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Abstract

We introduce and study Certificate Game complexity, a measure of complexity based on the
probability of winning a game where two players are given inputs with different function values
and are asked to output some index ¢ such that x; # y;, in a zero-communication setting.

We give upper and lower bounds for private coin, public coin, shared entanglement and
non-signaling strategies, and give some separations. We show that complexity in the public coin
model is upper bounded by Randomized query and Certificate complexity. On the other hand, it
is lower bounded by fractional and randomized certificate complexity, making it a good candidate
to prove strong lower bounds on randomized query complexity. Complexity in the private coin
model is bounded from below by zero-error randomized query complexity. The quantum measure
highlights an interesting and surprising difference between classical and quantum query models.
Whereas the public coin certificate game complexity is bounded from above by randomized query
complexity, the quantum certificate game complexity can be quadratically larger than quantum
query complexity. We use non-signaling, a notion from quantum information, to give a lower
bound of n on the quantum certificate game complexity of the OR function, whose quantum
query complexity is ©(y/n), then go on to show that this “non-signaling bottleneck” applies to
all functions with high sensitivity, block sensitivity or fractional block sensitivity.

We also consider the single-bit version of certificate games, where the inputs of the two
players are restricted to having Hamming distance 1. We prove that the single-bit version of
certificate game complexity with shared randomness is equal to sensitivity up to constant factors,
thus giving a new characterization of sensitivity. On the other hand, the single-bit version of
certificate game complexity with private randomness is equal to A2, where X is the spectral
sensitivity.
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1 Introduction

There still remains much to be understood about the complexity of Boolean functions and the
many complexity measures that are used to study various models of computation such as certificate
complexity, degree, sensitivity, block sensitivity, their variants, to name a few. Some of the questions
we ask about these measures are: How are these measures related, and what polynomial upper
bounds can be given on these measures in terms of the smaller measures such as sensitivity?
What separations can be shown between the measures? Do they have a natural computational
interpretation? What properties do they have, for example, do they behave well under composition?
How do they behave for symmetric functions? Since the sensitivity conjecture was resolved [Hual9],
one important new goal is to determine precisely how the larger measures, such as query complexity
and certificate complexity, are bounded above by smaller measures such as sensitivity. The best
known upper bound on deterministic query complexity is D(f) < O(s(f)%), [NS94, Mid04, Hual9]
while the best separation is cubic [BHT17]. For certificate complexity we know that C(f) <
O(s(f)?), whereas the best known separation is cubic [BBG*21]. Many more of these upper bounds
and separations are listed in the tables of known results in [Yul9, ABK*21a).

With these questions in mind, we introduce a new complexity measure based on the Karchmer-
Wigderson relation of a Boolean function. This relation was introduced by Karchmer and Wigder-
son [KW90] and it has been extensively studied in communication complexity. Let f : {0,1}" —
{0, 1} be a Boolean function. The relation Ry C f~1(0) x f~1(1) x [n] is defined as Ry = {(z,y,1) :
x; # y;}. It was shown by Karchmer and Wigderson [KW90] that the communication complexity
of Ry is equal to the circuit depth of f. As a matter of convention, for a Boolean function f
we will use x to denote an input in f~1(0) and y to denote an input in f~!(1) (unless otherwise
stated). We study the following 2-player certificate game, where the goal of the players is to solve
the Karchmer-Wigderson relation in a zero-communication setting.

Definition 1.1 (Certificate game). Let f : {0,1}"™ — {0, 1} be a (possibly partial) Boolean function.
One player is given x € f~1(0) and the other player is given y € f~1(1). Their goal is to produce
a common index i such that x; # y;, without communicating with each other.

We look at how well they can solve this task in several zero-communication settings. We consider
four models: when they only have private coins, when they share a public random source, and when
they share an entangled quantum state (also called quantum model) that does not depend upon
their inputs. The fourth model allows any non-signaling strategy which we describe in Section 2.2.
In all these models, we consider the probability of success that they can achieve, for the best
strategy and worst case input pair. The multiplicative inverse of the winning probability is called
the certificate game complexity of the function (CG for the private coin model, CGP"™ for the public
coin model, CG* for the shared entanglement model and CG" for the non-signaling model).

To illustrate how to achieve such a task without communication, we consider the following
simple strategy. Let f be a Boolean function whose O-certificate complexity is ¢y and whose 1-
certificate complexity is ¢;. Then on input = such that f(xz) = 0, Alice can output a random i in
a minimal O-certificate for z (similarly for Bob with a minimal 1-certificate for y). Then since the
certificates intersect, the probability that they output the same index is at least 60%01. This shows
that CG(f) < C°(f)-C!(f) . This simple upper bound is tight for many functions including OR and
Parity, but there are other examples where CG(f) can be much smaller, and it is interesting to see
what other upper and lower bounds can apply. We will also see that access to shared randomness
can significantly reduce the complexity.

We show that the certificate game complexity measures in the four different models hold a piv-
otal position with respect to other measures, thus making them good candidates for proving strong




lower and upper bounds on various measures. The operational interpretation in terms of winning
probability of certificate games makes them convenient for proving upper bounds. Furthermore,
the public coin and non-signaling versions are linear programs and therefore their dual formulation
is convenient for proving lower bounds.

1.1 Motivation for certificate games

The two main ingredients in our certificate games are two-player zero-communication games, and
the Karchmer-Wigderson relation. Two-player zero-communication games have been studied in
many different contexts. They are called two-prover games in the context of parallel repetition
theorems, central to the study of PCPs and the Unique Games Conjecture (we don’t consider the
case where there could be a quantum verifier, which has been studied in some papers). They
also appear under the name of zero-communication protocols in the context of communication and
information complexity. Finally, they are known as local or quantum games in the study of quantum
nonlocality, an extensive field motivated by the study of quantum entanglement and the relative
power of quantum over classical behaviors. Quantum behaviors are modeled by two parties making
measurements on a shared bipartite quantum state, and in the classical setup, the two parties
can share “hidden variables”, or shared randomness. There has been extensive work, for instance,
on simulating quantum behaviors with various resources, such as communication, post-selection,
noise and more. There are also strong connections between finding separations between quantum
and classical communication complexity, and between quantum and classical zero-communication
games. A survey on quantum non-locality can be found in references [BCP*14, PV15], and on the
interactions between communication complexity and nonlocality in reference [BCMdW10)].

The Karchmer-Wigderson relation R; appears in many contexts in the study of complexity
measures, including the Adversary bound on quantum query complexity, and its variants [Amb00,
SSOG]. It is key in understanding how hard a function is and captures the intuition that if one is to
distinguish the O-instances from the 1-instances of a function, then some ¢ in the relation has to play
a key role in computing the function. Another measure where the Karchmer-Wigderson relation
appears implicitly is Randomized certificate complexity (RC) defined by Aaronson [Aar08]. It was
further shown to be equivalent to fractional block sensitivity and fractional certificate complexity
(FC) [Tall3, GSS16]. The non-adaptive version can be viewed as a one-player game where the
player is given an input  and should output an index i. The player wins against an input y (with

f(x) # fy)) if zi # yi.

1.2 Our results

We show that the certificate game complexity measures of a Boolean function f take pivotal roles
in understanding the relationships between various other complexity measures like Randomized
certificate complexity RC(f), Certificate complexity C(f), randomised query complexity R(f), zero-
error randomized query complexity Ry(f) and other related measures. Our results also demonstrate
the power of shared randomness over private randomness, even in a zero-communication setting. At
the same time, our results also illustrate an interesting, and somewhat counter-intuitive, difference
between the quantum world and the classical world. Our main results for total functions are
compiled in Figure 1. While most of our results also hold for partial functions, for simplicity we
don’t indicate that in the Figure. Instead we specify in each theorem whether our result holds for
partial functions.

Shared entanglement can simulate shared randomness, and shared randomness gives more power



to the players compared to private randomness so
CG™(f) < CG™™(f) < CG().

A natural question that arises is how separated are these measures. In other words, how much
advantage does shared randomness give over private randomness and how much advantage does
shared entanglement give over shared randomness? Because of the operational interpretation of
certificate game complexity in terms of the winning probability of certificate games, proving upper
bounds on certificate game complexity can be achieved by demonstrating a strategy for the game.
We provide techniques to prove lower bounds.

Lower bounds on certificate games with shared entanglement: One surprising result of
our work concerns the shared entanglement model. In order to prove lower bounds for this model,
we introduce non-signaling certificate games. Non-signaling is a fundamental concept that comes
from quantum non-locality; it states that when making a quantum measurement the outcome on one
should not leak any information about the measurement made on the other side. This “non-signaling
bottleneck” is shared by all of our certificate game complexity measures. Identifying it turned out
to be the key insight which led to a very strong lower bound on all these measures, including the
quantum model, with a single, simple proof, not involving any of the technical overhead inherent to
the quantum setting. The simplicity of the proof comes from the fact that the non-signaling model
has several equivalent formulations as linear programs, and the strength of the bounds comes from
the fact that it captures precisely a fundamental computational bottleneck. It also neatly highlights
one of the key differences between quantum and classical query models, since the quantum query
model somehow averts this bottleneck.
Our main lower bound result is a simple and elegant proof (Theorem 6.2) that

CG™ > FC

which in turn lower bounds the other three variants of certificate game complexity. (We also give

a direct proof that CGP"™ > FC in Appendix C.) The idea is that when a strategy satisfies the
non-signaling condition, the marginal distribution of one of the players’ output does not depend
on the other player’s input. Therefore, playing according to the marginal distribution of one of the
players is a successful strategy for the FC game. It follows from this lower bound that while the
quantum query complexity of the OR,, function! is ©(,/n), its quantum certificate game complexity
is CG*(OR,,) = O(n).

Upper bounds on certificate games with shared randomness:  The fact that CG* is lower
bounded by FC gives us examples (like the OR,, function) where the quantum query complexity Q,
can be quadratically smaller than CG*. In other words, a quantum query algorithm that computes
the OR,, function using \/n queries, cannot reveal to players of a certificate game an index where
their inputs differ, with probability better than 1/n, because of the non-signaling constraint on
quantum games. This, somewhat surprisingly, contrasts with the randomized setting where the
players can run their randomized query algorithm on their respective inputs using the same random
bits and pick a common random query in order to find an index where the inputs differ, with
probability ﬁ, for any f. Thus, we prove (Theorem 5.6) that for any Boolean function f,

CGP*(f) < O(R(f))-

'OR,, is the OR of n variables. From Grover’s algorithm [Gro96, BBHT98] we have Q(OR,,) = v/n. On the other
hand FC(OR,) = Q(s(ORy)) = Q(n).




Whether the zero-error randomized query complexity, Ro(f) is upper bounded by the square
of FC(f) is a long standing open problem. A natural step towards solving the open problem
is to use a measure just above FC and show that Ry is upper bounded by the square of that
measure. In [JKKT20] the authors introduced such a measure, called expectational certificate
complexity, EC, and showed that Ro(f) < O(EC(f)?). Showing that EC < O(FC) would solve
the long-standing open problem. They made significant progress towards this by showing that
EC(f) < O(FC(f)-y/s(f)). Thus one of the main questions that remained unanswered in [JKK™20]
was: “Is EC(f) = O(FC(f))?” and if the answer is negative, how to prove it? We show that CGP"
is bounded above by EC(f) up to constant factors (Theorem 5.5). Combining with our results,

FC(f) < CG™(f) < CG*(f) < CGPP(f) < O(EC(f)).

Hence, certificate games may give us a handle on how to resolve the FC versus EC question: either
prove that these measures are all equivalent, or give a separation between any of them.

A first step towards proving a separation could be to show a separation between the shared ran-
domness and shared entanglement models. For Boolean predicates, it is known that the gap between
the quantum and randomized winning probabilities can be at most constant (by Grothendieck’s
theorem, see for example Proposition 4.5 in [PV15]). But for games with non-Boolean outcomes,
as is the case with certificate games, this limitation does not apply, and such a separation, or an
impossibility result, in the special case of certificate games, could be of independent interest.

For total Boolean functions our upper bound on CGP"P by EC implies that CGP" is also upper
bounded by certificate complexity C (up to constant factors), since EC(f) < C(f) for total functions
[JKK*20]. We also give a direct proof that CGPU(f) < O(C(f)) for total functions (Theorem 5.4)
as a “warmup” to the stronger upper bound by EC.

Bounds on certificate games with private randomness:  The private randomness model of
certificate game complexity, CG, is upper bounded by the product of 0O-certificate complexity, C°,
and 1-certificate complexity, C!, and also by the square of EC (Theorem 5.10). On the other hand
CG is lower bounded by Ry [JKK™20].

Ro(f) < O(CG(f)) < O(C°(£)CH(f)).

In fact, CG(f) can be larger than the arity of the function. This is because, we show (in Theo-
rem 5.10) that CG(f) is lower bounded by the square of the Minimax formulation of the positive
adversary bound, MM( f), which sits between Q(f) and the spectral sensitivity A(f).

Relationships between the various models of certificate games:  Combining our results
with the fact that EC(f) < O(FC(f)-v/s(f)), [JKK™20], we have (in Corollary 7.1)

CGP'P(f) < O(EC(f)) < O(CG™(f)*/?) < O(CG*(f)*/?).

Also the argument of [JKK'20] to show Ro(f) < O(EC(f)?) extends to show that CG(f) <
O(EC(f)?) so we have (in Corollary 7.2)

CG(f) < O(CG™(f)?).

The Tribes 7 m = OR 5 o AND, ;5 (Definition 5.1) function demonstrates a quadratic separation

between CGP™ and R and hence between CGP"™ and CG. Since CGP™ < C for total functions,
we see that CGpub(TribeS\/ﬁ7\/ﬁ) = O(y/n), while R(Tribes 5 =) = Q(n). The fact that public

4



coins can be used cleverly to design the strategy for Tribes 5 /s is not obvious at first glance. In
fact, the strategy for the Tribes » 4 function helps us to see the how public coins can be used
effectively (via a hashing framework) for any function. Furthermore, since the Tribes J/m,y/n function

is a composition of the AND ;5 and OR /; function, we also notice that the measures CGPUP, CG*
and CG™ do not compose (Corollary 7.3), that is, there are Boolean functions f and g such that
the measures for the function (f o g) is not asymptotically the same as the product of the measures
for f and for g.

Certificate game complexity for partial functions: While Tribes /s 5 demonstrates a

quadratic gap between R and CGP", we know the largest gap between R and CGP'™ for total
functions is at most cubic (since D < (bs)® [BBCT01, Nis89]). But for partial functions the
situation is different. Ben David and Blais [BB20] demonstrated a function, approximate index
Aplnd (Definition 7.5), for which there is exponential separation between R and FC 2. We show
that CGP' of ApInd is at most O(log(R)) (Theorem 7.6) and hence demonstrate an exponential
separation between R and CGP" for partial Boolean functions.

Single-bit versions of certificate games:  Our final set of results is in the context of single-
bit versions of certificate games. Single-bit versions of certain complexity measures were used in
early circuit complexity bounds [Khr71, Kou93]. More recently Aaronson et al. [ABK*21a] defined
single-bit versions of several formulations of the adversary method, and showed that they are all
equal to the spectral sensitivity A. Informally, single-bit versions of these measures are obtained by
considering the requirements only with respect to pairs z,y such that f(z) =0 and f(y) = 1 and
x and y differ only in a single bit.

We show that the single-bit version of private coin certificate game complexity is equal to A
(Theorem 8.9). One of our main results is that the single-bit version of public coin certificate game
complexity, CGI[)f]lb( f) is asymptotically equal to sensitivity s(f) (Theorem 8.4). This gives a new
and very different interpretation of sensitivity, which is one of the central complexity measures
in this area. This interpretation of sensitivity in the context of certificate games may give us a
handle on resolving the sensitivity-block sensitivity conjecture (which asks if block sensitivity bs(f)
is O(s(f)?), and remains open in this stronger form), by trying to construct a strategy for CGP®P

using a strategy for CGFf]lb.

A note on partial functions: Our notion of certificate games naturally extends to partial
functions, and many of our results hold for partial as well as total functions. We defer the formal
definitions and statements to the main part of the paper.

2 Certificate game complexity

In this section, we give the formal definitions of our Certificate Game complexity measures.

A two-player game G is given by a relation R(z,y,a,b) C X x Y x A x B, where x € X is
the first player’s input, y € ) is the second player’s input. The players output a pair of values,
(a,b) € A x B, and they win if R(z,y,a,b) holds.

A deterministic strategy is a pair of functions A : X —A and B : Y—B. A randomized strategy
with private randomness is the product of two mixed individual strategies. A randomized strategy

2[BB20] introduced a measure called noisyR in an attempt to answer the question of whether R composes, that
is, whether R(f o g) = ©(R(f) - R(g)). They studied noisyR for the approximate index function Aplnd and showed an
exponential separation between noisyR and R for this partial function.



with shared randomness is a mixture of pairs of deterministic strategies. A quantum or shared
entanglement strategy is given by a shared bipartite state that does not depend on the input, and a
family of projective measurements for Alice, indexed by her input, similarly for Bob. (More general
measurements could be considered, but projective measurements suffice [CHTW04].)

For any strategy, we will write p(a, b|z,y) to mean the probability that the players output (a,b)
when their inputs are x,y. The marginal distribution of Alice’s output is p(a|z,y) = >, p(a, blx,y),
and similarly, p(b|z,y) = >, p(a,blz,y) is Bob’s marginal distribution.

Non-signaling is a notion that comes from quantum games, which says that if players are
spatially separated, then they cannot convey information to each other instantaneously. All the
types of strategies described above verify the non-signaling condition.

Definition 2.1 (Non-signaling strategy). Let p(a,b|x,y) be the probability that players, on input
x,y output a,b. Then p is non-signaling if p(alz,y) = p(a|z,y’) and p(blz,y) = p(blz',y) for all
inputs x, 2’ ,y,y and all outcomes a,b.

Since nonsignaling means that Alice’s output does not depend on Bob’s input, we can write
p(alx) for Alice’s marginal distribution, similarly, we will write p(b|y) for Bob.

Surprisingly, non-signaling strategies are characterized by affine combinations of local de-
terministic strategies that lie in the positive orthant. This has been known since the 1980s
[FR81, RF81, KRF87, Wil92]. A more recent proof is given in [Pir05].

Proposition 2.2 (Characterization of non-signaling strategies). A strategy p is non-signaling if
and only if it is given by a family of coefficients A = {Aap}ap (not necessarily nonnegative), AB
ranging over pairs (A, B) of deterministic strategies, such that p(a,blx,y) = ZAB:A(z):a,B(y):b AAB,
and X verifies the constraints Y 45 Aap =1, and ZAB:A(x):a,B(y):b Aag >0 for all a,b,x,y.

Given a Boolean function f on n variables, define a two-player game such that X = f~1(0),
Y =f1), A= B=[n] and R(z,y,a,b) = 1 if and only if a = b and x4 # y,. Notice that this
setting gives rise to a certificate game according to Definition 1.1.

2.1 Certificate games with public and private coins

In case of private coins a randomized strategy for each player amounts to assigning, for every input
x € {0,1}", a probability p,; of producing 7 as its outcome, for each i € [n].

Definition 2.3 (Private coin certificate game complexity). For any (possibly partial) Boolean
function f,
1
CG(f) = min max _
P oayef~(0)xf1(1) w(p;z,y)
with p a collection of nonnegative variables {py i}, satisfying, Yre f~1(0)U f~1(1), > ieln Pei = 1,
and
WP T,Y) = D Paibyi
1T £ Y

is the probability that both players output a common index i that satisfies Ry(x,y,1).

When the players share randomness, a public-coin randomized strategy is a distribution over
pairs (A, B) of deterministic strategies. We assign a nonnegative variable p4 p to each strategy
and require that they sum to 1. We say that a pair of strategies (A, B) is correct on z,y if
A(z) = B(y) =i and z; # v;.



Definition 2.4 (Public coin certificate game complexity). For any (possibly partial) Boolean func-
tion f,

1
CGP"(f) = mi —
() H;@mx,yef*{r(l(%}if*l(l) wPu (p; )’

where p is a collection of nonnegative variables {pa p}a B satisfying Z(A,B) pa,B =1 and

b(n. —
wpu <p7 x, y) - Z pA,B
(A,B) correct on x,y

2.2 Certificate games with quantum and non-signaling strategies

Similar to non-local games (see [CHTWO04]), when the players can share a bipartite quantum state,
a general strategy for a certificate game consists of a shared state |V,p) € Ha ® Hp between
the two players, and two families of projective measurements Ma = {Ma(z)},cf-1(0) and Mp =
{Mp(z)}2ecf-1(1) made on their respective part of the shared state. Here H 4 and H p are the Hilbert
spaces of respective players. For each measurement M, (x), we denote the family of orthogonal
projections as { Pa.i}ie[n) (see [NC10] for a definition of projective measurements).

We can now define the shared entanglement certificate game complexity of a Boolean function.

Definition 2.5 (Shared entanglement certificate game complexity). For any (possibly partial)
Boolean function f,

CG*(f) min ma L
= X s
Wap),MaMp  ayef-1(0)xf-1(1) w*((|YaB), Ma, Mp);x,y)

where w*((|Yap), Ma, Mp);z,y) is the winning probability of strategy (|Vap), Ma, Mp) on x,y

W*(([Wap), Ma, Mp);a,y) = Y (Vap|Pawi ® Ppyil¥ap).
12 #Y;

Non-signaling strategies (Definition 2.1) are a generalization of quantum strategies and are
useful to give lower bounds on quantum games. They are particularly well-suited when in a given
problem, the bottleneck is that shared entanglement cannot allow players to learn any information
about each others’ inputs. This is the case for the OR function (Proposition 6.1).

Definition 2.6 (Non-signaling certificate game complexity). For any (possibly partial) Boolean
function f,

1
CG"(f) = mi —
(H=min - R o nimy)

where X is a collection of (possibly negative) variables {Aa p}a.p with A, B ranging over all pairs
of deterministic strategies satisfying Z(A,B) Aap =1 and

wns(A;wvy) = Z >\AB-
A,B:A(z)=B(y)=t
and z;7#Y;
Since we have considered progressively stronger models, the following holds trivially.

Proposition 2.7. For any (possibly partial) Boolean function f,

CG™(f) < CG*(f) < CGP"™(f) < CG(f).



3 Overview of our techniques

The main contribution of this paper is to give lower and upper bounds on certificate game complex-
ity in different models: private coin, public coin and shared entanglement. The bounds on private
coin certificate game complexity are obtained by manipulating previously known results and use
standard techniques. The bounds on private coin certificate complexity are given in Section 5.4.

The principal contribution, in terms of techniques, is in giving upper and lower bounds on
certificate game complexity of public coin and shared entanglement model (CGP*® and CG*). These
techniques can naturally be divided into two parts.

Upper bounds We prove strong (and arguably surprising) upper bounds on CGP" by con-
structing strategies using shared randomness. The challenge for giving a certificate game strategy
is to get the two players to coordinate their strategies so that the index they output is the same. In
public coin setting, we can take advantage of using shared randomness. We show multiple examples
where using shared randomness to choose hash functions or permutations turns out to be helpful.
We express the ideas behind our public coin strategies in a general framework based on using hash
functions. However, the strategies that fall within this framework still require a separate analysis,
which in some cases can be technically quite involved.

Lower bounds Lower bounds on CGP"™ can be obtained by taking the dual of its linear pro-
gramming formulation. For the shared entanglement model, which is not linear, we turn to more
general non-signaling games. Hence, non-signaling certificate game complexity, CG™, is a lower
bound on CG*. It can be expressed as a linear program and lower bounds on CG* can be obtained
by taking the dual of this linear program and constructing feasible solutions for it.

A more detailed overview of these techniques is given in the following sections.

3.1 Overview of upper bound techniques for CGP"?

To construct a strategy for a certificate game, the main challenge is to match the index of the
other side. In public coin setting, we can take advantage of having access to shared randomness to
achieve this task. We illustrate this idea by constructing a CGP'™ strategy for the Tribes function.

Even though Tribes is a starting example for us, it shows a separation between R and CGP™, and
also implies that, under function composition, CGP"P value is not the product of the CGP"™ value
of the individual functions. We describe the main idea behind the strategy here. For a complete
proof and more details about separation and composition, please refer to Section 5.1.

For the Tribes;, ;, function, we want a strategy that wins the certificate game with probability
Q(1/k) (instead of the obvious €(1/k?)). The input of Tribesy j consists of k blocks of k bits each.
We will reduce the general problem to the case when all blocks of Alice’s input have a single 0,
and Bob has exactly one block with all 1’s and Alice and Bob wins when they both can output the
unique index ¢ where Alice’s bit is 0 and Bob’s bit is 1.

Here we discuss this special case. Let us view Alice’s input as an array A of k values, specifying
the position of the 0 in each block (each entry is in {1,2,---,k}). On the other hand, Bob’s input
can be thought of as an index, say j, between 1 and k, identifying his all-1 block. Alice wants to
find j and Bob wants to find A[j], so both can output a position where their inputs differ.

First, take the simple case when each entry of Alice’s array is distinct. Bob simply picks a
random number r and outputs the r-th index of the j-th block. Alice can use the same r (due to
shared randomness), and find the unique j such that A[j] = r. Whenever Bob picks r such that
Alj] = r, they win the game. The probability that a random r matches A[j] is 1/k.



For the harder case when some of the entries of A coincide, we use the shared randomness to
permute entries of each block. This ensures that, with constant probability, we have a unique j
such that A[j] = r. This gives the required success probability Q(1/k).

A framework for upper bounds based on hashing Let f:{0,1}" — {0,1} be a (possibly
partial) Boolean function. Alice is given x € f~1(0) and Bob is given y € f~!(1). Their goal is to
produce a common index i € [n] such that x; # y;.

Let T' C [n] be a set of potential outputs, known to both players, and let S be a finite set. T'
and S are fixed in advance as part of the specification of the strategy (they do not depend on the
input, only on the function f). Let A, C T denote the set of potential outputs of Alice on x that
belong to the set 7', and B, C T denote the set of potential outputs of Bob on y that belong to
the set 1. The players proceed as follows:

s a

1. Using shared randomness, they select a random mapping h : T" — S.
2. Using shared randomness, they select a random element z € S.

3. Alice outputs a (possibly random) element of h='(z) N A, (if this set is empty, she
outputs an arbitrary element). Similarly, Bob outputs a (possibly random) element of
h=1(2) N By (if this set is empty, he outputs an arbitrary element).

This general strategy will be correct with good enough probability, if the following two conditions
can be ensured:

(i) h~1(2)NW is not empty, where W C A, N B, denotes the set of correct outputs from A,NB,,
that is, for any i € W, x; # y;.

(ii) h=1(2) N 4, and h=1(z) N By are “small enough”.

Note, Condition (i) implies that both sets, h~1(2) N A, and h=!(z) N By, are not empty.

We will apply this general framework in several different ways. We use it for proving that
CGP" is upper bounded by C and even by EC. We also use it to get a strong upper bound for
the approximate index function Aplnd. Finally, we use the hashing framework to prove that the
single-bit version of CGP'’ characterizes sensitivity up to constant factors. While each of these
proofs fits into the framework we described above, their analysis is technically quite different.

CGPUYP strategy for Aplnd We can use the hashing framework to show an exponential separation
between R and CGP"™ for Approximate Index, a partial function. The analysis of the strategy
reduces to a very natural question: what is the intersection size of two Hamming balls of radius
% — vklog k whose centers are at a distance %? We are able to show that the intersection is at

least an Q( \/hl)w) fraction of the total volume of the Hamming ball. This result and the techniques
used could be of independent interest.

To bound the intersection size, we focus on the outermost vk layers of the Hamming ball
(since they contain a constant fraction of the total volume), and show that for each such layer the
intersection contains an €( \/liﬁ) fraction of the elements in that layer.

For a single layer, the intersection can be expressed as the summation of the latter half of a

hypergeometric distribution Py, , from % to m (m = % is the distance between the Hamming

2
Balls and r is the radius of the layer). By using the “symmetric” nature of the hypergeometric
distribution around % for a sufficient range of values (Lemma A.3), this reduces to showing a
concentration result around the expectation with width \/m (as the expectation for our choice of

parameters is % — O(y/m)).




We use the standard concentration bound on hypergeometric distribution with width /r and
reduce it to the required width /m by noticing a monotonicity property of the hypergeometric
distribution (Lemma A.4). The technical details of the proof are given in Section 7.2.

3.2 Overview of lower bound techniques for CGP"® and CG*

In the public coin setting, maximizing the winning probability in the worst case can be written as
a linear program. This allows us to write a dual formulation, so (since it becomes a minimization
problem, and we are considering its multiplicative inverse) this form will be more convenient when
proving lower bounds. The dual variables ji,, can be thought of as a hard distribution on pairs
of inputs, and the objective function is the pu-size of the largest set of input pairs where any
deterministic strategy is correct. The next two propositions follow by standard LP duality.

Proposition 3.1 (Dual formulation of CGP'™). For a two-player certificate game G corresponding
to a (possibly partial) Boolean function f, CGP™(f) = l/wp“b(Gf), where the winning probability
wP(Gy) is given by the following linear program.

WwP(Gf) = min §
Ot
such that Z Py <0 for every deterministic strategy A, B

z,y: A,B correct on x,y

ZMIy =1, fpzy =0,
l’7y

where = {zyteef-1(0),yef-1(1)- A B correct on x,y implies A(z) = B(z) =i and x; # y;.

To prove lower bounds on CG*, we cannot proceed in the same way since the value of CG* cannot
be written as a linear program. However, a key observation is that in many cases (and in all the
cases we have considered in this paper), the fundamental bottleneck for proving lower bounds on
quantum strategies is the non-signaling property, which says that in two-player games with shared
entanglement, the outcome of one of the player’s measurements cannot reveal the other player’s
input. This was the original motivation for defining CG": if we only require the non-signaling
property of quantum strategies, it suffices to prove a lower bound on CG", which is a lower bound
on CG*. Using the characterization of non-signaling strategies in terms of an affine polytope (see
Proposition 2.2), we obtain a convenient linear programming formulation for CG".

Definition 2.6 shows that the value of w"(G) is a linear optimization problem. We compute its
dual, a maximization problem, which allows us to prove lower bounds on CG™ and in turn CG*.

Proposition 3.2 (Dual formulation of CG"™). For a certificate game G corresponding to a (possi-
bly partial) Boolean function f, CG™(f) = 1/w™(G}), where winning probability w™*(Gy) can be
written as the following linear program.

wns(Gf) = Ln;fé )

such that Z M,y + Z'yA(x%B(y)@y =4  for every deterministic strategy A, B

z,y: A,B correct on x,y T,y

S = ey 20 ey 20
l’?y

where (1= {a,y e f-1(0),yer-11) and Y = {Vijaytijem)eer—1(0),yer-1(1) -
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As a first step, we illustrate how the dual of the non-signaling variant can be used to prove a
lower bound on CG*(Promise-OR,,). The intuition comes from the fact that any quantum strategy
for the certificate game for OR has to be non-signaling. Let one of the player have input = = 0,
and the other player have one of n strings z(* (z with the i-th bit flipped). At the end of the game,
they output ¢ with probability p = o (Proinise— oR)” If this probability were bigger than %, then
the player with input x would learn some information about the other player’s input. To make this
proof formal, we provide a suitable assignment to the dual formulation of CG™ (Section 6).

The lower bound on the OR function generalizes to show that block sensitivity is a lower bound
on the non-signaling value of the certificate games. We prove an even stronger result, by going
back to the original definition of CG"™ (Definition 2.6) and giving a very simple proof that CG™ is
an upper bound on FC.

11



1. Theorem 5.10. Separation: GSS; (follows
from the fact that C'(GSS;) = ©(n) and
C%(GSS;) = ©(n?)). Tightness: .

2. Theorem 5.10, Separation: OR, Tightness:
®.

3. Implicit in[JKK20] (Theorem 5.10). Sep-
aration: @, Tightness: OR.

4. Theorem 5.10 Separation: Pointer func-
: tion in [ABB"17] and the cheat sheet ver-
noisyR R EC sion of the k—Forrelation function [BS21,

S
) (6) ABK16]. Tightness: OR.
CGpuPb 5. Theorem 5.6 and Proposition 5.8.
Separation:  Tribes (Theorem 5.2 and
RS(Tribes 5 ) = ©(n) because RS
Q CG* composes [BDK18J). Tightness: @.

6. Theorem 5.5. Separation: OPEN, Tight-

CGns ness: @.
(7) 7. Theorem 6.2. Separation: OPEN, Tight-

ness: @.

/ FC
bs A2

N

A

Figure 1: Some known relations among complexity measures for total functions. An arrow from A
to B indicates that for every total Boolean function f, B(f) = O(A(f)). Double arrows indicate
results in this paper, and boxes indicate new complexity measures. Single arrows indicate known
results and references are omitted from the diagram for space considerations. Most references can
be found in the tables in [Yul9, ABK*21a] and we cite others in later sections. Known relations
about EC are given in [JKK*20], and FC = O((MM)?) is implicit in [ABK21b]. Fractional certificate
complexity FC is equal to fractional block sensitivity and to randomized certificate complexity RC
(up to multiplicative constants). MM is the minimax formulation of the positive adversary method.
MM = O(FC) is proved in [KT16]. For the examples on separation and tightness please refer to
Table 1 and Table 2.
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4 Preliminaries

We define many known complexity measures in this section. Almost all definitions are given for
arbitrary Boolean functions, including partial functions. A few notable exceptions are certificate
complexity, sensitivity and block sensitivity, and we include additional details and definitions with
respect to partial functions for these measures in Section 4.4. We use the following notation. A
total Boolean function f is f : {0,1}" — {0,1}. Except when noted otherwise, inputs = € {0,1}"
are in f~1(0) and inputs y € f~1(1), and sums over x range over x € f~1(0), similarly for y. For
partial functions we use f~! for f=1(0) U f=1(1).

Indices i range from 1 to n and z; denotes the ith bit of 2. We write (Y to mean the string =
with the i¢th bit flipped. When not specified, sums over i range over i € [n].

4.1 Query complexity

We recall briefly the standard notations and definitions of query complexity for Boolean functions
f:{0,1}" — {0,1}. The deterministic query complexity (or decision tree complexity) D(f) is the
minimum number of queries to bits of an input x required to compute f(z), in the worst case.
Randomized query complexity, denoted R(f), is the number of queries needed to compute f, in the
worst case, with probability at least 2/3 for all inputs. Zero-error randomized query complexity,
denoted by Ro(f), is the expected number of queries needed to compute f correctly on all inputs.
The relation R(f) < Ro(f) < D(f) holds for all Boolean functions f. It will be useful to think of
a randomized decision tree as a probability distribution over deterministic decision trees. When
computing the probability of success, the randomness is over the choice of a deterministic tree.

Quantum query complexity, written Q(f), is the number of quantum queries needed to com-
pute f correctly on all inputs with probability at least 2/3.

In this paper we will consider the positive adversary method, a lower bound on quantum query
complexity. It was shown by Spalek and Szegedy [SSO6] that several formulations were equivalent,
and we use the MinMax formulation MM here.

Definition 4.1 (Positive adversary method, Minimax formulation). For any (possibly partial)
Boolean function f,

1
MM(f) = min max
P zef~1(0),yef-1(1) Zzzﬁéyz /Px,iPy,i

where p is taken over all families of nonnegative p,; € R such that for all x € =1 (where f is
deﬁnEd)7 Zze[n} Pzi = 1

4.2 Certificate complexity and its variants

Certificate complexity is a lower bound on query complexity [VW85], for total Boolean functions.
For a total Boolean function f, a certificate is a partial assignment of the bits of an input to f

that forces the value of the function to be constant, regardless of the value of the other bits. A

certificate for input x is a partial assignment consistent with x that is a certificate for f.

Definition 4.2. For any total Boolean function f and input x, C(f;x) is the size of the smallest
certificate for x. The certificate complexity of the function is C(f) = maxg1{C°(f),C1(f)}, where

C*(f) = max,e ;1) {C(f; )}

Randomized certificate complexity was introduced by Aaronson as a randomized version of
certificate complexity [Aar08], and subsequently shown to be equivalent (up to constant factors) to

13



fractional block sensitivity and fractional certificate complexity [Tall3, KT16, GSS16]. We use the
fractional certificate complexity formulation.

Definition 4.3 (Fractional certificate complexity). For any (possibly partial) Boolean function f

FC(f) = max FC(f,z),

zef1
where
FC(f,2) = manU :
subject to Zizzﬁéz; v.; > 1 for all 2 € f~1 such that f(2) = 1 — f(2') , with v a collection of
variables v, ; > 0.

Another formulation which is equivalent using rescaling is,

FC(f) =min  max Zzlw“
w z,2! —1 . LW
f(z):fif(z/) iz R

9

where w is a collection of non-negative variables w, ;.
Randomized certificate complexity (in its non-adaptive formulation) can be viewed as a game

where a player is given an input z and should output an index ¢ (say with probability p, ; = ijj ).
§We.g

The player wins against an input 2z’ (with f(z) = 1 — f(2)) if z; # z[. Then, FC(f), for total
functions, is (up to constant factors) the multiplicative inverse of the probability of winning the
game in the worst case [Aar08, Tall3, GSS16].

Expectational certificate complexity was introduced as a quadratically tight lower bound on
Ro [JKKT20].

Definition 4.4 (Expectational certificate complexity [JKK*20]). For any (possibly partial) Boolean
function f,
EC(f) = min max Wy

woeeft i€[n]

with w a collection of variables 0 < w,; < 1 satisfying > wyiwy; > 1 for all 2,2 s.t.

fz) =1-f().

Since the weights are between 0 and 1, we can associate with each ¢ a Bernoulli variable. The
players can sample from each of these variables independently and output the set of indices where
the outcome was 1. The constraint says that the expected number of indices ¢ in both sets that
satisfy z; # z should be bounded below by 1. The complexity measure is the expected size of the
sets. For example, for the OR function, a strategy could be as follows. On input z, pick the smallest
i for which z; = 1, output the set {i}. If no such i exists, then output the set [n]. The (expected)
size of the set is n and the (expected) size of the intersection is 1. This shows that EC(OR) < n

The following relations are known to hold for any total Boolean function f.

1:2i#Y;

Proposition 4.5 ([JKK*20]). FC < EC < C < O(Rg) < O(EC?).
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4.3 Sensitivity and its variants

Sensitivity is a lower bound on most of the measures described above (except Q and MM). Given a
Boolean function f, an input x is sensitive at index i if flipping the bit at index ¢ (which we denote
by (") changes the value of the function to 1—f(x).

Definition 4.6 (Sensitivity). s(f;x) is the number of sensitive indices of x. s(f) = max,s(f;x)

If B is a subset of indices, an input x is sensitive to block B if simultaneously flipping all the
bits in B (which we denote by z?) changes the value of the function to 1—f(x).

Definition 4.7 (Block sensitivity). bs(f;x) is the mazimum number of disjoint sensitive blocks of
x. bs(f) = max, bs(f;x)

Aaronson et al. [ABK'21a] recently revived interest in a measure called \. It was first introduced
by Koutsoupias [Kou93], and is a spectral relaxation of sensitivity.

Definition 4.8 (Spectral sensitivity, or \). For a Boolean function f, let F be the |f~1 x |f7!
matriz defined by F(x,y) = 1 when f(x) =1 — f(y) and z,y differ in 1 bit. Then \(f) = | F|,

where ||| is the spectral norm.

Note that F' can also be taken to be a |f~1(0)| x | f~1(1)| matrix with rows indexed by elements
of f~1(0) and columns by elements of f~!(1). It is easy to show that both ways of defining F' give
the same spectral norm.

Proposition 4.9 ([ABK'21a, Tall3, GSS16, LLS06] ). For any (possibly partial) Boolean func-
tion f,
A(F) < s(f) < bs(f) < FC(F) and A(f) < MM()

4.4 Additional definitions for partial functions

Extending the definition of certificates to partial functions is slightly complex. For f : {0,1}" —
{0,1,*} it is natural to define the measures CO(f), C(f), as well as CI0*}(f) and CH*}(f) as
follows:

Definition 4.10. For f : {0,1}" — {0,1,%} and b € {0,1} a partial assignment « is a b-certificate
for x € f=Y(b) if o is consistent with x, and for any x' consistent with o f(x') = b.

For f : {0,1}" — {0,1,%} and b € {0,1} a partial assignment « is a {b,x}-certificate for
x € f71(b) if a is consistent with =, and for any x' consistent with o f(x') € {b, *}.

For b € {0,1} and x € f~Y(b), C’(f;x) is the size of the smallest b-certificate for x and
C'(f) = maxge 1) {C°(f; 7))}

Forb e {0,1} and = € f~1(b), Cb*}(f; x) is the size of the smallest {b, *}-certificate for x and
CH(f) = maxge 1) {CO (f52)}.

Note that for example, while one can think of O-certificates for = certifying that f(z) = 0, a
{0, *}-certificate for = certifies that f(z) # 1. We also note that in the definition of C{®*}(f) we
take the maximum over z € f~1(b), we do not include inputs = where the function is not defined
(e.g. where f(x) = *).

The above definitions are fairly straightforward and natural, but it is not immediately clear
how to define C(f) for partial functions. We use the following notation:
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Definition 4.11. For f: {0,1}" — {0,1,x} we define
C(f) = max{CO (), ()}

and C'(f) = maxo1{C°(f),CL(f)}.

Notice that C(f) < C'(f) for any f, and for total functions C(f) = C'(f). However, for partial
functions C(f) can be much smaller than C'(f). The ”Greater than Half” function (see section D)
is an example of a partial function on n bits with C(f) = O(1) while C'(f) = ©(n).

It turns out that some results known for total functions remain valid for partial functions with
respect to C(f) but not with respect to C'(f) and others remain valid for partial functions with
respect to C'(f) but not with respect to C(f). Thus, it is important to distinguish between the
two versions. We prefer to use this definition for C(f) since for example with this definition C(f)
remains a lower bound on deterministic query complexity (and for Ry as well) for partial functions.
On the other hand, it is easy to construct partial functions with deterministic query complexity
O(1) but C'(f) = Q(n). Some of our results for total functions involving C(f) no longer hold for
partial functions, even though they remain valid with respect to C'(f).

A property of certificates often exploited in proofs is that every O-certificate must intersect
(and contradict) every 1-certificate and this remains the case for partial functions. However, this
property no longer holds for {0, x} versus {1, *}-certificates. Proofs based on this property remain
valid for partial functions with respect to C'(f), but may no longer hold for partial functions
with respect to C(f). An important example where this happens is the result that EC(f) < C(f)
by [JKK™20]. This result does not hold for partial functions, as shown by the “Greater than Half”
function which has C(f) = O(1) and EC(f) = ©(n) (see section D), but remains valid with respect
to C'(f).

For sensitivity (block sensitivity) of partial functions, we consider an input = in the domain
F750) U f71(1) to be sensitive to an index (or to a block) if flipping it gives an input where
f is defined and takes the complementary value 1 — f(x). We do not consider an input to be
sensitive to an index (or block) if flipping it gives an input where f is undefined. Notice that with
our definition, sensitivity can be 0 even for non-constant partial functions. Our definition preserves
equality between fractional block sensitivity and fractional certificate complexity (as defined below).

5 Public and private randomness in certificate games

In this section, we go over the main results about the public and private coin models of Certificate
games. As a starting point, we give an efficient public coin protocol for the Tribes function to illus-
trate how shared randomness can be used by the players to coordinate their outputs (Section 5.1).
This also gives an example where CGP"™ does not compose. We then go on to give much more
general results, showing that C, and even EC (Section 5.2), as well as R (Section 5.3) are upper
bounds on CGP"P. Finally, we give several upper bounds on private coin variant, CG (Section 5.4).

5.1 Public coin certificate game for the Tribes function
The Tribes, ; function is a composition of two functions, Tribes,; = ORs o AND;.

Definition 5.1 (Tribes). Tribes,; : {0,1}%¢ — {0,1} is defined using the DNF formula

s t
Tribesg ¢(x) = \/ /\ T

i=1j=1
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The Tribes function is a very well studied problem in complexity theory. It has full randomized
query complexity, in particular, R(Tribes 5 ) = ©(n). On the other hand, the functions OR;

and AND; have full sensitivity. Thus CGP'™ of OR /; and AND /; is ©(y/n). But, in Theorem 5.2
we prove that the CGP'™ of Tribes Jiym 18 O(y/n). Thus the function Tribes 5 ~ demonstrates a
quadratic separation between R(f) and CGPUP(f).

Theorem 5.2.
CGP"(Tribes /7 /) = O(V/n).

Proof. We give a public coin strategy for the Certificate game. Let x and y be the two strings given
to Alice and Bob respectively, that is Tribes 5 = (z) =0 and Tribes 5 =(y) = 1.

Since Tribes\/ﬁ\/ﬁ(x) =0 for all 1 <47 < y/n there exists a; such that x;,, = 0. Note that the a;
is not necessarily unique. For each 7, Alice arbitrarily picks a a; such that z; ,, = 0 and then Alice
considers a new string " where for all i, z(; 5,) = 0 and for other bits of ' is 1.

Similarly, Tribes\/ﬁ,\/ﬁ(y) = 1 implies there exists an b such that for all 1 < j < \/n, yp; = 1.
Again, note that there might be multiple such b but Bob picks one such b and considers the input
y' where y ; = 1 for all 1 < j < /n and all other bits of 3/ is set to 0.

Note that (b, ap) is the unique index (i,5) such that 2/(,5) = 0 and /(¢,j) = 1. We will now
present a protocol for Alice and Bob for outputting the index (b, ap) with probability at least 1//n.
Note that this would imply our theorem.

e Alice and Bob uses shared randomness to select the same list of /n permutations
o1,---,0m ¢ [v/n] = [/n], where the permutations are drawn (with replacement)
uniformly and independently at random from the set of all possible permutations from

[v/n] to [v/n].

e According to their pre-decided strategy both Alice and Bob picks the same index ¢
between 1 and /n.

e Bob outputs (b, o} *(t)).

e Alice picks a number i such that o;(a;) = ¢ and outputs (7, a;). In case no ¢ exists then
Alice outputs any random index.

The probability of success of the protocol crucially depends on the fact that because Alice and
Bob has shared randomness, they can pick the same set of permutations o1,...,0 v/ although the
permutations are picked uniformly at random.

We will show that with constant probability there exists a unique ¢ which satisfies o;(a;) = t.
And under the condition that this holds we will show that the probability of success of the above
protocol is at least 1/4/n. And that would prove the theorem.

We start with the following claim that we will prove later.

Claim 5.3. For any fized number t, with probability at least (1 —1/y/n)V"~! ~ =1, there exists a
unique i such that o;(a;) = t.

Note that the permutation oy is picked from the uniform distribution over all possible permu-
tations from [/n] to [y/n], that is o} is a random bijection from [\/n] to [v/n]. So with probability
1/y/n, t = op(ap). Thus, assuming that ¢ = op(ap) and that there exists a unique i such that
oi(a;) = t, note that output of both Alice and Bob is indeed (b, ap). Thus the probability of success
of the protocol is 2(1/+/n). O
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Proof of Claim 5.3. Consider the event

&k = ox(ax) =t and for all i # k, o4(a;) # t.

Note that probability that the event & occurs is ﬁ (11— ﬁ)\/ﬁ_l. The event that there exists
an unique 4 such that o;(a;) =t is U,\C/flgk. The events & are disjoint, so we have the claim. ]

5.2 Upper bounds on public coin certificate game complexity by C and EC

We will take advantage of having access to shared randomness by using the hashing based approach
outlined in Section 3.1. To illustrate the ideas of the proof, we start with a simple argument to show
that CGP"™ is always upper bounded by certificate complexity. A slightly more involved argument
will show a stronger upper bound by EC.

Theorem 5.4. Let f: {0,1}"* — {0,1} be a total Boolean function. Then CGPY(f) < O(C(f)).

Proof. Let S be a finite set of cardinality C(f). An element z € S is fixed as part of the specification
of the protocol (z does not depend on the input).

Using shared randomness, the players select a function h : [n] — S as follows. Let h : [n] — S
be a random hash function such that for each i € [n], h(i) is selected independently and uniformly
from S.

For € f71(0) we fix an optimal O-certificate C,, and denote by A, C [n] the set of indices
fixed by C,. Similarly, for y € f~1(1) we fix an optimal 1-certificate Cy, and denote by B, C [n]
the set of indices fixed by C,.

After selecting h using shared randomness, the players proceed as follows. On input z, Alice
outputs an index i € A, such that h(i) = 2, and on input y, Bob outputs an index j € B, such
that h(j) = z. If they have several valid choices, they select randomly, and if they have no valid
choices they output arbitrary indices.

Let i* € A, N By, such that z;« # y;+. By the definition of certificates, such element i* exists for
any x € f~1(0) and y € f~1(1), and i* is a correct answer on input (x,%) if both players output i*.
Next, we estimate what is the probability that both players output *.

First recall that by the definition of h, the probability that h(i*) = z is ﬁ = ﬁ Next, notice
that for any ¢ € A, U B, the number of elements different from ¢ in A, UB, is { = |A, UBy| -1 <
|Az| + |By| — 2. Thus for any z € S and any ¢ € A, U B, the probability (over the choice
of h) that no element other than i in A, U By is mapped to z by h is (1 — ﬁ)é > e%, since
max{|Az|,|By|} < C(f) = |S] and thus £ < 2(]S| —1).

Thus, the players output a correct answer with probability at least e%#)

cf
O

The previous theorem is stated for total functions and its proof critically depends on the in-
tersection property of 0- and 1-certificates which does not hold for {0,x}- vs. {1, x}-certificates.
The theorem fails to hold for the partial function ”Greater than Half” (see Section D), for which
it is the case that C(GTH) = 1 whereas CGP"P(GTH) is ©(n). However, the theorem and its proof
remain valid for partial functions with respect to C'(f) (see Section 4.4).

Next, we obtain a stronger upper bound on CGP"™ by EC.

Theorem 5.5. Let f : {0,1}" — {0,1} be a (possibly partial) Boolean function. Then CGP*(f) <
O(EC(f)).
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Proof. The proof will be similar but slightly more involved than the proof of the upper bound by
C. We will rely on the “weights” w,; from the definition of EC(f).

Let S be a finite set of cardinality [EC(f)]. Using shared randomness, the players select a
function h : [n] — S and an element z € S as follows. Let h : [n] — S be a random hash function
such that for each i € [n], h(7) is selected independently and uniformly from S. In addition, z is
selected uniformly from S and independently from the choices for h.

For all inputs « € {0,1}" consider the weights w, ; achieving EC(f). Denote by EC, the sum
> _icfn] Wa,i and recall that by the definition of EC, for each € {0,1}" we have EC, < EC(f).

For a given z € S, consider the preimage h~!(z). We use the notation

Wi(z) = Z Wy i -
)

i€h~1(z

Notice that for any z € S,

i€[n]
where the expectation is over the choice of the hash function.

After selecting h and z using shared randomness, the players proceed as follows. On input
x € f71(0) Alice selects an index i from h~!(z) such that each i is chosen with probability

Wy 4
Wa(z)"
Similarly, on input y € f71(1) Bob selects an index i from h~!(z) such that each i is chosen with

probability V;,Uy(;) Note that these choices are made using Alice’s and Bob’s private randomness, so
Y

for fixed z and h Alice’s choices are independent from Bob’s choices. However, they both depend
on z and h. In what follows, we will denote by Pr, and Pry, respectively, the probabilities that
are only over the choice of z and h, respectively.

Recall that W, (2) and W, (2) are measures of the preimage of z with respect to the weights for
x and y respectively. Since E|§|x < 1 for any = € {0,1}", the preimage of most elements in S will
have small measure. Next we estimate the probability that a given element 7 is mapped to a value
h(i) whose preimage has small measures W, (h(i)) and Wy (h(z)). Note that this only depends on
the choice of h.

For a given i, consider first selecting the values h(j) for all j # i from [n]. Consider the measure
of the preimages of elements in S at this point (without taking into account what happens to

i). Since % < 1 for any z € {0,1}", at most - fraction of the elements in S can have

measure more than ¢ — 1 at this point. Since w,; < 1, we get that for any x € {0,1}" and i € S,
PrafWo(h(i)) > 1] < 741.

For i € [n], let Small; denote the event that both W, (h(i)) and W, (h(i)) are at most ¢. Then
Pry[Small;] > 1 — /2.

For a given i € [n], let Both; denote the event that both players select i. Let I(z,y) = {i|z; #
yi}. Since f(z) = 1— (y), I(z,y) #0.

Recall that the players goal is that they both output the same i from I(x,y). Denote by P(z,y)
the probability that they both output the same i from I(x,y). Note that P(z,y) is at least as large
as the probability that they both output the same i from I(z,y), and both W, (h(i)) and Wy (h())
are at most ¢.

Thus, using that the events Both,; are pairwise disjoint, we have

19



P(z,y)> > Pr[Both; N (z=h(i)) N Small,]
€l(z,y)
= Z Pr[Both;|(z=h(i)) N Small;| Pr[(z=h(7)) N Small;] .
icl(zy)

Note that the events z = h(i) and Small; are independent, since the choice of z is independent
of h. For any i* € I(z,y), and h : [n] = S, Prz[z = h(i*)] = |S| Thus, Pr[z = h(i) N Small;] =
Pr.[z = h(i)]Pry[Small;] = il L Pry[Small;] > \SI (1-2).

For any i € [n], we have

. Wri Wy , W s W
Pr[Both;|z = h(i)] = W:(’;) Wyy(,,lz) and Pr[Both;|z = h(i) N Small;] > —*-2*
Thus, we get
11 11 2
P > — 1— =
(:‘Cay)—t2|s| -1 Z wxzwyz_tQ‘S‘( t—l)
i€l(x,y)

where the last inequality follows by the definition of EC(f).
Setting t =5, we get that the players output the same element from I(z,y) with probability at

least = (EC(f)] Q(%(f)) O

5.3 Upper bound on public coin certificate game complexity by R

In this section we show that CGP"™ lower bounds R.
Theorem 5.6. For any Boolean (possibly partial) function f, CGP*(f) < O(R(f)).

Proof. From the definition of R(f) there is a randomized decision tree R that on any input z
outputs f(z) correctly with probability at least 2/3, and R only reads at most R(f) number of bits
of . To prove CGP"P(f) < R(f) let us consider the following strategies used by the two players:

Both the players run the algorithm R on their respective inputs using the same random coins
(using the shared randomness). Both the player also use shared randomness to pick a number t
uniformly at random between 1 and R(f). Both the players output the t-th index that is queried
by R.

Let x and y be the inputs to the players respectively. Since f(x) = 1 — f(y), with probability
at least 4/9 the algorithm R will output different answers when the players run the algorithm on
their respective inputs. Also since the algorithm R is run using the same internal coins, the initial
sequence of indices queried by both the runs of the algorithm is the same until the algorithm queries
an index k such that z; # y,. Note that With probability 1/R(f), the random number ¢ picked by
t is the same as k. So with probability 2 3 ( L the players correctly output the same index t such

that z; # ;. Hence CGP™(f) < O(R(f)). O

In fact, using the same idea we can show that the public coin certificate game complexity CGPUP
is bounded above by randomized sabotage complexity RS, a measure of complexity introduced to
study the behaviour of randomized query complexity R under composition [BDK18]. It was shown
that RS is a lower bound on R and that it behaves perfectly under composition.

20



Definition 5.7 (Sabotage Complexity [BDK18]). The sabotage complexity of a function f, denoted
RS(f), is defined using a concept of sabotaged inputs Py C {0, 1, *}" which is the set of all partial
assignments of a function f consistent with a 0—input and a 1—input. Let P} 1s defined similarly
with the symbol *x being replaced by t. Given a (possibly partial) function f, a partial function
foab © P U P} — {0,1} is defined as fsap(x) = 1 if v € Py and feu(z) =0 if x € P}r (here we
view Py, PfJr as subsets of {0,1,*,1}"). The sabotage complexity is defined as the randomized query
complexity of computing fsap i-e. RS(f) = R(fsap)-

We show that CGP"™ is a lower bound on RS.

Proposition 5.8. The public coin certificate game complexity of a (possibly partial) function f is
at most its sabotage complexity.

CGM(f) < SRS()

Proof. We show this by using the sabotage complexity protocol to build a CGP"™ protocol. Assuming
that Alice has input « and Bob an input y such that f(z) = 1 — f(y), we construct a sabotaged
input 2, that is consistent with x and y as follows:

%“w:{ﬂﬂ if 2(2) = y(i)

* otherwise.

On the input z.,, we know that a decision tree sampled from the distribution given by the RS
protocol succeeds in finding a % or } with probability > 2/3. The CGP"™ protocol is as follows:
using public randomness, Alice and Bob sample a decision tree from the RS protocol and follow
the path on the decision tree according to their respective inputs for at most RS(f) steps. With
probability at least 2/3 the randomly chosen tree finds a * on input z,, in RS(f) steps. Since the
sabotaged input z,, is consistent with both Alice’s and Bob’s input, the path on = and y on the
decision tree is the same as that on 2z, , until they reach a place where they differ (or encounter a *
in z,,). Alice and Bob pick a random position ¢ such that 1 <¢ < RS(f) and output the tt" query
made in the corresponding paths on the tree. With probability ﬁ(f)’ it is place corresponding
to a x € z;, and they succeed in finding a place where the inputs differ. This gives a success
probability > 2/ 3#(]0) as the random decision tree sampled finds a * on the sabotaged input z,

with probability > 2/3. O

5.4 Upper and lower bounds for private coin certificate games

We first observe that the following formulation is equivalent to CG. The essential idea is rescaling,
and the objective function gets squared because the constraints are quadratic.

Proposition 5.9 (Equivalent formulation for CG). For any (possibly partial) Boolean function f,

2
CG = min max Wy 4
such that Z weiwy; > 1 Vo e f7H0),y € f1(1)

XAy
Wg; >0 Vi
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Proof. We will first show that the value of the objective function in the formulation in terms of
weights is at most CG. Let p be an optimal probability distribution that achieves CG(f) and let

A= min PaiDyi = ———
243 (@)=1-f(y w%;% et ( )
We construct the following weight scheme using p, w;; = %

above formulation since Vz,y such that f(z) =1— f(y),

A
Z Wy i Wy,i = A Z pxlpyz_A 1

1 FY; i@ Ay
We now have
2 2 2
; 1
{qu}l/in} max Z wl, < max Z Wi o = max Z Zj/% N CG(f)
e i€[n) i€[n] i€[n]

For the other direction, let w be an optimal weight scheme w that minimises max, >, w,;. We
w(L‘ i

construct the following family of probability distributions: p;; = S Th1s gives the following.
J

1 > Waj Zj Wy,j

CG(f) < max o= max o S max waZwyu
Foi ) St PriPui o B ) Dty Weitlui ) B 0
2
Thus we have CG(f) < max, {ZJ wm} . ]

We show that the following relations hold for CG.
Theorem 5.10. For any total Boolean function f,

1. MM(f)* < CG(f)

2. Ro(f) < CG(f) < O(EC(f)?) (implied by [JKK"20])

3. CG(f) < O(CGP*(f)?s(f)) (implied by [JKK"20])

4. CG(f) < COHCHS)

The first and last items also hold for partial functions. However, the ”Greater than Half”
function (see section D) is an example of a partial function that would violate item 4 using the
alternate definitions C10*} and C{1+},

Proof. Ttem 1 Let p be an optimal solution for CG(f) so that w(p; z,y) > CG(f) for all x, y satisfying
f(z) =1— f(y). Using the same assignment for MM (Definition 4.1), it is the case that
2

WZ m_l{lo Z \/Pz,iDy,i

= mln Z Dx,iPy,i

xef
yef~ 1(1) et
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so MM(f)? < CG(f).

Item 2 From Proposition 5.9, the formulation of v/CG is a relaxation of the definition of EC,
giving the second equality vVCG(f) < EC(f).

For the first inequality, it was shown in [JKK*20] that Ry < O(EC?). However, their proof does
not make use of the constraints w;; < 1. Without these constraints, EC equals VCG (Proposi-
tion 5.9, so their proof already shows that Ro(f) < O(CG(f)).

Item 3 Jain et al. [JKK'20] showed that EC(f)? < O(FC(f)?s(f)) . From the previous item
CG(f) < O(EC(f)?), and FC(f) < CGPUP(f) from Proposition C.1. We get the desired result by
combining the three inequalities.

Item 4 It is easy to see that CG(f) < C°(f) - CL(f): on input z, each player outputs uniformly
at random some index 7 in a minimal certificate for their input. The certificates must intersect in
at least one index, otherwise we could simultaneously fix the value of f to 0 and to 1 by fixing
both certificates. The strategy therefore succeeds when both players output the same index in the
intersection, which occurs with probability at least c%mc%(f) This argument remains valid for
partial functions, however the “Greater than Half” function (see section D) is an example of a
partial function that would violate item 4 using the alternate definitions C{%*} and C{1*}, O

6 Lower bounds on quantum certificate game complexity

In this section, we give a very short and simple proof that fractional certificate complexity (FC) is
a lower bound on all of our certificate game models.

To illustrate the idea behind the proof and the technique we use, we start with a quantum lower
bound on the OR function. Consider a hypothetical strategy with shared entanglement that would
allow two players to win the certificate game with probability more than 1/n. Then the players
could use this strategy for the certificate game as a black box, to convey information (without using
communication) in the following way. Assume Alice wants to send an integer i € {1,...,n} to Bob.
Bob uses input y = 0" and Alice uses input = = y* (all Os with the i-th bit 1). By running this
game several times, Bob could learn ¢ by taking the majority output of several runs of this game,
which would violate the non-signaling principle of quantum information.

In order to give a formal proof, we show that CG"(Promise-OR) > n. Since CG"(f) < CG*(f)
for every f, the following proposition implies that CG*(Promise-OR,,) > n.

Proposition 6.1. CG"(Promise-OR,,) > n.

Proof of Proposition 6.1. We give a feasible solution to the dual, composed of a hard distribu-
tion p and an assignment to the variables v; ;. , that satisfy the constraints of the dual given in
Proposition 3.2.

Let § = %,x = 0", and consider ji,y = % when y = 2 (z with the i*® bit flipped to 1),
and 0 everywhere else. To satisfy the correctness constraint, we use v to pick up weight 1/n
whenever a strategy AB fails on some pair z, 2. To do this, we define Yijaa® = % for all j£i
(and 0 everywhere else). To see that this satisfies the constraints, consider any strategy AB and

let i = A(x) be A’s output on z.

Case 1: If B(:c(i)) = ¢ then AB is correct on z, 2%, but cannot be correct on any other input
pair with non-zero weight under y. Therefore,

1
> Hoy =~ and Y Ya@) By =0
z,y":A(x)=B(y')=t and z;7#y; z,y’
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Case 2: If B(z(") = j # i, then AB is incorrect on all non-zero weight input pairs, and we have

1

n.

Z Hxy = 0 and Z YA(x),B(y'),x,y’ —

2,y A(x)=B(y')=i and z;%y; .y
Since § = % this is satisfying assignment, which shows that
CG"(Promise-OR) = w™(Rp omise-or) = 7-
O

Note that Q(Promise-OR) is ©(y/n) [Gro96, BBCT01]. Thus, Promise-OR shows that there exist
a function for which CG*(f) = w(Q(f)) (as opposed to the randomized model where CGPUP(f) <
O(R(f)). On the other hand, note that the function constructed by [ABK16] demonstrates that
there exists a total Boolean function f with C(f) = O(y/Q(f)); this f also shows that CGPUP(f) <
0(/Q(f).

The previous lower bound on the OR function can be generalized, with a slightly more com-
plicated weight assignment, to show that block sensitivity is a lower bound on the non-signaling
value of the certificate games. However, using a different technique, we can prove an even stronger
result. We do this by going back to the original definition of CG™ (Definition 2.6) and giving a
very simple proof that CG™ is an upper bound on FC.

Theorem 6.2 (Lower bound on CG"™). For any (possibly partial) Boolean function f, FC(f) <
CG™(f).

Proof. Let p(i, jlx,y) be the distribution over outcomes in an optimal nonsignaling strategy for
CG™(f). Then p verifies the nonsignaling condition, that is, 3, p(i, jlz, y) = >_,; p(4, jlz,y’) for all
x,y,y', i, so we can write the marginal distribution for z as p(i|z) = Zj p(i,jlx,y), since it does
not depend on y. Notice that p(i[z) = 3, p(i, jlz,y) > p(i,i|z,y) for all z,y,i.

With ¢ = CG%U), we have that >, . p(i,ilz,y) > ¢ for all z,y such that f(z) =1 — f(y).

Let v,; = p(i|x)/§ for some arbitrary y. Then >, v,; = % for all  (since p is a distribution) and
Zi:z#yi Vg = Zi:gg#yip(ﬂx)/& > Zm#yip(i,i,:c, y)/6 > 1. Since this is a feasible solution to FC,
we have that FC(f) < CG™(f) O

The lower bound can be improved by slightly modifying the proof to hold for the Classical
Adversary bound, denoted CMM. This measure was introduced in [Aar06, LMO08] as a lower bound
for randomized query complexity R and was shown to equal fractional certificate complexity FC for
total functions (but can be larger for partial functions) [AKPV18].

Definition 6.3 (Classical Adversary Bound). For any (possibly partial) Boolean function f, the
minimax formulation of the Classical Adversary Bound is as follows:

CMM(f) =min  max L

D z,y€eS i ming pz (%), py(i
s D iy WIN{P2(4), py (1)}

where {pg}zes is a probability distribution over [n].

Theorem 6.4 (Lower bound on CG"™ by CMM). For any (possibly partial) Boolean function f,
CMM() < CG™(f).
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Proof. We build the probability distributions p(i|z) and p(ily) from the marginal distribution for
x and y as in the proof above, i.e. p(i|z) = ij(i,jp:,y) and p(jly) = >, p(4, jlz,y). Since by
definition p(ilz) = >, p(4, jlz,y) > p(i,ilz,y) and similarly p(ily) > p(i,ilz,y) for all z,y,i, we
have min{p(i|z), p(ily)} = p(i, i|z,y).

1 1
CMM(f) =min max - . . < min max —
P z,yes iz, IN{P(i|x), p(ily P z,yes it P(, 0|2, Y
fl@)=1=f(y) Disaity, IMPUI), PUElY)) f@)=1-f(y) ity P T12:9)
Since we have that >, . p(i,ilz,y) > CG+5(f) for all z,y such that f(z) =1— f(y), CMM(f) <
CG™(f). O

To summarize the key idea of this section, introducing the non-signaling model of Certificate
games provides a very clean and simple way to give lower bounds on all of our previous models,
including the shared entanglement model. It has several linear formulations, making it very easy
to give upper and lower bounds. Finally, it captures an essential feature of zero-communication
games, which we think of as the “non-signaling bottleneck”. As an added bonus, it allows us to
give proofs on the shared entanglement model without having to get into the technicalities of what
characterizes quantum games.

7 Relations and separations between measures

7.1 Relationship between the various models of certificate games

Understanding the relationships between the various models of certificate game complexity would
help us understand the power of shared randomness over private randomness and the power of
quantum shared entanglement over shared randomness in the context of certificate games. The
following results follows as corollaries to our other results presented in the previous sections and
from other previously known results in this area. We start with relating CGP"? and CG".

Corollary 7.1. For any total Boolean function f, CG™(f) < CGP(f) < O(CG"(f)3/?).

Proof. The first inequality follows from the definition. The second inequality follows from the string
of inequalities,

CGM™(f) < O(EC(f)) < O(FC(f) - v/s(f)) < O(CG™(f) - V/s(f)) < O(CG™(f)*/?),

where, the first inequality follows from Theorem 5.5, the second inequality was proved in [JKKT20]
and the third and fourth inequality follows from Theorem 6.2. O

Since CG"(GTH) = O(n) and FC(GTH) = O(1), the partial function GTH separates CG" and FC
(see Section D). Though, we don’t yet know of a total Boolean function for which FC is significantly
lower than CGP"P. In fact we have following set of open problems:

Open Problem 1 : Are any two complexity measures asymptotically separated by a total function
in the following chain of inequalities?

FC(f) < CG™(f) < CG*(f) < CGP*"(f) < O(EC(f))

Note that if FC = ©(EC) then we have Ry < O(FC?), which will answer a well-known open
problem.
We now present the best known relation between CG and CG™.
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Corollary 7.2. For any total Boolean function f, CG™(f) < CG(f) < O(CG"(f)3).

Proof. The first inequality follows from the definitions and the second inequality follows from
CG < O(EC(f)?) < O(FC*(f) - s(f)) < O(CG™(f)* - s(f)) < O(CG™(f)?),

where the first inequality follows from Theorem 5.10, the second was proved in [JKK*20] and the
last two inequality follows from Theorem 6.2. ]

Note that the above corollary also proves that CG < O(CG")3. Thus we have the following
open problem:

Open Problem 2 : Is there a ¢ < 3 such that CG(f) < O(CG"™(f)°)?

We don’t have any tighter result for the case of CG versus CGP'"P. We have total functions f,
for which CG(f) = ©(CGP'™(f)?). One such example is the Tribes function.

Corollary 7.3. While CGp“b(OR\/;L) = CG™(OR 5) = ©(\/n), the certificate game complexities
for Tribes 5 = OR 57 o AND /5 is as follows.

o CG"S(Tribes\/gy\/ﬁ) = CGPUb(TribeS\/ﬁ\/ﬁ) = @(\/ﬁ), and

° CG(TFIbeS\/ﬁ’\/ﬁ) = @('fl)

Proof. Firstly, note that since the functions OR and AND has full sensitivity, from Theorem 6.2 we
have CGP™(OR ;) = CG™(OR ;) = ©(v/n).

Also, the sensitivity of Tribes 5 = is ©(y/n) and hence from Theorem 6.2 we have that the
CGP'™ and CG" of Tribes s/ is Q(y/n. The upper bound follows Theorem 5.5 and the fact that
the certificate complexity of Tribes 5 /s is at most v/n. But we have also provided a separate
proof (Theorem 5.2) for the upper bound of the Tribes s 5. Thus we have CG™(Tribes 5 ) =
CGp“b(Tribes\/ﬁ,\/ﬁ) = 0(y/n).

Now for the certificate game complexity with shared randomness, from Theorem 5.10 we know
that CG is bounded below by Ry and we know that Ro(Tribes 5 ) = ©(n). On the other, Theo-
rem 5.10 also helps us to upper bound CG by (EC)?2, and since EC(Tribes 5 ) < C(Tribes 5 &) <
V1, so we have that CG(Tribes /5, ) = O(n). O

Also note that any function with A(f) = n, like the parity function, demonstrates a quadratic
gap between CG and CGP'". This is because CG(f) = Q((MM(f))?), from Theorem 5.10, and

MM(f) = Q(A(f)). Thus for any such functions CG is ©(n?) while CGP" is ©(n). Thus we have
the following open problem:

Open Problem 3 : Is CG(f) < O(CGP'™(f)?) for all functions f?

Note that Open Problem 3 and Open Problem 2 are related (for total functions). Also, we
already know that for any total function CG(f) < O(CGP™(f)2 -s(f)).

The two inequalities that we used in the corollaries and discussion above are CG = O(EC?) and
CG = Q(MM?). Obtaining tighter versions of these inequalities may help us obtain tighter bounds
between CG and CGP' (or CG™).

We observe that the bound CG(f) < O(EC(f)?) is indeed tight (the function OR,, that is the
OR of n variables has CG at most ©(n) because, from Theorem 5.10, we have CG < CY - C!, and
FC(OR,) = Q(n) but C'(OR,) = 1.
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Another question is: what is the biggest separation between CG(f) and MM(f)? To the best of
our knowledge, the best upper bound on CG for total functions in terms of MM is

CG < O(FC%s) < O(MMY),

where the final inequality follows from the fact that FC < I\/IMZ[ABK21b] and s < A2 < MMZ2. The
biggest separation between CG and MM in this direction is cubic: there is a total Boolean function
f for which CG(f) < Q(EC(f)*?). In [ABB*17] they constructed a “pointer function” g, for which
Ro(g) = 2(Q(g)®). We observe that, for the pointer function,

CG(g) > 2Ro(9)) = Q(9)%) = AMM(g)?),

where the first inequality follows from Theorem 5.10 and the other inequalities follows from earlier
known results. This separation can also be achieved by the cheat sheet version of k—Forrelation
function that gives a cubic separation between Q and R [BS21, ABK16].

However (from Theorem 5.10) for any total Boolean function f, (MM(f))? < O(CG(f)) and this
inequality is in fact tight (for any total function with full spectral sensitivity, such as parity). In fact,
the two quantities, CG and (MM)2, are asymptotically identical for symmetric functions [MNP21].

We also note that inequality that CG(f) > Q(Rg(f)) (from Theorem 5.10) is not tight: that is,
there are functions like the parity function which separates CG from Ry (see Section D).

Another upper bound on CG that we observe is CG < CY - C!. While for some functions (like
the Tribes function) the two quantities CG and C° - C! are asymptotically equal we note that there
are functions for which CG is significantly less than C°- C!.

Corollary 7.4. There exists a total function f: {0,1} — {0,1} for which,
e CO(f) = O(N) and C'(f) = O(/N)
. EC(f) = O(VN)
And hence CO(f) - C(f) = Q(CG(f)3/?).
Proof. In [JKK*20, Theorem 11] they constructed a total function f : {0,1}" — {0,1} such that

CO(f) = ©(N) and C}(f) = ©(v/N) and EC(f) = ©(v/N). Thus, from Theorem 5.10 we have
CG(f) = ©(EC(f))? < O(N). Thus we have the corollary. O

7.2 Approximate Index: Exponential gap between R and CGP"P for a partial
Boolean function

We saw that CGP"™ of a Boolean function lies between its randomized query complexity and ran-
domized certificate complexity; the same is true for noisyR.

The measure noisyR was introduced in [BB20] (please refer to [BB20] for the formal definition)
to study how randomised query complexity R behaves under composition and it was shown that
R(f o g) = Q(noisyR(f)R(g)). As it was also shown that almost all lower bounds (except Q) on R
are also lower bounds on noisyR, it is interesting to see whether CGP'™ is also a lower bound on
noisyR.

Open Problem 4 : Is it the case that for all f, CGPU(f) < O(noisyR(f))?
Ben-David and Blais [BB20] constructed the approximate index function, which is the only

function known where noisyR and R are different. But the approximate index function that they
construct is not a total Boolean function but a partial Boolean function.
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Let Aplind;, be the approximate index function where the input has an address part, say a, of
k bits and a table with 2* bits. The function is defined on inputs where all positions of the table
labelled by strings within % — vklog k Hamming distance from a have the same value (either 0 or
1), and all positions that are farther away from a have 2 in them, i.e.

Definition 7.5. Aplind,, : {0,1}* x {0,1,2}2" — {0,1,*} is defined as

T if vp = 14 € {0,1} for all b that satisfy |b—a| < & — /klogk
Aplnd;(a,z) = and xp = 2 for all other b,

* otherwise.

Note that, even though the range of ApInd;, (as defined above) is non-Boolean, it can be con-
verted into a Boolean function by encoding the input appropriately. This will only affect the
lower /upper bounds by a factor of at most two.

Ben-David and Blais showed that noisyR(Aplnd,) = O(log k), and R(Apind) = ©(\/klogk). As
an indication that CGP"™ could be a lower bound on noisyR, we show the following theorem.

Theorem 7.6. The public coin certificate game complezity of Aplnd on n = k + 2% bits is
CGP“(ApInd,) = O(log k).

A central ingredient to the proof of this theorem is the following lemma that captures yet
another application of the hashing based framework introduced in Section 3.1 (we state it in a
more general form).

Lemma 7.7. Let L be an integer. Assume that for every x € f~1(0) and y € f~1(1) there are sets
A, depending only on x, and B, depending only on y, of size L, such that any element of A, N B,
is a correct output on the input pair (x,y), that is, for any i € A, N By, we have x; # y;. If for
any v € f~1(0) and y € f~1(1)

L =|Az| = |By| < t[A; N Byl ,
then CGPY(f) < O(t?).

Proof. Let A, and B, be sets of size L guaranteed by the statement of the lemma. We can assume
that for ¢ in the statement of the lemma 20 < ¢ < 0.1L holds, since O(L?) is a trivial upper bound
on CGP"™(f). Let S be a finite set with [S| = | £] > 1. Let 2 be a fixed element of S (e.g. the first
element of S) given as part of the specification of the protocol. (Note that z could also be selected
using shared randomness, but this is not necessary.)

Let T C [n] be a set of possible outputs that contains the sets A, and By, for every z € f~1(0)
and y € f~1(1). Let h: T — S be a random hash function such that for each i € T, h(i) is selected
independently and uniformly from S. The players select such h using shared randomness. Then,
on input z, Alice outputs a uniformly random element from h~!(z) N A, (if this set is empty, she
outputs an arbitrary element). On input y, Bob outputs a uniformly random element of h=1(2) NB,
(if this set is empty, he outputs an arbitrary element).

Claim 7.8. For any x € f~1(0) and y € f~1(1),

1

Prih Y (z)n A, NB, =0] < 5

e

where the probability is over the choice of the hash function h.
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Proof. Notice that our setting implies that for any z € f~1(0) and y € f~1(1), [4.NBy| > £ > 2|9].

Thus, Pr{h~!(z) N Az N By = 0] = (1 — )= < (1 — )25 < . O

Claim 7.9. For anyz € f~1(0) andy € f~1(1), Pr[|[h=1(2)NAz| > 3t] < € and Pr[|h=1(2)NB,| >
3t] <€, where € = e~ 01,

Proof. Notice that the expected size (over the choice of the hash function h) of the intersection of

the pre-image of z with the set A, is E[|h=1(z) N A.|] = ‘%ﬁ' < 2.1t. The claim follows by using

the following form of the Chernoff bound [MUO5]:

52

PriX > (14 6)u] < e 2

where X is a sum of independent random variables with values from {0,1} and p = E[X]. The
proof with respect to By is identical. O

Using the above two claims, we obtain that with probability at least 1 — e™2 — 2701 > % the
following conditions hold:

(i) h~Y(2) N Ay N By # 0 and

(ii) h=1(2) N 4, and h='(z) N By are both nonempty and have size at most 3t.

Let i* € h=1(2)N A, N B,. Then i* is a correct output, and the probability that both Alice and
Bob select i* as their output is at least 9%. Thus on any input z € f~1(0) and y € f~1(1), the
players output a correct answer with probability at least @.

O

Before we see how the hashing lemma helps prove Theorem 7.2, we define the following notation.
The Hamming Sphere of radius r centred at a k-bit string a, denoted as S,(r), contains all strings
z € {0,1}* that are at distance exactly r from a. Similarly the Hamming Ball of radius r centred
at a, denoted as B,(r), contains all strings z € {0,1}* such that d(a,z) < r. For the Aplnd,
function, a valid input has the function value in all positions in the table indexed by strings in
B, (% — Vklog k:) where a is the address part.

Proof of Theorem 7.2. We consider two different strategies for different kinds of inputs: the first
for when the Hamming distance between the address parts a, b of the inputs is large, i.e. d(a,b) >
k/logk and the second when the distance is smaller. For the first case, Alice and Bob use public
randomness to sample an index ¢ € [k] and this bit differentiates a from b with probability > 1/ log k.
In the other case, we first show that Q(1/y/Iogk) fraction of the Hamming Ball B, (5 — /& logk)
around a (or b) intersects that around b (or a). We then use the hashing lemma (Lemma 7.7) for
Alice and Bob to pick an index in the intersection with probability Q(1/log k).

Public coin strategy for Aplnd: Let us suppose that Alice has an input (a,z) € f~1(1) and
Bob has (b,y) € f~1(0). We will consider two separate strategies for Alice and Bob to win the
public coin Certificate Game with probability Q(@) They choose to play either strategy with
probability 1/2.

e Strategy 1:

Alice and Bob sample a random element z € [k] using public coins and output the
element z.
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This strategy works for inputs for which the Hamming distance between the address parts a

and b is large, i.e. d(a,b) > ﬁ. The probability that this strategy succeeds, Prla, # b,] >
1

log k"

e Strategy 2: We use the strategy described in Lemma 7.7 where A, ;) and B, ,) are Ham-
ming Balls of radius g — Vklogk centred at a and b respectively. Let S be a set of size

Bl

Alice and Bob agree on a z € S in advance.

They sample a random hash function h : {0,1}* — S using public randomness.

Alice outputs a uniformly random element from h™'(z) N A,y (if this set is
empty, she outputs an arbitrary element). Similarly, Bob outputs a uniformly
random element of h=1(2) N B,y), and if empty, an arbitrary element.

J

The proof that this strategy works for inputs where the Hamming distance between the
address parts a and b is small, i.e. d(a,b) < @ essentially relies on the following lemma.

Lemma 7.10. (Intersection Lemma): For two k—bit strings a and b at Hamming distance @,

a Hamming sphere of radius r centred at a has \/kfﬁ fraction of it lying in the Hamming ball of

the same radius centred at b

Sa)NB()| e
|Sa (7)] ~ Vliogk
where % — 100v/klogk <r < % — Vklogk and c is a constant.

The proof of Lemma 7.10 is given in Appendix A. The basic outline of the proof is as follows:

the fraction W is at least the sum of probabilities from a hypergeometric distribution

Py from 3 to m where m = ﬁ is the distance between the Hamming Ball and the Sphere.
We show in Lemma A.3 that the hypergeometric distribution Py, is symmetric about % for
a range up to 200y/m. The expected value E of Py, for our choice of m and r lies between
% —100/m and % — \/m. We have a concentration bound for hypergeometric distribution Py,
by Hoeffding [Hoe63] stated in Lemma A.2 that the sum of the probabilities around the expected
value of width /r is at least 0.7. Using the property of hypergeometric distributions that it is
monotone increasing up to the expected value E and monotone decreasing beyond it shown in
Lemma A.4, we derive a concentration bound of width /m around E that the probabilities in this

range sum to at least 0.7 x ‘/—\/7?, which for our choice of m and r is at least ﬁ. This gives us

|Sa (r)NBy ()] d /
that 'the Sa )] > N for a consicant c. ' '

Since we can show most of the weight of the Hamming ball is concentrated on outer layers
(proof of which is given in the Appendix B.1) and since the size of the intersection of the Hamming
Balls increases as the distance between them decreases, we easily get the following corollary from

Lemma 7.10.

Corollary 7.11. For two k—bit strings a and b at Hamming distance at most %, the ratio of

k—bit strings in the intersection between the Hamming balls of radius % —+klogk centred at a and
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b to the total size of each Hamming Ball is at least m

[Bo (5 — VEIogk) 0By (5 — vElogk)|
1Ba (g VEklogk)| = Jlosk

where c1 1s a constant.

Using the hashing-based framework described in Lemma 7.7 with A, = B, (% — vklog k:) and
By, =B, (% —Vklogk), we get that CGP'(Aplnd) = O(log k) as t = y/Tog k/c where ¢ is a constant.
O

Although we have proven an upper bound on CGpub(Aplnd), a lower bound has not been shown
and we leave it as an open problem.

Open Problem 5 : Give a lower bound on CGP"?(Aplnd).

8 Single bit versions

Aaronson et al. [ABK"21a] defined single-bit versions of several formulations of the adversary
method, and showed that they are all equal to the spectral sensitivity A. Informally, single-bit
versions of these measures are obtained by considering the requirements only with respect to pairs
x,y such that x,y € f~1(0) x f71(1) and = and y differ only in a single bit.

We denote by d(z,y) the Hamming distance of = and y, and by 2 the string obtained from x
by flipping the value of the i-th bit x; to its negation. The single-bit version of MM(f) was defined
in [ABK™21a] as follows.

MMy (f) = {min} maXZwm such that wy;w @ ,; > 1 Vi with f(z) =1 - FDy (1)
Wz, g T . ’
(2
where x € {0,1}" and i € [n].
Similarly to the proof of Proposition 5.9 it can be shown that this is equal to the following
formulation, which we include for comparison with some of our other definitions.

1 1
MM;(f) := min max = min max (2)
P awes T xS L0) D,y v/PasiPyi Pooaif(2)=1=f(2()) \/P,iPy(0) 4

d(z,y)=1

where p is taken over all families of nonnegative p,; € R such that for all z, Zie[n] Do = 1.

Note that the definition of MMp;;(f) is well defined for partial functions provided that there
exist 2,y € f~1(0) x f71(1) such that = and y differ in exactly one bit. This is equivalent to
sensitivity, s(f), being non-zero. Aaronson et al. [ABK"21a] proved the following theorem which
also hold for these partial functions.

Theorem 8.1. (Thm. 28 in [ABK'21a]) For any Boolean function f :{0,1}" — {0,1}
A(f) = MM (f) -

Here we consider single-bit versions of CGP"? and CG and show that they characterize sensitivity
and A2, respectively, up to constant factors.
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Definition 8.2 (Single-bit private coin certificate game complexity). For any (possibly partial)
Boolean function f with s(f) #0

1 1
CGpyy(f) := min max ——— = min max _
P rc7y€fd_(1(0))Xf1_1(1) w(p; z,y) P aif(x)=1-f(z) Pz,iPg () ;
x?y =

where p is a collection of nonnegative variables {py ; }» . that satisfies, for each x€ {0,1}", Zie[n] Pri =

1, and w(p;x,x(i)) s the probability that both players output the unique index i where x and 2@
differ.

Note that A
W(p, x, :E(Z)) = pxyipl'(i>,i

Recall that when the players share randomness, a public-coin randomized strategy is a distri-
bution over pairs (A, B) of deterministic strategies. We assign a nonnegative variable p4 p to each
strategy and require that they sum to 1. We say that a pair of strategies (A, B) is correct on x,y
if A(z) = B(y) =i and x; # y;.

Definition 8.3 (Single-bit public coin certificate game complexity). For any (possibly partial)
Boolean function f with s(f) # 0

1 1
CGmb(f) := min max — = min max e,
P z,yefdf(um)xf*l(l) WP (piz,y) P aimefo1(0)aWef1(1) wP(p;z, ()
z,y)=1

where p is a collection of nonnegative variables {pa p}a p satisfying Z(A,B) pa,B =1 and

b, —
WP (pya,y) = > PAB
(A,B) correct on x,y

Theorem 8.4. For any (possibly partial) Boolean function f :{0,1}" — {0, 1} with s(f) # 0

CGH(f) = O(s(f))

Proof. Upper bound by sensitivity We use the hashing based approach, similarly to the upper
bounds on CGP" by C and EC (Section 5.2).

Let S be a finite set of cardinality s(f). An element z € S is fixed as part of the specification
of the protocol (z does not depend on the input).

Using shared randomness, the players select a function h : [n] — S as follows. Let h: [n] = S
be a random hash function such that for each i € [n], h(i) is selected independently and uniformly
from S.

For x € f71(0) let A, be the set of indices of the sensitive bits of x, that is A, = {i € [n]|f(z) =
1 — f(=@}. Similarly, for y € f~1(1) let B, = {i € [n]|f(y) =1 — f(yV}.

After selecting h using shared randomness, the players proceed as follows. On input z, Alice
outputs an index i € A, such that h(i) = 2z, and on input y, Bob outputs an index j € B, such that
h(j) = z. If they have several valid choices, or if they have no valid choices they output arbitrary
indices.

Let i* € A, N By, such that z;+ # y;=. Notice that for z € f71(0) and y € f~1(1) such that
d(z,y) = 1 there is exactly one such index i*.
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Next, we estimate what is the probability that both players output ¢*. Recall that by the
definition of h, the probability that h(i*) = z is ﬁ = ﬁ Notice that for any i € A, U B,
the number of elements different from ¢ in A, U By is £ = |A, U By| — 1 < 2(|S| — 1), since
max{|Az|,|By|} < s(f) =|S|. Thus for any z € S and any i € A, U By the probability (over the
choice of h) that no element other than ¢ in A, U By, is mapped to z by h is (1 — ‘—é‘)z > e%

Thus, the players output a correct answer with probability at least e%ﬁ

Lower bound by sensitivity We will use the dual formulation of CGFll]lb obtained similarly to

Proposition 3.1. The only difference is that the distribution u takes nonzero values only on pairs
z,2® (on pairs with Hamming distance 1). Let z* be an input such that s(f;z*) = s(f) =: s, and
assume without loss of generality that f(x*) = 0. Consider the following distribution p over input
pairs at Hamming distance 1. piz«, = % for y € f71(1) such that d(z*,y) = 1 and pg+, = 0 for
every other y. Furthermore, ji,,, = 0 for any y and 2’ # z*. Thus, we only have s input pairs with
nonzero measure.

Let A, B be any pair of deterministic strategies for Alice and Bob. Since A is a deterministic
strategy, Alice will output the same index i for every pair z*,y. This means that the probability

1 1

over u that the players win is at most o) = s = ﬁ for any pair of deterministic strategies. [J

Note that one can similarly define single-bit versions of FC and EC, and it is easy to see that
both are equal to sensitivity.

Definition 8.5. For any (possibly partial) Boolean function f with s(f) # 0

FCy(f) = LoTaX, FCy(f, 2),

where
FCiy(f,2) =min > v,
subject to vy ; > 1 for all i such that f(z) =1— f(x(i)), with v a collection of variables vy ; > 0.

Definition 8.6. For any (possibly partial) Boolean function f with s(f) # 0
ECpyj(f) = minmax Z Wy i
1€[n]

with w a collection of variables 0 < w,; < 1 satisfying Wy iW,y (i) ; = 1 for all z,i s.t. f(x) =
1— f(z®).
Proposition 8.7. For any (possibly partial) Boolean function f :{0,1}" — {0,1} with s(f) #0

s(f) = FCpy(f) = ECyy(f) -

Proof. We can think of the values v, ; and w;; as weights assigned to the edges of the Boolean
hypercube. We say that an edge (z,z(")) is sensitive (with respect to the function f) if f(z) =
1—f (:U(i)). First notice, that both definitions require to place weight at least 1 on each sensitive
edge, thus both FCy;(f) and ECpyj(f) are at least s(f). On the other hand, placing weight 1 on
each sensitive edge and weight 0 on every other edge satisfies the constraints of both definitions,

thus both FCy)(f) and ECpyy(f) are at most s(f). O

Thus we get the following.
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Corollary 8.8. For any (possibly partial) Boolean function f:{0,1}" — {0,1} with s(f) # 0
s(f) = FCpy(f) = ECpy(f) = O(CGL}(f)) -
Theorem 8.9. For any (possibly partial) Boolean function f : {0,1}"* — {0,1} with s(f) # 0
CGpyy(f) = A°.

Proof. Comparing the definitions of MM(;; and CGyy) (e.g. the formulation of M Mj;) in Equation (2)
with Definition 8.2) notice that /CG;) = MM(y). (One can also restate Definition 8.2 with weights
as in Proposition 5.9 and compare that version with the formulation of MM[;; in Equation (1).)
The statement then follows from Theorem 8.1. O

One of the enticing open problems in this area of complexity theory is the sensitivity-block
sensitivity conjecture. The best gap between bs(f) and s(f) is quadratic: that is there exists
a function f such that bs(f) = ©(s(f)?). The conjecture is that this is indeed tight, that is,
for any Boolean function f, bs(f) = O(s(f)?). In the seminal work of [Hual9] the degree of a
Boolean function was bounded by the square of sensitivity, and this is tight for Boolean functions.
Since the degree of a Boolean function is quadratically related to the block sensitivity, we have
bs(f) < O(s(f)*. Unfortunately, this approach via degree will not be able to give any tighter
bound on block sensitivity in terms of sensitivity.

Estimating certificate game complexity may be a possible way to prove a tighter bound on block
sensitivity in terms of sensitivity. Given the result in Theorem 8.4, designing a strategy for CGP'P

using a strategy for CGF“'D may help us solve the sensitivity-block sensitivity conjecture.

1]
Open Problem 6 : What is the smallest ¢ such that, for any Boolean function f, CGpub( f) =
O(CGR"())?

Note that proving CGPUP(f) = O(CGI[)ll]lb(f)Q) would prove that bs(f) < O(s(f)?). It may seem
too much to expect that the single-bit version of the game can help get upper bounds on the
general public coin setting, but thanks to Huang’s breakthrough result [Hual9], we already know

that CGPUP(f) = O(CGEl]lb(f)5) for any total Boolean function f.
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A  Proof of the Intersection Lemma 7.10

The Hamming sphere S,(r) centred at the k—bit string a of radius r contains (ﬁ) k— bit strings,

Le. [Sa(r)] = (7).

Suppose we denote the Hamming distance between a and b as m. For our purposes, we choose
m = @ A k—Dbit string z at a distance r from a lies in By(r) if on the m indices that a differs
from b, z is closer to b than a. The number of k—bit strings at a distance r from a that lie in By(r),

18.r) N By(r)] = |{z € 10,1} | dir(a,2) = v Adia(b,2) <7 }| = f: <T> (’“"7)

j=m/2 "
The hypergeometric distribution on parameters k,m and r, for 0 < j < m is given by,
(1)
()
Proposition A.1. The fraction of the size of the intersection to the size of the Hamming Ball can
be expressed as a sum of probabilities from a hypergeometric distribution,

|Sa(r) N0 By(r
SOBOL, S 0
j=m/2

The proof relies on following three lemmas about hypergeometric distribution.

Pk:,m,r (]) =

Lemma A.2. (Concentration Lemma)[Hoe63]: For a hypergeometric distribution P with parame-
ters k,m and r,

i
<

Pk,m,r(i) < 6_2

s
Il
=)

Pk,m,r(i) < 672

]~

&

NG

i=
where E = 7~ is the expected value of the distribution P.
Lemma A.3. (Symmetric Property): For the hypergeometric distribution with parameters m =
oor and k/2 — e/klogk <r < k/2 - \/klogk

Pk:,m,r(m/Q +]) >

=~ >c

Pk,m,r(m/Q - .])

where 0 < j < 2¢y/m and ¢, are constants.

Proof. From the definition

Prnr(m/2+5) _ (nf3) (3 s)
Bim,r(m/2 = j) (m/rg—j) (r—]:n_/Tngj)
(r—m/2—j+1)---(r—m/2+7)
(k m/2—r—j+1)---(k—m/2—1+}))

S r—mj/2—j 2]_ {— k—2r+2j %
“\k—-m/2—r+j B k—m/2—1+3j
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where in the last line we have approximated all the terms in the numerator by a factor smaller than
the smallest factor and in the denominator by the largest factor. On substituting the values for m
and r, we have

Pims(m/2+35) _ (, 1 (_ 2j(2cv/klogk +2j) ’
Py (m/2—7) — 25 \ k/2 — 515 + VETogk + j

< 2j(2evkTog k+25) >

- k . ; 2
k/2 ++kTlog k+ —

~ / 2Togk og J > 16¢

We get the last inequality after replacing j by the largest possible value that we consider which is
2¢v/m and we get ¢ &~ e 16¢, O

Lemma A.4. (Monotonicity Property): For the hypergeometric distribution where k is large and
m = er and k/2 — ey/klogk <r < k/2—/kIogk , Pyymr(j +1) > Py (j) for j < E—1/2 and
Promgs(§+1) < Pemr(j) otherwise. Here, E = " is the expected value of the distribution P.

Proof. From the definition of hypergeometric distribution, we have

Peme(G+1) _ (TDCE™)  (m—i)r—3)
Piomr(9) MGy Gk —m=—r+j+1)

If Pyopny(j+1)> Pymy(d), we have G H()’&_jgl(:j?j 07 > L. On simplifying this expression, we get

j < mrdm—kir—l Gimjilarly we have Py (3 +1) < Pymy(j) when j > mrtm—kitr—1 = When k is

(k+2) (k+2)
large, k+2 ~ k and %’;;ﬂ’*l ~ E—(1—"4). On substituting for m and r, we get ™ ~ 1/24¢
where € < 0. Thus we can conclude that when k is large enough, Py (7 + 1) > Prmr(j) when
J<E—-1/2and Pypmr(j+1) < Py .(j) otherwise. O

We can now prove the main result of this section.

Proof of Lemma 7.10. To prove this theorem, from Proposition A.1 it is enough to show that

C/

Prmr () 2
Z k,,(]) \/@

j=m/2

when m = % and k/2 — c/klogk < r < k/2 — \/klogk. From the monotonicity property in
Lemma A.4, we have that

Z Pk:,m,?"(j) Z W Z Pkﬁnm(j) > \l log k Z Pk,m,r(j)
j=E—vm j=E—/r & J=E—/T
From Lemma A.2, we have
J=E+yr
> Pomr(d) 2 0.72
Jj=E—yT
This gives,
I=Em [2 1
P ) >/ — x0.72 > ——
Z k,m,r(]) logk X \/m

j=E—y/m

40



For our choice of m and r, we have the expected value m/2 — cy/m < E < m/2 — /m. Using
Lemma A.3, by the symmetric property of the hypergeometric distribution for our choice of m and
r, on reflecting about m/2 we have

m j:E‘i'\/TTI C/
Pimay(j) > ¢ Promyr () = -
jzm:m v jEz—:Wz ) Vicek
where ¢ a2 e~ 16¢*, O

B Most of the weight is concentrated on outer surfaces of the
Hamming ball

Lemma B.1. For a Hamming Ball of radius r = k/2—+/klogk, the weight contributed by Hamming
Spheres of radius < k/2 — 100v/klogk is small.

k_100yklogk .
o |Sa ()] <

C1
1Ba (& — VETogE)|
where ¢1 18 a constant.
Proof. We would like to show
£—100vETogk i
7=0 (g)
- <c
5—Vklogk (k)
j=0 j
We use the following form of Chernoff Bound [MUO05],
62;1,

PriX <(1-d)uj<ez

E_100FTosk
for 0 < ¢ < 1 and apply it to the binomial distribution with p = 1/2 to get 2]2:0100 log (’;) <

We now use the following lower bound for the tail of the binomial distribution when
p = 1/2 (which is restated slightly from its original form in [MV08]).

ok f—10%,

1
Pr[X <k/2—6]> 175671662/k

E_ ETogk
for > 3k/8. This gives > 7 Flogk (I;) > 28 Lk~16. Thus we have
5 _100ykIogk
oo () s
! < <
E_VElogk (  — k16
=0 (J)
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C Direct proof that CGP"™ is at least FC

Proposition C.1. For any Boolean function f, FC(f) < CGPU(f).

Proof. By the definition of CGP"P(f) (Definition 2.4), there is a collection of non-negative numbers
{pa,B} A B satisfying Z(&B) pap = 1 such that for any x € f~1(0) and y € f~1(1)

1
> PAB 2 —p
(AB) : A@@)=By)=i, CGP2(f)
&, xi#y;

Let CGP™(f) = ¢* and Vgpi = C* (Z(A,B) : A(x):ipA,B>- Note that for any z,vy such that

Z Vg = c* % Z DAB = 1

i Ay (A,B) : A(z)=B(y)=i,
s LTiFYi
Thus, if we use the constants v,; in the definition of FC (Definition 4.3) we have FC(f) <
MaXy Y ey Vayi = CGPUP(f). O

D Examples of functions

Interesting examples of total and partial Boolean functions are very important to understand the
relations between various complexity measures. In fact constructing interesting functions is one
of the commonly used techniques to prove separation between pairs of measures. A number of
interesting functions has been constructed for this purpose (for example [GSS16, ABK16, BS21,
Cha05, Rub95]). In this paper we use some of them to understand the relation between the
certificate games measures and others. The various complexity measures for the functions we
consider is compiled in Table 1.

OR and Parity (@) are one of the simplest functions, probably the first ones to be studied for any
complexity measures. The bounds on &, follow from the observation that A(&,) = ©(n) (CG(&,,) =
O(n?) follows from Theorem 5.10); the bounds on OR, follow from \(f) = ©(y/n) [ABK'21a],
Q(OR,,) = O(y/n) [Gro96] and the observation that s(OR,) = ©(n) (please refer to Figure 1).

Tribes,, , = OR,, o AND,, is a non-symmetric function, made by composing OR and AND. We
use it as an example of a total function where R and CGP"™ are asymptotically different. It can
be verified that C(Tribes  z) = ©(y/n), and A(Tribes 4 ) = Q(Tribes 5 =) = O(y/n) follows
from composition [ABK"21a, LMR*11]. R(Tribes s /) = ©(n) is from Jain and Klauck [JK09],
other measures follow from these observations.

The function GSS; is a function defined in [GSS16]. It is defined on {0,1}"*. The complexity
measures of GSS; was computed in [GSS16] and [JKK*20]. The blank spaces indicates that the
tight bounds are not known.
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[ Function | X | s [ bs | FC | MM [ Q [C™ ] R | EC | C | CG |
OR,, O(vn) | ©(n) | () | ©() |O(n) |On) | O |Om) | Ok | 6 | O(r)
®n O(n) O(n) O(n) O(n) O(n) O(n) O(n) | ©(n) | O(n) O(n) | 6(n?)

Tribes i || ©(vR) | (V) | ©(Vn) | ©(Vn) | O(Vn) | B(Vn) | B(Vn) | B(n) | ©(V/n) | O(/n) | B(n)
GSS; ©(n) O(n) O(n) O(n) O(n) | ©(n?) | O(n?)

Table 1: Some of the commonly referred total functions and their complexity measures

Regarding partial functions we would like to discuss a couple of them that are used in multiple
places in the paper to show separations between measures for partial functions - namely the “ap-
proximate indexing” function and the “greater than half” function. The know measures for these
functions are compiled in the Table 2.

Aplnd is the approximate indexing function defined by Ben-David and Blais [BB20], we show
that R and CGP'™ are exponentially separated for this partial function (we know R(Aplnd) =
O(vk logk) [BB20] and CGP'P(ApInd) = O(logk), from Section 7.2). Rest of the measures men-
tioned in the table can be observed easily.

We still don’t know if CGP™ and FC can be asymptotically different for a total function. Though,
there is a partial function, GTH (defined by Ambainis et al. [AKPV18]), for which FC is con-
stant [AKPV18] but CGP" is ©(n) (follows from Theorem 6.4 and CMM(GTH) = O(n) [AKPV18)).

Definition D.1 (GTH [AKPV18]). The “greater than half” function is a partial function defined
only on n bit strings that have Hamming weight 1. The function evaluates to 1 on an input x if the
position 1 where the input bit is 1 is in the second half of the string, i.e. GTH : {0,1}" — {0,1} is
defined as GTH(z) =1 if z; = 1 where i > n/2.

To show that CG(GTH) = O(n), we use the version in Proposition 5.9. For a 1-input y, we only
put a non-zero weight of \/n on index ¢ where y; = 1. For a O-input, we put a non-zero weight of

ﬁ only on indices i such that ¢ > n/2. It can be verified that this is a feasible solution of the

equivalent formulation of CG (from Proposition 5.9) with objective value n.

| Function [A[s| bs | FC [MM[Q[CMM | CGP*™® | R [ EC | C | CG |
Aplnd 010(1) | 0O(Q) O(logk) | O(vk logk) 0(1)
GTH,, 010(1) |01 O(n) O(n) O(n) | O(1) | B(n)

Table 2: The known complexity measures for Aplnd and GTH,,
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