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This survey is about one of the most basic computational models: low-degree polynomials
over the field {0, 1} = GF(2). For example, the following is a polynomial of degree 2 in 3
variables

p(x1, x2, x3) := x1 · x2 + x2 + x3 + 1,

given by the sum of the 4 monomials x1x2, x2, x3, and 1, of degree 2, 1, 1, and 0, respectively.
This polynomial computes a function from {0, 1}3 to {0, 1}, which we also denote p, by
performing the arithmetic over {0, 1}. Thus the sum “+” is modulo 2 and is the same
as “xor,” while the product “·” is the same as “and.” For instance, p(1, 1, 0) = 1. Being
complexity theorists rather than algebraists, we are only interested in the function computed
by a polynomial, not in the polynomial itself; therefore we need not bother with variables
raised to powers bigger than 1, since for x ∈ {0, 1} one has x = x2 = x3 and so on. In
general, a polynomial p of degree d in n Boolean variables x1, . . . , xn ∈ {0, 1} is a sum of
monomials of degree at most d:

p(x1, . . . , xn) =
∑

M⊆{1,...,n},|M |≤d

cM
∏
i∈M

xi,

where cM ∈ {0, 1} and we let
∏

i∈∅ xi := 1; such a polynomial p computes a function
p : {0, 1}n → {0, 1}, interpreting again the sum modulo 2. We naturally measure the
complexity of a polynomial by its degree d: the maximum number of variables appearing in
any monomial. Since every function f : {0, 1}n → {0, 1} can be computed by a polynomial
of degree n, specifically f(x1, . . . , xn) =

∑
a1,...,a2

f(a1, . . . , an)
∏

1≤i≤n(1 + ai + xi), we are
interested in polynomials of low degree d� n.

Low-degree polynomials constitute a fundamental model of computation that arises in a
variety of contexts, ranging from error-correcting codes to circuit lower bounds. As for any
computational model, a first natural challenge is to exhibit explicit functions that cannot be
computed in the model. This challenge is easily won: the monomial

∏d
i=1 xi requires degree

d. A second, natural challenge has baffled researchers, and is our focus. One now asks for
functions that not only cannot be computed by low-degree polynomials, but do not even
correlate with them.

∗This survey is a revision of Chapter 1 in [Vio09b] (cf. [Vio09a]), but does not completely subsume the
older text.
†Supported by NSF grant CCF-2114116. Email: viola@ccs.neu.edu
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1 Correlation bounds

We start by defining the correlation between a function f and polynomials of degree d. This
quantity captures how well we can approximate f by polynomials of degree d, and is also
known as the average-case hardness of f against polynomials of degree d.

Definition 1 (Correlation). Let f : {0, 1}n → {0, 1} be a function, n an integer, and D a
distribution on {0, 1}n. We define the correlation between f and a polynomial p : {0, 1}n →
{0, 1} with respect to D as

CorD(f, p) :=
∣∣∣ Pr
x∼D

[f(x) = p(x)]− Pr
x∼D

[f(x) 6= p(x)]
∣∣∣ = 2

∣∣∣1/2− Pr
x∼D

[f(x) 6= p(x)]
∣∣∣ ∈ [0, 1].

We define the correlation between f and polynomials of degree d with respect to D as

CorD(f, d) := max
p

CorD(f, p) ∈ [0, 1],

where the maximum is over all polynomials p : {0, 1}n → {0, 1} of degree d.
We also define the correlation between f and polynomials of degree d as the minimum of

the above over all distributions:

Cor(f, d) := min
D

CorD(f, d).

By Yao’s duality principle [Yao77] (a.k.a. min/max, linear programming duality, Hahn–
Banach, etc.), Cor(f, d) ≥ ε if and only if there is a distribution P on degree-d polynomials
such that for every input x we have Pr[P (x) = f(x)] ≥ 1/2 + ε/2. If Cor(f, d) ≥ ε we also
say that f has (1/2− ε/2)-error probabilistic degree d, or that f has a degree-d probabilistic
polynomial with error (1/2− ε/2).

Since the 80’s, researchers have sought to exhibit explicit functions that have small cor-
relation with high-degree polynomials. We refer to this enterprise as obtaining, or proving,
“correlation bounds.” A dream setting of parameters would be to exhibit a function f ∈ P
such that for every n, and for D the uniform distribution over {0, 1}n, CorD(f, ε · n) ≤
exp(−ε · n), where ε > 0 is an absolute constant, and exp(x) := 2x. For context, we mention
that a random function satisfies such strong correlation bounds, with high probability.

The original motivation for seeking correlation bounds comes from circuit complexity, be-
cause functions with small correlation with polynomials require large constant-depth circuits
of certain types, see e.g. [Raz87, Smo87, HMP+93, Bei93]. An additional motivation comes
from pseudorandomness: as we will see, sufficiently strong correlation bounds can be used to
construct pseudorandom generators [Nis91, NW94], which in turn have myriad applications.
Moreover, as we shall shortly see, progress on correlation bounds is necessary for progress on
many other open problems in complexity theory. But as this survey also aims to put forth,
today the challenge of proving correlation bounds is interesting per se, and its status is a
fundamental benchmark for our understanding of complexity theory: it is not known how
to achieve the dream setting of parameters mentioned above, and in fact nobody can even
achieve the following seemingly much weaker parameters.

Open question 1. Is there a function f ∈ NP such that for arbitrarily large n there is a
distribution D on {0, 1}n with respect to which CorD(f, log2 n) ≤ 1/

√
n?
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Before discussing known results in the next sections, we add to the above concise motiva-
tion for tackling correlation bounds the following discussion of their relationship with other
open problems.

Correlation bounds are necessary for progress on many central problems. We
begin by pointing out that a negative answer to Question 1 implies that NP has circuits of
quasipolynomial size s = nO(logn). This relatively standard fact can be proved via boosting
[Fre95, Section 2.2] or min-max/linear-programming duality [GHR92, Section 5]. Thus,
an affirmative answer to Question 1 is necessary to prove that NP does not have circuits
of quasipolynomial size, a leading goal of theoretical computer science. Of course, this
connection can be strengthened in various ways, for example noting that the circuits for NP
given by a negative answer to Question 1 can be written on inputs of length n as a majority
of nO(1) polynomials of degree log2 n; thus, an affirmative answer to Question 1 is necessary
even to prove that NP does not have circuits of the latter type. On the other hand, Question
1 cannot easily be related to polynomial-size lower bounds such as NP 6⊆ P/poly, because a
polynomial of degree log n may have a quasipolynomial number of monomials.

Progress on Question 1 is also necessary for progress on number-on-forehead commu-
nication complexity lower bounds [CFL83]. Specifically, a long-standing open question in
communication complexity is to exhibit an explicit function f : ({0, 1}n)k → {0, 1} that can-
not be computed by number-on-forehead k-party protocols exchanging O(k) bits, for some
k ≥ log2 n [KN97, Problem 6.21]. As pointed out in [Vio17, Vio], a ω(log3 n) communication
lower bound for k = O(log2 n) would also answer Question 1; but the converse is not known,
so correlation bounds, if true, might be easier to prove.

Moreover, Progress on Question 1 is also necessary for progress on Valiant’s matrix rigidity
problem [Val77]. We refer the reader to [Vio] for a proof of this connection, cf. .[SV12]. For
more on matrix rigidity see the surveys [Lok09, Ram20].

Finally, the recent “polarizing random walks” paradigm [CHHL18, CHLT19, CGL+20]
constructs new pseudorandom generators against classes of functions with “bounded Fourier
tails.” Pseudorandom generators are discussed later in Section 2. In an effort to use this
framework to improve the state of pseudorandom generators against low-degree polynomials,
several conjectures have been put forth about the Fourier spectrum of polynomials. We refer
the reader to [Vio21] for discussion, but, to give a quick example, one of the conjectures was
that the sum of the size-2 Fourier coefficients of a degree-d polynomial is at most O(d2). The
conjectures have been verified for special classes of polynomials [BIJ+21]. One interesting
feature of the polarizing random walks approach is that, unlike the influential approach by
Nisan [Nis91], it is not directly based on correlation bounds. In particular, it was conceivable
that one could prove the conjectures and obtain better pseudorandom generators without
proving new correlation bounds. However, it was shown in [Vio21] that in fact correlation
bounds are also necessary: Any of the proposed conjectures, or even weaker ones, if true
would imply an answer to Question 1.

The above connections arguably set apart the goal of proving correlation bounds from
other long-standing goals in computational complexity: We are not aware of another problem
which is unrelated to correlation bounds and has a comparable number of connections with
other long-standing problems.
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Barriers. Regarding the limitation of current techniques, we point out that oracle results
such as [BGS75, AW08] are not relevant to non-uniform models such as the one considered
here. It is also not clear if natural proofs [RR97] present an obstacle, since we do not have
candidate pseudorandom functions that correlate with low-degree polynomials. Bhowmick
and Lovett [BL15] present a “barrier” result that is specific to low-degree polynomials. They
show that certain long-standing correlation bounds, such as strong bounds for the mod3

function which is defined in the next subsection, are false for a generalization of polynomials
known as non-classical polynomials. This means that, should those strong bounds be true,
the proof cannot apply to non-classical polynomials. They also discuss which of the available
proof techniques apply to non-classical polynomials, and we shall discuss another approach
which circumvents this obstacle later in §1.4.

After this discussion, we now move to presenting the known correlation bounds. It is a
remarkable state of affairs that, while we are currently unable to make the correlation small
and the degree large simultaneously, as asked in Question 1, we can make the correlation
small and the degree large separately. And in fact we can even achieve this for the same
explicit function f = mod3. We examine these two types of results in turn.

1.1 Large degree d� log n but noticeable correlation ε� 1/n

Razborov [Raz87] (also in [CK02, Section 2.7.1]) proves the existence of a symmetric function
f : {0, 1}n → {0, 1} that has correlation at most 1 − 1/nO(1) with polynomials of degree
Ω(
√
n) (a function is symmetric when its value only depends on the Hamming weight of the

input).
In [Smo93] Smolensky proves the following sharper result. For a more recent exposition

see e.g. [Kop11]. We denote by U the uniform distribution over {0, 1}n.

Theorem 1. [Smo93] CorU(Majority, d) ≤ O(d/
√
n).

This was shown to be tight in [Vio21]. Perhaps surprisingly, tight bounds on Cor(Majority, d)
are not known.

Theorem 2. [Vio21] We have:
(1) CorU(Majority, d) ≥ O(d/

√
n),

(2) Cor(Majority, d) ≥ O(d2/n), and
(3) Cor(Majority, 1) ≤ O(1/n).

Item (1) in Theorem 2 matches the bound in Theorem 1. It is conjectured in [Vio21] that
(2) is tight. Note that (3) shows that the bound in Theorem 1 is not tight for non-uniform
distributions.

We now move to functions which, unlike majority, are candidate for having very small
correlation. We consider the function mod3 : {0, 1}n → {0, 1} which evaluates to 1 if and
only if the number of input bits that are 1 is of the form 3k + 1 for some integer k, i.e., it is
congruent to 1 modulo 3:

mod3(x1, . . . , xn) = 1⇔
∑
i

xi = 1(mod 3).
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For example, mod3(1, 0, 0) = mod3(0, 1, 0) = 1 6= mod3(1, 0, 1).
Smolensky proved the same correlation bounds for this function as well.

Theorem 2. [Smo87] Cor(mod3, d) ≤ O(d/
√
n).

While the proof of Smolensky’s result has appeared several times, e.g. [Smo87, BS90,
Bei93, AB09], we are unaware of a source that directly proves Theorem 2, and thus we
include next a proof for completeness. We break up the proof in two parts, also to il-
lustrate a powerful “amplification” methodology. In the first part we show that for any
n that, for simplicity, is divisible by 3, and for U the uniform distribution over {0, 1}n,
CorU(mod3, ε

√
n) ≤ 0.9, where ε > 0 is an absolute constant.

Proof. The idea is to consider the set of inputs X ⊆ {0, 1}n where the polynomial computes
the mod3 function correctly, and use the polynomial to represent any function defined on
X by a polynomial of degree n/2 + d. This means that the number of functions defined on
X should be smaller than the number of polynomials of degree n/2 + d, which leads to the
desired tradeoff between |X| and d. To carry through this argument, one works over a field
F that extends {0, 1}.

We start by noting that, since n is divisible by 3, one has∑
i

xi = 2(mod 3)⇔
∑
i

1− xi = 1(mod 3)⇔ mod3(1 + x1, . . . , 1 + xn) = 1, (1)

where the sums 1 + xi in the input to mod3 are modulo 2. Let F be the field of size 4 that
extends {0, 1}, which we can think of as F = {0, 1}[t]/(t2 + t + 1): the set of polynomials
over {0, 1} modulo the irreducible polynomial t2 + t+ 1. Note that t ∈ F has order 3, since
t2 = t + 1 6= 1, while t3 = t2 + t = 1. Let h : {1, t} → {0, 1} be the “change of domain”
linear map h(α) := (α + 1)/(t+ 1); this satisfies h(1) = 0 and h(t) = 1.

Observe that for every y ∈ {1, t}n we have, using Equation (1):

y1 · · · yn = 1 + (t+ 1) ·mod3(h(y1), . . . , h(yn)) + (t2 + 1) ·mod3(1 +h(y1), . . . , 1 +h(yn)). (2)

Now fix any polynomial p : {0, 1}n → {0, 1} and let

Pr
x∈{0,1}n

[p(x) 6= mod3(x)] =: δ,

which we aim to bound from below. Let p′ : {1, t}n → F be the polynomial

p′(y1, . . . , yn) := 1 + (t+ 1) · p(h(y1), . . . , h(yn)) + (t2 + 1) · p(1 + h(y1), . . . , 1 + h(yn));

note p′ has the same degree d of p. By the definition of p′ and δ, a union bound, and Equation
(2) we see that

Pr
y∈{1,t}n

[y1 · · · yn = p′(y1, . . . , yn)] ≥ 1− 2δ. (3)

Now let S ⊆ {1, t}n be the set of y ∈ {1, t}n such that y1 · · · yn = p′(y1, . . . , yn); we
have just shown that |S| ≥ 2n(1 − 2δ). Any function f : S → F can be written as a
polynomial over F where no variable is raised to powers bigger than 1: f(y1, . . . , yn) =∑

a1,...,an
f(a1, . . . , an)

∏
1≤i≤n(1 + h(yi) + h(ai)). In any such polynomial we can replace any
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monomial M of degree |M | > n/2 by a polynomial of degree at most n/2 + d as follows,
without affecting the value on any input y ∈ S:∏

i∈M

yi = y1 · · · yn
∏
i 6∈M

(yi(t+ 1) + t) = p′(y1, . . . , yn)
∏
i 6∈M

(yi(t+ 1) + t),

where the first equality is not hard to verify. Doing this for every monomial we can write
f : S → F as a polynomial over F of degree bn/2 + dc.

The number of functions from S to F is |F ||S|, while the number of polynomials over F

of degree bn/2 + dc is |F |
∑bn/2+dc

i=0 (n
i). Thus

log|F |#functions = |S| = 2n(1− 2δ) ≤
bn/2+dc∑
i=0

(
n

i

)
= log|F |#polynomials.

Since d = ε
√
n, we have

bn/2+dc∑
i=0

(
n

i

)
≤ 2n/2 + d ·

(
n

bn/2c

)
≤ 2n/2 + ε

√
n ·Θ

(
2n√
n

)
= (1/2 + Θ(ε))2n,

where the second inequality follows from standard estimates on binomial coefficients. The
standard estimate for even n is for example in [CT06, Lemma 17.5.1]; for odd n = 2k + 1
one can first note

(
n
bn/2c

)
=
(

2k+1
k

)
<
(

2k+2
k+1

)
=
(

n+1
(n+1)/2

)
and then again apply [CT06, Lemma

17.5.1]. Therefore 1− 2δ ≤ 1/2 + Θ(ε) and the theorem is proved.

In the second part, we would like to build on the first part to prove the theorem. We
cannot use the uniform distribution, since the constant 0 polynomial has correlation Ω(1).
The natural “hard” distribution is the one that makes mod3 balanced, and is used in the
next section. Instead, we rely on a general fact pointed out in [Vio] (Lemma 18).

Lemma 3. [Vio] If Cor(f, d) ≥ ε then Cor(f,O(d/ε)) ≥ 0.99.

This is proved by taking the majority of t := O(1/ε)2 independent copies of a probabilistic
polynomial for f , and then using the probabilistic polynomial of degree O(

√
t) for majority

constructed by Alman and Williams [AW15], which will be discussed in §8 (see Theorem 4).
(An earlier, slightly weaker result by Srinivasan [Sri13] suffices for the main point here.)

Combining Lemma 3 with the first part proves Theorem 2.

The above theorems give non-trivial bounds for degree up to Ω(
√
n), and the argument

appears incapable of handling larger degrees. In fact, lower bounds for higher degrees remain
unknown for any explicit function (say in NP). It is known [Vio] that some function in ENP

requires probabilistic degree Ω(n/ log2 n) for constant error (which is optimal up to the log2 n
factor, since every function has polynomials of degree n).

Xor lemma. The above results ([Raz87] and Theorem 2) prove non-trivial correlation
bounds for polynomials of very high degree d = nΩ(1). In this sense they address the compu-
tational model which is the subject of Question 1, they “just” fail to provide a strong enough
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bound on the correlation. For other important computational models this would not be a
problem: the extensive study of hardness amplification has developed many techniques to im-
prove correlation bounds in the following sense: given an explicit function f : {0, 1}n → {0, 1}
that has correlation ε with some class Cn of functions on n bits, construct another explicit
function f ′ : {0, 1}n′ → {0, 1}, where n′ ≈ n, that has correlation ε′ � ε with a closely
related class Cn′ of functions on n′ bits (see [GSV18] for a comprehensive list of references on
hardness amplification). While the following discussion holds for any hardness amplification,
for concreteness we focus on the foremost: Yao’s xor lemma. Here f ′ : ({0, 1}n)k → {0, 1} is
defined as the xor (or parity, or sum modulo 2) of k independent outputs of f :

f ′(x1, . . . , xk) := f(x1) + · · ·+ f(xk) ∈ {0, 1}, xi ∈ {0, 1}n.

The compelling intuition is that, since functions from Cn have correlation at most ε with f ,
and f ′ is the xor of k independent evaluations of f , the correlation should decay exponentially
with k: ε′ ≈ εk. This is indeed the case if one tries to compute f ′(x1, . . . , xk) as g1(x1) +
· · · + gk(x

k) where gi : {0, 1}n → {0, 1}, gi ∈ Cn, 1 ≤ i ≤ k, but in general a function
g : ({0, 1}n)k → {0, 1}, g ∈ Cn′ , need not have this structure, making proofs of Yao’s xor
lemma more subtle. If we could prove this intuition true for low-degree polynomials, we
could combine this with Theorem 2 to answer affirmatively Question 1 via the function

f(x1, . . . , xk) := mod3(x1) + · · ·+ mod3(xk) (4)

for k = n.
Of course the obstacle is that nobody knows whether Yao’s xor lemma holds for poly-

nomials. In general it was remarked that “none of the known hardness amplification results
can be applied to the computational models for which we actually can establish the existence
of hard functions (i.e. prove lower bounds)” [Vio06a, Page 7] .

Open question 2. Does Yao’s xor lemma hold for polynomials of degree d ≥ log2 n? For
example, let f : {0, 1}n → {0, 1} satisfy Cor(f, n1/3) ≤ 1/3, and for n′ := n2 define f ′ :
{0, 1}n′ → {0, 1} as f ′(x1, . . . , xn) := f(x1) + · · ·+ f(xn). Is Cor(f ′, log2 n

′) ≤ 1/n′?

We now discuss why, despite the many alternative proofs of Yao’s xor lemma that are
available (e.g., [GNW95]), we cannot apply any of them to the computational model of low-
degree polynomials. To prove that f ′ has correlation at most ε′ with some class of functions,
all known proofs of the lemma need (a slight modification of) the functions in the class to
compute the majority function on > (1/ε′)2 bits. However, the majority function on this
many bits requires polynomials of degree Ω(1/ε′) by Theorem 1. This means that known
proofs can only establish correlation bounds ε′ > 1/

√
n, failing to answer Question 2. More

generally, the work [GSV18] completes a line of research initiated in [Vio06b, SV10] and
shows that computing the majority function on Ω(1/ε′) bits is necessary for a central class
of hardness amplification proofs known as black-box. (Improving the bound to Ω(1/ε′)2 is
open.)

Xor lemmas are however known for polynomials of small degree d � log n [Vio06c]
(cf. [VW08]). More recently Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman
[CHH+20] introduced a novel technique with which they established an xor lemma for low-
degree polynomials and consequently new correlation bounds. In particular, they proved
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that the correlation of the xor of two majority functions with constant-degree polynomials is
(logO(1) n)/n, a result for which previous xor lemmas do not seem sufficient. Note that the
bound is indeed about the square of the bound in Theorem 1.

The key ingredient in the approach in [CHH+20] is a structural result about the Fourier
spectrum of low-degree polynomials. They show that for any n-variate polynomial p of
degree ≤ d, there is a set S of variables such that almost all of the Fourier mass of p lies on
Fourier coefficients that intersect with S, and the size of S is exponential in d. This limits
their results to degree d ≤ log n (roughly the same setting as the next section). Further,
they conjecture that the size of S needs to be just polynomial in d. If true, this would
expand their results to degrees polynomial in n, and yield exciting new correlation bounds.
However, a counterexample to their conjecture is given in [IPV22]. In fact, [IPV22] rules out
even weaker parameters and shows that what is proved in [CHH+20] is essentially the best
possible.

1.2 Negligible correlation ε� 1/
√
n but small degree d� log n

It is easy to prove exponentially small correlation bounds for polynomials of degree 1, for
example the inner product function IP : {0, 1}n → {0, 1}, defined for even n as

IP(x1, . . . , xn) := x1 · x2 + x3 · x4 + · · ·+ xn−1 · xn,

satisfies Cor(IP, 1) = 2−n/2. Already obtaining exponentially small bounds for polynomials
of constant degree appears to be a challenge. The first such bounds come from the famed
work by Babai, Nisan, and Szegedy [BNS92] proving exponentially small correlation bounds
between polynomials of degree d := ε log n and, for k := d+ 1, the generalized inner product
function GIPk : {0, 1}n → {0, 1},

GIPk(x1, . . . , xn) :=
k∏
i=1

xi +
2k∏

i=k+1

xi + · · ·+
n∏

i=n−k+1

xi,

assuming for simplicity that n is a multiple of k. The intuition for this correlation bound
is precisely that behind Yao’s xor lemma (cf. §1.1): (i) any polynomial of degree d has
correlation that is bounded away from 1 with any monomial of degree k = d + 1 in the
definition of GIP, and (ii) since the monomials in the definition of GIP are on disjoint sets
of variables, the correlation decays exponentially. (i) is not hard to establish formally. With
some work, (ii) can also be established to obtain the following theorem.

Theorem 3. [BNS92] For every n, d, Cor(GIPd+1, d) ≤ exp
(
−Ω(n/4d · d)

)
.

When k � log n, GIP is almost always 0 on a uniform input, and thus GIP is not a can-
didate for having small correlation with respect to the uniform distribution with polynomials
of degree d� log n.

Our exposition of the results in [BNS92] differs in multiple ways from the original. First,
[BNS92] does not discuss polynomials but rather number-on-forehead multiparty protocols.
The results for polynomials are obtained via the observation of H̊astad and Goldmann [HG91,
Proof of Lemma 4] that k-party protocols can efficiently simulate polynomials of degree
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k− 1, for any input partition. Second, [BNS92] presents the proof with a different language.
Alternative languages have been put forth in a series of papers [CT93, Raz00, VW08], with
the last one stressing the above intuition and the connections between multiparty protocols
and polynomials.

Bourgain [Bou05] later proves bounds similar to those in Theorem 3 but for the mod3

function. A minor mistake in his proof is corrected by F. Green, Roy, and Straubing [GRS05].

Theorem 4. [Bou05, GRS05] For every n, d there is a distribution D on {0, 1}n such that
CorD(mod3, d) ≤ exp

(
−n/cd

)
, where c is an absolute constant.

A random sample from the distribution D in Theorem 4 is obtained as follows: toss a
fair coin, if “heads” then output a uniform x ∈ {0, 1}n such that mod3(x) = 1, if “tails” then
output a uniform x ∈ {0, 1}n such that mod3(x) = 0. The value c = 8 in [Bou05, GRS05] is
later improved to c = 4 in [Vio06c, Cha07] (cf. [VW08]). [Vio06c] also presents the proof in
a different language.

Theorem 4 appears more than a decade after Theorem 3. However, Noam Nisan (personal
communication) observes that in fact the first easily follows from the latter.

Sketch of Nisan’s proof of Theorem 4. Grolmusz’s [Gro95] extends the results in [BNS92]
and shows that there is a distribution D′ on {0, 1}n such that for k := d + 1 the func-
tion

mod3 ∧k (x1, . . . , xn) := mod3

(
k∏
i=1

xi,
2k∏

i=k+1

xi, . . . ,
n∏

i=n−k+1

xi

)
has correlation exp(−n/cd) with polynomials of degree d, for an absolute constant c. A
proof of this can also be found in [VW08, §3.3]. An inspection of the proof reveals that, with
respect to another distribution D′′ on {0, 1}n, the same bound applies to the function

mod3mod2(x1, . . . , xn) := mod3(x1 + · · ·+ xk, xk+1 + · · ·+ x2k, . . . , xn−k+1 + · · ·+ xn)

where we replace “and” with “parity” (the sums in the input to mod3 are modulo 2).
Now consider the distribution D on {0, 1}n/k that D′′ induces on the input to mod3 of

length n/k. (To sample from D one can sample from D′′, perform the n/k sums modulo 2,
and return the string of length n/k.) Suppose that a polynomial p(y1, . . . , yn/k) of degree d
has correlation ε with the mod3 function with respect to D. Then the polynomial

p′(x1, . . . , xn) := p(x1 + · · ·+ xk, xk+1 + · · ·+ x2k, . . . , xn−k+1 + · · ·+ xn)

has degree d and correlation ε with the mod3mod2 function with respect to the distribution
D′′ on {0, 1}n. Therefore ε ≤ exp(−n/cd).

The “squaring trick.” Most or all proofs of very small correlation bounds (including
theorems 3, 4, and 8) use a common technique which we now discuss also to highlight its
limitation. The idea is to reduce the challenge of proving a correlation bound for a polynomial
of degree d to that of proving related correlation bounds for polynomials of degree d− 1, by
squaring. To illustrate, let f : {0, 1}n → {0, 1} be any function and p : {0, 1}n → {0, 1} a
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polynomial of degree d. Using the extremely convenient notation e[z] := (−1)z, we write the
correlation between f and p with respect to the uniform distribution as

Cor(f, p) =

∣∣∣∣ Pr
x∈{0,1}n

[f(x) = p(x)]− Pr
x∈{0,1}n

[f(x) 6= p(x)]

∣∣∣∣ =
∣∣Ex∈{0,1}ne[f(x) + p(x)]

∣∣ .
If we square this quantity, and use that EZ [g(Z)]2 = EZ,Z′ [g(Z) · g(Z ′)], we obtain

Cor(f, p)2 = Ex,y∈{0,1}ne[f(x) + f(y) + p(x) + p(y)].

Letting now y = x+ h we can rewrite this as

Cor(f, p)2 = Ex,h∈{0,1}ne[f(x) + f(x+ h) + p(x) + p(x+ h)].

The crucial observation is now that, for every fixed h, the polynomial p(x) + p(x + h) has
degree d−1 in x, even though p(x) has degree d. For example, if d = 2 and p(x) = x1x2 +x3,
we have p(x)+p(x+h) = x1x2+x3+(x1+h1)(x2+h2)+(x3+h3) = x1h2+h1x2+h1h2+h3,which
indeed has degree d − 1 = 1 in x. Thus we managed to reduce our task of bounding from
above Cor(f, p) to that of bounding from above a related quantity which involves polynomials
of degree d − 1, specifically the average over h of the correlation between the function
f(x) + f(x + h) and polynomials of degree d − 1. To iterate, we apply the same trick, this
time coupled with the Cauchy-Schwarz inequality E[Z]2 ≤ E[Z2]:

Cor(f, p)4 = Ex,he[f(x) + f(x+ h) + p(x) + p(x+ h)]2

≤ Eh
[
Exe[f(x) + f(x+ h) + p(x) + p(x+ h)]2

]
.

We can now repeat the argument in the inner expectation, further reducing the degree of
the polynomial. After d repetitions, the polynomial p becomes a constant. After one more,
a total of d + 1 repetitions, the polynomial p “disappears” and we are left with a certain
expectation involving f , known as the “Gowers norm” of f and introduced independently in
[Gow98, Gow01] and in [AKK+03]:

Cor(f, p)2d+1 ≤ Ex,h1,h2,...,hd+1
e

 ∑
S⊆[d+1]

f

(
x+

∑
i∈S

hi

) . (5)

For interesting functions f , the expectation in the right-hand side of (5) can be easily
shown to be small, sometimes exponentially in n, yielding correlation bounds. For example,
applying this method to the generalized inner product function gives Theorem 3, while a
complex-valued generalization of the method can be applied to the mod3 function to obtain
Theorem 4. This concludes the exposition of this technique; see, e.g., [Vio06c, VW08] for
more details.

This “squaring trick” for reducing the analysis of a polynomial of degree d to that of an
expression involving polynomials of lower degree d − 1 dates back at least to the work by
Weyl at the beginning of the 20th century; for an exposition of the relevant proof by Weyl,
as well as pointers to his work, the reader may consult [GR07]. This method was apparently
introduced in computer science by Babai, Nisan, and Szegedy [BNS92], and employed later
by various researchers in different contexts, see [VW08] for discussion.
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The obvious limitation of this technique is that, to bound the correlation with polynomials
of degree d, it squares the correlation d times; this means that the bound on the correlation
will be exp(−n/2d) at best: nothing for degree d = log2 n. This bound is almost achieved
by [BNS92] which gives an explicit function f such that Cor(f, d) ≤ exp(−Ω(n/2d · d)).
The extra factor of d in the exponent arises because of the different context of multiparty
protocols in [BNS92], but a similar argument, given in [Vio06c] and also appearing in [VW08],
establishes the following stronger bound.

Theorem 5. [Vio06c] There is an explicit f ∈ P such that for every n and d, and U the
uniform distribution over {0, 1}n, CorU(f, d) ≤ exp(−Ω(n/2d)).

The function f : {0, 1}n → {0, 1} in Theorem 5 takes as input an index i ∈ {0, 1}εn and a
seed s ∈ {0, 1}(1−ε)n, and outputs the i-th output bit of a certain pseudorandom generator on
seed s [NN93] (Theorem 7 in §2). The natural question of whether these functions have small
correlation with polynomials of degree d � log2 n is answered negatively also in [Vio06c]:
for a specific implementation of the generator [GV04, HV06, Hea08], the associated function
f : {0, 1}n → {0, 1} satisfies Cor(f, logO(1) n) ≥ 1− o(1).

1.3 Correlating with symmetric functions

Most of the correlation bounds discussed in §1.1 and §1.2 are for functions that are symmetric:
their value depends only on the number of input bits that are 1. In this section we prove
that such functions somewhat correlate with low-degree polynomials. We begin with the
result that any symmetric function has large correlation with polynomials of degree O(

√
n),

thus excluding symmetric functions from the candidates to the dream setting of parameters
Cor(f, ε · n) ≤ exp(−ε · n).

Under the uniform distribution this result was proved by Viola. A slight simplification
of his proof, by Wigderson, is presented in [Vio09a, Vio09b]. In those works it was also
suggested to investigate whether the result extends to other distributions. Such an extension
is obtained by Srinivasan [Sri13] and with slightly better parameters by Alman and Williams
[AW15] (Theorem 1.2).

Theorem 4. [AW15] (Theorem 1.2) For any d, ε and any symmetric f : {0, 1}n → {0, 1}
we have Cor(f,O(

√
n log 1/ε)) ≥ 1− ε.

This result however does not give information for degree less than
√
n, a regime of great

interest as we have seen. We obtain the following tradeoff, which also improves on Theorem
9 in [CP16].

Theorem 5. For any d and any symmetric f : {0, 1}n → {0, 1} we have Cor(f, d) ≥
2−nΩ(log2 n)/d2.

Except for the log2 n factor, this tradeoff includes the bound in Theorem 4. We suspect
that the factor can be removed, but it is not clear how to do that at this moment. In the
remainder of this section we present and discuss the proof of Theorem 5.
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A toy case: Non-zero correlation with any function. Let f : {0, 1}n → {0, 1} be a
function, not necessarily symmetric. We note that Cor(f, 1) ≥ Ω(2−n) > 0. To verify this,
consider the following way to sample a polynomial witnessing the correlation. Pick a uniform
y ∈ {0, 1}n, and uniform v1, v2, . . . , vn ∈ {0, 1}. Output the polynomial

∑
i(yi−xi)·vi+f(y).

Note that if y 6= x then some yi − xi = 1, and then the polynomial computes a uniform bit
thanks to vi, giving correlation 0. On the other hand, if y = x then all the vi cancel out and
we get f(y). The probability that y = x is obviously 2−n and this gives the claimed result.

This simple result highlights the “power of a random bit” which is available to polynomials
modulo 2 but not to polynomials over other domains such as the reals, indeed, as we shall
see in § 1.5, the correlation between the parity function and real polynomials of low degree
is zero.

Warm-up: Proof of the weaker bound 2−nΩ(log d)/d. This warm-up can be seen as an
extension of the toy case to blocks, exploiting the symmetry of the function. Divide the
input x of n bits into b blocks of n/b bits, and let yi denote the n/b variables in block i. For
w ∈ {0, 1, . . . , n/b} let p 6=w be the polynomial in n/b variables that is equal to 1 if the input
Hamming weight is not equal to w, and 0 otherwise.

To sample a polynomial witnessing the correlation proceed as follows. Pick uniformly
at random w1, w2, . . . , wb ∈ {0, 1, . . . , n/b}. Pick uniformly random v1, v2, . . . , vb ∈ {0, 1}.
Output

f(
b∑
i=1

wi) +
b∑
i=1

p 6=wi
(yi) · vi.

Here for an integer m we write f(m) for the value of f on any input of Hamming weight
m. Each p 6=wi

is on n/b bits and hence can be computed by a polynomial of the same degree;
so each sample has degree n/b.

To analyze, fix an input x. Note that if at least one of the guesses wi is wrong (i.e., it
does not equal the Hamming weight of yi) then as in the toy case we obtain correlation 0
because of the random choice vi. But if all the guesses are right then all the vi are multiplied
by 0 and we get f(x). The probability of this is (n/b+ 1)−b.

Given d, set b := n/d to obtain a distribution on degree-d polynomials with correlation
(d+ 1)−n/d.

Proof of the claimed bound (Theorem 5). The idea is to use the probabilistic polyno-
mials from Theorem 4 to reduce the degree of the p 6=wi

at the cost of some error. However,
we can’t afford to set the error so small to take a simple union bound. We will condition
on the number t of wrong guesses, and show that the probability of having t wrong guesses
compares favorably to the probability that each of the t corresponding polynomials makes a
mistake. Details follow.

The distribution on polynomials is defined as before, except that for each p 6=w we now

pick the probabilistic polynomial from Theorem 4 with degree O(
√

(n/b) log n) such that on
any input, the probability that this polynomial outputs the wrong value is α/n for a small
enough constant α > 0 to be set later . Fix x and let W be the random number of wrong
guesses wi. Conditioned on W = 0, the probability that the final polynomial computes the
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function correctly is by a union bound ≥ 1 − b · α/n ≥ 1 − α ≥ 0.9 for small enough α.
Conditioned on W = t for t > 0, the probability that the polynomial does not compute
a random bit is at most (α/n)t, because we need each of the t corresponding polynomials
to be wrong to cancel the associated vi. Hence the polynomial computes incorrectly with
probability at most 1/2 + (α/n)t

Hence the probability that we compute f incorrectly is at most

Pr[W = 0] · (1/2− 0.4) +
b∑
t=1

Pr[W = t] · (1/2 + (α/n)t).

Collecting the 1/2 terms we obtain a bound of

1/2− 0.4 Pr[W = 0] +
b∑
t=1

Pr[W = t] · (α/n)t.

Now we use the bound

Pr[W = t] =

(
b
t

)
(n/b)t

(1 + n/b)b
≤ (3n)t

(1 + n/b)b
.

Hence the summation above is

≤ 1

(1 + n/b)b

b∑
t=1

(3α)t ≤ 0.01

(1 + n/b)b
= 0.01 Pr[W = 0],

for a small enough α. Consequently the error probability is at most

1/2− Ω(1/(1 + n/b)b).

Finally, given d set b so that O(
√

(n/b) log n) ≤ d. This is possible unless d = O(
√

log n).
In the latter case we can, say, use the polynomials from the proof of the warm-up case. This
setting of b makes the error probability at most

1/2− ((log n)/d2)Ω(n logn)/d2 ,

as desired.

1.4 More on mod3

For the mod3 function, we can summarize the bounds from the previous sections as follows:

2−nΩ(logn)2/d2 ≤ Cor(mod3, d) ≤ min{2−Ω(n/2d), O(d/
√
n)}. (6)

Improving any of these bounds substantially would be a major advance, but seems to
require new ideas.

One possible approach is aiming for exact results. Low-degree polynomials appear sim-
ple enough that instead of merely proving bounds one might be able to pinpoint the best
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polynomials. In this spirit, it is conjectured in [IPV22] that the polynomials that maximize
correlation with mod3 are symmetric (under the same natural distribution as in Section 1.2,
and for all n congruent to 3 or 9 modulo 12; a cleaner version of their conjecture is precisely
stated below). If the conjecture is true then very strong correlation bounds would follow,
since it is known that degree-d polynomials have correlation at most d · 2−Ω(n/d2) with mod3

(see [IPV22] for a proof). Note that this bound matches the leftmost expression in Equation
(6) up to lower order terms, and thus is essentially tight.

Moreover, this conjecture does not require distinguishing classical from non-classical poly-
nomials, thus circumventing the “barrier” raised in [BL15] and discussed in § 1. Further,
[IPV22] prove their conjecture for polynomials of degree d = 2.

To state the conjecture and results in [IPV22] more precisely, and also for context, we
mention that for functions like mod3 it is sometimes convenient to work with the following
complex-valued version of correlation (sometimes referred to as an exponential sum):

C(p) := |Ex∈{0,1}n [(−1)p(x)ω
∑

i xi ]|,

where ω is the third root of unity e
√
−12π/3 and |.| is the complex norm. This expression has

the advantage that if p is the sum of polynomials over disjoint variables then it multiplies.
This for example leads to a simple proof of the correlation with linear polynomials, see
e.g. [IPV22]. In general, it appears to be a slightly more convenient quantity to work with.

On the other hand, C(p) is closely related to Cor(mod3, p). An upper bound on the former
implies an upper bound on the latter, a fact that is sketched in several works and fully proved
in [VW08, IPV22]. A weak form of the converse holds as well, where the distribution depends
on the polynomials in a limited way.

The conjecture in [IPV22] is that C is maximized by symmetric polynomials, and the
conjecture is proved in [IPV22] for d = 2.

Open question 3. Is the maximum of C over degree-d polynomials attained by symmetric
polynomials for every n and d ≥ 3?

The case d = 3 is already open but seems within reach; partial progress is reported in
[IPV22].

1.5 Real advantage

Instead of polynomials modulo 2 one can consider polynomials over the integers or the reals
where a non-boolean output is always counted as a mistake. Perhaps surprisingly, most or
all of the open questions discussed until now are also open for such real polynomials. The
challenge of proving stronger correlation bounds for real polynomials was raised in [RV13].
They specifically asked what is the correlation with the parity function. Also, they showed
that when the degree d of the polynomial is very small, at most 0.5 log log n, then in fact
this correlation is not just small, but zero. That is, the polynomial cannot correlate better
than a constant function. This is unlike the case of polynomials over finite fields, which have
non-zero correlation with any function, thanks to the “power of a random bit,” which we
saw in § 1.3.
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The follow-up work [MNV16] improved these bounds and showed that the correlation is
zero up to degree log n/(15 log log n). On the other hand the construction mentioned in \S
1.3 of polynomials of degree O(

√
n) that have constant correlation with symmetric functions

such as parity under the uniform distribution (proved in [Vio09a, Vio09b]) in fact gives real
polynomials.

This leads to the following question:

Open question 4. What is the minimum d such that there exists a degree-d real polynomial
with non-zero correlation with the parity function?

Summarizing the discussion above, it is known that log n/(15 log log n) ≤ d ≤ O(
√
n).

1.6 Other works

There are many papers on correlation bounds we have not discussed. In general, we have
chosen to focus on polynomials modulo 2 for simplicity, whereas many previous works focus
on polynomials modulo m 6= 2. Indeed, many of the results we discussed, such as Theorems
2, 4, and the results in \S 1 can be extended to polynomials modulo m 6= 2. For example,
Theorem 4 extends to polynomials modulo m vs. the modq function for any relatively prime
m and q, while Theorem 2 extends to polynomials modulo m vs. the modq function for any
prime m and q not a power of m.

F. Green [Gre04, Theorem 3.10] computes exactly the correlation between the parity
function and quadratic (d = 2) polynomials over {0, 1, 2}. [Gre04] further discusses the
difficulties currently preventing an extension of the result to degree d > 2 or to polynomials
over fields different from {0, 1, 2}, while [GR10] studies the structure of quadratic polynomials
over {0, 1, 2} that correlate with the parity function best.

A natural question, also asked in [AB01], is whether the symmetric polynomials mod m,
for odd m, that correlate best with parity are symmetric. [Gre04] answers this negatively
for degree 2. The work [GKV17] gives a negative answer for more degrees, including degrees
that are relevant to Question 1. The same work also reports results of a computer search
to determine the polynomials modulo 2 that correlate best with mod3. Interestingly, the
polynomials that can be computed are symmetric. Indeed, this was a starting point for the
work [IPV22] and the conjecture therein which we discussed in \S 1.4.

Other special classes of polynomials are studied in [CGT96, GT06, BEHL08]. Finally, we
mention that several papers [Vio07, Han06, LS11, ST18] prove correlation bounds against
sparse polynomial.

2 Pseudorandom generators

In this section we discuss pseudorandom generators for polynomials and their connections to
correlation bounds. Pseudorandom generators are fascinating algorithms that stretch short
input seeds into much longer sequences that “look random;” naturally, here we interpret
“look random” as “look random to polynomials,” made formal in the next definition.

Definition 6 (Generator). A generator G that fools polynomials of degree d = d(n) with
error ε = ε(n) and seed length s = s(n) is a an algorithm running in time polynomial in its
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output length such that for every n: (i) G maps strings of length s(n) to strings of length n,
and (ii) for any polynomial p : {0, 1}n → {0, 1} of degree d we have∣∣∣∣ Pr

S∈{0,1}s
[p(G(S)) = 1]− Pr

U∈{0,1}n
[p(U) = 1]

∣∣∣∣ ≤ ε. (7)

For brevity, we write G : {0, 1}s → {0, 1}n for a generator with seed length s(n).

Ideally, we would like generators that fool polynomials of large degree d with small error
ε and small seed length s. We discuss below various connections between obtaining such
generators and correlation bounds, but first we point out a notable difference: while for
correlation bounds we do have results for large degree d� log n (e.g., Theorem 2), we know
of no generator that fools polynomials of degree d ≥ log2 n, even with constant error ε.

Open question 5. Is there a generator G : {0, 1}n/2 → {0, 1}n that fools polynomials of
degree log2 n with error 1/3?

While the smaller the error ε the better, generators for constant error are already of
great interest; for example, a constant-error generator that fools small circuits is enough to
derandomize BPP. However, we currently seem to be no better at constructing generators
that fool polynomials with constant error than generators with shrinking error, such as 1/n.

We now discuss the relationship between generators and correlation bounds, and then
present the known generators.

From pseudorandomness to correlation. It is easy to see and well-known that a gener-
ator implies a worst-case lower bound, i.e., an explicit function that cannot be computed by
(essentially) the class of functions fooled by the generator. The following simple observation,
which does not seem to have appeared before [Vio09c, §3], shows that in fact a generator
implies even a correlation bound. We will use it later to obtain new candidates for answering
Question 1.

Observation 1. Suppose that there is a generator G : {0, 1}n−logn−1 → {0, 1}n that fools
polynomials of degree log2 n with error 0.5/n. Then the answer to Question 1 is affirmative.

Proof sketch. Let D be the distribution on {0, 1}n where a random x ∈ D is obtained as
follows: toss a fair coin, if “heads” then let x be uniformly distributed over {0, 1}n, if
“tails” then let x := G(S) for a uniformly chosen S ∈ {0, 1}n−logn−1. Define the function
f : {0, 1}n → {0, 1} as f(x) = 1 if and only if there is s ∈ {0, 1}n−logn−1 such that G(s) = x;
f is easily seen to be in NP. It is now a routine calculation to verify that any function t :
{0, 1}n → {0, 1} that satisfies CorD(f, t) ≥ 1/n has advantage at least 0.5/n in distinguishing
the output of the generator from random. Letting t range over polynomials of degree log2 n
concludes the proof.

From correlation to pseudorandomness. The celebrated construction by Nisan [Nis91]
(cf. [NW94]) shows that a sufficiently strong correlation bound with respect to the uniform
distribution can be used to obtain a generator that fools polynomials. However, to obtain a
generator G : {0, 1}s → {0, 1}n against polynomials of degree d, [Nis91] in particular needs
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a function f on m ≤ n input bits that has correlation at most 1/n with polynomials of
degree d. Thus, the current correlation bounds are not strong enough to obtain generators
for polynomials of degree d ≥ log2 n. It is a pressing open problem to determine whether
alternative constructions of generators are possible, ideally based on constant correlation
bounds such as Theorem 2. Here, an uncharted direction is to understand which distributions
D enable one to construct generators starting from correlation bounds with respect to D.

In [Vio19] it is shown that computing majority on many bits is required for black-box
proofs of pseudorandom generators, even if the latter only have constant error, but only for
NW-style [NW94]constructions that are “seed revealing.” This suggests that there may not
be a way around correlation bounds even for constructing generators with constant error.
However, extending the results in [Vio19] to other constructions, such as NW-style that do
not reveal their seed remains open.

Nisan’s construction is however sharp enough to give non-trivial generators based on the
current correlation bounds such as Theorem 3. Specifically, Luby, Veličković, and Wigderson
[LVW93, Theorem 2] obtain generators for polynomials that have arbitrary degree but at
most nα·logn terms for a small absolute constant α > 0; a different proof of this result appears
in the paper [Vio07] which we already mentioned in §1.6. Albeit falling short of answering
Question 5 (cf. §1.6), this generator [LVW93, Theorem 2] does fool polynomials of constant
degree. However, its seed length, satisfying n = sO(log s), has been superseded in this case by
recent developments, which we now discuss.

Generators for degree d � log n. Naor and Naor [NN93] construct a generator that
fools polynomials of degree 1 (i.e., linear) with a seed length that is optimal up to constant
factors – a result with a surprising range of applications (cf. references in [BSVW03]).

Theorem 7. [NN93] There is a generator G : {0, 1}O(logn) → {0, 1}n that fools polynomials
of degree 1 with error 1/n.

Later, Alon et al. [AGHP92] give three alternative constructions. A nice one is G(a, b)i :=
〈ai, b〉 where 〈·, ·〉 denotes inner product modulo 2, a, b ∈ {0, 1}` for ` = O(log n), and ai

denotes the result of considering a as an element of the field with 2` elements, and raising it
to the power i.

Bogdanov and Viola introduced [BV10] a simple paradigm to fool polynomials of higher
degree d: just sum together d generators for polynomials of degree 1. This paradigm has
been analyzed in [BV10, Lov08, Vio09c], with the last work giving the following result.

Theorem 8. [Vio09c] Let G : {0, 1}s → {0, 1}n be a generator that fools polynomials of
degree 1 with error ε. Then Gd : ({0, 1}s)d → {0, 1}n defined as

Gd(x
1, x2, . . . , xd) := G(x1) +G(x2) + · · ·+G(xd)

fools polynomials of degree d with error εd := 16 · ε1/2d−1
, where “+” denotes bit-wise xor.

In particular, the combination of Theorems 7 and 8 yields generatorsG : {0, 1}s → {0, 1}n
that fool polynomials of degree d with error εd = 1/n and seed length s = O(d · 2d · log(n)).
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Proof sketch of Theorem 8. This proof uses the notation e[z] := (−1)z and some of the
techniques presented at the end of §1.2. First, let us rewrite Inequality (7) in the Definition
6 of a generator as ∣∣ES∈{0,1}se[p(Gd(S))]− EU∈{0,1}ne[p(U)]

∣∣ ≤ εd/2. (8)

To prove Inequality (8), we proceed by induction on the degree d of the polynomial p :
{0, 1}n → {0, 1} to be fooled. The inductive step is structured as a case analysis based on
the value τ := CorU(p, 0) = |EU∈{0,1}ne[p(U)]|.

If τ is large then p correlates with a constant, which is a polynomial of degree lower than
d, and by induction one can prove the intuitive fact that Gd−1 fools p. This concludes the
overview of the proof in this case.

If τ is small we reason as follows. Let us denote by W the output of Gd−1 and by Y an
independent output of G, so that the output of Gd is W + Y . We start by an application of
the Cauchy-Schwarz inequality:

EW,Y e [p(W + Y )]2 ≤ EW
[
EY e [p(W + Y )]2

]
= EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] , (9)

where Y ′ is independent from and identically distributed to Y . Now we observe that for
every fixed Y and Y ’, the polynomial p(U + Y ) + p(U + Y ′) has degree d− 1 in U , though
p has degree d. Since by induction W fools polynomials of degree d− 1 with error εd−1, we
can replace W with the uniform distribution U ∈ {0, 1}n:

EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] ≤ EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] + εd−1. (10)

At this point, a standard argument shows that

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] ≤ EU,U ′ e [p(U) + p(U ′)] + ε2 = τ 2 + ε2. (11)

Therefore, chaining Equations (9), (10), and (11), we have that

|EW,Y e [p(W + Y )]− EU e [p(U)]| ≤ |EW,Y e [p(W + Y )]| + τ ≤
√
τ 2 + ε2 + εd−1 + τ.

This proves Inequality (8) for a suitable choice of εd, concluding the proof in this remaining
case.

Observe that Theorem 8 gives nothing for polynomials of degree d = log2 n. The reason
is that its proof again relies on the “squaring trick” discussed in §1.2. But it is still not
known whether the construction in Theorem 8 fools polynomials of degree d ≥ log2 n.

Open question 6. Does the sum of d � log n copies of a generator G : {0, 1}s → {0, 1}n
that fools polynomials of degree 1 with error 1/n fools polynomials of degree d with error 1/3?

The recent work [DV22] gives a positive answer over large fields, when G is “algebraic.”
This leads to generators with optimal seed length, improving on a line of works starting with
a seminal paper by Bogdanov [Bog05]. But the case of small fields remains wide open. An
interesting special case is that of d = 2.

Open question 7. What is the minimum ε′ such that the sum of two generators for degree
1 polynomials with error ε fools the Inner Product function on n bits with error ε′?

Theorem 8 implies ε′ ≤ O(
√
ε). Whether the square-root loss can be improved seems

another basic question.
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