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Abstract

We introduce and study Certificate Game complexity, a measure of complexity based on the proba-
bility of winning a game where two players are given inputs with different function values and are asked
to output some index i such that xi ̸= yi, in a zero-communication setting.

We study four versions of certificate games, namely private coin, public coin, shared entanglement
and non-signaling games. The public-coin variant of certificate games gives a new characterization of
the classical adversary bound, a lower bound on randomized query complexity which was introduced as
a classical version of the quantum (non-negative) quantum adversary bound.

We show that complexity in the public coin model (therefore also the classical adversary) is bounded
above by certificate complexity, as well as by expectational certificate complexity (EC) and sabotage com-
plexity (RS). On the other hand, it is bounded below by fractional and randomized certificate complexity.
We provide new exponential separations between classical adversary and randomized query complexity
for partial functions.

In contrast, the private coin model is bounded from below by zero-error randomized query complexity
and above by EC2.

The quantum measure reveals an interesting and surprising difference between classical and quantum
query models. Whereas the public coin certificate game complexity is bounded from above by randomized
query complexity, the quantum certificate game complexity can be quadratically larger than quantum
query complexity. We use non-signaling, a notion from quantum information, to give a lower bound of
n on the quantum certificate game complexity of the OR function, whose quantum query complexity
is Θ(

√
n), then go on to show that this “non-signaling bottleneck” applies to all functions with high

sensitivity, block sensitivity, fractional block sensitivity, as well as classical adversary. This implies the
collapse of all models of certificate games, except private randomness, to the classical adversary bound.

We consider the single-bit version of certificate games, where the inputs of the two players are re-
stricted to having Hamming distance 1. We prove that the single-bit version of certificate game complexity
with shared randomness is equal to sensitivity up to constant factors, thus giving a new characteriza-
tion of sensitivity. On the other hand, the single-bit version of certificate game complexity with private
randomness is equal to λ2, where λ is the spectral sensitivity.
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1 Introduction

There still remains much to be understood about the complexity of Boolean functions and the many com-
plexity measures that are used to study various models of computation such as certificate complexity, degree,
sensitivity, block sensitivity, their variants, to name a few. Some of the questions we ask about these mea-
sures are: What separations can be shown between the measures? Do they have a natural computational
interpretation? What properties do they have, for example, do they behave well under composition? How do
they behave for symmetric functions? Since the sensitivity conjecture was resolved [26], one important new
goal is to determine precisely how the larger measures, such as query complexity and certificate complexity,
are bounded above by smaller measures such as sensitivity. The best known upper bound on deterministic
query complexity is D(f) ≤ O(s(f)6) [44, 38, 26], while the best separation is cubic [14]. For certificate
complexity we know that C(f) ≤ O(s(f)5), whereas the best known separation is cubic [9]. Many more of
these upper bounds and separations are listed in the tables of known results in [56, 4].

With these questions in mind, we introduce new complexity measures based on the Karchmer-Wigderson
relation of a Boolean function. This relation was introduced by Karchmer and Wigderson [29] and it has
been extensively studied in communication complexity. Let f : {0, 1}n → {0, 1} be a Boolean function. The
relation Rf ⊆ f−1(0) × f−1(1) × [n] is defined as Rf = {(x, y, i) : xi ̸= yi}. (As a matter of convention,
x denotes an input in f−1(0) and y denotes an input in f−1(1) unless otherwise stated.) Karchmer and
Wigderson [29] showed that the communication complexity of Rf is equal to the circuit depth of f . We study
the following 2-player certificate game, where the goal of the players is to solve the Karchmer-Wigderson
relation in a zero-communication setting.

Definition 1.1 (Certificate game). Let f : {0, 1}n → {0, 1} be a (possibly partial) Boolean function. One
player is given x ∈ f−1(0) and the other player is given y ∈ f−1(1). Their goal is to produce a common
index i such that xi ̸= yi, without any communication.

We look at how well the players can solve this task in several zero-communication settings. We consider
four models: when they only have private coins, when they share a public random source, and when they
share an entangled quantum state (also called quantum model) that does not depend upon their inputs. The
fourth model allows any non-signaling strategy which we describe in Section 2.3. In all these models, we
consider the probability of success that they can achieve, for the best strategy and worst case input pair.
The multiplicative inverse of the winning probability is called the certificate game complexity of the function
(CGpriv for the private coin model, CGpub for the public coin model, CG∗ for the shared entanglement model
and CGns for the non-signaling model).

To illustrate how to achieve such a task without communication, we consider the following simple strategy.
Let f be a total Boolean function whose 0-certificate complexity is c0 and whose 1-certificate complexity is c1.
Then on input x such that f(x) = 0, Alice can output a random i in a minimal 0-certificate for x (similarly
for Bob with a minimal 1-certificate for y). Then since the certificates intersect, the probability that they
output the same index is at least 1

c0·c1 . This shows that CG
priv(f) ≤ C0(f) ·C1(f). This simple upper bound

is tight for many functions including OR and Parity, but there are other examples where CGpriv(f) can be
much smaller, and it is interesting to see what other upper and lower bounds can apply. We will also see
that access to shared randomness can significantly reduce the complexity.

We show that the certificate game complexity measures in the four different models hold a pivotal position
with respect to other measures, thus making them good candidates for proving strong lower and upper
bounds on various measures. The operational interpretation in terms of winning probability of certificate
games makes them convenient for proving upper bounds. Furthermore, the public coin and non-signaling
versions are linear programs and therefore their dual formulation is convenient for proving lower bounds.

1.1 Motivation for certificate games

The two main ingredients in our certificate games are two-player zero-communication games, and the
Karchmer-Wigderson relation. Two-player zero-communication games have been studied in many differ-
ent contexts. They are called two-prover games in the context of parallel repetition theorems, central to the
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study of PCPs and the Unique Games Conjecture (we don’t consider the case where there could be a quantum
verifier, which has been studied in some papers). They also appear under the name of zero-communication
protocols in the context of communication and information complexity. Finally, they are known as local or
quantum games in the study of quantum nonlocality, an extensive field motivated by the study of quantum
entanglement and the relative power of quantum over classical behaviors. Quantum behaviors are modeled
by two parties making measurements on a shared bipartite quantum state, and in the classical setup, the two
parties can share “hidden variables”, or shared randomness. There has been extensive work, for instance,
on simulating quantum behaviors with various resources, such as communication, post-selection, noise and
more. There are also strong connections between finding separations between quantum and classical commu-
nication complexity, and between quantum and classical zero-communication games. A survey on quantum
non-locality can be found in references [17, 45], and on the interactions between communication complexity
and nonlocality in reference [18].

The Karchmer-Wigderson relation Rf appears in many contexts in the study of complexity measures,
including the Adversary bound on quantum query complexity, and its variants [5, 52]. It is key in under-
standing how hard a function is and captures the intuition that if one is to distinguish the 0-instances from
the 1-instances of a function, then some i in the relation has to play a key role in computing the function.
Another measure where the Karchmer-Wigderson relation appears implicitly is Randomized certificate com-
plexity (RC) defined by Aaronson [2]. It was further shown to be equivalent to fractional block sensitivity
and fractional certificate complexity (FC) [53, 22]. The non-adaptive version can be viewed as a one-player
game where the player is given an input x and should output an index i. The player wins against an input y
(with f(x) ̸= f(y)) if xi ̸= yi.

1.2 Our results

We show that the certificate game complexity measures of a Boolean function f take pivotal roles in un-
derstanding the relationships between various other complexity measures like randomised query complexity
R(f), zero-error randomized query complexity R0(f), certificate complexity C(f), and other related mea-
sures. Our results also demonstrate the power of shared randomness over private randomness, even in a
zero-communication setting. At the same time, our results also illustrate an interesting, and somewhat
counter-intuitive, difference between the quantum world and the classical world. Our main results for total
functions are compiled in Figure 1. While most of our results also hold for partial functions, for simplicity
we don’t indicate that in the Figure. Instead we specify in each theorem whether our result holds for partial
functions. If for a statement or theorem it is not explicitly written that it holds for a possibly partial
function then we mean the statement or theorem is only known to hold for total functions.

Shared entanglement can simulate shared randomness, and shared randomness gives more power to the
players compared to private randomness so

CG∗(f) ≤ CGpub(f) ≤ CGpriv(f).

A natural question that arises is how separated are these measures. In other words, how much advantage
does shared randomness give over private randomness and how much advantage does shared entanglement
give over shared randomness? Because of the operational interpretation of certificate game complexity in
terms of the winning probability of certificate games, proving upper bounds on certificate game complexity
can be achieved by exhibiting a strategy for the game. We provide some other techniques to prove lower
bounds.

The classical adversary bound (CMM, Definition 4.2) which was defined in [35], as an analog of the
quantum adversary method to study randomized query complexity (R), turns out to play a central role in
our work. The CMM measure is well studied with a number of different formulations of it, already known
[7]. We show that certificate games (with public randomness), gives another formulation of CMM. This
characterization provides new insight that helps to obtain bounds and separations on CMM that were not
known earlier.
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Lower bounds on certificate games with shared entanglement: One surprising result of our work
concerns the shared entanglement model. In order to prove lower bounds for this model, we introduce
non-signaling certificate games. Non-signaling is a fundamental concept that comes from quantum non-
locality; it states that when making a quantum measurement the outcome on one side should not leak any
information about the measurement made on the other side. This “non-signaling bottleneck” is shared by
all of our certificate game complexity measures. Identifying it turned out to be the key insight which led to
a very strong lower bound on all these measures, including the quantum model, with a single, simple proof,
not involving any of the technical overhead inherent to the quantum setting. The simplicity of the proof
comes from the fact that the non-signaling model has several equivalent formulations as linear programs,
and the strength of the bounds comes from the fact that it captures precisely a fundamental computational
bottleneck. It also neatly highlights one of the key differences between quantum and classical query models,
since the quantum query model somehow averts this bottleneck.

Our main lower bound result is a simple and elegant proof (Theorem 6.2) that for any, possibly partial,
Boolean function f ,

CGns(f) ≥ CMM(f)

which in turn lower bounds the other three variants of certificate game complexity.
The idea is that when a strategy satisfies the non-signaling condition, the marginal distribution of one

of the players’ output does not depend on the other player’s input. Therefore, the marginal distribution of
one of the players can be used to give a satisfying assignment for CMM bound.

It follows from this lower bound that while the quantum query complexity of the ORn function1 is Θ(
√
n),

its quantum certificate game complexity is CG∗(ORn) = Θ(n).

Upper bounds on certificate games with shared randomness: The fact that CG∗ is lower bounded
by CMM gives us examples (like the ORn function) where the quantum query complexity Q, can be quadrat-
ically smaller than CG∗. In other words, a quantum query algorithm that computes the ORn function using√
n queries, cannot reveal to players of a certificate game an index where their inputs differ, with probability

better than 1/n, because of the non-signaling constraint on quantum games. This, somewhat surprisingly,
contrasts with the randomized setting where the players can run their randomized query algorithm on their
respective inputs using the same random bits and pick a common random query in order to find an index
where the inputs differ, with probability 1

R(f) , for any f . Thus, we prove (Theorem 5.7) that for any, possibly
partial, Boolean function f ,

CGpub(f) ≤ O(R(f)).

In fact we can prove something much stronger. We prove (Theorem 7.1) that for any, possibly partial,
Boolean function f ,

CGpub(f) ≤ O(CMM(f)).

Combining this with our lower bound result we have a new characterization of CMM.

CMM(f) ≤ CGns(f) ≤ CG∗(f) ≤ CGpub(f) ≤ O(CMM(f)).

This gives us a different way of understanding the classical adversary bound through the lens of two-player
games. Slightly weaker results, namely CGpub = O(FC) (for total functions) and CGns = O(CMM), were
proved independently by [51] and [47].

Bounds on certificate games with private randomness: The private randomness model of certificate
game complexity, CGpriv, is upper bounded by the product of 0-certificate complexity, C0, and 1-certificate
complexity, C1, and also by the square of EC (Theorem 5.10). On the other hand CGpriv is lower bounded
by R0. (This follows from [28].) Therefore, R0(f) ≤ O(CGpriv(f)) ≤ O(C0(f)C1(f)).

1ORn is the OR of n variables. From Grover’s algorithm [23, 16] we have Q(ORn) =
√
n. On the other hand FC(ORn) =

Ω(s(ORn)) = Ω(n).
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In fact, CGpriv(f) can be larger than the arity of the function. This is because, we show ( Theorem 5.10)
that CGpriv(f) is lower bounded by the square of the Minimax formulation of the positive adversary bound,
MM(f), which sits between Q(f) and the spectral sensitivity λ(f).

Consequences on expectational certificate complexity and the classical adversary bound: The
expectational certificate complexity [28] was introduced as a bound that is quadratically related to zero-error
query complexity (R0), that is, EC(f) ≤ R0(f) ≤ O(EC(f)2) for any total Boolean f .

We show that CGpub is bounded above by EC(f) up to constant factors (Theorem 5.5), so

CMM ≤ O(CGpub) ≤ O(EC).

We also extend our result that CGpub is upper bounded by R(f) to prove that CGpub is also upper bounded
by the sabotage complexity RS(f) (Theorem 5.8). This also proves that for any Boolean function (including
partial functions)

CMM(f) = O(RS(f)).

This gives us upper bounds on CMM(f) that were not known before, answering a question asked by Ambainis
et al [7], where they asked for a general limitation (that includes partial functions) on the power of the classical
adversary method as a lower bound on randomized query complexity.

For total Boolean functions, CMM is known to be asymptotically equal to FC. Thus for total functions,
the measures FC, CMM, CGns, CG∗ and CGpub are all asymptotically equal. Our upper bound on CGpub

by EC implies that CGpub is also upper bounded by certificate complexity C (up to constant factors), since
EC(f) ≤ C(f) for total functions) [28]. We also give a direct proof that CGpub(f) ≤ O(C(f)) for total
functions (Theorem 5.4) as a “warmup” to the stronger upper bound by EC.

Relating EC with CGpriv and CGpub in turn gives us results about the certificate games themselves. To
be precise, for total functions, EC(f) ≤ O(FC(f)·

√
s(f)) [28]. Since CGpriv(f) ≤ O(EC(f)2) (Theorem 5.10),

we have (in Corollary 10.1)
CGpriv(f) ≤ O(CGpub(f)3) = O(CMM(f)3).

Composition: The Tribes√n,
√
n function is a composition of the AND√

n and OR√
n function. It is easy to

show using certificate complexity that FC(Tribes√n,
√
n) = O(

√
n), so CMM, CGpub, CG∗ and CGns do not

compose, that is, there are Boolean functions f and g such that the measures for the function (f ◦ g) is not
asymptotically the same as the product of the measures for f and for g. The question of whether CGpriv

composes is open.

Certificate game complexity for partial functions: While Tribes√n,
√
n demonstrates a quadratic

gap between R and CGpub, we know the largest gap between R and CGpub for total functions is at most
cubic (since D ≤ (bs)3 [12, 43]). But for partial functions the situation is different. Ben-David and Blais [13]
demonstrated a function, approximate index ApInd (Definition A.1), for which there is exponential separation
between R and FC 2. We improve this to show that CGpub of ApInd is at most O(log(R)) (Theorem A.2) and
hence demonstrate an exponential separation between R and CGpub (CMM) for partial Boolean functions.

We also give a partial function f such that R(f) = Ω(n) and CGpub(f) = O(1) (Lemma 9.1).

Single-bit versions of certificate games: Our final set of results is in the context of single-bit versions
of certificate games. Single-bit versions of certain complexity measures were used in early circuit complexity
bounds [30, 32]. More recently Aaronson et al. [4] defined single-bit versions of several formulations of the
adversary method, and showed that they are all equal to the spectral sensitivity λ. Informally, single-bit
versions of these measures are obtained by considering the requirements only with respect to pairs x, y such
that f(x) = 0 and f(y) = 1 and x and y differ only in a single bit.

2[13] introduced a measure called noisyR in an attempt to answer the question of whether R composes, that is, whether
R(f ◦ g) = Θ(R(f) ·R(g)). They studied noisyR for the approximate index function ApInd and showed an exponential separation
between noisyR and R for this partial function.
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We show that the single-bit version of private coin certificate game complexity is equal to λ2 (Theo-
rem 8.8). One of our main results is that the single-bit version of public coin certificate game complexity,

CGpub
[1] (f) is asymptotically equal to sensitivity s(f) (Theorem 8.4). This gives a new and very different

interpretation of sensitivity, which is one of the central complexity measures in this area. This interpretation
of sensitivity in the context of certificate games may give us a handle on resolving the sensitivity-block
sensitivity conjecture (which asks if block sensitivity bs(f) is O(s(f)2), and remains open in this stronger

form), by trying to construct a strategy for CGpub using a strategy for CGpub
[1] .
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1. Theorem 5.10. Separation: GSS1 (follows from the fact that
C1(GSS1) = Θ(n) and C0(GSS1) = Θ(n2)). Tightness: ⊕.

2. Theorem 5.10, Separation: OR, Tightness: ⊕.

3. Implicit in[28] (Theorem 5.10). Separation: ⊕, Tightness:
OR.

4. Theorem 5.10 Separation: Pointer function in [6] and the
cheat sheet version of the k−Forrelation function [10, 3].
Tightness: OR.

5. Theorem 5.8. Separation: Tribes (Theorem 5.2 and
RS(Tribes√n,

√
n) = Θ(n) because RS composes [15]). Tight-

ness: ⊕.

6. Theorem 5.5. Separation: OPEN, Tightness: ⊕.

7. Theorem 6.2.

8. Theorem 7.1.

9. The reverse direction is known to hold for total functions
[7].

Figure 1: Some known relations among complexity measures for
total functions. An arrow from A to B indicates that for every to-
tal Boolean function f , B(f) = O(A(f)). Double arrows indicate
results in this paper, and boxes indicate new complexity measures.
Single arrows indicate known results and references are omitted
from the diagram for space considerations. Most references can be
found in the tables in [56, 4] and we cite others in later sections.
Known relations about EC are given in [28], and FC = O((MM)2)
is proven in [8]. Fractional certificate complexity FC is equal to
fractional block sensitivity and to randomized certificate complex-
ity RC (up to multiplicative constants). MM is the minimax for-
mulation of the positive adversary method. MM = O(CMM) is
proved in [33].

2 Certificate game complexity

In this section, we give the formal definitions of our Certificate Game complexity measures.
A two-player game G is given by a relation R(x, y, a, b) ⊆ X ×Y×A×B, where x ∈ X is the first player’s

input, y ∈ Y is the second player’s input. The players output a pair of values, (a, b) ∈ A× B, and they win
if R(x, y, a, b) holds. A deterministic strategy is a pair of functions A : X→A and B : Y→B. A randomized
strategy with private randomness is the product of two mixed individual strategies. A randomized strategy
with shared randomness is a mixture of pairs of deterministic strategies.

A quantum or shared entanglement strategy is given by a shared bipartite state that does not depend on

5



the input, and a family of projective measurements for Alice, indexed by her input, similarly for Bob. (More
general measurements could be considered, but projective measurements suffice [20].)

For any strategy, we will write p(a, b|x, y) to mean the probability that the players output (a, b) when
their inputs are x, y. The marginal distribution of Alice’s output is p(a|x, y) =

∑
b p(a, b|x, y), and similarly,

p(b|x, y) =
∑

a p(a, b|x, y) is Bob’s marginal distribution.
Non-signaling is a notion that comes from quantum games, which says that if players are spatially

separated, then they cannot convey information to each other instantaneously. All the types of strategies
described above verify the non-signaling condition.

Definition 2.1 (Non-signaling strategy). Let p(a, b|x, y) be the probability that players, on input x, y output
a, b. Then p is non-signaling if p(a|x, y) = p(a|x, y′) and p(b|x, y) = p(b|x′, y) for all inputs x, x′, y, y′ and
all outcomes a, b.

Since nonsignaling means that Alice’s output does not depend on Bob’s input, we can write p(a|x) for
Alice’s marginal distribution, similarly, we will write p(b|y) for Bob.

Surprisingly, non-signaling strategies are characterized by the affine combinations of local deterministic
strategies that lie in the positive orthant. This has been known since the 1980s [21, 48, 31, 55]. A more
recent proof is given in [46].

Proposition 2.2 (Characterization of non-signaling strategies). A strategy p is non-signaling if and only if it
is given by a family of coefficients λ = {λAB}AB (not necessarily nonnegative), AB ranging over pairs (A,B)
of deterministic strategies, such that p(a, b|x, y) =

∑
AB:A(x)=a,B(y)=b λAB, and λ verifies

∑
AB λAB = 1,

and
∑

AB:A(x)=a,B(y)=b λAB ≥ 0 for all a, b, x, y.

Given a Boolean function f on n variables, define a two-player game such that X = f−1(0), Y = f−1(1),
A = B = [n] and R(x, y, a, b) = 1 if and only if a = b and xa ̸= ya. Notice that this setting gives rise to a
certificate game according to Definition 1.1.

2.1 Certificate games with private coins

In case of private coins, a randomized strategy for each player amounts to assigning, for every input x ∈
{0, 1}n, a probability px,i of producing i as its outcome, for each i ∈ [n].

Definition 2.3 (Private coin certificate game complexity). For a (possibly partial) function f ,

CGpriv(f) = min
p

max
x,y∈f−1(0)×f−1(1)

1

ω(p;x, y)
,

with p a collection of nonnegative variables {px,i}x,i satisfying,
∑

i∈[n] px,i = 1, ∀x∈f−1(0) ∪ f−1(1), and

ω(p;x, y) =
∑

i:xi ̸=yi
px,ipy,i is the probability that both players output a common index i that satisfies

Rf (x, y, i).

2.2 Certificate games with public coins

When the players share randomness, a public-coin randomized strategy is a distribution over pairs (A,B) of
deterministic strategies. We assign a nonnegative variable pA,B to each strategy and require that they sum
to 1. We say that a pair of strategies (A,B) is correct on x, y if A(x) = B(y) = i and xi ̸= yi.

Definition 2.4 (Public coin certificate game complexity). For a (possibly partial) function f ,

CGpub(f) = min
p

max
x,y∈f−1(0)×f−1(1)

1

ωpub(p;x, y)
,

where p is a collection of nonnegative variables {pA,B}A,B satisfying
∑

(A,B) pA,B = 1 and ωpub(p;x, y) =∑
(A,B) correct on x,y pA,B.
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2.3 Certificate games with quantum and non-signaling strategies

Similar to non-local games (see [20]), when the players can share a bipartite quantum state, a general strategy
for a certificate game consists of a shared state |ΨAB⟩ ∈ HA⊗HB between the two players, and two families
of projective measurements MA = {MA(x)}x∈f−1(0) and MB = {MB(x)}x∈f−1(1) made on their respective
part of the shared state. Here HA and HB are the Hilbert spaces of respective players. For each measurement
M∗(x), we denote the family of orthogonal projections as {P∗;x,i}i∈[n] (see [42] for a definition of projective
measurements).

We can now define the shared entanglement certificate game complexity of a Boolean function.

Definition 2.5 (Shared entanglement certificate game complexity). For a (possibly partial) function f ,

CG∗(f) = min
|ΨAB⟩,MA,MB

max
x,y∈f−1(0)×f−1(1)

1

ω⋆((|ΨAB⟩,MA,MB);x, y)
,

where ω⋆((|ΨAB⟩,MA,MB);x, y) is the winning probability of strategy (|ΨAB⟩,MA,MB) on x, y,

ω⋆((|ΨAB⟩,MA,MB);x, y) =
∑

i:xi ̸=yi

⟨ΨAB |PA;x,i ⊗ PB;y,i|ΨAB⟩.

Non-signaling strategies (Definition 2.1) are a generalization of quantum strategies and are useful to give
lower bounds on quantum games. They are particularly well-suited when in a given problem, the bottleneck
is that shared entanglement cannot allow players to learn any information about each others’ inputs. This
is the case for the OR function (Theorem 6.2).

Definition 2.6 (Non-signaling certificate game complexity). For a (possibly partial) function f ,

CGns(f) = min
p

max
x,y∈f−1(0)×f−1(1)

1

ωns(p;x, y)

where p ranges over all non-signaling strategies (Def. 2.1) and

ωns(p;x, y) =
∑

i:xi ̸=yi

p(i, i|x, y).

This can be expressed as a linear program by using the affine formulation of non-signaling distributions
given in Proposition 2.2.

Since we have considered progressively stronger models, the following holds trivially.

Proposition 2.7. For any (possibly partial) Boolean function f ,

CGns(f) ≤ CG∗(f) ≤ CGpub(f) ≤ CGpriv(f).

3 Overview of our techniques

The main contribution of this paper is to give lower and upper bounds on certificate game complexity in
different models: private coin, public coin and shared entanglement. The bounds on private coin certificate
game complexity are obtained by manipulating previously known results and use standard techniques.

The principal contribution, in terms of techniques, is in giving upper and lower bounds on certificate
game complexity of public coin and shared entanglement model (CGpub and CG∗). These techniques can
naturally be divided into two parts.
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Upper bounds. We use three general techniques for upper bounds on Certificate games. Given a decision
tree, the players can pick queries by agreeing on a node of the decision tree in some way. We use this to show
that CGpub is bounded by sabotage complexity. For certificate-based measures, we use shared randomness
and hash functions to agree on an common index. We provide some details of this framework in Section 3.1.

Finally, our strongest general upper bound on public-coin certificate game complexity is CGpub(f) ≤
O(CMM(f)) (Theorem 7.1), which implies that all of CGpub, CG∗, CGns are equal (up to constant factors).
The idea behind this upper bound is to apply the correlated sampling technique [25, 11]. In the correlated
sampling game, Alice and Bob receive as input distributions p and q, respectively, and their goal is to
output, using shared randomness and no communication, samples X ∼ p and Y ∼ q so as to maximize
the agreement probability Pr[X = Y ]. The basic result about this game is that the players can achieve
an agreement probability that depends only on the total variation distance between p and q. We apply
this result in order to convert a non-signaling strategy (which is closely related to CMM)—where p and
q roughly correspond to the marginal distributions of the strategy—into a public-coin strategy with only
constant-factor loss in the winning probability. The details appear in Section 7.

Lower bounds. Lower bounds on CGpub can be obtained by taking the dual of its linear programming
formulation. For the shared entanglement model, which is not linear, we turn to more general non-signaling
games. The resulting non-signaling certificate game complexity, CGns, is a lower bound on CG∗. It can be
expressed as a linear program and lower bounds on CG∗ can be obtained by taking the dual of this linear
program and constructing feasible solutions for it.

A more detailed overview of these techniques is given in the following sections.

3.1 Overview of upper bound techniques for CGpub

To construct a strategy for a certificate game, the main challenge is to match the index of the other side. In
public coin setting, we can take advantage of having access to shared randomness to achieve this task.

We illustrate this idea by constructing a CGpub strategy for the Tribes function.
Even though Tribes is a starting example for us, it already gives an example that separates R and CGpub,

and also implies that, under function composition, CGpub value is not the product of the CGpub value of the
individual functions. We describe the main idea behind the strategy here.

For the Tribesk,k function, we want a strategy that wins the certificate game with probability Ω(1/k)
(instead of the obvious Ω(1/k2)). The input of Tribesk,k consists of k blocks of k bits each. We will reduce
the general problem to the case when all blocks of Alice’s input have a single 0, and Bob has exactly one
block with all 1’s and Alice and Bob wins when they both can output the unique index i where Alice’s bit
is 0 and Bob’s bit is 1.

Here we discuss this special case. Let us view Alice’s input as an array A of k values, specifying the
position of the 0 in each block (each entry is in {1, 2, · · · , k}). On the other hand, Bob’s input can be thought
of as an index, say j, between 1 and k, identifying his all-1 block. Alice wants to find j and Bob wants to
find A[j], so both can output a position where their inputs differ.

First, take the simple case when each entry of Alice’s array is distinct. Bob simply picks a random number
r and outputs the r-th index of the j-th block. Alice can use the same r (due to shared randomness), and find
the unique j such that A[j] = r. Whenever Bob picks r such that A[j] = r, they win the game. Probability
that a random r matches A[j] is 1/k.

For the harder case when some of the entries of A coincide, we use the shared randomness to permute
entries of each block. This ensures that, with constant probability, we have a unique j such that A[j] = r.
This gives the required success probability Ω(1/k).

A framework for upper bounds based on hashing: Let f : {0, 1}n → {0, 1} be a (possibly partial)
Boolean function. Alice is given x ∈ f−1(0) and Bob is given y ∈ f−1(1). Their goal is to produce a common
index i ∈ [n] such that xi ̸= yi.
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Let T ⊆ [n] be a set of potential outputs, known to both players, and let S be a finite set. T and S are
fixed in advance as part of the specification of the strategy (they do not depend on the input, only on the
function f). Let Ax ⊆ T denote the set of potential outputs of Alice on x that belong to the set T , and
By ⊆ T denote the set of potential outputs of Bob on y that belong to the set T . The players proceed as
follows:

1. Using shared randomness, they select a random mapping h : T → S.

2. Using shared randomness, they select a random element z ∈ S.

3. Alice outputs a (possibly random) element of h−1(z) ∩Ax (if this set is empty, she outputs an
arbitrary element). Similarly, Bob outputs a (possibly random) element of h−1(z) ∩By (if this
set is empty, he outputs an arbitrary element).

This general strategy will be correct with good enough probability, if the following two conditions can
be ensured:

(i) h−1(z) ∩W is not empty, where W ⊆ Ax ∩By denotes the set of correct outputs from Ax ∩By, that
is, for any i ∈ W , xi ̸= yi.

(ii) h−1(z) ∩Ax and h−1(z) ∩By are “small enough”.
Note, Condition (i) implies that both sets, h−1(z) ∩Ax and h−1(z) ∩By, are not empty.

We will apply this general framework in several different ways. We use it for proving that CGpub is upper
bounded by C and even by EC. We also use it to get a strong upper bound for the approximate index function
ApInd. Finally, we use the hashing framework to prove that the single-bit version of CGpub characterizes
sensitivity up to constant factors. While each of these proofs fits into the framework we described above,
their analysis is technically quite different.

CGpub strategy for ApInd: We can use the hashing framework to show an exponential separation between
R and CGpub for Approximate Index, a partial function. The analysis of the strategy reduces to a very
natural question: what is the intersection size of two Hamming balls of radius k

2 −
√
k log k whose centers

are at a distance k
log k? We are able to show that the intersection is at least an Ω( 1√

logk
) fraction of the total

volume of the Hamming ball. This result and the techniques used could be of independent interest.
To bound the intersection size, we focus on the outermost

√
k layers of the Hamming ball (since they

contain a constant fraction of the total volume), and show that for each such layer the intersection contains
an Ω( 1√

logk
) fraction of the elements in that layer.

For a single layer, the intersection can be expressed as the summation of the latter half of a hypergeometric
distribution Pk,m,r from m

2 to m (m = k
log k is the distance between the Hamming Balls and r is the radius

of the layer). By using the “symmetric” nature of the hypergeometric distribution around m
2 for a sufficient

range of values (Lemma A.10), this reduces to showing a concentration result around the expectation with
width

√
m (as the expectation for our choice of parameters is m

2 −O(
√
m)).

We use the standard concentration bound on hypergeometric distribution with width
√
r and reduce it to

the required width
√
m by noticing a monotonicity property of the hypergeometric distribution (Lemma A.11).

3.2 Overview of lower bound techniques for CGpub, CG∗ and CGns

In the public coin setting, maximizing the winning probability in the worst case can be written as a linear
program. This allows us to write a dual formulation, so (since it becomes a minimization problem, and we
are considering its multiplicative inverse) this form will be more convenient when proving lower bounds. The
dual variables µx,y can be thought of as a hard distribution on pairs of inputs, and the objective function
is the µ-size of the largest set of input pairs where any deterministic strategy is correct. The next two
propositions follow by standard LP duality.
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Proposition 3.1 (Dual formulation of CGpub). For a two-player certificate game Gf corresponding to a

(possibly partial) Boolean function f , CGpub(f) = 1/ωpub(Gf ), where the winning probability ωpub(Gf ) is
given by the following linear program.

ωpub(Gf ) = min
δ,µ

δ

such that
∑

x,y: A,B correct on x,y

µx,y ≤ δ for every deterministic strategy A,B

∑
x,y

µxy = 1, µx,y ≥ 0,

where µ = {µx,y}x∈f−1(0), y∈f−1(1). A,B correct on x, y implies A(x) = B(x) = i and xi ̸= yi.

To prove lower bounds on CG∗, we cannot proceed in the same way since the value of CG∗ cannot be
written as a linear program. However, a key observation is that in many cases (and in all the cases we have
considered in this paper), the fundamental bottleneck for proving lower bounds on quantum strategies is
the non-signaling property, which says that in two-player games with shared entanglement, the outcome of
one of the player’s measurements cannot reveal the other player’s input. This was the original motivation
for defining CGns: if we only require the non-signaling property of quantum strategies, it suffices to prove a
lower bound on CGns, which is a lower bound on CG∗. Using the characterization of non-signaling strategies
in terms of an affine polytope (see Proposition 2.2), we obtain a convenient linear programming formulation
for CGns.

Definition 2.6 shows that the value of ωns(G) is a linear optimization problem. We compute its dual, a
maximization problem, which allows us to prove lower bounds on CGns and in turn CG∗.

Proposition 3.2 (Dual formulation of CGns). For a certificate game G corresponding to a (possibly partial)
Boolean function f , CGns(f) = 1/ωns(Gf ), where winning probability ωns(Gf ) can be written as the following
linear program.

ωns(Gf ) = min
µ,γ,δ

δ

such that∑
x,y: A,B correct on x,y

µx,y +
∑
x,y

γA(x),B(y),x,y = δ for every deterministic strategy A,B

∑
x,y

µxy =1, µx,y ≥ 0, γa,b,x,y ≥ 0,

where µ = {µx,y}x∈f−1(0), y∈f−1(1) and γ = {γi,j,x,y}i,j∈[n],x∈f−1(0), y∈f−1(1) .

As a first step, we illustrate how the dual of the non-signaling variant can be used to prove a lower bound
on CG∗(Promise-ORn) (Proposition 6.1). The intuition comes from the fact that any quantum strategy for
the certificate game for OR has to be non-signaling. Let one of the player have input x = 0n, and the other
player have one of n strings x(i) (x with the i-th bit flipped). At the end of the game, they output i with
probability p = 1

CG∗(Promise-OR)
. If this probability were bigger than 1

n , then the player with input x would

learn some information about the other player’s input.
The lower bound on the OR function generalizes to show that block sensitivity is a lower bound on the

non-signaling value of the certificate games. We prove an even stronger result, by going back to the original
definition of CGns (Definition 2.6) and giving a very simple proof that CGns is an upper bound on CMM
(Theorem 6.2).

4 Preliminaries

We define many known complexity measures in this section. Almost all definitions are given for arbitrary
Boolean functions, including partial functions. A few notable exceptions are certificate complexity, sensitivity
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and block sensitivity. We include additional details and definitions with respect to partial functions for these
measures in Section 4.4. We use the following notation. A total Boolean function f is f : {0, 1}n → {0, 1}.
Except when noted otherwise, inputs x ∈ {0, 1}n are in f−1(0) and inputs y ∈ f−1(1), and sums over x
range over x ∈ f−1(0), similarly for y. For partial functions we use f−1 for f−1(0) ∪ f−1(1).

Indices i range from 1 to n and xi denotes the ith bit of x. We write x(i) to mean the string x with the
ith bit flipped. When not specified, sums over i range over i ∈ [n].

4.1 Query complexity and adversary bounds

We recall briefly the standard notations and definitions of query complexity for Boolean functions f :
{0, 1}n → {0, 1}. The deterministic query complexity (or decision tree complexity) D(f) is the minimum
number of queries to bits of an input x required to compute f(x), in the worst case. Randomized query
complexity, denoted R(f), is the number of queries needed to compute f , in the worst case, with probability
at least 2/3 for all inputs. Zero-error randomized query complexity, denoted by R0(f), is the expected
number of queries needed to compute f correctly on all inputs. The relation R(f) ≤ R0(f) ≤ D(f) holds for
all Boolean functions f . It will be useful to think of a randomized decision tree as a probability distribution
over deterministic decision trees. When computing the probability of success, the randomness is over the
choice of a deterministic tree.

Quantum query complexity, written Q(f), is the number of quantum queries needed to compute f
correctly on all inputs with probability at least 2/3.

In this paper we will consider the positive adversary method, a lower bound on quantum query complexity.
It was shown by Spalek and Szegedy [52] that several formulations were equivalent, and we use the MinMax
formulation MM here.

Definition 4.1 (Positive adversary method, Minimax formulation). For any (possibly partial) Boolean func-
tion f , MM(f) = minp maxx∈f−1(0),y∈f−1(1)

1∑
i:xi ̸=yi

√
px,ipy,i

, where p is taken over all families of nonnegative

px,i ∈ R such that for all x ∈ f−1 (where f is defined),
∑

i∈[n] px,i = 1

The classical adversary bound was introduced in [1, 35] as a lower bound for randomized query complexity
R. It was shown to be equal to fractional certificate complexity FC (Definition 4.4) for total functions (but
can be larger for partial functions) and has many equivalent formulations, given in [7].

Definition 4.2 (Classical Adversary Bound). For any (possibly partial) Boolean function f , the minimax
formulation of the Classical Adversary Bound is as: CMM(f) = minp max x,y∈S

f(x)=1−f(y)

1∑
i:xi ̸=yi

min{px(i),py(i)} ,

where px is a probability distribution over [n].

4.2 Certificate complexity and its variants

Certificate complexity is a lower bound on query complexity [54], for total Boolean functions.
For a total Boolean function f , a certificate is a partial assignment of the bits of an input to f that forces

the value of the function to be constant, regardless of the value of the other bits. A certificate for input x is
a partial assignment consistent with x that is a certificate for f .

Definition 4.3. For any total Boolean function f and input x, C(f ;x) is the size of the smallest cer-
tificate for x. The certificate complexity of the function is C(f) = max{C0(f),C1(f)}, where Cb(f) =
maxx∈f−1(b){C(f ;x)}.

Randomized certificate complexity was introduced by Aaronson as a randomized version of certificate
complexity [2], and subsequently shown to be equivalent (up to constant factors) to fractional block sensitivity
and fractional certificate complexity [53, 33, 22].

We use the fractional certificate complexity formulation.
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Definition 4.4 (Fractional certificate complexity). For any (possibly partial) Boolean function f FC(f) =
maxz∈f−1 FC(f, z), where FC(f, z) = minv

∑
i vz,i , subject to

∑
i:zi ̸=z′

i
vz,i ≥ 1 for all z′ ∈ f−1 such that

f(z) = 1− f(z′), with v a collection of variables vz,i ≥ 0.

Another equivalent formulation is, FC(f) = minw max z,z′∈f−1

f(z)=1−f(z′)

∑
i wz,i∑

i:zi ̸=z′
i
wz,i

, where w is a collection

of non-negative variables wz,i.
Randomized certificate complexity (in its non-adaptive formulation) can be viewed as a single player

game where a player is given an input z and should output an index i (say with probability pz,i =
wz,i∑
j wz,j

).

The player wins against an input z′ (with f(z) = 1− f(z′)) if zi ̸= z′i.
Then, FC(f), for total functions, is (up to constant factors) the multiplicative inverse of the probability

of winning the game in the worst case [2, 53, 22].
Expectational certificate complexity was introduced as a quadratically tight lower bound on R0 [28].

Definition 4.5 (Expectational certificate complexity [28]). For any (possibly partial) Boolean function f ,
EC(f) = minw maxz∈f−1

∑
i∈[n] wz,i with w a collection of variables such that 0 ≤ wz,i ≤ 1 satisfying∑

i:zi ̸=z′
i
wz,iwz′,i ≥ 1 for all z, z′ s.t. f(z) = 1− f(z′).

Since the weights are between 0 and 1, we can associate with each i a Bernoulli variable. The players
can sample from each of these variables independently and output the set of indices where the outcome was
1. The constraint says that the expected number of indices i in both sets that satisfy zi ̸= z′i should be
bounded below by 1. The complexity measure is the expected size of the sets. For example, for the OR
function, a strategy could be as follows. On input z, pick the smallest i for which zi = 1, output the set {i}.
If no such i exists, then output the set [n]. The (expected) size of the set is n and the (expected) size of the
intersection is 1.

The following relations are known to hold for any total Boolean function f .

Proposition 4.6 ([28]). FC ≤ EC ≤ C ≤ O(R0) ≤ O(EC2).

4.3 Sensitivity and its variants

Sensitivity is a lower bound on most of the measures described above (except Q and MM). Given a Boolean
function f , an input x is sensitive at index i if flipping the bit at index i (which we denote by x(i)) changes
the value of the function to 1−f(x).

Definition 4.7 (Sensitivity). s(f ;x) is the number of sensitive indices of x. s(f) = maxx s(f ;x)

If B is a subset of indices, an input x is sensitive to block B if simultaneously flipping all the bits in B
(which we denote by xB) changes the value of the function to 1−f(x).

Definition 4.8 (Block sensitivity). bs(f ;x) is the maximum number of disjoint sensitive blocks of x. bs(f) =
maxx bs(f ;x)

Aaronson et al. [4] recently revived interest in a measure called λ. It was first introduced by Koutsou-
pias [32], and is a spectral relaxation of sensitivity.

Definition 4.9 (Spectral sensitivity, or λ). For a Boolean function f , let F be the |f−1| × |f−1| matrix
defined by F (x, y) = 1 when f(x) = 1 − f(y) and x, y differ in 1 bit. Then λ(f) = ∥F∥, where ∥·∥ is the
spectral norm.

Note that F can also be taken to be a |f−1(0)|×|f−1(1)| matrix with rows indexed by elements of f−1(0)
and columns by elements of f−1(1). It is easy to show that both ways of defining F give the same spectral
norm.

Proposition 4.10 ([4, 53, 22, 34] ). For any (possibly partial) Boolean function f ,

λ(f) ≤ s(f) ≤ bs(f) ≤ FC(f) and λ(f) ≤ MM(f)
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4.4 Additional definitions for partial functions

Extending the definition of certificates to partial functions is slightly complex. For f : {0, 1}n → {0, 1, ∗} it
is natural to define the measures C0(f), C1(f), as well as C{0,∗}(f) and C{1,∗}(f) as follows:

Definition 4.11. For f : {0, 1}n → {0, 1, ∗} and b ∈ {0, 1} a partial assignment α is a b-certificate for
x ∈ f−1(b) if α is consistent with x, and for any x′ consistent with α f(x′) = b.

For f : {0, 1}n → {0, 1, ∗} and b ∈ {0, 1} a partial assignment α is a {b, ∗}-certificate for x ∈ f−1(b) if α
is consistent with x, and for any x′ consistent with α f(x′) ∈ {b, ∗}.

For b ∈ {0, 1} and x ∈ f−1(b), Cb(f ;x) is the size of the smallest b-certificate for x and Cb(f) =
maxx∈f−1(b){Cb(f ;x)}.

For b ∈ {0, 1} and x ∈ f−1(b), C{b,∗}(f ;x) is the size of the smallest {b, ∗}-certificate for x and C{b,∗}(f) =
maxx∈f−1(b){C{b,∗}(f ;x)}.

Note that for example, while one can think of 0-certificates for x certifying that f(x) = 0, a {0, ∗}-
certificate for x certifies that f(x) ̸= 1. We also note that in the definition of C{b,∗}(f) we take the maximum
over x ∈ f−1(b), we do not include inputs x where the function is not defined (e.g. where f(x) = ∗).

The above definitions are fairly straightforward and natural, but it is not immediately clear how to define
C(f) for partial functions. We use the following notation:

Definition 4.12. For f : {0, 1}n → {0, 1, ∗} we define C(f) = max{C{0,∗}(f),C{1,∗}(f)} and C′(f) =
max{C0(f),C1(f)}.

Notice that C(f) ≤ C′(f) for any f , and for total functions C(f) = C′(f). However, for partial functions
C(f) can be much smaller than C′(f). The ”Greater than Half” function (see section B) is an example of a
partial function on n bits with C(f) = O(1) while C′(f) = Θ(n).

It turns out that some results known for total functions remain valid for partial functions with respect
to C(f) but not with respect to C′(f) and others remain valid for partial functions with respect to C′(f) but
not with respect to C(f). Thus, it is important to distinguish between the two versions. We prefer to use
this definition for C(f) since for example with this definition C(f) remains a lower bound on deterministic
query complexity (and for R0 as well) for partial functions. On the other hand, it is easy to construct partial
functions with deterministic query complexity O(1) but C′(f) = Ω(n). Some of our results for total functions
involving C(f) no longer hold for partial functions, even though they remain valid with respect to C′(f).

A property of certificates often exploited in proofs is that every 0-certificate must intersect (and contra-
dict) every 1-certificate and this remains the case for partial functions. However, this property no longer
holds for {0, ∗} versus {1, ∗}-certificates. Proofs based on this property remain valid for partial functions
with respect to C′(f), but may no longer hold for partial functions with respect to C(f). An important
example where this happens is the result that EC(f) ≤ C(f) by [28]. This result does not hold for partial
functions, as shown by the “Greater than Half” function which has C(f) = O(1) and EC(f) = Θ(n) (see
section B), but remains valid with respect to C′(f).

For sensitivity (block sensitivity) of partial functions, we consider an input x in the domain f−1(0)∪f−1(1)
to be sensitive to an index (or to a block) if flipping it gives an input where f is defined and takes the
complementary value 1 − f(x). We do not consider an input to be sensitive to an index (or block) if
flipping it gives an input where f is undefined. Notice that with our definition, sensitivity can be 0 even for
non-constant partial functions.

5 Public and private randomness in certificate games

As a starting point, we give an upper bound of C on CGpub using a public coin protocol which illustrates
how shared randomness can be used by the players to coordinate their outputs (Section 5.2). We then go
on to show EC (Section 5.2), R and RS (Section 5.3) are upper bounds on CGpub. Finally, we give several
upper bounds on private coin variant, CGpriv (Section 5.4).
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5.1 Public coin certificate game for the Tribes function

The Tribess,t function is a composition of two functions, Tribess,t = ORs ◦ ANDt.

Definition 5.1 (Tribes). Tribess,t : {0, 1}st → {0, 1} is defined using the DNF formula

Tribess,t(x) =
s∨

i=1

t∧
j=1

xi,j .

The Tribes function is a very well studied problem in complexity theory. It has full randomized query
complexity, in particular, R(Tribes√n,

√
n) = Θ(n). On the other hand, the functions ORs and ANDt have

full sensitivity. Thus CGpub of OR√
n and AND√

n is Θ(
√
n). As a warmup to our general upper bounds on

CGpub, in Theorem 5.2 we give a direct proof that the CGpub of Tribes√n,
√
n is O(

√
n). (This also follows from

Theorem 7.1, the fact that for total functions CMM(f) = O(C(f)), and the fact that C(Tribes√n,
√
n) =

√
n.)

Thus the function Tribes√n,
√
n demonstrates a quadratic separation between R(f) and CGpub(f).

Theorem 5.2. CGpub(Tribes√n,
√
n) = O(

√
n).

Proof. We give a public coin strategy for the Certificate game. Let x and y be the two strings given to Alice
and Bob respectively, that is Tribes√n,

√
n(x) = 0 and Tribes√n,

√
n(y) = 1.

Since Tribes√n,
√
n(x) = 0 for all 1 ≤ i ≤

√
n there exists ai such that xi,ai

= 0 where xi,ai
denotes the

aith bit of the ith block of x. Note that the ai is not necessarily unique. For each i, Alice arbitrarily picks a
ai such that xi,ai

= 0 and then Alice considers a new string x′ where for all i, x(i,ai) = 0 and for other bits
of x′ is 1.

Similarly, Tribes√n,
√
n(y) = 1 implies there exists an b such that for all 1 ≤ j ≤

√
n, yb,j = 1. Again,

note that there might be multiple such b but Bob picks one such b and considers the input y′ where yb,j = 1
for all 1 ≤ j ≤

√
n and all other bits of y′ is set to 0.

Note that (b, ab) is the unique index (i, j) such that x′(i, j) = 0 and y′(i, j) = 1. We will now present a
protocol for Alice and Bob for outputting the index (b, ab) with probability at least 1/

√
n. Note that this

would imply our theorem.

• Alice and Bob uses shared randomness to select the same list of
√
n permutations σ1, . . . , σ√

n :
[
√
n] → [

√
n], where the permutations are drawn (with replacement) uniformly and indepen-

dently at random from the set of all possible permutations from [
√
n] to [

√
n].

• According to their pre-decided strategy both Alice and Bob picks the same index t between 1
and

√
n.

• Bob outputs (b, σ−1
b (t)).

• Alice picks a number i such that σi(ai) = t and outputs (i, ai). In case no i exists then Alice
outputs any random index.

The probability of success of the protocol crucially depends on the fact that because Alice and Bob has
shared randomness, they can pick the same set of permutations σ1, . . . , σ√

n although the permutations are
picked uniformly at random.

We will show that with constant probability there exists a unique i which satisfies σi(ai) = t. Under the
condition that this holds we will show that the probability of success of the above protocol is at least 1/

√
n

which would prove the theorem. We start with the following claim that we will prove later.

Claim 5.3. For any fixed number t, with probability at least (1− 1/
√
n)

√
n−1 ≈ e−1, there exists a unique i

such that σi(ai) = t.
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Note that the permutation σb is picked from the uniform distribution over all possible permutations
from [

√
n] to [

√
n], i.e. σb is a random bijection from [

√
n] to [

√
n]. So with probability 1/

√
n, t = σb(ab).

Assuming that t = σb(ab) and that there exists a unique i such that σi(ai) = t, note that output of both
Alice and Bob is indeed (b, ab). Thus the probability of success of the protocol is Ω(1/

√
n).

Proof of Claim 5.3. Consider the event

Ek := σk(ak) = t and for all i ̸= k, σi(ai) ̸= t.

The probability that the event Ek occurs is 1√
n
· (1− 1√

n
)
√
n−1. The event that there exists a unique i such

that σi(ai) = t is ∪
√
n

k=1Ek. The events Ek are disjoint and the claim follows.

5.2 Upper bounds on CGpub by C and EC

We will take advantage of having access to shared randomness by using the hashing based approach outlined
in Section 3.1. To illustrate the ideas of the proof, we start with a simple argument to show that CGpub is
always upper bounded by certificate complexity.

Both players pick a certificate for their respective inputs. They permute the indices {1, . . . , n} with
shared randomness and each player outputs the first index in this new order within their certificate. Since
their certificates must intersect, the probability that they are correct is at least one over the size of the union
which is at most 2C(f), so for any total function CGpub(f) ≤ 2C(f)).3

We now provide a different proof based on hashing as a warmup before we prove the stronger result
CGpub(f) = O(EC(f)).

Theorem 5.4. For a total Boolean function f , CGpub(f) ≤ O(C(f)).

Proof. Let S be a finite set of cardinality C(f). An element z ∈ S is fixed as part of the specification of the
protocol (z does not depend on the input).

Using shared randomness, the players select a function h : [n] → S as follows. Let h : [n] → S be a
random hash function such that for each i ∈ [n], h(i) is selected independently and uniformly from S.

For x ∈ f−1(0) we fix an optimal 0-certificate Cx, and denote by Ax ⊆ [n] the set of indices fixed by Cx.
Similarly, for y ∈ f−1(1) we fix an optimal 1-certificate Cy, and denote by By ⊆ [n] the set of indices fixed
by Cy.

After selecting h using shared randomness, the players proceed as follows. On input x, Alice outputs
an index i ∈ Ax such that h(i) = z, and on input y, Bob outputs an index j ∈ By such that h(j) = z. If
they have several valid choices, they select randomly, and if they have no valid choices they output arbitrary
indices.

Let i∗ ∈ Ax ∩ By, such that xi∗ ̸= yi∗ . By the definition of certificates, such element i∗ exists for any
x ∈ f−1(0) and y ∈ f−1(1), and i∗ is a correct answer on input (x, y) if both players output i∗. Next, we
estimate what is the probability that both players output i∗.

First recall that by the definition of h, the probability that h(i∗) = z is 1
|S| =

1
C(f) . Next, notice that for

any i ∈ Ax ∪By the number of elements different from i in Ax ∪By is ℓ = |Ax ∪By| − 1 ≤ |Ax|+ |By| − 2.
Thus for any z ∈ S and any i ∈ Ax∪By the probability (over the choice of h) that no element other than i in
Ax ∪By is mapped to z by h is (1− 1

|S| )
ℓ ≥ 1

e2 , since max{|Ax|, |By|} ≤ C(f) = |S| and thus ℓ ≤ 2(|S| − 1).

Thus, the players output a correct answer with probability at least 1
e2

1
C(f) .

The previous theorem is stated for total functions and its proof critically depends on the intersection
property of 0- and 1-certificates which does not hold for {0, ∗}- vs. {1, ∗}-certificates. The theorem fails to
hold for the partial function ”Greater than Half” (see Section B), for which it is the case that C(GTH) = 1
whereas CGpub(GTH) is Θ(n). However, the theorem and its proof remain valid for partial functions with
respect to C′(f) (see Section 4.4). We obtain a stronger upper bound on CGpub by EC.

3We thank an anonymous referee for suggesting this simple and elegant proof.
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Theorem 5.5. For a (possibly partial) Boolean function f , CGpub(f) ≤ O(EC(f)).

Proof. The proof will be similar but slightly more involved than the proof of the upper bound by C. We will
rely on the “weights” wx,i from the definition of EC(f).

Let S be a finite set of cardinality ⌈EC(f)⌉. Using shared randomness, the players select a function
h : [n] → S and an element z ∈ S as follows. Let h : [n] → S be a random hash function such that for each
i ∈ [n], h(i) is selected independently and uniformly from S. In addition, z is selected uniformly from S and
independently from the choices for h.

For all inputs x ∈ {0, 1}n consider the weights wx,i achieving EC(f). Denote by ECx the sum
∑

i∈[n] wx,i

and recall that by the definition of EC, for each x ∈ {0, 1}n we have ECx ≤ EC(f).
For a given z ∈ S, consider the preimage h−1(z). We use the notation

Wx(z) =
∑

i∈h−1(z)

wx,i .

Notice that for any z ∈ S,

E[Wx(z)] =
∑
i∈[n]

wx,i

|S|
=

ECx

|S|

where the expectation is over the choice of the hash function.
After selecting h and z using shared randomness, the players proceed as follows. On input x ∈ f−1(0)

Alice selects an index i from h−1(z) such that each i is chosen with probability
wx,i

Wx(z)
. Similarly, on input

y ∈ f−1(1) Bob selects an index i from h−1(z) such that each i is chosen with probability
wy,i

Wy(z)
. Note that

these choices are made using Alice’s and Bob’s private randomness, so for fixed z and h Alice’s choices are
independent from Bob’s choices. However, they both depend on z and h. In what follows, we will denote by
Prz and Prh, respectively, the probabilities that are only over the choice of z and h, respectively.

Recall that Wx(z) and Wy(z) are measures of the preimage of z with respect to the weights for x and y
respectively. Since ECx

|S| ≤ 1 for any x ∈ {0, 1}n, the preimage of most elements in S will have small measure.

Next we estimate the probability that a given element i is mapped to a value h(i) whose preimage has small
measures Wx(h(i)) and Wy(h(i)). Note that this only depends on the choice of h.

For a given i, consider first selecting the values h(j) for all j ̸= i from [n]. Consider the measure of the

preimages of elements in S at this point (without taking into account what happens to i). Since
ECx−wx,i

|S| ≤ 1

for any x ∈ {0, 1}n, at most 1
t−1 fraction of the elements in S can have measure more than t − 1 at this

point. Since wx,i ≤ 1, we get that for any x ∈ {0, 1}n and i ∈ S, Prh[Wx(h(i)) > t] ≤ 1
t−1 .

For i ∈ [n], let Smalli denote the event that both Wx(h(i)) and Wy(h(i)) are at most t. Then
Prh[Smalli] ≥ 1− 2

t−1 .
For a given i ∈ [n], let Bothi denote the event that both players select i. Let I(x, y) = {i|xi ̸= yi}. Since

f(x) = 1− f(y), I(x, y) ̸= ∅.
Recall that the players goal is that they both output the same i from I(x, y). Denote by P (x, y) the

probability that they both output the same i from I(x, y). Note that P (x, y) is at least as large as the
probability that they both output the same i from I(x, y), and both Wx(h(i)) and Wy(h(i)) are at most t.

Thus, using that the events Bothi are pairwise disjoint, we have

P (x, y) ≥
∑

i∈I(x,y)

Pr[Bothi ∩ (z=h(i)) ∩ Smalli]

=
∑

i∈I(x,y)

Pr[Bothi|(z=h(i)) ∩ Smalli]Pr[(z=h(i)) ∩ Smalli] .

Note that the events z = h(i) and Smalli are independent, since the choice of z is independent of h.
For any i∗ ∈ I(x, y), and h : [n] → S, Prz[z = h(i∗)] = 1

|S| , Thus, Pr[z = h(i) ∩ Smalli] = Prz[z =

h(i)]Prh[Smalli] =
1
|S|Prh[Smalli] ≥ 1

|S| (1−
2

t−1 ).
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For any i ∈ [n], we have

Pr[Bothi|z = h(i)] =
wx,i

Wx(z)

wy,i

Wy(z)
and Pr[Bothi|z = h(i) ∩ Smalli] ≥

wx,i

t

wy,i

t
.

Thus, we get

P (x, y) ≥ 1

t2
1

|S|
(1− 2

t− 1
)
∑

i∈I(x,y)

wx,iwy,i ≥
1

t2
1

|S|
(1− 2

t− 1
)

where the last inequality follows by the definition of EC(f).
Setting t = 5, we get that the players output the same element from I(x, y) with probability at least

1
50

1
⌈EC(f)⌉ = Ω( 1

EC(f) ).

5.3 Lower bound on sabotage complexity

Randomized sabotage complexity RS [15] is a measure of complexity introduced to study the behavior of
randomized query complexity R under composition. It was shown that RS is a lower bound on R and that
it behaves perfectly under composition.

Definition 5.6 (Sabotage Complexity [15]). The sabotage complexity of a function f , denoted RS(f), is
defined using a concept of sabotaged inputs Pf ⊆ {0, 1, ∗}n which is the set of all partial assignments of

a function f consistent with a 0−input and a 1−input. Let P †
f is defined similarly with the symbol ∗ being

replaced by †. Given a (possibly partial) function f , a partial function fsab : Pf ∪ P †
f 7→ {0, 1} is defined

as fsab(x) = 1 if x ∈ Pf and fsab(x) = 0 if x ∈ P †
f (here we view Pf , P

†
f as subsets of {0, 1, ∗, †}n). The

sabotage complexity is defined as the randomized query complexity of computing fsab i.e. RS(f) = R(fsab).

The classical adversary method CMM was introduced as a lower bound on R [35] but there were no
limitations known on this quantity that hold for partial functions [7]. In this section we show that on
sabotage complexity RS is an upper bound on CGpub and therefore on CMM (see Theorem 7.1). As a
warm-up, we give an easy proof that CGpub(f) = O(R(f)).

Theorem 5.7. For any Boolean (possibly partial) function f , CGpub(f) ≤ O(R(f)).

Proof. From the definition of R(f) there is a randomized decision tree R that on any input x outputs f(x)
correctly with probability at least 2/3, and R only reads at most R(f) number of bits of x. To prove
CGpub(f) ≤ R(f) let us consider the following strategies used by the two players:

Both the players run the algorithm R on their respective inputs using the same random coins (using the
shared randomness). Both the player also use shared randomness to pick a number t uniformly at random
between 1 and R(f). Both the players output the t-th index that is queried by R.

Let x and y be the inputs to the players respectively. Since f(x) = 1−f(y), with probability at least 4/9
the algorithm R will output different answers when the players run the algorithm on their respective inputs.
Also since the algorithm R is run using the same internal coins, the initial sequence of indices queried by
both the runs of the algorithm is the same until the algorithm queries an index k such that xk ̸= yk. Note
that with probability 1/R(f), the random number t picked by t is the same as k. So with probability 4

9 ·
1

R(f) ,

the players correctly output the same index t such that xt ̸= yt. Hence CGpub(f) ≤ O(R(f)).

Using the same idea we can show that the public coin certificate game complexity CGpub is bounded
above by randomized sabotage complexity.

Theorem 5.8. The public coin certificate game complexity of a (possibly partial) function f is at most its
sabotage complexity: CGpub(f) ≤ 9

2RS(f).
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Proof. We show this by using the sabotage complexity protocol to build a CGpub protocol. Assuming that
Alice has input x and Bob an input y such that f(x) = 1− f(y), we construct a sabotaged input zx,y that
is consistent with x and y as follows:

zx,y(i) =

{
x(i) if x(i) = y(i)

∗ otherwise.

On the input zx,y, we know that a decision tree sampled from the distribution given by the RS protocol

succeeds in finding a ∗ or † with probability≥ 2/3. The CGpub protocol is as follows: using public randomness,
Alice and Bob sample a decision tree from the RS protocol and follow the path on the decision tree according
to their respective inputs for at most RS(f) steps. With probability at least 2/3 the randomly chosen tree
finds a ∗ on input zx,y in RS(f) steps. Since the sabotaged input zx,y is consistent with both Alice’s and
Bob’s input, the path on x and y on the decision tree is the same as that on zx,y until they reach a place
where they differ (or encounter a ∗ in zx,y). Alice and Bob pick a random position t such that 1 ≤ t ≤ RS(f)
and output the tth query made in the corresponding paths on the tree. With probability 1

RS(f) , it is place

corresponding to a ∗ ∈ zx,y and they succeed in finding a place where the inputs differ. This gives a success
probability ≥ 2/3 1

RS(f) as the random decision tree sampled finds a ∗ on the sabotaged input zx,y with

probability ≥ 2/3.

5.4 Upper and lower bounds for private coin certificate games

We first observe that the following formulation is equivalent to CGpriv. The essential idea is rescaling, and
the objective function gets squared because the constraints are quadratic.

Proposition 5.9 (Equivalent formulation for CGpriv). For any (possibly partial) function f ,

CGpriv(f) = min
{wx,i}

max
x

{∑
i

wx,i

}2

such that
∑

i:xi ̸=yi

wx,iwy,i ≥ 1 ∀x ∈ f−1(0), y ∈ f−1(1)

wx,i ≥ 0 ∀x, i

Proof. We will first show that the value of the objective function in the formulation in terms of weights is
at most CGpriv. Let p be an optimal probability distribution that achieves CGpriv(f) and let

∆ = min
x,y:f(x)=1−f(y)

∑
i:xi ̸=yi

px,ipy,i =
1

CGpriv(f)
.

We construct the following weight scheme using p, wx,i =
px,i√
∆

and this is a feasible solution for the above

formulation since ∀x, y such that f(x) = 1− f(y),∑
i:xi ̸=yi

wx,iwy,i =
1

∆

∑
i:xi ̸=yi

px,ipy,i ≥
∆

∆
= 1

We now have

min
{w′

x,i}
max

x

∑
i∈[n]

w′
x,i


2

≤ max
x

∑
i∈[n]

wx,i


2

= max
x

∑
i∈[n]

px,i√
∆


2

=
1

∆
= CGpriv(f)
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For the other direction, let w be an optimal weight scheme w that minimises maxx
∑

i wx,i. We construct
the following family of probability distributions: px,i =

wx,i∑
j wx,j

This gives the following.

CGpriv(f) ≤ max
x,y

f(x)=1−f(y)

1∑
i:xi ̸=yi

px,ipy,i

= max
x,y

f(x)=1−f(y)

∑
j wx,j

∑
j wy,j∑

i:xi ̸=yi
wx,iwy,i

≤ max
x,y

f(x)=1−f(y)

∑
j

wx,j

∑
j

wy,j .

Thus we have CGpriv(f) ≤ maxx

{∑
j wx,j

}2

.

We show that the following relations hold for CGpriv.

Theorem 5.10. For any total Boolean function f ,

1. MM(f)2 ≤ CGpriv(f)

2. R0(f) ≤ CGpriv(f) ≤ O(EC(f)2) [28]

3. CGpriv(f) ≤ O(CGpub(f)2s(f)) [28]

4. CGpriv(f) ≤ C0(f)C1(f)

The first and last items also hold for partial functions. However, the ”Greater than Half” function (see
section B) is an example of a partial function that would violate item 4 using the alternate definitions C{0,∗}

and C{1,∗}.

Proof. Item 1 Let p be an optimal solution for CGpriv(f) so that ω(p;x, y) ≥ 1
CGpriv(f)

for all x, y satisfying

f(x) = 1− f(y). Using the same assignment for MM (Definition 4.1), it is the case that

1

MM(f)2
≥ min

x∈f−1(0)

y∈f−1(1)

 ∑
i:xi ̸=yi

√
px,ipy,i

2

≥ min
x∈f−1(0)

y∈f−1(1)

∑
i:xi ̸=yi

px,ipy,i

so MM(f)2 ≤ CGpriv(f).
Item 2 From Proposition 5.9, the formulation of

√
CG is a relaxation of the definition of EC, where the

constraint wx,i ≤ 1 is dropped in
√
CG, giving the second inequality

√
CG(f) ≤ EC(f).

For the first inequality, it was shown in [28] that R0 ≤ O(EC2). However, their proof does not make use
of the constraints wx,i ≤ 1. Therefore, their proof already shows that R0(f) ≤ O(CGpriv(f)).

Item 3 Jain et al. [28] showed that EC(f)2 ≤ O(FC(f)2s(f)). From the previous item CGpriv(f) ≤
O(EC(f)2), and FC(f) = O(CMM(f)) [7], CMM(f) ≤ CGns(f) ≤ CGpub(f) from Theorem 6.2 and Proposi-
tion 2.7. We get the desired result by combining these inequalities.

Item 4 It is easy to see that CGpriv(f) ≤ C0(f) · C1(f): on input x, each player outputs uniformly at
random some index i in a minimal certificate for their input. The certificates must intersect in at least one
index, otherwise we could simultaneously fix the value of f to 0 and to 1 by fixing both certificates. The
strategy therefore succeeds when both players output the same index in the intersection, which occurs with
probability at least 1

C0(f)
1

C1(f) . This argument remains valid for partial functions, however the “Greater

than Half” function (see section B) is an example of a partial function that would violate item 4 using the
alternate definitions C{0,∗} and C{1,∗}.
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6 Lower bounds on quantum certificate game complexity

In this section, we give a very short and simple proof that the classical adversary (CMM) is a lower bound
on all of our certificate game models.

To illustrate the idea behind the proof and the technique we use, we start with a quantum lower bound
on the OR function. Consider a hypothetical strategy with shared entanglement that would allow two players
to win the certificate game with probability more than 1/n. Then the players could use this strategy for the
certificate game as a black box, to convey information (without using communication) in the following way.
Assume Alice wants to send an integer i ∈ {1, . . . , n} to Bob. Bob uses input y = 0n and Alice uses input
x = y(i) (all 0s with the i-th bit 1). By running this game several times, Bob could learn i by taking the
majority output of several runs of this game, which would violate the non-signaling principle of quantum
information.

In order to give a formal proof, we show that CGns(Promise-OR) ≥ n. Since CGns(f) ≤ CG∗(f) for every
f , the following proposition implies that CG∗(Promise-ORn) ≥ n.

Proposition 6.1. CGns(Promise-ORn) ≥ n.

Proof of Proposition 6.1. We give a feasible solution to the dual, composed of a hard distribution µ and an
assignment to the variables γi,j,x,y that satisfy the constraints of the dual given in Proposition 3.2.

Let δ = 1
n , x = 0n, and consider µxy = 1

n when y = x(i) (x with the ith bit flipped to 1), and 0 everywhere
else. To satisfy the correctness constraint, we use γ to pick up weight 1/n whenever a strategy AB fails on
some pair x, x(i). To do this, we define γi,j,x,x(i) = 1

n for all j ̸=i (and 0 everywhere else). To see that this
satisfies the constraints, consider any strategy AB and let i = A(x) be A’s output on x.

Case 1: If B(x(i)) = i then AB is correct on x, x(i), but cannot be correct on any other input pair with
non-zero weight under µ. Therefore,∑

x,y′:A(x)=B(y′)=i and xi ̸=yi

µx,y =
1

n
and

∑
x,y′

γA(x),B(y′),x,y′ = 0.

Case 2: If B(x(i)) = j ̸= i, then AB is incorrect on all non-zero weight input pairs, and we have∑
x,y′:A(x)=B(y′)=i and xi ̸=yi

µx,y = 0 and
∑
x,y′

γA(x),B(y′),x,y′ =
1

n
.

Since δ = 1
n this is satisfying assignment, which shows that

CGns(Promise-OR) = ωns(RPromise-OR)
−1 ≥ n.

Note that Q(Promise-OR) is Θ(
√
n) [23, 12]. Thus, Promise-OR shows that there exist a function for

which CG∗(f) = ω(Q(f)) (as opposed to the randomized model where CGpub(f) ≤ O(R(f)). On the other
hand, note that the function constructed by [3] demonstrates that there exists a total Boolean function f
with C(f) = O(

√
Q(f)); this f also shows that CGpub(f) could be as small as O(

√
Q(f)).

The previous lower bound on the OR function can be generalized, with a slightly more complicated weight
assignment, to show that block sensitivity is a lower bound on the non-signaling value of the certificate games.
However, using a different technique, we can prove an even stronger result. We do this by going back to the
original definition of CGns (Definition 2.6) and giving a very simple proof that CGns is an upper bound on
CMM.

Theorem 6.2. For any (possibly partial) Boolean function f , CMM(f) ≤ CGns(f).
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Proof. Let p(i, j|x, y) be the distribution over outcomes in an optimal nonsignaling strategy for CGns(f).
Then p verifies the nonsignaling condition,

∑
j p(i, j|x, y) =

∑
j p(i, j|x, y′) for all x, y, y′, i, so we can write

the marginal distribution for x as p(i|x) =
∑

j p(i, j|x, y), since it does not depend on y. Notice that
p(i|x) =

∑
j p(i, j|x, y) ≥ p(i, i|x, y) for all x, y, i, so min{p(i|x), p(i|y)} ≥ p(i, i|x, y).

CMM(f) =min
p

max
x,y∈S

f(x)=1−f(y)

1∑
i:xi ̸=yi

min{p(i|x), p(i|y)}

≤min
p

max
x,y∈S

f(x)=1−f(y)

1∑
i:xi ̸=yi

p(i, i|x, y)

Since we have that
∑

i:xi ̸=yi
p(i, i|x, y) ≥ 1

CGns(f) for all x, y such that f(x) = 1− f(y), CMM(f) ≤ CGns(f).

To summarize the key idea of this section, introducing the non-signaling model of Certificate games
provides a very clean and simple way to give lower bounds on all of our previous models, including the
shared entanglement model. It has several linear formulations, making it very easy to give upper and lower
bounds. Finally, it captures an essential feature of zero-communication games, which we think of as the
“non-signaling bottleneck”. As an added bonus, it allows us to give proofs on the shared entanglement
model without having to get into the technicalities of what characterizes quantum games.

7 Closing the loop

In this section we will show that all of CGpub, CG∗, CGns, and CMM are actually asymptotically equal.

Theorem 7.1. For any (possibly partial) Boolean function f ,

CGpub(f) = Θ(CG∗(f)) = Θ(CGns(f)) = Θ(CMM(f)).

The key idea is to apply the correlated sampling technique of Holenstein [25]. We use the following
formulation from the Rao–Yehudayoff textbook [49, Lemma 7.5]. Here, total variation distance between
distributions p and q is defined by TV(p, q) := 1

2

∑
i |p(i)− q(i)|.

Lemma 7.2 (Correlated sampling [25, 49]). Suppose Alice is given as input a distribution p over a set U ,
and Bob is given as input a distribution q over U . There is a protocol using public randomness and no
communication with the following guarantees.

• Alice outputs a value X which is distributed according to p.

• Bob outputs a value Y which is distributed according to q.

• We have4 Pr[X = Y ] ≥ 1
2 (1− TV(p, q)).

Proof of Theorem 7.1. Given Theorem 6.2, it remains to prove the inequality CGpub(f) ≤ O(CMM(f)) by
designing a protocol for f that wins with probability Ω(1/CMM(f)). Recall from Definition 4.2 that

CMM(f) = min
p

max
x∈f−1(1)

y∈f−1(0)

1∑
i:xi ̸=yi

min{px(i), py(i)}
. (1)

Starting with a distribution px over [n], we define distributions p′x and p′′x over [n] × {0, 1} as follows. To
define p′x, first sample i ∼ px and then output (i, xi) ∼ p′x. To define p′′x, first sample i ∼ px and then

4The original formulation from [49, Lemma 7.5] states the incomparable bound Pr[X ̸= Y ] ≤ 2TV(p, q) (which is useful
when TV is small). However, it is straightforward to inspect the protocol and see that it also satisfies our lower bound (which
is useful when TV is close to 1).
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output (i, 1−xi) ∼ p′′x. (Note how p′x and p′′x are the same except for the flipped bit.) We can now write the
denominator in (1) as∑

i:xi ̸=yi

min{px(i), py(i)} =
∑

α∈[n]×{0,1}

min{p′x(α), p′′y(α)}

=
∑
α

(
1
2 (p

′
x(α) + p′′y(α))− 1

2 |p
′
x(α)− p′′y(α)|

)
= 1− TV(p′x, p

′′
y).

The CGpub protocol for f is now defined from the optimal p in (1) as follows. On input (x, y) the players use
the protocol from Lemma 7.2 to compute correlated samples X := (iX , bX) ∼ p′x and Y := (iY , bY ) ∼ p′′y ,
respectively, and then they output (iX , iY ). The players win the game with probability

Pr[X = Y ] ≥ 1
2 (1− TV(p′x, p

′′
y)) ≥ Ω(1/CMM(f)).

Combining the above theorem with the result of [7], which states that FC(f) = Θ(CMM(f)) for total f ,
we get the following immediate corollary.

Corollary 7.3. For any total Boolean function f , CGpub(f) = Θ(FC(f)).

8 Single bit versions

Aaronson et al. [4] defined single-bit versions of several formulations of the adversary method, and showed
that they are all equal to the spectral sensitivity λ. Informally, single-bit versions of these measures are
obtained by considering the requirements only with respect to pairs x, y such that x, y ∈ f−1(0) × f−1(1)
and x and y differ only in a single bit.

We denote by d(x, y) the Hamming distance of x and y, and by x(i) the string obtained from x by flipping
the value of the i-th bit xi to its negation. The single-bit version of MM(f) was defined in [4] as follows.

MM[1](f) = min
{wx,i}

max
x

∑
i

wx,i such that wx,iwx(i),i ≥ 1 ∀x, i with f(x) = 1− f(x(i)) (2)

where x ∈ {0, 1}n and i ∈ [n].
Similarly to the proof of Proposition 5.9 it can be shown that this is equal to the following formulation,

which we include for comparison with some of our other definitions.

MM[1](f) := min
p

max
x,y∈f−1(0)×f−1(1)

d(x,y)=1

1∑
i:xi ̸=yi

√
px,ipy,i

= min
p

max
x,i:f(x)=1−f(x(i))

1
√
px,ipx(i),i

(3)

where p is taken over all families of nonnegative px,i ∈ R such that for all x,
∑

i∈[n] px,i = 1.

Note that the definition of MM[1](f) is well defined for partial functions provided that there exist x, y ∈
f−1(0) × f−1(1) such that x and y differ in exactly one bit. This is equivalent to sensitivity, s(f), being
non-zero. Aaronson et al. [4] proved the following theorem which also hold for these partial functions.

Theorem 8.1. (Thm. 28 in [4]) For any Boolean function f , λ(f) = MM[1](f) .

Here we consider single-bit versions of CGpub and CGpriv and show that they characterize sensitivity and
λ2, respectively, up to constant factors.
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Definition 8.2 (Single-bit private coin certificate game complexity). For any (possibly partial) Boolean
function f with s(f) ̸= 0

CGpriv
[1] (f) := min

p
max

x,y∈f−1(0)×f−1(1)

d(x,y)=1

1

ω(p;x, y)
= min

p
max

x,i:f(x)=1−f(x(i))

1

px,ipx(i),i

,

where p is a collection of nonnegative variables {px,i}x,i that satisfies, for each x∈{0, 1}n,
∑

i∈[n] px,i = 1,

and ω(p;x, x(i)) is the probability that both players output the unique index i where x and x(i) differ. (Note
that ω(p;x, x(i)) = px,ipx(i),i.)

Recall that when the players share randomness, a public-coin randomized strategy is a distribution over
pairs (A,B) of deterministic strategies. We assign a nonnegative variable pA,B to each strategy and require
that they sum to 1. We say that a pair of strategies (A,B) is correct on x, y if A(x) = B(y) = i and xi ̸= yi.

Definition 8.3 (Single-bit public coin certificate game complexity). For any (possibly partial) Boolean
function f with s(f) ̸= 0

CGpub
[1] (f) := min

p
max

x,y∈f−1(0)×f−1(1)

d(x,y)=1

1

ωpub(p;x, y)
= min

p
max

x,i:x∈f−1(0),x(i)∈f−1(1)

1

ωpub(p;x, x(i))
,

where p is a collection of nonnegative variables {pA,B}A,B satisfying
∑

(A,B) pA,B = 1 and ωpub(p;x, y) =∑
(A,B) correct on x,y pA,B.

Theorem 8.4. For any (possibly partial) Boolean function f : {0, 1}n → {0, 1} with s(f) ̸= 0 CGpub
[1] (f) =

Θ(s(f)) .

Proof. Upper bound by sensitivity We use the hashing based approach, similarly to the upper bounds
on CGpub by C and EC (Section 5.2).

Let S be a finite set of cardinality s(f). An element z ∈ S is fixed as part of the specification of the
protocol (z does not depend on the input).

Using shared randomness, the players select a function h : [n] → S as follows. Let h : [n] → S be a
random hash function such that for each i ∈ [n], h(i) is selected independently and uniformly from S.

For x ∈ f−1(0) let Ax be the set of indices of the sensitive bits of x, that is Ax = {i ∈ [n]|f(x) = 1−f(x(i)}.
Similarly, for y ∈ f−1(1) let By = {i ∈ [n]|f(y) = 1− f(y(i)}.

After selecting h using shared randomness, the players proceed as follows. On input x, Alice outputs an
index i ∈ Ax such that h(i) = z, and on input y, Bob outputs an index j ∈ By such that h(j) = z. If they
have several valid choices, or if they have no valid choices they output arbitrary indices.

Let i∗ ∈ Ax ∩ By, such that xi∗ ̸= yi∗ . Notice that for x ∈ f−1(0) and y ∈ f−1(1) such that d(x, y) = 1
there is exactly one such index i∗.

Next, we estimate what is the probability that both players output i∗. Recall that by the definition of h,
the probability that h(i∗) = z is 1

|S| =
1

s(f) . Notice that for any i ∈ Ax∪By the number of elements different

from i in Ax ∪By is ℓ = |Ax ∪By| − 1 ≤ 2(|S| − 1), since max{|Ax|, |By|} ≤ s(f) = |S|. Thus for any z ∈ S
and any i ∈ Ax∪By the probability (over the choice of h) that no element other than i in Ax∪By is mapped
to z by h is (1− 1

|S| )
ℓ ≥ 1

e2 .

Thus, the players output a correct answer with probability at least 1
e2

1
s(f) .

Lower bound by sensitivity We will use the dual formulation of CGpub
[1] obtained similarly to Propo-

sition 3.1. The only difference is that the distribution µ takes nonzero values only on pairs x, x(i) (on pairs
with Hamming distance 1). Let x∗ be an input such that s(f ;x∗) = s(f) =: s, and assume without loss of
generality that f(x∗) = 0. Consider the following distribution µ over input pairs at Hamming distance 1.
µx∗,y = 1

s for y ∈ f−1(1) such that d(x∗, y) = 1 and µx∗,y = 0 for every other y. Furthermore, µx′,y = 0 for
any y and x′ ̸= x∗. Thus, we only have s input pairs with nonzero measure.
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Let A,B be any pair of deterministic strategies for Alice and Bob. Since A is a deterministic strategy,
Alice will output the same index i for every pair x∗, y. This means that the probability over µ that the
players win is at most 1

s(f ;x) =
1
s = 1

s(f) for any pair of deterministic strategies.

We define single-bit versions of FC and EC, and show that both are equal to sensitivity.

Definition 8.5. For any (possibly partial) Boolean function f with s(f) ̸= 0,

• FC[1](f) = maxx∈{0,1}n FC[1](f, x), where FC[1](f, x) = minv
∑

i vx,i, subject to vx,i ≥ 1 for all i such

that f(x) = 1− f(x(i)), with v a collection of variables vx,i ≥ 0.

• EC[1](f) = minw maxx
∑

i∈[n] wx,i, with w a collection of variables 0 ≤ wx,i ≤ 1 satisfying wx,iwx(i),i ≥
1 for all x, i s.t. f(x) = 1− f(x(i)).

Proposition 8.6. For any (possibly partial) Boolean function f : {0, 1}n → {0, 1} with s(f) ̸= 0, s(f) =
FC[1](f) = EC[1](f) .

Proof. We can think of the values vx,i and wx,i as weights assigned to the edges of the Boolean hypercube.
We say that an edge (x, x(i)) is sensitive (with respect to the function f) if f(x) = 1− f(x(i)). First notice,
that both definitions require to place weight at least 1 on each sensitive edge, thus both FC[1](f) and EC[1](f)
are at least s(f). On the other hand, placing weight 1 on each sensitive edge and weight 0 on every other
edge satisfies the constraints of both definitions, thus both FC[1](f) and EC[1](f) are at most s(f).

Thus we get the following.

Corollary 8.7. For any (possibly partial) Boolean function f : {0, 1}n → {0, 1} with s(f) ̸= 0, s(f) =

FC[1](f) = EC[1](f) = Θ(CGpub
[1] (f)) .

In case of the single-bit version of private coin certificate game complexity we have:

Theorem 8.8. For any (possibly partial) Boolean function f : {0, 1}n → {0, 1} with s(f) ̸= 0, CGpriv
[1] (f) =

λ2 .

Proof. Comparing the definitions of MM[1] and CGpriv
[1] (e.g. the formulation of MM[1] in Equation (3)

with Definition 8.2) notice that
√

CGpriv
[1] = MM[1]. (One can also restate Definition 8.2 with weights as in

Proposition 5.9 and compare that version with the formulation of MM[1] in Equation (2).) The statement
then follows from Theorem 8.1.

9 Separations between classical adversary and randomized query
complexity for partial functions

For a partial function f , it is even possible to have an exponential separation between R(f) and CGpub(f).

Lemma 9.1. There is a partial Boolean function f : {0, 1}n → {0, 1, ∗} such that

R(f) ≥ Ω(n) but CGpub(f) ≤ O(1).

Proof. Fix any error-correcting code C ⊆ {0, 1}n of constant rate and constant relative distance, that is,
|C| ≥ 2Ω(n) and for every distinct x, y ∈ C we have that x and y differ in Ω(n) coordinates. (For example,
we can use a Justesen code or a random code.) Note that any partial function f : {0, 1}n → {0, 1, ∗} with
domain f−1({0, 1}) = C has CGpub(f) = O(1). Indeed, both players simply output a uniform random
coordinate.

Finally, we show that if f : C → {0, 1} is chosen uniformly at random, then R(f) ≥ Ω(n) with high
probability. Indeed, let T be a randomized decision tree of depth d computing f . That is, T is a probability
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distribution over deterministic depth-d decision trees. By standard randomness sparsification techniques
(e.g., Newman’s theorem [41]) we may assume that T is a uniform distribution over nO(1) many deterministic
trees. Each tree T ∈ supp(T ) can be encoded as a O(

(
n
d

)
)-bit string (for each leaf of T , encode the root-

to-leaf path). Hence T can be encoded as a string of length nO(1) · O(
(
n
d

)
). However, a random function f

needs Ω(|C|) = 2Ω(n) bits to describe it, with high probability. It follows that d ≥ Ω(n).

An example of an explicit function to separate R and CGpub is the approximate index function constructed
by Ben-David and Blais [13]. The proof of this exponential separation is given in Appendix A.

We know that CGpub and FC cannot be asymptotically different for a total function. Though, there is
a partial function, GTH (defined by Ambainis et al. [7], for definition see Appendix B), for which FC is
constant [7] but CGpub is Θ(n) (follows from Theorem 6.2 and CMM(GTH) = Θ(n) [7]).

10 Relations and separations between measures

Understanding the relationships between the various models of certificate game complexity would help us
understand the power of shared randomness over private randomness and the power of quantum shared
entanglement over shared randomness in the context of certificate games.

The first natural separation to consider is the relation between CGpriv and CGpub.

Corollary 10.1. For any total Boolean function f , CGpub(f) ≤ CGpriv(f) ≤ O(CGpub(f)3).

Proof. The first inequality follows from the definitions and the second inequality follows from

CGpriv ≤ O(EC(f)2) ≤ O(FC2(f) · s(f)) ≤ O(CGns(f)2 · s(f)) ≤ O(CGns(f)3),

where the first inequality follows from Theorem 5.10, the second was proved in [28] and the last two inequality
follows from Theorem 6.2.

Note that the above corollary follows from CGpriv ≤ O(CGpub(f)2 · s(f)) (Theorem 5.10)

Open Problem 1 : Is there a c < 3 such that CGpriv(f) ≤ O(CGpub(f)c)?

There are total functions f , for which CGpriv(f) = Θ(CGpub(f)2). One such example is the Tribes function.
For Tribes√n,

√
n := OR√

n◦AND√
n, we have CG

pub(Tribes√n,
√
n) = Θ(

√
n), and CGpriv(Tribes√n,

√
n) = Θ(n).

Proof. Firstly, note that since the functions OR and AND has full sensitivity, from Theorem 6.2 we have
CGpub(OR√

n) = CGns(OR√
n) = Θ(

√
n).

Also, the sensitivity of Tribes√n,
√
n is Θ(

√
n) and hence from Theorem 6.2 we have that the CGpub

and CGns of Tribes√n,
√
n is Ω(

√
n. The upper bound follows Theorem 5.5 and the fact that the certificate

complexity of Tribes√n,
√
n is at most

√
n. But we have also provided a separate proof (Theorem 5.2) for the

upper bound of the Tribes√n,
√
n. Thus we have CGns(Tribes√n,

√
n) = CGpub(Tribes√n,

√
n) = Θ(

√
n).

Now for the certificate game complexity with shared randomness, from Theorem 5.10 we know that
CGpriv is bounded below by R0 and we know that R0(Tribes√n,

√
n) = Θ(n). On the other, Theorem 5.10 also

helps us to upper bound CGpriv by (EC)2, and since EC(Tribes√n,
√
n) ≤ C(Tribes√n,

√
n) ≤

√
n, so we have

that CGpriv(Tribes√n,
√
n) = Θ(n).

The Tribes function also demonstrates a quadratic separation between CGpub and R while showing that
the CGpub measure does not compose. Also note that any function with λ(f) = n, like the parity function,
demonstrates a quadratic gap between CGpriv and CGpub. This is because CGpriv(f) = Ω((MM(f))2), from
Theorem 5.10, and MM(f) = Ω(λ(f)). Thus for any such functions CGpriv is Θ(n2) while CGpub is Θ(n).

One possible attempt to tighten the relation between CGpriv and CGpub is to modify the inequality
CGpriv = O(EC2). We observe that the bound CGpriv(f) ≤ O(EC(f)2) is indeed tight (Parity function).
Though, we could possibly find a better relation between EC and CGpub. Since EC(f) ≤ C(f), we know that
EC(F ) = O(CGpub(f)2).
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Open Problem 2 : What is the minimum c such that EC(f) ≤ O(CGpub(f)c)?

Note that if CGpub = Θ(EC) we have R0 ≤ O((CGpub)2) = O(FC2), which is a well-known open prob-
lem [28]. Theorem 5.10 shows that R0(f) ≤ O(CGpriv(f)) (though parity shows that these two measures
need not be equal). A quadratic bound on CGpriv with respect to CGpub will also settle the well-known open
problem mentioned above.

Another possible direction to tighten the relation between CGpriv and CGpub is to improve the inequality
CGpriv = Ω(MM2).

Open Problem 3 : What is the biggest separation between CGpriv(f) and MM(f)?

To the best of our knowledge, the best upper bound on CGpriv for total functions in terms of MM is

CGpriv ≤ O(FC2s) ≤ O(MM6),

where the final inequality follows from the fact that FC ≤ MM2[8] and s ≤ λ2 ≤ MM2. The biggest
separation between CGpriv and MM in this direction is cubic: there is a total Boolean function f for which
CGpriv(f) ≤ Ω(EC(f)3/2). In [6] they constructed a “pointer function” g, for which R0(g) = Ω(Q(g)3). We
observe that, for the pointer function,

CGpriv(g) ≥ Ω(R0(g)) ≥ Ω(Q(g)3) ≥ Ω(MM(g)3),

where the first inequality follows from Theorem 5.10 and the other inequalities follows from earlier known
results. This separation can also be achieved by the cheat sheet version of k−Forrelation function that gives
a cubic separation between Q and R [10, 3].

However (from Theorem 5.10) for any total Boolean function f , (MM(f))2 ≤ O(CGpriv(f)) and this
inequality is in fact tight (for any total function with full spectral sensitivity, such as parity). In fact, the
two quantities, CGpriv and (MM)2, are asymptotically identical for symmetric functions [39].

Another upper bound on CGpriv that we observe is CGpriv ≤ C0 ·C1. While for some functions (like the Tribes
function) the two quantities CGpriv and C0 ·C1 are asymptotically equal we note that there are functions for
which CGpriv is significantly less than C0 · C1.

Corollary 10.2 ([28, 22]). There exists a total function f : {0, 1}N → {0, 1} for which, C0(f) = Θ(N),
C1(f) = Θ(

√
N) and EC(f) = Θ(

√
N). Thus C0(f) · C1(f) = Ω(CGpriv(f)3/2).

Proof. In [28, Theorem 11] they constructed a total function f : {0, 1}N → {0, 1} such that C0(f) = Θ(N)
and C1(f) = Θ(

√
N) and EC(f) = Θ(

√
N). Thus, from Theorem 5.10 we have CGpriv(f) = Θ(EC(f))2 ≤

Θ(N). Thus we have the corollary.

The separations between single bit version and general version of certificate games is pretty interesting
too. One of the enticing open problems in this area of complexity theory is the sensitivity-block sensitivity
conjecture. The best gap between bs(f) and s(f) is quadratic: that is there exists a function f such
that bs(f) = Θ(s(f)2). The conjecture is that this is indeed tight, that is, for any Boolean function f ,
bs(f) = O(s(f)2). In the seminal work of [26] the degree of a Boolean function was bounded by the square
of sensitivity, and this is tight for Boolean functions. Since the degree of a Boolean function is quadratically
related to the block sensitivity, we have bs(f) ≤ O(s(f)4. Unfortunately, this approach via degree will not
be able to give any tighter bound on block sensitivity in terms of sensitivity.

Estimating certificate game complexity may be a possible way to prove a tighter bound on block sensitivity
in terms of sensitivity. Given the result in Theorem 8.4, designing a strategy for CGpub using CGpub

[1] may

help us solve the sensitivity-block sensitivity conjecture.

Open Problem 4 : What is the smallest c such that, for any Boolean function f , CGpub(f) = O(CGpub
[1] (f)c)?

Note that CGpub(f) = O(CGpub
[1] (f)2) is equivalent to bs(f) ≤ O(s(f)2) (the separation between FC and

s is same as bs and s by [33]). It may seem too much to expect that the single-bit version of the game can
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help get upper bounds on the general public coin setting, but thanks to Huang’s breakthrough result [26],

we already know that CGpub(f) = O(CGpub
[1] (f)4) for any total Boolean function f .
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A Approximate Index: Exponential gap between R and CGpub for
a partial Boolean function

We saw that CGpub of a Boolean function lies between its randomized query complexity and randomized
certificate complexity; the same is true for noisyR.

The measure noisyR was introduced in [13] (please refer to [13] for the formal definition) to study how ran-
domised query complexity R behaves under composition and it was shown that R(f ◦ g) = Ω(noisyR(f)R(g)).
As it was also shown that almost all lower bounds (except Q) on R are also lower bounds on noisyR, it is
interesting to see whether CGpub is also a lower bound on noisyR.

Open Problem 5 : Is it the case that for all f , CGpub(f) ≤ O(noisyR(f))?

Ben-David and Blais [13] constructed the approximate index function, which is the only function known
where noisyR and R are different. But the approximate index function that they construct is not a total
Boolean function but a partial Boolean function.

Let ApIndk be the approximate index function where the input has an address part, say a, of k bits and
a table with 2k bits. The function is defined on inputs where all positions of the table labelled by strings
within k

2 −
√
k log k Hamming distance from a have the same value (either 0 or 1), and all positions that are

farther away from a have 2 in them, i.e.

Definition A.1. ApIndk : {0, 1}k × {0, 1, 2}2k → {0, 1, ∗} is defined as

ApIndk(a, x) =


xa if xb = xa ∈ {0, 1} for all b that satisfy |b− a| ≤ k

2 −
√
k log k

and xb = 2 for all other b,

∗ otherwise.

Note that, even though the range of ApIndk (as defined above) is non-Boolean, it can be converted into
a Boolean function by encoding the input appropriately. This will only affect the lower/upper bounds by a
factor of at most two.

Ben-David and Blais showed that noisyR(ApIndk) = O(log k), and R(ApInd) = Θ(
√
k log k). As an

indication that CGpub could be a lower bound on noisyR, we show the following theorem.

Theorem A.2. The public coin certificate game complexity of ApInd on n = k+2k bits is CGpub(ApIndk) =
O(log k).

Sketch of Proof of Theorem A.2. We can use the hashing framework to show an exponential separation be-
tween R and CGpub for Approximate Index, a partial function.

A central ingredient to the proof of this theorem is the following lemma that captures yet another
application of the hashing based framework introduced in Section 3.1 (we state it in a more general form).
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Lemma A.3. Let L be an integer. Assume that for every x ∈ f−1(0) and y ∈ f−1(1) there are sets Ax

depending only on x, and By depending only on y, of size L, such that any element of Ax ∩By is a correct
output on the input pair (x, y), i.e. for any i ∈ Ax ∩ By, we have xi ̸= yi. If for any x ∈ f−1(0) and

y ∈ f−1(1), L = |Ax| = |By| ≤ t|Ax ∩By| , then CGpub(f) ≤ O(t2).

Proof. Let Ax and By be sets of size L guaranteed by the statement of the lemma. We can assume that for

t in the statement of the lemma 20 ≤ t ≤ 0.1L holds, since O(L2) is a trivial upper bound on CGpub(f). Let
S be a finite set with |S| = ⌊ L

2t⌋ > 1. Let z be a fixed element of S (e.g. the first element of S) given as part
of the specification of the protocol. (Note that z could also be selected using shared randomness, but this is
not necessary.)

Let T ⊆ [n] be a set of possible outputs that contains the sets Ax and By for every x ∈ f−1(0) and
y ∈ f−1(1). Let h : T → S be a random hash function such that for each i ∈ T , h(i) is selected independently
and uniformly from S. The players select such h using shared randomness. Then, on input x, Alice outputs
a uniformly random element from h−1(z) ∩ Ax(if this set is empty, she outputs an arbitrary element). On
input y, Bob outputs a uniformly random element of h−1(z)∩By (if this set is empty, he outputs an arbitrary
element).

Claim A.4. For any x ∈ f−1(0) and y ∈ f−1(1),

Pr[h−1(z) ∩Ax ∩By = ∅] ≤ 1

e2

where the probability is over the choice of the hash function h.

Proof. Notice that our setting implies that for any x ∈ f−1(0) and y ∈ f−1(1), |Ax ∩By| ≥ L
t ≥ 2|S|. Thus,

Pr[h−1(z) ∩Ax ∩By = ∅] = (1− 1
|S| )

|Ax∩By| ≤ (1− 1
|S| )

2|S| ≤ 1
e2 .

Claim A.5. For any x ∈ f−1(0) and y ∈ f−1(1), Pr[|h−1(z)∩Ax| > 3t] ≤ ϵ and Pr[|h−1(z)∩By| > 3t] ≤ ϵ,
where ϵ = e−0.1t.

Proof. Notice that the expected size (over the choice of the hash function h) of the intersection of the pre-

image of z with the set Ax is E[|h−1(z) ∩Ax|] = |Ax|
|S| ≤ 2.1t. The claim follows by using the following form

of the Chernoff bound [40]:

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
2+δ

where X is a sum of independent random variables with values from {0, 1} and µ = E[X]. The proof with
respect to By is identical.

Using the above two claims, we obtain that with probability at least 1− e−2 − 2e−0.1t > 1
2 the following

conditions hold:
(i) h−1(z) ∩Ax ∩By ̸= ∅ and
(ii) h−1(z) ∩Ax and h−1(z) ∩By are both nonempty and have size at most 3t.
Let i∗ ∈ h−1(z) ∩ Ax ∩ By. Then i∗ is a correct output, and the probability that both Alice and Bob

select i∗ as their output is at least 1
9t2 . Thus on any input x ∈ f−1(0) and y ∈ f−1(1), the players output a

correct answer with probability at least 1
18t2 .

Before we see how the hashing lemma helps prove Theorem A.2, we define the following notation.
The Hamming Sphere of radius r centred at a k-bit string a, denoted as Sa(r), contains all strings

z ∈ {0, 1}k that are at distance exactly r from a. Similarly the Hamming Ball of radius r centred at a,
denoted as Ba(r), contains all strings z ∈ {0, 1}k such that d(a, z) ≤ r. For the ApIndk function, a valid
input has the function value in all positions in the table indexed by strings in Ba

(
k
2 −

√
k log k

)
where a is

the address part.
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Proof of Theorem A. We consider two different strategies for different kinds of inputs: the first for when the
Hamming distance between the address parts a, b of the inputs is large, i.e. d(a, b) ≥ k/ log k and the second
when the distance is smaller. For the first case, Alice and Bob use public randomness to sample an index
i ∈ [k] and this bit differentiates a from b with probability ≥ 1/ log k. In the other case, we first show that
Ω(1/

√
log k) fraction of the Hamming Ball Ba

(
k
2 −

√
k log k

)
around a (or b) intersects that around b (or a).

We then use the hashing lemma (Lemma A.3) for Alice and Bob to pick an index in the intersection with
probability Ω(1/ log k).

Public coin strategy for ApInd: Let us suppose that Alice has an input (a, x) ∈ f−1(1) and Bob has
(b, y) ∈ f−1(0). We will consider two separate strategies for Alice and Bob to win the public coin Certificate
Game with probability Ω( 1

log k ). They choose to play either strategy with probability 1/2.

• Strategy 1:

Alice and Bob sample a random element z ∈ [k] using public coins and output the element z.

This strategy works for inputs for which the Hamming distance between the address parts a and b is
large, i.e. d(a, b) ≥ k

log k . The probability that this strategy succeeds, Pr[az ̸= bz] ≥ 1
log k .

• Strategy 2: We use the strategy described in Lemma A.3 where A(a,x) and B(b,y) are Hamming Balls

of radius k
2 −

√
k log k centred at a and b respectively. Let S be a set of size

⌊
|Ax|

2
√
log k

⌋
• Alice and Bob agree on a z ∈ S in advance.

• They sample a random hash function h : {0, 1}k 7→ S using public randomness.

• Alice outputs a uniformly random element from h−1(z) ∩ A(a,x) (if this set is empty, she
outputs an arbitrary element). Similarly, Bob outputs a uniformly random element of
h−1(z) ∩B(b,y), and if empty, an arbitrary element.

The proof that this strategy works for inputs where the Hamming distance between the address parts
a and b is small, i.e. d(a, b) ≤ k

log k essentially relies on the following lemma.

Lemma A.6. (Intersection Lemma): For two k−bit strings a and b at Hamming distance k
log k , a Hamming

sphere of radius r centred at a has c√
log k

fraction of it lying in the Hamming ball of the same radius centred

at b
|Sa (r) ∩ Bb (r)|

|Sa (r)|
≥ c√

log k

where k
2 − 100

√
k log k ≤ r ≤ k

2 −
√
k log k and c is a constant.

The proof of Lemma A.6 is given in Appendix A.1. The basic outline of the proof is as follows: the

fraction |Sa(r)∩Bb(r)|
|Sa(r)| is at least the sum of probabilities from a hypergeometric distribution Pk,m,r from m

2

to m where m = k
log k is the distance between the Hamming Ball and the Sphere. We show in Lemma A.10

that the hypergeometric distribution Pk,m,r is symmetric about m
2 for a range up to 200

√
m. The expected

value E of Pk,m,r for our choice of m and r lies between m
2 − 100

√
m and m

2 −
√
m. We have a concentration

bound for hypergeometric distribution Pk,m,r by Hoeffding [24] stated in Lemma A.9 that the sum of the
probabilities around the expected value of width

√
r is at least 0.7. Using the property of hypergeometric

distributions that it is monotone increasing up to the expected value E and monotone decreasing beyond it
shown in Lemma A.11, we derive a concentration bound of width

√
m around E that the probabilities in
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this range sum to at least 0.7 ×
√
m√
r
, which for our choice of m and r is at least 1√

log k
. This gives us that

the |Sa(r)∩Bb(r)|
|Sa(r)| ≥ c′√

log k
for a constant c′.

Since we can show most of the weight of the Hamming ball is concentrated on outer layers (proof of
which is given in the Appendix A.12) and since the size of the intersection of the Hamming Balls increases
as the distance between them decreases, we easily get the following corollary from Lemma A.6.

Corollary A.7. For two k−bit strings a and b at Hamming distance at most k
log k , the ratio of k−bit strings

in the intersection between the Hamming balls of radius k
2 −

√
k log k centred at a and b to the total size of

each Hamming Ball is at least c1√
log k

.

|Ba

(
k
2 −

√
k log k

)
∩ Bb

(
k
2 −

√
k log k

)
|

|Ba

(
k
2 −

√
k log k

)
|

≥ c1√
log k

where c1 is a constant.

Using the hashing-based framework described in Lemma A.3 with Ax = Ba

(
k
2 −

√
k log k

)
and By =

Bb

(
k
2 −

√
k log k

)
, we get that CGpub(ApInd) = O(log k) as t =

√
log k/c where c is a constant.

The analysis of the strategy reduces to a very natural question: what is the intersection size of two
Hamming balls of radius k

2 −
√
k log k whose centers are at a distance k

log k? We are able to show that the

intersection is at least an Ω( 1√
logk

) fraction of the total volume of the Hamming ball. This result and the

techniques used could be of independent interest.
To bound the intersection size, we focus on the outermost

√
k layers of the Hamming ball (since they

contain a constant fraction of the total volume), and show that for each such layer the intersection contains
an Ω( 1√

logk
) fraction of the elements in that layer.

For a single layer, the intersection can be expressed as the summation of the latter half of a hypergeometric
distribution Pk,m,r from m

2 to m (m = k
log k is the distance between the Hamming Balls and r is the radius

of the layer). By using the “symmetric” nature of the hypergeometric distribution around m
2 for a sufficient

range of values, this reduces to showing a concentration result around the expectation with width
√
m (as

the expectation for our choice of parameters is m
2 −O(

√
m)).

We use the standard concentration bound on hypergeometric distribution with width
√
r and reduce it

to the required width
√
m by noticing a monotonicity property of the hypergeometric distribution.

Although we have proven an upper bound on CGpub(ApInd), a lower bound has not been shown and we
leave it as an open problem.

Open Problem 6 : Give a lower bound on CGpub(ApInd).

A.1 Proof of the Intersection Lemma A.6

The Hamming sphere Sa(r) centred at the k−bit string a of radius r contains
(
k
r

)
k− bit strings, i.e.

|Sa(r)| =
(
k
r

)
.

Suppose we denote the Hamming distance between a and b as m. For our purposes, we choose m = k
log k .

A k−bit string z at a distance r from a lies in Bb(r) if on the m indices that a differs from b, z is closer to b
than a. The number of k−bit strings at a distance r from a that lie in Bb(r),

|Sa(r) ∩ Bb(r)| =
∣∣{z ∈ {0, 1}k | dH(a, z) = r ∧ dH(b, z) ≤ r

}∣∣ ≥ m∑
j=m/2

(
m

j

)(
k −m

r − j

)
The hypergeometric distribution on parameters k,m and r, for 0 ≤ j ≤ m is given by,

Pk,m,r(j) =

(
m
j

)(
k−m
r−j

)(
k
r

)
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Proposition A.8. The fraction of the size of the intersection to the size of the Hamming Ball can be
expressed as a sum of probabilities from a hypergeometric distribution,

|Sa(r) ∩ Bb(r)|
|Sa(r)|

≥
m∑

j=m/2

Pk,m,r(j)

The proof relies on following three lemmas about hypergeometric distribution.

Lemma A.9 (Concentration Lemma [24]). For a hypergeometric distribution P with parameters k,m and
r,

E−
√
r∑

i=0

Pk,m,r(i) ≤ e−2

r∑
i=E+

√
r

Pk,m,r(i) ≤ e−2

where E = mr
k is the expected value of the distribution P .

Lemma A.10 (Symmetric Property). For the hypergeometric distribution with parameters m = k
log k and

k/2− c
√
k log k ≤ r ≤ k/2−

√
k log k

Pk,m,r(m/2 + j)

Pk,m,r(m/2− j)
≥ c′

where 0 ≤ j ≤ 2c
√
m and c, c′ are constants.

Proof. From the definition

Pk,m,r(m/2 + j)

Pk,m,r(m/2− j)
=

(
m

m/2+j

)(
k−m

r−m/2−j

)(
m

m/2−j

)(
k−m

r−m/2+j

)
=

(r −m/2− j + 1) · · · (r −m/2 + j)

(k −m/2− r − j + 1) · · · (k −m/2− r + j)

≥
(

r −m/2− j

k −m/2− r + j

)2j

=

(
1− k − 2r + 2j

k −m/2− r + j

)2j

where in the last line we have approximated all the terms in the numerator by a factor smaller than the
smallest factor and in the denominator by the largest factor. On substituting the values for m and r, we
have

Pk,m,r(m/2 + j)

Pk,m,r(m/2− j)
≥

(
1− 1

2j

(
2j
(
2c
√
k log k + 2j

)
k/2− k

2 log k +
√
k log k + j

))2j

≈ e
−
(

2j(2c
√

k log k+2j)
k/2− k

2 log k
+

√
k log k+j

)
≥ e−16c2

We get the last inequality after replacing j by the largest possible value that we consider which is 2c
√
m and

we get c′ ≈ e−16c2 .

Lemma A.11 (Monotonicity Property). For the hypergeometric distribution where k is large and m = k
log k

and k/2 − c
√
k log k ≤ r ≤ k/2 −

√
k log k , Pk,m,r(j + 1) ≥ Pk,m,r(j) for j ≤ E − 1/2 and Pk,m,r(j + 1) ≤

Pk,m,r(j) otherwise. Here, E = mr
k is the expected value of the distribution P .

34



Proof. From the definition of hypergeometric distribution, we have

Pk,m,r(j + 1)

Pk,m,r(j)
=

(
m
j+1

)(
k−m
r−j−1

)(
m
j

)(
k−m
r−j

) =
(m− j)(r − j)

(j + 1)(k −m− r + j + 1)

If Pk,m,r(j + 1) ≥ Pk,m,r(j), we have (m−j)(r−j)
(j+1)(k−m−r+j+1) ≥ 1. On simplifying this expression, we get j ≤

mr+m−k+r−1
(k+2) . Similarly we have Pk,m,r(j + 1) ≤ Pk,m,r(j) when j ≥ mr+m−k+r−1

(k+2) . When k is large,

k + 2 ≈ k and mr+m−k+r−1
(k+2) ≈ E − (1 − m+r

k ). On substituting for m and r, we get m+r
k ≈ 1/2 + ϵ where

ϵ ≪ 0. Thus we can conclude that when k is large enough, Pk,m,r(j + 1) ≥ Pk,m,r(j) when j ≤ E − 1/2 and
Pk,m,r(j + 1) ≤ Pk,m,r(j) otherwise.

We can now prove the main result of this section.

Proof of Lemma A.6. To prove this theorem, from Proposition A.8 it is enough to show that

m∑
j=m/2

Pk,m,r(j) ≥
c′√
log k

when m = k
log k and k/2− c

√
k log k ≤ r ≤ k/2−

√
k log k. From the monotonicity property in Lemma A.11,

we have that
j=E+

√
m∑

j=E−
√
m

Pk,m,r(j) ≥
√
m√
r

j=E+
√
r∑

j=E−
√
r

Pk,m,r(j) >

√
2

log k

j=E+
√
r∑

j=E−
√
r

Pk,m,r(j)

From Lemma A.9, we have
j=E+

√
r∑

j=E−
√
r

Pk,m,r(j) ≥ 0.72

This gives,
j=E+

√
m∑

j=E−
√
m

Pk,m,r(j) >

√
2

log k
× 0.72 >

1√
log k

For our choice of m and r, we have the expected value m/2− c
√
m ≤ E ≤ m/2−

√
m. Using Lemma A.10,

by the symmetric property of the hypergeometric distribution for our choice of m and r, on reflecting about
m/2 we have

m∑
j=m/2

Pk,m,r(j) ≥ c′
j=E+

√
m∑

j=E−
√
m

Pk,m,r(j) ≥
c′√
log k

.

where c′ ≈ e−16c2 .

A.2 Most of the weight is concentrated on outer surfaces of the Hamming ball

Lemma A.12. For a Hamming Ball of radius r = k/2 −
√
k log k, the weight contributed by Hamming

Spheres of radius ≤ k/2− 100
√
k log k is small.∑ k

2−100
√
k log k

i=0 |Sa (i)|
|Ba

(
k
2 −

√
k log k

)
|

≤ c1

where c1 is a constant.
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Proof. We would like to show ∑ k
2−100

√
k log k

j=0

(
k
j

)
∑ k

2−
√
k log k

j=0

(
k
j

) ≤ c1

We use the following form of Chernoff Bound [40],

Pr [X ≤ (1− δ)µ] ≤ e
δ2µ
2

for 0 ≤ δ ≤ 1 and apply it to the binomial distribution with p = 1/2 to get
∑ k

2−100
√
k log k

j=0

(
k
j

)
≤ 2kk−104 .

We now use the following lower bound for the tail of the binomial distribution when p = 1/2 (which is
restated slightly from its original form in [37]).

Pr [X ≤ k/2− δ] ≥ 1

15
e−16δ2/k

for δ ≥ 3k/8. This gives
∑ k

2−
√
k log k

j=0

(
k
j

)
≥ 2k 1

15k
−16. Thus we have

∑ k
2−100

√
k log k

j=0

(
k
j

)
∑ k

2−
√
k log k

j=0

(
k
j

) ≤ 15k−104

k−16
≪ c1

B Examples of functions

Interesting examples of total and partial Boolean functions are very important to understand the relations
between various complexity measures. In fact constructing interesting functions is one of the commonly
used techniques to prove separation between pairs of measures. A number of interesting functions has been
constructed for this purpose (for example [22, 3, 10, 19, 50]). In this paper we use some of them to understand
the relation between the certificate games measures and others. The various complexity measures for the
functions we consider is compiled in Table 1.

OR and Parity (⊕) are one of the simplest functions, probably the first ones to be studied for any
complexity measures. The bounds on ⊕n follow from the observation that λ(⊕n) = Θ(n) (CGpriv(⊕n) =
Θ(n2) follows from Theorem 5.10); the bounds on ORn follow from λ(f) = Θ(

√
n) [4], Q(ORn) = O(

√
n) [23]

and the observation that s(ORn) = Θ(n) (please refer to Figure 1).
Tribesm,n = ORm ◦ ANDn is a non-symmetric function, made by composing OR and AND. We use it

as an example of a total function where R and CGpub are asymptotically different. It can be verified that
C(Tribes√n,

√
n) = Θ(

√
n), and λ(Tribes√n,

√
n) = Q(Tribes√n,

√
n) = Θ(

√
n) follows from composition [4, 36].

R(Tribes√n,
√
n) = Θ(n) is from Jain and Klauck [27], other measures follow from these observations.

The function GSS1 is a function defined in [22]. It is defined on {0, 1}n2

. The complexity measures of
GSS1 was computed in [22] and [28]. The blank spaces indicates that the tight bounds are not known.

Function λ s bs FC MM Q CGpub R EC C CGpriv

ORn Θ(
√
n) Θ(n) Θ(n) Θ(n) Θ(

√
n) Θ(

√
n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n)

⊕n Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n2)
Tribes√n,

√
n Θ(

√
n) Θ(

√
n) Θ(

√
n) Θ(

√
n) Θ(

√
n) Θ(

√
n) Θ(

√
n) Θ(n) Θ(

√
n) Θ(

√
n) Θ(n)

GSS1 Θ(n) Θ(n) Θ(n) Θ(n) Θ(n) Θ(n2) O(n2)

Table 1: Some of the commonly referred total functions and their complexity measures

36



Regarding partial functions we would like to discuss a couple of them that are used in multiple places in
the paper to show separations between measures for partial functions - namely the “approximate indexing”
function and the “greater than half” function. The know measures for these functions are compiled in the
Table 2.

ApInd is the approximate indexing function defined by Ben-David and Blais [13], we show that R and
CGpub are exponentially separated for this partial function (we know R(ApInd) = Θ(

√
k log k) [13] and

CGpub(ApInd) = O(log k), from Section A). Rest of the measures mentioned in the table can be observed
easily.

There is a partial function, GTH (defined by Ambainis et al. [7], see Definition B.1), for which FC is
constant [7] but CGpub is Θ(n) (follows from Theorem 6.2 and CMM(GTH) = Θ(n) [7]).

Definition B.1 (GTH [7]). The “greater than half” function is a partial function defined only on n bit
strings that have Hamming weight 1. The function evaluates to 1 on an input x if the position i where the
input bit is 1 is in the second half of the string, i.e. GTH : {0, 1}n → {0, 1} is defined as GTH(x) = 1 if
xi = 1 where i > n/2.

To show that CGpriv(GTH) = Θ(n), we use the version in Proposition 5.9. For a 1-input y, we only put
a non-zero weight of

√
n on index i where yi = 1. For a 0-input, we put a non-zero weight of 1√

n
only on

indices i such that i > n/2. It can be verified that this is a feasible solution of the equivalent formulation of
CGpriv (from Proposition 5.9) with objective value n.

Function λ s bs FC MM Q CMM CGpub R EC C CGpriv

ApInd 0 O(1) O(1) O(log k) Θ(
√
k log k) O(1)

GTHn 0 O(1) O(1) Θ(n) Θ(n) Θ(n) O(1) Θ(n)

Table 2: The known complexity measures for ApInd and GTHn

C FC as a local version of CGpub

In this section we will show that FC(x) can be viewed as a certificate game where Alice’s input is fixed. We
start with the dual of the CGpub optimization problem.

For a two-player certificate game Gf corresponding to a (possibly partial) Boolean function f , CGpub(f) =
1/ωpub(Gf ) (Proposition 3.1), where the winning probability ωpub(Gf ) is given by the following linear pro-
gram.

ωpub(Gf ) = min
δ,µ

δ

such that
∑

x,y: A,B correct on x,y

µx,y ≤ δ for every deterministic strategy A,B

∑
x,y

µxy = 1, µx,y ≥ 0,

where µ = {µx,y}x∈f−1(0), y∈f−1(1). A,B correct on x, y implies A(x) = B(x) = i and xi ̸= yi.

Re-normalizing, we get the linear program for CGpub(f),

CGpub(f) =
∑
x,y

µx,y

such that
∑

x,y: A,B correct on x,y

µx,y ≤ 1 for every deterministic strategy A,B

µx,y ≥ 0,
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Let us define the local version of CGpub in two stages: Let CGpub
L (f, x) be the value of the CGpub game

when one of the party’s input is fixed to x (say Alice), then CGpub
L (f) = maxx CG

pub
L (x). We will show that

CGpub
L is same as fbs; given that CGpub(f) = Θ(fbs(f)), we see that local and global version of CGpub are

same.
The linear program for the local version can be written as:

CGpub
L (f, x) =

∑
y

µy

such that
∑

y:B outputs i on y and xi ̸=yi

µy ≤ 1 ∀ deterministic strategies B, index i

µy ≥ 0,

Where it is understood that the deterministic strategy for Alice, A, answers i. Notice that fixing an i,
the strictest constraint is obtained by B which answers i whenever yi ̸= xi. This means we can keep just
one constraint for every i.

CGpub
L (f, x) =

∑
y

µy

such that
∑

y:xi ̸=yi

µy ≤ 1 for all i

µy ≥ 0,

Every y (such that f(x) ̸= f(y)) has a one to one correspondence with a sensitive block B such that
y = x⊕B . The linear program can be simplified to the linear program for fbs(f, x).

CGpub
L (f, x) =

∑
B

µB

such that
∑

B:i∈B

µB ≤ 1 for all i

µB ≥ 0,
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