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Abstract

Connections between proof complexity and circuit complexity have become major tools
for obtaining lower bounds in both areas. These connections — which take the form of inter-
polation theorems and query-to-communication lifting theorems — translate efficient proofs
into small circuits, and vice versa, allowing tools from one area to be applied to the other.
Recently, the theory of TFNP has emerged as a unifying framework underlying these connec-
tions. For many of the proof systems which admit such a connection there is a TFNP problem
which characterizes it: the class of problems which are reducible to this TFNP problem via
query-efficient reductions is equivalent to the tautologies that can be efficiently proven in the
system. Through this, proof complexity has become a major tool for proving separations in
black-box TFNP. Similarly, for certain monotone circuit models, the class of functions that
it can compute efficiently is equivalent to what can be reduced to a certain TFNP problem
in low communication. When a TFNP problem has both a proof and circuit characterization,
one can prove an interpolation theorem. Conversely, many lifting theorems can be viewed as
relating the communication and query reductions to TFNP problems. This is exciting, as it
suggests that TFNP provides a roadmap for the development of further interpolation theorems
and lifting theorems.

In this paper we begin to develop a more systematic understanding of when these connec-
tions to TFNP occur. We give exact conditions under which a proof system or circuit model
admits a characterization by a TFNP problem. We show:

– Every well-behaved proof system which can prove its own soundness (a reflection prin-
ciple) is characterized by a TFNP problem. Conversely, every TFNP problem gives rise
to a well-behaved proof system which proves its own soundness.

– Every well-behaved monotone circuit model which admits a universal family of func-
tions is characterized by a TFNP problem. Conversely, every TFNP problem gives rise
to a well-behaved monotone circuit model with a universal problem.

As an example, we provide a TFNP characterization of the Polynomial Calculus, answering a
question from [24], and show that it can prove its own soundness.
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1 Introduction

Connections between proof systems and monotone circuit models have revolutionized both areas, providing
a large number of strong lower bounds that were previously not known. These connections take the form of

– Interpolation Theorems, which translate small proofs into efficient computations in an associated
model of monotone circuit [6, 15, 16, 18, 29, 32–34, 39, 41, 43].

– Query-to-Communication Lifting Theorems, which translate efficient monotone computations into
small proofs in an associated proof system [10, 13, 14, 20, 26–28, 31, 35, 37, 38, 42, 45].

This has allowed tools from one area to be applied to the other. Recently, the landscape of total functional
NP (TFNP) has emerged as an organizing principle for connections between proof systems and models of
monotone circuits [12, 25]. For many of the proof systems which admit an interpolation theorem or lifting
theorem there is a TFNP problem which characterizes it in the following sense: the class of problems which
are reducible to this TFNP problem via query-efficient reductions is equivalent to the set of tautologies that
can be efficiently proven in the system. This has resulted in proof complexity becoming a major tool for
proving separations in black-box TFNP. Conversely, the perspective offered by TFNP has provided a
number interesting results for proof complexity, such as complete tautologies for certain proof systems, as
well as striking intersection theorems [24].

An analogous phenomenon has emerged for monotone circuit complexity. For many monotone circuit
models, the set of functions which can be computed efficiently is equivalent to the set of problems that can be
reduced to a certain TFNP problem in low communication. When these TFNP problems collide — that is,
when there is both a proof and circuit characterization of a particular TFNP problem — then we immediately
obtain an interpolation theorem between this proof system and circuit model [44]! Moreover, many of the
query-to-communication lifting theorems can be viewed as constructing a query-efficient reduction to a
particular TFNP problems out of a communication-efficient reduction to that problem. This is exciting as
it suggests understanding when TFNP problems admit such characterizations as a pathway for developing
further connections between proof complexity and circuit complexity.

In this paper we give exact conditions under which a proof system or monotone circuit model admits a
characterization by a TFNP problem. For proof complexity, we show that every well-behaved∗ proof system
which can prove its own soundness (a reflection principle) is characterized by a TFNP problem. Conversely,
every TFNP problem gives rise to a well-behaved proof system which proves its own soundness and which
is closed under decision tree reductions. Furthermore, this result is constructive: for every TFNP problem
we give a proof system which it characterizes. As an example, we provide a TFNP characterization of
the Polynomial Calculus, answering a question from [24], and show that it can prove its own soundness.
For circuit complexity, we show that every well-behaved monotone circuit model which admits a universal
family of functions is characterized by a TFNP problem. Conversely, every TFNP problem gives rise to a
well-behaved monotone circuit model with a universal problem.

1.1 Overview: Connections Proof Complexity, and Circuit Complexity, and TFNP

The connections between proof systems and monotone circuit models can be understood as relating the com-
plexity of two families of total search problems whose complexity characterizes proof and circuit complexity
respectively.

∗We will say that a proof system of monotone circuit model is well-behaved if it satisfies some minor technical conditions
discussed in subsection 1.2.
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– False Clause. SF for an unsatisfiable CNF formula F = C1 ∧ · · · ∧ Cm: given an assignment
x ∈ {0, 1}n output the index i ∈ [m] of a clause such that Ci(x) = 0.

– Monotone Karchmer-Wigderson. mKWf for a monotone boolean function f : given x, y ∈ {0, 1}n
such that f(x) = 1 and f(y) = 0 output i ∈ [n] such that xi > yi.

The theory of TFNP studies the total search problems for which solutions can be efficiently verified.
There is believed to be no complete problem for the class TFNP [40], and therefore much of the work on
this subject has focused on identifying sub-classes which do admit complete problems. This has resulted in
a rich landscape of classes which capture a wide variety of important problems in a range of areas including
cryptography, economics, and game theory. These classes are typically defined as everything that can be
efficiently reduced to a certain existence principle (of exponential size). For example, PPA is the class
of search problems that can be reduced to an (exponential size) instance of the handshaking lemma. These
exponential-size instances are given in a white-box fashion: they are represented as a polynomial-size circuit
which can be queried to obtain each bit of the input.

The goal of TFNP is to understand how these classes relate. However, a separation between any pair
of sub-classes would imply P ∕= NP. Instead, a line of work has sought to provide evidence of their
relationships by proving black-box separations. As opposed to the white-box setting, one is only given
oracle access to the circuit, which may be queried for each bit of the input; one is no longer allowed to see
how the circuit is defined.

Black-Box TFNP and Proof Complexity. Beginning with [3], proof complexity has become a major
tool for proving black-box TFNP separations. In fact, black-box TFNP — denoted TFNPdt — can be
viewed as the study of the false clause search problem. Every TFNPdt problem is equivalent to SF for
some unsatisfiable CNF formula F . Using this connection, Göös et al. [25] observed that many prominent
TFNPdt problems are characterized by an associated proof system in the sense that the CNF formulas F that
are efficiently provable in that proof system are exactly the problems SF that are reducible to the TFNPdt

problem. This has led to the characterization of many of the prominent TFNPdt subclasses:

– FPdt = TreeRes [36].
– PLSdt = Res [9].
– PPAdt = F2-NS [25].
– PPADSdt = unary-NS [24].
– PPADdt = unary-SA [24].
– SOPLdt = RevRes [24].
– EOPLdt = RevResT [24].

Thus, separations between these proof systems translate into separations between their corresponding TFNPdt

subclasses. This has resulted in a complete picture of how the most prominent TFNPdt subclasses re-
late [2, 7, 24, 25].

For proof complexity, the novel perspective provided by these TFNPdt characterizations has given rise
to a number of striking results. These include:

– Complete Problems: Any proof system which is characterized by a TFNPdt problem SF has F as its
complete problem, in the sense that it has short proofs of exactly the formulas F ′ for which SF ′ can
be efficiently reduced to SF . [25]

– Intersection Theorems: Proof systems which can efficiently prove a formula iff that formula has short
proofs in several other proof systems [24].
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– Coefficient Separations: Separations between the complexity of certain algebraic proof system when
their coefficients are represented in unary versus binary [24].

However, there are many important TFNPdt problems — such as PPPdt-complete problems — which
have thus far evaded characterization by a proof system. Conversely, there are many important proof systems
for which no corresponding TFNPdt problem is known. This raises the question of what conditions must be
satisfied for such a characterization to occur.

Communication TFNP and Monotone Circuit Complexity. Karchmer and Wigderson [30] showed that
the monotone formula complexity of any monotone function f is equal to the communication complexity
of mKWf . Building on this, Razborov [43] considered reductions between black-box TFNP classes where
one measures the amount of communication needed to perform the reduction (for some suitable partition
of the input), denoted TFNPcc, and showed that a PLScc-complete problem characterizes monotone circuit
complexity. There is good reason for this; analogous to how TFNPdt is the study of the false clause search
problem, TFNPcc can be viewed as the study of the monotone Karchmer-Wigderson game. Indeed, every
R ∈ TFNPcc is equivalent to mKWf (over the same partition of the variables) for some associated monotone
function f [19, 25].

Following these results, a number of TFNPcc problems have been characterized by models of monotone
circuits [16,25]. However, there remain many important circuit models for which no TFNPcc-characterization
is known.

A Theory of Interpolation and Lifting Theorems. As we have just discussed, certain proof systems
are characterized by TFNPdt problems, while certain models of monotone circuits are characterized by
problems in TFNPcc. Göös et al. [25] observed that in all-known examples where both the black-box and
communication variants of a TFNP problem R (denoted Rdt and Rcc) admit characterizations by a proof
system and monotone circuit model respectively, then they admit both an interpolation theorem and a query-
to-communication lifting theorem. This is to be expected, as a key component of both interpolation and
query-to-communication lifting theorems proceeds by relating SF to mKWf for associated pairs (F, f). In
fact, it is not difficult to see that whenever a TFNP class admits a characterization by both a proof system and
a monotone circuit model then there is an interpolation theorem between this proof system and circuit model
— this follows by the simple observation that communication protocols can simulate decision trees [44]!
Thus, the landscape of TFNP, together with characterizations of TFNP problems by proofs and circuits,
appears to provide a roadmap for potential interpolation and query-to-communication lifting theorems.

1.2 Our Results

Our first main result is a characterization of when a proof system admits a characterization by a TFNPdt

problem. We show that this occurs for any any proof system P which meets the following two criteria:

i) Closure under decision-tree reductions: whenever there is a small P -proof of a formula H , and SF
efficiently reduces to SH , then there is also a small P -proof of F .

ii) Proves its own soundness: P can prove that P -proofs are sound. That is, P has small proofs of a
reflection principle about itself, which is encoded in an efficiently-verifiable manner.

Conversely, we show that every TFNPdt problem has a proof system which characterizes it. Furthermore,
this proof system satisfies both conditions (i) and (ii). Out first main results can be informally stated as
follows.
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Theorem 1 (Informal). The following hold:

– For any TFNPdt problem R there is a proof system P satisfying (i) and (ii) such that such that R
characterizes P in the sense that P has short proofs of F iff SF is efficiently reducible to R.

– For any proof system P which satisfies (i) and (ii) there is a TFNPdt problem R such that R charac-
terizes P .

As an example of this we give a characterization of the Polynomial Calculus proof system by a TFNPdt

problem which we call INDPPA and show that it can prove its own soundness.

Theorem 2 (Informal). INDdt
PPA = F2-PC and F2-PC has small proofs of an efficiently verifiable reflection

principle about itself.

Additionally, we sketch how this can be generalized in order to characterize the unary Polynomial Cal-
culus over any field.

Our second main result is a characterization of the conditions under which monotone circuit models ad-
mit corresponding TFNPcc problems. We formalize the concept of a monotone circuit model as a monotone
partial function complexity measure (mpc) — a mapping of monotone functions to non-negative integers.
We show that a TFNPcc problem is characterized by a mpc iff the mpc meets the following criteria:

i) Monotone under solutions: if whenever g solves f — meaning that the yes and no inputs of a partial
function f are a subset of the yes and no inputs of a partial function g — then mpc(g) ≥ mpc(f).

ii) Closure under low-depth reductions: if whenever f is a partial function and h is computable by a
depth-d monotone Boolean circuit then mpc(f ◦ h) is only polynomially larger in 2d and mpc(f).

iii) Admits a universal family: a family of functions Fn such that whenever mpc(g) ≤ n for a monotone
partial function g, there is a string zg so that F (x ◦ zg) solves g(x).

Theorem 3 (Informal). Let mpc be a complexity measure. There is a R ∈ TFNPcc such that Rcc charac-
terizes mpc iff mpc satisfies (i) – (iii).

Furthermore, if we relax the universal function requirement (iii) to only require that mpc admits a
complete family of functions — a generalization of universal functions to allow for low-depth reductions
from the other functions with low-mpc to Fm, rather than requiring them to be a restriction of Fm — then
we are able to obtain an even tighter characterization, detailed in Theorem 12.

Finally, we investigate whether this characterization can be extended from partial function complexity
measures to total function measures. Since complexity measures on total functions induce measures on
partial functions, this allows us to give a general condition under which a complexity measure on total
functions has a TFNPcc characterization (Theorem 16) by applying Theorem 3.

A Note on the Provability of Reflection Principles. Theorem 1 establishes that the property of P having
short proofs of a reflection principle about itself is closely related to having a TFNPdt characterization of P .
The reflection principle for propositional proof systems has already been studied in prior work. In partic-
ular, Cook [11] showed that extended Frege (eF) has short proofs its consistency statements, and Buss [8]
showed that Frege (F) has short proofs of its consistency statements. From their results, it follows readily
that both proof systems, extended Frege and Frege, have short (polynomial size) proofs of their reflection
principles. It is also well-known that the extended Frege and Frege proof systems can be characterized as

4



very strong TFNPdt classes characterizable in terms of second-order theories of bounded arithmetic, see [5].
Analogous results were obtained for even stronger propositional proof systems by [22]. On the other hand,
Garlik [21] showed that resolution requires exponential length for refutations of (a particular “leveled” ver-
sion of) its reflection principle; Atserias-Müller [1] gave exponential lower bounds on resolution refutations
of a relativized reflection principle.

Theorem 1 requires that the proof system P has short proofs of a variant of a reflection principle about
itself. There are two main differences between our encodings and previous ones in the literature. The first
is that the reflection principle is parameterized by a complexity parameter c (see Section 2) rather than the
typical size parameter. The second is that the reflection principle must be efficiently verifiable, meaning that
an error in the purported P -proof in the reflection principle can always be verified by examining in a small
number of bits. Thus, for example, the bound of Garlik [21] does not contradict our results.

2 Proof Complexity and Black-Box TFNP

We begin by defining black-box TFNP. A total search problem is a sequence of relations Rn ⊆ {0, 1}n ×
On, one for each n ∈ N which is total — for each x ∈ {0, 1}n there is i ∈ O such that (x, i) ∈ Rn. A total
search problem is in TFNPdt if solutions are also verifiable: for each i ∈ O there there is a decision tree T o

i

of polylog(n) depth such that
T o
i (x) = 1 ⇐⇒ (x, i) ∈ Rn.

Reductions and TFNP Subclasses. A decision tree reduction from Q ∈ {0, 1}s×O′ to R ⊆ {0, 1}n×O
is a set of decision trees Ti : {0, 1}s → {0, 1} for i ∈ [n] and T o

j : {0, 1}s → O′ for j ∈ O such that for
any x ∈ {0, 1}s,

((T1(x), . . . , Tn(x), j) ∈ R =⇒ (x, T o
j (x)) ∈ Q.

That is, the Ti’s map inputs to from Q to R, and the T o
j ’s maps solutions to R back to solutions to Q. The

depth d of the reduction is the maximum depth of any of the decision trees involved, and the size is n.The
complexity of the reduction is log n + d and the complexity of reducing Q to R, denoted Rdt(Q), is the
minimum complexity of any decision tree reduction from Q to R. The TFNPdt subclass associated with R,
denoted Rdt, is all Q ∈ TFNPdt such that Rdt(Q) = polylog(n).

TFNPdt is intimately connected to proof complexity via the following claim from [24, 25].

Claim. Let R ∈ {0, 1}n × O be any search problem in TFNPdt. Then there exists an unsatisfiable CNF
formula F on |O|-many variables such that R is equivalent to SF .

Proof. As R ∈ TFNPdt there are polylog(n)-depth decision trees {Ti}i∈O which verify R. Define a canon-
ical CNF formula associated with R to be

F :=
!

i∈O
¬T o

i ,

where we have abused notation and associated T o
i with the DNF obtained by taking a disjunction over the

(conjunction of the literals along) the accepting paths in T o
i . This makes a ¬T o

i a CNF formula expressing
that T 0

i outputs 0. It is not difficult to check that a solution to SF is equivalent to a solution to R.
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The upshot is that black-box TFNP is exactly the study of the false clause search problem! Thus, it
suffices to study the search problems for the canonical CNF formulas SF associated with R ∈ TFNPdt

instead of R itself. Furthermore, note that for any pair of decision trees {T o
i } and {T ′o

i } that verify some
R ∈ TFNPdt, the resulting false clause search problems SF and SF ′ are polylog(n)-reducible.

Using this connection to the false clause search problem, Göös et al. [25] observed that many important
proof systems are characterized by associated TFNPdt problems in the sense that the CNF formulas F that
are efficiently provable in that proof system are exactly the problems SF that are efficiently reducible to that
TFNPdt problem.

TFNP Characterizations of Proof Systems. The known characterizations of proof systems by TFNPdt

problems are all in terms of a somewhat non-standard complexity parameter. For a proof system P and any
unsatisfiable CNF formula F let

P (F ) := min{deg(Π) + log size(Π) : Π is a P -proof of F},

where deg denotes an associated degree measure of the proof system. For Nullstellensatz and Sherali-
Adams, this degree measure is the maximum degree of any polynomial in their proofs, while for Resolution,
degree is the proof width. While nonstandard, this complexity parameter is very natural. Indeed, all of the
query-to-communication lifting theorems referenced in the introduction lift lower bounds on a complexity
parameter for some proof system to lower bounds on some monotone circuit model.

We say that a TFNPdt problem R characterizes a proof system P if Rdt = {SF : P (F ) = polylog(n)};
in this case, we also say that P characterizes R. In fact, all of the known characterizations hold in a stronger
sense; let P be any of the proof systems listed above, and R be the canonical complete problem for its
corresponding TFNPdt class, then it holds that for any unsatisfiable CNF formula F ,

P (F ) = Θ(Rdt(SF )).

While we have a number of characterizations, there remain many important proof systems for which no
characterization is known. As well, there are prominent TFNPdt sub-classes — such as PPPdt — for which
no characterizing proof system is known. In order to state our main result (Theorem 1) we must formally
define a reflection principle.

What is a Reflection Principle?

The second condition of Theorem 1 is that the proof system must be able to prove its own soundness. A
reflection principle RefP for a proof system P states that P -proofs are sound; it says that if Π is a P -proof
of a CNF formula H then H must be unsatisfiable. The variables of a reflection principle specify a CNF
formula H , a P -proof Π, and a truth assignment α to H . The formula states that Π is indeed a P -proof of
H and α satisfies H ,

ProofP (H,Π) =⇒ ¬Sat(H,α).

We require that the reflection principle that the proof system proves is efficiently verifiable. We say that a
reflection principle is efficiently verifiable if it is encoded as a low-width CNF formula, and thus any solution
to the false clause search problem for the reflection principle (also known as the wrong proof problem [4,23])
can be efficiently verified.

For a proof system P , there are many ways to encode its proofs, with the choice of the encoding po-
tentially affecting the complexity of proving the associated reflection principle. Rather than worrying about
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the particular encoding, we will instead define one reflection principle for each efficiently verifiable way of
encoding P -proofs, which we will call a verification procedure. Recall that the complexity c of a proof is
always an upper bound on the width of the CNF being proven. For this reason, and to simplify notation, we
will allow the formula being proven to have width up to c.

Verification Procedure. A verification procedure V for a proof system P is a mapping of tuples (n,m, c)
to CNF formulas that generically encodes complexity-c (or O(c)) P -proofs of n-variate CNF formulas with
m clauses of width at most c. Specifically, the CNF formula Vn,m,c has three sets of variables x,H,Π, such
that:

– An assignment to the variables H := {Ci,j : i ∈ [m], j ∈ [c]} specifies a CNF formula with m
clauses over n variables, where Ci,j ∈ [2n] is the index of the j-th literal of the i-th clause of H; if
Ci,j ≤ n then it specifies a positive literal, and otherwise it specifies a negative literal.

– An assignment to the variables Π specifies a specific (purported) P -proof of H , such that any error
in Π can be verified by looking at the assignment to at most poly-logarithmically many variables of
Vn,m,c.

– The CNF formula Vn,m,c has 2Θ(c) many variables.

As the complexity parameter c measures the logarithm of the size, and by (3), the number of variables is
exponential in Θ(c), the second condition ensures that Vn,m,c is verifiable by looking at polynomial-in-c
many variables. In particular, this implies that the width of the CNF formula Vn,m,c is poly(c) The third
condition can be relaxed, and larger numbers of variables can be tolerated at the cost of worse bounds in
Theorem 6. We give a concrete example of a verification procedure for the Polynomial Calculus proof
system in Section 2.3.

For concreteness, we have fixed a particular encoding of H in order to avoid pathological codings;
e.g., ones in which use a SAT oracle to decide whether the formula is satisfiable encoded by H . Since we
allow arbitrary codings of proofs, this will be robust under different encodings of CNFs as long as they are
polynomial-time computable from ours.

We can now define a reflection principle for any proof system and verification procedure for that proof
system.

Reflection Principle. Let P be a proof system and V be a verification procedure for P -proofs. The reflec-
tion principle RefP,V associated with (P, V ) is the unsatisfiable formula

ProofnH ,mH ,c(H,Π) ∧ SatnH ,mH ,c(H,α),

where H is a CNF formula over nH variables with mH clauses of width at most c. The j-th literal (if any)
of the i-th clause of H is specified by a vector Ci,j of log(2nH + 1) many Boolean variables, and

– ProofnH ,mH ,c(H,Π) := VnH ,mH ,c(H,Π).

– SatnH ,mH ,(d,nF )(H,α) is the CNF formula stating that α is a satisfying assignment for H . This is
expressed as,

∀i ∈ [mH ], ∃j ∈ [c]
"#
[[Ci,j = xk]] ∧ αk

$
∨
#
[[Ci,j = ¬xk]] ∧ ¬αk

$%
,

which can be encoded as a CNF formula of width O(c log nH) and size mH exp(O(c log nH)).
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For simplicity of notation, we will drop the subscripts P, V from Ref when the proof system and veri-
fication procedures are clear. One technicality is that TFNPdt problems have one instance for each number
of variables n; to ensure that this is the case for Ref we could use a pairing function on the multiple sets
of variables for Ref, however we are going to ignore this detail. Each reflection principle gives rise to a
TFNPdt problem. Indeed, by construction Ref is verifiable by observing polylog(n) many bits, where n is
the total number of variables.

We are now ready to prove Theorem 1 which we split Theorem 4 and Theorem 6 and prove in the
following two sections.

2.1 A Proof System for any TFNP Problem

We next describe how any TFNPdt problem R can be transformed into a proof system for refuting unsat-
isfiable CNF formulas of polylog width. A proof Π in this proof system, of the (unsatisfiability) of a CNF
formula H , will consist of a low-depth decision reduction from H to the false clause search problem SF

for the unsatisfiable formula F associated with the TFNP problem R. For this, we first define a notion of
reduction between CNF formulas.

Suppose C is a clause over n variables, and T = {Ti}i∈[n] is a sequence of depth-d decision trees,
where Ti : {0, 1}s → {0, 1}. We write C(T ) to denote the CNF formula obtained by substituting the
decision trees Ti for each of the variablse xi in C and rewriting the result as a CNF formula. Formally,
C(T ) is formed by creating the a stacked decision tree TC that sequentially runs the decision trees Ti for
each variable xi used in C. A leaf of TC is labelled with a 1 if the root-to-leaf path causes the trees Ti to
output a satifying assignment for C; the other leaves are labelled with 0. Then C(T ) is the CNF

C(T ) :=
!

{¬p : p is a rejecting path of T},

where a path p is identified with the conjunction of the literals set true along the path, and ¬p is its negation.

Reductions Between CNF Formulas. Next, we define what is means to reduce one false clause search
problem to another. We say that a CNF formula H on nH variables and mH clauses reduces to an un-
satisfiable F = C1 ∧ · · · ∧ Cm over n variables via depth-d decision trees if there exist depth-d decision
trees T = {Ti}i∈n where Ti : {0, 1}nH → {0, 1}, and {T o

i }i∈[m] with T o
i : {0, 1}nH → [mH ] so that the

following conditions hold. Let FH be the CNF formula

FH :=
!

i∈[m]

!

p∈T o
i

Ci(T ) ∨ ¬p,

where p ranges over all paths of T o
i . Since Ci(T ) is a CNF, FH is readily written as a CNF by distributing

¬p into Ci(T ). Then each clause Ci(T )∨¬p must either be tautological (contains a literal and its negation)
or be a weakening of the clause of H indexed by the label at the end of the path p.

Observe that a depth-d decision tree reduction of SH to SF introduces a new false clause search problem
SFH

that is directly a refinement of H . Clearly, if F is unsatisfiable, then so is FH and consequently also H
is unsatisfiable.

Canonical Proof System. Let SF ∈ TFNPdt. The canonical proof system PF for SF proves an unsatisfiable
CNF formula H on nH variables if H is reducible to an instance of F on some n variables. A PF -proof Π
consists of the decision trees T = {Ti}i∈[n] and T 0 = {T o

i }i∈[m]. The size of a PF -proof is the number
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of variables n of the instance of F , and the depth is the maximum depth among the decision trees. The
complexity of a proof of an unsatisfiable CNF formula is defined as

PF (H) := min{depth(Π) + log size(Π) : Π is a PF -proof of H}.

This proof system is sound as any substitution of an unsatisfiable CNF formula is also unsatisfiable. To
see that it is efficiently verifiable, observe that it suffices to form the CNF FH from F and the decision trees
Ti and T 0

i , and check that each of the clauses of FH is either tautological or is a weakening of a clause in
H . This can be done in polynomial-time in the size of the proof.

The next theorem states that PF has a short proof of H iff SH efficiently reduces to SF . This is almost
immediate from the definitions.

Theorem 4. Let SF ∈ TFNPdt and H be an unsatisfiable CNF formula. Then,

(a) If H has a size s and depth d proof in PF , then SH has a depth d and size O(s) reduction to SF .

(b) If SH has a size s and depth d reduction to SF , then H has a size s2O(d) and depth d proof in PF .

In particular, SdtF (SH) = Θ(PF (H)).

Proof. To prove (b), suppose T1, . . . , Tn and T o
1 , . . . , T

o
m is a size-s and depth-d decision-tree reduction

from SH to SF . Construct FH as above using these decision trees. Let L be a clause of Ci(T ) for some
i ∈ [m] and let p be a path in T o

i . If Ci(T ) ∨ ¬p is tautological, then we are done. Otherwise, we will argue
that it is a weakening of a clause of H . Fix any assignment x which falsifies L ∨ ¬p, then Ci is falsified
by the assignment T1(x), . . . , Tn(x) and T o

i (x) follows path p. Thus, by the correctness of the reduction,
whenever L ∨ ¬p is false, the T o

i (x)-th clause of ¬H must also be false, and so L ∨ ¬p is a weakening of
this clause. Each decision tree in the proof has depth at most d and therefore the size is at most s2O(d).

To prove (a), let n, T1, . . . , Tn, T
o
1 , . . . , T

o
m be a PF proof of H of size s and depth d. We claim that this

is also a reduction from SH and SF . Indeed, fix any assignment x such that T1, . . . , Tn(x) falsifies clause Ci

of F and the decision tree T o
i (x) follows some path p. Then, a clause of the formula Ci(T )∨¬p is falsified

under x, and furthermore that clause is a weakening of the T o
i (x)-th clause of H . Thus, (x, T o

i (x)) ∈ SH .
This reduction has depth d and size n = O(s).

The Canonical Proof System Proves its own Soundness

In this section we define a natural formulation of the reflection principle for the proof system PF for any
TFNPdt problem SF by way of defining a verification procedure for PF . We show that the canonical proof
system can prove this encoding of the reflection principle. To do so, we require the notion of a prototype of
a decision tree.

A proto-decision tree of depth d over variables α1, . . . ,αn and with output in O is a complete binary
tree in which the label of every internal vertex v is given by a vector of log n of variables xv whose value
specifies the index of some variable αi, and such that one child of v is labelled 0 and the other is labelled
1. Each leaf l is labelled with log |O| variables xl. For a given truth assignment to the variables xv for all
internal vertices c, the proto-decision tree induces a decision tree that queries that variables α1, . . . ,αn as
specified by the values of all of the xv’s. Specifically, for a given internal vertex v, the truth values assigned
to the vector xv at v in the proto-decision tree determines a value i so that αi is queried at the corresponding
vertex of the induced decision tree. Similarly, for a leaf l, the values of the variables xl specify an j ∈ O
which is the label for the corresponding leaf in the induced decision tree.
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The decision tree simulating a proto-decision tree T̂ is obtained from T̂ as follows: Replace each internal
vertex v of T̂ by a complete binary tree querying the variables of xv, and at each leaf where xv = i, queries
αi. The leaves l of the proto-decision tree are replaced with complete binary trees querying xl in which each
leaf where xl = j is labelled by the output j ∈ O.

Verification Procedure for PF . Let SF ∈ TFNPdt. We define a verification procedure V P
nH ,mH ,(d,nF ) for

PF , which encodes a complexity c = (d + log nF ) P -proof Π of a CNF formula H on nH variables and
mH clauses as follows. Π is specified by nF depth-d proto-decision trees T̂1, . . . , T̂nF with output in {0, 1}
and mF depth-d proto-decision trees T̂ o

1 , . . . , T̂
o
mF

with output in [mH ]. The constraints of Proof enforce
that each clause of the reduced CNF formula FH is a weakening of a clause of H . For each i ∈ [nF ], let Si

be the decision tree simulating T̂i but eliminating the queries to the variables αi.† Recall that the assignment
of truth values to the vector of variables xv at a vertex v determines the index i ∈ [nH ] of the variable being
queried at v in the decision tree. Let zk ∈ [nF ] denote the k-th variable of F .

For each clause Ci in F , consider the following binary decision tree TCi : First, it runs the decision trees
Sk for every k ∈ [nF ] such that Ci involves zk: this determines the literals which occur in one of clauses
of FH , namely in one of the clauses that is formed by applying the decision trees T̂i to the clause Ci. We
temporarily use C ′ to denote this clause of FH . Note that C ′ involves variables of H; however, the truth
values (the αi values) of the variables in C ′ have not been queried and are instead treated in the next phase as
being set to the values that falsify C ′. Second, it runs the decision tree simulating T̂i. A vertex of T̂i labelled
with an xv is handled by querying the variables xv. The results of the queries to xv specify a variable αi.
The variable αi may appear in C ′ and if so is treated as having the value that falsifies C ′. If, however, the
variable αi does not appear in C ′, then it is non-deterministically queried; that is, the tree TCi branches to
try both 0 and 1 as truth values for αi. The result of running the decision tree simulating T̂i is a value ℓ
specifying a clause of H . Third, it queries the vector of variables Cℓ,j for j ∈ [c]: this determines the literals
of the ℓ-th clause of H . If a path in this decision tree determines that the clause C ′ of FH is not a weakening
of the ℓ-th clause of H , then the path is called “bad”.

The CNF formula ProofnH ,mH ,(d,nF )(H,Π) is
&

bad p ¬p, expressing that there is no bad path. It thus is
satisfied only when the Π is a valid P (F )-proof of H .

As each proto-decision tree has depth at most d, F has width at most polylog(nF ), and H has width at
most c, the resulting CNF formula has width dpolylog(nF ) + logmH + c log nH .

Canonical Reflection Principle. Let SF ∈ TFNPdt. We define its canonical reflection principle RefF to
be the conjunction

ProofnH ,mH ,(d,nF )(H,Π) ∧ SatnH ,mH ,(d,nF )(H,α),

where Sat is defined as in the definition of the reflection principle and Proof := V P
nH ,mH ,(d,nF ). In total, this

is a CNF formula of width d log nF +logmH +c log nH over n = mF 2
d+1+nF 2

d log nH +cmH log 2nH

many variables. In particular, under any assignment to the variables, any clause of RefF can be evaluated
by looking at the values of polylog(n) many variables, where n is number of variables of Ref, and so
SRefF ∈ TFNPdt.

Theorem 5. For any SF ∈ TFNPdt, PF (RefF ) ≤ polylog(n).

Proof. Fix an instance of SRefF . By Theorem 4, it suffices to show that SRefF is reducible to an instance
of SF . Let the instance of RefF be specified with parameters (nH ,mH , (d, nF )), letting c = d + log nF .

†ProofnH ,mH ,(d,nF )(H,Π) does not involve the variables αi.
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For each proto-decision tree T̂i of RefF , let Si be the decision tree that simulates it. As well, let So
i be the

decision tree that simulates T̂ o
i .

We will define the decision trees of the reduction T1, . . . , TnF , T o
1 , . . . , T

o
mF

from SRefF to an instance of
SF on nF variables. Define Ti := Si, and let T o

i be the decision tree implementing the following algorithm
which takes as input x ∈ {0, 1}n and outputs a falsified clause of RefF (x) provided that the assignment
T1(x), . . . , TnF (x) falsifies clause the clause Ci of F . First, the algorithm runs the decision trees Ti for each
i ∈ vars(Ci), and then it runs the decision tree for So

i .
Let x∗ be the restriction of x to the variables queried thus far in the algorithm. As (T1(x

∗), . . . TnF (x
∗))

falsifies Ci, there must be a clause of FH falsified by x∗. This clause should be a weakening of T o
i (x

∗)-th
clause of H . To check whether this is indeed the case, we ask for the indices of the variables that occur in the
T o
i (x

∗)-th clause of H — this requires us to query at most c log nH many variables. If our clause is indeed
a weakening of the T o

i (x
∗)-th clause of H , then our x∗ must falsify the T o

i (x
∗)-th clause of H , violating a

constraint of SAT, and so our algorithm will output the index of this violated clause SAT. Otherwise, if this
is not the case, then x∗ must falsify a clause of Proof, and so we can output the index of this violated clause.

To convert this algorithm into a decision tree we must label the leaves which are the terminals of paths
which are not followed in any run of this algorithm. For a path not to be followed by this algorithm, it must
either correspond to a partial assignment x∗ such that (T1(x

∗), . . . , TnF (x
∗)) satisfies Ci, and therefore the

output at that leaf can be arbitrary. As H has width at most c and F has width polylog(nF ), the depth d∗

of the resulting decision tree is d∗ = O(c(d log nH + logmH)) + polylog(nF ) and the number of variables
is nF ; thus the complexity of the reduction is d∗ + log nF , which is poly-logarithmic in n, the number of
variables of Ref.

2.2 TFNP Problems for Proof systems which Prove their own Soundness

In this section we identify the necessary conditions for a proof system to be characterized by a TFNPdt prob-
lem. The first necessary condition is that the proof system must be closed under decision-tree reductions, as
TFNPdt classes are closed under decision tree reductions.

Closure under Decision Tree Reductions. A proof system P is closed under decision tree reductions if
whenever there is a P -proof of complexity c of an unsatisfiable formula F , and H reduces to F by depth-d
decision trees, then there is a P -proof of H of complexity O(cd).

Note that the canonical proof system is closed under decision tree reductions. In all proof systems
which are known to admit characterization by a TFNPdt problem, closure under decision tree reductions
takes the form of directly substituting (an appropriate encoding of) decision trees into the proofs, resulting
in a proof of complexity O(cd). For example, if H reduces to F and we have a Resolution proof of F , then
we can obtain a Resolution proof of H by replacing each variable in the proof of F by the (DNF formula
corresponding to the accepting paths of) corresponding decision tree from the reduction.

The second condition is that the proof system must be able to prove its own soundness. That is, it must
be admit short proofs of a reflection principle about itself. As we will show, any verification procedure for
its proofs will do.

Theorem 6. Let P be a proof system that is closed under decision tree reductions and let V be a verification
procedure for P . For any unsatisfiable CNF formula H ,

i) Sdt
Ref(SH) ∈ O(P (H)).
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ii) P (H) ∈ O(SdtRef(SH)P (Ref)).

In particular, if P has polylog(n)-complexity proofs of Ref then P is characterized by SRef .

First, we give a high-level sketch of the proof. Let P be a proof system that satisfying (i) and (ii).
Observe that SRef ∈ TFNPdt as Ref is efficiently verifiable, and let SH ∈ TFNPdt for an unsatisfiable CNF
formula H , such that SdtRef(R) = polylog(n). Then, there is a decision-tree reduction from SH to SRef and,
as P is closed under decision tree reductions and there is a O(polylogn)-complexity P -proof of RefP , there
must also be an efficient P -proof of H . Conversely, suppose that Π is a polylog(n)-complexity P -proof of
an unsatisfiable CNF formula H , then we can construct a reduction from SH to SRef by hard-wiring H and
Π into SRef , leaving the only truth assignment free. On any input α to SH , the hard-wired instance of SRef
must output a falsified clause of H , as Π is a valid P -proof of H .

Proof of Theorem 6. Let H be any unsatisfiable CNF formula and recall that SdtRef(SH) denotes the com-
plexity of reducing SH to SRef . As P is closed under decision tree reductions, this implies that there is a
P -proof of H with complexity P (H) = O(SdtRef(SH)P (Ref)).

Conversely, suppose that Π is a complexity c := P (H) proof in P of an unsatisfiable CNF formula H .
Then, we can construct a reduction from SH to an instance of SRef as follows. Let nH ,mH be the number of
variables and number of clauses respectively. The reduction T = (T1, . . . , Tn) hardwires the input (H,Π)
into the instance of SRef with variables nH ,mH , c, using constant decision trees, leaving only α unspecified.
Next, we argue that this reduction is correct. Let α ∈ {0, 1}nH be any assignment to SH then, as Π is a
valid P -proof of H , the only outputs of SRef(T (α)) are clauses of H which are falsified under α. As the
number of variables of the instance of Ref is exponential in Θ(c), and the decision trees T are constant,
SdtRef(SH) = O(P (H)).

2.3 Example: The Polynomial Calculus

As an example, we give a characterization of the Polynomial Calculus by a natural TFNPdt problem and
show that it can prove a reflection principle about itself, proving Theorem 2. This answers an open ques-
tion from [24], asking for a characterization of the Polynomial Calculus. We note that the definition of this
TFNPdt problem can be adapted in a straightforward way to characterize Fq-Polynomial Calculus, Polyno-
mial Calculus over the integers with coefficients measured in unary, and dag-like Sherali-Adams.

The Polynomial Calculus (PC). The F2-Polynomial Calculus proves that an unsatisfiable system of F2-
polynomial equations {pi(x) = 0}i∈[m] has no solutions over {0, 1}. An unsatisfiable CNF formula F =

C1 ∧ . . . ∧ Cm is encoded as such a system of equations by mapping each clause to a linear equation Ci

such that Ci(x) = 1 iff Ci(x) = 0. We will exclusively be operating with multilinear arithmetic (that is, the
degree of any polynomial) — for example, x2i and xi are represented by the same function. Formally, we
operate modulo the ideal 〈x2i = xi〉i∈[n].

A F2-PC proof of {aix = 0} is a derivation of the trivially false polynomial 1 = 0 from {aix = 0}i∈[m]

by the following two rules:

Addition. From two previously derived polynomials p, q, deduce p+ q.

Multiplication. From a previously derived polynomial p, deduce xip for some i ∈ [n].

12



The size of a proof is the number of monomials (with multiplicity) in the proof, the length is the number
of lines (applications of rules), and the degree is the maximum degree of any polynomial at any step in the
proof. The complexity of proving an unsatisfiable CNF formula F in F2-PC is

min{size(Π) + log degree(Π) : F2-PC proofs Π of F}

We call the TFNPdt problem which characterizes F2-PC INDPPA as it resembles a strong induction over
a PPA-complete problem. Before stating this problem formally, we will describe it at a high level. An
instance of INDPPA is given by a set of N nodes and a set of L pools which are (possibly overlapping)
subsets of the N nodes. There is a distinguished node which we will call 1, and the L-th pool contains
only the 1 vertex. These pools are arranged in a directed acyclic graph (dag), and for each pool we have a
matching on the nodes that occur (with multiplicity) in that pool and its immediate children, such that only
nodes of the same type are matched to each other; i.e., if x ∈ N occurs in this set then it must be matched
to another copy of x. Since the L-th pool contains only a single node, there must be some pool with an
unmatched vertex. A solution is an unmatched or mismatched node. We remark that this dag is specified by
the input to the problem. This is crucial; if the graph was fixed in advance, then this problem would be in
PPA, and thus gives rise to a Nullstellensatz proof — if P (ℓ)

ℓ′ (using the notation below) was fixed then the
resulting problem would be PPA-complete.

Strong Induction PPA. The INDPPA problem is defined as follows

– Structure. [L] pools and [N ] nodes. We think of each ℓ ∈ [L] as being associated with its own copy
of [N ].

– Variables. For each ℓ ∈ L and ℓ′ < ℓ we have P
(ℓ)
ℓ′ ∈ {0, 1} indicating whether ℓ′ is an immediate

predecessor of pool ℓ. For each pool ℓ ∈ [L] and node m ∈ [N ], we have a variable A
(ℓ)
m ∈ {0, 1}

indicating whether node m is active at pool ℓ. Finally, we have a matching between ℓ ∈ [ℓ] and all
of its predecessors. For each ℓ′ < ℓ and m ∈ [N ] we have a variable M

(ℓ)
ℓ′,m′ ∈ [ℓ] × [N ] indicating

to which node the node m′ of ℓ′’s copy of [N ] is matched to. The root pool L has A
(L)
1 = 1 and

A
(L)
m = 0 for all m ∕= 1.

– Solutions. Since the root has an odd number of active nodes, and each matching is even, there must
be some pool ℓ ∈ [L] with an erroneous matching. A solution is any triple (ℓ, ℓ′,m) ∈ [L]2 × [N ]
such that ℓ′ is a predecessor of ℓ and is an active node for ℓ′, and m is matched to a node m′ which is
not matched to m. That is, P (ℓ)

ℓ′ = 1, A(ℓ)
m = 1, M (ℓ)

(ℓ′,m) = (ℓ′′,m′), and either P (ℓ)
ℓ′′ = 0, A(ℓ′′)

m′ = 0,

or M (ℓ)
ℓ′′,m′ ∕= (ℓ′,m).

Observe that INDPPA ∈ TFNPdt as a candidate solution can be verified in by looking at only a O(log n)
many variables.
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Figure 1: An example matching for Pool 4. The pink area indicates the active predecessors of Pool 4, i.e.,
P

(4)
1 = 0 and P

(4)
2 = P

(4)
3 = 1. The yellow circles indicate the active nodes for that pool; for example Pool

1 has only node 1 active: A(1)
1 = 1, while A

(1)
m = 0 for all m ∕= 1. Copies of the same node within the pink

area are matched; e.g., M (4)
2,2 = (3, 2) and M

(4)
3,2 = (2, 2).

Theorem 7. For any unsatisfiable CNF formula F ,

– If SF has a complexity-c reduction to an instance of INDPPA, then there is a degree-O(d) and size
2O(c) F2-PC proof of F .

– If F has a size-s and degree-d F2-PC(F ) proof, then there is a complexity O(d + log s) reduction
from SF to INDPPA.

In particular, INDdt
PPA(SF ) = Θ(F2-PC(F ))

Note that an analogous statement holds for the F2-PCR proof system, which builds on F2-PC to include
additional variables xi for each i ∈ [n] to represent ¬xi, along with the additional axioms xi + xi = 0.
Indeed, this is just a difference of the encoding of the CNF formula F as a set of linear equations and does
not affect the proof or the resulting TFNPdt problem!

We break the proof of this theorem into two lemmas, Lemma 8 and Lemma 9.

Lemma 8. Let F be an unsatisfiable CNF formula. If SF is reducible to an instance of INDPPA on n vari-
ables using decision trees of depth at most d then there is an O(d)-degree and size-n22O(d) F2-Polynomial
Calculus proof of F .

Proof. Let F be an unsatisfiable CNF formula and suppose that it is reducible to an instance of INDPPA on
n variables using decision trees of depth at most d. That is, each variable x of the INDPPA is computed by a
depth-d decision tree Tx querying variables of F ; for simplicity, we will abuse notation and associate each
variable x with the polynomial formed by taking the sum over the (product of the literals on each of the)
accepting paths of Tx. As well, let {T o

i }i be the decision trees for each solution of the INDPPA instance.
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By induction from ℓ = 1, . . . , L we will derive the polynomial

qℓ :=
'

m∈[N ]

A(ℓ)
m = 0

over F2, which roughly says that there is a perfect matching between the nodes in ℓ and the nodes in its
predecessors. This will be sufficient to complete the proof as A(L)

1 = 1 and A
(L)
m = 0 for all m ∕= 1, and

so the decision trees for these variables are identically 1 and 0 respectively. Thus, we will have derived
0 =

(
m∈[N ]A

(L)
m = A

(L)
1 = 1.

Now, suppose that we have derived qℓ′ = 0 for all ℓ′ < ℓ with with a degree-O(d) F2-PC proof; we
show how to drive qℓ = 0. At a high level, this follows from the fact that there is a perfect matching between
the nodes of pool ℓ and all of its predecessors. For simplicity of exposition, will definitional an additional
variable P

(ℓ)
ℓ := 1, whose decision tree is the constant 1 function.

Claim. There is a degree-O(d) and size-NL2O(d) F2-Polynomial Calculus proof from F of the polyno-
mial '

ℓ′≤ℓ

P
(ℓ)
ℓ′

'

m∈[N ]

A(ℓ′)
m = 0.

This claim is sufficient to complete the proof. Indeed, we can use it in order to derive qℓ = 0 from
qℓ′ = 0 for ℓ′ < ℓ (which we have derived by induction) without significantly increasing the degree. To see
this, multiply each qℓ′ by P

(ℓ)
ℓ′ and sum them to obtain

'

ℓ<ℓ′

P
(ℓ)
ℓ′ qℓ′ =

'

ℓ<ℓ′

P
(ℓ)
ℓ′

'

m∈[N ]

A(ℓ′)
m = 0.

Adding this polynomial to
(

ℓ′≤ℓ P
(ℓ)
ℓ′

(
m∈[N ]A

ℓ′
m = 0, which as a low-degree proof from F by the previ-

ous claim, gives pℓ = 0. Note that as each pℓ′ is a polynomial of degree-at-most-d, each of these polynomials
has degree at most 2d. Therefore, this inductive step requires degree O(d) and size LN2O(d).

Proof of Claim. For a polynomial p and outcome i let [[p = i]] denote the indicator polynomial which is 1 iff
p(x) = i and 0 otherwise. For m ∈ [N ] and ℓ′ < ℓ define the polynomial

match
(ℓ)
m,ℓ′ :=

'

m∗∈[N ],ℓ∗∈[ℓ]

""
M

(ℓ)
m,ℓ′ = (m∗, ℓ∗)

%%
P

(ℓ)
ℓ∗ A

(ℓ∗)
m∗

'

m̂∈[N ],ℓ̂∈[ℓ]

""
M

(ℓ)
m∗,ℓ∗ = (m̂, ℓ̂)

%%
,

which records whether the node m belonging to pool ℓ′ is correctly matched in the matching for pool ℓ.
We will break the terms of this polynomial into two sets, where C is the set of terms where the copy of m
belonging to ℓ′ is correctly matched, i.e., P (ℓ)

ℓ∗ = 1, A(ℓ∗)
m∗ = 1 and (m̂, ℓ̂) = (m, ℓ′). Let E be the remaining

set of terms, those where the copy of m belonging to ℓ′ is erroneously matched. Using this polynomial,
define

match(ℓ) :=
'

ℓ′∈[ℓ]
P

(ℓ)
ℓ′

'

m∈[N ]

A(ℓ′)
m match

(ℓ)
m,ℓ′

which records the matching for pool ℓ. Let C, E be as above (now taken over both sums). Observe that
each term in C occurs an even number of times, as (m, ℓ′) is matched to (m∗, ℓ∗) iff (m∗, ℓ∗) is matched
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to (m, ℓ′). Thus,
(

t∈C t = 0. Now, consider a term t ∈ E. This term corresponds to a node m in some
pool ℓ′ being incorrect matched; let s be this incorrect matching and we will denote by ts that t witnesses
the incorrect matching s. Let T o

s be the decision tree for solution s and abuse notation by identifying it with
the polynomial obtained by summing over (the product of the literals on) each of its paths. Recalling that
the result of summing over all paths in a decision tree is 1, we have

match(ℓ) =
'

t∗∈C
t∗ +

'

ts∈E
ts = 0 +

'

ts∈E
ts · Ts.

An incorrect matching s is a solution to INDPPA, and thus any truth assignment x ∈ {0, 1}n which fal-
sifies ts must also falsify the Ts(x)-th clause C of F , as this instance of INDPPA solves SF . It follows
each term of ts · Ts must contain the polynomial C for some clause C of F , and therefore ts · Ts can be
derived by multiplication from the axiom C = 0. The degree of the proof is 7d and the size is NL2O(d).

x1x2 + x1x3

x1x2 + x1 x1x3 + x1

x3 + x1

x1x2

x1

x1

x1x3

x3

x1

x1x3

x1x2

x1

11

Figure 2: A INDPPA instance constructed from a Polynomial Calculus derivation. Left: a Polynomial
Calculus derivation. Right: the corresponding INDPPA instance. The non-zero variable of the INDPPA is
labelled with the variables that they query in their decision tree. The red area is represents the children of
the pool corresponding to the line x1x2 + x1x3 (i.e., P (4)

2 = P
(4)
3 = 1), while the blue area indicates the

children of the line x1x3 + x1 (P (2)
1 = x1). The black lines indicate the matchings.

We now prove the converse of Theorem 7.

Lemma 9. Let F be an unsatisfiable CNF formula on n variables. If there is a F2-Polynomial Calculus
proof of F with size s, length L, and depth d then SF is reducible by decision tress of depth O(d) to an
instance of INDPPA on O(sL) variables.

Note that this establishes the converse as the length of a F2-PC proof is always upper-bounded by the
size.
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Proof. Let N be the number of distinct monomials that appear in the F2-PC proof of F . We construct an
instance of INDPPA over pools [L] and nodes [N ]. We abuse notation and associate each ℓ ∈ [L] with the
ℓ-th line in the proof and each m ∈ [N ] with its corresponding monomial.

Fix some ℓ ∈ [L] and for each m ∈ [N ] occurring in line ℓ, define A
(ℓ)
m to be the depth-d decision tree

which outputs 1 iff m(x) = 1. For the remaining m, set A(ℓ)
m = 0.

We set the predecessor variables as follows. If ℓ was derived by addition from ℓ′, ℓ′′, then set P (ℓ)
ℓ′ =

P
(ℓ)
ℓ′′ = 1 and P

(ℓ)
ℓ∗ for all other ℓ∗. Otherwise, if ℓ was derived by multiplication by a variable xi from ℓ′,

then set P (ℓ)
ℓ′ = xi, and P

(ℓ)
ℓ∗ = 0 for all ℓ∗ ∕= ℓ′. Finally, if ℓ was an initial clause of F , then we set P (ℓ)

ℓ∗ = 0
for all ℓ∗.

Next, we set the matching variables of each ℓ which does not correspond to an initial clause of F as
follows. Observe that if ℓ was derived by addition from ℓ′, ℓ′′ then every monomial m in ℓ must occur in
exactly one of ℓ′, ℓ′′ as otherwise it would have cancelled over F2. Thus, if ℓ′ is the child of ℓ in which m

also occurs then we set M (ℓ)
ℓ′,m = (ℓ,m) and M

(ℓ)
ℓ,m = (ℓ′,m), matching those two occurrences of the m-th

node. Otherwise, if m does not appear in ℓ, but is in one of the predecessors of ℓ, say ℓ′, then it must also
appear in ℓ′′. In this case we set M (ℓ)

ℓ′,m = (ℓ′′,m) and M
(ℓ)
ℓ′′,m = (ℓ′,m). Finally if m does not occur in any

of these lines, then we set M (ℓ)
ℓ∗,m arbitrarily for ℓ∗ ∈ {ℓ, ℓ′, ℓ′′}.

Otherwise, if ℓ was derived from ℓ′ by multiplication with some variable xi then we set the matching
in a similar way as above. A monomial m occurs in ℓ if either m or m \ xi occurs in ℓ′, but not both. For
each m ∈ [N ], if m occurs in ℓ then we set M (ℓ)

ℓ,m match it to the m or m \ xi that occurs in ℓ′, and set
the matching variable for this node to match it back to (ℓ,m). Otherwise, if m and m \ xi occur in ℓ′ then
set M (ℓ)

ℓ′,m = (ℓ′,m \ xi) and M
(ℓ)
ℓ′,m\xi

= (ℓ′,m). Finally, for match the m which do not occur in ℓ or ℓ′

arbitrarily.
Finally, we set the matching variables of the ℓ ∈ L which correspond to an axiom A ∈ {C : C ∈ F} as

follows. Each M
(ℓ)
ℓ,m is defined by querying the variables in A (of which there are at most d by definition). If

A is satisfied, then we fix an arbitrary matching between the monomials of A, and otherwise if A is falsified
then we fix an arbitrary false matching (say, match each of the monomials in A in a cycle).

Observe that violations occur only in the matchings of ℓ ∈ [L] which correspond to clauses of F that
are falsified. Thus, any solution to this instance of INDPPA will be a solution to SF and we can define the
output decision trees for these clauses as such. The output decision trees corresponding to other solutions
can be set to output a fixed arbitrary solution as those solutions will never occur.

The Polynomial Calculus Proves its own Soundness

Next, we state a reflection principle for the F2-Polynomial Calculus, using a natural verification procedure.

A Verification Procedure for F2-PC. We define the following verification procedure V PC
nH ,mH ,(d,s,L)(H,Π)

for c = d+ log s+ logL. For simplicity of description we have included a length parameter L, however as
L ≤ s, we could have used s instead and included additional variables to indicate which lines are active and
which are not; this would only affect the complexity up to log-factors. For simplicity of notation, we will
group the F2-PC rules into a single inference rule:

l1 l2
l1x+ l2y

for any x, y ∈ {0, 1, x1, . . . , xn}.
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Each line ℓ ∈ [L] has a list of s degree-d monomials mon
(ℓ)
m for m ∈ [s], where mon

(ℓ)
m,i ∈ [nH ] for

i ∈ [d] specifies the i-th variable in m. The (nh + 1)-st value is understood to indicate the 1 polynomial.
However, we do not want every line to have m monomials, and so we include a variable a(ℓ)m ∈ {0, 1} which
indicates whether the i-th monomial is active — actually occurs in ℓ. We reserve the first mH lines ℓ ∈ [L]

for the input clauses of H . Each line ℓ > mH has two predecessor pointers p(ℓ)1 , p
(ℓ)
2 ∈ [ℓ − 1] indicating

the lines from which ℓ was derived (if any), and v
(ℓ)
1 , v

(ℓ)
2 ∈ [nH + 2] indicating the the variables x, y that

the lines indicated by p
(ℓ)
1 , p

(ℓ)
2 were multiplied by in order to obtain ℓ; the final two values nH + 1, nH + 2

indicate the constants 0 and 1 respectively. Finally, to ensure that each inference is sound, for every line
ℓ there is a matching between the monomials of ℓ and those of ℓ′ < ℓ. We will require that each active
monomial for ℓ is matched to an appropriate active monomial of its predecessors. The matching is given
by variables match

(ℓ)
ℓ′,m′ ∈ {0, 1, 2} × [s], where 0 indicates that m′ is matched to a monomial in ℓ, 1 to a

monomial in p
(ℓ)
1 and 2 means that it is matched to a monomial in p

(ℓ)
2 . For the leaves ℓ ∈ [mH ] we enforce

that there is a matching between its active monomials match
(ℓ)
ℓ,m′ ∈ [s].

The constraints are as follows:

– Initial Clauses. We enforce that the first mH lines are active, that the monomials of ℓ ∈ [mH ] are
exactly the monomials of the ℓ-th clause of H , and that each active monomial is matched with another
active monomial in ℓ.

– Root. To require that this is indeed a proof of H , we enforce that the root L of the proof has a(L)1 = 1,
mon

(L)
1,i = nH + 1 (i.e., is the constant 1 polynomial) for all i ∈ [d], and a

(ℓ)
m = 0 for all m ∕= 1.

– Inference. To express the inference rule, we would like to state that if line ℓ > mH was derived
from lines p

(ℓ)
1 , p

(ℓ)
2 with variables v

(ℓ)
1 , v

(ℓ)
2 , then the monomials of ℓ are exactly those in v

(ℓ)
1 p

(ℓ)
1 +

v
(ℓ)
2 p

(ℓ)
2 after cancelling mod2. More concretely, that each active monomial in ℓ is matched to with

appropriate active monomial in p
(ℓ)
1 or p(ℓ)2 .

Define RefPC := Sat ∧ ProofPC where ProofPC := V PC. We show that F2-PC has short proofs of
RefPC.

Theorem 10. PC(RefPC) ≤ polylog(n).

Proof. By Theorem 7 it suffices to construct a reduction from RefPC to INDPPA Fix an instance of RefPC

with parameters nH ,mH , (d, s, L). We construct an instance of INDPPA with L pools and s nodes. The
high-level idea of the proof is simple: we view RefPC as INDPPA, where each node for each line corresponds
to a monomial which is encoded by d log nH bits. We then arrange the matching in the INDPPA instance so
that two nodes m,m′ that are matched in RefPC are matched in INDPPA if they were correctly derived — if
m is derived from m′ by multiplication by a variable x then we check that indeed m = m′x.

First, we define the decision trees for each of the variables of the INDPPA instance. For each ℓ ∈ [L] and
ℓ′ < ℓ, we define its predecessor variables P (ℓ)

ℓ′ by querying p
(ℓ)
1 and p

(ℓ)
2 and outputting 1 iff either of these

is ℓ′.
The m-th node of ℓ has its activity variable A

(ℓ)
m defined by checking that a(ℓ) = 1, then querying the

d log nH bits of mon
(ℓ)
m , and then checking that αi = 1 for all i ∈ Vars(mon

(ℓ)
m ) (the variables in monomial

m), and outputting 1 if all of these checks pass, and 0 otherwise.
Finally, the matching variables M

(ℓ)
ℓ′,m′ are defined as follows. If ℓ′ ∕= ℓ we query p

(ℓ)
1 and p

(ℓ)
2 to

determine if either ℓ′ is one of the children of ℓ. If it is not then the output of M
(ℓ)
ℓ′,m′ can be arbitrary.
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Otherwise, if ℓ′ = ℓ then we can continue. We query v
(ℓ)
1 to determine the variable y that was used to

derive monomial m′, and we query match
(ℓ)
ℓ′,m to obtain a pair j ∈ {0, 1, 2} × [s] and m∗ ∈ [s] indicating

to which child of ℓ and which monomial m∗ the monomial m is matched. As well, we query match
(ℓ)

p
(ℓ)
j ,m∗

to ensure that this matching is consistent. Finally, query mon
(ℓ)
m and mon

(p
(ℓ)
j )

m∗ , where p
(ℓ)
0 := ℓ. If the

variables occurring m are not the the same as those in v
(ℓ)
1 m∗, then let M (ℓ)

ℓ′,m be some arbitrary (ℓ̂, m̂) such

that such that ℓ̂ ∕= p
(ℓ)
1 , p

(ℓ)
2 . In particular, this means that a(ℓ̂) = 0 and this will cause a violation (solution).

Otherwise, let the output of M (ℓ)
ℓ′,m = (p

(ℓ)
j ,m∗), where p

(ℓ)
0 = ℓ.

Next, we define the output decision trees for each solution. Let (ℓ, ℓ′,m) be any solution to this instance
of INDPPA. We create a decision tree mapping this solution back to a falsified clause of RefPC. If ℓ is one of
the initial clauses Cℓ of H , i.e., ℓ ≤ mH , then we query whether Cℓ(α) = 0, and if so we output the index
of the ℓ-th clause of H .

Otherwise, this decision tree first queries the decision tree for M (ℓ)
ℓ′,m. If this decision tree discovered

that m was matched to a monomial m∗ in the instance of RefPC for which m ∕= v
(ℓ)
1 m∗ then we output the

index of the clause of RefPC which states that this should not happen. Similarly, if we discovered that m
was matched to a monomial m∗ but that monomial was not matched back to m then we output the clause of
RefPC stating that this cannot happen.

Polynomial Calculus over Different Domains

We end this section by sketching how INDPPA can be modified in order to characterize proof systems that
are similar to the F2-Polynomial Calculus. First, it is straightforward to generalize INDPPA to INDPPAq

in order to characterize Fq-Polynomial Calculus for other q. Rather than matching pairs of nodes, in this
principle, one matches q-tuples of nodes.

The unary Polynomial Calculus uPC proof system is the Polynomial Calculus operating over the in-
tegers, rather than a finite field. The addition rule is generalized to allow multiplication by integer-valued
constants: from previously derived p, q, one may deduce αp + βq for α,β ∈ Z. Unary refers to the fact
that the size of a uPC proof is the number of monomials counted with multiplicity; i.e., if the monomial
αm occurs in some line in the proof then it contributes |α| towards the size. To characterize uPC, one can
define INDPPAD which is a variant of INDPPA with directed matchings; this is a generalization of the result
from [24] which showed that the unary Nullstellensatz proof system is characterized by PPADdt. More
formally, for each pool ℓ, the predecessor variables P (ℓ)

ℓ′ for ℓ′ < ℓ now take value in {0, . . . , N} indicating
that line pool ℓ has P

(ℓ)
ℓ′ copies of ℓ′ as its children (and each copy is then involved in the matching for

ℓ). Each matching is directed: each node involved in the matching for a pool ℓ has either a successor or a
predecessor. Let ℓ′ < ℓ, then one should think of a directed edge from a node belonging to (a copy of) ℓ′

to a node of ℓ as a monomial with a positive coefficient in the ℓ-th line in the uPC proof, while a directed
edge from a node of ℓ to a node belong to (a copy of) ℓ′ as being a negative monomial in line ℓ. If two nodes
which belong to children ℓ′, ℓ′′ < ℓ are matched, then this correspond to a positive instance of a monomial
cancelling with a negative instance during addition. The solutions of INDPPAD are the solutions of INDPPA

together with the following any violation to the following two conditions. The first, which prevents nodes
from being used multiple times, is that each copy of a node in the matching for ℓ should have a predecessor
or successor, but not both. The second, which essentially says that the sign of a monomial should always
remain the same, is that if a copy of a node m from line ℓ′ < ℓ is involved in the matching for ℓ then, if it

19



has a successor (predecessor) in the matching for ℓ then it should have a predecessor (successor) in the in
the matching for ℓ′.

By a similar approach we can define an induction PPADS which captures the unary dag-like Sherali-
Adams proof system (see e.g., [17] for a definition). In fact, it seems that this is a fairly general phenomenon:
one can take a TFNP problem which characterizes a static proof system and construct an induction variant
of that TFNP class, in the manner to what we have done here, to characterize the dag-like variant of that
proof system.

3 Communication TFNP and Monotone Circuit Complexity

In addition to proof systems, the communication complexity versions of TFNP sub-classes have been used
to provide characterizations of monotone circuit models [25]. When combined with lifting techniques trans-
lating decision tree lower bounds to communication complexity lower bounds, this has resulted in numerous
new lower bounds for a variety of monotone circuit models. For example, Nullstellensatz lower bounds
were used to prove PPA lower bounds in the black-box setting, which were lifted to PPA lower bounds
in communication, which implied monotone span program bounds. In this section, we give generic con-
ditions under which a class of monotone functions has a communication-TFNP characterization, proving
Theorem 3. As has been pointed out in the past, there is a direct mapping from TFNP problems to partial
monotone functions, and we utilize this mapping. This gives an exact characterization of when a complexity
measure on partial functions has a TFNP characterization. Since complexity measures on total functions in-
duce complexity measures on partial functions, this also gives a general condition under which a complexity
measure on total monotone functions has a TFNP characterization. Unfortunately, we don’t have a converse
statement for total functions and it is conceivable that measures that don’t meet our criteria also have TFNP
characterizations.

It would be plausible to propose that some of the results here might have analogs for non-monotone
models of computation. However, the techniques we use seem not to hold for these models, which might
indicate why TFNP or other communication complexity characterizations of non-monotone circuits are
much more difficult to use to prove lower bounds.

For n bit strings x and x′, we say that x′ dominates x, written x ≤ x′, if for every 1 ≤ i ≤ n, xi ≤ x′i. A
partial Boolean function f on n bit strings is described by two disjoint sets of strings, Nof the strings which
should be rejected, and Y esf , the strings that should be accepted. f is total if Nof ∪ Y esf = {0, 1}n. A
partial Boolean function f is monotone if whenever x ∈ Nof and x′ ≤ x, then x′ ∈ Nof and whenever
y ∈ Y esf and y ≤ y′ then y′ ∈ Y esf . For partial functions f and g, we say f is solved by g if Nof ⊆ Nog
and Y esf ⊆ Y esg.

Let h be a mapping from strings of length n to strings of length n′, and f a partial function on n′ bit
inputs. Then f ◦ h is the partial function where Y esf◦h = {x|h(x) ∈ Y esf} and Nof◦h = {x|h(x) ∈
Nof}. If h is monotone in its input, and f is monotone, then f ◦ h is monotone.

Monotone Partial Function Complexity Measures. A monotone partial function complexity measure
mpc is a map from partial monotone functions to non-negative integers. Typical such measures are the
minimum circuit size in a monotone model of a total function that solves f , but we won’t include a circuit
model explicitly. For convenience, we assume for any partial function f on n bit inputs, mpc(f) ≥ n.

We are now ready to define what a communication-TFNP characterization of a measure means. For a
partial Boolean function f on n inputs, the Karchmer-Wigderson game for f , denoted KWf , is the commu-
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nication problem where one player has x ∈ Nof the other has y ∈ Y esf and the output is a position i so
that xi ∕= yi. Similarly, for monotone Boolean function f on n inputs, the monotone Karchmer-Wigderson
game for f , denoted mKWf , is a restriction of the Karchmer-Wigderson game to require that the output is
a position i such that xi < yi. Karchmer and Wigderson [30] showed that communication complexity of
KWf (mKWf ) is an exact characterization of the (monotone) circuit depth needed to compute f .

Communication TFNP. Consider relational communication problems defined by a predicate R(x, y, i),
where x ∈ X , y ∈ Y , and i ∈ [M ]. The corresponding communication problem has one player given
x ∈ X , the other y ∈ Y , and the goal being to output an i so that R(x, y, i) holds. We say this problem is
in t-bit communication-TFNP if for every x ∈ X , y ∈ Y , for some i, R(x, y, i); and given i, there is a t-bit
communication protocol V (x, y, i) to determine whether R(x, y, i) holds. We say that R ∈ TFNPcc if R is
in polylog(n)-bit communication TFNP.

We say that one communication problem R(x, y, i) mapping reduces to another R′(x′, y′, i′) with com-
munication t if there are functions MX : X → X ′ , MY : Y → Y ′ and a t bit communication protocol
S(x, y, i′) which outputs i, so that whenever R′(MX(x),MY (y), i

′), then R(x, y, S(x, y, i′)). In particular
this means that R requires at most t more bits of communication than R′ to solve.

The following lemma from [19] says that TFNPcc is exactly the study of the monotone Karchmer-
Wigderson search problem.

Lemma 11. For any search problem RN there is a partial function FN such that RN is equivalent to
mKWFN

.

Proof. Let S(x, y, j) be a t-bit protocol that verifies that j is a valid solution on input (x, y). We define
a partial function FN on N = 2tM . We think of each co-ordinate as representing a solution j and a
communication pattern for S(x, y, j). We then construct the sets NoFN

as, for each x in the first players
domain of R, putting a 0 in a coordinate corresponding to a communication in the verification for j if the
protocol accepts and x is consistent with the communication, and a 1 otherwise. To construct Y esFN

, we
do the same for each y in the domain for the second player, except reverse 0 and 1. We claim mKWFN

is
equivalent to RN , using this construction as the map. If we are given a solution j to the constructed instances,
we can simulate S(x, y, j), and output j together with the communication pattern for the simulation. This
gives a bit where the construction is 0 for the x player and 1 for the y player, solving mKWFN

. In the reverse
direction, if we are given such a bit, we know S(x, y, j) accepts, and we can return j.

Thus, we can restrict attention to instances of the monotone Karchmer-Wigderson search problem. Let
RN be a sequence of communication problems where XN , YN ⊆ {0, 1}poly(N) and MN = poly(N). Define
the complexity measure Rcc on monotone partial Boolean functions f as

Rcc(f) := min logN + t,

over the set of N, t so that mKWf mapping reduces to RN with t-bits of communication. We say that
the sequence RN is nestable if there is a polynomial p and a function t(N) = O(logN) so that RN is
t(N ′)-communication reducible to RN ′ for all N ′ ≥ p(N).

The TFNPcc subclass associated with R, denoted Rcc, is all Q ∈ TFNPcc such that Rdt(Q) =
polylog(n). Finally, we say that a TFNPcc problem R characterizes a mpc if Rcc = {f : logmpc(f) =
polylog(n)}.

In the remainder of this section we will prove Theorem 3. We will first prove a tighter characterization,
showing when, for an mpc, there exists R ∈ TFNPcc such that Rcc(f) = Θ(logmpc) for all monotone
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partial functions f . This tighter characterization will involve a weaker notion of a universal family of
functions, which we will call complete families. Following this, we give a weaker characterization involving
universal function families (Theorem 3).

3.1 Complete Problems give TFNP Characterizations

The characterization of mpc measures with TFNPcc connections involves three properties:

i) Monotonicity Under Solutions. A monotone partial function complexity measure mpc is monotone
under solutions if whenever g solves f , mpc(g) ≥ mpc(f).

ii) Closed Under Low-Depth Reductions. We say that an mpc is closed under low-depth reductions if for
any h from n bit to n′ bit inputs that is computable by monotone Boolean circuits of depth d, and any
partial monotone function f on n′ bit inputs, mpc(f ◦ h) ≤ poly(n, n′,mpc(f), 2d).

iii) Admits a Complete Family. A complete family for a monotone partial function complexity measure
mpc is a family Fm of functions such that for every partial monotone function f on n bit inputs with
mpc(f) ≤ m, there is a logm-depth monotone circuit computing h so that Fm ◦ h solves f , and
mpc(Fm) ≤ poly(m).

We say that two measures mpc1,mpc2 are polynomially equivalent if mpc1(f) ≤ poly(mpc2(f)) and
mpc2(f) ≤ poly(mpc1(f)).

We are now ready to prove the main theorem of our section which describes when mpc measures have
TFNPcc characterizations.

Theorem 12. Let mpc be a complexity measure. Then there is a nestable sequence of TFNP communication
problems RN so that Rcc(f) = Θ(logmpc(f)) for every monotone partial function f iff (i)–(iii) hold.
Moreover, the sequence RN can be made explicit if and only if the sequence of complete functions for f can
be made explicit.

To prove this, we will use the following lemma, saying that reductions between the Karchmer Wigderson
games and reductions between the functions are identical.

Lemma 13. Let f and g be monotone partial Boolean functions. Then mKWf has a communication t
mapping reduction to mKWg if and only if there is a function h computable by a depth t monotone circuit
so that g solves f ◦ h.

Proof. As before, let Y esf , Nof and Y esg, Nog be the set of accepting and rejecting inputs of f and g
respectively.

For the if direction, we can define the reduction from mKWf to mKWg by using h as both MX and
MY . Since g solves f ◦ h, for each x ∈ Nof , it follows that h(x) ∈ Nog, and similarly y ∈ Y esf implies
h(y) ∈ Y esg. Thus (h(x), h(y)) is a valid input pair to mKWg. A solution to mKWg for this input is a bit
position i so that h(x)i < h(y)i. Since hi is computable in depth t by a monontone circuit, there is a t bit
protocol for mKWh,i. Following this protocol on (x, y), will output a position j such that xj < yj , which is
a solution to mKWf .

Conversely, assume that we have a t-communication reduction MX ,MY , S(x, y, i) from mKWf to
mKWg. For each i, look at the monotone partial function Hj whose No inputs are the x for which there is
an x ≤ x′ with x′ ∈ Nof and MX(x′)i = 0 and whose Yes instance are those y where there is y ≤ y′ with
y′ ∈ Y esf and MX(y′)i = 1.
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By the definition of reduction, whenever x′ ∈ Nof ,MX(x′)i = 0, y′ ∈ Y esf and MY (y
′)i = 1, the

communication protocol S(x′, y′, i) returns a position j with x′j < y′j . Given x and y where there is a
dominating and dominated pair (x′, y′) as above, the parties can without communication, find x′ and y′ and
run S(x′, y′). Then xj ≤ x′j < y′j ≤ yj , so this modified protocol solves the mKWH,i game. Therefore,
there is a depth t monontone circuit computing an hi that rejects all x ∈ Nof with MX(x)i = 0 and accepts
all y ∈ Yf with MY (y)i = 1. For each i, for each x ∈ Nof , if MX(x)i = 0, then x ∈ NoH,i, and we
have hi(x) = 0, so hi(x) ≤ MX(x)J for all x ∈ Nof . Thus, for each x ∈ Nof , h(x) ≤ MX(x) ∈ Nog,
so by monotonicity of g, h(x) ∈ Nog. Similarly, if y ∈ Y esf , we have hi(y) = 1 if MX(y)i = 1, or
MX(y) ≤ h(y), so h(y) ∈ Y esg. Thus, h reduces f to g and has depth t.

We will now use the lemma to prove the theorem.

Proof of Theorem 12. Let mpc be a complexity measure with the three listed properties and a complete
family of partial monotone functions Fm. Let Rm := mKWFm be the monotone Karchmer-Wigderson
game for Fm. Observe that Fm reduces to Fm′ for all m′ ≥ mpc(Fm) = poly(m) via depth logm′

reductions. Thus by Lemma 13, Rm = mKWFm reduces to Rm′ = mKWFm′ with communication logm′

for all such m′, and so R is nestable.
We claim Rcc(f) = Θ(mpc(f)) for every monotone partial function f . Letting m = mpc(f), then f

reduces to Fm in depth logm, as Fm is complete. Then by Lemma 13, mKWf reduces to mKWFm with
communication logm. It follows by definition that Rcc(f) ≤ log(m2logm) = 2 logm = O(logmpc(f)).

In the other direction, let Rcc(f) = M . Then there are m, t with t + logm = M so that mKWf is
t-communication reducible to mKWFm . By Lemma 13, it follows that Fm ◦ h solves f for some depth t
circuit h. Then by monotonicity under solutions, and closure under low-depth reductions,

mpc(f) ≤ mpc(Fm ◦ h) ≤ poly(mpc(Fm), 2t) = poly(m, 2t) = exp(O(M)).

Next we prove the converse direction of the theorem. Let Rm be any nestable sequence of communica-
tion TFNP problems. Let mpc(f) := 2R

cc(f) for every monotone partial function. We will show that mpc
has the properties (i)–(iii). First, by construction, mpc is monotone under solutions. Second, assume g ◦ h
solves f and h is computable in depth t, and let M = Rcc(g). Then mKWg has a t′ bit reduction to Rm

where log(m2t
′
) = M and by Lemma 13, mKWf has a t bit reduction to mKWg. Thus, mKWf has a t+ t′

bit reduction to RN , so mpc(f) ≤ N2t+t′ = M2t
′
. Thus, mpc is closed under low-depth reductions.

Finally, we give a complete partial monotone function family for mpc.
Let f be a partial monotone function and let M = Rcc(f). Then mKWf reduces to Rm in communica-

tion t where logm+ t = M . In particular, t is at most M and logm ≤ M . Then by nesting, we can reduce
this to some M ′ = poly(M) in further communication O(logM ′) = O(logM). So mKWf reduces to
RM ′ in O(logM) communication, which is equivalent to reducing to FM ′ in O(logM ′) communication. It
follows by Lemma 13 that f reduces to FM ′ in depth O(logM ′). We can then rescale to hide the constants
in the order to get a subsequence which is complete under low-depth reductions.

A partial characterization for complexity measures on total functions

Analogous to measures on partial functions, let a monotone complexity measure mc map total monotone
functions to non-negative integers. We can define a monotone complexity measure mpc on partial monotone
functions from mc by

mpc(F ) := min{mc(f) : total f solving F}.

23



Observe that mpc will always satisfy monotonicity under solutions because if g solves f , the set of total
functions that solve g is a subset of those that solve f , so the min for g will be at least that for f .

Generalizing the definition for partial functions, say that a monotone complexity measure mc has a
complete family if there is a family of total monotone functions Fm such that for every total monotone
function f on n bit inputs with mc(f) ≤ m, there is a logm-depth monotone circuit computing a function
h so that Fm ◦ h solves f , and mc(Fm) ≤ poly(m).

We will prove the following lemma, whose corollary gives sufficient conditions for a monotone com-
plexity measure to give rise to a corresponding TFNPcc problem.

Lemma 14. mpc is closed under low-depth reductions and has a complete (partial function) family if and
only if mc is closed under low-depth reductions and has a complete total function family.

Corollary 15. If mc is closed under low-depth reductions and has a complete family, then it has a TFNPcc

characterization by a sequence of nestable relations. If not, mpc has no such characterization.

This still leaves open the possibility that there is a characterization of the complexity measure that does
not extend to partial functions for some complexity measures without complete problems.

Proof of Lemma 14. To prove the lemma, we will first assume mc is closed under low-depth reductions,
e.g., mc(f ◦ h) ≤ poly(mc(f), 2d) when h is computable in depth d. Let F be a partial function, and let f
be a total function of minimal complexity solving F . Then f ◦h solves F ◦h, so mpc(F ◦h) ≤ mc(f ◦h) ≤
poly(mc(f), 2d) = poly(mpc(F ), 2d). Conversely, since mpc(f) = mc(f) for total functions, it follows
immediately that if mpc is closed under low-depth reductions, then so is mc.

If Fm is a class of complete partial functions for mpc, let fm be corresponding minimal complexity
total functions solving Fm. Note that mc(fm) = mpc(Fm) = poly(m). Let g be a total function and let
m = mpc(g) = mc(g). Then Fm ◦ h solves g for some h of depth logm, and fm ◦ h solves Fm ◦ h, so
fm ◦ h solves g. But the only way for one total function to solve another is to be equal, so fm ◦ h = g. So
fm is also complete and, by assumption, is total.

Conversely, if fm is complete for mc, then let G be a partial function and g a minimal complexity total
function solving G, and let m = mpc(G) = mc(g). Then g = fm ◦ h for some h of depth logm, and so
solves G. Thus, fm is also complete for mpc.

3.2 Universal Functions vs. Complete Functions

If we are willing to characterize complexity up to quasi-polynomial amounts rather than polynomial, we can
simplify the condition that there be complete functions in the class to having universal families of functions,
replacing (iii) in Theorem 16 by the following:

(iii’) Admits a Universal Family. Let Fm be a sequence of partial monotone functions, and let mpc be a
complexity measure on such functions. We say Fm is universal for mpc if whenever mpc(g) ≤ m ,
there is a fixed string zg so that F (x ◦ zg) solves g(x). Observe that such an Fm can be viewed as
complete under depth 0 reductions.

Theorem 3 will follow by combining the following theorem with Theorem 12.

Theorem 16. Let mpc be a complexity measure with closure under low-depth reductions. Then mpc has a
universal sequence Fm with mpc(Fm) ≤ quasipoly(m) if and only if it has a sequence Gm of problems that
are complete under polylogarithmic depth reductions and mpc(Gm) ≤ quasipoly(m).
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Proof. If there is a universal family for mpc, Fm, we can let Gm = Fm since as mentioned above, Fm is
complete under depth 0 reductions.

Conversely, suppose that Gm(x) is complete under depth d(m) reductions, where |x| = M ≤ poly(m).
We want to construct a partial function Fm which can code any composition g(x) = Gm(h(x)) for any g
with mpc(g) ≤ m and for any h a function with monotone circuit depth at most d(m). We will actually end
up coding a more powerful set of reductions, because we cannot code exactly this family and be monotone.
Observe that h has at most m input bits, M output bits, and at most 2d(m) gates total. Thus, we can embed h
into a depth 2d(m) alternating unbounded fan-in ∧-∨ circuit with m inputs, M outputs, and 2d(m)M gates
at each intermediate level. We can represent the connectivity of the embedding by having one bit for each
pair of gates, including inputs and outputs, saying whether the earlier gate is an input to the later one.

So we let Fm be a partial monotone function with m+ (m+ (2d(m)− 2)M2d(m) +M)2 inputs. The
first m inputs to Fm code the input x to g, and the other bits, denoted Bi,j , code the connectivity relation for
the circuit computing h. The gates at even levels will be ∨-gates, and those at odd levels ∧-gates. Because
we need the circuit evaluation problem to be monotone, we cannot enforce that each gate has exactly two
incoming wires, so we allow the gates to be arbitrary fan-in instead. If j is a gate on an even levels, for each
earlier gate i including input positions, we let Bi,j be 1 if i is an input to j and 0 otherwise. For odd levels,
we reverse the roles of 0 and 1.

To compute Fm, we work our way up the circuit computing a bit Hi for each gate i. For i in the first
level, Hi is the i-th input bit (the i-th bit of x. For other levels, we use the rule Hj =

)
(Hi ∧ Bi,j) at

even levels, and Hj =
&
(Hi ∨ Bi,j) at odd levels, where the scope of i is all gates at earlier levels. After

computing the values Hj for the gates at the top level, we apply Gm to the result.
By construction, Fm reduces to Gm via a depth 4d(m) monotone circuit with fan-in M2d(m) ∧’s and

∨’s, which can also be computed by a depth 4d(m)(d(m) + logM) depth fan-in two monotone circuit.
Thus, by composition with low-depth reductions, mpc(Fm) is quasi-polynomial in m. Also, for any g with
mpc(g) ≤ m, g can be solved by F ◦ h where h can be computed by monotone depth d circuits. The
input zg includes the values Bi,j according to the connectivity for h; unused bits in zg can be set to 0. By
construction, Fm(x ◦ zg) = Gm(h(x)) which solves g.

4 Future Directions

The TFNP connection, mapping proof systems to circuit lower bounds via lifting, has been extremely
successful. Our results show that this TFNP connection is generic , and characterize the conditions under
which it can be made. However, there are many gaps left in making these lower bounds systematic rather
than ad hoc, and extending them to new models of computation and proof systems.

In particular,

1. We have a generic relationship between proof systems and decision tree TFNP problems, and a
generic relationship between monotone circuit complexity problems and circuit lower bounds. Can
we complete the chain by proving a generic lifting theorem, and show that for each TFNP problem,
lower bounds for the corresponding proof systems and complexity measures are equivalent?

2. Our characterization of proof systems that correspond to TFNP problems involves proving their own
soundness. Can we use this to show a version of Gödel’s second incompleteness theorem, that some
proof systems cannot prove their own soundness because they do not have a tight TFNP connection?

3. Can we use these connections in the other way, showing relationships between TFNP classes by
showing relationships between the corresponding proof systems?
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4. TFNP has a direct connection to monotone complexity via the monotone KW games. Can we simi-
larly characterize the class of communication problems corresponding to non-monotone KW games?

5. We showed that reductions between the monotone KW games were equivalent to small depth mono-
tone reductions between the corresponding functions. Does this extend to non-monotone games and
non-monotone reductions? If not, can we give an example of functions with reductions between the
KW games and no reductions between the corresponding functions? (Since this is interesting even
for sub-logarithmic bit reductions, this could possibly be shown unconditionally without proving new
formula lower bounds.)
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