are valid.

The quantum protocol. Following Kilian’s template, our quantum protocol is a compiler that
uses succinct QSCs to turn any classical or quantum PCP into a quantum succinct argument.
As mentioned earlier, the resulting protocol is very similar to a heuristic proposal of Chen and
Movassagh [CM21] (see Section 2.4 for more details).

• First message. The prover generates a quantum tree commitment to its PCP using a
succinct QSC that maps n-qubit messages to n/2-qubit commitments. The quantum tree
commitment is computed as follows:

1. The prover partitions the PCP into blocks of size n/2.

2. Starting at the leaves, it creates a binary tree of commitments up to the root where each
node register is a succinct commitment to its two children, and

3. It sends the root commitment as the commitment to the whole PCP.

We emphasize one difference from the classical setting: since the prover is committing to
quantum states, the committed PCP is unavailable to the prover once it sends the root.

17Assuming h : {0, 1}n → {0, 1}n/2, the tree commitment is generated as follows: (1) partition the PCP into
blocks of size n/2, (2) create a binary tree of hash values where the PCP blocks form the leaves and each internal
node is the hash of its two children, and (3) send the root as the commitment. The local opening for a PCP index
i is a set consisting of (i) the PCP block containing i and (ii) the values of every node adjacent to the path from
block containing i up to the root. The opening for a set of PCP indices S is the union of the sets corresponding to
the decommitments for each i ∈ S.
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• Second message. The verifier sends random coins corresponding to the PCP verifier ran-
domness.

• Third message. The prover sends local openings for the PCP indices S specified by the
verifier’s challenge. For an individual leaf, the corresponding opening consists of every register
on or adjacent to the root-to-leaf path (excluding the root itself). The opening for a set
S consists of all registers involved in the opening for each i ∈ S. We refer the reader
to Section 7.2 and Fig. 1 for further details.

• Verification. Starting from the root, the verifier works its way down the tree, using the
provided openings to reveal each subsequent layer of commitments. Eventually, this reveals
the qubits of the PCP at the locations in S. The verifier accepts if every individual QSC was
opened correctly and the PCP verifier would accept.

This template is compatible with both classical and quantum PCPs. We emphasize that even
when the PCP is classical, our protocol still requires the ability to commit to arbitrary quantum
states. In particular, a tree commitment requires composing quantum commitments in sequence,
i.e., committing to commitments, so even if the leaves are classical, the internal nodes are still
commitments to quantum messages.

The goal for the remainder of this subsection will be to prove that this protocol is sound for
any classical or quantum PCP and thereby establish the following theorem.

Theorem 2.7. Assuming the existence of succinct QSCs, every NP language has a three-
message quantum succinct argument. If we additionally assume the quantum PCP conjec-
ture, this extends to QMA.

2.3.2 Rewinding for quantum protocols

At a very high level, we will prove soundness of our protocol — or rather, a stronger property
called argument of knowledge — by showing how to extract a convincing PCP from any malicious
prover P̃ that makes the verifier accept with noticeable probability. In the classical setting, this
is achieved by a technique called rewinding : the extractor queries P̃ many times on random
challenges, rewinding P̃ back to its earlier state after every query. After sufficiently many queries,
the extractor will have enough accepting responses to stitch together a PCP.

It is well known that traditional rewinding proofs completely fail to capture quantum at-
tacks [vdG97, Wat09, ARU14]: when the extractor runs P̃ and records its response, it may ir-
reversibly disturb P̃ ’s state, rendering it useless for further queries. Fortunately, there has been
a line of work showing how to rewind quantum adversaries for some important classical proto-
cols [Wat09, Unr12, Unr16, CCY21, CMSZ21, LMS22b, LMS22a].

The work that turns out to be most relevant to our setting is [CMSZ21], which showed a general
technique that enables repeatedly querying P̃ and recording an arbitrary number of its accepting
responses. At a high level, their technique consists of two steps:

• Step 1: Reduce the task to “one-bit” extraction. First, they reduce the problem to a
simplified setting where the extractor only measures the bit indicating whether P̃ succeeds
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on a query (as opposed to measuring the entire response). This step invokes collapse-binding
security [Unr12, Unr16] to argue that measuring this bit is computationally indistinguishable
from measuring the entire response.

• Step 2: One-bit extraction via state repair. The primary technical innovation of
[CMSZ21] is a procedure for one-bit extraction. One of their key insights was to realize
that the extractor does not need to restore the malicious prover’s original state, but rather
any state that gives it the same success probability as the original state. Then, they
designed a “state repair” procedure to restore the success probability of P̃ after any one-bit
disturbance. Their resulting extractor simply queries P̃ repeatedly on random challenges and
runs the state repair procedure in between each query.

In summary, the full [CMSZ21] extractor repeats the following “measure-and-repair” step: (1)
run the adversary on a random challenge, (2) check whether the response is valid; if so, measure
and record the response, and finally (3) run the repair procedure to restore the success probability.

Extracting quantum information. The [CMSZ21] extractor was designed for a different setting
than ours: the goal of [CMSZ21] is to extract classical information from a quantum prover P̃ in a
classical protocol, whereas our goal is to extract quantum information from a quantum prover P̃
in a quantum protocol.18 In our setting it doesn’t make sense to measure P̃ ’s response, but our
swap-binding definition strongly suggests a quantum analogue: swap out P̃ ’s opened message and
replace it with a junk |0⟩ state!

While this idea may seem promising, it introduces a fundamental problem that was not present
in the classical setting. By swapping P̃ ’s message with junk, we have implicitly forced the adversary
to forget part of its committed PCP. As a result, repairing the adversary is now information-
theoretically impossible : if we could repair the adversary, the extractor would eventually generate
multiple copies of the quantum PCP.

The swap-augmented prover. Fortunately, there is still a way to use [CMSZ21]-style state
repair. To explain our idea, suppose that the extractor has swapped a single index i of the prover’s
PCP onto some internal register M′i. Our idea is to define the following swap-augmented prover :

Let C denote the register holding the (root of the) tree commitment.

• The state of the swap-augmented prover consists of P̃ ’s state augmented with the registers
(M′i,C).

• To run the swap-augmented prover on a set of positions S:

1. First, run the real prover P̃ on S to generate a response on some register Z. If i ̸∈ S, we
are done.

2. If i ∈ S:
18Even when we instantiate our quantum succinct argument with a classical PCP, we will still need to extract

quantum information to invoke security of the tree commitment.
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(a) Use (C,Z) to recover the message (corresponding to indices S) in the clear.
(b) Next, apply SWAPMi,M′

i
where Mi is the register containing the message opened by

the prover for index i.
(c) Apply the inverse of Step 2a.

Roughly speaking, the swap-augmented prover is defined to output the responses that the
prover would have given if the swap had not occurred. More generally, at every stage in the
extraction procedure, we define a swap-augmented prover that makes use of all registers that have
been swapped out so far.

At the beginning of the extraction, the swap-augmented prover is simply the original malicious
prover P̃ , which convinces the verifier to accept with non-negligible probability p. Then after each
query, instead of repairing P̃ itself (which is impossible), our extractor will run state repair on
the swap-augmented prover. At first glance, this may seem somewhat strange: unlike [CMSZ21],
which only runs state repair on P̃ ’s state, we give the state repair procedure the additional freedom
to modify the extracted PCP itself. Nevertheless, we show the extractor works by arguing that
there is eventually a point where:

• with very high probability, the swap-augmented prover answers any PCP query using only
the augmented registers {M′i}, and

• the swap-augmented prover still has success probability ≈ p.

If this happens, then the registers {M′i}i must contain a convincing PCP!

The oracle security lemma. It turns out to be quite subtle to argue that swap-binding security
can actually be invoked in our extraction procedure. In [CMSZ21], collapse binding is used to
argue that whenever the prover produces a superposition of valid responses, we can undetectably
measure it and copy it. In our setting, we would like to argue that a swap operation can be applied
undetectably.

However in a quantum commitment scheme, the adversarial committer does not have access to
the commitment register after sending the commitment. But our extractor explicitly needs access
to the commitment (for instance, the extractor must be able to run swap-augmented prover, which
makes use of the commitment to generate its responses). Thus, it is completely unclear how we
can argue security while running this extractor.

Our solution is the following:

• First, we show that swap binding generically implies a stronger security property we call
oracle swap binding. Recall that in the swap-binding security experiment, the adversary’s
message in the Com† basis is either left alone on its original message register M(0) or swapped
onto a challenger register M(1). What the adversary actually sees is the D register in the
original basis.

We define an oracle swap-binding experiment that gives the adversary additional power. In
particular, it can access an oracle O that performs any efficient operation on M(b) in the
Com† basis, where b is the challenge bit. In other words, the operation is performed on the
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register that contains the adversary’s originally committed message. The adversary’s goal in
this experiment is the same as before, which is to guess b.

It is not a priori obvious that swap binding implies oracle swap binding, but we prove this
in Section 6.

• We show that the swap operations performed in our extractor are undetectable to the adver-
sary by reduction to oracle swap binding.

Specifically, we prove that the extractor’s access to the C register can be implemented with
the oracle provided in this security game. At a high level, this oracle enables the extractor
to (a) check whether an opening is valid and (b) check if the opened message passes PCP
checks. These functionalities turn out to be sufficient to implement the [CMSZ21] repair
procedure given the oracle but not the C register, which is what allows us to appeal to oracle
swap-binding.

2.4 Related works

Comparison to [CM21]. The quantum succinct argument protocol we analyze is based on
a proposal from Chen and Movassagh [CM21], who were the first to realize that a quantum-
communication analogue of Kilian’s protocol was even possible. The syntax for our tree commit-
ments is similar to the syntax proposed in their work (modulo some changes to handle generic
succinct QSCs).

However, [CM21] did not prove any security guarantees for their protocol, nor did they define
the intermediate primitive of succinct QSCs. Instead they conjectured (but did not prove) that
their protocol is secure when the commitments are modeled as Haar random oracles. In this work,
we give a full proof of security in the plain model under very mild cryptographic assumptions. We
additionally construct and analyze other protocols that do not rely on the quantum PCP conjecture
(e.g., when our succinct argument template is instantiated with classical PCPs, we obtain a protocol
that requires fewer messages and weaker assumptions than Kilian’s protocol).

Computational soundness of [BG20]. The quantum sigma protocol we analyze is essentially
the same as the one in [BG20]. However, the proof that the protocol is computationally sound (in
fact, an argument of knowledge) is new to this work. While [BG20] originally proposed this claim,
a recent version of their work [BG22] retracts it since it was missing a rewinding-based analysis,
which is essential in the setting of computational soundness. In Section 9, we prove computational
soundness using our new rewinding techniques. As an additional contribution, we also place their
protocol in a general framework using our new abstraction of hiding and binding QSCs.

Comparison to [Mah18]. [Mah18] constructs a “weak quantum state commitment” with clas-
sical communication and a classical receiver. As Mahadev explains, her protocol is only a “weak”
commitment because the commit phase of does not actually bind the prover to a fixed quantum
state. Instead, she shows that the commitment together with any malicious opening attack fixes
a state. While Mahadev’s construction suffices for her applications, it is not a commitment in the
typical sense and her techniques do not directly yield QSCs.
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Prior work on quantum bit commitments. The basic syntax for quantum state commitments
(QSCs) is similar to the “canonical form” described in prior work of Yan [Yan22]. However, Yan
only considers commitments to single-bit classical messages, whereas we consider commitments
to general quantum states. Even if we restrict to commitments to classical messages, there is one
syntactic difference between our form and [Yan22]: Yan’s “canonical form” assumes that the bit
commitment scheme is specified by two circuits Q0 and Q1 and the committed message is revealed
in the clear in the opening phase.

It was also well known from prior work on quantum bit commitments that quantum communi-
cation enables removing interaction [KO09, KO11, YWLQ15, BB21, Yan22]. The non-interactive
compiler we describe in Appendix A) follows from very similar ideas and is included for the sake
of completeness.

Other succinct arguments for QMA. [CCY20, BKL+22] construct certain variants of succinct
arguments for QMA with classical communication. However, both works rely on extremely heavy
cryptographic hammers including post-quantum indistinguishability obfuscation (for which there
are only heuristic candidates). Our succinct argument for QMA is significantly simpler and can
be instantiated from far weaker cryptographic assumptions at the cost of relying on the quantum
PCP conjecture.

Authentication of quantum messages. Our hiding-binding duality is reminiscent of a well-
known result of [BCG+02], which showed that any secure authentication scheme for quantum
messages must also encrypt the message. However, there are several major differences between our
results and [BCG+02]:

• While binding and authentication both consider adversaries that attempt to change some
underlying message, the two notions capture different threat models. Binding guarantees
security against the sender (who prepares the initial messages), whereas authentication guar-
antees security against an adversary who intercepts communication between the sender and
receiver.

• There is no “duality” in the setting of authentication. In particular, authentication implies
encryption, but encryption does not imply authentication.

• [BCG+02] only consider statistical security, whereas our definitions apply to both the com-
putational and statistical settings.

In fact, our work highlights a potential limitation of the [BCG+02] definition: their definition
does not say what happens to entangled messages.19 For instance, suppose a sender prepares an
entangled state on registers (A,B) and authenticates B. Is the receiver guaranteed to obtain a state
that is still entangled with A? Their definition for mixed states [BCG+02, Appendix B] guarantees

19It is claimed on [BCG+02, Page 1] that their definition “implies security for mixed or entangled states,” but what
they mean is that the mixed state of the authenticated message is preserved (see [BCG+02, Appendix B]). This does
not immediately rule out the possibility we raise here, in which the mixed state is preserved but the entanglement is
broken.
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that if the receiver accepts, the message it obtains is negligibly close to the sender’s original message
(i.e., fidelity 1 − negl(λ)). However, it does not say that this message remains entangled with A.
While it is almost certainly true that the constructions in [BCG+02] preserve entanglement in this
manner, it is not clear how to deduce this from the definition.

In our setting, proving such guarantees is made possible by the fact that our definition composes
in parallel. In slightly more detail, if a sender commits to B and leaves A untouched, we can view
this as a parallel composition of a trivially binding (identity) commitment to A and a commitment
to B. The security of this larger commitment ensures that entanglement is preserved.
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3 Preliminaries

Notation. The security parameter is written as λ. A function f : N → [0, 1] is negligible
(denoted f(λ) = negl(λ)) if it decreases faster than the inverse of any polynomial. A probability
is overwhelming if is at least 1− negl(λ) for a negligible function negl(λ). For any nonzero n ∈ N,
let [n] = {1, 2, . . . , n} and let [0] be the empty set. For a set R, let r ← R be a uniformly random
sample from R.

Quantum information preliminaries. Let H be a finite-dimensional Hilbert space. Let S(H)
be the space of all Hermitian operators on H. Let D(H) be set of all ρ ∈ S(H) with Tr(ρ) = 1. A
pure quantum state is a unit vector |ψ⟩ ∈ H. A density matrix (and mixed quantum state) is an
operator ρ ∈ D(H). For any vector |ϕ⟩ ∈ H, we define its norm ∥|ϕ⟩∥ :=

√
⟨ϕ|ϕ⟩. For an operator

M on H, we define its operator norm as

∥M∥op := max
|ψ⟩:∥|ψ⟩∥=1

∥M |ψ⟩∥.

We use the term quantum register to refer to a collection of qubits that we wish to treat as
a single unit. These will be denoted with uppercase sans serif font, e.g., A,B,C. Each register is
associated with a finite-dimensional Hilbert space, denoted by writing the same letter in uppercase
calligraphic font, e.g., A,B, C are the spaces corresponding to registers A,B,C. For an n-qubit
register A, we sometimes use the shorthand |0⟩ to denote the all-zero state |0n⟩ on A.

An observable is represented by a Hermitian operator O on H. When O2 = I (equivalently,
O has eigenvalues in {−1, 1}), O is also a binary observable. For binary observables O we define
the projector onto its +1 eigenspace O+ and the projector onto its −1 eigenspace O− so that
O = O+ − O−. For any projector Π, we define a corresponding binary projective measurement
{Π, I− Π} and say that the measurement accepts if the outcome is Π; otherwise, we say that the
measurement rejects.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive
trace-preserving (CPTP) map Φ : S(H)→ S(H′). We define the diamond norm [Kit97, KSV02] of
any CPTP map Φ : S(H)→ S(H′) to be

∥Φ∥⋄ := max
ρ∈D(H⊗X )

∥∥(Φ⊗ IS(X ))(ρ)
∥∥
1

where X is any Hilbert space with the same dimension as H, and ∥·∥1 is the Schatten 1-norm.
We occasionally denote the action of a unitary U on a mixed state ρ by U(ρ) := UρU †.

Computational indistinguishability. The following is taken verbatim from [BKL+22]. Two
quantum state ensembles {ρ(λ)

0 ,ρ
(λ)
1 }λ are said to be computationally indistinguishable if for

every non-uniform QPT algorithm A = {A(λ),ρ(λ)} (that outputs a bit b), we have that∣∣∣E [A(λ)(ρ(λ),ρ
(λ)
0 )
]
− E

[
A(λ)(ρ(λ),ρ

(λ)
1 )
] ∣∣∣ = negl(λ).

Equivalently, {ρ(λ)
0 ,ρ

(λ)
1 }λ are computationally indistinguishable if for every efficiently com-

putable non-uniform binary observable (R,σ), we have that∣∣∣Tr(R(ρ0 ⊗ σ))− Tr(R(ρ1 ⊗ σ))
∣∣∣ = negl(λ).
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We will occasionally use the notation ρ0 ≈c ρ1 to denote computational indistinguishability of
{ρ(λ)

0 ,ρ
(λ)
1 }λ. When ρ0 and ρ1 are statistically indistinguishable, i.e. ∥ρ0 − ρ1∥1 = negl(λ), we

write ρ0 ≈s ρ1.
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4 Defining quantum state commitments (QSCs)

4.1 Syntax

We describe the syntax for non-interactive quantum state commitments.

Definition 4.1 (Non-interactive QSC syntax). A non-interactive quantum state commitment
QSC is specified by a unitary ComQSC on n+ λ qubits.

• (Commitment phase) To commit to a n-qubit state in register M, the sender initializes
register W to the |0λ⟩ state and applies ComQSC to (M,W). The resulting state is divided
into registers (C,D). It sends C to the receiver.

• (Opening phase) The sender decommits by sending D. The receiver applies Com†QSC to
the pair (C,D), obtaining (M,W). It verifies the decommitment by measuring W in the
standard basis and checking that the outcome is |0λ⟩. If verification accepts, the receiver
interprets the state on M as the committed message.

For convenience, we will often write Com in place of ComQSC.

What about interactive commitments? Our swap-binding definition (Definition 4.2) will
only apply to non-interactive QSCs. This is justified in part by the fact that any interactive QSC
can be made non-interactive via a simple transformation that was previously known in the setting
of quantum bit commitments (see Appendix A for full details). Nevertheless, we believe it could be
useful in some settings to have a definition that directly handles the interactive case. Towards this
end, we state an alternative definition of binding that we call “Pauli binding” in Appendix B.1. Pauli
binding naturally handles interactive QSCs and is equivalent to swap-binding for non-interactive
QSCs. We choose to present swap binding as our main definition since we found it significantly
easier to work with.

4.2 The swap binding definition

We now present our new swap binding security definition. For two quantum registers of the same
size, M and M′, SWAP[M,M′] denotes the unitary that maps |ψ⟩M |ϕ⟩M′ to |ϕ⟩M |ψ⟩M′ .

Definition 4.2 (Swap binding). For a non-interactive quantum commitment scheme Com, an
interactive adversary A, a challenge bit b ∈ {0, 1}, and a security parameter λ, define the
swap binding security experiment SwapBindExptQSC,A,b(λ) as follows.

SwapBindExptQSC,A,b(λ):

1. The adversary A (acting as a malicious sender) sends commitment register C and
decommitment register D to the challenger (acting as an honest receiver).

2. The challenger applies Com† and measures {|0⟩⟨0| , I− |0⟩⟨0|} on W; if the measurement
rejects, then it aborts and outputs a random b′ ← {0, 1}.

3. The challenger does the following:
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• if b = 0, the challenger simply applies Com, and sends the D register to A;

• if b = 1, the challenger replaces the contents of the M register with |0⟩ (i.e., it ini-
tializes a fresh register E = |0⟩ of the same dimension as M and applies SWAP[M,E]).
It then applies Com and sends the D register to A.

4. The output of the experiment is b′ ← A.

Com is computationally (resp. statistically) swap binding if there exists a negligible func-
tion µ(λ) such that for all polynomial-time (resp. unbounded-time) quantum interactive
adversaries A,

Pr
b←{0,1}

[SwapBindExptQSC,A,b(λ) = b] ≤ 1

2
+ µ(λ).

4.3 Additional definitions: hiding and succinctness

We now define hiding and succinctness for QSCs. While the notion of hiding for commitments to
quantum messages had not been defined in the literature before, it is easy to write down a definition
based on existing definitions for encryption of quantum messages. The following definition is
essentially the same as the definition of indistinguishability under chosen-plaintext-attacks (q-
IND-CPA) given by [BJ15].

Definition 4.3 (Hiding for quantum state commitments). For a non-interactive quantum com-
mitment scheme Com, an interactive adversary A, a challenge bit b ∈ {0, 1}, and a security
parameter λ, define a security experiment HideExptQSC,A,b(λ) as follows.

HideExptQSC,A,b(λ):

1. A prepares a message M and sends it to the challenger.

2. Next, the challenger (acting as an honest sender) performs the commit phase with A

(acting as the receiver) using the quantum state in M if b = 0, or |0⟩ if b = 1.

3. The output of the experiment is b′ ← A.

Com is computationally (resp. statistically) hiding if there exists a negligible function µ(λ)

such that for all polynomial-time (resp. unbounded-time) quantum interactive adversaries
A,

Pr
b←{0,1}

[HideExptQSC,A,b(λ) = b] ≤ 1

2
+ µ(λ).

Definition 4.4 (Succinct non-interactive QSCs). We say that a non-interactive QSC is succinct
if the commitment is shorter than the message, i.e., the size of register C is smaller than M.

We remark that our definition of succinct QSCs does not require hiding. This is analogous to the
definitions of succinct classical commitments (i.e., collision-resistant hash functions, or their post-
quantum analogue, collapsing hash functions [Unr16]), which only require binding and succinctness
but not hiding. Moreover, hiding is not necessary for our primary application to quantum succinct
arguments (Section 7).
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4.4 Hiding-binding duality

We observe that the hiding and binding security experiments are nearly identical for non-interactive
QSCs. In particular, we can write both of the experiments as follows.

Property 4.5 (Hiding-binding duality for QSCs). For a non-interactive quantum commitment
scheme Com, an interactive adversary A, a challenge bit b ∈ {0, 1}, and a security parameter
λ, the binding and hiding security experiments can be written as follows.

1. The adversary A sends (C,D) to the challenger.

2. The challenger applies Com† and measures {|0⟩⟨0|W , I − |0⟩⟨0|W}. If the measurement
rejects, abort the experiment (i.e., output a random bit b′). Otherwise:

(a) The challenger initializes a register E to |0⟩ and applies SWAP[M,E]b, then Com.

(b) For binding, the challenger returns D; for hiding, the challenger returns C.

3. The output of the experiment is b′ ← A.

Proof. The binding game is exactly equivalent to Definition 4.2. The hiding game is equivalent to
Definition 4.3, except that here the adversary sends (C,D) whereas the adversary in Definition 4.3
sends M (and there is no W measurement). However, these notions of hiding are equivalent by
essentially the same argument as [Unr16, Lemma 14]. The proof follows by observing that sending
(C,D) registers containing an invalid commitment-decommitment pair cannot help the adversary;
if the adversary sends (C,D) registers containing a valid commitment-decommitment pair, this is
equivalent to sending M (in the Com basis).

Property 4.5 motivates the definition of a dual scheme, where the roles of the C and D registers
are reversed.

Definition 4.6 (Dual commitments). For a non-interactive commitment scheme Com with
commitment register C and decommitment register D, the dual scheme is the commitment
scheme with the same commitment unitary Com, but D is used as the commitment and C is
used as the decommitment.

As an immediate consequence of Property 4.5, we obtain the following corollary.

Corollary 4.7. Let Com be a computationally (resp. statistical) swap-binding and statisti-
cally (resp. computationally) hiding non-interactive commitment scheme. Then the dual
commitment scheme Com is a computationally (resp. statistical) hiding and statistically
(resp. computationally) swap-binding non-interactive commitment scheme.

4.4.1 Discussion: is there a hiding-binding duality for QBCs?

As it turns out, a similar duality also exists for quantum bit(string) commitments (QBCs), i.e.,
quantum-communication commitments to classical messages. Previously, [Yan22] showed that it
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was possible to transform any statistically binding, computationally hiding QBC into a computa-
tionally binding, statistically hiding QBC (or vice versa). However, using the insights developed
above for QSCs, we can make this connection between hiding and binding significantly simpler.

For the following discussion, we consider QBCs satisfying our syntax for non-interactive QSCs.
This is essentially Yan’s “canonical form” [Yan22] with a few syntactic differences (most notably,
we allow for arbitrary-length messages, not just bits).

Consider the following version of Unruh’s collapse-binding definition [Unr16] for classical mes-
sages (restated for QBCs):

Computational (resp. statistical) security requires that any efficient (resp. inefficient) A
guesses b with probability at most 1/2 + negl(λ) in the following experiment:

1. The adversary A sends (C,D) to the challenger.

2. The challenger applies Com† and measures {|0⟩⟨0|W , I− |0⟩⟨0|W}. If the measurement rejects,
abort the experiment (i.e., output a random bit b′). Otherwise:

(a) The challenger samples a random bitstring s (whose length equals the number of qubits
of M) and applies Zs to M.

(b) Next, the challenger applies Com and returns D to the adversary.

3. The adversary wins the game if it guesses b.

Security requires that it is hard to guess b with advantage noticeably greater than 1/2. How
does this security experiment relate to hiding? Suppose we modify the collapse-binding experiment
as follows (differences in red):

Computational (resp. statistical) security requires that any efficient (resp. inefficient) A
guesses b with probability at most 1/2 + negl(λ) in the following experiment:

1. The adversary A sends (C,D) to the challenger.

2. The challenger applies Com† and measures {|0⟩⟨0|W , I− |0⟩⟨0|W}. If the measurement rejects,
abort the experiment (i.e., output a random bit b′). Otherwise:

(a) The challenger samples a random bitstring s (whose length equals the number of qubits
of M) and applies Xs to M.

(b) Next, the challenger applies Com and returns C to the adversary.

3. The adversary wins the game if it guesses b.

It is not hard to see that this definition, which we call “X-hiding,” implies the commitment hides
any classical message. In particular, if the adversary sends any classical message |m⟩ (i.e., by
initializing (C,D) to Com(|m⟩ |0⟩W)) then the game above amounts to distinguishing a commitment
to m from a commitment to a uniformly random string. However, X-hiding is stronger than
ordinary hiding for classical messages, since the adversary may choose a superposition of classical
messages |m⟩.

25



This connection between X-hiding and collapse-binding (which we will call Z-binding here)
leads to a simple dual scheme for any QBC satisfying our non-interactive commitment syntax. In
particular, suppose Com is statistically Z-binding and computationally X-hiding. Now consider
the following “dual” commitment scheme:

• To commit to an n-bit classical string |m⟩, apply H⊗n followed by Com. Send the decommit-
ment register D as the commitment.

• To decommit, send the commitment C. To verify, apply H⊗nCom† and recover the |m⟩ from
the M register.

It is immediate from these definitions that this scheme scheme is computationally Z-binding and
statistically X-hiding!

4.5 Parallel composition

In this section, we show that our binding definition for quantum messages composes in parallel.

Theorem 4.8 (Binding composes in parallel). Let {Comi}i∈[n] be a set of n non-interactive
binding commitment schemes with message and ancillary registers (Mi,Wi)i∈[n]. Then the
parallel composition of the commitment schemes C̃om :=

⊗
Comi with message register M :=

(Mi)i∈[n] and ancilla register W := (Wi)i∈[n] is also a binding commitment scheme.

Proof. We will show by a sequence of n + 1 hybrids that the parallel composition of the n com-
mitment schemes is binding. That is, we will show that an adversary cannot distinguish between
decommitments for messages of their choice in all n slots or for |0⟩ in all n slots. We define hybrids
Hj for j ∈ {0, 1, . . . , n} as follows.

Hybrid Hj :

1. The adversary sends n commitment and decommitment registers (Ci,Di)i∈[n] to the
challenger.

2. The challenger then does the following:

(a) Apply C̃om
†
.

(b) Measure {|0⟩⟨0|W , I − |0⟩⟨0|W}. If the measurement accepts, then continue to the
next step. Otherwise, the experiment aborts and a random bit b′ ← {0, 1} is output.

(c) Swap the messages in Mi for i ≤ j with |0⟩.
(d) Apply C̃om.

3. The challenger returns the decommitment (Di)i∈[n] to the adversary.

Breaking binding for the commitment scheme C̃om is equivalent to distinguishing between hy-
brids H0 and Hn. Suppose that an adversary A can distinguish hybrids H0 and Hn with advantage
ε. Then for some j ∈ [n], the adversary A can distinguish hybrid Hj−1 from hybrid Hj with
advantage ε/n. We now use A to construct an adversary A′ on the binding experiment for the
commitment scheme Comj . The adversary A′ receives the registers (Ci,Di)

n
i=1 from A, then does

the following:
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1. Apply C̃om
†
.

2. Measure {|0⟩⟨0|W , I − |0⟩⟨0|W}. If the measurement accepts, then continue to the next step.
Otherwise, output a random bit b′ ← {0, 1}.

3. Swap the messages in Mi for i ≤ j − 1 with |0⟩.

4. Apply C̃om.

5. Forward (Cj ,Dj) to the challenger, receive Dj from the challenger, and send (Di)
n
i=1 to A.

6. Output b′ ← A.

By construction of A′, the view of A in which the challenger either does nothing or swaps out
the jth message with |0⟩ is identical to that of Hj−1 and Hj , respectively, so A′ wins the binding
experiment for Comj with advantage ε/n.
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5 Constructions of QSCs

5.1 Succinct QSCs from one-time quantum encryption

Definition 5.1 (Quantum encryption syntax). A quantum encryption scheme QEnc for quan-
tum message space M and classical key space {0, 1}d(λ) is specified by a family {Uk}k∈{0,1}d(λ) of
unitaries acting on M, for each security parameter λ. We require that for any k ∈ {0, 1}d(λ),
there is a poly(λ)-time classical procedure to generate a description of Uk. The encryption of
|ψ⟩ ∈ M under secret key k is Uk |ψ⟩.

To simplify notation, we will often drop the dependence on λ and write QEnc = {Uk}k. We
say that a quantum encryption scheme has short keys if d < n. We define one-time security for
a quantum encryption scheme QEnc with the following security game:

Definition 5.2 (One-time secure quantum encryption). For a quantum encryption scheme QEnc,
an interactive adversary A, a challenge bit b ∈ {0, 1}, and a security parameter λ, define a
security experiment QEncExptQSC,A,b(λ) as follows.

QEncExptQEnc,A,b(λ):

1. A sends a quantum message M to the challenger.

2. The challenger samples a random k ← {0, 1}d(λ) and does the following:

(a) If b = 0, apply Uk to M and send M to A.

(b) If b = 1, swap the contents of M with |0⟩, apply Uk to M, and send M to A.

3. The output of the experiment is b′ ← A.

QEnc is one-time secure if there exists a negligible function µ(λ) such that for all polynomial-
time quantum adversaries A,

Pr
b←{0,1}

[QEncExptQEnc,A,b(λ) = b] ≤ 1

2
+ µ(λ).

Using any one-time secure quantum encryption scheme QEnc = {Uk}k, we can define a non-
interactive QSC by the following commitment unitary:

Com =
∑

k∈{0,1}d

(
|k⟩⟨k|H⊗d

)
W
⊗ (Uk)M, (1)

using C = W as the commitment and D = M as the decommitment. For example, the honest
commitment to the pure state |ψ⟩M is

2−d/2
∑

k∈{0,1}d
|k⟩C ⊗ (Uk |ψ⟩)D.

If the encryption scheme has short keys, then the scheme is succinct. It is easy to show that the
scheme is also binding.
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Theorem 5.3. If {Uk}k is a one-time secure quantum encryption scheme, then the QSC
scheme Com defined by Eq. (1) is binding.

Proof. The proof is immediate from the definitions. Consider the binding security experiment for
Com (Definition 4.2). We denote the register containing the adversary’s internal state by R. Let
ρC,D,R be the state of the experiment after the adversary sends D to the challenger, let ρbD,R be the
state held by the adversary after it receives D back from the challenger in the b ∈ {0, 1} world of
the binding experiment, and let σM,R = TrC(Π · Com†ρC,D,RCom · Π) be the sub-normalized state
on (M,R) after a successful opening. By the one-time security of the quantum encryption scheme,

ρ0
D,R = 2−d

∑
k∈{0,1}d

(Uk)MσM,R(U
†
k)M

≈c 2−d
∑

k∈{0,1}d

(
Uk |0⟩⟨0|M U

†
k

)
M
⊗ σR

= ρ1
D,R.

Claim 5.4 (One-time secure quantum encryption with short keys from OWFs). One-time secure
quantum encryption with short keys exists assuming the existence of any post-quantum one-
way function.

Proof. There exists a post-quantum pseudo-random generator G : {0, 1}n/2 → {0, 1}2n assuming
the existence of any post-quantum one-way function [HILL99, Zha12]. Let Uk = XG0(k)ZG1(k)

be a quantum encryption scheme, where G0(k), G1(k) are the first and last n/2 bits of G(k),
respectively. This scheme has key size d = n/2 for n-qubit messages, and security is immediate
from the definitions.

Consider the security experiment for {Uk}k (Definition 5.2). We denote the register containing
the adversary’s internal state by R. Let ρM,R be the state of the experiment after the adversary
sends M to the challenger and let ρbM,R be the state held by the adversary after it receives M back
from the challenger in the b ∈ {0, 1} world of the security experiment. Since G is a post-quantum
pseudo-random generator,

ρ0
M,R = 2−d

∑
k∈{0,1}d

(XG0(k)ZG1(k))MρM,R(Z
G1(k)XG0(k))M

≈c 2−d
∑

k∈{0,1}d
(XG0(k)ZG1(k) |0⟩⟨0|M Z

G1(k)XG0(k))M ⊗ ρR

= ρ1
M,R.

Claim 5.5. There is a quantum oracle O relative to which one-time secure quantum encryp-
tion with short keys exists, but BQPO = QMAO (and in particular, post-quantum one-way
functions do not exist).

Proof. By [Kre21, Theorem 2], there is a quantum oracle O relative to which a pseudo-random
unitary family {Uk : C2n → C2n}k∈{0,1}n exists, but BQPO = QMAO. We would like to view the
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family as a quantum encryption scheme with keys k ∈ {0, 1}n, but this scheme does not have short
keys (as d = n).

However, Appendix C shows that we can exchange the PRU family’s many-time security for
one-time security on a larger message space. We therefore use {Expand(Uk, ℓ)}k∈{0,1}n for any
constant ℓ > 1, which is a secure one-time quantum encryption scheme acting on at least ℓ · n
qubits by Theorem C.1.

5.2 Domain extension

In this section, we show that a quantum analogue of Merkle-Damgård domain extension for classical
compressing hash functions works for succinct QSCs.

Concretely, suppose we are given a succinct QSC scheme sQSC for (m+1)-qubit messages that
produces m-qubit commitments.20 That is, ComsQSC acts on message-ancilla registers (M,W) and
produces commitment-decommitment registers (C,D) where:

• M is an (m+ 1)-qubit message register,

• W is a d-qubit ancilla register,

• C is an m-qubit commitment register, and

• D is a (d+ 1)-qubit decommitment register.

Using sQSC, we construct a new succinct QSC scheme sQSCMD
k (where MD stands for Merkle-

Damgård) enabling commitments to k-qubit messages with commitments of m qubits for any
k = poly(λ).

In sQSCMD
k , the sender commits to a k-qubit message M as follows:

Setup: Initialize an (m + kd)-qubit register W to
∣∣0m+kd

〉
. Separate W into subregisters

W = (C0,Y0,Y1, . . . ,Yk−1) where C0 is m qubits and each Yi is d qubits. Separate M into
subregisters M = (M0,M1, . . . ,Mk−1) where each Mi is a single qubit register.

1. For i = 0, . . . , k − 1:

Apply ComsQSC to (Mi,Ci,Yi), i.e., commit to the (m+1)-qubit message register (Mi,Ci)

using the d-qubit ancilla Yi, to obtain (Ci+1,Di+1).

2. The commitment is the m-qubit register C = Ck and the decommitment is the k ·(d+1)-qubit
register D = (D1, . . . ,Dk).

Theorem 5.6 (Domain extension). For any k = poly(λ), the scheme sQSCMD
k is swap binding

assuming that sQSC is swap binding.
20One-qubit compression is without loss of generality, since if a scheme compresses by more than one qubit, we

can pad the input with 0’s (and additionally require that these qubits are 0 during verification).

30



Proof. We prove this claim by a sequence of hybrid arguments. To simplify notation, let Uj be
the unitary corresponding to the jth application of ComsQSC in sQSCMD

k , so that the commitment
is implemented with the unitary U := UkUk−1 · · ·U1. We first state all of the hybrids below and
then prove indistinguishability of the hybrids in Claims 5.7 to 5.9. We highlight the differences
from the previous hybrid in red.

• Hybrid H0:

1. The adversary sends the registers (C,D) to the challenger.

2. The challenger does the following:

(a) Apply a binary projective measurement to check that (C,D) is valid.
(b) Return D = (D1, . . . ,Dk) to the adversary.

Hybrid H0 corresponds to the b = 0 case of the QSC binding security game Definition 4.2.

• Hybrid H1:

1. The adversary sends (C,D) to the challenger.

2. The challenger does the following:

(a) Apply a binary projective measurement to check that (C,D) is valid.
(b) Apply U † to recover the committed message on registers (M0, . . . ,Mk−1).
(c) For each i = 0, . . . , k − 1:

i. Initialize an m-qubit register C′i to |0m⟩.
ii. Use Com to commit to the m+1-qubit register (Mi,C

′
i), producing a decommit-

ment Di+1 and a commitment Ci+1; discard Ci+1.

(d) Return D = (D1, . . . ,Dk) to the adversary.

The difference between H1 and H0 is that in H1, the decommitments D1, . . . ,Dk are each generated
in parallel. That is, in hybrid H1, each Di the adversary receives is the decommitment resulting
from committing to (Mi−1,C

′
i−1) where C′i−1 is initialized to |0m⟩. In contrast, in hybrid H0, the

decommitments Di are generated in sequence, i.e., Di is the decommitment resulting from com-
mitting to (Mi−1,Ci−1), where Ci−1 is the commitment resulting from committing to (Mi−2,Ci−2)

in the previous layer, etc.
We prove that H0 and H1 are indistinguishable in Claim 5.7 by defining a careful sequence of

k sub-hybrids.

• Hybrid H2:

1. The adversary sends (C,D) to the challenger.

2. The challenger does the following:

(a) Apply a binary projective measurement to check that (C,D) is valid.
(b) Apply U † to recover the committed message on register M = (M0, . . . ,Mk−1).
(c) Initialize k qubits M′ = (M′0, . . . ,M

′
k−1) to

∣∣0k〉, and apply SWAP[M,M′].
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(d) For each i = 0, . . . , k − 1:
i. Initialize an m-qubit register C′i to |0m⟩.
ii. Use Com to commit to the m+1-qubit register (Mi,C

′
i) and obtain (Di+1,Ci+1);

discard Ci+1.
(e) Return D = (D1, . . . ,Dk) to the adversary.

The difference between H2 and H1 is that in H2, the decommitments D1, . . . ,Dk are each decom-
mitments resulting from (independent) commitments to the message

∣∣0m+1
〉
. Since the k decom-

mitments in both H1 and H2 are all independent, indistinguishability of these hybrids follows from
the fact that swap-binding composes in parallel (Theorem 4.8); see Claim 5.8.

• Hybrid H3:

1. The adversary sends (C,D) to the challenger.

2. The challenger does the following:

(a) Apply a binary projective measurement to check that (C,D) is valid.
(b) Apply U † to recover the committed message on registers (M0, . . . ,Mk−1).
(c) Initialize k qubits M′ = (M′0, . . . ,M

′
k−1) to

∣∣0k〉, and apply SWAP[M,M′].
(d) Apply U .
(e) Return D = (D1, . . . ,Dk) to the adversary.

Hybrid H3 corresponds to the b = 1 case of the QSC binding security game (Definition 4.2). The
differences between H3 and H2 are analogous to the difference between H0 and H1, except that
now each Mi is replaced with |0⟩. We prove H3 ≈c H2 in Claim 5.9 using essentially the same
arguments as in Claim 5.7.

It remains to prove Claims 5.7 to 5.9.

Claim 5.7. Hybrid H0 is indistinguishable from Hybrid H1.

Proof. We prove this claim by a sequence of k + 1 hybrids H(0−1)
0 , . . . ,H

(0−1)
k . Hybrid H

(0−1)
0 is

identical to H0, and H
(0−1)
k is identical to H1. For i = 0, . . . , k we define H(0−1)

i by the following
behavior for the challenger:

Hybrid H
(0−1)
i :

1. The adversary sends (C,D).

2. The challenger does the following:

(a) Check that the commitment is valid. If not, the experiment aborts.
(b) If i > 0, open the last i commitments using U †k−i+1 · · ·U

†
k , initialize a new register

(M′k−i,C
′
k−i) to |0⟩, and apply SWAP[(Mk−i,Ck−i), (M

′
k−i,C

′
k−i)].

(c) If i > 1, for j = k − i, . . . , k − 2 in sequence, apply Com to (Mj ,Cj ,Yj) to produce
a decommitment on Dj+1 and a commitment on Cj+1, initialize a new register
(M′j+1,C

′
j+1) to |0⟩, and apply SWAP[(Mj+1,Cj+1), (M

′
j+1,C

′
j+1)].
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(d) If i > 0, apply Com to (Mk−1,Ck−1,Yk−1) to produce a decommitment on Dk and a
commitment on Ck.

3. The challenger returns the decommitment D = (D1, . . . ,Dk) to the adversary.

Suppose that an adversary A can distinguish hybrids H(0−1)
0 and H

(0−1)
k with advantage ε. Then

for some i ∈ {0, . . . , k − 1}, the adversary A can distinguish hybrid H
(0−1)
i from hybrid H

(0−1)
i+1

with advantage ε/k. We now construct a reduction R
(0−1)
i that uses such an adversary to achieve

advantage ε/k in the binding experiment for the commitment scheme Com.

Reduction R
(0−1)
i :

1. The adversary sends (C,D) to R(0−1)
i .

2. The reduction does the following:

(a) Check that the commitment is valid. If not, the experiment aborts and the reduction
makes a random guess b′ ← {0, 1}.

(b) If i > 0, open the last i commitments using U †k−i+1 · · ·U
†
k . Initialize an internal

register (M′k−i,C
′
k−i) to |0⟩ and apply SWAP[(Mk−i,Ck−i), (M

′
k−i,C

′
k−i)].

(c) If i > 1, for j = k − i, . . . , k − 2 in sequence, apply Com to (Mj ,Cj ,Yj) to ob-
tain (Dj+1,Cj+1). Initialize an internal register (M′j+1,C

′
j+1) to |0⟩ and then apply

SWAP[(Mj+1,Cj+1), (M
′
j+1,C

′
j+1)].

(d) If i > 0, apply Com to (Mk−1,Ck−1,Yk−1) to produce a decommitment on Dk and a
commitment on Ck. For convenience of notation, let C′k = Ck.

(e) Send (Dk−i,C
′
k−i) to the challenger. According to the challenge bit b, the challenger

applies SWAPb to an auxiliary |0⟩ state and the message (Mk−i−1,Ck−i−1) underlying
(Dk−i,C

′
k−i). Then the challenger returns Dk−i to the reduction.

3. The reduction returns the decommitment D = (D1, . . . ,Dk) to the adversary.

The view of the adversary in the b = 0 world of R(0−1)
i is exactly the same as in H

(0−1)
i , and the

view of the adversary in the b = 1 world is exactly the same as in H(0−1)
i+1 .

Claim 5.8. Hybrid H1 is indistinguishable from Hybrid H2.

Proof. It is immediate that a QSC is binding to every subset of registers of the message; the same
fact for collapse-binding commitments was proven in [Unr16, Lemma 15] and the proof for QSCs
is nearly identical. In particular, Com is a binding commitment to Mi for each i ∈ {0, . . . , k − 1}.
Therefore, H1 and H2 are indistinguishable by the following reduction to the security of parallel
composition (Theorem 4.8).

• Reduction R1:

1. The adversary sends (C,D) to R.

2. The reduction does the following:

(a) Apply a binary projective measurement to check that (C,D) is valid. If not, the
experiment aborts and the reduction makes a random guess b′ ← {0, 1}.
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(b) Apply U † to recover the committed message on registers (M0, . . . ,Mk−1)

(c) For each i = 0, . . . , k − 1:
i. Initialize an m-qubit register C′i to |0m⟩.
ii. Apply Com to the m+1-qubit register (Mi,C

′
i,Yi), producing a decommitment

Di+1 and a commitment Ci+1.
(d) Send {Di,Ci}i∈[k] to the challenger.
(e) The challenger samples a random b← {0, 1}, applies⊗

i∈[k]

Ui(SWAP[Mi,M
′
i]
b)U †i ,

and returns D = (D1, . . . ,Dk) to the reduction.
(f) The reduction returns D to the adversary.

Claim 5.9. Hybrid H2 is indistinguishable from Hybrid H3.

Proof. The proof is identical to the proof of Claim 5.7, except that we view the commitments as
swap-binding commitments to just the registers Ci instead of (Mi,Ci). That is, we only swap Ci
instead of (Mi,Ci), and only make use of the binding property of the commitment scheme on the
Ci register.

Formally, we again use a sequence of k+1 hybridsH(3−2)
0 , . . . ,H

(3−2)
k . HybridH(3−2)

0 is identical
to H3, and H

(3−2)
k is identical to H2. For i = 0, . . . , k we define H(3−2)

i by the following behavior
for the challenger:

Hybrid H
(3−2)
i :

1. The adversary sends (C,D).
2. The challenger does the following:

(a) Check that the commitment is valid. If not, the experiment aborts.
(b) Apply U † to recover the committed message on registers (M0, . . . ,Mk−1).
(c) Initialize k qubits M′ = (M′0, . . . ,M

′
k−1) to

∣∣0k〉 and apply SWAP[M,M′].
(d) Apply U .
(e) If i > 0, open the last i commitments using U †k−i+1 · · ·U

†
k , initialize a new register

C′k−i to |0⟩, and apply SWAP[Ck−i,C
′
k−i].

(f) If i > 1, for j = k− i, . . . , k− 2 in sequence, apply Com to (Mj ,Cj ,Yj) to produce a
decommitment on Dj+1 and a commitment on Cj+1, initialize a new register C′j+1

to |0⟩, and apply SWAP[Cj+1,C
′
j+1].

(g) If i > 0, apply Com to (Mk−1,Ck−1,Yk−1) to produce a decommitment on Dk and a
commitment on Ck.

3. The challenger returns the decommitment D = (D1, . . . ,Dk) to the adversary.

Suppose that an adversary A can distinguish hybrids H(3−2)
0 and H

(3−2)
k with advantage ε. Then

for some i ∈ {0, . . . , k − 1}, the adversary A can distinguish hybrid H
(3−2)
i from hybrid H

(3−2)
i+1

with advantage ε/k. We now construct a reduction R
(3−2)
i that uses such an adversary to achieve

advantage ε/k in the binding experiment for the commitment scheme Com.
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Reduction R
(3−2)
i :

1. The adversary sends (C,D) to R(3−2)
i .

2. The reduction does the following:

(a) Check that the commitment is valid. If not, the experiment aborts and the reduction
makes a random guess b′ ← {0, 1}.

(b) Apply U † to recover the committed message on registers (M0, . . . ,Mk−1).
(c) Initialize k qubits M′ = (M′0, . . . ,M

′
k−1) to

∣∣0k〉 and apply SWAP[M,M′].
(d) Apply U .
(e) If i > 0, open the last i commitments using U †k−i+1 · · ·U

†
k . Initialize an internal

register C′k−i to |0⟩ and apply SWAP[Ck−i,C
′
k−i].

(f) If i > 1, for j = k − i, . . . , k − 2 in sequence, apply Com to (Mj ,Cj ,Yj) to
obtain (Dj+1,Cj+1). Initialize an internal register C′j+1 to |0⟩ and then apply
SWAP[Cj+1,C

′
j+1].

(g) If i > 0, apply Com to (Mk−1,Ck−1,Yk−1) to produce a decommitment on Dk and a
commitment on Ck. For convenience of notation, let C′k = Ck.

(h) Send (Dk−i,C
′
k−i) to the challenger. According to the challenge bit b, the chal-

lenger applies SWAPb to an auxiliary |0⟩ state and the register Ck−i−1 underlying
(Dk−i,C

′
k−i). Then the challenger returns Dk−i to the reduction.

3. The reduction returns the decommitment D = (D1, . . . ,Dk) to the adversary.

The view of the adversary in the b = 0 world of R(3−2)
i is exactly the same as in H

(3−2)
i , and the

view of the adversary in the b = 1 world is exactly the same as in H(3−2)
i+1 .

5.3 Formalizing the folklore: QSCs from QBCs

In this section, we formalize the security of the “folklore” construction of hiding QSCs: to commit
to an n-qubit quantum state |ψ⟩, sample two random n-bit classical strings r, s, and send XrZs |ψ⟩
together with commitments to the classical string (r, s). The opening is just the opening to the
commitment to (r, s), which enables the receiver to recover |ψ⟩ by applying ZsXr. We instantiate
the commitment to (r, s) with any quantum-communication commitment to classical messages
satisfying hiding and binding.

Defining quantum bit(string) commitments. The syntax for a quantum bit(string) commit-
ment (QBC) is identical to our syntax for non-interactive quantum state commitments (Defini-
tion 4.1).

Hiding and binding are defined as follows:

Definition 5.10 (Hiding for QBCs). For a quantum bit(string) commitment ComQBC, an in-
teractive adversary A, a challenge bit b ∈ {0, 1}, and a security parameter λ, define a security
experiment HideExptQBC,A,b(λ) as follows.

HideExptQBC,A,b(λ):
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1. The adversary A sends a two messages x0, x1 ∈ {0, 1}|M| to the challenger.

2. The challenger (acting as the honest sender) initializes register M to the standard basis
state |xb⟩ and register W to |0⟩, applies ComQBC, and sends register C to the adversary.

3. The output of the experiment is b′ ← A.

ComQBC is computationally (resp. statistically) hiding if there exists a negligible function
µ(λ) such that for all polynomial-time (resp. unbounded-time) quantum interactive adver-
saries A,

Pr
b←{0,1}

[HideExptQBC,A,b(λ) = b] ≤ 1

2
+ µ(λ).

Definition 5.11 (Binding for QBCs [Unr16]). For a quantum bit(string) commitment ComQBC,
an interactive adversary A, a challenge bit b ∈ {0, 1}, and a security parameter λ, define a
binding security experiment ColBindExptQBC,A,b(λ) as follows. This definition is an adapta-
tion of Unruh’s collapse-binding definition [Unr16] to the setting of quantum bit commit-
ments.

ColBindExptQBC,A,b(λ):

1. The adversary A (acting as a malicious committer) sends registers (C,D) to the chal-
lenger.

2. The challenger applies Com†QBC and measures {|0⟩⟨0|W , I−|0⟩⟨0|W}; if the decommitment
is invalid (the measurement rejects), it aborts the experiment (i.e., outputs a random
b′).

3. The challenger does the following:

• if b = 0, the challenger simply applies ComQBC, and sends the D register to A;

• if b = 1, the challenger measures M in the standard basis. It then applies ComQBC

and sends the D register to A.

4. The output of the experiment is b′ ← A.

ComQBC is computationally (resp. statistically) collapse-binding if there exists a negligible
function µ(λ) such that for all polynomial-time (resp. unbounded-time) quantum interactive
adversaries A,

Pr
b←{0,1}

[ColBindExptQBC,A,b(λ) = b] ≤ 1

2
+ µ(λ).

Non-interactive form of the folkore construction. Before proving security of the commit-
ment to an n-qubit state, we write the folklore construction in non-interactive form for a commit-
ment to one qubit. Let ComQBC be a quantum bitstring commitment to two classical bits. That
is, it maps two bits in registers M′ := (M′1,M

′
2) and ancilla register W′ to commitment register C′

and decommitment register D′. Recall that in the folklore construction, the sender commits to
two randomly samples bits, r and s. To purify this step, we initialize two additional single-qubit
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registers K := (K1,K2), and make (K1,M
′
1) and (K2,M

′
2) each hold one EPR pair. Formally, the

construction is as follows:
To commit to a qubit in message register M, a sender will initialize ancillary registers W :=

(K1,K2,M
′
1,M

′
2,W

′) to the |0⟩ state. Then the sender applies the following commitment unitary:

ComQSC = ComQBC(ctlM′
2
-ZM)(ctlM′

1
-XM)

(
(ctlK1-XM′

1
)HK1 ⊗ (ctlK2-XM′

2
)HK2

)
. (2)

The commitment register is C := (M,C′) and decommitment register is D := (K1,K2,D
′). Thus, for

any quantum message |ψ⟩M,

ComQSC (|ψ⟩M ⊗ |0⟩KM′W′) =
1

2

∑
r,s∈{0,1}

|r, s⟩K ⊗ (ComQBC |r, s⟩M′ ⊗ |0⟩W′)⊗ ZsXr |ψ⟩M .

Theorem 5.12. The quantum state commitment scheme in Eq. (2), ComQSC, is computation-
ally (resp. statistical) hiding and statistically (resp. computational) binding if the underlying
quantum bit commitment scheme, ComQBC, is computationally (resp. statistical) hiding and
statistically (resp. computational) binding.

Proof. Hiding of ComQSC follows by a standard hybrid argument. To simplify notation, for (r, s) ∈
{0, 1}2, let τr,s denote the density matrix corresponding to the commitment to (r, s) under ComQBC.

• H0: In this hybrid, the adversary Adv sends a single qubit state ρM to the challenger. The
challenger returns the mixed state

1

4

∑
r,s

τr,s ⊗ (XrZs)ρM(ZsXr),

corresponding to an honest commitment of ρM under ComQSC. This hybrid is the view of the
adversary in the b = 0 case of the QSC hiding experiment (Definition 4.3).

• H1: This hybrid is the same as H0, except the commitment to (r, s) is replaced by a com-
mitment to (0, 0).

τ0,0 ⊗
1

4

∑
r,s

(XrZs)ρM(ZsXr).

This is indistinguishable fromH1 by the hiding security of ComQBC: an adversary in the hiding
experiment can sample random r, s← {0, 1}2, send (r, s) and (0, 0) to the challenger, receive
the state τ̃ (which is either τr,s or τ0,0), and prepare the state 1

4

∑
r,s τ̃ ⊗ (XrZs)ρM(ZsXr).

• H2: This hybrid is the same as H1, except the challenger uses |0⟩⟨0| instead of ρM:

τ0,0 ⊗
1

4

∑
r,s

(XrZs) |0⟩⟨0|M (ZsXr).

This is identical to H1 since the state in both hybrids is τ0,0 ⊗ (I/2).
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• H3: This hybrid is the same as H2, except the commitment to (0, 0) is replaced by a com-
mitment to (r, s):

1

4

∑
r,s

τr,s ⊗ (XrZs) |0⟩⟨0|M (ZsXr).

This follows by the hiding property of ComQBC. This completes the proof of hiding for
ComQSC since H3 is the view of the adversary in the b = 1 case of the ComQSC hiding
experiment (Definition 4.3).

We now show that ComQSC is swap binding (Definition 4.2) assuming ComQBC is binding (Def-
inition 5.11).

• Hybrid H0:

1. The adversary Adv sends a quantum state on registers C,D to the challenger.

2. The challenger then does the following:

(a) Apply Com†QSC to (C,D).
(b) Measure {|0⟩⟨0|W , I− |0⟩⟨0|W}. If the measurement rejects, abort.
(c) Apply ComQSC.
(d) Send the decommitment register D to Adv.

The view of Adv corresponds to the view of the adversary in the b = 0 world of the swap-
binding experiment for ComQSC (Definition 4.2).

• Hybrid H1:

1. The adversary Adv sends a quantum state on registers C,D to the challenger.

2. The challenger then does the following:

(a) Apply Com†QSC to (C,D).
(b) Measure {|0⟩⟨0|W , I− |0⟩⟨0|W}. If the measurement rejects, abort.
(c) Apply ComQSC.
(d) Apply Com†QBC to reveal the two-bit committed classical message on register M′.
(e) Measure M′ in the standard basis.
(f) Apply ComQBC.
(g) Send the decommitment register D to Adv.

The measurement in Step 2b ensures that after applying ComQSC in Step 2c, the resulting state
includes a valid commitment-decommitment pair for the message in M′ under ComQBC. By
the binding security of ComQBC, the act of measuring the contents of M′ in the standard basis
is undetectable without access to the commitment C′. Thus, hybrid H1 is indistinguishable
from H0; otherwise, an adversary in the ComQBC binding experiment receives (C,D) from
Adv, performs Steps 2a to 2c, sends (C′,D′) to the challenger, receives D′ from the challenger,
sends D to Adv, and uses Adv’s output to win the ComQBC binding experiment.
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• Hybrid H2:

1. The adversary Adv sends registers (C,D) to the challenger.

2. The challenger then does the following:

(a) Apply Com†QSC to (C,D) to obtain (M,W).
(b) Measure {|0⟩⟨0|W , I− |0⟩⟨0|W}. If the measurement rejects, abort.
(c) Replace the contents of M with the state |0⟩⟨0|M.
(d) Apply ComQSC.
(e) Apply Com†QBC to reveal the two-bit committed classical message on register M′.
(f) Measure M′ in the standard basis.
(g) Apply ComQBC.
(h) Send the decommitment register D to Adv.

For (r, s) ∈ {0, 1}2, let γr,s denote the density matrix corresponding to the decommitment to
(r, s) under the quantum commitment to classical messages ComQBC. By a straightforward
computation, regardless of the the contents of M after Step 2b, the state that the challenger
sends Adv is

1

4

∑
r,s

|r, s⟩⟨r, s|K ⊗ (γr,s)D′ .

Thus H2 is perfectly indistinguishable from H1.

• Hybrid H3:

1. The adversary Adv sends registers (C,D) to the challenger.

2. The challenger then does the following:

(a) Apply Com†QSC to the (C,D) registers.
(b) Measure {|0⟩⟨0|W , I− |0⟩⟨0|W}. If the measurement rejects, abort.
(c) Replace the contents of M with the state |0⟩⟨0|M.
(d) Apply ComQSC.

Apply Com†QBC to reveal the two-bit committed classical message on register M′.
Measure M′ in the standard basis.
Apply ComQBC.

(e) Send the decommitment register D to Adv.

The difference between hybrids H2 and H3 is that challenger measures M′ in the former but
not in the latter. Again, by the binding security of ComQBC, the two hybrids are indistin-
guishable. This completes the proof of binding for ComQSC because H3 is the view of the
adversary in the b = 1 world of the binding experiment (Definition 4.2).
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The proof of security above shows that the folklore construction applied to one qubit is a hiding
and binding QSC. By appealing to the security of the parallel composition of n such commitment
schemes using Theorem 4.8, we get a full QSC for n-qubit quantum messages.

Corollary 5.13. Let ComQSC be the QSC defined by Eq. (2). Then for any n = poly(λ),
the n-fold parallel composition

⊗n
i=1 ComQSC is a hiding and binding QSC if the underlying

quantum commitment to classical messages ComQBC is hiding and binding.

40



6 The oracle security lemma

In this section we prove that swap binding is equivalent to a seemingly stronger definition that we
call oracle swap binding. As discussed in Section 2.3.2, oracle swap binding plays a crucial role in
our rewinding-based security proofs (Section 8).

Recall that in the swap-binding security experiment, the challenger’s bit b determines whether
the adversary’s originally committed message is left on the M register (when b = 0) or swapped
into the challenger’s M′ register (when b = 1). Of course, the standard swap-binding adversary is
unable to access either of these registers: the state on M can only be revealed by applying Com†

to (C,D) (which the adversary cannot do since the challenger does not return the C register) and
the contents of the M′ register remain entirely out of the adversary’s view. Roughly speaking, the
oracle swap binding experiment gives the adversary an oracle that can perform arbitrary efficient
operations on the originally committed message, i.e., M if b = 0 or M′ if b = 1.

To state the definition formally, we use the following notation:

• For any operator O and commitment unitary Com, we write Ô := (Com)O(Com†).

• Let Π := Com(IM⊗|0⟩⟨0|W)Com† denote the projection onto valid commitment-decommitment
states.

• Recall that for a pair of equal-size registers M,M′, the unitary SWAP[M,M′] maps |ψ⟩M |ϕ⟩M′

to |ϕ⟩M |ψ⟩M′ .

In the oracle swap binding experiment, the adversary specifies an arbitrary unitary O, which
acts on M and any number of additional ancilla qubits R. After the adversary sends (C,D) to its
challenger and gets back a state on D, it is allowed to perform the following oracle call as many
times as desired:

1. The adversary sends registers (R,D) to the oracle.

2. If b = 0, the oracle applies the unitary ÔΠ + (I − Π) to the registers (C,D,R). If b = 1, the
oracle applies the unitary ̂SWAP[M,M′] · Ô · ̂SWAP[M,M′]Π + (I−Π).

3. The oracle returns (R,D) to the adversary.

We can write this oracle more compactly as

Gb := ( ̂SWAP[M,M′])b · Ô · ( ̂SWAP[M,M′])bΠ+ (I−Π).

When (C,D) contains a valid commitment (i.e., the state is in the image of Π), the oracle behaves
as expected: in the Com† basis, it applies O to (M,R) if b = 0, or to (M′,R) if b = 1. To ensure that
the oracle does not enable trivial attacks, we will restrict the oracle’s behavior to be independent
of b whenever (C,D) is an invalid commitment. In particular, we require that the oracle behave as
identity on any state in (I−Π).
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Definition 6.1 (Oracle swap-binding for quantum state commitments). Com is computationally
(resp. statistically) oracle swap-binding if there exists a negligible function µ(λ) such that
for all polynomial-time (resp. unbounded-time) oracle swap-binding adversaries specified by
an efficient (resp. inefficient) interactive adversary A and any efficient (resp. inefficient)
unitary O,

Pr
b←{0,1}

[SwapBindExptQSC,AGb ,b(λ) = b] ≤ 1

2
+ µ(λ).

Theorem 6.2. If Com is computationally (resp. statistically) swap-binding (Definition 4.2),
then Com is computationally (resp. statistically) oracle swap-binding (Definition 6.1).

The rest of this section is devoted to proving Theorem 6.2.

6.1 The admissible oracle lemma

Instead of proving Theorem 6.2 directly, we will consider a more abstract distinguishing task that
we call the (W,Π)-distinguishing game, parameterized by a binary observable W and a projection
Π that commutes with W . We state and prove a lemma we call the admissible oracle lemma
(Lemma 6.5); in Section 6.2, we show how Theorem 6.2 follows from a special case of the admissible
oracle lemma.

Definition 6.3 ((W,Π)-distinguishing game). Let (A,B) be two quantum registers. Let W be a
binary observable and Π be a projector on (A,B) such that Π commutes with W . Consider
the following distinguishing game:

1. The adversary sends a quantum state on registers (A,B) to the challenger.

2. The challenger chooses a random bit b← {0, 1}. Next, it measures measures {Π, I−Π};
if the measurement rejects, abort and output a random bit b′ ← {0, 1}. Otherwise, the
challenger applies W b to (A,B), and returns B to the adversary.

3. The adversary outputs a guess b′.

We define the distinguishing advantage of the adversary to be |Pr[b′ = b]− 1/2|.

The main result of the section is that, if the (W,Π)-distinguishing game is hard, i.e., the best
possible distinguishing advantage is negligible, then it remains hard when the adversary is given
oracle access to any admissible unitary G, defined as follows.

Definition 6.4. We say that a unitary G is admissible if:

• G commutes with both W and Π, and

• G acts identically on I−Π, i.e., G(I−Π) = I−Π.

Informally, the admissible oracle lemma (Lemma 6.5) says the following. Suppose that a quan-
tum adversary with an initial state |ψ⟩ wins the (W,Π)-distinguishing game with advantage ε, mak-
ing t oracle calls to G. Then there exists a quantum adversary that wins the (W,Π)-distinguishing
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game with advantage ε2/8t2, but does not make any calls to G. The latter adversary requires
an initial state ρ which can be prepared using a circuit PrepG that runs G as a subroutine. We
emphasize that PrepG does not require special oracle access and can be implemented directly, since
it is run before the adversary sends any registers to the challenger.

Lemma 6.5 (Admissible oracle lemma). Let G be an admissible unitary. Suppose that for some
quantum state |ψ⟩ABR, there is a quantum algorithm DG (acting only on registers (B,R)) with
oracle access to G that achieves a distinguishing advantage ε in the (W,Π)-distinguishing
game with initial state |ψ⟩. Then there exists another quantum state ρ and an algorithm E

making no queries to G that wins the (W,Π)-distinguishing game with advantage ε2

8t2
using

initial state ρ, where t is an upper bound on the number of queries D makes to G. Moreover,

• if DG is implemented with a size-T oracle circuit (counting oracle queries as size 1),
then ρ ← PrepG,M (|ψ⟩), where PrepG,M is a poly(T ) size oracle circuit with (controlled)
queries to G, G†, and M := (W+Π)⊗X + (I−W+Π)⊗ I, and

• E is poly(T ) size.

We will prove Lemma 6.5 in two steps:

1. In Lemma 6.6, we show that the distinguishing task is equivalent to the following mapping
task : given any state in image(W+Π), output any state in image(W−Π).

2. In Lemma 6.8, we show that for the mapping task, admissible oracles only provide limited
help.

For a distinguisher D implemented as a binary projective measurement D = {ΠD, I − ΠD}, the
distinguishing advantage on (potentially sub-normalized) |ψ⟩ can be written as

1

2
|⟨ψ|ΠΠDΠ |ψ⟩ − ⟨ψ|ΠWΠDWΠ |ψ⟩|.

For a unitary U and (potentially sub-normalized) state |ψ⟩, we define the mapping advantage of
U on |ψ⟩ to be ∥∥(W−Π)U(W+Π) |ψ⟩

∥∥2
The following lemma states that the mapping and distinguishing tasks are equivalent in a setting
where the adversary supplies the initial state (up to a quadratic loss in the advantage).

Lemma 6.6. Let W be a binary observable on a register H, let Π be a projection on H that
commutes with W , and let B be a fresh single-qubit register. Fix a state |ψ⟩ on H and let
|ψ+⟩ :=W+Π |ψ⟩. Then:

(i) If U has mapping advantage ε on |ψ⟩, then {Π̃D, I − Π̃D} has distinguishing advantage
ε/2 on ctlBU |+⟩B |ψ+⟩, where Π̃D := ctlBU |+⟩⟨+|B ctlBU

†.

(ii) If ΠD has distinguishing advantage ε on |ψ⟩, then the unitary Ũ = I−2ΠD has mapping
advantage at least ε2 on |ψ⟩.
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Proof of Item (i). Let |ϕ⟩ = ctlBU |+⟩B |ψ+⟩. The proof follows from directly computing the
distinguishing advantage

1

2

∣∣∣⟨ϕ|ΠΠ̃DΠ |ϕ⟩ − ⟨ϕ|ΠW Π̃DWΠ |ϕ⟩
∣∣∣.

For b ∈ {0, 1}, we compute

⟨ϕ|ΠW bΠ̃DW
bΠ |ϕ⟩ =

∥∥∥Π̃DW bΠctlBU |+⟩B |ψ+⟩
∥∥∥2

=
1

2

∥∥∥|+⟩⟨+|B (|0⟩BW b |ψ+⟩+ |1⟩B U
†W bΠU |ψ+⟩

)∥∥∥2
=

1

4

∥∥∥|+⟩B (|ψ+⟩+ U †W bΠU |ψ+⟩
)∥∥∥2

=
1

4

(
⟨ψ+|ψ+⟩+ ⟨ψ+|U †ΠU |ψ+⟩+ 2Re ⟨ψ+|U †W bΠU |ψ+⟩

)
.

Then taking the difference,

⟨ϕ|ΠΠ̃DΠ |ϕ⟩ − ⟨ϕ|ΠW Π̃DWΠ |ϕ⟩

=
1

2

(
Re ⟨ψ+|U †ΠU |ψ+⟩ − Re ⟨ψ+|U †WΠU |ψ+⟩

)
=

1

2
Re ⟨ψ+|U †(I −W )ΠU |ψ+⟩

= ⟨ψ+|U †W−ΠU |ψ+⟩
= ε.

Proof of Item (ii). We compute∥∥∥W−ΠŨ |ψ+⟩
∥∥∥2 = ∥∥∥∥Π(I −W2

)
Ũ

(
I +W

2

)
Π |ψ⟩

∥∥∥∥2
≥
∣∣∣∣⟨ψ|Π(I −W2

)
Ũ

(
I +W

2

)
Π |ψ⟩

∣∣∣∣2
=

1

4

∣∣∣(⟨ψ| − ⟨ψ|W )Ũ(|ψ⟩+W |ψ⟩)
∣∣∣2

=
1

4

∣∣∣⟨ψ| Ũ |ψ⟩ − ⟨ψ|WŨW |ψ⟩+ 2i · Im(⟨ψ| ŨW |ψ⟩)
∣∣∣2

≥ 1

4

∣∣∣⟨ψ| Ũ |ψ⟩ − ⟨ψ|WŨW |ψ⟩
∣∣∣2

=
1

2
·
∣∣∣⟨ϕ|ΠΠ̃DΠ |ϕ⟩ − ⟨ϕ|ΠW Π̃DWΠ |ϕ⟩

∣∣∣2
= 2ε2.

Remark 6.7. In [AAS20], a similar statement is proven about the equivalence between dis-
tinguishing and swapping for the task of distinguishing between two fixed states. They also
showed that distinguishing and mapping are not in general equivalent for the fixed-state set-
ting. Lemma 6.6 implies that distinguishing, swapping, and mapping are all equivalent when
the task is to provide a state and detect the application of a fixed operation.
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We now prove that an admissible unitary G cannot help an adversary with the mapping task.
Without loss of generality we assume that the adversary repeatedly applies a single unitary U ,
interleaved with G.21 Lemma 6.8 bounds the mapping advantage of (UG)t in terms of the mapping
advantage of just applying U q for any q ≤ t, with an initial state that can be prepared with access
to a unitary very similar to G.

Lemma 6.8. Fix a Hilbert space H. Let U be a unitary, |ψ⟩ be a state, and Π0,Π1 be a pair
of orthogonal projectors, all on H. Let Π = Π0 + Π1. Let G be a unitary on H of the form
G = Π0G0 +Π1G1 + (I−Π) where G0, G1 are unitaries that commute with Π0,Π1 respectively.
Define G̃0 = Π0G0 + (I−Π0) and

ε(t) := max
q,r,s≤t

∥∥∥Π1U
qΠ0(G̃0)

r(UG̃0)
sΠ0 |ψ⟩

∥∥∥
for any integer t ≥ 0. Then for all integers t ≥ 0,∥∥Π1(UG)

tΠ0 |ψ⟩
∥∥ ≤ 4t2 · ε(t).

We divide the proof of Lemma 6.8 into Claim 6.9 and Claim 6.10.

Claim 6.9. ∥∥∥Π1(UG̃0)
tΠ0 |ψ⟩

∥∥∥ ≤ 2t · ε(t)

Proof. Let H := Π0G0 +Π1G1 − I and write G̃0 = Π0G0 +Π1 + (I−Π) = I+Π0H. We can then
expand the state Π1(UG̃0)

tΠ0 |ψ⟩ as

Π1(UG̃0)
tΠ0 |ψ⟩ = Π1(U + UΠ0H)tΠ0 |ψ⟩ =

t∑
r=1

Π1U
rFt−rΠ0 |ψ⟩ ,

where F0 := I, and Fi := UΠ0H(U +UΠ0H)i−1 for i ≥ 1. The second equality above uses the fact
that U rFt−r is the sum of the terms in the binomial expansion of (U + UΠ0H)t that, when going
from left to right, consist of exactly r U ’s before the first UΠ0H.

By the triangle inequality, it suffices to show that for each r ∈ [t],

∥Π1U
rFt−rΠ0 |ψ⟩∥ ≤ 2ε(t).

The r = t case is immediate from assumption. For the r ≤ t− 1 case, rewrite the definition of Ft−r
using Π0H = Π0G0 −Π0 and G̃0 = I+Π0H:

Ft−r = U(Π0G0 −Π0)(UG̃0)
t−r−1.

Plugging in this expression for Ft−r and invoking the triangle inequality yields

∥Π1U
rFt−rΠ0 |ψ⟩∥

=
∥∥∥Π1U

r+1Π0G0(UG̃0)
t−r−1Π0 |ψ⟩ −Π1U

r+1Π0(UG̃0)
t−r−1Π0 |ψ⟩

∥∥∥
≤
∥∥∥Π1U

r+1Π0G0(UG̃0)
t−r−1Π0 |ψ⟩

∥∥∥+ ∥∥∥Π1U
r+1Π0(UG̃0)

t−r−1Π0 |ψ⟩
∥∥∥.

By our initial assumptions, this implies ∥Π1U
rFt−rΠ0 |ψ⟩∥ ≤ 2ε(t).

21Any adversary can be converted into this form by introducing an additional clock register.
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Claim 6.10. ∥∥∥(UG)tΠ0 |ψ⟩ − (UG̃0)
tΠ0 |ψ⟩

∥∥∥ ≤ 2t2 · ε(t)

Proof. We prove this claim by induction on t. The base case t = 0 is immediate. For t ≥ 1, we
have by the inductive hypothesis that∥∥∥(UG)tΠ0 |ψ⟩ − UG(UG̃0)

t−1Π0 |ψ⟩
∥∥∥ ≤ 2(t− 1)2 · ε(t− 1). (3)

Using G = I+HP , we can write UG(UG̃0)
t−1Π0 |ψ⟩ and (UG̃0)

tΠ0 |ψ⟩ as follows:

UG(UG̃0)
t−1Π0 |ψ⟩ = U(UG̃0)

t−1Π0 |ψ⟩+ UHΠ(UG̃0)
t−1Π0 |ψ⟩ (4)

(UG̃0)
tΠ0 |ψ⟩ = U(UG̃0)

t−1Π0 |ψ⟩+ UHΠ0(UG̃0)
t−1Π0 |ψ⟩ . (5)

By subtracting Eq. (5) from Eq. (4) and taking the norm, we obtain∥∥∥UG(UG̃0)
t−1Π0 |ψ⟩ − (UG̃0)

tΠ0 |ψ⟩
∥∥∥ =

∥∥∥UHΠ(UG̃0)
t−1Π0 |ψ⟩ − UHΠ0(UG̃0)

t−1Π0 |ψ⟩
∥∥∥

≤ ∥UH∥op
∥∥∥Π(UG̃0)

t−1Π0 |ψ⟩ −Π0(UG̃0)
t−1Π0 |ψ⟩

∥∥∥.
By Claim 6.9 (and writing Π1 = Π−Π0)∥∥∥Π(UG̃0)

t−1Π0 |ψ⟩ −Π0(UG̃0)
t−1Π0 |ψ⟩

∥∥∥ ≤ 2(t− 1) · ε(t− 1).

Since ∥UH∥op = ∥H∥op ≤ 2, it follows that∥∥∥UG(UG̃0)
t−1Π0 |ψ⟩ − (UG̃0)

tΠ0 |ψ⟩
∥∥∥ ≤ 4(t− 1) · ε(t− 1). (6)

Combining Eqs. (3) and (6), we obtain∥∥∥(UG)tΠ0 |ψ⟩ − (UG̃0)
tΠ0 |ψ⟩

∥∥∥ ≤ 2(t− 1)2 · ε(t− 1) + 4(t− 1) · ε(t− 1)

≤ 2t2 · ε(t).

Proof of Lemma 6.8. By Claim 6.10 and Claim 6.9, we have∥∥Π1(UG)
tΠ0 |ψ⟩

∥∥ ≤ ∥∥∥Π1(UG̃0)
tΠ0 |ψ⟩

∥∥∥+ 2t2 · ε(t)

≤ 2t · ε(t) + 2t2 · ε(t)
≤ 4t2 · ε(t).

Proof of the admissible oracle lemma (Lemma 6.5). Let {ΠDG , I−ΠDG} be the binary projec-
tive measurement corresponding to running distinguisher DG and measuring the output bit that
distinguishes Π |ψ⟩ and WΠ |ψ⟩ with ε advantage. By Lemma 6.6, Item (ii), the unitary operator
Ũ := I− 2ΠDG achieves a mapping advantage at least ε2 on initial state |ψ⟩. The unitary Ũ can be
implemented by running DG, applying Z to the output qubit, then running (DG)†. This requires
access to two oracles G and G†. For convenience, we will introduce the new admissible oracle
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G̃ := |0⟩⟨0|X ⊗G+ |1⟩⟨1|X ⊗G†, which can simulate the action of G and G† using an ancilla qubit
X. For this reason, we write the unitary as Ũ G̃.

The circuit Ũ G̃, which makes t+ 1 = O(T ) calls to G̃, can be converted to the form (UG̃)t for
some fixed unitary U making no calls to G̃ by appending a clock register Y with poly(T ) overhead
in overall circuit size and ancilla registers. Then:∥∥∥(W−Π)(UG̃)t(W+Π)(|0⟩X |0⟩Y |ψ⟩)

∥∥∥2 ≥ ε2.
Then by Lemma 6.8, there exist q, r, s ≤ t such that∥∥∥(W−Π)U q(W+Π)(G̃0)

r(UG̃0)
s(W+Π)(|0⟩X |0⟩Y |ψ⟩)

∥∥∥2 ≥ ε2/4t2
where G̃0 =W+ΠG̃+ (I−W+Π). The unitary G̃0 can be implemented using O(1) applications of
controlled G, G† and the unitary M := (W+Π)⊗X + (I−W+Π)⊗ I.

Let PrepG,M be the quantum algorithm that on input |ψ⟩ creates the sub-normalized state22

|γ⟩ := (W+Π)(G̃0)
r(UG̃0)

s(W+Π)(|0⟩X |0⟩Y |ψ⟩),

and then uses |γ⟩ to prepare the state

|ϕ⟩ = ctlZ-U
q (|+⟩Z |γ⟩) .

By Lemma 6.6, Item (i), if we define the projector Π̃D := ctlZ-U
q |+⟩⟨+|Z ctlZ-(U q)†, then the binary

projective measurement {Π̃D, I−Π̃D} distinguishes Π |ϕ⟩ and WΠ |ϕ⟩ with advantage ε2/8t2. Thus,
the algorithm E that measures the binary projective measurement {Π̃D, I− Π̃D} wins the (W,Π)-
distinguishing game with advantage ε2/8t2.

6.2 Swap binding implies oracle swap binding

We now prove the main theorem of this section, Theorem 6.2, which says that any swap binding
commitment scheme is oracle swap binding.

Proof of Theorem 6.2. Suppose that a size-T adversary AGb for oracle swap-binding (counting
queries to Gb as unit cost) achieves distinguishing advantage ε with initial state |ψ⟩CDR, where R

is the adversary’s auxiliary registers. We will use Lemma 6.5 to translate this adversary into one
that achieves distinguishing advantage ε/16T 2 in the standard swap-binding game.

Let ctlB-S := |0⟩⟨0|B ⊗ I+ |1⟩⟨1|B ⊗ ̂SWAP[M,M′], where B is a single qubit register and M′ is a
register of the same dimension as M. Then define the oracle

G = (ctlB-S)Ô(ctlB-S)Π + (I−Π)

and operation

W = (ctlB-S)XB(ctlB-S) = XB ⊗ ̂SWAP[M,M′]. (7)

22By creating a sub-normalized state, we mean that if a measurement {W+Π, I −W+Π} rejects (i.e., apply M

on the state and an ancilla qubit and measure the ancilla qubit), abort and do not produce any output. Otherwise,
output the resulting state |γ⟩.
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Observe that AG is the same quantum algorithm as AGb , except the calls to Gb are replaced by
calls to G. Since AGb achieves distinguishing advantage ε in oracle swap-binding with initial state
|ψ⟩CDR, AG achieves distinguishing advantage ε in the (W,Π)-distinguishing game with registers
A := (B,M′,C), B := D and initial state |0⟩B ⊗ |0⟩M′ ⊗ |ψ⟩CDR.

By Lemma 6.5, there exists another quantum state ρ and efficient algorithm E without query
access to G such that the following hold:

• there is a size-poly(T ) oracle circuit PrepG,M such that ρ← PrepG,M (|0⟩BM′ |ψ⟩CDR |0⟩anc) and
Prep uses at most T (controlled) queries to G, G†, and M := (W+Π)⊗X + (I−W+Π)⊗ I,

• E has size poly(T ), and

• E wins the (W,Π)-distinguishing game with advantage ε2/8T 2 using initial state ρ.

If O is efficiently implementable, then (controlled) G and G† are also efficiently implementable. In
addition, with our given definition of W , the binary projective measurement {W+Π, I−W+Π} is
efficiently implementable. This is because

W+Π =
(
|+⟩⟨+|B ⊗ Π̂Sym + |−⟩⟨−|B ⊗ Π̂Antisym

)
Π,

where ΠSym and ΠAntisym are the projectors onto the the symmetric and antisymmetric subspaces
of M⊗M′, which can be measured using a SWAP test. Thus M is efficiently implementable.
For this reason, we now write Prep := PrepG,M because Prep can implement the functionality of
controlled G, G†, and M without any oracle access.

Thus E can win the (W,Π)-distinguishing game using initial state ρ← Prep(|0⟩BM′ |ψ⟩CDR |0⟩anc)
with advantage ε2/8T 2. The conclusion follows by an application of Claim 6.11 (which we state
and prove below), which gives a distinguisher for swap-binding with advantage ε2/16T 2.

Claim 6.11. Suppose that an efficient distinguisher D wins the (W,Π)-distinguishing game
with advantage δ, where W and Π are defined as

W = XB ⊗ ̂SWAP[M,M′] and Π = Com(IM ⊗ |0⟩⟨0|W)Com†.

Then there is an efficient distinguisher for the swap-binding game (Definition 4.2) with
advantage δ/2.

Proof. Suppose that D wins the (W,Π)-distinguishing game with advantage δ using the state
ρBM′CDR. This means that D can distinguish the states TrBM′C(ΠρΠ) and TrBM′C(WΠρΠW ) with
advantage δ. Because the B register is traced out in the (W,Π)-distinguishing game, the operation
XB in W has no effect on the distinguisher’s view, so we may rewrite the latter state as

TrBM′C (WΠρΠW ) = TrBM′C

((
̂SWAP[M,M′]

)
·ΠρΠ ·

(
̂SWAP[M,M′]

))
. (8)

We use a hybrid argument to show that the distinguisher D yields an adversary for swap-
binding with advantage δ/2. We define hybrid games H0, H1, and H2, where the adversary’s view
in hybrid H0 corresponds to TrBM′C(ΠρΠ) and the adversary’s view in hybrid H2 corresponds to
TrBM′C(WΠρΠW ).

48



• H0:

1. The adversary sends a quantum state ρBM′CDR to the challenger.

2. The challenger then does the following:

(a) Measure {Π, I−Π} and abort if the measurement rejects.
(b) Send the (D,R) register to the adversary.

• H1:

1. The adversary sends a quantum state ρBM′CDR to the challenger.

2. The challenger then does the following:

(a) Measure {Π, I−Π} and abort if the measurement rejects.
(b) Initialize another register E (of the same dimension as M) to the |0⟩ state.

(c) Apply ̂SWAP[M,E].
(d) Send the (D,R) register to the adversary.

This is immediately indistinguishable from H0 by swap-binding.

• H2:

1. The adversary sends a quantum state ρBM′CDR to the challenger.

2. The challenger then does the following:

(a) Measure {Π, I−Π} and abort if the measurement rejects.

(b) Apply ̂SWAP[M,M′].
(c) Send the (D,R) register to the adversary.

We show that H2 is indistinguishable from H1 by invoking swap-binding. Given an adversary
that distinguishes H1 from H2 with advantage δ′, we construct the following reduction that
distinguishes the b = 0 and b = 1 worlds of the swap binding game with advantage δ′:

1. Receive ρBM′CDR from the adversary.

2. Measure {Π, I−Π} and abort if the measurement rejects.

3. Apply ̂SWAP[M,M′].

4. Send registers (C,D) to the swap-binding challenger.

5. Receive D from the swap-binding challenger.

6. Forward (D,R) to the adversary.

7. Use the adversary’s output as the guess for the swap-binding game.

Because the reduction performs the measurement {Π, I−Π}, the challenger’s measurement has
no effect. In the b = 0 world of the swap-binding game, the challenger will do nothing, which
corresponds exactly to H2. In the b = 1 world, the challenger will apply ̂SWAP[M,E] where
E is initialized to |0⟩. Thus, the adversary receives the decommitment after the operation

̂SWAP[M,E] · ̂SWAP[M,M′] = SWAP[M′,E] · ̂SWAP[M,E] has been applied. Because the final
SWAP[M′,E] has no effect on the adversary’s view, this corresponds exactly to H1.
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7 A succinct quantum argument protocol

In this section, we construct an interactive succinct quantum argument for any language with
quantum PCPs with constant soundness error and polylogarithmic query complexity.

7.1 Preliminaries

7.1.1 Probabilistically checkable proofs

Definition 7.1 (Quantum Probabilistically Checkable Proofs). A quantum PCP for a language
L is parameterized by a completeness parameter c, soundness s, proof length m, randomness
complexity ℓ, and query complexity q. We require the following properties:

• (Efficient verification) There is a classical poly(n) time procedure that takes as input
x ∈ {0, 1}n and r ∈ {0, 1}ℓ and outputs the description of circuit for implementing a
q-qubit projective measurement {ΠPCP

x,r , I−ΠPCP
x,r }, which acts on a state of size m.

• (Completeness) If x ∈ L, there exists an m-qubit state π such that

E
r←{0,1}ℓ

Tr
(
ΠPCP
x,r π

)
≥ c.

• (Soundness) If x ̸∈ L, then for any m-qubit state π,

E
r←{0,1}ℓ

Tr
(
ΠPCP
x,r π

)
≤ s.

Which languages have good quantum PCPs? It is easy to check that any classical PCP
is captured by this definition. Define the measurements {ΠPCP

x,r , I − ΠPCP
x,r } corresponding to the

predicate that the classical PCP verifier checks. Completeness is trivially preserved since any clas-
sical proof string π is also a quantum state. Soundness is preserved because the measurements
{ΠPCP

x,r , I − ΠPCP
x,r } correspond to classical predicates and thus commute with standard basis mea-

surements. If x ̸∈ L, the probability that a quantum state |ψ⟩ =
∑

π∈{0,1}m απ |π⟩ is accepted
is ∑

π∈{0,1}m
|απ|2 Pr[π is accepted] ≤

∑
π∈{0,1}m

|απ|2s = s.

The statement for mixed states follows by convexity.

Theorem 7.2 (PCP theorem [BFLS91, FGL+91, AS98, ALM+98]). There exist constants 0 ≤ s <
c ≤ 1 and k = O(1) such that every NP language has a PCP with completeness c, soundness
s, proof length m = poly(n), randomness complexity ℓ = O(log n), and query complexity
q = O(log n).

Conjecture 1 (Quantum PCP conjecture [AALV09, AAV13]). There exist constants 0 ≤ s <

c ≤ 1 and k = O(1) such that every QMA language has a quantum PCP with completeness
c, soundness s, proof length m = poly(n), randomness complexity ℓ = O(log n), and query
complexity q = O(log n).

51



Any quantum PCP with constant completeness-soundness gap can be repeated in parallel
log2(λ) times to achieve 1− negl(λ) completeness soundness error. The proof of soundness ampli-
fication is the same as the standard proof that QMA can be amplified to exponentially small error
by parallel repetition [KSV02].

Claim 7.3 (Soundness amplification). Suppose that a language L has a quantum PCP with
constant completeness-soundness gap c − s, proof length m, randomness complexity ℓ, and
query complexity q. Then L has a quantum PCP with completeness 1 − negl(λ), soundness
negl(λ), proof length m ·polylog(λ), randomness complexity ℓ ·polylog(λ), and query complexity
q · polylog(λ).

7.1.2 Interactive argument preliminaries

Quantum interactive protocol syntax. We first establish a syntax for general quantum inter-
active protocols between a prover and a verifier. We state the definition below for any (2r−1)-round
protocol, though in this work we will focus on 3-round protocols.

Definition 7.4. A (2r − 1)-message quantum interactive protocol ⟨P, V ⟩ between a prover P
and verifier V is specified by two sequences of unitaries UP,1, . . . , UP,r and UV,1, . . . , UV,r. The
prover and verifier have internal registers P and V respectively and also share a message
register Z. The interaction proceeds as follows:

For i = 1, . . . , r, the prover and verifier do the following:

• The prover applies UP,i to (P,Z) and sends Z to the verifier.

• The verifier applies UV,i to (V,Z). If i < r, it sends Z back to the prover. If i = r,
it measures the first qubit of V and accepts if it is 1 and rejects if it is 0.

We write ⟨P (ρP), V (τV)⟩OUT to denote the 0/1-random variable corresponding to the veri-
fier’s decision when the protocol is run with the P register initialized to ρP and the V register
initialized to τV.

The following definition of argument of knowledge is based on [CMSZ21, Definition 3.6] with
some modifications to handle extraction of quantum proofs.

Definition 7.5. Let Ver be a quantum algorithm that takes as input a state ρ ∈ D(H) and
outputs an accept/reject decision. Define Wit[Ver, p] ⊆ D(H) to be the set of all states ρ ∈
D(H) such that Pr[Ver accepts ρ] ≥ p.

Definition 7.6 (Argument of knowledge). Let L be a QMA language and let VerL,x be the
corresponding QMA verification procedure for statement x. An interactive argument ⟨P, V ⟩
is an argument of knowledge for L with respect to VerL if there exists a quantum algorithm
KnowledgeExt such that for any x, any polynomial-time quantum interactive prover P̃ that con-
vinces the argument verifier with probability p′ := Pr

[
⟨P̃ (x), V (x)⟩OUT = 1

]
, any ε ≥ 1/poly(λ),

52



and any p ≤ p′,23

Pr
[
ρ ∈Wit[VerL,x, p− ε] : ρ← KnowledgeExtP̃ (x, 1⌈1/p⌉)

]
≥ Ω(ε).

The runtime of KnowledgeExtP̃ (x, 1⌈1/p⌉) is poly(λ, 1/ε), counting calls to P̃ as unit time.

At an intuitive level, this definition states that a protocol is an argument of knowledge with
respect to a proof verifier Ver (which will typically correspond to a PCP verifier) if, given access to
any efficient malicious prover that convinces the argument verifier with probability p, the extractor
can (with noticeable probability) produce a proof string that convinces Ver with probability ≈ p.

7.2 Quantum tree commitments

Cε

Mε

C0 C1

M0

C00 C01

M1

C10 C11

M00 M01 M10 M11

Figure 1: The Merkle tree structure. For simplicity, we assume that Dℓ = Mℓ in this picture
(as is the case in, for example, the scheme in Theorem 5.3). The shaded boxes correspond to
decommitments {Dε,D0,D01} for the 01 block.

We now describe the syntax for quantum tree commitments. This syntax is a generalization of
a construction that appeared in prior work of Chen and Movassagh [CM21]; in our notation, their
construction corresponds to a setting where the ancilla register W and the commitment C must be
the same size.

Let sQSC be a succinct QSC with s(λ)-sized messages and s(λ)/2-sized commitments and let
Com be the unitary implementing the commitment. For any positive integer β, a quantum tree
commitment for (s · 2β)-size messages M supports the following functionality:

• The tree commitment algorithm QTreeComsQSC does the following:
23Following [CMSZ21], we give the extractor a lower bound p on the success probability q as classical advice. It

is plausible that this requirement could be removed using an extractor based on techniques of [LMS22b], but we did
not attempt to work out the details.
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1. Divide M into 2β registers M = {Mℓ}ℓ∈{0,1}β where each Mℓ is a block of s qubits.

2. For j = β, β − 1, . . . , 1:

(a) For each ℓ ∈ {0, 1}j , initialize Wℓ to |0⟩ and apply Com to (M,W) to obtain (Cℓ,Dℓ).
(b) For each ℓ ∈ {0, 1}j−1, define Mℓ := (Cℓ,0,Cℓ,1) (when j = 1, we define Mε := (C0,C1)

where ε is the empty string).

3. Initialize Wε to |0⟩ and apply Com to (Mε,W) to obtain (Cε,Dε). The commitment is Cε
and {Dℓ}ℓ∈{0,1}≤β is a set of decommitments which will be used later to form the local
decommitments.

• For any subset S ⊆ {0, 1}≤β, we define the local decommitment decomS as follows:

– For any ℓ ∈ {0, 1}≤β, let Path(ℓ) be the set of all |ℓ| + 1 prefixes of ℓ (including ℓ itself
and the empty string ε).

– Let Path(S) :=
⋃
ℓ∈S Path(ℓ).

– Finally, define decomS := {Dℓ}ℓ∈Path(S).

• The receiver can verify decomS as follows:

1. Parse decomS as {Dℓ}ℓ∈Path(S).
2. For j = 0, . . . , β:

(a) For each ℓ ∈ Path(S) ∩ {0, 1}j :
i. Apply Com† to (Cℓ,Dℓ) to obtain (Mℓ,Wℓ).
ii. Measure Wℓ with (|0⟩⟨0| , I− |0⟩⟨0|) and abort if the outcome is not |0⟩.
iii. If j < β, partition Mℓ into two (s/2)-qubit registers (Cℓ,0,Cℓ,1).

3. Output
⊗

ℓ∈S Mℓ.

7.3 The protocol description

In this section we construct a succinct quantum argument from any quantum PCP and succinct
QSC. The protocol is parameterized by a choice of the underlying PCP as well as the succinct QSC
sQSC, where:

• PCP is a classical or quantum PCP system for a language L.

• sQSC is a succinct QSC with s(λ)-sized messages and s(λ)/2-sized commitments.

For any setting of PCP and sQSC satisfying these requirements, we denote the resulting succinct
quantum argument as SQUARG[PCP, sQSC] (for Succinct QUantum ARGument). The protocol is
specified as follows.

SQUARG[PCP, sQSC]:

Prover input: x and a corresponding PCP |π⟩. We assume the PCP has length
m = s · 2β qubits for some integer β, which is without loss of generality (by padding
with 0’s).
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Verifier input: x.

1. The prover applies QTreeComsQSC to |π⟩ and obtains Cε, {Dℓ}ℓ∈{0,1}≤β . It sends the root
commitment Cε to the verifier.

2. The verifier sends random coins r ← {0, 1}rc to the prover.

3. The prover sends decomSr where Sr ⊆ {0, 1}β is the set of block labels corresponding to
the positions that {Πr, I−Πr} checks (i.e., those that contain Qr).

4. Finally, the verifier checks decomSr . If the decommitment is valid, it also obtains the
qubits Qr of the PCP corresponding to r and measures {Πr, I − Πr}. It accepts if the
measurement accepts.

The following is immediate by construction.

Claim 7.7 (Succinctness). Suppose that for an instance of size n, we have a PCP with
proofs of length m = poly(n, λ), query complexity poly(λ), randomness complexity poly(λ),
and completeness-soundness gap 1 − negl(λ). Moreover, assume that the PCP verifier runs
in time t(n, λ). Then the protocol SQUARG[PCP, sQSC] satisfies the following properties:

• The quantum prover runs in time poly(m,λ).

• The quantum verifier runs in time t(n, λ) + poly(λ, log(m)).

• The total quantum communication is poly(λ, log(m)) qubits.
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8 Security of the quantum succinct argument protocol

In this section we prove security of the quantum succinct argument protocol described in Section 7.3.

Theorem 8.1. Let PCP be a probabilistically checkable proof for a language L and let sQSC be
a succinct QSC with s-qubit messages and s/2-qubit commitments. If sQSC is swap binding,
then SQUARG[PCP, sQSC] is an argument of knowledge for L with respect to the PCP verifier
(Definition 7.6).

By Claim 7.7, we obtain the following corollaries of Theorem 8.1.

Corollary 8.2. Assuming the existence of succinct QSCs, there is a three-message quantum
succinct argument of knowledge for NP.24

Corollary 8.3. If the quantum PCP conjecture holds [AALV09, AAV13], then assuming
the existence of succinct QSCs, there is a three-message quantum succinct argument (of
knowledge) for QMA.

Remark 8.4. Technically, our definition of argument of knowledge (Definition 7.6) states that
if the argument prover convinces the argument verifier with probability p, then the knowledge
extractor outputs a PCP (with noticeable probability) that would convince the PCP verifier
with probability ≈ p. In the setting of arguments/proofs of knowledge for NP, our notion is
slightly different from the traditional notion, which requires that the extractor output an NP

witness. (PCPs are not NP witnesses since they are not guaranteed to be deterministically
verifiable.)

However, this issue can easily be resolved assuming the PCP is “witness-extractable”
(see [Val08] for a discussion). Moreover, this distinction does not arise in the QMA setting,
since the definition of QMA only requires probabilistic verification, so quantum PCPs are
already valid QMA witnesses.

The rest of this section is organized as follows:

• In Section 8.1, we recall the “one-bit” extraction procedure from [CMSZ21].

• In Section 8.2, we describe a knowledge extraction procedure that outputs a quantum PCP
given black-box access to any malicious prover for the quantum succinct argument.

• In Section 8.3, we prove that our knowledge extractor satisfies the conditions of Definition 7.6,
establishing Theorem 8.1.

8.1 CMSZ preliminaries

Recap: estimating success probability. A key component of the [CMSZ21] extraction proce-
dure is a subroutine called Est defined with respect to a set of projectors {Πr}r. At a high level,
Est is a quantum measurement on a state ρ that estimates the probability that, for a random

24This follows by combining Theorem 1.4 with the classical PCP theorem [BFLS91, FGL+91, AS98, ALM+98],
since quantum PCPs encompass classical PCPs.
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r, the measurement {Πr, I − Πr} accepts. In [CMSZ21], this Est procedure is implemented us-
ing the alternating projectors trick of [MW05] and incorporates additional modifications proposed
by [Zha20].

To make this concrete, fix a Hilbert space H, a corresponding register H, and a state ρ ∈ D(H).
Let Π := {Πr}r∈R denote a set of projections acting on H. In our setting, each Πr will correspond
to the projection that checks whether the prover outputs an accepting response on the challenge
r ∈ R. Thus, the “success probability” of ρ is defined to be Er←R[Tr(Πrρ)].

The Est algorithm is also parameterized by an additive error bound 0 < ε < 1 and a failure
probability 0 < δ < 1.25 We give a formal description below, following [CMSZ21]:

EstΠε,δ:

Input: A state ρ on register H.

Setup: Define t = ⌈2 log(2/δ)/ε2⌉.

1. Initialize a register Q to the state |+R⟩ := 1
2 |⊤⟩+

1
2 |⊥⟩+

1√
2|R|

∑
r∈R |r⟩.

2. Define Munif := {|+R⟩⟨+R| ⊗ IH, I− |+R⟩⟨+R| ⊗ IH} and Mwin := {Πwin, I−Πwin} where

Πwin =
∑
r∈R
|r⟩⟨r|Q ⊗Πr + |⊤⟩⟨⊤|Q ⊗ I.

For i = 1, . . . , t:
(a) Measure Munif , obtaining outcome b2i−1 ∈ {0, 1}.
(b) Measure Mwin, obtaining outcome b2i ∈ {0, 1}.

3. If b2t = 1, skip to Step 4. Otherwise, apply Mwin,Munif in an alternating fashion until
Munif → 1, or a further 2t measurements have been applied.

4. Discard Q and output

p̃ := 2

(∑
i∈[t](1− (bi − bi−1)2)

t

)
− 1

2
.

Remark 8.5. Following [CMSZ21], the additional symbols ⊥ and ⊤ are used to ensure that Est
runs in strict (rather than expected) polynomial time. In particular, the outcomes obtained
in Step 2 correspond to the success probability of the prover in the following game:

• with 1/2 probability, we sample a random r ← R and test whether the {Πr, I−Πr} accepts
and

• with 1/2 probability, we sample a random “challenge” from {⊤,⊥}, and output success
if the challenge is ⊤ and failure if the challenge is ⊥.

If the prover has “real” success probability p = Er←R[Tr(Πrρ)], its success probability in this
modified game is 1/4 + p/2 ∈ [1/4, 3/4]. This rescaling enables running in strict polynomial
time and is corrected in the last step of Est (Step 4).

25In [Zha20, CMSZ21], this is captured by the notion of (ε, δ)-almost-projectivity defined in [Zha20]: for any initial
state ρ, if EstΠ,ε,δ is applied twice in a row, the probability that the resulting outcomes p, p′ are more than ε apart
is at most δ.
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Recap: repairing the state after measurement. [CMSZ21] use Est as a subroutine for their
“state repair” procedure. To describe state repair, we introduce some additional definitions:

• Without loss of generality, the procedure EstΠε,δ can be efficiently implemented by (1) initial-
izing an ancilla register V to |0⟩, (2) applying some unitary to (H,V), (3) performing some
projective measurement {Π′p}p on V to obtain the estimate p̃, and (4) tracing out V. We
define CoherentEstΠε,δ to be the unitary applied in step (2).26

• For any p ∈ [0, 1], we define a projection Πp on (H,V) as

Πp :=
∑
p′≥p

(CoherentEstΠε,δ)
†Π′p′(CoherentEst

Π
ε,δ).

In other words, Πp is the projection that corresponds to running CoherentEstΠε,δ and obtaining
an estimate p′ ≥ p.

With these definitions in hand, we now describe the [CMSZ21] repair procedure. State repair is
applied to a (normalized) state ρ ∈ D(H) that was just “disturbed” by some projective measurement
{D, I −D}; we will assume the outcome of the measurement was D, i.e., ρ satisfies Tr(Dρ) = 1.
Given a target success probability p, the procedure will output a “repaired” state whose success
probability is p, assuming that certain conditions on ρ hold.

RepairΠ,Dε,δ,p:

Input: A state ρ on register H such that Tr(Dρ) = 1.

1. Initialize the ancilla register V to |0⟩.
2. Perform the measurement A := {Πp, I−Πp}. If the measurement accepts, skip to Step 4.
3. Define B := {DH⊗|0⟩⟨0|V , IH,V−DH⊗|0⟩⟨0|V}. Perform the measurements B,A,B,A, . . .

in alternating fashion until either an A measurement accepts, or ⌈1/
√
δ⌉ total applica-

tions of (B,A) have occurred.
4. Apply CoherentEstΠε,δ and discard the V registers.

We refer the reader to [CMSZ21, Section 4.3] for additional details and intuition behind the
procedure.

A one-bit extractor. Using Est and Repair, we define a procedure BitExtract that takes a single
copy of a state ρ and tries to obtain many accepting outcomes for many {Πr, I−Πr} measurements.
At a very high level, BitExtract works by (1) running Est to estimate the initial success probability
of ρ and (2) repeatedly applying {Πr, I − Πr} for random r ← R followed by an application of
Repair to restore the success probability.

Formally, the BitExtract procedure is parameterized by an error tolerance γ > 0, a lower bound
q on the success probability, and a runtime parameter T .

26In [CMSZ21, Section 4.3], CoherentEstΠε,δ corresponds to the unitary UM.
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BitExtractΠγ,q,T :

Input: A state ρ on register H.

Setup: Define ε = γ/4T and δ = (γ/16T )2.

1. For i = 0, . . . , T − 1:

(a) Measure EstΠε,δ → pi. If pi < q, abort and output failure.
(b) Sample a random r ← R and apply the measurement {Πr, I−Πr}.
(c) If the measurement accepts, set D = Πr. If the measurement rejects, set D = I−Πr.
(d) Apply RepairΠ,Dε,δ,pi

.

2. Measure EstΠε,δ → pT .

3. Output success if pT ≥ q; otherwise output failure.

We require the following guarantee on BitExtract which we prove using [CMSZ21, Claim 4.14].

Claim 8.6. Let p = Er←R[Tr(Πrρ)]. Then

Pr
[
BitExtractΠγ,q,T (ρ)→ success

]
≥ p− q − γ.

Proof. If pi ≥ q+ γ/2− iγ/2T for all i ∈ {0, . . . , T}, then the extractor will succeed. We therefore
take a union bound over the probability that p0 < q+γ/2 and the probability that pi < pi−1−γ/2T
for some i ∈ [T ]:

• By Markov’s inequality, the probability that p0 < q + γ/2 is at most 1− (p− q − γ/2).

• By [CMSZ21, Claim 4.14], the probability that pi < pi−1 − γ/2T for some i ∈ [T ] is at most
8T
√
δ ≤ γ/2.

The claim follows by a union bound over these probabilities.

8.2 Description of the knowledge extractor

In this subsection, we describe our knowledge extractor KnowledgeExt. We first establish some
useful notation:

• Recall the following notation for the tree commitments to PCP proof strings introduced
in Sections 7.2 and 7.3. The number of blocks (leaves) of the tree commitment is 2β. Each
node of the tree is indexed by a string ℓ ∈ {0, 1}≤β, where node ℓ is distance |ℓ| away from
the root. For a challenge r, the set Sr ⊆ {0, 1}β is the set of (block) indices that contain the
positions the PCP verifier checks on randomness r. For any tree node ℓ ∈ {0, 1}≤β, Path(ℓ) is
the set of all |ℓ|+1 prefixes of ℓ (including ℓ itself and the empty string ε). For S ⊆ {0, 1}≤β,
Path(S) :=

⋃
ℓ∈S Path(ℓ). The tree commitment is the root Cε. For any ℓ ∈ {0, 1}≤β, the

commitment-decommitment pair (Cℓ,Dℓ) can be opened by applying Com† to obtain the
corresponding message-ancilla registers (Mℓ,Wℓ). If |ℓ| < β, Mℓ can be split into two s/2

qubit registers (Cℓ,0,Cℓ,1) (see Fig. 1).
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• Let H denote the register containing the malicious prover’s state after it sends the tree com-
mitment Cε.

• Let M′ := (M′ℓ)ℓ∈{0,1}≤β denote a set of s-qubit registers. Looking ahead, these will eventually
contain the extracted messages from the tree commitment and the extracted PCP will be the
state on the registers (M′ℓ)ℓ∈{0,1}β corresponding to the leaves. Similarly to M, if |ℓ| < β, then
M′ℓ can also be split into two s/2 qubit registers (C′ℓ,0,C

′
ℓ,1).

• Let Ur denote the unitary that the malicious prover applies to H to generate its response.
We will abuse notation slightly and write U as shorthand for {Ur}r∈R.27

Next, we define subroutines SwapRecover and SwapDiff, which will simplify the description of
our extractor. Both of the subroutines are unitaries that can be implemented given oracle access
to the prover unitary Ur for some challenge r.

• SwapRecoverUr
S,E is implemented with oracle access to the prover unitary Ur for some r and

is parameterized by two sets of tree indices E ⊆ {0, 1}≤β and S ⊆ Path(Sr), where Sr is the
set of PCP (block) indices for challenge r. At any stage of the extraction procedure, E will
denote the set of tree indices whose messages have already been extracted (i.e., swapped out)
into M′. Roughly speaking, SwapRecoverUr

S,E is the unitary that (1) runs the prover unitary Ur
to generate its response to challenge r, (2) opens the decommitments to reveal the messages
corresponding to indices in S, and (3) swaps in any messages in E ∩ S.

In our extraction procedure, calls to SwapRecoverUr
S,E will use S = Path(Sr), where Sr is

the set of indices of PCP blocks containing all the indices that the PCP verifier checks on
challenge r. However, in order to prove correctness of our extractor, we will need to define
hybrid extractors that run SwapRecover for subsets S ⊆ Path(Sr).

Formally, SwapRecoverUr
S,E acts on the prover’s response register (Dℓ)ℓ∈S , the tree commitment

root Cε, and the extracted registers (M′ℓ)ℓ∈{0,1}≤β .

SwapRecoverUr
S,E :

1. Apply Ur.

2. For j = 0, . . . , β:

For each ℓ ∈ S ∩ {0, 1}j :
(a) Apply Com† to (Cℓ,Dℓ) to obtain (Mℓ,Wℓ).28

(b) If ℓ ∈ E, apply SWAP[Mℓ,M
′
ℓ].

(c) If j < β, split Mℓ into two s/2-qubit registers (Cℓ,0,Cℓ,1).

We emphasize that the outer loop must be performed in the order j = 0, . . . , β. However,
the operations in the inner loop commute for all ℓ ∈ S ∩ {0, 1}j .

27Even when R is an exponential-size set, the collection of unitaries {Ur} can be compactly described by a single
unitary U acting on |r⟩⟨r| ⊗ ρH.

28Technically, there are choices of S for which SwapRecoverUr
S,E is not well-defined (in particular, this may occur if

this Cℓ has not been revealed in a previous loop). However, we will avoid such choices of S.
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• We additionally define a unitary SwapDiffUr
S,E (for the same Ur, S, E as in SwapRecover) as

follows:

SwapDiffUr
S,E :

1. Apply SwapRecoverUr
S,E .

2. Apply (SwapRecoverUr
S,E∪S)

†.

In our extraction procedure, if the prover answers correctly on challenge r, we will apply
SwapDiffUr

S,E with S = Path(Sr) in order to swap out any messages at tree indices in Path(Sr)\
E. These indices correspond to tree nodes that (a) the prover opens on challenge r and (b)
were not extracted in an earlier query.

For any set of extracted nodes E ⊆ {0, 1}≤β, we define a set of projections ΠUE := {ΠUr
r,E}r∈R as

ΠUr
r,E := (SwapRecoverUr

Path(Sr),E
)†

ΠPCP
r ⊗

⊗
ℓ∈Path(Sr)

|0⟩⟨0|Wℓ

 SwapRecoverUr

Path(Sr),E
,

where ΠPCP
r is the projection the verifier applies to

⊗
j∈Sr

Mj to check the proof on random coins
r (see Definition 7.1; here we leave the dependence on the instance x implicit). In words, the
projective measurement {ΠUr

r,E , I−ΠUr
r,E} measures whether the prover gives an accepting response

on challenge r, where the response is computed by swapping in any previously-extracted messages
from the registers (M′i)i∈E (whenever necessary).

We now define ExtractUγ,q,T , the primary subroutine in our full extractor KnowledgeExt. Extract

essentially behaves identically to BitExtract, except that whenever it sends a challenge r ← R and
receives openings for messages in Path(Sr), it swaps out the messages in Path(Sr) that it has not
yet extracted. γ > 0 is an error tolerance, q is a lower bound on the allowable success probability,
and T is a runtime parameter (these parameters will be set when we define KnowledgeExt).

ExtractUγ,q,T :

Input: A prover state on register H and a tree commitment register Cε.

Setup: Define ε = γ/4T and δ = (γ/16T )2. Initialize registers M′ := (M′i)i∈[2β+1−1].29

Initialize E = ∅.

1. For t = 0, . . . , T − 1:

(a) Measure Est
ΠU
E

ε,δ → pt. If pt < q, abort and output failure.

(b) Sample a random r ← R and apply the measurement {ΠUr
r,E , I−ΠUr

r,E}.
(c) If the measurement accepts, set D := ΠUr

r,E . If the measurement rejects, set D :=

I−ΠUr
r,E . Perform the following steps:

i. Apply SwapDiffUr

Path(Sr),E
.

29We identify each tree node ℓ ∈ {0, 1}≤β with an integer i ∈ [2β+1 − 1] following a level-order traversal, i.e., the
root is i = 1, its children are 2, 3, etc.
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ii. Update E ← E ∪ Path(Sr).

(d) Apply Repair
ΠU
E ,D

ε,δ,pt
.

2. Measure Est
ΠU
E

ε,δ → pT . Return “success” if pT ≥ q and “failure” otherwise. Additionally,
output the registers (M′i)i∈[2β+1−1]\[2β−1].

We now define KnowledgeExt.

KnowledgeExtP̃ (x, 1⌈1/p⌉, 1⌈1/γ⌉):

1. Run the malicious prover P̃ to obtain a tree commitment C.

2. Let τH,C denote the global state on the prover’s registers H and the commitment register C.
Sample a random T ← {1, 2, . . . , ⌈2β+3/γ2⌉} and run ExtractUγ/4,q+γ/4,T (τH,C)→ (b,π) where
b is a bit indicating success/failure. Discard b and output π.

8.3 Correctness of our extractor

In this subsection, we will complete the proof of our main theorem (Theorem 8.1) by showing that
KnowledgeExt satisfies the conditions of Definition 7.6.

The main technical steps are captured by the following claim about the Extract subroutine.

Claim 8.7 (Success probability of the Extract subroutine). For any state τH,C and efficient
prover unitary U , let p denote the initial success probability, i.e., p := Er←R[Tr(Πrτ )] where
Πr := ΠUr

r,E=∅. If sQSC is swap-binding, then for any γ = 1/poly(λ), any q < p− γ − 1/poly(λ),
and any T = poly(λ), the subroutine ExtractUγ,q,T succeeds with probability at least p− q − γ −
negl(λ) = 1/poly(λ).

Proof outline. At a high level, our proof of Claim 8.7 consists of the following steps:

1. First, we write down a sequence of hybrid extraction procedures HybExtract[j], one for each
tree node [2β+1 − 1]. HybExtract[j] is defined similarly to Extract, except that the extractor
only swaps out nodes in [j]. Thus, HybExtract[0] will correspond to BitExtract for which
the [CMSZ21] statistical guarantees apply, and HybExtract[2β+1 − 1] corresponds to Extract.

2. Next, we show that for all j, if an adversary distinguishes between HybExtract[j − 1] and
HybExtract[j], this implies a reduction that violates the oracle swap binding security (defined
in Definition 6.1) of sQSC. We refer the reader to Section 2.3.2 for discussion on the necessity
of oracle swap binding. Crucially, by Theorem 6.2, oracle swap binding security is implied
by standard swap binding.

Proof of Claim 8.7. For j ∈ {0, . . . , 2β+1 − 1}, define HybExtract[j] as follows.

HybExtractUγ,q,T [j] (differences from Extract highlighted in red):

Input: A prover state on register H and a tree commitment register Cε.
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Setup: Define ε = γ/4T and δ = (γ/16T )2. Initialize registers M′ := (M′i)i∈[2β+1−1]. Initialize
E = ∅.

1. For t = 0, . . . , T − 1:

(a) Measure Est
ΠU
E

ε,δ → pt. If pt < q, abort and output failure.

(b) Sample a random r ← R and apply the measurement {ΠUr
r,E , I−ΠUr

r,E}.
(c) If the measurement accepts, set D := ΠUr

r,E . If the measurement rejects, set D :=

I−ΠUr
r,E . Perform the following steps:

i. Apply SwapDiffUr

Path(Sr)∩[j],E .
ii. Update E ← E ∪ (Path(Sr)∩[j]).

(d) Apply Repair
ΠU
E ,D

ε,δ,pt
.

2. Measure Est
ΠU
E

ε,δ → pT . Return “success” if pT ≥ q and “failure” otherwise. Additionally,
output the registers (M′i)i∈[2β+1−1]\[2β−1].

Observe that:

• HybExtractUγ,q,T [0] is equivalent to running BitExtractΠγ,q,T for Π = {Πr} (where Πr := ΠUr

r,E=∅)
and additionally outputting registers (M′i)i∈[2β+1−1]\[2β−1] set to 0.

• HybExtractUγ,q,T [2
β+1 − 1] is identical to ExtractUγ,q,T .

We will prove that for all j ∈ [2β+1 − 1] and any efficient adversary (specified by some state τH,C
and a unitary U),∣∣Pr[HybExtractUγ,q,T [j − 1](τ )→ success

]
− Pr

[
HybExtractUγ,q,T [j](τ )→ success

]∣∣ = negl(λ).

Suppose otherwise. We will give a reduction Reduction[j] that wins the oracle swap binding
game (Definition 6.1) using the commitment at index j. Before we state Reduction[j], we define
the oracle Gb that we provide the reduction in the oracle swap binding game:

• Recall from Definition 6.1 that the adversary in the oracle swap binding game has access to
a unitary Gb with the form

Gb = ( ̂SWAP[Mj ,M′j ])
b · Ô · ( ̂SWAP[Mj ,M′j ])

bΠ+ (I−Π),

for some unitary O chosen by the adversary and register M′′j that the challenger initial-
izes to |0⟩. Recall that Π := (Com)(IMj

⊗ |0⟩⟨0|Wj
)(Com†) denotes the projection onto valid

commitment-decommitment pairs, and that for any operation U , we write Û := (Com)U(Com†).

• Let B be a one-qubit ancilla register. We will instantiate Gb for the following choice of
O := Oj for Oj defined as

Oj =
∑

E⊆[2β+1−1]
r∈R

|E⟩⟨E|E ⊗ |r⟩⟨r|Q ⊗Or,E,j ,
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where the unitary Or,E,j is defined as

Or,E,j := SwapRecoverUr

Path(Sr)∩[j],E ·(XB⊗ΠUr
r,E,j+IB⊗(I−ΠUr

r,E,j))·(SwapRecover
Ur

Path(Sr)∩[j],E)
†

where

ΠUr
r,E,j := (SwapRecoverUr

Path(Sr),E
)†

ΠPCP
r ⊗

⊗
ℓ∈Path(Sr)\{j}

|0⟩⟨0|Wℓ

 SwapRecoverUr

Path(Sr),E
.

This operation O is carefully defined to enable the reduction in a swap-binding security game
to (a) run the (swap-augmented) prover on any classical challenge r and (b) run Est and Repair on
the prover (which requires running the swap-augmented prover on a superposition of challenges r),
even after the challenger is given the Cj register. Formally, O allows the adversary to pick any
choice of r and E and apply a unitary we call Or,E,j . Or,E,j is defined so that both of the following
are true:

• The unitary

(SwapRecoverUr

Path(Sr)∩[j−1],E)
† · (Ôr,E,jΠ+ (I−Π)) · (SwapRecoverUr

Path(Sr)∩[j−1],E)

is equivalent to checking (and recording the outcome onto B) whether the swap-augmented
prover in HybExtract[j− 1] would make the verifier accept when run on challenge r when the
extracted set is E.

• The unitary

(SwapRecoverUr

Path(Sr)∩[j−1],E)
† · ( ̂SWAP[Mj ,M′j ]) · (Ôr,E,jΠ+ (I−Π))

·( ̂SWAP[Mj ,M′j ]) · (SwapRecover
Ur

Path(Sr)∩[j−1],E)

is equivalent to checking (and recording the outcome onto B) whether the swap-augmented
prover in HybExtract[j] would make the verifier accept when run on challenge r when the
extracted set is E.

For O to be a valid oracle for the oracle swap binding game for the commitment at index j,
it must be implemented as a circuit that acts only on Mj and other registers independent of the
jth commitment (i.e., O should not be defined with respect to Cj ,Dj , or Wj). An implementation
of O that naively implements all the unitaries that appear in the description of Or,E,j and ΠUr

r,E,j

would not satisfy this guarantee, since, e.g., (SwapRecoverUr

Path(Sr)∩[j],E)
† in the definition Or,E,j

acts on registers Cj ,Dj if j ∈ Path(Sr). However, we observe that to implement Or,E,j , it suffices to
implement (SwapRecoverUr

Path(Sr),E
) · (SwapRecoverUr

Path(Sr)∩[j],E)
† and its inverse, and this operation

can be implemented to satisfy the syntactic requirement. In particular, (SwapRecoverUr

Path(Sr),E
) ·

(SwapRecoverUr

Path(Sr)∩[j],E)
† is equivalent to the following procedure:

For each ℓ ∈ Path(Sr)\[j] in increasing order:

(a) Apply Com† to (Cℓ,Dℓ) to obtain (Mℓ,Wℓ).
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(b) If ℓ ∈ E, apply SWAP[Mℓ,M
′
ℓ].

At a high level, Reduction[j] works as follows:

• It runs HybExtract[j−1] as usual until the first time the adversary gives an accepting response
containing a decommitment to node j (up to this point, there is no difference between running
HybExtract[j − 1] or HybExtract[j]). In particular, it simply implements operations involving
the projections ΠUr

r,E as normal.

• Once the adversary gives an accepting response containing a decommitment to node j, the
reduction sends the valid commitment-decommitment pair to the oracle swap binding chal-
lenger corresponding to the commitment at node j. Since the challenger does not return
the commitment register, the reduction can no longer implement operations involving the
projections ΠUr

r,E properly. However, using the oracle Gb defined as above, the reduction can
implement operations involving a projection ΠUr,Gb

r,E that we define as

ΠUr,Gb
r,E := ⟨1|B ⟨E|E ⟨r|Q G̃b |0⟩B |E⟩E |r⟩Q ,

where
G̃b := (SwapRecoverUr

Path(Sr)∩[j−1],E)
† ·Gb · (SwapRecoverUr

Path(Sr)∩[j−1],E).

By following the definitions, it can be verified that ΠUr,Gb
r,E has exactly the same behavior as

ΠUr
r,E , except that operations requiring the committed message in the node j commitment are

implemented with the oracle Gb.

To simplify the description of Reduction[j], we introduce a “flag” bit flag ∈ {0, 1} that is ini-
tialized to 0 and flips to 1 after the reduction interacts with the oracle swap binding challenger.
Define

ΠUr,Gb
r,E,flag :=

{
ΠUr
r,E if flag = 0

ΠUr,Gb
r,E if flag = 1,

(9)

and let ΠU,Gb
E,flag := {ΠUr,Gb

r,E,flag}r∈R.
We also need to modify the definitions of SwapRecover and SwapDiff, since the original syntax

of these subroutines will not be applicable after the reduction sends commitment Cj to the oracle
swap binding challenger.

• We define SwapRecoverUr
S,E,j , to behave the same as SwapRecoverUr

S,E except that it does not
swap out Cj . Formally, SwapRecoverUr

S,E,j does the following:

SwapRecoverUr
S,E,j :

– If j = 1 (i.e., j is the root), apply Ur.

– Else:

1. Apply SwapRecoverS∩[j−1]\{sib(j),par(j)},E , where sib(j) is the sibling and par(j) is the
parent of node j.
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2. Apply Com†par(j). If par(j) ∈ E, apply SWAP[Csib(j),C
′
sib(j)].

3. If sib(j) ∈ S ∩ [j − 1], apply Com†sib(j). If sib(j) ∈ E, apply SWAP[Msib(j),M
′
sib(j)].

• Next, we define

SwapDiffUr
S,E,j :

1. Apply SwapRecoverUr
S,E,j .

2. Apply (SwapRecoverUr
S,E∪S,j)

†.

• Finally, we define SwapDiffUr
S,E,j,flag as

SwapDiffUr
S,E,j,flag :=

{
SwapDiffUr

S,E if flag = 0

SwapDiffUr
S,E,j if flag = 1.

(10)

We now state the reduction Reduction[j] which plays the oracle swap-binding game and outputs
a bit b′. The reduction has the same input and setup as HybExtract[j − 1] and HybExtract[j] and
uses the same values of ε and δ.

Reduction[j]:

1. Initialize flag = 0.

2. For t = 0, . . . , T − 1:

(a) Measure Est
Π
U,Gb
E,flag

ε,δ → pt. If pt < q, abort.

(b) Sample a random r ← R and apply the measurement {ΠUr,Gb
r,E,flag, I−ΠUr,Gb

r,E,flag}.

(c) If the measurement rejects, set D := I − ΠUr,Gb
r,E,flag. If the measurement accepts, set

D := ΠUr,Gb
r,E,flag and perform the following steps:

i. If j ∈ Path(Sr) and flag = 0:
A. Apply SwapRecoverUr

Path(Sr)∩[j−1],E .
B. Apply SWAP[Cj ,C

′
j ] and send Dj ,C

′
j to the oracle swap binding challenger.

C. The challenger returns Dj .
D. Update E ← E ∪ (Path(Sr) ∩ [j]).
E. Apply (SwapRecoverUr

Path(Sr)∩[j−1],E,j)
†.

F. Set flag = 1.
ii. Otherwise:

A. Apply SwapDiffUr

Path(Sr)∩[j],E,j,flag.
B. Update E ← E ∪ (Path(Sr) ∩ [j]).

(d) Apply Repair
Π
U,Gb
E,flag,D

ε,δ,pt
.

3. Measure Est
Π
U,Gb
E,flag

ε,δ → pT . Guess b′ = 0 if pT ≥ q and guess b′ = 1 otherwise.

66



If the oracle swap binding challenger’s bit is b = 0, then Pr[Reduction[j]→ 0] is equal to
Pr[HybExtract[j − 1] succeeds]. If the challenger’s bit is b = 1, then Pr[Reduction[j]→ 0] is equal
to Pr[HybExtract[j] succeeds]. Thus, by oracle swap binding security, we have

Pr[HybExtract[j] succeeds] ≥ Pr[HybExtract[j − 1] succeeds]− negl(λ).

Since 2β = poly(λ), it follows from Claim 8.6 that

Pr
[
ExtractUγ,q,T

]
≥ p− q − γ − negl(λ).

Why does KnowledgeExt produce a valid PCP? Claim 8.7 shows that after running Extract,
the swap-augmented prover still has high success probability. To complete the proof of Theorem 8.1,
it remains to show that when T is sampled uniformly at random from {1, 2, . . . , ⌈2β+3/γ2⌉} in the
KnowledgeExt procedure, with noticeable probability the subroutine ExtractUγ/4,q+γ/4,T outputs a
good PCP string.30

Claim 8.8. For any state τH,C and efficient prover unitary U , let p denote the initial success
probability, i.e., p := Er←R[Tr(Πrτ )] where Πr := ΠUr

r,E=∅. If sQSC is swap-binding, then for any
γ = 1/poly(λ) and any q < p−γ−1/poly(λ), with probability at least p−q−γ−negl(λ) ≥ 1/poly(λ)

the procedure KnowledgeExtP̃ (x, 1⌈1/p⌉, 1⌈1/γ⌉) outputs an extracted proof π such that

Er←R[Tr
(
ΠPCP
r π

)
] ≥ q − negl(λ).

Proof. Let ρM′,C,H be the joint state of both the prover and extractor after running KnowledgeExt

(not to be confused with the state π output by KnowledgeExt). By Claim 8.7, with probability at
least p− q − γ/2− negl(λ) the subroutine ExtractUγ/4,q+γ/4,T outputs success and

Er←R[Tr
(
ΠUr
r,EρM′,C,H

)
] ≥ q + γ/4.

We divide the M′ register into M′ = (M′internal,M
′
leaves) so that the extracted proof corresponds to

M′leaves. For any state ρM′,C,H, the extracted proof π = TrC,H,M′
internal

(ρM′,C,H) satisfies

Er←R[Tr
(
ΠPCP
r π

)
] = Pr

r←R
[ΠPCP

r accepts π]

≥ Pr
r←R

[ΠPCP
r accepts π and Sr ⊆ E]

≥ Pr
r←R

[ΠUr
r,E accepts ρM′,C,H and Sr ⊆ E]

= Pr
r←R

[ΠUr
r,E accepts ρM′,C,H]− Pr

r←R
[ΠUr

r,E accepts ρM′,C,H and Sr ̸⊆ E]

= Er←R[Tr
(
ΠUr
r,EρM′,C,H

)
]− Pr

r←R
[{ΠUr

r,E , I−ΠUr
r,E} accepts on ρM′,C,H and Sr ̸⊆ E]

≥ q + γ/4− Pr
r←R

[ΠUr
r,E accepts ρM′,C,H and Sr ̸⊆ E].

30A similar claim is proved in [CMSZ21, LMS22b], but their argument is specialized for extracting classical proof
strings and works by taking a union bound over all possible proofs. We therefore require a different proof for this
final step.
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The second inequality follows because the measurement {ΠUr
r,E , I − ΠUr

r,E} checks that both the
measurement {ΠPCP

r , I−ΠPCP
r } accepts π and all commitment-decommitment pairs along the root

to leaf path are valid.
For any state ρ on registers (M′,C,H), define

x(ρ) = Pr
r←R

[ΠUr
r,E accepts ρ and Sr ̸⊆ E].

We will show that Prρ←KnowledgeExt[x(ρ) > γ/4] ≤ γ/2, which will complete the proof.
Recall that KnowledgeExtP̃ (x, 1⌈1/p⌉, 1⌈1/γ⌉) runs Extractq+γ/4,γ/4,T , stopping at a random time

t← [T ]. Consider an execution of Extractq+γ/4,γ/4,T+1, and let et denote the event that both bt = 1

(i.e., the measurement {ΠUr
r,Et

, I−ΠUr
r,Et
} accepts for the randomly chosen r at step t) and St ̸⊆ Et,

where St and Et are the sets Sr and E, respectively, at step t. Observe that

E
ρ←KnowledgeExt

[x(ρ)] = E
t←[T ]

E
ρ←Extractq+γ/4,γ/4,t

[x(ρ)] (11)

= E
t←[T ]

Pr
ρ←Extractq+γ/4,γ/4,t

r←R

[ΠUr
r,E accepts ρ and Sr ̸⊆ E] (12)

= E
t←{2,...,T+1}

Pr[et] (13)

Since there are only 2β blocks in the proof and each time et happens the extractor will swap
out a new block, we can have at most 2β events et, i.e.,

1

T

T+1∑
t=2

1et ≤
2β

T
,

where 1et is the indicator for the event et.
Taking expectations and applying Eq. (11),

E
ρ
[x(ρ)] ≤ 2β

T
.

Finally, by Markov’s inequality we have

Pr
ρ
[x(ρ) > γ/4] ≤ 2β+2

T · γ
≤ γ

2
.
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9 Computationally sound quantum sigma protocols

In this section, we use our techniques to prove computational soundness for quantum sigma proto-
cols instantiated with our hiding and binding QSCs. This gives a quantum analogue of a standard
template for building classical sigma protocols from any zero-knowledge PCP (zk-PCP) and any
hiding-binding commitment. While quantum sigma protocols were previously considered by Broad-
bent and Grilo [BG20], the results in this section differ from [BG20] in several respects:

• As discussed in Section 2.4, the [BG20] analysis of computational soundness was incomplete
because it was missing the rewinding analysis.

• As an additional contribution, we also place their protocol in a general framework using
our new abstraction of hiding and binding QSCs. We also consider a slightly more general
definition of quantum zero-knowledge PCPs than [BG20].

We begin by defining quantum zk-PCPs, a quantum analogue of classical zk-PCPs.31 Since
we are not concerned with succinctness in this section, it suffices to consider quantum PCPs with
soundness 1− 1/poly(n), which are known for all of QMA [BG20].

Remark 9.1. Our definition of quantum zk-PCPs differs slightly from the the definition of
locally simulatable proofs due to [BG20]. In particular, we require the simulator generates
the mixed state corresponding to the honest PCP verifier’s view, rather than (a classical
description of) the reduced density matrix for all subsets of qubits up to a certain size as
in [BG20]. Our definition captures both the locally simulatable proofs of [BG20] as well as
classical zk-PCPs such as [GMW86] 3-coloring.32

Definition 9.2 (Quantum zero-knowledge PCPs). A quantum zero-knowledge PCP for a lan-
guage L is parameterized by a completeness parameter c, soundness s, proof length m, ran-
domness complexity ℓ, and query complexity q. We require the following properties:

• (Efficient verification) There is a classical poly(n) time procedure that takes as input
x ∈ {0, 1}n and r ∈ {0, 1}ℓ and outputs the description of circuit for implementing a
q-qubit projective measurement {ΠPCP

x,r , I−ΠPCP
x,r }, which acts on a state of size m.

• (Honest-verifier zero knowledge) Let Qr ⊂ [m] denote the size-q subset of indices that
{ΠPCP

x,r , I − ΠPCP
x,r } checks. There exists an efficient quantum algorithm PCPSim(x) that

outputs a mixed state of the form

1

2ℓ

∑
r∈{0,1}ℓ

|r⟩⟨r| ⊗ ρQr ,

such that for any x ∈ L, there exists an m-qubit locally simulatable proof π satisfying
completeness, i.e.,

E
r←{0,1}ℓ

Tr
(
ΠPCP
x,r π

)
≥ c,

31We refer the reader to Ishai’s blog post [Ish20] for background on classical zk-PCPs.
32The 3-coloring zk-PCP does not satisfy the [BG20] definition of a locally simulatable proof, since it is not

possible to generate the verifier’s view for pairs of vertices that do not share an edge.
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and the following zero-knowledge property:∥∥∥∥∥∥ 1

2ℓ

∑
r∈{0,1}ℓ

|r⟩⟨r| ⊗ TrQr
(π)− 1

2ℓ

∑
r∈{0,1}ℓ

|r⟩⟨r| ⊗ ρQr

∥∥∥∥∥∥
1

= negl(n).

• (Soundness) If x ̸∈ L, then for any m-qubit state π,

E
r←{0,1}ℓ

Tr
(
ΠPCP
x,r π

)
≤ s.

Lemma 9.3 ([BG20]). Every language in QMA has a zero-knowledge quantum PCP with
completeness c(n) ≥ 1− negl(n) and soundness s(n) ≤ 1− 1/poly(n).

We remark that because our definition allows mixed state PCPs, any classical zk-PCP is also
a quantum zk-PCP. In particular, this means the zk-PCPs underlying the [GMW86] 3-coloring
protocol and the [IKOS07] MPC-in-the-head protocols fall into our framework.

A generic quantum sigma protocol. We now describe a generic template for quantum sigma
protocols. The protocol is parameterized by a choice of zk-PCP, zkPCP, and quantum commitment
scheme, QSC, where:

• zkPCP is quantum zk-PCP for a language L, and

• QSC is a hiding-binding QSC for one-qubit messages.

For any zkPCP and QSC satisfying the above, we denote the resulting quantum sigma protocol by
QSigma[zkPCP,QSC].33

QSigma[zkPCP,QSC]:

Prover input: x and a corresponding zk-PCP ρ on m = poly(n) qubits
⊗m

i=1Mi.

Verifier input: x.

1. The prover applies ComQSC(Mi)→ (Ci,Di) and sends Ci for all i ∈ [m] to the verifier.

2. The verifier sends random coins r to the prover.

3. The prover sends Di for all i ∈ Qr to the verifier.

4. The verifier applies Com†QSC(Ci,Di)→ (Mi,Wi) and measures Wi with {|0⟩⟨0| , I−|0⟩⟨0|}
for all i ∈ Qr; it aborts if the outcome is not |0⟩⟨0|. Finally, the verifier measures
{ΠPCP

r , I−ΠPCP
r }. It accepts if the measurement accepts.

33Broadbent and Grilo [BG20] presented this protocol in the special case that the QSC was defined by the folklore
construction (see Section 5.3).
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9.1 Argument of knowledge

Theorem 9.4. Let zkPCP be a probabilistically checkable proof for a language L. Then
QSigma[zkPCP,QSC] is a computational (resp. statistical) proof of knowledge for L with re-
spect to the zkPCP verifier (Definition 7.6) if QSC satisfies computational (resp. statistical)
binding.

Proof. The proof strategy is nearly identical to the proof of Theorem 8.1 and we will avoid repeating
it in full. The only difference arises from the fact that instead of a Merkle tree of commitments to
the PCP, we have independent commitments for every block of the zkPCP proof string. Thus, we
can use the same proof as Theorem 8.1 with the following (syntactic) simplifications:

• There are now m explicit commitments instead of 2β+1 − 1 (implicit) commitments. Corre-
spondingly, the HybExtractj procedures only need to be defined for j ∈ {0, 1, . . . ,m}.

• For any S ⊆ [m], replace Path(S) with S.

• For any S ⊆ [m] and E ⊆ [m], replace SwapRecoverUr
S,E with the algorithm that applies

Com†QSC to (Ci,Di) to obtain (Mi,Wi) for all i ∈ S. If i ∈ E, apply SWAP[Mi,M
′
i] as well.

• For any S ⊆ [m], E ⊆ [m], j ∈ [m], replace SwapRecoverUr
S,E,j with SwapRecoverUr

S∩[j−1],E (for

SwapRecoverUr
S,E as defined in the previous bullet).

9.2 Zero knowledge

We now prove that our quantum sigma protocol is zero knowledge against malicious verifiers when-
ever the size of the challenge space {0, 1}ℓ for the underlying zkPCP is at most poly(λ). This is
a standard application of Watrous’s zero-knowledge rewinding lemma, which we recall below. We
refer the reader to [Wat09, Section 3] for a definition of zero-knowledge against quantum attacks.34

Lemma 9.5 ([Wat09]). Let Q be a quantum circuit that acts on n+ k qubits, where the first
n qubits may take an arbitrary state |ψ⟩ as input and the remaining k qubits are initially
set to the state |0k⟩. For any n-qubit state |ψ⟩, define p(ψ) ∈ [0, 1] and (normalized) states
|ϕ0(ψ)⟩ , |ϕ1(ψ)⟩ so that

Q |ψ⟩ |0k⟩ =
√
p(ψ) |0⟩ |ϕ0(ψ)⟩+

√
1− p(ψ) |1⟩ |ϕ1(ψ)⟩ . (14)

Suppose that there exists p0, q ∈ (0, 1) and ε ∈ (0, 1/2) such that for all n-qubit states |ψ⟩,

1. |p(ψ)− q| < ε,

2. p0(1− p0) ≤ q(1− q), and

3. p0 ≤ p(ψ).
34Even though Watrous’s paper focuses on post-quantum security of classical protocols, Watrous’s zero-knowledge

definitions only refer to the admissible super-operators (CPTP maps) induced by the interaction with the prover (or
the simulator) and thus apply equally well to quantum-communication protocols.
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Then there exists a general quantum circuit R of size

|R| = O

(
log(1/ε)|Q|
p0(1− p0)

)
such that, for every n-qubit state |ψ⟩, the output ρ(ψ) of R satisfies

⟨ϕ0(ψ)|ρ(ψ) |ϕ0(ψ)⟩ ≥ 1− 16ε
log2(1/ε)

p20(1− p0)2
.

Theorem 9.6. Suppose zkPCP has randomness complexity ℓ = O(log λ). Then if QSC satisfies
computational (resp. statistical) hiding, QSigma[zkPCP,QSC] satisfies computational (resp.
statistical) zero knowledge.

Proof. For any instance x and security parameter λ, we will define a unitary Ux,λ acting on the
following registers:

• An m-qubit register M = (M1, . . . ,Mm) where each Mi is a one-qubit register.

• A dm-qubit register W = (W1, . . . ,Wm) where each Wi is a d(λ)-qubit register.

• A pair of ℓ-qubit registers R,R′. When we run the simulator, R will be a register containing
uniform PCP verifier randomness r and R′ will contain the string output by the malicious
verifier Ṽ .

• An ancilla register S corresponding to the workspace of PCPSimx.

• A register V corresponding to the auxiliary quantum input for the malicious verifier Ṽ .

• A one-qubit register B.

All registers are initialized to |0⟩ except V, which is initialized to the auxiliary quantum input of
Ṽ .

For a size-q subset Qr ⊂ [m] and q-qubit state ρQr , let ρQr,Qr
denote the m-qubit state whose

reduced density matrix on indices Qr is ρQr and is all-zero everywhere else. We will assume that
PCPSimx is a unitary acting on R,M, S that, when applied to the all-zero state, produces a state
whose reduced density matrix on (R,M) has the form

1

2ℓ

∑
r∈{0,1}ℓ

|r⟩⟨r|R ⊗ ρQr,Qr
.

We now define the unitary Ux,λ to perform the following steps:

1. Apply the unitary PCPSimx to (R,M, S).

2. For each index i ∈ [m], apply ComQSC to (Mi,Wi) to obtain (Ci,Di).

3. Apply the malicious verifier unitary Ṽ on (C1, . . . ,Cm,V,R
′).
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4. Apply the unitary

IB ⊗
∑

r∈{0,1}ℓ
|r⟩⟨r|R ⊗ |r⟩⟨r|R′ +XB ⊗

∑
r,s∈{0,1}ℓ,r ̸=s

|r⟩⟨r|R ⊗ |s⟩⟨s|R′ ,

which applies the bit-flip operator X to B controlled on the contents of R and R′ being
different (in the standard basis).

Fix any x ∈ L. We will show that there exists a negligible function µ(λ) and a constant λ0
such that for all λ ≥ λ0, the unitary Ux,λ satisfies the conditions of Lemma 9.5 for p0 = 1/2ℓ+1,
q = 1/2ℓ, and ε = µ(λ) where:

• |ψ⟩ in Lemma 9.5 corresponds to the auxiliary input state on V,

•
∣∣0k〉 in Lemma 9.5 corresponds to the initial state on registers (M,W,R,R′,S,B),

• and the left-most qubit on the right-hand side of Eq. (14) corresponds to B.

Suppose otherwise. Then there exists a family of states {|ψλ⟩V}λ∈N and a constant c > 0 such that
for infinitely many λ, we have

∣∣p(ψλ)− 1/2ℓ
∣∣ > 1/λc. We will give a reduction breaking hiding

(Definition 4.3) of the m-qubit QSC corresponding to the m different 1-qubit QSCs in the protocol;
this can be turned into a reduction breaking the hiding of one of the 1-qubit QSCs by a standard
hybrid argument. The reduction works as follows:

1. Run PCPSimx to obtain the mixed state

1

2ℓ

∑
r∈{0,1}ℓ

|r⟩⟨r|R ⊗ (ρQr,Qr
)M.

2. Send (M1, . . . ,Mm) to the QSC hiding challenger.

3. The challenger returns commitments (C1, . . . ,Cm). Run Ṽ on C to obtain a challenge register
R′.

4. Measure R and R′ in the standard basis. If the two outcomes are different, output a random
bit b′. If the outcome is the same, then:

• if p(ψλ) > 1/2ℓ + 1/λc, guess b′ = 0, and

• if p(ψλ) < 1/2ℓ − 1/λc, guess b′ = 1.

If the challenger’s bit is b = 1 in the hiding experiment (Definition 4.3), then the challenger returns
commitments (C1, . . . ,Cm) where the underlying messages are all-zero states. In this case, the
probability that the reduction obtains the same challenge when it measures R and R′ is 1/2ℓ, since
R is a uniform mixture over r ∈ {0, 1}ℓ independent of the malicious verifier’s view.

If the challenger’s bit is b = 0, then the probability that the reduction obtains the same challenge
when it measures R and R′ is p(ψλ). An elementary calculation shows that the reduction guesses
b with probability 1/2 +O(1/λc), which violates the hiding of the QSC.
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Thus, by applying Lemma 9.5, we can efficiently generate a state ρ(ψλ) such that ρ(ψλ) is
within 1 − negl(λ) trace distance from ϕ0(ψλ), the (normalized) state obtained by applying Ux,λ
on |ψλ⟩V |0⟩M,W,R,R′,S,B and post-selecting on B = 0. With one additional step, we can generate the
simulated view: controlled on the value r in R′, generate a response register Z containing Di for
each i ∈ Qr. The resulting simulated malicious verifier view is (C1, . . . ,Cm,R

′,Z,V). We omit the
formal details of the rest of the proof, which are a direct analogue of Watrous’s proof [Wat09]. In
short, the hiding of the commitments together with the zero-knowledge property of the quantum
zk-PCP implies that the simulated view is indistinguishable from a view in which the m committed
qubits are a valid zk-PCP state π. The latter corresponds to the view of the malicious verifier in
the interaction with the honest prover initialized with π.
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A Removing interaction from any QSC

In this section, we define the syntax for an interactive QSC and define two security definitions
for interactive QSCs called “honest swap binding” and “honest hiding.” We show that interactive
QSCs satisfying these security definitions can be compiled to non-interactive QSCs that are swap-
binding (Definition 4.2) and hiding (Definition 4.3) in Theorem A.5. This transformation is similar
to the round-collapse compiler of [Yan22].

We begin by defining syntax for interactive QSCs.

Definition A.1 (Interactive QSC syntax). An interactive quantum state commitment QSC

between a quantum sender S and a quantum receiver R consists of an interactive commit
phase ⟨S,R⟩Com and unitary Recover.

• (Commitment phase) The sender commits to a state on message register M by engaging
in a quantum interactive protocol ⟨S,R⟩Com with the receiver.

• (Opening phase) To open the commitment, the sender engages in a quantum interactive
protocol ⟨S,R⟩Open with the receiver. At the end of the protocol, the receiver applies
a binary outcome projective measurement to decide whether to accept or reject the
opening. If it accepts, the receiver recovers the originally committed message on some
register M.

For completeness, we require that the map induced by performing an honest commitment
followed by an honest opening is the identity map on the message spaceM.

Definition A.2 (Completeness). For any quantum state commitment QSC, let ΦQSC : S(M)→
S(M) be the CPTP map induced by (1) performing an honest commitment to M (2) per-
forming an honest opening, and (3) replacing M with |0⟩ if the receiver rejects. We say that
a QSC scheme QSC is complete if ∥∥ΦQSC − IS(M)

∥∥
⋄ = 0.

In particular, this definition implies that if the sender honestly commits to a state |ψ⟩ and later
opens honestly, the receiver will accept with probability 1 and recovers |ψ⟩. It is easy to check that
the syntax for a non-interactive QSC (Definition 4.1) is a special case of an interactive QSC.

Next, we define honest hiding and honest swap binding.

Honest hiding and honest swap binding. We define a security experiment
HonHideExptQSC,A,b(λ) parameterized by a quantum commitment scheme QSC, an interactive ad-
versary A, a challenge bit b ∈ {0, 1}, and a security parameter λ.

Definition A.3 (Honest hiding). For a quantum commitment scheme QSC, an interactive ad-
versary A, a challenge bit b ∈ {0, 1}, and a security parameter λ, define a security experiment
HonHideExptQSC,A,b(λ) as follows.

HonHideExptQSC,A,b(λ):

1. The adversary A prepares a message M and sends it to the challenger.
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2. The challenger locally executes an entire commit phase between an honest sender and
an honest receiver, where the honest sender commits to M if b = 0, or |0⟩ if b = 1. The
challenger sends the internal state C of the honest receiver to A.

3. The output of the experiment is b′ ← A.

QSC is computationally (resp. statistically) honest-hiding if there exists a negligible func-
tion µ(λ) such that for all polynomial-time (resp. unbounded-time) quantum interactive
adversaries A,

Pr
b←{0,1}

[HonHideExptQSC,A,b(λ) = b] ≤ 1

2
+ µ(λ).

Definition A.4 (Honest swap binding). For a quantum commitment scheme QSC, an interac-
tive adversary A, a challenge bit b ∈ {0, 1}, and a security parameter λ, define the security
experiment HonSwapBindExptQSC,A,b(λ) as follows.

HonSwapBindExptQSC,A,b(λ):

1. The adversary A sends the challenger a register M.

2. The challenger locally executes an entire commit phase between an honest sender and
an honest receiver, where the honest sender commits to M if b = 0, or |0⟩ if b = 1. The
challenger sends the internal state D of the honest sender to A.

3. The output of the experiment is b′ ← A.

QSC is computationally (resp. statistically) honest swap binding if there exists a negligible
function µ(λ) such that for all polynomial-time (resp. unbounded-time) quantum interactive
adversaries A,

Pr
b←{0,1}

[HonSwapBindExptQSC,A,b(λ) = b] ≤ 1

2
+ µ(λ).

Compiling an interactive QSC into a non-interactive QSC. Consider the following non-
interactive commitment scheme, compiled from a (potentially) interactive quantum commitment
scheme QSC:

• Suppose the commit phase of QSC is k rounds, where in round i ∈ [k], the receiver applies
a unitary Ri, sends a register Xi to the sender, who applies a unitary Si and sends back a
register Yi.

• Set

Com = SkRkSk−1Rk−1 · · ·S1R1. (15)

Theorem A.5. Let QSC be computationally (resp. statistical) honest swap binding and statis-
tically (resp. computationally) honest hiding. Then the non-interactive commitment scheme
Com defined by Equation (15) is computationally (resp. statistical) swap binding and statis-
tically (resp. computationally) hiding.
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Proof. The honest-hiding experiment for the interactive scheme is equivalent to the hiding exper-
iment for the non-interactive scheme from the adversary’s point of view because the challenger
locally executes the entire commit phase.

Similarly, by Property 4.5, the swap binding experiment for non-interactive commitments can
be equivalently phrased by the adversary sending a message register M, and receiving an honest
decommitment to it in register D. Thus, the honest-binding experiment for the interactive QSC is
equivalent to the swap binding experiment for the non-interactive QSC.
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B Equivalences between binding definitions

B.1 Pauli binding

In this subsection, we present an alternative binding definition for QSCs we call Pauli binding,
which applies to non-interactive and interactive QSCs (Definition A.1). Pauli binding is a gener-
alization of sum-binding (see [Unr16]) in which the adversary picks an arbitrary Pauli operator P ,
receives a random bit b from the challenger specifying either the +1 or −1 eigenspace of P , and
wins if it can open to a message (that is measured to be) in that eigenspace. We will prove that
this notion is equivalent to swap binding for non-interactive QSCs.

Definition B.1 (Pauli binding). For a quantum commitment scheme QSC, an interactive
adversary A, and a security parameter λ, define a security experiment
PauliBindExptQSC,A(λ) as follows.

PauliBindExptQSC,A(λ):

1. The adversary A (acting as a malicious sender) engages in the commit phase of QSC

with the challenger (acting as the receiver). Then, A sends the description of an n-qubit
Pauli operator P to the challenger.

2. The challenger samples a random b← {−1, 1} and sends b to the adversary.

3. A engages in the opening phase of QSC with the challenger. If the challenger rejects
the opening as invalid, then the experiment aborts and outputs fail.

4. Next, the challenger measures {P+, P−} on the opened message register M. It outputs
win if the outcome is b, and otherwise outputs fail.

QSC is computationally (resp. statistically) Pauli binding if there exists a negligible func-
tion µ(λ) such that for all polynomial-time (resp. unbounded-time) quantum interactive
adversaries A,

Pr
[
PauliBindExptQSC,A(λ)→ win

]
≤ 1

2
+ µ(λ).

Remark B.2. Strictly speaking, Pauli binding assumes the messages have “qubit structure,”
i.e., the dimension of the Hilbert space must be a power of 2. It is possible to generalize this
definition to qudits where d is poly(λ), but it is not immediately obvious how to extend this
definition to message spaces of arbitrary dimension. Thus, we only show an equivalence with
swap-binding when the message space has qubit structure. We note that the swap binding
definition is agnostic to the dimension of the message space.

Theorem B.3. A non-interactive quantum state commitment scheme Com is swap binding
if and only if it is Pauli binding.

Proof. We first show that if Com is Pauli binding, then it is also swap binding. Suppose that an
adversary A distinguishes between the b = 0 and b = 1 worlds of the swap binding game with
advantage ε. Consider the following three hybrids:
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• H0: In this hybrid, an adversary A sends a commitment-decommitment pair (C,D) to the
challenger. The challenger applies Com†, measures {|0⟩⟨0| , I − |0⟩⟨0|} on register W (and
aborts if the measurement rejects), applies Com, and sends D to the adversary.

• H1: This hybrid is the same as H0, except before applying Com, the challenger applies a
uniformly random n-qubit Pauli P to M (thus making it maximally mixed).

• H2: This hybrid is the same as H0, except before applying Com, the challenger replaces the
contents of M with |0⟩, i.e., initializes ancillary register M′ to |0⟩ and applies SWAP[M,M′].

Hybrids H0 and H2 are exactly the b = 0 and b = 1 worlds of the swap binding experiment for
Com, so A distinguishes either H0 and H1 or H1 and H2 with advantage ε/2. Let’s assume that A
distinguishes H0 and H1 with ε/2 advantage as the proof for H1 and H2 follows almost identically.

We purify the actions of the adversary A, so that right after sending (C,D) to the challenger,
A and the challenger jointly hold a pure quantum state |ψ⟩CDR, where R is held by A. Then after
receiving D back from the challenger, Ameasures a projector Π̃ on (D,R) to determine its output for
the swap binding game. Recall that for any operator O, we define the notation Ô := (Com)O(Com†).
For any Pauli P acting on register M define the quantities

DistAdvP :=

∣∣∣∣∥∥∥Π̃P̂ |̂0⟩⟨0|W |ψ⟩∥∥∥2 − ∥∥∥Π̃|̂0⟩⟨0|W |ψ⟩∥∥∥2∣∣∣∣
and

MapAdvP :=
∥∥∥P̂− |̂0⟩⟨0|W(I− 2Π̃)P̂+ |̂0⟩⟨0|W |ψ⟩

∥∥∥2.
Then

EP←{I,X,Y,Z}⊗n [MapAdvP ] ≥ EP
[
(DistAdvP )

2
]

≥ (EP [DistAdvP ])
2

= (ε/2)2,

where the first inequality is by Lemma 6.6, Item (ii), the second inequality is Jensen’s inequality,
and the last equality is because A distinguishes H0 and H1 with advantage ε/2.

Then consider the Pauli binding adversary A′ that does the following:

1. Receive commitment-decommitment registers (C,D) from A.

2. Sample a random n-qubit Pauli P and measure {P̂+ |̂0⟩⟨0|W, I− P̂+ |̂0⟩⟨0|W} on (C,D). Then:

• If the measurement accepts, send register C and Pauli P to the challenger. Receive
b ∈ {−1, 1} from the challenger. If b = −1, then apply (I− 2Π̃), which can be done by
coherently applying A, applying Z to its output, and applying A in reverse. If b = 1,
do nothing to the state. Then, send register D to the challenger.

• If the measurement rejects, prepare another commitment to a +1 eigenstate of P , i.e.,
initialize M′ to a +1 eigenstate of P and W′ to |0⟩, apply Com to (M′,W′) (resulting in
(C′,D′)), and send C′ and P to the challenger. Receive b from the challenger. Then,
send decommitment register D′ to the challenger.
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We analyze the success probability of A′ in the Pauli binding game. Let win indicate the event
in which A′ wins the Pauli binding game and let accept indicate the event that the measurement
{P̂+ |̂0⟩⟨0|W, I− P̂+ |̂0⟩⟨0|W} accepts. Then

Pr[win] = Pr[win ∧ accept ∧ (b = 1)] + Pr[win ∧ accept ∧ (b = −1)] + Pr[win ∧ ¯accept]

≥ 1

2
Pr[accept] +

1

2
E[MapAdvP ] +

1

2
(1− Pr[accept])

≥ 1

2
+
ε2

8
.

Thus A′ wins the Pauli binding game with noticeable advantage.
We now show that swap binding implies Pauli binding. Let A be an adversary that wins the

Pauli binding game for Com with probability 1/2 + ε using Pauli operator P . Let us purify its
actions so that it sends the C register of a pure quantum state |ψ⟩CDR to the challenger, and
applies unitary operations U− and U+ upon receiving b = −1 and b = 1, respectively. Then letting
U := U−U

†
+ and |ϕ⟩ := U+ |ψ⟩, adversary A winning the Pauli binding game with probability 1/2+ε

is equivalent to:

1 + 2ε ≤
∥∥∥P̂+ |̂0⟩⟨0|WU+ |ψ⟩

∥∥∥2 + ∥∥∥P̂− |̂0⟩⟨0|WU− |ψ⟩∥∥∥2 (16)

=
∥∥∥P̂+ |̂0⟩⟨0|W |ϕ⟩

∥∥∥2 + ∥∥∥P̂− |̂0⟩⟨0|WU |ϕ⟩∥∥∥2. (17)

Let us define (sub-normalized) quantum states

• |α⟩ := P̂+ |̂0⟩⟨0|W |ϕ⟩.

• |a⟩ := P̂− |̂0⟩⟨0|WUP̂+ |̂0⟩⟨0|W |ϕ⟩.

• |b⟩ := P̂− |̂0⟩⟨0|WU(I− P̂+ |̂0⟩⟨0|W) |ϕ⟩ .

• |c⟩ := (I− P̂+ |̂0⟩⟨0|W) |ϕ⟩

Then

1 + 2ε ≤ ∥|α⟩∥2 + ∥|a⟩+ |b⟩∥2

≤ ∥|α⟩∥2 + (∥|a⟩∥+ ∥|b⟩∥)2

= ∥|α⟩∥2 + ∥|a⟩∥2 + 2∥|a⟩∥∥|b⟩∥+ ∥|b⟩∥2

≤ ∥|α⟩∥2 + ∥|a⟩∥2 + 2∥|a⟩∥∥|b⟩∥+ ∥|c⟩∥2

≤ 1 + ∥|a⟩∥2 + 2∥|a⟩∥∥|b⟩∥
≤ 1 + ∥|a⟩∥2 + 2∥|a⟩∥
≤ 1 + 3∥|a⟩∥,

where the first inequality is a restatement of Equation (17), the second inequality is triangle in-
equality, the third inequality is because ∥|b⟩∥ ≤ ∥|c⟩∥, the fourth inequality is because |α⟩ ⊥ |c⟩
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and ∥|α⟩+ |c⟩∥2 ≤ 1, the fifth inequality is because ∥|b⟩∥ ≤ 1, and the last inequality is because
∥|a⟩∥ ≤ 1.

Thus

(2ε/3)2 ≤ ∥|a⟩∥2 =
∥∥∥P̂− |̂0⟩⟨0|WUP̂+ |̂0⟩⟨0|W |ϕ⟩

∥∥∥2.
By Lemma 6.6, Item (i), if we define Π := ctlB-U |+⟩⟨+|B ctlB-U

† and |γ⟩ := ctlB-U(|+⟩B ⊗
(P̂+ |̂0⟩⟨0|W) |ϕ⟩), then ∣∣∣∣∥∥∥Π|̂0⟩⟨0|W |γ⟩∥∥∥2 − ∥∥∥ΠP̂ |̂0⟩⟨0|W |γ⟩∥∥∥2∣∣∣∣ ≥ 2ε2/9. (18)

In words, the measurement {Π, I−Π} distinguishes whether P̂ is applied or not to |̂0⟩⟨0|W |γ⟩.
Then consider the following three hybrids:

• H0: In this hybrid, the adversary sends commitment and decommitment registers (C,D) to
the challenger. The challenger measures {|̂0⟩⟨0|W, I − |̂0⟩⟨0|W}. If the measurement rejects,
then abort. Otherwise, send D back to the adversary.

• H1: This hybrid is the same as H0, except before sending D back to the adversary, the
challenger initializes a new register E (of the same dimension as M) to |0⟩, then applies
ŜWAP[M,E].

• H2: This is the same as H0, except before sending D back to the adversary, the challenger
applies P̂ to (C,D).

Equation (18) implies that the adversary A′ that does the following achieves a distinguishing
advantage 2ε2/9 between hybrids H0 and H2:

1. Prepare the state |̂0⟩⟨0|W |γ⟩ from |ψ⟩CDR by applying U+, then measuring {P̂+ |̂0⟩⟨0|W, I −
P̂+ |̂0⟩⟨0|W}, initializing a qubit register B to |+⟩, applying ctlB-U , and measuring {|̂0⟩⟨0|W, I−
|̂0⟩⟨0|W}.

• If both measurements accept, then the resulting state is (normalized) |γ⟩. Send C and
D registers to the challenger, and receive D back from the challenger. Then output the
result of measuring {Π, I−Π}.

• If either of the measurements reject, just output a random bit at the end of the hybrids.
That is, prepare any valid commitment and decommitment registers (C′,D′) by initial-
izing new registers (M′,W′) to |0⟩ and applying Com to the registers. Send (C′,D′) to
the challenger, receive D′, then output a random bit.

Thus A′ achieves a distinguishing advantage ε2/9 between hybrids H0 and H1 or H1 and H2.
If A′ distinguishes H0 and H1, then it wins the swap binding game with the same advantage by
definition of the swap binding game. If A′ distinguishes H1 and H2, then a modified A′ that applies
P̂ to the commitment-decommitment registers right before sending them to the challenger will win
the swap binding game with the same advantage.

87



Remark B.4. We remark that a nearly identical proof to the above can be used to show
that collapse-binding for non-interactive QBCs is equivalent to a restricted version of Pauli
binding where the adversary is only allowed to send Pauli operators from {I, Z}⊗n. A very
similar definitional equivalence (for collapse-binding) was also proved in a concurrent and
independent work of [DS22]. [DS22] show that collapse binding is equivalent to “chosen-bit
binding,” which corresponds to a version of our Pauli binding definition where the operators
are from the set {Z1, . . . , Zn}.

B.2 A statistical extraction-based definition

In the classical setting, a defining feature of statistically binding commitments is that the com-
mitment string information-theoretically fixes the committed message. Equivalently, there is an
inefficient procedure to extract the committed message from the commitment (up to negligible
error). In the quantum setting, [AQY22] proposed defining statistical binding for quantum com-
mitments to classical messages (QBCs) in a similar fashion: a QBC is statistically binding if, given
the commitment register C, it is possible to extract the committed message bit (in an appropriate
sense).

In this subsection, we present (a) a statistical extraction definition for commitments to quan-
tum messages and (b) a proof that this definition is equivalent to statistical swap binding. We
emphasize that this alternative characterization of swap binding only applies in the statistical
binding setting. To state the statistical extraction definition, recall the following notation, where
Com is the commitment unitary for a non-interactive quantum state commitment:

• ̂SWAP[M,M′] := (Com)SWAP[M,M′](Com†) and

• Π := (Com)(IM ⊗ |0⟩⟨0|W)(Com†).

Definition B.5 (Statistical extractability). A non-interactive quantum commitment scheme
QSC with commitment unitary Com is statistically extractable if there exists a CPTP map
Ext : (C,M′) → (C,M′) such that, for all states ρ ∈ D(C ⊗ D ⊗ H) and all unitaries U acting
only on (D,H),∥∥∥(Π(C,D) ◦ U(D,H) ◦ Ext(C,M′))(ρ⊗ |0⟩⟨0|M′)− ( ̂SWAP[M,M′] ◦Π(C,D) ◦ U(D,H))(ρ⊗ |0⟩⟨0|M′)

∥∥∥
1

≤ negl(λ).

The fact that statistical extractability is equivalent to statistical binding follows from the
“information-disturbance tradeoff” [KSW08, Theorem 3], restated in Theorem B.6. To state the the-
orem, we require the notion of a complementary channel. For any CPTP map Φ : S(X )→ S(Y),
Stinespring’s dilation thoerem [Sti55] implies that there exists a unitary U that maps registers
(X,W) to (Y,Z) (where W and Z are defined implicitly by U) such that Φ(ρ) = TrZ(U(ρ ⊗
|0⟩⟨0|W))35. We say that Φc is a complementary channel to Φ if there exists a unitary U such that
Φc(ρ) = TrY(U(ρ⊗ |0⟩⟨0|W)) and Φ(ρ) = TrZ(U(ρ⊗ |0⟩⟨0|W)).

35Here we use the notation that U(ρ) = UρU† for a unitary U because the proof of the main theorem in this
subsection is stated in terms of quantum channels.
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Theorem B.6 (Information-disturbance tradeoff [KSW08, Theorem 3]). Let M⊗ A ⊗ B be a
finite-dimensional Hilbert space. Suppose that T :M→ A is a quantum channel with com-
plementary channel T c :M → B. Then there exists a decoding channel Dec : A → M such
that

∥Dec ◦ T − IM∥⋄ ≤ min
σ∈D(B)

2∥T c − Sσ∥⋄

where Sσ is the completely depolarizing channel that always outputs σ ∈ D(B).

Theorem B.7. A non-interactive quantum commitment scheme QSC is statistically swap-
binding if and only if it is statistically extractable.

Proof. Suppose that QSC is statistically extractable. Then invoking Definition B.5 with U = I
and initial state ΠρΠ,∥∥∥(Π(C,D) ◦ Ext(C,M′) ◦Π(C,D))(ρ⊗ |0⟩⟨0|M′)− ( ̂SWAP[M,M′] ◦Π(C,D))(ρ⊗ |0⟩⟨0|M′)

∥∥∥
1
≤ negl(λ).

Since Π(C,D) is a projection, it follows that∥∥∥(Ext(C,M′) ◦Π(C,D))(ρ⊗ |0⟩⟨0|M′)− ( ̂SWAP[M,M′] ◦Π(C,D))(ρ⊗ |0⟩⟨0|M′)
∥∥∥
1
≤ negl(λ).

In particular, in the b = 1 world of the swap-binding security experiment (Definition 4.2) the
adversary receives the state

Tr(C,M′)[( ̂SWAP[M,M′] ◦Π(C,D))(ρ⊗ |0⟩⟨0|M′)]

≈s Tr(C,M′)[(Ext(C,M′) ◦Π(C,D))(ρ⊗ |0⟩⟨0|M′)]

= Tr(C,M′)[Π(C,D)(ρ⊗ |0⟩⟨0|M′)].

Since Tr(C,M′)[Π(C,D)(ρ ⊗ |0⟩⟨0|M′)] is the state the adversary receives in the b = 0 world, swap-
binding follows.

For the other direction, suppose that QSC is statistically swap-binding. Let T : M → C be
defined by

T (ρ) = TrD(Com(ρ⊗ |0⟩⟨0|W)).

The complementary channel is

T c(ρ) = TrC(Com(ρ⊗ |0⟩⟨0|W)),

and since QSC is statistically swap-binding we have

T c(ρ) ≈s T c(|0⟩⟨0|M)

for all ρ ∈ D(M). Applying Theorem B.6 with σ = T c(|0⟩⟨0|M) yields a decoding channel Dec :

C→ M such that
∥Dec ◦ T − IM∥⋄ ≤ negl(λ).

Let D̃ec be a Stinespring dilation of Dec, i.e., D̃ec : (C,E) → (M,F) is a unitary such that
TrF(D̃ec(τ ⊗ |0⟩⟨0|E)) = Dec(τ ). We can now define our extractor Ext : (C,M′) → (C,M′) for
τ ∈ D(C) as

Ext(τ ) = TrE[(D̃ec
†
◦ SWAP[M,M′] ◦ D̃ec)(τ ⊗ |0⟩⟨0|(E,M′))].
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Since ∥Ext ◦Π−Π ◦ Ext∥⋄ ≤ negl(λ), it follows that

(Π(C,D) ◦ U(D,H) ◦ Ext(C,M′))(τ ⊗ |0⟩⟨0|M′)

≈s (Ext(C,M′) ◦Π(C,D) ◦ U(D,H))(τ ⊗ |0⟩⟨0|M′)

= TrE[(D̃ec
†
◦ SWAP[M,M′] ◦ D̃ec ◦Π(C,D) ◦ U(D,H))(τ ⊗ |0⟩⟨0|M′ ⊗ |0⟩⟨0|E)]

≈s ( ̂SWAP[M,M′] ◦Π(C,D) ◦ U(D,H))(τ ⊗ |0⟩⟨0|M′).
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C Quantum encryption with short keys from PRUs

Pseudo-random unitaries (PRUs) are families of efficient unitaries that are indistinguishable from
Haar random unitaries under black-box access [JLS18]. In Theorem C.1, we show that the Hilbert
space of a PRU can be expanded at the cost of restricting the security to a single use — effectively
converting a pseudo-superpolynomial-design to a pseudo-1-design on a larger space.

The construction is based on the Schur transform USch [Har05], which maps between the stan-
dard representation of (Cp)⊗ℓ and the “Schur-Weyl basis,” in which both ℓ-fold products of unitaries
U⊗ℓ and permutations act naturally. In particular, the Schur transform maps between the sym-
metric subspace on ℓ qupits and an

(
ℓ+p−1
ℓ

)
-dimensional Hilbert space on

⌈
log2

(
ℓ+p−1
ℓ

)⌉
qubits

[Har05].
Given a PRU family {Uk}k∈{0,1}d(λ) acting on p dimensions, we build a one-time quantum

encryption scheme {Expand(Uk, ℓ)}k∈{0,1}d(λ) with
(
ℓ+p−1
ℓ

)
-dimensional messages |ψ⟩ as follows:

1. Initialize the appropriate registers to select the symmetric subspace in the Schur basis and
the remaining registers to |ψ⟩. In the notation of [Har05], this is |Λ = 0, pΛ = 0, qΛ = ψ⟩.

2. Apply USch(Uk)
⊗ℓU†Sch to |Λ = 0, pΛ = 0, qΛ = ψ⟩.

3. Return the qΛ register as the output of Expand(Uk, ℓ).

Theorem C.1 (PRU Expansion). If {Uk}k∈{0,1}d(λ) is a PRU family on p dimensions, then
{Expand(Uk, ℓ)}k∈{0,1}d(λ) is a secure one-time quantum encryption scheme with messages of

dimension
(
ℓ+p−1
ℓ

)
≥
(
1 + p−1

ℓ

)ℓ
for any ℓ = poly(λ).

Proof. Since the symmetric subspace is invariant under (Uk)
⊗ℓ, the auxiliary registers Λ, pΛ are

unaffected by USch(Uk)
⊗ℓU†Sch. Letting ρ be the state |Λ = 0, pΛ = 0, qΛ = ψ⟩,

USch(Uk)
⊗ℓU†SchρUSch(U

†
k)
⊗ℓU†Sch ≈c USch

(∫
U←µ(Cp)

(U)⊗ℓU†SchρUSch(U
†)⊗ℓ dU

)
U†Sch

=

(
ℓ+ p− 1

ℓ

)−1
|Λ = 0, pΛ = 0⟩⟨Λ = 0, pΛ = 0| .

The first line follows from the security of the PRU family {Uk}k∈{0,1}d(λ) . The equality follows
from Schur’s lemma, since the symmetric subspace on (Cp)⊗ℓ is an irreducible representation of
the unitary group under the action U 7→ U⊗ℓ [Har13]. Schur’s lemma tells us that the integral is
maximally mixed over the symmetric subspace, and in the Schur-Weyl basis the maximally mixed
state over the symmetric subspace is the state where qΛ is random and Λ = 0, pΛ = 0.

Similarly, we note that a many-time secure PRS family {|ϕk⟩}k∈{0,1}d(λ) on p dimensions may be

converted to a one-time secure PRS family on
(
ℓ+p−1
ℓ

)
dimensions via TrΛ,pΛ(USch(|ϕk⟩⟨ϕk|)⊗ℓU†Sch).

Theorem C.2 (PRS Expansion). If {|ϕk⟩}k∈{0,1}d(λ) is an ℓ-time secure PRS family on p

dimensions, then {Expand(|ϕk⟩ , ℓ)}k∈{0,1}d(λ) is a one-time secure PRS family on
(
ℓ+p−1
ℓ

)
≥(

1 + p−1
ℓ

)ℓ
dimensions.
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