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Abstract

We give an Õ(
√
n)-space single-pass 0.483-approximation streaming algorithm for estimating

the maximum directed cut size (Max-DICUT) in a directed graph on n vertices. This improves
over an O(log n)-space 4/9 < 0.45 approximation algorithm due to Chou, Golovnev, Velusamy
(FOCS 2020), which was known to be optimal for o(

√
n)-space algorithms.

Max-DICUT is a special case of a constraint satisfaction problem (CSP). In this broader

context, our work gives the first CSP for which algorithms with Õ(
√
n) space can provably

outperform o(
√
n)-space algorithms on general instances. Previously, this was shown in the

restricted case of bounded-degree graphs in a previous work of the authors (SODA 2023). Prior
to that work, the only algorithms for any CSP were based on generalizations of the O(log n)-space
algorithm for Max-DICUT, and were in particular so-called “sketching” algorithms. Our work
demonstrates that more sophisticated streaming algorithms can outperform these algorithms
even on general instances.

Our algorithm constructs a “snapshot” of the graph and then applies a result of Feige and
Jozeph (Algorithmica, 2015) to approximately estimate the Max-DICUT value from this snap-
shot. Constructing this snapshot is easy for bounded-degree graphs and the main contribution
of our work is to construct this snapshot in the general setting. This involves some delicate
sampling methods as well as a host of “continuity” results on the Max-DICUT behaviour in
graphs.
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1 Introduction

We consider approximating the directed cut value of a directed graph by a streaming algorithm
presented with a stream of edges in an arbitrary (worst-case) order. Our result is a single-pass
algorithm using Õ(

√
n)-space that gives a .483 approximation algorithm. In what follows we explain

the background of this problem, the significance of the result, and the techniques used to achieve
this result.

1.1 Background

We begin by defining the maximum directed cut (Max-DICUT) problem in a directed graph G.
(These definitions will all be informal; see Section 2 for formal definitions.) Given a graph G on n
vertices, labeled 1, . . . , n, cut of G is a binary string x ∈ {0, 1}n, assigning a bit to every vertex in
G. We say x cuts a directed edge (u, v) if xu = 1 and xv = 0. (Note the asymmetry between u and
v.) The value valG(x) of a cut x is the total fraction of edges it cuts, and the value valG of G is the
maximum value of any cut. A uniformly random cut has value 1

4 in expectation, so every graph
has value at least 1

4 .
We consider streaming algorithms for the problem of estimating the Max-DICUT value valG of

a directed graph G, given a stream σ = (e1 = (u1, v1), . . . , em = (um, vm)) of the graph’s edges
in arbitrary order. We say an algorithm is an α-approximation for the Max-DICUT problem if its
output v̂ satisfies α · valG ≤ v̂ ≤ valG (with high probability). We say an algorithm is a space-s(n)
streaming algorithm (where n is the number of vertices in G) if it reads the stream of edges σ in
sequential order and uses s(n) space.

The Max-DICUT problem is one example of a so-called constraint satisfaction problem (CSP).
We omit a full definition as we do not require it, but these problems are basically defined by two
things: (1) a “global” space of allowed “assignments” to “variables” and (2) a collection of “local”
constraints, each of which specifies allowed values for a small subset of variables. For Max-DICUT,
assignments are cuts, variables are vertices, and constraints are edges; we will use these terms
interchangeably. The “symmetric version” of Max-DICUT is another CSP called maximum cut
(Max-CUT), in which a cut x cuts an edge (u, v) if xu ̸= xv; we mention it here as it serves a useful
point of comparison for Max-DICUT.

1.2 Recent work

Over the last decade, there has been extensive work on the approximability of various CSPs in var-
ious streaming models [KK15, KKS14, GVV17, KKSV17, GT19, KK19, CGV20, CGSV21, SSV21,
CGS+22b, BHP+22, CGS+22a, SSSV23]; see also the surveys [Sin22, Sud22].

Max-DICUT has emerged as the central benchmark for algorithms among CSPs in the streaming
setting. It was the first problem shown to admit a non-trivial approximation in sublinear (in n) space
in the work of Guruswami, Velingker, and Velusamy [GVV17]. Subsequent work of Chou, Golovnev,
and Velusamy [CGV20] gave an improved algorithm for Max-DICUT along with a tight bound on
the approximability — pinning the approximability of Max-DICUT for o(

√
n)-space streaming at 4

9 .

Theorem 1.1 ([CGV20]). For every ϵ > 0, there is a streaming algorithm (in fact, a linear
sketching algorithm) which (4/9 − ϵ)-approximates the Max-DICUT value of a graph in Oϵ(log n)
space. Conversely, every (4/9+ϵ)-approximation streaming algorithm for Max-DICUT uses Ωϵ(

√
n)

space.

This result is part of a broader landscape for o(
√
n)-space streaming complexity of CSPs. In

particular, Chou, Golovnev, Sudan, and Velusamy [CGSV21] proved a dichotomy theorem for all
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finite CSPs. The understanding of Max-DICUT plays a central role in their results. In particular,
they generalize the Max-DICUT algorithm of [CGV20] to all CSPs. Their lower bounds also general-
ize the lower bounds from [CGV20] with some notions (“padded one-wise independent problems”)
that are direct abstractions of Max-DICUT and share tight lower bounds.

A sketching algorithm is a kind of streaming algorithm which chooses its output based on a
short “sketch” of its input, where these sketches have the composability property that the sketch
of a concatenation of two streams can be obtained from the sketches of the two components. (See
[CGSV21] for a formal definition.) The algorithms of [GVV17, CGV20] for Max-DICUT were sketch-
ing algorithms and so were their generalizations in [CGSV21]. Our work is primarily motivated
by the quest to look beyond sketching algorithms for streaming CSPs. One (over-)optimistic goal
might be to find algorithms that outperform the current sketching algorithm for all CSPs.

But this hope is not achievable in sublinear space. For a wide class of CSPs, including
Max-CUT, there are recent o(n)-space lower bounds ruling out all nontrivial approximations
[KK19, CGS+22b].12 Thus to make advances one has to restrict the problems considered and
in this work we focus on the simplest remaining problem after Max-CUT, namely, Max-DICUT. For
Max-DICUT, till this work and a recent related work by the authors [SSSV23] it was conceivable
that there were no improvements possible in o(n) space. But at the same time the above mentioned
lower bounds did not extend to this setting and it was unclear whether this was due to a limitation
of the lower bounds techniques or if better algorithms exist.

In a previous work [SSSV23], the authors gave some evidence for the possibility that better
algorithms for Max-DICUT do indeed exist. To be precise, recall that the sketching algorithm of
[CGV20] is a 4

9 ≈ 0.444-approximation, which uses O(log n) space and is optimal among o(
√
n)-

space streaming algorithms (Theorem 1.1). In [SSSV23] we proved that for Max-DICUT, the algo-
rithm of [CGV20] can be beaten in a number of restricted models such as when the input stream is
randomly (instead of adversarially) ordered, or the graph has constant max-degree. In particular:

Theorem 1.2 ([SSSV23]). For every d ∈ N, there is a streaming algorithm which 0.483-
approximates the Max-DICUT value of a graph with maximum degree d in Õd(

√
n) space.

Theorem 1.2 does not answer the question of whether the Max-DICUT algorithm of [CGV20] can
be beaten on general graphs in ø(n) space. Indeed, it could be considered evidence only that even-
more-sophisticated lower bound techniques are necessary to rule out such algorithms. We further
discuss why we believe that Theorem 1.2 was far from an answer to this question in Section 1.4
below.

1.3 Main result

Our main theorem gives an algorithm that uses slightly more than
√
n space and outperforms the

algorithm of [CGV20]:

Theorem 1.3 (Main theorem). There is a streaming algorithm which 0.483-approximates the
Max-DICUT value of an arbitrary graph in Õ(

√
n) space.

This theorem is proven in a more precise formulation as Lemma 4.2 below.

1o(n) space is tight up to logarithmic factors because randomly sparsifying down to O(n/ϵ2) constraints gives
(1− ϵ)-approximations.

2The condition for inapproximability given in [CGS+22b] for a predicate f : Zk
q → {0, 1} is termed “width”, and

states that f ’s support contains some translate of the diagonal {(a, . . . , a) : a ∈ Zk
q}. More broadly, the strongest

known hardness results for CSPs (e.g., also in [CGSV21]) seem to rely on “niceness” properties of the support of f .
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Like the previous algorithms for Max-DICUT [GVV17, CGV20, SSSV23], our algorithm relies
crucially on the notion of the bias of a vertex in a directed graph. Given a directed graph G and
a (positive-degree) vertex v, we define the bias biasG(v) of v as the difference between its out-
and in-degrees divided by their sum. This is a number between −1 and 1 which represents v’s
“preference” for being assigned 1 vs. 0.

Earlier papers working in the O(log n)-space setting [GVV17, CGV20] measured a quantity
called the total bias of G, namely biasG = 1

2m

∑n
v=1 degG(v)|biasG(v)|, using standard ℓ1-norm

sketching algorithms and used this as a proxy for the value of G.3 The current work relies on
measuring a so-called “snapshot” of the graph, which roughly says how many edges go from vertices
of bias ≈ s to vertices of bias ≈ t, for every choice of s, t ∈ [−1, 1]. Plugging this snapshot into an
algorithm due to Feige and Jozeph [FJ15] gives us our estimator for the Max-DICUT value. Thus
the novelty of our algorithm is in producing the snapshot in roughly

√
n space.

We remark that our algorithm is not a sketching algorithm, unlike all previously known algo-
rithms for CSPs (in the standard model). We do not currently know that sketching algorithms
cannot match the performance of our algorithm, but we also do not know a sketching algorithm
that can.

1.4 Beyond bounded-degree instances

As mentioned above, our prior work [SSSV23] already achieves our main theorem for the special
case of bounded-degree graphs. In this section we argue why the extension to the general case is
non-trivial and important.

We start with considering the previous works of [GVV17, CGV20, CGSV21]. The algorithms
in all these works use powerful norm estimation algorithms as black boxes. If one were to consider
the simpler case of their problems in the bounded-degree setting, these algorithms could have been
implemented without reliance on these subroutines. The Max-DICUT algorithms only need an
estimate of the absolute value of “bias times the degree” for a random vertex, and this could be
estimated by simply picking a random sample of the vertices and computing their bias and degree
as the stream passes by. For general CSPs (even on non-Boolean domains) also such a process
would suffice, and this would not only simplify the algorithms significantly, it even would achieve
a space bound of O(log n) which is better than the current bounds given in [CGSV21] for general
CSPs.

Digging deeper into this analogy one can consider ℓp norm estimation problems themselves. For
this class of problems also one can define a bounded-degree version of the problem — where one is
trying to compute the ℓp norm of a vector in {−C, . . . , C}n in the turnstile update model. In this
bounded-degree setting, the ℓp norm can be trivially computed by randomly sampling an OC(1)-
sized subset of the coordinates and maintaining their values. Thus ℓp norms can be estimated
in O(log n) space for every p in this bounded-degree setting, whereas in the general case it is
well-known that ℓp norm estimation requires polynomial in n space for p > 2.

Thus, the bounded-degree setting can be vastly easier to solve and results in this setting may
best be viewed as a proof of concept — though even this “proof of concept” may be misleading, as
exemplified by the ℓp norm estimation problem.

Turning to our specific goal — that of computing snapshots of a graph in Õ(
√
n) time — our

prior work [SSSV23] again manages to estimate this snapshot in the bounded-degree setting by

3In other words, biasG averages the absolute difference between out- and in-degree over vertices in the graph.
Intuitively, the larger biasG is, the more “opinionated” each vertex is and therefore the easier it is to find a high-value
assignment; this is made quantitative in [GVV17, CGV20]. Note also that biasG is the ℓ1 norm of the vector of
differences of out- and in-degrees, and each edge in the stream adds 1 to one entry and subtracts 1 from another.
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sampling Õ(
√
n) vertices and maintaining the bias of the sampled vertices as well as the induced

subgraph on these vertices. We discuss why this is reasonable in the bounded-degree setting in the
following subsection. But such a simple algorithm is definitely not going to work in the general set-
ting! In particular, computing a good estimate of the snapshot is at least as hard as computing the
ℓ1 norm of a vector in the turnstile model with unit updates. Indeed, “snapshot” estimation seems
to be a “higher-level” challenge than simple norm estimation and roughly requires computing some
“two-wise” marginals of the graph updates, whereas bias corresponded to “one-wise” marginals.
Black-box use of norm-estimation algorithms no longer seems to suffice to solve these “two-wise”
marginal problems, which seem to need new algorithmic ideas. We feel this class of problems and
the ideas used here to deal with them may be of even broader interest than the application to
Max-DICUT.

1.5 Techniques: Streaming estimation of “snapshots”

In this section, we dive into the specific challenges arising in computing “snapshots” of graphs in
the general setting. We also begin to describe our algorithm; we aim to progressively narrate and
motivate its development as there are a number of technical issues which arise. The algorithm
proper is described completely in Section 4.

Roughly, the Feige-Jozeph algorithm [FJ15] can be viewed as a reduction from the problem of
approximating the Max-DICUT value of a graph G to a problem of the form,

Given a graph G and fixed s < s′, t < t′, estimate the number of edges (u, v) ∈ E(G)
such that s ≤ biasG(u) < s′ and t ≤ biasG(v) < t′.

More precisely, [FJ15] gives us some fixed partition t0 = −1 < · · · < tℓ = 1 of the space of
possible biases. Given a graph G, we refer to all vertices v ∈ V (G) with bias in the interval [ti−1, ti)
as bias class i. For a graph G, we let BiasMatG,t denote the ℓ×ℓ matrix whose (i, j)-th entry counts
the fraction of edges in G from bias class i to bias class j. We refer to this matrix informally as
a “bias snapshot” of G. We can use the algorithm of [FJ15] as a black box to approximate the
Max-DICUT value of a graph G up to a factor 0.483, given an estimate for this snapshot matrix in
ℓ1-norm (see Corollary 3.4 below).

1.5.1 Algorithms based on vertex-subsampling

Setting aside the streaming model momentarily, the most natural way to build a snapshot for general
graphs is to sample O(log n) edges from G independently and uniformly at random, and measure the
biases of their two endpoints. Using these computed values, one can then estimate the entries of the
matrix BiasMatG,t and standard concentration inequalities will yield the required approximation to
Max-DICUT. Unfortunately, in the streaming setting when the edges are adversarially ordered there
is no obvious way to implement the above sampling procedure since by the time the “random” edge
appears in our stream, most of the edges incident to the endpoints might have already appeared,
and thus, we may not know their biases.4

Subsampling vertices independently. Another approach one might try is to track the bias
of a subset S of vertices from the beginning of the stream and restrict attention to the edges in

4As observed in [SSSV23], when the edges in the stream are randomly ordered this simple setup does give an
algorithm: One can simply record the first O(logn) edges in the stream and then observe their biases over the
remainder of the stream.
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the subgraph induced by the vertices in S. If each vertex of G is included in S with probability,

say, ρ =
√

logm
m so that the probability that an edge in G is in the induced subgraph is ρ2 = logm

m ,

sampling this way has the nice property that (like in the “ideal” case of directly sampling edges)
the number of edges in the induced subgraph is O(logm). Moreover, as one only needs to store the
bias of the vertices in S which are non-isolated in G and there are at most 2m non-isolated vertices
in G (each of which is included in S with probability ρ), sampling this way requires space at most
2m · ρ = Õ(

√
m). As m ≤ Õϵ(n), this is also Õ(

√
n) and so fits within the space bound.

Unfortunately, sampling this way also means that the edges in the induced subgraph are no
longer independent. Indeed, consider two edges e1 and e2 that share a common vertex v. If e1 is
in the induced subgraph, then v must be in S, increasing the chance that e2 is also in the induced
subgraph, and breaking the independence. Without the independence, we can no longer apply
concentration inequalities and get an estimate for the Max-DICUT value of G. However, not all
hope is lost, as two edges are independent only if they share a common endpoint, and e.g., if the
graph has small maximum degree, then we can control the amount of dependence between edges
and still make the argument successful. In fact, this is exactly what was done in the algorithm
presented in [SSSV23] for graphs with small maximum degree (Theorem 1.2 above).

To be precise, the argument for correctness of the estimate in the bounded-degree case uses a
form of Chebyshev’s inequality (see Corollary 2.8). If we sample each vertex with probability p in
a graph with maximum degree d, and our estimate an entry of BiasMatG,t will be within ϵm of the
true value except with probability O(d/p2ϵ2m). So, the larger the maximum-degree d, the larger p
must be to ensure correctness; ω(

√
n) space is required even for d = n0.01.

Towards general graphs. How can we hope to extend this procedure to general graphs? Firstly,
we observe that a standard sparsification argument shows that Max-DICUT algorithms for graphs
with O(n/ϵ2) edges lift to Max-DICUT algorithms for all graphs, with ϵ loss in the approximation
factor (see Lemma 2.9 below). This lets us reduce to only considering graphs with O(n) edges.

Our goal is to build on the vertex sampling approach described above, and show that it can
be extended to work for general graphs. For this, we first observe that the approach above works
as is even if the graph does not have small maximum degree, as long as the degree of non-isolated
vertices in G are “roughly the same”. Indeed, if all the positive-degree vertices in G have degree, say,
between d and 2d, one can subsample the edges of the graph independently with probability C/d
for some large constant C; the resulting graph will, with high probability, have maximum degree
O(C) and preserve the bias matrix BiasMatG,t up to additive (ℓ1-norm) errors. Then, one can apply
the bounded-degree case from [SSSV23] and get a required approximation for the Max-DICUT of
G.

The more challenging (and general) case is when the graph contains vertices with a wide range
of different degrees. Roughly, the plan is to fix an ordered partition d = (d1, . . . , dk) of the possible
degrees in the graph G. Then, for each a ∈ {1, . . . , k} we aim to sample a set of vertices whose
degree is “roughly” da. To do so, we first subsample a graph Ga ⊆ G by including each edge
(randomly, independently) with probability qa = C/da for some large constant C. Note that with
high probability, vertices with degree roughly C in Ga will correspond to vertices with degree roughly
da in G. The next step is to subsample the positive-degree vertices in Ga by including each vertex
(randomly, independently) with an appropriately chosen probability pa, and then use information
about these vertices to try and estimate our snapshot.

The bias-degree array. It is no longer clear how we can directly estimate the bias matrix
BiasMatG,t. Instead, we first focus on estimating the more complex array BiasDegArrG,d,t whose
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(a, b, i, j)-th entry contains the fraction of edges in G that go from vertices in bias class i and degree
class5 a to vertices in bias class j and degree class b. Note that this array is more granular than the
matrix BiasMatG,t which we actually want to estimate — in particular, the matrix BiasMatG,t can
be computed from the array BiasDegArrG,d,t by “projecting” it to its third and fourth coordinates
— but this change is reasonable in our setting because the parameters for subsampling edges
and vertices are heavily dependent on the degrees of vertices of interest. We will abbreviate A =
BiasDegArrG,d,t for convenience and focus on computing (actually, estimating) A via a “subsampling
strategy” like the above.

1.5.2 Estimating the array using edge- and vertex-subsampling

Fix some degree partition d = (d1, . . . , dk) in which da+1/da = O(1) for all a; we use da+1 = 2da
(note that k = O(log n)). We think of each a ∈ [k] as a layer which targets vertices in degree
class a, i.e., vertices with degree in the range (2a−1, 2a], and makes sure that these vertices have
small maximum degree in the subsampled graph Ga. This is done by sampling each edge in G
independently with probability roughly 2−a, and considering the graph Ga consisting of the sampled
edges. Then, we subsample a set Sa of positive-degree vertices in Ga.

Given an edge which is somehow sampled in this kind of procedure, we will want to know the
bias (and degree) of its endpoints in order to add it into the appropriate entry of A. In general,
when a vertex shows up in the stream for a subsampled graph Ga many of its incident edges in the
base graph G may have slipped by! However, we can use the bias and degree of a vertex v ∈ Sa

within the subgraph Ga as an estimate for the bias and degree, respectively, in the base graph G, as
long as v’s degree is “decently high”. We mostly ignore this issue in this subsection, but it is quite
important in the analysis and we discuss it in the next subsection.

Estimating edges within each layer. Consider the simple strategy where we just store the
subgraph induced on Sa within the graph Ga. We can look at these induced subgraphs and —
modulo the issue of estimating the bias and degree of sampled vertices — estimate, for all a ∈ [k],
the entries of A corresponding to the edges going from vertices of degree class a to degree class a
with bias classes i and j. However, this is only a small subset of the entries of A which we need to
estimate. Given a ̸= b ∈ [k], how can we estimate the “cross edges” between a and b?

Modifications for estimating cross edges. The above approach does not let us estimate the
number of cross edges directly. To see why, fix a < b ∈ [k] and observe that vertices in degree
class b are expected to have a high degree in layer a (as they are expected to have 2b edges and we
subsample with probability 2−a) while the vertices in degree class a are expected to have almost no
edges in layer b. The former means that we cannot estimate the cross edges from the graph Ga as
it has high maximum degree, while the latter means that we cannot estimate the cross edges from
the graph Gb, as we lose almost all information about the biases and degrees of layer a.

In order to estimate the cross edges, we strengthen the sampling algorithm in the following two
ways:

1. Firstly, when looking at the layer Ga, in addition to the edges in the subgraph induced by the
set of vertices Sa sampled in this layer, we also remember all edges in Ga that are incident on
a vertex in Sa whose degree class is a. As the algorithm does not know the degree class of
any vertex a priori, this is actually implemented indirectly, namely, by remembering logO(1) n
many edges from all vertices in Sa. This “cutoff” number of edges is small enough to not

5Similar to how we defined bias classes, degree class a is the set of vertices with degree in between da−1 and da.
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increase the space used by a lot, but also large enough to allow all the edges of vertices in
degree class a to be remembered (as these vertices are expected to have low degree in Ga).

2. Secondly, observe that as the layer a increases, the number of edges in Ga decreases. By the
calculation in Section 1.5.1, this means that the amount of memory required to remember the
biases and degrees of the vertices in Sa also decreases. As the number k of layers is small, we
actually do not need this memory to decrease, and can actually afford to give all the layers the
same memory as the first layer, namely Õ(

√
n). By appropriately changing the parameters

in the “higher” layers, this extra memory allows us to remember the biases of an even larger
set Sa, which will be useful in estimating the cross edges precisely.

How to estimate cross edges? We claim that, with these modifications, one can estimate cross
edges between layers a and b by looking at the graph Ga and counting the number of edges in this
graph that go from vertices in Sa to vertices in Sb. To see why this works, we consider a = 1 and
two cases for b:

• When 2b ≥
√
n: In this case, we claim that Sb is sufficiently large as to contain all the

vertices in G with degree class b. Indeed, as the the degree of such vertices is around 2b ≥
√
n

and the total number of edges in G is m ≤ Õϵ(n), the number of vertices in G with degree
class b cannot be much larger than

√
n. As explained in Item 2, this means that all these

vertices will be in Sb.

Given the fact that Sb has all these vertices and we have Item 1, whether or not a cross edge
e = (u, v), where u has degree class a and v has degree class b, is counted depends only on
whether or not u ∈ Sa and whether or not e ∈ Ga. The latter is independent across all edges
while the former has only a small amount of dependence, as the vertices in degree class a
have low degree in Ga, and does not harm the concentration inequalities too much.

• When 2b <
√
n: The argument above will not directly work in this case, as now whether or

not a cross edge is counted also depends on whether or not v ∈ Sb. As the vertices in degree
class b have high degree in Ga, this creates a lot of dependencies (depending on 2b−a) and
breaks the concentration bounds.

What saves us here is that in Items 1 and 2, we sample all edges in Ga that are incident on Sa

and also remember extra vertices in Sb. Thus, the number of cross edges between a and b that
are remembered in Ga is much larger than O(logm) (which was the number obtained in the
bounded-degree case). Having a larger number of cross edges also means we can also afford
to deviate by more without affecting the multiplicative guarantee, and this larger deviation
will help us deal with the extra dependencies in this case.

1.5.3 Windows, smoothing, and continuity

Even with the modifications above, there is a major problem that we still have to overcome. This
problem arises because we do not compute the degrees and biases of the vertices in G exactly, and
instead estimate them from the sampled graphs Ga. These estimates will always be slightly off, and
this can wreak havoc in the analysis, as the following example shows.

Consider an edge containing a vertex v with degree 2a so that it is at the “boundary” of degree
classes a and a + 1. (One could also consider a vertex with bias ti, which is at the boundary of
bias classes i and i + 1, or a vertex that is at the boundary of both.) It is impossible to determine
with high probability which entries of the estimate for A such an edge will contribute to — in some
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subsamples, the vertex could “appear to be” in degree class a and in others it could be in a + 1.
Thus, we will end up counting this vertex in both the classes, making our estimates off by a factor
of 2 for these vertices! Note that the vertices that are not at the boundary will only be counted in
one class, and we cannot simply divide by 2 throughout to make this problem go away.

The solution we come up with is to use windows: Instead of trying to estimate entries of A
individually, we group them into “windows” and estimate the average of all the entries in the window
instead. For example, when trying to estimate the degree class a, we instead take a windowing
parameter w and estimate the average of all degree classes {a− w, . . . , a + w}6. This mellows the
problem of overestimating by a factor of 2 and makes it manageable: Now, every entry is over-
counted 2w + 1 times and the boundary entries, in the worst case, will be over-counted at most
2(w + 1) + 1 times. As 2(w+1)+1

2w+1 ≈ 1 for large w, this is still manageable.
However, we now need to show that we can rely on the algorithm of [FJ15] to compute a

Max-DICUT value even if we only have windowed averages of A instead of A itself. This consti-
tutes another major part of our analysis (see Section 3) where we essentially show that the value
of Max-DICUT is “continuous” in the sense one can work with the weak “smoothed” estimates
resulting from windows without losing out on the overall approximation factor. This part may be
of independent interest.

Increasing the window size w

Figure 1: A depiction of how larger windows reduce the “borderline” effects (in two dimensions). As
w becomes larger and larger, a w×w rectangle (dark gray) dominates its “boundary” (light gray)
more and more. Geometrically, a rectangle is two-dimensional while its boundary is “essentially
one-dimensional”. However, for estimating the Max-DICUT value in a graph, smoothing over size-w
windows for large w introduces errors from the use of “continuity” results (i.e., Lemma 3.13 below).
The right choice of w strikes a balance between these two forces.

Brief outline of Section 3. We have a few key lemmas about the windowing operation. Our
key “continuity” lemma, Lemma 3.13 below, states that this operation preserves the Max-DICUT
value of the graph in a precise sense, which may be of independent interest. We prove Lemma 3.13
constructively in Section 6.5 below, by “blowing up” each vertex into many copies and slightly
tweaking the biases and degrees of each.

Separately, we also define a pair of arrays, which we denote A−w and A+w, which capture the
“worst lower bound” and “worst upper bound”, respectively, for the smoothed array A∼w when
allowing “off by one” errors for which entries count. In other words, each entry of A−w sums over
a smaller surrounding window of width only w − 1, while entries of A+w sum over larger windows

6One important issue with this approach is we have to handle the “degenerate” cases where, e.g. a < w so the
set of allowed degree classes is smaller than 2w + 1. We correspondingly have to weight the entries in the matrix to
equalize the contributions of different edges, and this introduces some more potential errors in the algorithm as these
“weighting factors” for sampled edges can also be estimated incorrectly. We ignore these details in this introduction.
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Figure 2: Consider estimating a (two-dimensional) matrix with “off-by-one” errors, wherein the
mass of each entry may shift to one of 8 neighboring entries (red boxes). If we estimate an average
over a window of size w = 4 in taxicab distance around an entry X (green rectangle): (i) “Outer”
entries, such as the one marked D, beyond distance w + 1 = 5 from the center (light gray) can
never contribute. (ii) “Inner” entries, such as the one marked A, within distance at most w−1 = 3
from the center (dark gray) always contribute. (iii) “Borderline” entries, such as B or C, may or
may not contribute, depending on the specific error pattern.

of width w + 1. Thus, we have A−w ≤ A∼w ≤ A+w entrywise. In Lemma 3.20 below, we show that
∥A+w − A−w∥1 ≤ O(1/w) and thus it makes sense to only aim for an estimate between A−w and
A+w (as opposed to aiming directly for A∼w). We call such an estimate a “weak estimate” of A∼w.

These lemmas in turn are the basis of our overall “reduction” lemma, Lemma 3.22, which gives
a set of conditions on a “weak estimate” for A∼w which are sufficient to guarantee that it can be
plugged into the algorithm of Feige and Jozeph [FJ15] (with controlled loss in the approximation
factor). This lemma is complemented by our key algorithmic correctness lemma, Lemma 4.4, which
states that (under a few technical assumptions which hold essentially without loss of generality),
we can produce such “weak estimates” from the sampled edges and vertices with high probability.

1.6 Future directions

Via the trivial reduction from Max-CUT, it is known that for all ϵ > 0, streaming algorithms
which (12 + ϵ)-approximate Max-DICUT require Ωϵ(n) space (cf. [CGS+22b]). There are a number
of interesting alternatives for what could happen between ω(

√
n) and o(n) space. Three main

scenarios are:

1. “Algorithms beating Theorem 1.3”: There are (12 − ϵ)-approximations in Õ(
√
n) space.

2. “Lower bounds matching Theorem 1.3”: Beating 0.483 requires Ω̃(n) space.7

3. “Approximation vs. space tradeoff”: Beating 0.483 can be achieved in o(n) space, but (12−ϵ)-
approximations for ϵ > 0 require arbitrarily close to Ω(n) space for arbitrarily small ϵ.

We include a few brief remarks on these possibilities and speculate on why something like the
third alternative may be plausible. Firstly, we mention that on the algorithmic side, in the classical

7Actually, 0.483 is not exactly the best we can do; the correct constant characterizing the best performance of
“snapshot-based algorithms”, which we denote αFJ, was bounded by Feige and Jozeph [FJ15] between 0.483 and
0.4899. See Lemma 3.3 below.
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setting Trevisan [Tre98] analyzed the natural linear programming (LP) relaxation for Max-DICUT,
and showed that this LP achieves a 1

2 -approximation (though he mentions the result was already
folklore); Halperin and Zwick [HZ01] showed further that one can always take the optimal solutions
of the LP to be half-integral and used this to give an alternative “combinatorial” interpretation of
the LP.8 Is there some hope for collecting enough information in the streaming setting (even in,
say, O(n0.99) space) to simulate one of these algorithms?

Secondly, we recall that the original streaming inapproximability result for the related problem
Max-CUT, due to [KKS15], used the hardness of a two-player one-way communication problem
called Boolean-Hidden-Matching (introduced in [GKK+08]). Very informally, in this game, Alice
receives some information about each vertex, and Bob receives some edges and information about
each edge which supposedly corresponds to Alice’s knowledge of its endpoints.9 How much infor-
mation does Alice have to send to Bob for him to tell whether his per-edge information is correct?
Ω(
√
n) space is sufficient because of the so-called “birthday argument”: Alice can send her informa-

tion for Ω(
√
n) vertices, at which point it becomes likely that Bob will see Ω(1) edges which Alice

has informed him about. Thus, the simplest hardness proofs for CSPs break down at Ω(
√
n) space,

and this is for precisely the same reason the above algorithm for Max-DICUT works with Õ(
√
n)

space!
The authors of [KKS15] also observed that a more general problem, called

Boolean-Hidden-Hyper-Matching (introduced in [GKK+08]), in which Bob instead receives t-
uniform hyperedges, gives (suboptimal) hardness for Max-CUT in o(n1−1/t) space. (This is because
for Bob to see Ω(1) correctly labeled edges in the “birthday” protocol, Alice needs to send labels
for each vertex with probability n−1/t.) This was subsequently extended in [KK19] to optimal
hardness for Max-CUT even in o(n) space.

All this is to say that it is possible for there to be threshold at, for instance, o(n2/3) space,
where Max-DICUT’s approximability changes. Indeed, there is a concrete reason to ask about this.
Feige and Jozeph [FJ15] construct a pair of graphs, whose Max-DICUT values differ by a factor
0.4899, which cannot be distinguished by algorithms which only inspect edges and the biases of
their endpoints. But, these graphs can easily be distinguished by algorithms which inspect paths
of length 2 and the biases of their vertices. Seeing such paths, at least via the natural sampling
procedure, requires storing Ω(n2/3) vertices.10 So can this information be used to improve on the
algorithm in Theorem 1.3 given Õ(n2/3) space? Conversely, can n-vertex “blowups” of the [FJ15]
graphs be used to prove a 0.4899-inapproximability result in o(n2/3) space — perhaps based on
some communication problem such as Boolean-Hidden-Hyper-Matching?

Outline of the paper

In Section 2 we introduce some notation and review some background material. The main technical
content of the paper is from Section 3 onwards, which can be divided into two independent steps.
In the first step, we reduce approximating Max-DICUT (up to a factor 0.483) on a graph G to
estimating a certain kind of “weak snapshot” of the graph G. In the second step, we show how such

8Specifically, Halperin and Zwick [HZ01] proved that half-integrality of the LP by showing that it’s equivalent to
solving a maximum fractional independent set problem on the line graph of G, which in turn reduces to a bipartite
matching problem on a certain related graph. See [GVV17, Appendix A] for an alternate proof of the half-integrality
result.

9In particular, Alice receives a cut (a bit labeling each vertex). Bob’s edges form a random matching and his
edge-labeling either encodes which edges cross Alice’s cut, or is uniformly random.

10This is an interesting contrast with the random-ordering model, where these sorts of quantities seem to be
estimable in roughly O(logn) space (cf. [SSSV23]).
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a “snapshot” can be measured using a streaming algorithm, and use this to design an approximation
algorithm for Max-DICUT.

The first step begins in Section 3. Here, we formally define objects such as the “bias matrix”
and “bias-degree array” of a graph which capture our informal notions of snapshots. Then, we give
a self-contained statement of the type of estimate we are looking to find in the algorithm. This
section culminates in a lemma (Lemma 3.22) which “reduces” the Max-DICUT approximation task
to a weak estimation problem for the bias-degree array. We state also various smaller lemmas which
together imply Lemma 3.22. We postpone the proofs of the lemmas until Section 6 and move onto
the algorithm.

The second step takes place in Sections 4 and 5. Specifically, in Section 4, we design an algorithm
for “weak estimate” which fulfills the premises of Lemma 3.22; we also include various “wrapper”
algorithms using this to actually estimate the Max-DICUT value of a graph, culminating in a proof
of Theorem 1.3 (in its technical form Lemma 4.2). In Section 5 we prove our central correctness
lemma (Lemma 4.4), which states roughly that the estimate produced by the algorithm fulfills the
premises of Lemma 3.22, by analyzing all the errors that arise in the algorithm from sampling,
estimating the biases and degrees of vertices, etc.

2 Preliminaries and notation

[ℓ] denotes the set of natural numbers {1, . . . , ℓ}. We use standard asymptotic notation O(·), o(·),
etc., with the convention that subscripts (e.g., f(x, y) = Oy(g(x))) denote arbitrary dependence in
the implicit constant.

2.1 Matrices and arrays

For ℓ ∈ N, we let Mℓ def
= Rℓ×ℓ denote the space of real ℓ × ℓ matrices, Mℓ

≥0 ⊆ Mℓ the space of

matrices with nonnegative entries, and Mℓ
∆ ⊆ Mℓ matrices with nonnegative entries summing to

1. For i, j ∈ [ℓ], M(i, j) denotes the (i, j)-th entry of M . Given two matrices M,N ∈ Mℓ, we let
∥M −N∥1 and ∥M −N∥∞ denote their entrywise 1- and ∞-norms, respectively, i.e.,

∥M −N∥1
def
=

ℓ∑
i,j=1

|M(i, j)−N(i, j)| and ∥M −N∥∞
def
= max

i,j∈[ℓ]
|M(i, j)−N(i, j)|.

For k, ℓ ∈ N, we define analogues of this notation for four-dimensional arrays: Ak,ℓ def
= Rk×k×ℓ×ℓ

denotes k×k×ℓ×ℓ arrays, Ak,ℓ
≥0 nonnegative arrays, and Ak,ℓ

∆ nonnegative arrays summing to 1; we
also define 1- and ∞-norms for arrays. We typically use the letters A and B for four-dimensional
arrays, and M and N for (two-dimensional) matrices.

2.2 (Directed) graphs, degrees, biases, and (directed) cuts

In this paper, we consider graphs without self-loops.11 We give two slightly different definitions
of graphs, which we call unweighted and weighted graphs. The algorithm we present handles
unweighted graphs, but the analysis requires the more general notion of a weighted graph. We take
care in lemma statements to indicate which kind of graph we are considering.

11This is because, from the perspective of Max-DICUT (which we are about to define), a self-loop edge is never
satisfied by any assignment and is therefore uninteresting from an algorithmic perspective.
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An unweighted graph G is given by a set V (G) of vertices and a set E(G) ⊆ {(u, v) : u ̸= v ∈
V (G)} of edges. We typically denote n = |V | and m = |E|.

A weighted graph on a vertex-set V = V (G) is defined by an adjacency matrix AdjMatG ∈
MV×V

≥0 with zeros on the diagonal. An unweighted graph G can be viewed as a weighted graph
defined by an adjacency matrix AdjMatG , where AdjMatG(u, v) = 1 iff (u, v) ∈ E(G). We let
mG =

∑
u,v∈V AdjMatG(u, v) denote the total weight in a weighted graph G.

Given a vertex v ∈ V in a weighted graph G, we define its out- and in-degrees

deg-outG(v)
def
=
∑
u∈V

AdjMatG(v, u) and deg-inG(v)
def
=
∑
u∈V

AdjMatG(u, v),

and its (total) degree

degG(v)
def
= deg-outG(v) + deg-inG(v).

If degG(v) = 0, we say v is isolated ; otherwise, we define v’s bias

biasG(v)
def
=

deg-outG(v)− deg-inG(v)

degG(v)
∈ [−1, 1].

Finally, for a “cut” x ∈ {0, 1}V , we define its value in G

valG(x)
def
=

1

mG

∑
u,v∈V

AdjMatG(u, v)xv(1− xu),

and the overall Max-DICUT value of G as the maximum value of any cut:

valG(x)
def
= max

x∈{0,1}V
valG(x).

2.3 Concentration

We write exp(x) = e−x. We shall need a number of concentration inequalities which operate in
different parameter regimes of interest. We list several well-known inequalities as well as some
convenient corollaries.

Lemma 2.1 (Chernoff upper bound). Let X1, . . . , Xn be independent {0, 1}-valued random vari-
ables, and let X =

∑n
i=1Xi. Then for all δ > 0,

Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2 E[X]/(2 + δ)).

Lemma 2.2 (Chernoff lower bound). Let X1, . . . , Xn be independent {0, 1}-valued random vari-
ables, and let X =

∑n
i=1Xi. Then for all 0 ≤ δ ≤ 1,

Pr[X ≤ (1− δ)E[X]] ≤ exp(−δ2 E[X]/2).

Corollary 2.3 (Two-sided Chernoff bound). Let X1, . . . , Xn be independent {0, 1}-valued random
variables, and let X =

∑n
i=1Xi. Then for all 0 ≤ δ ≤ 1,

Pr[|X − E[X]| ≥ δ E[X]] ≤ 2 exp(−δ2 E[X]/3).

Corollary 2.4 (Chernoff upper bound, high deviation form). Let X1, . . . , Xn be independent {0, 1}-
valued random variables, and let X =

∑n
i=1Xi. Then for all η ≥ 3E[X],

Pr[X ≥ η] ≤ exp(−η/8).
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Lemma 2.5 (Weighted Chernoff bound [CL06, cf. Theorem 3.3]). Let X1, . . . , Xn be independent
{0, 1}-valued random variables. Let 0 < ν1, . . . , νn be weights, and let X =

∑n
i=1 νiXi. Let λ0 =

maxi{νi} and λ2 =
∑n

i=1 ν
2
i E[Xi]. Then for all δ > 0,

Pr[X ≥ (1 + δ)E[X]] ≤ exp(−δ2 E[X]2/2λ2)

and
Pr[X ≤ (1− δ)E[X]] ≤ exp(−δ2 E[X]2/(2λ2 + λ0δ E[X]).

Corollary 2.6 (Two-sided weighted Chernoff bound, low weights). Let X1, . . . , Xn be independent
{0, 1}-valued random variables. Let 0 < ν1, . . . , νn ≤ 1 be weights, and let X =

∑n
i=1 νiXi. Then

for all δ > 0,
Pr[|X − E[X]| ≥ δ E[X]] ≤ 2 exp(−δ2 E[X]/3).

Proof. Follows from the previous lemma since λ2 ≤
∑n

i=1 νi E[Xi] = E[X] and λ0 ≤ 1.

Lemma 2.7 (Chebyshev bound). Let X1, . . . , Xn be random variables, and let X =
∑n

i=1Xi. Then
for all η > 0,

Pr[|X − E[X]| ≥ η] ≤ Var[X]

η2
.

Corollary 2.8 (Chebyshev with limited independence). Let X1, . . . , Xn be random variables such
that 0 ≤ X1, . . . , Xn ≤ 1, and let X =

∑n
i=1Xi. Further, suppose that each Xi is independent

(pairwise) of all but D variables {Xj}j∈[n]. Then for all η > 0,

Pr[|X − E[X]| ≥ η] ≤ D · E[X]

η2
.

In particular, if the variables are pairwise independent, then

Pr[|X − E[X]| ≥ η] ≤ E[X]

η2
.

Proof. Follows using Var[X] =
∑n

i,j=1 E[XiXj ]−E[Xi]E[Xj ], the limited independence assumption,
and the fact that for all i, j ∈ [n], E[XiXj ] ≤ E[Xi] (using 0 ≤ Xi, Xj ≤ 1).

2.4 Sparsification for Max-DICUT

The following lemma is a standard statement about sparsification for the Max-DICUT problem,
which essentially lets us reduce to considering graphs with linearly many edges. We include the
proof in Appendix A for completeness.

Lemma 2.9 (Linear sparsification preserves Max-DICUT values). There exists a universal con-
stant Cspar > 0 such that the following holds. For every ϵspar ∈ (0, 1) and n,m ∈ N, suppose
Csparn/(ϵ2sparm) ≤ pspar ≤ 1. Then for every unweighted graph G on n vertices with m edges, if
we let Gspar be the random (unweighted) graph resulting from throwing away every edge of G inde-
pendently with probability 1 − pspar, then with probability 99/100 over the choice of Gspar, we have
|valG − valGspar | ≤ ϵspar and |mGspar − psparm| ≤ ϵsparpsparm.
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2.5 k-wise independent hash families

The following definition of a k-wise independent hash family will play a role in the algorithm we
present in Section 4 below.

Definition 2.10. A family of hash functions H = {h : [n] → [m]} is k-wise independent if it
satisfies the following properties:

• For every x ∈ [n] and a ∈ [m], and h ∼ H(n,m) uniformly, Pr[h(x) = a] = 1
m , and

• For every distinct x1, . . . , xk ∈ [n], and h ∼ H(n,m) uniformly, h(x1), . . . , h(xk) are indepen-
dent random variables.

Lemma 2.11 ([Jof74], see e.g. [SSSV23, §2.6]). For every k, n,m = 2ℓ ∈ N, there exists a family
of k-wise independent hash functions Hk = {h : [n] → [m]} such that a uniformly random hash
function can be sampled with Ok(log n + logm) bits of randomness.

3 Reducing Max-DICUT approximation to “weak estimates” of the
bias-degree array

In this section, we develop some machinery to reduce the Max-DICUT approximation problem for
a graph G to a certain kind of “weak estimation” problem for a kind of “snapshot” of G called
its “bias-degree array”. In Section 3.2 below we outline this reduction, but to begin, we formally
define snapshots and state the result of [FJ15] upon which we will rely.

3.1 Formally defining “snapshots”

3.1.1 Intervals and thresholds

Let Tℓ ⊆ Rℓ+1 denote the space of vectors t = (t0, . . . , tℓ) such that t0 < · · · < tℓ. We call such
a vector a threshold vector of length ℓ. Given a threshold vector t ∈ Tℓ, for any x ∈ [t0, tℓ], we
define x’s index indt(x) (w.r.t. t) as the unique i ∈ [ℓ] such that ti−1 ≤ x < ti (and if x = tℓ then
indt(x) = ℓ).

Suppose t = (t0, . . . , tℓ) ∈ Tℓ and t′ = (t′0, . . . , t
′
ℓ′) ∈ Tℓ′ are two threshold vectors with ℓ′ > ℓ.

We say t′ is a refinement of t if they have the same endpoints (i.e., t0 = t′0 and tℓ = t′ℓ′) and for

every x, y ∈ [t0, tℓ], we have indt
′
(x) = indt

′
(y) =⇒ indt(x) = indt(y).

We say t is ϵ-wide if for every i ∈ [ℓ], ϵ/2 ≤ ti − ti−1 ≤ ϵ.

Fact 3.1. For every ℓ ∈ N, t ∈ Tℓ, suppose ϵ = maxi∈[ℓ](ti − ti−1). Then for every 0 < ϵbias ≤ ϵ,

there exists some ℓ′ ≤ ℓ(1 + ϵ/ϵbias) ∈ N and t′ ∈ Tℓ such that t′ is a refinement of t and t′ is
ϵbias-wide.

If along with a refinement t′ ∈ Tℓ′ of t ∈ Tℓ we are given some vector r = (r1, . . . , rℓ) ∈ Rℓ, we
can define an inherited vector r′ = (r′1, . . . , r

′
ℓ′) ∈ Rℓ′ by r′i = rindt′

i

.

3.1.2 Bias matrices

Let Tℓ
±1 ⊆ Tℓ denote the subset of threshold vectors with t0 = −1 and tℓ = 1. We think of such

vectors as defining partitions of biases in graphs. For shorthand, given a weighted graph G and

a (nonisolated) vertex v, we write b-indtG(v)
def
= indt(biasG(v)) ∈ [ℓ] for the index representing the

“bias class” containing v, and given a pair of nonisolated vertices u, v, we write b-indtG(u, v)
def
=

(indt(biasG(u)), indt(biasG(v))) ∈ [ℓ]2 for their pair of bias classes.
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Definition 3.2 (Bias matrix [SSSV23]). Given a weighted graph G and threshold vector t ∈ Tℓ
±1,

we define the bias matrix BiasMatG,t ∈Mℓ
∆ by

BiasMatG,t(i, j)
def
=

1

mG

n∑
u,v=1

AdjMatG(u, v)1b-indtG(u,v)=(i,j).
12

In other words, the matrix BiasMatG,t counts the fraction of edges in the graph between each
pair of bias classes. Note that this is a normalized matrix, i.e., its entries sum to 1, unlike the
adjacency matrix AdjMatG . This is simply a matter of convenience.

The importance of the bias matrix is that it can be used to estimate the Max-DICUT value of
a graph:

Lemma 3.3 (Feige and Jozeph [FJ15]). There exists a constant αFJ ∈ (0.483, 0.4899), ℓFJ ∈ N, a
vector of bias thresholds tFJ ∈ TℓFJ

±1 , and a vector of probabilities rFJ = (r1, . . . , rℓ) ∈ [0, 1]ℓFJ such
that the following holds.

For every weighted graph G,

αFJ · valG ≤
ℓFJ∑
i,j=1

ri(1− rj)BiasMatG,t(i, j) ≤ valG .

Though we will not need this fact, we remark that the estimate for valG given in the lemma
corresponds to a simple randomized assignment for G, namely the so-called “oblivious” assignment
which assigns each nonisolated vertex v ∈ V (G) to 1 with probability ri and 0 otherwise, where
i = b-indtG(v) is its bias class.

We will rely on a “robust” version of the [FJ15] result which allows using an “estimate” for
the bias matrix BiasMatG,t (in exchange for some loss in the approximation factor), and also allows
using a “refinement” of the [FJ15] partition (as opposed to the partition itself). This takes the
form of the following corollary, which is an analogue of [SSSV23, Corollary 3.5] except with 1-norm
instead of ∞-norm errors. For completeness, we give a proof in Section 6.3.

Corollary 3.4 (“Robust [FJ15] with refinement”). Let αFJ, ℓFJ, tFJ, rFJ be as in Lemma 3.3. Let
ℓ ∈ N, let t ∈ Tℓ be a refinement of tFJ, and let r ∈ [0, 1]ℓ be the vector inherited from rFJ.

Let G be a weighted graph on n vertices, and let M̂ ∈ Mℓ be an estimate for G’s bias matrix:
∥BiasMatG,t − M̂∥1 ≤ ϵ. Then

αFJ · valG − 2ϵ ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− ϵ ≤ valG .

3.1.3 The bias-degree array

Next, we introduce a new and more refined version of a snapshot of a graph G which also takes
into account the degrees of the vertices. Suppose we also have a threshold vector d ∈ Tk partitions
vertex degrees in G, in the following sense: all nonisolated vertices in G have degree between d0

and dk. We define similar notations: For nonisolated v, we write d-inddG(v)
def
= indd(degG(v)) for the

“degree class” of v. (For notational convenience, if degG(v) = 0 we will write d-inddG(v) = −∞.)
For nonisolated u, v, we define:

db-indd,tG (u, v) = (d-inddG(u), d-inddG(v), b-indtG(u), b-indtG(v)). (3.5)

12Note that b-indtG(u, v) is not defined if v or u is isolated. But in either case, AdjMatG(u, v) vanishes, so we adopt
the convention of discarding these terms.
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This lets us define:

Definition 3.6 (Bias-degree array). Given a weighted graph G and threshold vectors t ∈ Tℓ
±1,

d = (d0, . . . , dk), such that every nonisolated vertex v ∈ V (G) has d0 ≤ degG(v) ≤ dk, we define the

bias-degree array BiasDegArrG,d,t ∈ Ak,ℓ
∆ by

BiasDegArrG,d,t(a, b, i, j)
def
=

1

mG

n∑
u,v=1

AdjMatG(u, v)1
db-indd,t

G (u,v)=(a,b,i,j)
. (3.7)

This array is only more informative than the bias matrix because the bias-matrix can be recov-
ered via “projections”. More precisely:

Definition 3.8 (Projecting arrays into matrices). Given an array A ∈ Ak,ℓ, we define a matrix
Proj(A) ∈Mℓ by projecting onto the third and fourth coordinates, i.e.,

(Proj(A))(i, j) =

k∑
a,b=1

A(a, b, i, j).

Fact 3.9. Let d = (d0, . . . , dk) ∈ Tk be a degree partition and let G be a weighted graph such that
all nonisolated vertices have degree between d0 and dk. Then Proj(BiasDegArrG,d,t) = BiasMatG,t.

3.2 Outline

The algorithm of Feige and Jozeph [FJ15] (in the form of Corollary 3.4 above) reduces the task
of estimating the Max-DICUT value of a graph G to estimating its bias matrix BiasMatG,t in 1-
norm. Now, our goal is to further reduce this task to a notion which we call weakly estimating the
smoothing of the bias array BiasDegArrG,d,t.

The motivation for this reduction is that the final “weak estimation” task can be carried out
directly in the streaming setting using an “edge-and-vertex-subsampling” strategy (as described in
Section 1.5). We carry this out in the following two sections, which contain an explicit description of
the algorithm (Section 4) and its analysis (Section 5). For now, we introduce some more definitions
and lemmas and build towards a statement of a lemma, Lemma 3.22, which precisely states that
this notion of “weak estimation” is sufficient. Proofs of this and several preliminary lemmas which
we state in this section are postponed until Section 6 below.

The reduction from approximating the Max-DICUT value of a graph G proceeds as follows:

1. We reduce to estimating a “smoothed” version of BiasMatG,t in 1-norm (see Lemma 3.13
below); each entry in the smoothed matrix is a (weighted) average over a “window” of sur-
rounding entries in the original matrix.

2. We reduce this to estimating smoothed version of the array BiasDegArrG,d,t in 1-norm (see
Proposition 3.16 below).

3. Finally, we reduce this to a certain notion of a “weak estimate”, which roughly corresponds
to allowing certain small mistakes in the estimate, in terms of which entries are counted and
with what weights (see Corollary 3.21 below).

18



3.3 Defining windows

We begin with defining some notations for “windows” around entries in (1-dimensional) vectors,
(2-dimensional) matrices, and (4-dimensional) arrays. These will correspond to indices to [ℓ], [ℓ]2,
and [k]2 × [ℓ]2, respectively, where k, ℓ ∈ N. In each case, windows will correspond to a ball of a
certain radius in the ∞-norm.

More concretely, we make the following definitions:

Definition 3.10 (Windows). Suppose w < ℓ ∈ N. For i ∈ [ℓ], let

Winw,ℓ(i)
def
= {i′ ∈ [ℓ] :

∣∣i′ − i
∣∣ ≤ w}

denote the 1-dimensional window around i. For i, j ∈ [ℓ], let

Winw,ℓ(i, j)
def
= Winw,ℓ(i)×Winw,ℓ(j) = {(i′, j′) ∈ [ℓ]2 : max{

∣∣i′ − i
∣∣, ∣∣j′ − j

∣∣} ≤ w}

denote the 2-dimensional window around (i, j). Given also k > w ∈ N, for a, b ∈ [k] and i, j ∈ [ℓ],
let

Winw,k,ℓ(a, b, i, j)
def
= Winw,k(a, b)×Winw,ℓ(i, j)

= {(a′, b′, i′, j′) ∈ [k]2 × [ℓ]2 : max{
∣∣a− a′

∣∣, ∣∣b− b′
∣∣, ∣∣i− i′

∣∣, ∣∣j − j′
∣∣} ≤ w}

denote the 4-dimensional window around (a, b, i, j).

We state various basic but useful facts about windows in Section 6.1 below.

3.4 Reducing approximating Max-DICUT value to estimating a “smoothed” bias
matrix

We now define what it means to smooth a matrix M ∈Mℓ over windows of size w.

Definition 3.11 (Smoothing matrices). Let ℓ ∈ N and M ∈ Mℓ. For w < ℓ ∈ N, we define a
smoothed matrix M∼w ∈Mℓ by

M∼w(i, j) =
∑

(i′,j′)∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′) ·M(i′, j′),

where ν∼w,ℓ(i′, j′)
def
= 1/|Winw,ℓ(i′, j′)| is a normalization factor.

Note that the normalization factors ν∼w,ℓ(i′, j′) do not depend on the matrix M . Informally,
their importance is as follows. Suppose ℓ is even and ℓ > 2w. Consider the entries M(1, 1) and
M(ℓ/2, ℓ/2). The former will contribute to ≈ w2 entries in M∼w — in particular, the indices
{1, . . . , w+ 1}×{1, . . . , w+ 1} — while the latter will contribute to ≈ 4w2 entries — in particular,
{ℓ/2 − (w + 1), . . . , ℓ/2 + (w + 1)} × {ℓ/2 − (w + 1), . . . , ℓ/2 + (w + 1)}. We will be interested
in smoothing bias matrices, i.e., M = BiasMatG,t, and we would like for the resulting matrices to
“resemble” bias matrices, at least in the sense of still having entries summing to 1. In particular,
the choice of normalization factors ensures that the following holds:

Proposition 3.12 (Smoothing preserves entry sum). For every M ∈ Mℓ,
∑ℓ

i,j=1M
∼w(i, j) =∑ℓ

i,j=1M(i, j). In particular, if M ∈Mℓ
∆ then M∼w ∈Mℓ

∆.

The proof is by a simple double-counting argument; we give it in Section 6.2 below.
Next, the following key lemma roughly states that estimating the smoothed matrix BiasMat∼w

G,t
in 1-norm is sufficient for running the Feige-Jozeph algorithm [FJ15] (in the form of Corollary 3.4)
on a weighted graph G:
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Lemma 3.13 (“Smoothing graphs”). There exists a universal constant Csmooth such that the fol-
lowing holds. Let ϵbias > 0, and w < ℓ ∈ N. Let t ∈ Tℓ be ϵbias-wide.

Let G be a weighted graph and M = BiasMatG,t be its bias matrix. Then there exists a weighted
graph H such that |valG − valH| ≤ Csmoothϵbias(w + 1) and the bias matrix N = BiasMatH,t satisfies
∥N −M∼w∥1 ≤ Csmoothϵbias(w + 1).

The proof of Lemma 3.13 is given in Section 6.5 below, and is somewhat involved: we essentially
make many copies of each vertex in G, and then “perturb” the bias of each copy by tweaking the
weights of incident edges, in order to make the final bias matrix resemble M∼w.

Lemma 3.13 is useful because it implies both that (1) the “[FJ15] estimate” will be similar
betweenH’s actual bias matrix N and G’s smoothed bias matrix M∼w, and that (2) the Max-DICUT
values of G andH are similar. Since we also know (3) that the “[FJ15] estimate” forH approximates
H’s Max-DICUT value (by Corollary 3.4), these three facts together will imply that the “[FJ15]
estimate” based on M∼w approximates G’s Max-DICUT value.

3.5 Reducing estimating the bias matrix to estimating the bias-degree array

Unfortunately, we will not be able to directly estimate entries of the smoothed bias matrix
BiasMat∼w

G,t using our sampling-based algorithm. Roughly, this is because there may be huge dis-
crepancy between degrees of vertices (indeed, from O(1) to Ω(n)), and the subsampling parameters
will depend on the degree. So, we reduce to the problem of estimating more refined quantities:
smoothed versions of the array BiasDegArrG,d,t. Our hope is that, if the degree partition is fine
enough, these quantities can actually be estimated.

Definition 3.14 (Smoothing arrays). Let k, ℓ ∈ N and A ∈ Ak,ℓ. For w < k, ℓ ∈ N, we define a
smoothed array A∼w ∈ Ak,ℓ by

A∼w(a, b, i, j) =
∑

(a′,b′,i′,j′)∈Winw,k,ℓ(a,b,i,j)

ν∼w,k,ℓ(a′, b′, i′, j′) ·A(a′, b′, i′, j′),

where ν∼w,k,ℓ(a′, b′, i′, j′)
def
= 1/|Winw,k,ℓ(a′, b′, i′, j′)| is a normalization factor.

We have also have an analogue of Proposition 3.12 (proof omitted for syntactic similarity):

Proposition 3.15. For every A ∈ Aℓ,
∑k

a,b=1

∑ℓ
i,j=1A

∼w(a, b, i, j) =
∑k

a,b=1

∑ℓ
i,j=1A(a, b, i, j).

In particular, if A ∈ Ak,ℓ
∆ then A∼w ∈ Ak,ℓ

∆ .

The following definition and proposition roughly state that to estimate the matrix BiasMat∼w
G,t

in 1-norm, it suffices to instead estimate the array BiasDegArr∼w
G,d,t in 1-norm.

Proposition 3.16. For every w < k, ℓ ∈ N, and A ∈ Ak,ℓ, let M = Proj(A). Then M∼w =

Proj(A∼w). Moreover, for any array Â ∈ Ak,ℓ, define M̂ = Proj(Â). Then ∥M̂ − M∼w∥1 ≤
∥Â−A∼w∥1.

Together with Fact 3.9, this proposition does give the desired reduction from the problem of 1-
norm estimation for BiasMat∼w

G,t to 1-norm estimation for BiasDegArr∼w
G,d,t. We prove the proposition

(again by double-counting) in Section 6.2 below.

3.6 A notion of “weakly estimating” the bias-degree array

Let A ∈ Ak,ℓ
≥0 be an array with nonnegative entries. For the final step in our reduction, we define

a certain notion of a “weak estimate” for the smoothed array A∼w, and give a statement (Corol-
lary 3.21 below) which roughly says that such a “weak” estimate suffices for a 1-norm estimate
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(with some loss in parameters). Such a “weak” estimate will be what we actually aim to achieve
in the algorithm, with A = BiasDegArrG,d,t.

The notion of “weak estimate” relies on the definition of two additional arrays A−w, A+w ∈ Ak,ℓ
≥0

which satisfy the inequality A−w ≤ A∼w ≤ A+w entrywise and account for “off-by-one” errors when
estimating A∼w. We first describe these arrays informally as the actual definitions may appear quite
technical. Consider an “estimation” function ξ : [k]2 × [ℓ]2 → [k]2 × [ℓ]2 for the graph G, which
takes as input the index (a, b, i, j) of an entry in the array A, and outputs a tuple ξ(a, b, i, j) which
is promised to differ from (a, b, i, j) by at most 1 in each entry. (This will correspond to issues with
“borderline” vertices when A = BiasDegArrG,d,t, as described in Section 1.5 above.) Now suppose
we tried to estimate the entry A∼w(a, b, i, j) using the expression∑

ξ(a′,b′,i′,j′)∈Winw,k,ℓ(a,b,i,j)

ν∼w,k,ℓ(a′, b′, i′, j′) ·A(a′, b′, i′, j′).

The quantities A−w(a, b, i, j) and A+w(a, b, i, j) are lower- and upper-bounds for this expression,
respectively, based on the “worst possible” function ξ.

To be more precise, we define the arrays A−w, A+w ∈ Ak,ℓ
≥0 as follows:

Definition 3.17 (Upper- and lower-bound normalization factors). Let w < k, ℓ ∈ N. Then for
a′, b′ ∈ [k], i′, j′ ∈ [ℓ], we define

ν−w,k,ℓ(a′, b′, i′, j′)
def
= min

(a′′,b′′,i′′,j′′)∈Win1,k,ℓ(a′,b′,i′,j′)
ν∼w,k,ℓ(a′′, b′′, i′′, j′′),

and
ν+w,k,ℓ(a′, b′, i′, j′)

def
= max

(a′′,b′′,i′′,j′′)∈Win1,k,ℓ(a′,b′,i′,j′)
ν∼w,k,ℓ(a′′, b′′, i′′, j′′).

Definition 3.18 (Upper- and lower-bound arrays). Let w < k, ℓ ∈ N and A ∈ Ak,ℓ. We define two

arrays A−w, A+w ∈ Ak,ℓ
≥0 by defining, for all a, b ∈ [k] and i, j ∈ [ℓ]:

A−w(a, b, i, j)
def
=

∑
(a′,b′,i′,j′)∈Winw−1,k,ℓ(a,b,i,j)

ν−w,k,ℓ(a′, b′, i′, j′)A(a′, b′, i′, j′),

and
A+w(a, b, i, j)

def
=

∑
(a′,b′,i′,j′)∈Winw+1,k,ℓ(a,b,i,j)

ν+w,k,ℓ(a′, b′, i′, j′)A(a′, b′, i′, j′).

Note that by definition ν−w,k,ℓ(a′, b′, i′, j′) ≤ ν∼w,k,ℓ(a′, b′, i′, j′) ≤ ν+w,k,ℓ(a′, b′, i′, j′) (since
(a′, b′, i′, j′) ∈ Win1,k,ℓ(a′, b′, i′, j′)). Hence, (since A has nonnegative entries) we have
A−w(a, b, i, j) ≤ A∼w(a, b, i, j) ≤ A+w(a, b, i, j), since they sum over windows around (a, b, i, j)
of sizes w− 1, w, and w + 1, respectively, using increasing normalization factors. We also have the
following simple lemma:

Lemma 3.19. Let w < k, ℓ ∈ N and A ∈ Ak,ℓ
∆ . For all a, b ∈ [k] and i, j ∈ [ℓ], we have

A−w(a, b, i, j) ≤ A+w(a, b, i, j) ≤ 1.

Proof. For the first inequality, see above. For the second, note from Definitions 3.14 and 3.17 that
ν+w,k,ℓ(a′, b′, i′, j′) ≤ 1 implying A+w(a, b, i, j) ≤

∑
(a′,b′,i′,j′)∈Winw+1,k,ℓ(a,b,i,j)A(a′, b′, i′, j′) ≤ 1.

A second key lemma, which we prove in Section 6.4 below, is that we can control the error
between these arrays:
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Lemma 3.20 (“Sandwiching A∼w”). There exists a universal constant Cwin > 0 such that for

every w < k, ℓ ∈ N and every A ∈ Ak,ℓ
∆ , ∥A+w −A−w∥1 ≤ Cwin/w.

Immediately we get the following corollary, which states that a “sandwiched entrywise” esti-
mate for A∼w is also an estimate in 1-norm. Note that there is a substantial loss in parameters,
corresponding to moving from ∞- to 1-norm.

Corollary 3.21. Let w < k, ℓ ∈ N, A ∈ Ak,ℓ
∆ , and ϵ > 0. Suppose Â ∈ Ak,ℓ is such that

A−w − ϵ ≤ Â ≤ A+w + ϵ

entrywise. Then ∥Â−A∼w∥1 ≤ ϵ(kℓ)2 + Cwin/w.

Proof. Since A−w−ϵ ≤ Â ≤ A+w+ϵ entrywise, we can pick some Â′ ∈ Ak,ℓ such that ∥Â′−Â∥∞ ≤ ϵ
and A−w ≤ Â′ ≤ A+w entrywise. The former implies ∥Â′ − Â∥1 ≤ ϵ(kℓ)2, while by Lemma 3.20
the latter implies ∥Â′ − A∼w∥1 ≤ Cwin/w. Hence, by the triangle inequality, ∥Â − A∼w∥1 ≤
ϵ + Cwin/w.

3.7 Stating the reduction lemma (Lemma 3.22)

Finally, putting our work in the previous subsections together allows us to state our final “reduction
lemma” as follows. The proof is essentially several triangle inequalities; we give it in Section 6.3.

Lemma 3.22 (Reducing Max-DICUT approximation for G to weak estimates of BiasDegArrG,d,t).
For every w < k, ℓ ∈ N, ϵerr, ϵbias > 0, the following holds. Let δbias = Csmoothϵbias(w + 1) and
δerr = ϵerr(kℓ)

2 + Cwin/w, let δ = δerr + 2δbias, and let ϵ = 8δ. Let d = (d0, . . . , dk) ∈ Tk. Let
t = (t0, . . . , tℓ) ∈ Tℓ

±1 be a refinement of tFJ which is ϵbias-wide. Let r = (r1, . . . , rℓ) ∈ [0, 1]ℓ be
correspondingly inherited from rFJ = (r1, . . . , rℓFJ

).
Let G be a weighted graph such that for every vertex v ∈ V (G), either degG(v) = 0, or d0 ≤

degG(v) ≤ dk. Let A = BiasDegArrG,d,t, and suppose Â ∈ Ak,ℓ is a “weak estimate” for A∼w, in the
sense that

A−w − ϵerr ≤ Â ≤ A+w + ϵerr

entrywise. Then for M̂ = Proj(Â),

(αFJ − ϵ)valG ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− δ ≤ valG .

In the next section, we present an algorithm which uses the reduction in Lemma 3.22 to ap-
proximate the Max-DICUT value of an unweighted graph G, up to a fixed constant approximation
error ϵ. We briefly remark on the parameters with which Lemma 3.22 will be invoked. Since ϵ will
a fixed constant, we will need to set w = O(1/ϵ) (in order for δerr to be sufficiently small). Thus,
we will need ϵbias = O(ϵ2) (to make δbias sufficiently small), forcing ℓ = O(1/ϵ2) (see Fact 3.1).
Moreover, in order to get estimates in sufficiently small space, we will need a relatively fine degree
partition di/di−1 = O(1) (we will use di/di−1 = 2 for simplicity), forcing k = Θ(log n). This means
we will need to set ϵerr = O(ϵ5/ log2 n) in order for δerr to be sufficiently small.

4 The algorithm

In this section, we present an algorithm that approximates the Max-DICUT value of an arbitrary
unweighted graph, thereby proving Theorem 1.3 (see Lemma 4.2 below). The algorithm itself has
to deal with a number of technical issues, so we begin by outlining the algorithm and giving a
number of pointers which hopefully make it easier to digest.
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4.1 Overview

Informal recap. The main concrete goal of the algorithm is to produce a “weak estimate” for
the bias-degree array BiasDegArrG,d,t of a graph G, in the sense of the hypotheses of Lemma 3.22
from the previous section. We quickly review the motivations behind this task from the discussion
in Section 1.5.

At the highest level, we want to sample random edges in a graph G and estimate the biases of
their endpoints, in order to estimate the bias matrix BiasMatG,t; this is sufficient to approximate
the Max-DICUT value of G using the algorithm of Feige and Jozeph [FJ15] (see Lemma 3.3). We
aim to design a “sampling procedure” in which we sample several different sets S1, . . . , Sk of vertices
whose degree is “roughly” di for some partition d0 ≤ · · · ≤ dk of degrees in G; we also store (sparse
versions of) the neighborhoods of these vertices. Then, we aim to use the edges which showed up
in these neighborhoods to estimate entries of the bias-degree array BiasDegArrG,d,t. (However, we
still have to deal with a number of errors corresponding to mis-estimating parameters of sampled
edges, in particular the biases and degrees of their endpoints, and thus we can only get a “weak
estimate”.)

Outline of the algorithm. Via Lemma 3.22, we seek to estimate the entries of the smoothed
bias-degree array A∼w where A = BiasDegArrG,d,t. Roughly, this measures how many edges

e = (u, v) are there in G such that (indd(degG(u)), indd(degG(v)), indd(biasG(u)), indd(biasG(v)) ∈
Winw,k,ℓ(a, b, i, j); that is, in G, u’s degree, v’s degree, u’s bias, and v’s bias are within w intervals of
a, b, i, j, respectively, with respect to some global partition d of degrees and t of biases. (Actually,
we are summing normalization factors ν∼w,ℓ,k over these edges, but this technical detail can be
ignored for now.)

To do this, for each “layer” a ∈ {1, . . . , k}, we fix some probabilities qa, pa ∈ [0, 1]. We subsample
the edges of G with probability qa and then subsample positive-degree vertices in Ga with probability
pa to get a subset of vertices, which we denoted vStoreda in the algorithm. We hope to store the
Ga-neighborhoods of these vertices to get a subset of edges denoted eStoreda. Ideally, we can use
eStoreda to estimate the degrees and biases of vertices in vStoreda, and further, if we see an edge
stored in eStoreda between vertices in vStoreda and vStoredb, we can count it in the appropriate
entry of the bias-degree array. However, note that eStoreda cannot necessarily store all neighbors
for every vertex in vStoreda; in particular, while our edge subsampling ensures that vStoreda is
unlikely to contain vertices of G-degree much less than da, it may still contain vertices of G-degree
much greater than da, in which case we can not hope to store all its neighbors.

Some pointers. It is very helpful to remember that there are two distinct sources of randomness
in the algorithm: We “sparsify” the graph by subsampling edges, and then subsample which vertices
we actually store. In the analysis we will first analyze this edge-subsampling, and then conditioned
on certain “good outcomes” for the edge-subsampling we will analyze the vertex-subsampling.
Correspondingly, it is useful to keep in mind the graph Ga consisting of all the edges sampled in
layer a (each is sampled w.p. qa) and the set Na of positive-degree vertices in Ga. (However, the
actual streaming algorithm is not necessarily be able to store these sets as they can grow too large;
it only stores subsets eStoreda and vStoreda, respectively.)

When we actually see an edge e = (u, v) in Ga, how do we know what to do with it (i.e., which
entry of the matrix should it contribute to)? Note that E[degGa

(v)] = qadegG(v). Thus, we can
hope to use q−1

a degGa
(v) (which we call v’s “apparent degree”) as an estimate for degG(v). Roughly,

this should work out if degG(v) is decently large; for instance, we can use the Chernoff bound to
show that w.h.p. degG(v)/2 ≤ q−1

a degGa
(v) ≤ 2degG(v), so the apparent degree moves by at most 1
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interval relative to the actual degree. The same sort of analysis is necessary to analyze the bias of a
vertex and ultimately prove that we get a so-called “weak estimate”. This is asserted in Lemma 4.4
below.

Finally, we remark that the subsampling probabilities qa and pa decrease and increase, respec-
tively, as a function of a. Indeed, for “typical” a, pa will be inversely proportional to qa, i.e., paqa
will have a fixed value independent of a. However, since qa and pa are probabilities and are in
particular at most 1, when a is small we will have to take qa = 1 while when a is large we will take
pa = 1. That this is necessary is unsurprising if we consider “extremal” graphs, e.g. low-degree
regular graphs (where we cannot hope to subsample edges without losing information) and graphs
consisting of high-degree stars (where we cannot hope to subsample high-degree vertices without
losing information).13

Some technicalities. We describe several more technical issues that occur in the algorithm, with
an aim towards increasing readability. We encourage the reader to ignore all these details in the
first pass over the algorithm and its analysis.

Firstly, we can essentially reduce to the case where the number of edges in G satisfies
√
n ≤

m ≤ O(n); if m is smaller, we can simply store all edges in the graph using Õ(
√
n) space, and if m

is larger, we can globally sparsify while preserving the Max-DICUT value up to some small loss (see
Lemma 2.9 above). Thus, our main subroutine (DiCutEstimator below) will operate under this
kind of assumption, though we relax it in the final algorithm (WrappedDiCutEstimator below) for
completeness.

Also, recall that a streaming algorithm in general is not given the number of edges in the
stream as input. To solve this issue, as in [SSSV23], we rewrite the code of DiCutEstimator to use
a value m̂ as an “estimate” for m when setting all parameters. The hope is that when m̂ roughly
equals m (say, up to a factor of 2) the algorithm will still be correct; in particular, we will run
the algorithm for several values of m̂ in parallel. If m̂ is too small we may end up storing too
many edges for the space bound, while if m̂ is too large we may store too few edges for correctness.
The latter is acceptable because after the stream finishes we do know the correct number of edges
m and therefore can discard results for incorrect m̂. But to deal with the other case, we need
to ensure that DiCutEstimator never uses too much space even if m̂ is much too small. Thus,
we add a condition called “overflow” which is triggered when the set eStored grows too large
(though we eventually have to show that this condition would not be triggered when m̂ is correct,
see Lemma 5.3 below).

Finally, one remaining technical issue stems from the fact that when we want to subsample a
set of nonisolated vertices in the subsampled graph Ga, but we do not know the nonisolated vertices
ahead of time. In particular, each time we see a new nonisolated vertex we want to toss a p-biased
coin — but if we decide not to store a vertex, we need to “remember” this decision if we happen
to see it again. This would be manageable if the algorithm had random access to the results of
n biased coin flips, but this model would be somewhat nonstandard. Instead, as in [SSSV23],
we observe that when proving concentration it is sufficient to have four-wise independence in the
vertex-subsampling procedure, and thus, we decide whether to store a vertex by plugging it into a
previously sampled four-wise independent hash function (see Lemma 2.11).

13This is independent of the issue of how to “weight” the contributions of extremal entries by normalization factors
discussed in the previous section.
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4.2 Describing the algorithm

The goal of this section is to prove Theorem 1.3. We begin by presenting an algorithm, called
DiCutEstimator, for estimating the Max-DICUT value of a stream of edges corresponding to a
graph G under certain “niceness” conditions regarding the number of edges in G. Specifically,
the algorithm DiCutEstimator depends on an “estimate” m̂ for the number of edges m in G; for
correctness, we require that m̂ is within a factor of roughly two of m, and for the space bound, we
require that m̂ is Ω(

√
n) and O(n), where n is the number of vertices in G. Reducing to this case

is fairly standard — essentially a combination of guessing the correct m̂ and using sparsification
— but for completeness we also present a full algorithm, called WrappedDiCutEstimator, which
approximates the Max-DICUT value for arbitrary graphs. Theorem 1.3 follows immediately from the
correctness and efficiency of this algorithm, which we state in Lemma 4.2. However, the correctness
of DiCutEstimator, and by extension WrappedDiCutEstimator, will depend on a key correctness
lemma (Lemma 4.4 below) whose proof is postponed until Section 5.

DiCutEstimator itself depends on two subroutines, called LayeredSampler and
BiasDegArrEstimator, which we present next. The former is responsible for subsampling
edges and vertices, and is the only subroutine that needs the stream σ, while the latter is respon-
sible for using the sampled information to estimate the bias-degree array. We also remark that
LayeredSampler is the “space hog” of the algorithm: the final space usage will be determined by
the number of edges and vertices stored by LayeredSampler, since the remaining code essentially
just does arithmetic.14 We also include several tables containing definitions of parameters to be
used in the algorithms.

Notation Value Description

ϵ′ > 0 ϵ/(8(2 + Cwin + 2Csmooth)) where Cwin

and Csmooth are as in Lemmas 3.13
and 3.20

Scaled-down error (for use in triangle in-
equalities)

w ∈ N 1/ϵ′ Size of windows for smoothing

ϵbias > 0 ϵ′/(w + 1) Maximum width of intervals in the re-
finement t of tFJ (see next line)

t ∈ Tℓ Refinement of tFJ into ℓ intervals of
width at most ϵbias

See Fact 3.1

ℓ ∈ N ≤ ℓFJ(1 + 1/ϵbias) Number of intervals in t, see Fact 3.1

r ∈ [−1, 1]ℓ Assignment probabilities inherited from
rFJ w.r.t. refinement t of tFJ

Table 1: Global parameters determined by ϵ alone.

14Actually, this is true for DiCutEstimator, but in WrappedDiCutEstimator there is an additional log factor from
running O(logn) copies of DiCutEstimator in parallel.
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Notation Value Description

mmin ∈ N
√
n Minimum number of edges handled in

DiCutEstimator

mmax ∈ N Csparn/(ϵ′)2 where Cspar is as in
Lemma 2.9

Maximum number of edges handled in
DiCutEstimator (see Lemma 2.9)

k∗ ∈ N 6 log log n Number of degree intervals before we be-
gin subsampling edges

D ∈ N 2k
∗+w+2 W.h.p. bound on max-degree of

“counted vertices” in subsampled graphs
(parameter for space bound), note that
D = Oϵ(log6 n)

eCutoff log7 n Maximum number of stored neighbors
per vertex

Table 2: Global parameters determined by ϵ and n.

Notation Value Description

k ∈ N log(2m̂) Number of degree intervals (we will have
m̂ ≤ mmax and thus, k = Oϵ(log n))

ρ > 0 1000
√
D · (kℓ)3/ϵ′ Factor controlling space usage, note that

ρ = Oϵ(log6 n) (assuming m̂ ≤ mmax)

p0 > 0 ρ/
√
m̂ Factor in vertex-subsampling probabil-

ity

vCutoff 10ρ
√

2m̂ Maximum number of stored vertices
per layer, note that vCutoff =
Oϵ(
√
n log6 n) (assuming m̂ ≤ mmax)

Table 3: Global parameters determined by ϵ, n, and m̂.

Algorithm 1 DiCutEstimator(σ; ϵ, n, m̂)

Goal: Estimate the Max-DICUT value in a graph stream, given an estimate for the number of edges
1: Import parameters defined in Table 1.
2: Track the true number m of edges in σ.
3: Run LayeredSampler(σ; ϵ, n, m̂). If it returns “overflow”, output “overflow”. Otherwise, let

(eStored1, vStored1), . . . , (eStoredk, vStoredk) denote its output.
4: Let Â← BiasDegArrEstimator(m, (eStored1, vStored1), . . . , (eStoredk, vStoredk); ϵ, n, m̂).

5: Let M̂ ← Proj(Â) ∈Mℓ. ▷ See Definition 3.8

6: Output v̂ ←
∑ℓ

i,j=1 ri(1− rj)M̂(i, j)− ϵ′(1 + Cwin + 2Csmooth). ▷ See Lemma 3.22

When the size of the graph is “nice” and correctly estimated by m̂, we claim that
DiCutEstimator uses small space and (with high probability) outputs a good estimate of valG :

Lemma 4.1 (Correctness and efficiency for DiCutEstimator). Let ϵ > 0, n,m, m̂ ∈ N, and G
be an unweighted graph on n vertices and m edges. Let σ be a stream consisting of edges of G
in arbitrary order. If mmin ≤ m̂ ≤ mmax, then running DiCutEstimator on the stream σ uses
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Notation Value Description

da ∈ N 2a Degree partition. We also define d = (d0, . . . , dk) where d0 = 1.

qa ∈ [0, 1] min{2k∗−a, 1} Edge-sampling probability

pa ∈ [0, 1] min{p0q−1
a , 1} Vertex-sampling probability

Table 4: “Per-layer” parameters defined for all a ∈ [k] and determined by ϵ, n, and m̂.

√
n · logO(1)(n) · 2O(1/ϵ) space. Moreover, if m/2 ≤ m̂ ≤ 2m, then with probability at least 9/10, the

output v̂ satisfies (αFJ − 8(1 + Cwin + 2Csmooth)ϵ′)valG ≤ v̂ ≤ valG.

We will prove Lemma 4.1 in Section 4.3 below (modulo the proof of another lemma). Next,
we present the “wrapper” algorithm which reduces the case of general input graphs to the case
handled by DiCutEstimator (i.e., ensures the conditions in Lemma 4.1).

Algorithm 2 WrappedDiCutEstimator(σ;n, ϵ)

Goal: Estimate the Max-DICUT value in a general graph stream
7: Import parameters defined in Tables 1 and 2.
8: Track the true number m of edges in σ.
9: In parallel, store the first mmin edges in σ, and if m ≤ mmin, compute the Max-DICUT value of

the stored edges exactly and output this value.
10: for t ∈ {log1.9mmin, . . . , log1.9 n

2} in parallel do
11: Define m̂← 1.9t ▷ Handle graphs with ≈ m̂ edges
12: Let pspar ← min{mmax/m̂, 1}
13: Let σspar subsample σ by including each edge independently w.p. pspar.
14: Let m̂spar ← m̂pspar. ▷ Note m̂spar = min{m̂,mmax}
15: Run DiCutEstimator(σspar; ϵ, n, m̂spar), and if it does not return “overflow”, let v̂ denote

its output.
16: If m̂ ≤ m ≤ 1.9m̂, output v̂ − ϵ′.
17: end for

The desired properties of WrappedDiCutEstimator are asserted in the following lemma:

Lemma 4.2 (Correctness and efficiency for WrappedDiCutEstimator). Let ϵ > 0, n ∈ N, and
G be an unweighted graph on n vertices. Let σ be a stream consisting of edges of G in arbitrary
order. Then running WrappedDiCutEstimator on the stream σ uses

√
n · logO(1)(n) · 2O(1/ϵ) space.

Moreover, with probability at least 9/10, its output v̂ satisfies (αFJ − ϵ)valG ≤ v̂ ≤ valG.

We also prove Lemma 4.2 in Section 4.3 below, which completes the proof of our main theorem.
Now, we delve into the “meat” of the algorithm, beginning with the sampling algorithm

LayeredSampler, which, roughly speaking, subsamples vertices and edges for us to store.

27



Algorithm 3 LayeredSampler(σ; ϵ, n, m̂)

Goal: Output a “representative sample” of vertices with various degrees and their neighborhoods
18: Import parameters defined in Tables 1 to 4.
19: For all a ∈ [k], initialize eStoreda, vStoreda ← ∅ and sample a hash function πa : [n]→ [1/pa]

from H4(n, 1/pa) (see Lemma 2.11).15

20: Keep track of the number of edges m in σ.
21: for each edge e = (u, v) ∈ σ do
22: for a = 1, . . . , k do
23: Toss a biased coin which is 1 with probability qa, and let z denote its output.
24: if z = 1 then
25: for v′ ∈ {u, v} do
26: If πa(v′) = 1, set vStoreda ← vStoreda ∪ {v′}.
27: If |vStoreda| > vCutoff, halt subroutine and return “overflow”.
28: If v′ ∈ vStoreda and degeStoreda(v′) < eCutoff, set eStoreda ← eStoreda ∪{e}.
29: end for
30: end if
31: end for
32: end for
Output: m, (eStored1, vStored1), . . . , (eStoredk, vStoredk).

As mentioned above, the space usage of LayeredSampler essentially determines the space usage
of the entire algorithm, and this space usage is small because of the bound on the number of stored
vertices and edges in Lines 27 and 28. Finally, here is the algorithm BiasDegArrEstimator which
uses the output of LayeredSampler to estimate the (smoothed) bias-degree array.

15We assume for simplicity that 1/pa is a power of 2. This could be enforced formally via a more careful choice of
m̂ and D.
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Algorithm 4 BiasDegArrEstimator(m, (eStored1, vStored1), . . . , (eStoredk, vStoredk); ϵ, n, m̂)

33: Import parameters defined in Tables 1, 3 and 4.
34: For all a ∈ [k] and v ∈ vStoreda, define: ▷ Apparent G-degree and G-bias of v respectively.

dEsta(v) = min{q−1
a · degeStoreda(v), dk} and bEsta(v) = biaseStoreda(v).

35: For all a ∈ [k] and i ∈ [ℓ], define:

vEsta,i =
{
v ∈ vStoreda | degeStoreda(v) < eCutoff

∧ indd(dEsta(v)) ∈Winw,k(a) ∧ indt(bEsta(v)) ∈Winw,ℓ(i)
}
.

36: For all a, b ∈ [k] and i, j ∈ [ℓ], define:

AEsta,b,i,j =
∑

(u,v)∈eEsta,b,i,j

νEstw,k,l
a,b (u, v),

where:
eEsta,b,i,j = eStoredmin{a,b} ∩ (vEsta,i × vEstb,j),

and

νEstw,k,l
a,b (u, v) = ν∼w,k,ℓ

(
indd(dEsta(u)), indd(dEstb(v)), indt(bEsta(u)), indt(bEstb(v))

)
.

Output: The array Â ∈ Ak,ℓ
≥0 defined by

Â(a, b, i, j) =
AEsta,b,i,j

mqmin{a,b}papb
. (4.3)

The key claim about BiasDegArrEstimator is that its output is a good estimate for BiasMat∼w
G,t :

Lemma 4.4. Let ϵ > 0, n,m, m̂ ∈ N, and suppose that m/2 ≤ m̂ ≤ 2m. Let G be an unweighted
graph on n vertices with m edges and let σ be a stream consisting of edges of G in arbitrary order.
Then, with probability at least 99/100, for all a, b ∈ [k] and i, j ∈ [ℓ], it holds that:

A−w(a, b, i, j)− ϵ′/(kℓ)2 ≤ Â(a, b, i, j) ≤ A+w(a, b, i, j) + ϵ′/(kℓ)2,

where A = BiasDegArrG,d,t and Â = BiasDegArrEstimator(LayeredSampler(σ; ϵ, n, m̂); ϵ, n, m̂).

The proof of this lemma is more involved, and is postponed until Section 5. Assuming Lemma 4.4
for now, we finish the proofs of Lemmas 4.1 and 4.2.

4.3 Proofs of Lemmas 4.1 and 4.2

Proof of Lemma 4.1 assuming Lemma 4.4. First, we prove the space bound. Indeed,
LayeredSampler outputs “overflow” immediately whenever any vStoreda’s size exceeds
vCutoff = 10ρ

√
2m̂. Since we assumed m̂ ≤ mmax = O(n/ϵ2), and defined ρ ≤ log7 n · 2O(1/ϵ),

we conclude that |vStoreda| =
√
n · logO(1) n · 2O(1/ϵ). Moreover, LayeredSampler stores at most

eStored = O(log7 n) neighbors of each vertex in vStoreda, uses O(log n) bits per neighbor, and
finally, there are k = Oϵ(log n) values of a. This proves the space bound.
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To prove correctness, we can now assume m/2 ≤ m̂ ≤ 2m. We apply Lemma 4.4 to conclude
that the output Â of BiasDegArrEstimator lies between A−w and A+w entrywise up to additive
error ϵerr = ϵ′/(kℓ)2 where A = BiasDegArrG,d,t. Then, we can apply Lemma 3.22, and we conclude

that for M̂ = Proj(Â), we have:

(αFJ − 8(1 + Cwin + 2Csmooth)ϵ′)valG ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− δ ≤ valG .

Proof of Lemma 4.2 assuming Lemma 4.4. First, we prove the space bound. On Line 9 we only
remember mmin =

√
n edges. Further, there are only O(log n) values of t. For each such value, we

run DiCutEstimator with mmin ≤ m̂spar = min{m̂,mmax} ≤ mmax. Thus, we get the desired space
bound for DiCutEstimator using Lemma 4.1. Putting these together gives the desired bound for
WrappedDiCutEstimator.

Now, we prove correctness. Note that if m ≤ mmin, our algorithm always computes the
Max-DICUT value exactly. Otherwise, since m̂ steps in powers of 1.9, there is a unique m̂ such
that

m̂ ≤ m ≤ 1.9m̂. (4.5)

Since all other values of m̂ are ignored by Line 16, it suffices to consider only this value of m̂ and
show that we output a correct estimate. To do so, we use Lemmas 2.9 and 4.1.

In particular, let Gspar denote the graph corresponding to σspar, so that Gspar is formed from G by
sampling each edge independently w.p. pspar. Let mspar = mGspar . We claim that with probability
999/100 over the choice of Gspar,

|valG − valGspar | ≤ ϵ′ (4.6)

and
|mspar − psparm| ≤ ϵ′psparm. (4.7)

Indeed, if pspar = 1 then Gspar = G so the statement holds trivially. Otherwise, pspar = mmax/m̂ so
that m̂spar = mmax. Now we can apply Lemma 2.9 with ϵspar = ϵ′, since

pspar =
mmax

m̂
≥ Csparn

(ϵ′)2m

using the definition of mmax and the assumption m ≥ m̂ (Eq. (4.5)).
Finally, we condition on Gspar such that Eqs. (4.6) and (4.7) occur, and we want to apply

Lemma 4.1 to Gspar. To do this, we have to check that

mmin ≤ m̂spar ≤ mmax (4.8)

and
mspar/2 ≤ m̂spar ≤ 2mspar. (4.9)

Indeed, Eq. (4.8) follows from the fact that m̂spar = min{m̂,mmax} and m̂ ≥ mmin (by definition of
m̂ on Line 10). For Eq. (4.9), we multiply Eq. (4.5) by pspar and add Eq. (4.7) to get

m̂spar − ϵ′psparm ≤ mspar ≤ 1.9m̂spar + ϵ′psparm

which is sufficient because by Eq. (4.5), ϵ′psparm ≤ 1.9ϵ′m̂spar < .1m̂spar since ϵ′ < 0.01 by definition.
Thus, by Lemma 4.1, the output v̂ of DiCutEstimator on Gspar satisfies (αFJ − 8ϵ′(1 + Cwin +

2Csmooth))valGspar ≤ v̂ ≤ valGspar . We can add this inequality with Eq. (4.6) to conclude that

(αFJ − ϵ)valG = (αFJ − 8ϵ′(2 + Cwin + 2Csmooth))valG ≤ v̂ − ϵ′ ≤ valG ,

as desired.
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5 Correctness of BiasDegArrEstimator: Proving Lemma 4.4

The goal of this section is to prove Lemma 4.4, which says that the estimated array Â lies between
the arrays BiasDegArr−w

G,d,t and BiasDegArr+w
G,d,t, up to some additive error. Throughout this section,

we work with a fixed ϵ, n, m̂,σ which also fixes G and m. Besides the variables in Tables 1 to 4,
we also define the following notation: For a ∈ [k], Ga will denote the random variable denoting the
subgraph of G containing all the edges for which z = 1 in Line 23 in the a-th execution of the loop.
We will use ma to denote the random variable equal to the number of edges in Ga and Na to denote
the set-valued random variable that is equal to the set of all non-isolated vertices in Ga. Note that
these random variables are all determined by the randomness in Line 23.

For a ∈ [k], we also define the set-valued random variable Sa = {v ∈ [n] : πa(v) = 1}, that is,
Sa is the set of all vertices that hash to 1 under πa. Note that Sa is determined by the randomness
in Line 19. Also, note that the randomness’ in Lines 19 and 23 are independent.

The plan of attack is to build up to the full proof by defining several “good” events, that each
happen with high probability and together imply that we get the desired output. We start by
analyzing the condition in which our algorithm returns overflow in Section 5.1. In Sections 5.2
and 5.3, we analyze the degrees and the biases (respectively) of the vertices the Ga and show that
they are close to the corresponding values in G. By Lemma 5.16, this implies that our estimates
νEst in Line 36 are in the desired range. Finally, in Sections 5.4 to 5.6, we build on these lemmas
and show that our final output is as desired.

5.1 Overflow condition in Algorithm 3

The goal of this section is to define and analyze two events Eof1 and Eof2 such that Algorithm 3 never
returns overflow when they occur. These are defined in Lemma 5.1 and Lemma 5.2 respectively.

Lemma 5.1. We have Pr(Eof1) ≥ 999/1000, where the probability is over the randomness in
Line 23 and Eof1 is defined as follows: For every a ∈ [k], we have:

ma ≤

{
2qam, if p0 ≤ qa

5ρ
√
m, if p0 > qa

.

Proof. Note that for all a ∈ [k], the random variable ma is the sum of m independent and identically
distributed indicator random variables that take the value 1 with probability qa. For all a ∈ [k]
such that p0 ≤ qa, this fact together with Lemma 2.1 gives:

Pr(ma ≥ 2qam) ≤ exp(−qam/3) ≤ exp(−ρ
√
m/3) ≤ o(1/k).

Similarly, for all a ∈ [k] such that p0 > qa which implies 5ρ
√
m ≥ 3p0m ≥ 3qam, Corollary 2.4

gives:
Pr
(
ma ≥ 5ρ

√
m
)
≤ exp

(
−5ρ
√
m/8

)
≤ o(1/k).

The lemma now follows by combining the two inequalities above and applying a union bound over
all a ∈ [k].

Next, let G1, . . . ,Gk be a set of subgraphs of G that may be sampled in Line 23. For convenience,
we shall often abbreviate G[k] = G1, . . . ,Gk. Observe that G[k] determines whether or not Eof1 occurs.
We have:
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Lemma 5.2. Fix any G[k] such that Eof1 occurs. We have Pr
(
EG[k]

of2

)
≥ 999/1000, where the

probability is over the randomness in Line 19 and EG[k]

of2 is defined as follows: For every a ∈ [k], we
have:

|Na ∩ Sa| < vCutoff.

Proof. Fix G[k] as in the lemma. We show the lemma by showing that for all a ∈ [k], we have
Pr(|Na ∩ Sa| ≥ vCutoff) ≤ o(1/k). Indeed, the lemma then follows by a union bound. Fix a ∈ [k].
If p0 > qa, we have by Lemma 5.1 that |Na| ≤ 2ma ≤ 10ρ

√
m < vCutoff and the result follows.

Thus, assume that p0 ≤ qa. As Eof1 occurs, we have |Na| ≤ 2ma ≤ 4qam by Lemma 5.1. For
all v ∈ Na, define the indicator random variable Iv to be 1 if and only if v ∈ Sa. Note that
these random variables are pairwise independent as Line 19 samples a 4-wise independent hash
function. Define I =

∑
v∈Na

Iv and note that (as I is a sum of pairwise independent indicator
random variables) Var[I] ≤ E[I] ≤ 4paqam = 4p0m as p0 ≤ qa. We get:

Pr(|Na ∩ Sa| ≥ vCutoff) = Pr(I ≥ vCutoff)

≤ Pr(I ≥ 5p0m) (As vCutoff ≥ 10ρ
√
m̂ = 10p0m̂ ≥ 5p0m)

≤ Var[I]

(p0m)2
(Lemma 2.7 and E[I] ≤ 4p0m)

≤ 4

p0m
(As Var[I] ≤ 4p0m)

≤ 8

ρ
√
m

= o(1/k).

We now formalize our claim above that Algorithm 3 never returns overflow if Eof1 and Eof2
occur.

Lemma 5.3. Fix any G[k] such that Eof1 occurs. If G[k] is sampled in Line 23 and EG[k]

of2 occurs,
then the following hold (with probability 1):

1. Algorithm 3 does not return overflow.

2. For all a ∈ [k], we have vStoreda = Na ∩ Sa.

3. For all a ∈ [k] and u ∈ vStoreda such that degeStoreda(u) < eCutoff, we have for all v ∈ [n]
that (u, v) ∈ eStoreda ⇐⇒ (u, v) ∈ Ga and (v, u) ∈ eStoreda ⇐⇒ (v, u) ∈ Ga.

4. For all a ∈ [k], u ∈ vStoreda, we have degeStoreda(u) < eCutoff⇐⇒ degGa
(u) < eCutoff.

Proof. We fix the randomness in Lines 19 and 23 arbitrarily such that both G[k] and EG[k]

of2 occur
and show that Items 1 to 4 hold. Note that fixing the randomness fixes the value of all variables
in Algorithms 3 and 4. We show each part in turn.

1. Note that Algorithm 3 returns overflow only if there exists a ∈ [k] such that at least vCutoff
non-isolated vertices v in Ga satisfy v ∈ Sa, or equivalently, if |Na ∩ Sa| ≥ vCutoff. By

Lemma 5.2, this can never happen if EG[k]

of2 occurs.

2. Follows directly from Item 1.
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3. As the =⇒ direction is trivial, we only show the ⇐= direction. We only show the first
equivalence as the proof for the second one is analogous. Let v ∈ [n] be arbitrary such that
(u, v) ∈ Ga. Due to Item 1, we are guaranteed that the algorithm executes Line 28 with
e = (u, v) and a and v′ = u. The “if” in Line 28 is satisfied due to Line 26 and the fact that
u ∈ vStoreda and we get (u, v) ∈ eStoreda, as desired.

4. Follows directly from Item 3.

5.2 Degrees after edge-subsampling

For a ∈ [k] and v ∈ [n], define a random variable for the apparent degree index as follows:

d̂-indda (v) = indd
(
min{q−1

a degGa
(v), dk}

)
. (5.4)

In the above definition, we adopt the convention that the right-hand side is −∞ if degGa
(v) = 0.

We remark that this definition is similar to but different from the quantity dEsta(v) we defined in
Algorithm 4, since that was only defined for vertices in vStoreda and counted only the edges in
eStoreda. We begin with the following lemma, which gives a general characterization of degrees
of vertices in the graphs Ga.

Lemma 5.5. We have Pr
(
Edeg

)
≥ 999/1000, where the probability is over the randomness in

Line 23 and Edeg is defined as follows: For all a ∈ [k] and v ∈ [n], we have:

1. If degG(v) ≥ 2a−w−3, then we have degG(v)/2 < q−1
a degGa

(v) < 2degG(v).

2. If degG(v) ≤ 2a−w−3, then we have q−1
a degGa

(v) < 2a−w−1.

Proof. We will upper bound the probability that Edeg does not happen. For this, we fix a ∈ [k]
and v ∈ [n] and upper bound the probability that one of Items 2 and 3 does not hold for this a
and v by o(1/n2). The proof then follows by a union bound. If a ≤ k∗, then degGa

(v) = degG(v)
and qa = 1 and there is nothing to show. We therefore assume that a > k∗ =⇒ qa = 2k

∗−a. Note
that degGa

(v) is a sum of degG(v)-many independent and identically distributed indicator random
variables, each of which is 1 with probability qa.

Consider first the case degG(v) ≥ 2a−w−3. This means that qadegG(v) ≥ 2k
∗−w−3 ≥ 50 log n. In

this case, we use Lemmas 2.1 and 2.2 to get:

Pr
(
degGa

(v) ≥ 2qadegG(v)
)
≤ exp

(
−qadegG(v)/3

)
= o(1/n2).

Pr
(
degGa

(v) ≤ qadegG(v)/2
)
≤ exp

(
−qadegG(v)/8

)
= o(1/n2).

Now, consider the case degG(v) ≤ 2a−w−3. In this case, we use Corollary 2.4 to get:

Pr
(
degGa

(v) ≥ qa2a−w−1
)
≤ exp

(
−qa2a−w−4

)
= o(1/n2).

Adding the three bounds gives the result.

We can deduce several nice properties about the random variable d̂-indda (v) defined in Eq. (5.4)
when Edeg happens.

Lemma 5.6. If Edeg occurs, the following hold for all a ∈ [k] and v ∈ [n] (with probability 1):

1. If degG(v) ≤ 2a+w+1, then we have degGa
(v) < eCutoff.
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2. If d-inddG(v) ≥ a− w − 1, then we have d̂-indda (v) ≥ d-inddG(v)− 1.

3. We have d̂-indda (v) ≤ max(d-inddG(v) + 1, a− w − 1).

Proof. Fix any G[k] such that Edeg occurs. Also, fix a and v. Fixing G[k] also fixes the value of

degGa
(v) and d̂-indda (v). We prove each part in turn:

1. If not, we have from Item 2 of Lemma 5.5 that degG(v) > 2a−w−3. Item 1 of Lemma 5.5 then
implies the following contradiction:

eCutoff ≤ degGa
(v) ≤ 2qadegG(v) ≤ qa2a+w+2 ≤ 2k

∗+w+2.

2. Note that d-inddG(v) ≥ a − w − 1 implies that degG(v) ≥ 2a−w−2. Item 1 of Lemma 5.5
implies q−1

a degGa
(v) > degG(v)/2. As dk ≥ degG(v) as well, it follows from Eq. (5.4) that

d̂-indda (v) ≥ d-inddG(v)− 1.

3. If q−1
a degGa

(v) ≤ 2a−w−1, there is nothing to show. Otherwise, we have from Item 2 of
Lemma 5.5 that degG(v) > 2a−w−3. Now, using Item 1 of Lemma 5.5, we get q−1

a degGa
(v) <

2degG(v). It follows that d̂-indda (v) ≤ d-inddG(v) + 1.

Next, for a ∈ [k], we define the following set valued random variable that is determined by the
randomness in Line 23.

V̂a =
{
v ∈ [n] | degGa

(v) < eCutoff ∧ d̂-indda (v) ∈Winw,k(a)
}
. (5.7)

We also define the following sets:

V −
a =

{
v ∈ [n] | d-inddG(v) ∈Winw−1,k(a)

}
.

V +
a =

{
v ∈ [n] | d-inddG(v) ∈Winw+1,k(a)

}
.

(5.8)

Recall that we defined the parameter D = 2k
∗+w+2. These definitions satisfy:

Lemma 5.9. If Edeg occurs, the following hold for all a ∈ [k] (with probability 1):

1. We have V −
a ⊆ V̂a ⊆ V +

a .

2. For all a′ ≥ a ∈ [k] and all v ∈ V +
a′ , we have degGa

(v) ≤ 2Dqa/qa′.

3. For all v ∈ V +
a , we have

∣∣∣d̂-indda (v)− d-inddG(v)
∣∣∣ ≤ 1.

Proof. Fix any G[k] such that Edeg occurs. Fixing G[k] also fixes the value of degGa
(v) and d̂-indda (v)

for all a ∈ [k] and v ∈ [n]. Fix a ∈ [k] as in the lemma. We prove each part in turn.

1. We first show that V −
a ⊆ V̂a. Let v ∈ V −

a be arbitrary. By Eq. (5.8), we have d-inddG(v) ∈
Winw−1,k(a). Using Items 1 to 3 of Lemma 5.6, we get degGa

(v) < eCutoff and d̂-indda (v) ≥
d-inddG(v)− 1 ≥ a− w and d̂-indda (v) ≤ d-inddG(v) + 1 ≤ a + w. It follows from Eq. (5.7) that

v ∈ V̂a. As v ∈ V −
a was arbitrary, we have V −

a ⊆ V̂a, as desired.

We now show that V̂a ⊆ V +
a in the contrapositive. Let v ∈ [n]\V +

a be arbitrary. By Eq. (5.8),
we have d-inddG(v) /∈Winw+1,k(a) Thus, either d-inddG(v) < a−w− 1 or d-inddG(v) > a+w+ 1.
Using Item 3 of Lemma 5.6 in the former case and Item 2 in the latter, we get that either
d̂-indda (v) ≤ a− w − 1 < a− w or d̂-indda (v) ≥ d-inddG(v)− 1 > a + w. In either case, we have

from Eq. (5.7) that v ∈ [n] \ V̂a. As v ∈ [n] \ V +
a was arbitrary, the result follows.
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2. As v ∈ V +
a′ , we have d-inddG(v) ∈ Winw+1,k(a′). It follows that d-inddG(v) ≥ a′ − w − 1 ≥

a− w − 1. From Item 3 of Lemma 5.6, we get d̂-indda (v) ≤ d-inddG(v) + 1 ≤ a′ + w + 2. From

Eq. (5.4), we get that min{q−1
a degGa

(v), dk} ≤ 2a
′+w+2. As Item 1 of Lemma 5.5 implies that

q−1
a degGa

(v) < 2degG(v) ≤ 2dk, we can continue as q−1
a degGa

(v) ≤ 2a
′+w+3. This means:

degGa
(v) ≤ 2a

′+w+3qa ≤ 2Dqa/qa′ .

3. As v ∈ V +
a , we have d-inddG(v) ∈ Winw+1,k(a). The result follows from Items 2 and 3 of

Lemma 5.6.

5.3 Biases after edge-subsampling

For a ∈ [k] and v ∈ [n], we define a random variable for the apparent bias index as follows:

b̂-indta(v) = b-indtGa
(v). (5.10)

(The right hand side is undefined if degGa
(v) = 0.) Note that this random variable is determined

by Ga and therefore, by the randomness in Line 23.

Lemma 5.11. We have Pr(Ebias) ≥ 999/1000, where the probability is over the randomness in
Line 23 and Ebias is defined as follows: For all a ∈ [k] and v ∈ V +

a , we have:

1. We have: ∣∣degGa
(v)− qadegG(v)

∣∣ ≤ ϵbias
12
· qadegG(v).

2. If deg-outG(v) ≥ degG(v)/2, then we have:

|deg-outGa(v)− qadeg-outG(v)| ≤ ϵbias
12
· qadeg-outG(v).

3. If deg-inG(v) ≥ degG(v)/2, then we have:

|deg-inGa(v)− qadeg-inG(v)| ≤ ϵbias
12
· qadeg-inG(v).

Proof. We will upper bound the probability that Ebias does not happen. For this, we fix a ∈ [k] and
v ∈ V +

a and upper bound the probability that one of Items 1 to 3 does not hold for this a and v by
o(1/n2). The proof then follows by a union bound. If a ≤ k∗, then Ga = G and qa = 1 and there is
nothing to show. We therefore assume that a > k∗ =⇒ qa = 2k

∗−a and show Item 2 as the proofs of
Items 1 and 3 is analogous. Note that deg-outGa(v) is a sum of deg-outG(v)-many independent and
identically distributed indicator random variables, each of which is 1 with probability qa. Thus, we
have from Corollary 2.3 that:

Pr
(
|deg-outGa(v)− qadeg-outG(v)| ≥ ϵbias

12
· qadeg-outG(v)

)
≤ 2 exp

(
−
ϵ2bias
500
· qadeg-outG(v)

)
≤ 2 exp

(
−
ϵ2bias
1000

· qadegG(v)

)
≤ 2 exp

(
−
ϵ2bias
1000

· 2k∗−w−2

)
(Eq. (5.8) implies degG(v) ≥ 2a−w−2)
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= o(1/n2).

Lemma 5.12. If Ebias occurs, for all a ∈ [k] and v ∈ V +
a , we have |b̂-indta(v)−b-indtG(v)| ≤ 1 (with

probability 1).

Proof. Fix any G[k] such that Ebias occurs. Also, fix a and v. Fixing G[k] also fixes the value

of b-indtG(v) and b̂-indta(v). We assume that deg-outG(v) ≥ degG(v)/2 as the proof for the case
deg-inG(v) ≥ degG(v)/2 is analogous. By Items 1 and 2 of Lemma 5.11, we have:

1− ϵbias
12
≤ deg-outGa(v)

qadeg-outG(v)
≤ 1 +

ϵbias
12

.

1− ϵbias
12
≤

degGa
(v)

qadegG(v)
≤ 1 +

ϵbias
12

.

It follows that

1− ϵbias
4
≤ deg-outGa(v)/deg-outG(v)

degGa
(v)/degG(v)

≤ 1 +
ϵbias

4
,

which implies
deg-outG(v)

degG(v)
− ϵbias

4
≤ deg-outGa(v)

degGa
(v)

≤ deg-outG(v)

degG(v)
+

ϵbias
4

.

As bias = 2deg-out/deg − 1, we get:

biasG(v)− ϵbias
2
≤ biasGa(v) ≤ biasG(v) +

ϵbias
2

.

As consecutive entries of t are at least ϵbias/2 apart, this means that |b̂-indta(v)− b-indtG(v)| ≤ 1 as
desired.

Next, for a ∈ [k] and i ∈ [ℓ], we define the following set valued random variable that is deter-
mined by the randomness in Line 23.

V̂a,i =
{
v ∈ V̂a | b̂-indta(v) ∈Winw,ℓ(i)

}
. (5.13)

We also define the following sets for all a ∈ [k] and i ∈ [ℓ]:

V −
a,i =

{
v ∈ V −

a | b-indtG(v) ∈Winw−1,ℓ(i)
}
.

V +
a,i =

{
v ∈ V +

a | b-indtG(v) ∈Winw+1,ℓ(i)
}
.

(5.14)

These definitions satisfy:

Lemma 5.15. If Edeg and Ebias occur, for all a ∈ [k] and i ∈ [ℓ], we have V −
a,i ⊆ V̂a,i ⊆ V +

a,i (with
probability 1).

Proof. Follows immediately from Item 1 of Lemma 5.9, Lemma 5.12, and the definition of Win.

Recall the set vEsta,i defined in Line 35 and the sets Na and Sa defined at the beginning of
Section 5. We have:
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Lemma 5.16. Fix any G[k] such that all of Eof1, Edeg, and Ebias occur. If G[k] is sampled in Line 23

and EG[k]

of2 occurs, then the following hold (with probability 1):

1. For all a ∈ [k] and i ∈ [ℓ], we have V̂a,i ∩ Sa = vEsta,i .

2. Let a, b ∈ [k] and i, j ∈ [ℓ]. For all u ∈ vEsta,i and v ∈ vEstb,j, it holds that:

ν−w,k,ℓ
(
db-indd,tG (u, v)

)
≤ νEstw,k,ℓ

a,b (u, v) ≤ ν+w,k,ℓ
(
db-indd,tG (u, v)

)
.

Proof. We fix the randomness in Lines 19 and 23 arbitrarily such that all the events in the lemma
occur. Note that fixing the randomness fixes the value of all variables in Algorithms 3 and 4 and
also fixes the random variables defined above. We prove each part in turn.

1. Fix a ∈ [k] and i ∈ [ℓ]. Observe that, for any v ∈ [n], we have the following equivalences:

v ∈ V̂a,i ∩ Sa

⇐⇒ v ∈ V̂a,i ∧ v ∈ Sa

⇐⇒ v ∈ V̂a ∧ b̂-indta(v) ∈Winw,ℓ(i) ∧ v ∈ Sa (Eq. (5.13))

⇐⇒ degGa
(v) < eCutoff ∧ d̂-indda (v) ∈Winw,k(a) ∧ b̂-indta(v) ∈Winw,ℓ(i) ∧ v ∈ Sa

(Eq. (5.7))

⇐⇒ degGa
(v) < eCutoff ∧ d̂-indda (v) ∈Winw,k(a) ∧ b̂-indta(v) ∈Winw,ℓ(i) ∧ v ∈ Na ∩ Sa

(As d̂-indda (v) ∈Winw,k(a) implies by Eq. (5.4) that degGa
(v) > 0 =⇒ v ∈ Na)

⇐⇒ degGa
(v) < eCutoff ∧ d̂-indda (v) ∈Winw,k(a) ∧ b̂-indta(v) ∈Winw,ℓ(i) ∧ v ∈ vStoreda

(Item 2 of Lemma 5.3)

⇐⇒ degeStoreda(v) < eCutoff ∧ d̂-indda (v) ∈Winw,k(a) ∧ b̂-indta(v) ∈Winw,ℓ(i)

∧ v ∈ vStoreda.
(Item 4 of Lemma 5.3)

To continue, note that for any v ∈ vStoreda such that degeStoreda(v) < eCutoff, we have
from Item 3 of Lemma 5.3 that deg-ineStoreda(v) = deg-inGa(v) and deg-outeStoreda(v) =
deg-outGa(v). Conclude from Line 34 and Eqs. (5.4) and (5.10) that for any such v, we have
d̂-indda (v) = indd(dEsta(v)) and b̂-indta(v) = indt(bEsta(v)). We can now continue as:

v ∈ V̂a,i ∩ Sa ⇐⇒ degeStoreda(v) < eCutoff ∧ indd(dEsta(v)) ∈Winw,k(a)

∧ indt(bEsta(v)) ∈Winw,ℓ(i) ∧ v ∈ vStoreda

⇐⇒ v ∈ vEsta,i. (Line 35)

2. As u ∈ vEsta,i, we have by Line 35 that u ∈ vStoreda and degeStoreda(u) < eCutoff. From
Item 3 of Lemma 5.3, this means that deg-ineStoreda(u) = deg-inGa(u) and deg-outeStoreda(u) =
deg-outGa(u). Using Line 34 and Eqs. (5.4) and (5.10), this means that d̂-indda (u) =
indd(dEsta(u)) and b̂-indta(u) = indt(bEsta(u)). As similar arguments apply for v, we get
from Line 36 that:

νEstw,k,l
a,b (u, v) = ν∼w,k,ℓ

(
d̂-indda (u), d̂-inddb (v), b̂-indta(u), b̂-indtb(v)

)
Now, as we have Definition 3.17, it suffices to show that:(

d̂-indda (u), d̂-inddb (v), b̂-indta(u), b̂-indtb(v)
)
∈Win1,k,ℓ

(
db-indd,tG (u, v)

)
.
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From Definition 3.10 and Eq. (3.5), this follows if we show that:∣∣∣d̂-indda (u)− d-inddG(u)
∣∣∣, ∣∣∣d̂-inddb (v)− d-inddG(v)

∣∣∣ ≤ 1,∣∣∣b̂-indta(u)− b-indtG(u)
∣∣∣, ∣∣∣b̂-indtb(v)− b-indtG(v)

∣∣∣ ≤ 1.

This first inequality is due to Items 2 and 3 of Lemma 5.6 while the second inequality is due
to Lemma 5.12 (note that Item 1 implies that u ∈ V̂a,i and v ∈ V̂b,j and we have Lemma 5.15).

5.4 Counting target edges after edge-subsampling

For a, b ∈ [k] and i, j ∈ [ℓ], define:

E−
a,b,i,j = G ∩

(
V −
a,i × V −

b,j

)
and E+

a,b,i,j = G ∩
(
V +
a,i × V +

b,j

)
. (5.17)

Recall from the statement of Lemma 4.4 the notation A = BiasDegArrG,d,t. Next, for a, b ∈ [k]
and i, j ∈ [ℓ], we define the random variables:

Y −
a,b,i,j =

∑
(u,v)∈E−

a,b,i,j

1(u,v)∈Gmin{a,b}ν
−w,k,ℓ

(
db-indd,tG (u, v)

)
.

Y +
a,b,i,j =

∑
(u,v)∈E+

a,b,i,j

1(u,v)∈Gmin{a,b}ν
+w,k,ℓ

(
db-indd,tG (u, v)

)
.

(5.18)

Recall the notation in Definition 3.18. The following lemma calculates the expectation of these
random variables.

Lemma 5.19. For all a, b ∈ [k] and i, j ∈ [ℓ], it holds that:

E[Y −
a,b,i,j ] = qmin{a,b}m ·A−w(a, b, i, j) and E[Y +

a,b,i,j ] = qmin{a,b}m ·A+w(a, b, i, j).

Proof. We only show the first equation as the proof of the second one is analogous. Note from
Eq. (5.18) and linearity of expectation that it suffices to show that:

m ·A−w(a, b, i, j) =
∑

(u,v)∈E−
a,b,i,j

ν−w,k,ℓ
(
db-indd,tG (u, v)

)
. (5.20)

This is because:

m ·A−w(a, b, i, j) = m ·
∑

(a′,b′,i′,j′)∈Winw−1,k,ℓ(a,b,i,j)

ν−w,k,ℓ(a′, b′, i′, j′)A(a′, b′, i′, j′) (Definition 3.18)

=
∑

(a′,b′,i′,j′)∈Winw−1,k,ℓ(a,b,i,j)

ν−w,k,ℓ(a′, b′, i′, j′)
∑

(u,v)∈G

1
db-indd,t

G (u,v)=(a′,b′,i′,j′)

(Eq. (3.7))

=
∑

(u,v)∈G

1
db-indd,t

G (u,v)∈Winw−1,k,ℓ(a,b,i,j)
· ν−w,k,ℓ

(
db-indd,tG (u, v)

)
.

38



Now, by Eq. (5.17), it suffices to show that, for all (u, v) ∈ G, we have:

db-indd,tG (u, v) ∈Winw−1,k,ℓ(a, b, i, j)⇐⇒ (u, v) ∈ V −
a,i × V −

b,j .

This is because:

db-indd,tG (u, v) ∈Winw−1,k,ℓ(a, b, i, j)

⇐⇒
(
d-inddG(u), d-inddG(v), b-indtG(u), b-indtG(v)

)
∈Winw−1,k,ℓ(a, b, i, j) (Eq. (3.5))

⇐⇒ d-inddG(u) ∈Winw−1,k(a) ∧ d-inddG(v) ∈Winw−1,k(b)

∧ b-indtG(u) ∈Winw−1,ℓ(i) ∧ b-indtG(v) ∈Winw−1,ℓ(j) (Definition 3.10)

⇐⇒ u ∈ V −
a,i ∧ v ∈ V −

b,j . (Eqs. (5.8) and (5.14))

Using standard concentration bounds, we get:

Lemma 5.21. We have Pr(Ecount1) ≥ 999/1000, where the probability is over the randomness in
Line 23 and Ecount1 is defined as follows: For all a, b ∈ [k] and i, j ∈ [ℓ], we have:∣∣∣Y −

a,b,i,j − E[Y −
a,b,i,j ]

∣∣∣ ≤ ϵ′

2(kℓ)2
· qmin{a,b}m.∣∣∣Y +

a,b,i,j − E[Y +
a,b,i,j ]

∣∣∣ ≤ ϵ′

2(kℓ)2
· qmin{a,b}m.

Proof. We will upper bound the probability that Ecount1 does not happen. For this, we fix a, b ∈ [k]
and i, j ∈ [ℓ] and upper bound the probability that the first inequality does not hold for this a, b
and i, j by o(1/n). The proof for the second inequality is similar and the lemma, thus follows by a
union bound. Fix a, b ∈ [k] and i, j ∈ [ℓ]. We have from Lemma 5.19 and Corollary 2.6 that:

Pr

(∣∣∣Y −
a,b,i,j − E[Y −

a,b,i,j ]
∣∣∣ ≥ ϵ′

2(kℓ)2
· qmin{a,b}m

)
≤ 2 exp

(
−

ϵ′2 · qmin{a,b}m

12(kℓ)4A−w(a, b, i, j)

)

≤ 2 exp

(
−
ϵ′2 · qmin{a,b}m

12(kℓ)4

)
(Lemma 3.19)

≤ 2 exp

(
− ϵ′2qkm

12(kℓ)4

)
(Table 4)

= o(1/n),

where, for the last step, recall that k = log(2m̂) = Oϵ(log n), while qkm = 2k
∗−km = m · log

6 n
2m̂ ≥

0.5 log6 n. So the negated expression in the exponent is Θϵ(log2 n) and we get the required bound
of o(1/n).

5.5 Counting target edges after vertex-subsampling

Recall that Sa = {v ∈ [n] : πa(v) = 1} for a ∈ [k] and that Sa is determined by the randomness in
Line 19. Observe from Line 26 that only vertices in Sa can possibly be stored in vStoreda. Next,
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let G1, . . . ,Gk be a set of subgraphs of G that may be sampled in Line 23 and recall our notation
G[k] = G1, . . . ,Gk. For such a G[k] and any a, b ∈ [k] and i, j ∈ [ℓ], define the random variable:

X
G[k],−
a,b,i,j =

∑
(u,v)∈E−

a,b,i,j∩Gmin{a,b}

1u∈Sa1v∈Sb
ν−w,k,ℓ

(
db-indd,tG (u, v)

)
.

X
G[k],+

a,b,i,j =
∑

(u,v)∈E+
a,b,i,j∩Gmin{a,b}

1u∈Sa1v∈Sb
ν+w,k,ℓ

(
db-indd,tG (u, v)

)
.

(5.22)

Note that the random variables X
G[k],−
a,b,i,j and X

G[k],+

a,b,i,j are determined solely by the randomness in
Line 19 (as they only depend on the randomness in the sets S1, . . . , Sk). Our definitions satisfy the
concentration lemma in Lemma 5.24 below but first we calculate the expectation of the random
variables defined above (recall that the value of Y −

a,b,i,j and Y +
a,b,i,j , for all a, b ∈ [k] and i, j ∈ [ℓ],

and whether or not Edeg and Ecount1 occur is determined by the graphs G[k]):

Lemma 5.23. Fix any G[k]. For all a, b ∈ [k] and i, j ∈ [ℓ], we have:

E[X
G[k],−
a,b,i,j ] = papbY

−
a,b,i,j and E[X

G[k],+

a,b,i,j ] = papbY
+
a,b,i,j .

Proof. We only prove the former as the latter is analogous. By linearity of expectation, Eq. (5.18)
and the fact that the hash-functions sampled in Line 19 are 4-wise independent, we have:

E[X
G[k],−
a,b,i,j ] =

∑
(u,v)∈E−

a,b,i,j∩Gmin{a,b}

papb · ν−w,k,ℓ(db-indd,tG (u, v)) = papb · Y −
a,b,i,j .

Lemma 5.24. Fix any G[k] such that both Edeg and Ecount1 occur. It holds that Pr
(
EG[k]

count2

)
≥

999/1000, where the probability is over the randomness in Line 19 and EG[k]

count2 is defined as follows:
For all a, b ∈ [k] and i, j ∈ [ℓ], we have:∣∣∣XG[k],−

a,b,i,j − E[X
G[k],−
a,b,i,j ]

∣∣∣ ≤ ϵ′

2(kℓ)2
· papbqmin{a,b}m.∣∣∣XG[k],+

a,b,i,j − E[X
G[k],+

a,b,i,j ]
∣∣∣ ≤ ϵ′

2(kℓ)2
· papbqmin{a,b}m.

Proof. Fix G[k] and note that this also fixes Y −
a,b,i,j and Y +

a,b,i,j . We will upper bound the probability

that EG[k]

count2 does not happen. For this, we fix a, b ∈ [k] and i, j ∈ [ℓ] and upper bound the

probability that the first inequality does not hold for this a, b and i, j by 10−4

(kℓ)2
. The proof for

the second inequality is similar and the lemma, thus follows by a union bound. Fix an arbitrary
a, b ∈ [k] and i, j ∈ [ℓ] and assume a ≤ b without loss of generality.

Note from Table 4 that p0 ≤ p1 · · · ≤ pk ≤ 1. This means that if pa = 1, then pa = pb = 1

and X
G[k],−
a,b,i,j is a constant value independent of the randomness and the inequality follows. Thus,

we can assume pa < 1 which means that pa = p0q
−1
a . For convenience, define F = E−

a,b,i,j ∩ Ga and

∇ = ϵ′

2(kℓ)2
· papbqam. For (u, v) ∈ F , define the random variable:

I(u,v) = 1u∈Sa1v∈Sb
ν−w,k,ℓ

(
db-indd,tG (u, v)

)
.

40



Plugging into Eq. (5.22), we get that X
G[k],−
a,b,i,j =

∑
(u,v)∈F I(u,v). Next, we claim that for all (u, v) ∈

F , there are at most 5D · pbp0 many (u′, v′) ∈ F such that I(u,v) and I(u′,v′) are not independent,
where D and p0 are as in Tables 2 and 3. Assuming this claim for now, Corollary 2.8 says:

Pr
(∣∣∣XG[k],−

a,b,i,j − E[X
G[k],−
a,b,i,j ]

∣∣∣ ≥ ∇) ≤ 5Dpb · E[X
G[k],−
a,b,i,j ]

p0∇2
.

Now, recall from Lemma 5.23 that E[X
G[k],−
a,b,i,j ] = papbY

−
a,b,i,j . As Ecount1 occurs, we have from

Lemmas 5.19 and 5.21 that Y −
a,b,i,j ≤ qam ·

(
A−w(a, b, i, j) + ϵ′

2(kℓ)2

)
≤ 2qam by Lemma 3.19.

Plugging in we get:

Pr
(∣∣∣XG[k],−

a,b,i,j − E[X
G[k],−
a,b,i,j ]

∣∣∣ ≥ ∇) ≤ 10Dpb · papbqam
p0∇2

=
40(kℓ)2D

p0ϵ′2paqam
,

by definition of ∇. Recalling that pa = p0q
−1
a , we get:

Pr
(∣∣∣XG[k],−

a,b,i,j − E[X
G[k],−
a,b,i,j ]

∣∣∣ ≥ ∇) ≤ 80(kℓ)2D

ρ2ϵ′2
≤ 10−4

(kℓ)2
.

It remains to show the claim. For this, we consider two cases, based on whether or not pb = 1.
In both cases, we use the fact that the hash-functions sampled in Line 19 are 4-wise independent.
If pb = 1, then Sb = [n] (with probability 1) and I(u,v) and I(u′,v′) are not independent only if
u = u′. As F ⊆ Ga, this means that the number of (u′, v′) ∈ F such that the random variables
I(u,v) and I(u′,v′) are not independent is at most degGa

(u), implying that it suffices to show the

bound degGa
(u) ≤ 2D. For this, note that F ⊆ E−

a,b,i,j implies by Eq. (5.17) that u ∈ V −
a,i ⊆ V +

a by
Eq. (5.14) and Item 1 of Lemma 5.9. Now, using Item 2 of Lemma 5.9, we get that degGa

(u) ≤ 2D,
as desired.

Now, consider the case pb = 1 which implies pb/p0 = 1/qb. In this case, we have that I(u,v) and
I(u′,v′) are not independent only if the pairs (u, v) and (u′, v′) have a common element. Using the
fact that F ⊆ Ga, we get that the number of (u′, v′) ∈ F such that the random variables I(u,v) and
I(u′,v′) are not independent is at most 2 + degGa

(u) + degGa
(v), implying that it suffices to show the

bounds degGa
(u) ≤ 2D and degGa

(v) ≤ 2D/qb. For this, note that F ⊆ E−
a,b,i,j implies by Eq. (5.17)

that u ∈ V −
a,i and v ∈ V −

b,j . As in the previous part, we get that u ∈ V +
a and v ∈ V +

b . Now, using
Item 2 of Lemma 5.9, we get that degGa

(u) ≤ 2D and degGa
(v) ≤ 2D/qb, as desired.

5.6 Putting it all together: Proving Lemma 4.4

We are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. Define the event Egood (over the randomness in Lines 19 and 23) that for all
a, b ∈ [k] and i, j ∈ [ℓ], it holds that:

A−w(a, b, i, j)− ϵ′

(kℓ)2
≤ Â(a, b, i, j) ≤ A+w(a, b, i, j) +

ϵ′

(kℓ)2
.

Observe that Lemma 4.4 is the same as showing Pr
(
Egood

)
≥ 99/100. We show this by upper

bounding the probability of the complement event. Using a union bound, we have:

Pr
(
Egood

)
≤ Pr

(
Eof1 ∨ Edeg ∨ Ebias ∨ Ecount1

)
+ Pr

(
Egood | Eof1, Edeg, Ebias, Ecount1

)
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≤ 4

1000
+ Pr

(
Egood | Eof1, Edeg, Ebias, Ecount1

)
. (Lemmas 5.1, 5.5, 5.11 and 5.21)

Thus, it suffices to bound the last term by 2
1000 . For this, note that the events Eof1, Edeg, Ebias,

and Ecount1 are all determined by the randomness in Line 23, or equivalently by the graphs G[k] =
G1, . . . ,Gk. Thus, it suffices to show that for any G[k] such that all the events Eof1, Edeg, Ebias, and

Ecount1 occur, we have Pr
(
Egood | G[k]

)
≤ 1

1000 . Fix such a G[k]. By another union bound, we have:

Pr
(
Egood | G[k]

)
≤ Pr

(
EG[k]

of2 ∨ E
G[k]

count2 | G[k]
)

+ Pr
(
Egood | G[k], E

G[k]

of2 , E
G[k]

count2

)
≤ 2

1000
+ Pr

(
Egood | G[k], E

G[k]

of2 , E
G[k]

count2

)
, (Lemmas 5.2 and 5.24)

where the last inequality also uses the fact that EG[k]

count2 and EG[k]

of2 are determined by the randomness
in Line 19 and therefore, independent of G[k]. To finish the proof, we show that for any choice of

the randomness in Lines 19 and 23 such that the events G[k], E
G[k]

of2 , and EG[k]

count2 occur, the event
Egood also occurs. Fix such a randomness for the rest of the proof. Note that fixing this randomness
fixes the value of all the random variables defined above and also fixes the value of all variables in
Algorithms 3 and 4. Henceforth, we shall often abuse notation and use the name of the random

variable to denote the value it is fixed to, e.g., X
G[k],−
a,b,i,j will denote the value X

G[k],−
a,b,i,j is fixed to. We

use a similar notation for variables. We first claim that, for all a, b ∈ [k] and i, j ∈ [ℓ], we have:

X
G[k],−
a,b,i,j ≤ Â(a, b, i, j) · papbqmin{a,b}m ≤ X

G[k],+

a,b,i,j . (5.25)

We prove Eq. (5.25) later but assuming it for now, we get from Lemmas 5.23 and 5.24 that (for all
a, b ∈ [k] and i, j ∈ [ℓ]):

Y −
a,b,i,j

qmin{a,b}m
− ϵ′

2(kℓ)2
≤ Â(a, b, i, j) ≤

Y +
a,b,i,j

qmin{a,b}m
+

ϵ′

2(kℓ)2
.

Continuing using Lemmas 5.19 and 5.21, we get (for all a, b ∈ [k] and i, j ∈ [ℓ]):

A−w(a, b, i, j)− ϵ′

(kℓ)2
≤ Â(a, b, i, j) ≤ A+w(a, b, i, j) +

ϵ′

(kℓ)2
,

as desired. It remains to prove Eq. (5.25). We only show the second inequality as the proof for
the first one is analogous. For this, fix a, b ∈ [k] and i, j ∈ [ℓ] and note from Eq. (4.3) that

Â(a, b, i, j) · papbqmin{a,b}m = AEsta,b,i,j . Thus, it suffices to show that AEsta,b,i,j ≤ X
G[k],+

a,b,i,j . For
this, we first combine Line 36 with Item 2 of Lemma 5.16 to get:

AEsta,b,i,j ≤
∑

(u,v)∈eStoredmin{a,b}∩(vEsta,i×vEstb,j)

ν+w,k,ℓ
(
db-indd,tG (u, v)

)
.

To continue, we claim that eStoredmin{a,b}∩(vEsta,i×vEstb,j) = Gmin{a,b}∩(vEsta,i×vEstb,j). As
the ⊆ part is trivial, it suffices to show that ⊇ part. Fix any (u, v) ∈ Gmin{a,b} ∩ (vEsta,i× vEstb,j).
Applying Item 3 of Lemma 5.3 implies that (u, v) ∈ eStoredmin{a,b} and we are done. With this
claim, we get:

AEsta,b,i,j ≤
∑

(u,v)∈Gmin{a,b}∩(vEsta,i×vEstb,j)

ν+w,k,ℓ
(
db-indd,tG (u, v)

)
.
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Next, applying Item 1 of Lemma 5.16 to get vEsta,i × vEstb,j =
(
V̂a,i ∩ Sa

)
×
(
V̂b,j ∩ Sb

)
. The

latter equals
(
V̂a,i × V̂b,j

)
∩ (Sa × Sb) and we get:

AEsta,b,i,j ≤
∑

(u,v)∈(V̂a,i×V̂b,j)∩Gmin{a,b}

1u∈Sa1v∈Sb
ν+w,k,ℓ

(
db-indd,tG (u, v)

)
.

To finish the proof, use Eqs. (5.17) and (5.22) and Lemma 5.15 to get

AEsta,b,i,j ≤
∑

(u,v)∈E+
a,b,i,j∩Gmin{a,b}

1u∈Sa1v∈Sb
ν+w,k,ℓ

(
db-indd,tG (u, v)

)
= X

G[k],+

a,b,i,j .

6 Analysis of the reduction: Proving Lemma 3.22

In this section, we prove several remaining lemmas from Section 3, which together will prove
Lemma 3.22.

6.1 Basic properties of windows

We begin by stating a number of basic facts about windows (presented only for the necessary
dimensions, for brevity).

Fact 6.1 (Size of 1D and 4D windows). The size of d-dimensional windows is bounded within a
factor of 2d. In particular,

• In one dimension, for every w < ℓ ∈ N and i ∈ [ℓ],

w + 1 ≤ |Winw,ℓ(i)| ≤ 2w + 1.

• In four dimensions, for every w < k, ℓ ∈ N and a, b ∈ [k], i, j ∈ [ℓ],

(w + 1)4 ≤ |Winw,k,ℓ(a, b, i, j)| ≤ (2w + 1)4.

Fact 6.2 (Size difference of 1D windows). For every w ≤ w′ < ℓ ∈ N and i ∈ [ℓ],

|Winw
′,ℓ(i) \Winw,ℓ(i)| ≤ 2(w′ − w).

Fact 6.3 (Symmetry of containment). Containment in windows is a symmetric property, i.e.,

• In two dimensions, for every w < ℓ ∈ N and i, j, i′, j′ ∈ [ℓ],

(i′, j′) ∈Winw,ℓ(i, j)⇐⇒ (i, j) ∈Winw,ℓ(i′, j′).

• In four dimensions, for every w < k, ℓ ∈ N and a, b, a′, b′ ∈ [k], i, j, i′, j′ ∈ [ℓ],

(a′, b′, i′, j′) ∈Winw,k,ℓ(a, b, i, j)⇐⇒ (a, b, i, j) ∈Winw,k,ℓ(a′, b′, i′, j′).

As a corollary, we have the following fact:
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Fact 6.4 (Counting containments). The number of windows a particular index is contained equals
the size of its window, i.e.,

• In two dimensions, for every w < ℓ ∈ N and i′, j′ ∈ [ℓ], the number of distinct windows
containing (i′, j′) is

|{(i, j) ∈ [ℓ]2 : Winw,ℓ(i, j) ∋ (i′, j′)}| = |Winw,ℓ(i′, j′)|.

• In four dimensions, for every w < k, ℓ ∈ N and a′, b′ ∈ [k], i′, j′ ∈ [ℓ], the number of distinct
windows containing (a′, b′, i′, j′) is

|{(a, b, i, j) ∈ [k]2 × [ℓ]2 : Winw,k,ℓ(a, b, i, j) ∋ (a′, b′, i′, j′)}| = |Winw,k,ℓ(a′, b′, i′, j′)|.

The following is essentially the triangle inequality for the ∞-norm, and roughly states that
“nearby windows look alike”:

Fact 6.5 (Triangle inequality for windows). For every w+w′ < k, ℓ ∈ N, and every a, b, a′, b′ ∈ [k],
i, j, i′, j′ ∈ [ℓ],

(a′, b′, i′, j′) ∈Winw
′,k,ℓ(a, b, i, j) =⇒Winw,k,ℓ(a′, b′, i′, j′) ⊆Winw+w′,k,ℓ(a, b, i, j).

6.2 Double-counting arguments: Proving Propositions 3.12 and 3.16

Proof of Proposition 3.12. We claim that the sum of entries in M∼w is the same as in M . Indeed,
this holds by Fact 6.4 and “double-counting”. In particular,

ℓ∑
i,j=1

M∼w(i′, j′) =
ℓ∑

i,j=1

∑
i′,j′∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′)M(i′, j′) (def. of M∼w)

=
ℓ∑

i′,j′=1

|{(i, j) ∈ [ℓ]2 : Winw,ℓ(i, j) ∋ (i′, j′)}| · ν∼w,ℓ(i′, j′)M(i′, j′)

(exchanging sums)

=

ℓ∑
i′,j′=1

|Winw,ℓ(i′, j′)| · ν∼w,ℓ(i′, j′)M(i′, j′) (Fact 6.4)

=
ℓ∑

i′,j′=1

M(i′, j′). (def. of ν∼w,ℓ)

Proof of Proposition 3.16. Recall M = Proj(A) and N = Proj(A∼w). We first want to show M∼w =
N . Again, we can do this by “double-counting”. Recall that Winw,k,ℓ(a, b, i, j) = Winw,k(a, b) ×
Winw,ℓ(i, j) (and thus ν∼w,k,ℓ(a, b, i, j) = ν∼w,k(a, b) · ν∼w,ℓ(i, j)). We have:

N(i, j) =

k∑
a,b=1

A∼w(a, b, i, j) (def. of N)
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=
k∑

a,b=1

∑
(a′,b′,i′,j′)∈Winw,k,ℓ(a,b,i,j)

ν∼w,k,ℓ(a′, b′, i′, j′)A(a′, b′, i′, j′) (def. of A∼w)

=
∑

(i′,j′)∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′)

 k∑
a,b=1

∑
(a′,b′)∈Winw,k(a,b)

ν∼w,k(a′, b′)A(a′, b′, i′, j′)


(exchanging sums)

=
∑

(i′,j′)∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′)

 k∑
a′,b′=1

|{(a, b) ∈ [k]2 : Winw,k(a, b) ∋ (a′, b′)}| · ν∼w,k(a′, b′)A(a′, b′, i′, j′)


(exchanging sums)

=
∑

(i′,j′)∈Ww,ℓ(i,j)

ν∼w,ℓ(i′, j′)

 k∑
a′,b′=1

A(a′, b′, i′, j′)

 (Fact 6.4)

=
∑

(i′,j′)∈Ww,ℓ(i,j)

ν∼w,ℓ(i′, j′)M(i′, j′) (def. of M)

= M∼w(i, j). (def. of M∼w)

Now, consider an array Â ∈ Ak,ℓ; recall, M̂ = Proj(Â), and we want to show that ∥M̂−M∼w∥1 ≤
∥Â−A∼w∥1. This follows essentially from the triangle inequality. Indeed:

∥M̂ −M∼w∥1 =

ℓ∑
i,j=1

|M̂(i, j)−M∼w(i, j)| (def. of ∥ · ∥1)

=

ℓ∑
i,j=1

|M̂(i, j)−N(i, j)| (first part of lemma)

=
ℓ∑

i,j=1

∣∣∣∣∣∣
k∑

a,b=1

Â(a, b, i, j)−
k∑

a,b=1

A∼w(a, b, i, j)

∣∣∣∣∣∣ (defs. of M̂,N)

≤
k∑

a,b=1

ℓ∑
i,j=1

∣∣∣Â(a, b, i, j)−A∼w(a, b, i, j)
∣∣∣ (triangle ineq.)

= ∥Â−A∼w∥1. (def. of ∥ · ∥1)

6.3 Accounting for errors: Proving Corollary 3.4 and Lemma 3.22

Proof of Corollary 3.4. First, we observe that WLOG t = tFJ and r = rFJ, i.e., there is no re-
finement. This is because given a general refinement t ∈ Tℓ of tFJ, and an estimate M̂ ∈ Mℓ

for BiasMatG,t, we can naturally define a (less refined) estimate M̂ ′ ∈ Mℓ
FJ for BiasMatG,tFJ

by
collapsing t-intervals in the same tFJ-interval into a single entry.16 By the triangle inequality,

16Formally, M̂ ′ is defined via M̂ ′(i, j) =
∑

i′:indtFJ (ti′ )=i

∑
j′:indtFJ (tj′ )=j M̂(i′, j′); each entry of M̂ contributes to a

unique entry of M̂ ′.
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∥M̂ ′ − BiasMatG,tFJ
∥1 ≤ ∥M̂ − BiasMatG,t∥1. Finally, since r = (r1, . . . , rℓ) is inherited from

rFJ = (r∗1, . . . , r
∗
ℓFJ

), we have
∑ℓ

i,j=1 ri(1− rj)M̂(i, j) =
∑ℓFJ

i,j=1 r
∗
i (1− r∗j )M̂ ′(i, j).

Now, let M = BiasMatG,t and δ(i, j) = M̂(i, j)−M(i, j). We have

ℓ∑
i,j=1

ri(1− rj)M̂(i, j) =

ℓ∑
i,j=1

ri(1− rj)M(i, j) +

ℓ∑
i,j=1

ri(1− rj)δ(i, j).

Our goal is essentially to bound the second term on the right-hand side. Indeed, since ∥M̂−M∥1 =∑ℓ
i,j=1 |δ(i, j)| ≤ ϵ, the triangle inequality gives

∣∣∣∑ℓ
i,j=1 δ(i, j)

∣∣∣ ≤ ϵ. Further, 0 ≤ ri, rj ≤ 1, so

0 ≤ ri(1− rj) ≤ 1, so
∣∣∣∑ℓ

i,j=1 ri(1− rj)δ(i, j)
∣∣∣ ≤ ϵ. Thus, we can conclude

ℓ∑
i,j=1

ri(1− rj)M(i, j)− 2ϵ ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− ϵ ≤
ℓ∑

i,j=1

ri(1− rj)M(i, j),

which yields the desired inequality by Lemma 3.3.

Proof of Lemma 3.22. Recall A = BiasDegArrG,d,t. By Corollary 3.21, we have ∥Â − A∼w∥1 ≤
ϵerr(kℓ)

2 + Cwin/w. Letting M = BiasMatG,t, by Fact 3.9 we have M = Proj(A). Thus, by

Proposition 3.16, we have ∥M̂ −M∼w∥1 ≤ δerr
def
= ϵerr(kℓ)

2 + Cwin/w.
By Lemma 3.13, there exists a weighted graph H with bias matrix N = BiasMatH,t such that

∥N −M∼w∥1 ≤ δbias
def
= Csmoothϵbias(w + 1) and |valG − valH| ≤ δbias. By the triangle inequality,

∥N − M̂∥1 ≤ δerr + δbias. Now by Corollary 3.4,

αFJvalH − 2(δerr + δbias) ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− (δerr + δbias) ≤ valH.

By our assumed bound on valH, we get

αFJ(valG − δbias)− 2(δerr + δbias) ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− (δerr + δbias) ≤ valG + δbias,

and thus

αFJ(valG − δbias)− (2δerr + 3δbias) ≤
ℓ∑

i,j=1

ri(1− rj)M̂(i, j)− δ ≤ valG ,

and the left-hand side is at least (αFJ − ϵ)valG since valG ≥ 1
4 and αFJ ≤ 1.

6.4 “Sandwiching”: Proving Lemma 3.20

Now we prove Lemma 3.20, bounding the 1-norm between A−w and A+w for an array A ∈ Ak,ℓ
∆ .

We begin with the following lemma:

Lemma 6.6 (“Borders of 4D windows are effectively 3D”). There exists a universal constant
C ′
win > 0 such that for every w < k, ℓ ∈ N, and a, b ∈ [k], i, j ∈ [ℓ], |Winw+1,k,ℓ(a, b, i, j) \

Winw−1,k,ℓ(a, b, i, j)| ≤ C ′
winw

3.
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Proof. Let w−
1 = |Winw−1,k(a)| and w+

1 = |Winw+1,k(a)| denote the sizes of the 1-dimensional
windows around a of sizes w−1 and w+ 1, respectively. By Fact 6.1, we have w−

1 ≤ 2(w−1) + 1 =
2w − 1. By Fact 6.2, we have w+

1 ≤ w−
1 + 4.

We can similarly define w−
2 , w

+
2 , w

−
3 , w

+
3 , w

−
4 , w

+
4 , and then we have

|Winw+1,k,ℓ(a, b, i, j)−Winw−1,k,ℓ(a, b, i, j)| = w+
1 w

+
2 w

+
3 w

+
4 − w−

1 w
−
2 w

−
3 w

−
4

≤ (w−
1 + 4)(w−

2 + 4)(w−
3 + 4)(w−

4 + 4)− w−
1 w

−
2 w

−
3 w

−
4

= 4C3 + 16C2 + 64C1 + 256

where Ct denotes the degree-t symmetric polynomial evaluated on w−
1 , w

−
2 , w

−
3 , w

−
4 (i.e., it sums

the products of sets of t values). Combining with the upper-bounds on w−
i , we conclude

4

(
4

3

)
(2w − 1)3 + 16

(
4

2

)
(2w − 1)2 + 64

(
4

1

)
(2w − 1) + 256 = 16(8w3 + 12w2 + 14 + 5),

so setting C ′
win = 16(8 + 12 + 14 + 5) = 624 is sufficient.

Now, we prove Lemma 3.20:

Proof of Lemma 3.20. We begin by examining the difference δ(a, b, i, j) = A+w(a, b, i, j) −
A−w(a, b, i, j) in a single entry. Note that δ(a, b, i, j) ≥ 0 for all a, b, i, j since A’s entries are
nonnegative. We have

δ(a, b, i, j) =
∑

(a′,b′,i′,j′)∈Winw−1,k,ℓ(a,b,i,j)

(ν+w,k,ℓ(a′, b′, i′, j′)− ν−w,k,ℓ(a′, b′, i′, j′))A(a′, b′, i′, j′)

+
∑

(a′,b′,i′,j′)∈Winw+1,k,ℓ(a,b,i,j)\Winw−1,k,ℓ(a,b,i,j)

ν+w,k,ℓ(a′, b′, i′, j′)A(a′, b′, i′, j′).

In other words, the error comes from two places: Different normalizations inside Winw−1,k,ℓ(a, b, i, j),
and then extra entries in Winw+1,k,ℓ(a, b, i, j) which are not counted at all in Winw−1,k,ℓ(a, b, i, j).

Recall that

ν+w,k,ℓ(a′, b′, i′, j′) = max
(a′′,b′′,i′′,j′′)∈Win1,k,ℓ(a′,b′,i′,j′)

1/|Winw,k,ℓ(a′′, b′′, i′′, j′′)|.

Now by the triangle inequality for windows (Fact 6.5), we have Winw−1,k,ℓ(a′, b′, i′, j′) ⊆
Winw,k,ℓ(a′′, b′′, i′′, j′′) where (a′′, b′′, i′′, j′′) is the maximizing index in ν+w,k,ℓ; thus,
ν+w,k,ℓ(a′, b′, i′, j′) ≤ 1/|Winw−1,k,ℓ(a′, b′, i′, j′)|. Similarly, ν−w,k,ℓ(a′, b′, i′, j′) ≥
1/|Winw+1,k,ℓ(a′, b′, i′, j′)|. So

ν+w,k,ℓ(a′, b′, i′, j′)−ν−w,k,ℓ(a′, b′, i′, j′) ≤ |Winw+1,k,ℓ(a′, b′, i′, j′)| − |Winw−1,k,ℓ(a′, b′, i′, j′)|
|Winw+1,k,ℓ(a′, b′, i′, j′)| · |Winw−1,k,ℓ(a′, b′, i′, j′)|

≤ C ′
winw

−5,

where we upper-bound the numerator by C ′
winw

3 with Lemma 6.6 and lower-bound the denominator
by w8 with Fact 6.1. Hence we can write

δ(a, b, i, j) ≤ C ′
winw

−5
∑

(a′,b′,i′,j′)∈Winw−1,k,ℓ(a,b,i,j)

A(a′, b′, i′, j′)

+ w−4
∑

(a′,b′,i′,j′)∈Winw+1,k,ℓ(a,b,i,j)\Winw−1,k,ℓ(a,b,i,j)

A(a′, b′, i′, j′),
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where for the second term we use that ν+w,k,ℓ(a′, b′, i′, j′) ≥ 1/|Winw+1,k,ℓ(a′, b′, i′, j′)| ≥ w−4 (by
Facts 6.1 and 6.5).

Finally, we bound ∥A+w−A−w∥1 =
∑k

a,b=1

∑ℓ
i,j=1 δ(a, b, i, j) by double-counting and symmetry

of inclusion in windows (Facts 6.3 and 6.4). In particular, an entry A(a′, b′, i′, j′) will be counted
|Winw−1,k,ℓ(a′, b′, i′, j′)| ≤ 16w4 times in the first sum (by Fact 6.1), and |Winw+1,k,ℓ(a′, b′, i′, j′) \
Winw−1,k,ℓ(a′, b′, i′, j′)| ≤ C ′

winw
3 times in the second sum, giving an overall bound of ∥A+w −

A−w∥1 ≤ 17∥A∥1C ′
win/w, which is the desired bound when Cwin = 17C ′

win (since ∥A∥1 = 1 by
assumption).

6.5 “Smoothing graphs”: Proving Lemma 3.13

In this section, we prove Lemma 3.13. We construct H based on G in two stages: First, we construct
an intermediate (weighted) graph K by “blowing up” each vertex of G (which preserves biases of
vertices and the Max-DICUT value). Then, we slightly modify K to form the (weighted) graph H
by perturbing the bias at each vertex, and argue that this does not change the Max-DICUT value
too much.

We begin with some notation. We label the vertices of G by [n] = {1, . . . , n}. We assume
WLOG that G has no isolated vertices (if not, we simply remove all isolated vertices and analyze
the new graph; this doesn’t affect BiasMatG,t or valG).

6.5.1 Defining K via (weighted) blowups

First, given G, we construct a graph K as follows. For each vertex v ∈ [n], in K we create

|Winw,ℓ(b-indtG(v))| distinct vertices labeled {v} ×Winw,ℓ(b-indtG(v)). Thus, K has vertex-set V def
=⋃n

v=1{v} ×Winw,ℓ(b-indtG(v)).
Now if AdjMatG(u, v) is the (positive) weight of an edge u→ v in G, we divide its weight evenly

among all the copies of u and v in K, i.e., we place weight

AdjMatK(u, i′, v, j′)
def
= ν∼w,ℓ(b-indtG(u, v)) · AdjMatH(u, v) (6.7)

on all edges (u, i′)→ (v, j′) for (i′, j′) ∈Winw,ℓ(b-indtG(u, v)).17

We claim that K has the following properties:

Claim 6.8. For every vertex v ∈ [n] and i′ ∈Winw,ℓ(b-indtG(v)), we have:

1. deg-outK(v, i′) = deg-outG(v) · |Winw,ℓ(b-indtG(v))|−1.

2. deg-inK(v, i′) = deg-inG(v) · |Winw,ℓ(b-indtG(v))|−1.

3. degK(v, i′) = degG(v) · |Winw,ℓ(b-indtG(v))|−1.

4. biasK(v, i′) = biasG(v).

Further, mG = mK and valG = valK.

The proof is basically a series of double-counting arguments using the definition of K, and we
defer it until the end of the section.

17Recall ν∼w,ℓ(i, j) = |Winw,ℓ(i, j)|.
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6.5.2 Constructing H via perturbations

Now, we construct H by modifying K. We begin with a new graph H0 consisting of a copy of K
and a new isolated vertex (⋆, ⋆), so that H0 has vertex-set V ∪ {(⋆, ⋆)}, and let V∗ =

⋃
v∈[n]({v} ×

(Winw,ℓ(b-indtG(v))) \ {b-indtG(v)})) ⊆ V denote the set of vertices whose biases we’d like to modify.

We let m0
def
= mG = mK = mH0 denote the total weight in G, K, and H0 (which coincide by

Claim 6.8).
Next, we iteratively modify the biases of vertices using the following claim, which roughly lets

us decrease the bias of a vertex (v, i′) ∈ V∗ by increasing its in-degree and decreasing its out-degree,
or increase the bias of a vertex by increasing its out-degree and decreasing its in-degree, “without
modifying the graph too much”.

Claim 6.9. Let L be any weighted graph on vertex-set V ∪ {(⋆, ⋆)}. For every (v, i′) ∈ V∗, 0 ≤ α,
and 0 ≤ β ≤ deg-outL(v, i′), there exists an “updated” graph L′ on vertex-set V ∪ {(⋆, ⋆)}, such
that:

1. “All vertices except (v, i′) and (⋆, ⋆) stay the same”: For all (u, j′) ̸= (v, i′) ∈ V,
deg-outL′(u, j′) = deg-outL(u, j′) and deg-inL′(u, j′) = deg-inL(u, j′).

2. “(v, i′)’s change is controlled”: deg-outL′(v, i′) = deg-outL(v, i′) − β and deg-inL′(v, i′) =
deg-inL(v, i′) + α.

3. “The new weight added is bounded”: mL′ = mL + α.

4. “Changes in weight are bounded”: ∥AdjMatL′ − AdjMatL∥1 = α + 2β.

The same holds when we swap deg-out’s with deg-in’s.

A few quick remarks: Note that AdjMatL and AdjMatL′ are not normalized, so in Item 4 we
are simply summing the magnitude of the change in weight from L to L′ over every edge. Also,
in general the out- or in-degree of (⋆, ⋆) will have to change in order to ensure the first two items
hold; the second two items state that this doesn’t cause too many problems for us.

Proof of Claim 6.9. Suppose we are decreasing the bias of (v, i′) — the other case is analogous.
Roughly, here is the process: We start by setting L′ to be the same as L; we will only adjust the
weights of a few edges. We increase the weight of the edge (⋆, ⋆)→ (v, i′) by α. Then, we arbitrarily
distribute weight β among out-edges (v, i′) → (u, j′) and then transfer this distribution to edges
(⋆, ⋆)→ (u, j′).

More formally, we do the following. For each (u, j′) ̸= (v, i′) ∈ V, we pick a coeffi-
cient 0 ≤ β(u,j′) ≤ AdjMatL(v, i′, u, j′) such that

∑
(u,j′ )̸=(v,i′)∈V β(u,j′) = β; this is possi-

ble as β ≤ deg-outL(v, i′) =
∑

(u,j′ )̸=(v,i′)∈V AdjMatL(v, i′, u, j′) by assumption, and so β(u,j′)’s

can be picked greedily. Now we define the adjacency matrix of the new graph L′ as follows:
We set AdjMatL′(⋆, ⋆, v, i′) = AdjMatL(⋆, ⋆, v, i′) + α. For each (u, j′) ̸= (v, i′) ∈ V, we set
AdjMatL′(v, i′, u, j′) = AdjMatL(v, i′, u, j′)−β(u,j′) and AdjMatL′(⋆, ⋆, u, j′) = mL(⋆, ⋆, u, j′)+β(u,j′).
Finally, for all remaining edges, i.e., (w, k′), (u, j′) ̸= (v, i′) ∈ V, we set AdjMatL′(w, k′, u, j′) =
AdjMatL(w, k′, u, j′). The four desiderata follow immediately from this construction.

Now consider an arbitrary vertex (v, i′) ∈ V∗, and suppose WLOG i′ < b-indtG(v), so we are
aiming to decrease biasH0(v, i′). Arbitrarily pick some “target bias” b∗ such that indt(b∗) = i′.
Consider setting

α, β :=
1

2
(biasH0(v, i′)− b∗) degH0

(v, i′).
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Since biasH0(v, i′) = biasG(v) and i′ ∈Winw,ℓ(b-indtH0
(v)), we know (biasH0(v, i′)−b∗) ≤ ϵbias(w+1).

Then since t is ϵbias-wide, we have

α, β ≤ 1

2
ϵbias(w + 1) degH0

(v, i′). (6.10)

Moreover, if we apply Claim 6.9 with L = H0, then we get a new graph H1 = L′ in which (v, i′)
has bias

biasH1(v, i′) =
(deg-outH0(v, i′)− β)− (deg-inH0(v, i′) + α)

(deg-outH0(v, i′)− β) + (deg-inH0(v, i′) + α)

= biasH0(v, i′)− 2β

degH0
(v, i′)

= b∗

and the in- and out-degrees of all other vertices except (⋆, ⋆) are fixed. We can apply this procedure
to all vertices in V∗ whose biases need to be decreased, along with the analogous procedure for
vertices in V∗ whose biases need to be increased. After applying this operation to every vertex in
V∗, we end up with a graph which we’ll denote H, which has the following properties:

Claim 6.11. For every vertex (v, i′) ∈ V, b-indtH(v, i′) = i′. Also, m0 ≤ mH ≤ (1+ ϵbias(w+1))m0

and ∥AdjMatH − AdjMatH0
∥1 ≤ 3ϵbias(w + 1)m0.

Proof. When we constructed H from H0, when modifying a vertex (v, i′) ∈ V∗, Eq. (6.10) says we
set α, β ≤ 1

2ϵbias(w + 1)degH0
(v, i′); hence, by Claim 6.9,

m0 ≤ mH ≤ m0 +
1

2

∑
(v,i′)∈V∗

ϵbias(w + 1)degH0
(v, i′) = (1 + ϵbias(w + 1))m0

since m0 = mH = 1
2

∑
(v,i′)∈V∪{(⋆,⋆)} degH(v, i′)) is the total weight inH and V∗ ⊆ V∪{(⋆, ⋆)}. Simi-

larly, by Claim 6.9 and the triangle inequality, we can bound the distance between the unnormalized
adjacency matrices of H and H0:

∥AdjMatH − AdjMatH0
∥1 ≤

1

2

∑
(v,i′)∈V∗

3ϵbias(w + 1)degH0
(v, i′) ≤ 3ϵbias(w + 1)m0.

6.5.3 Proving that H fulfills the desiderata

Now, we claim that H fulfills the two desiderata (i.e., the upper bounds on |valG − valH| and
∥BiasMat∼w

G,t − BiasMatH,t∥1), proving the lemma.

Proof of Lemma 3.13. According to our definition, both valG and BiasMatG,t are normalized by mG
(the total weight in G), and the same goes for H. Towards both proofs, it will be convenient for
us to first bound the distance between the unnormalized variants of these objects, and then argue
that mH ≈ mG and therefore the normalized versions are close as well. We set Csmooth = 7.
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Upper-bounding |valG − valH|. Recall that valK = valG . Further, valH0 = valK as H0 simply
adds an isolated vertex (i.e., (⋆, ⋆)).

Now let
h = mHvalH and g = m0valH0

denote the unnormalized Max-DICUT values of H and H0, respectively. We claim that |g − h| ≤
∥AdjMatH − AdjMatH0

∥1 (and thus, |g − h| ≤ 3ϵbias(w + 1)m0 by Claim 6.11). Observe that

|g − h| =
∣∣∣∣ max
y∈{0,1}V∗

mHvalH(y)− max
y∈{0,1}V∗

m0valH0(y)

∣∣∣∣ ≤ ∣∣∣∣ max
y∈{0,1}V∗

(mHvalH(y)−m0valH0(y))

∣∣∣∣ .
Indeed, if y ∈ {0, 1}V∗

is any assignment, we have

|mHvalH(y)−m0valH0(y)| =

∣∣∣∣∣∣
∑

(u,i′),(v,j′)∈V∪{(⋆,⋆)}

(AdjMatH(u, i′, v, j′)− AdjMatH0
(u, i′, v, j′)) · y(u,i′)(1− y(v,j′))

∣∣∣∣∣∣
≤

∑
(u,i′),(v,j′)∈V∪{(⋆,⋆)}

∣∣AdjMatH(u, i′, v, j′)− AdjMatH0
(u, i′, v, j′)

∣∣
(tri. ineq. and y(u,i′) ∈ {0, 1})

= ∥AdjMatH − AdjMatH0
∥1. (def. of ∥ · ∥1)

Finally, we can write

|valG − valH| =
∣∣∣∣ 1

m0
g − 1

mH
h

∣∣∣∣ =

∣∣∣∣ 1

m0
(g − h) + η

∣∣∣∣ ≤ 3ϵbias(w + 1) + η

by the triangle inequality, where η = h(1/m0−1/mH) = h(mH−m0)/(mHm0) is a “normalization
error” term. We can upper bound this error term:

η =
mH(mH −m0)valH

mHm0
≤ mH −m0

mH
≤ ϵbias(w + 1)

using valH ≤ 1 and Claim 6.11.

Upper-bounding ∥BiasMat∼w
G,t − BiasMatH,t∥1. Now, we analyze the distance between the un-

normalized matrices G = m0BiasMat∼w
G,t and H = mHBiasMatH,t. This suffices, similarly to the

case of the Max-DICUT values, as by the triangle inequality∥∥∥∥ 1

m0
G− 1

mH
H

∥∥∥∥
1

≤ 1

m0
∥G−H∥1 + η

where η = ∥H∥1(1/m0 − 1/mH) ≤ ϵbias(w + 1) as ∥H∥1 = mH.
The basic idea here is that if we consider an edge (u, v) in G, its weight AdjMatG(u, v) will con-

tribute (up to normalization) to the entries corresponding to Winw,ℓ(b-indtG(u, v)) in BiasMat∼w
G,t . In

particular, for each position (i′, j′) ∈Winw,ℓ(b-indtG(u, v)) which (u, v) contributes to in BiasMatG,t,
we have created a copy (u, i′, v, j′) in H which will contribute to the corresponding entry in
BiasMatH,t! This correspondence between contributions is not exact: our construction of H slightly
modified the weights inherited from G, and introduced a new vertex (⋆, ⋆) with uncontrolled bias,
but these issues can be taken care of with our bound on ∥AdjMatH − AdjMatH0

∥1.
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By definition, we have

H(i, j) =
∑

(u,i′),(v,j′)∈V

AdjMatH(u, i′, v, j′)1b-indtH(u,i′,v,j′)=(i,j)

+
∑

(u,i′)∈V

AdjMatH(u, i′, ⋆, ⋆)1b-indtH(u,i′,⋆,⋆)=(i,j)

+
∑

(v,j′)∈V

AdjMatH(⋆, ⋆, v, j′)1b-indtH(⋆,⋆,v,j′)=(i,j)

+ AdjMatH(⋆, ⋆, ⋆, ⋆)1b-indtH(⋆,⋆,⋆,⋆)=(i,j).

Now define the matrix H ′ by “forgetting about (⋆, ⋆)”, i.e., we only take the first term in the
expansion of H:

H ′(i, j) =
∑

(u,i′),(v,j′)∈V

AdjMatH(u, i′, v, j′)1b-indtH(u,i′,v,j′)=(i,j).

Note that ∥H−H ′∥1 = degH(⋆, ⋆) since every edge in H contributes to precisely one entry. Further,
since (⋆, ⋆) was isolated in H0, Claims 6.9 and 6.11 imply degH(⋆, ⋆) ≤ 3ϵbias(w + 1)m0. Thus, by
the triangle inequality, it suffices to prove that ∥G−H ′∥1 ≤ 3ϵbias(w + 1)m0.

Now H ′’s entries sum only over vertices in V (i.e., not (⋆, ⋆)), and we constructed H so that for
each vertex (v, i′) we have b-indtH(v, i′) = i′ (Claim 6.11). Thus, the (i, j)-th entry in H ′ counts
only edges (u, i′, v, j′) such that i = i′ and j = j′, so we can write

H ′(i, j) =
∑

(u,i)∈V

∑
(v,j)∈V

AdjMatH(u, i, v, j).

On the other hand, we have

m0BiasMatG,t(i, j) =
n∑

u,v=1

AdjMatG(u, v)1b-indtG(u,v)=(i,j)

and so we have

G(i, j) = m0

∑
(i′,j′)∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′)BiasMatG,t(i
′, j′) (def. of smoothing)

= m0

∑
(i′,j′)∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′) · 1

m0

n∑
u,v=1

AdjMatG(u, v)1b-indtG(u,v)=(i′,j′)

(def. of BiasMatG,t)

=
∑

(i′,j′)∈Winw,ℓ(i,j)

ν∼w,ℓ(i′, j′)
n∑

u,v=1

AdjMatG(u, v)1b-indtG(u,v)=(i′,j′) .

Now an edge (u, v) has a nonzero contribution iff (i, j) ∈ Winw,ℓ(b-indtG(u, v)), i.e., if
(u, i), (v, j) ∈ V; in this case, its contribution is precisely ν∼w,ℓ((b-indtG(u, v))) · AdjMatG(u, v) =
AdjMatK(u, i, v, j) = AdjMatH0

(u, i, v, j), so we can write

G(i, j) =
∑

(v,i)∈V

∑
(u,j)∈V

AdjMatH0
(u, i, v, j).
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This matches our expression for H ′(i, j), except that the weights come from H0 instead of H.
To complete the analysis:

∥G−H ′∥1 =

ℓ∑
i,j=1

∣∣∣∣∣∣
∑

(u,i)∈V

∑
(v,j)∈V

AdjMatH0
(u, i, v, j)−

∑
(u,i)∈V

∑
(v,j)∈V

AdjMatH(u, i, v, j)

∣∣∣∣∣∣
≤

ℓ∑
i,j=1

∑
(u,i)∈V

∑
(v,j)∈V

∣∣AdjMatH0
(u, i, v, j)− AdjMatH(u, i, v, j)

∣∣ (triangle ineq.)

≤
∑

(u,i′)∈V

∑
(v,j′)∈V

∣∣AdjMatH0
(u, i′, v, j′)− AdjMatH(u, i′, v, j′)

∣∣ (each term occurs once)

≤ ∥AdjMatH − AdjMatH0
∥1

≤ 3ϵbias(w + 1)m0, (Claim 6.11)

as desired.

6.5.4 Proof of Claim 6.8

Proof of Claim 6.8. For any v ∈ [n], any particular copy (v, i′) of a vertex v has out-degree

deg-outK(v, i′) =
n∑

u=1

∑
j′∈Winw,ℓ(b-indtG(u))

AdjMatK(v, i′, u, j′) (def. of deg-out)

=

n∑
u=1

∑
j′∈Winw,ℓ(b-indtG(u))

|Winw,ℓ(b-indtG(u, v))|−1 · AdjMatG(u, v) (def. of K)

= |Winw,ℓ(b-indtG(v))|−1
n∑

u=1

AdjMatG(u, v) (def. of 2D windows)

= |Winw,ℓ(b-indtG(v))|−1 deg-outG(v). (def. of deg-out)

Similarly, deg-inK(v, i′) = deg-inG(v) · |Winw,ℓ(b-indtG(v))|−1. Thus, their sum deg-outK(v, i′) =
deg-outG(v) · |Winw,ℓ(b-indtG(v))|−1, and their normalized difference biasK(v, i′) = biasG(v).

Next, we observe that

mK =
∑

(v,i′)∈V

deg-outK(v, i′)

=

n∑
v=1

∑
i′∈Win∼w,ℓ(b-indtG(v))

deg-outG(v) · |Win∼w,ℓ(b-indtG(v))|−1 (defs. of K and V)

=

n∑
v=1

deg-outG(v)

= mG .

Now, we claim that valG ≤ valH. Indeed, let x be any assignment for G. We can construct an
assignment y ∈ {0, 1}V to K’s vertices by simply giving each copy of a vertex in K its assignment
in G, i.e., y(v,i′) = xv. This assignment has value

valK(y) =
∑

(u,i′),(v,j′)∈V

AdjMatK(u, i′, v, j′)y(u,i′)(1− y(v,j′)) (def. of val)
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=

n∑
u,v=1

∑
(i′,j′)∈Winw,ℓ(b-indtG(u,v))

AdjMatK(u, i′, v, j′) y(u,i′)(1− y(v,j′)) (def. of V)

=

n∑
u,v=1

∑
(i′,j′)∈Winw,ℓ(b-indtG(u,v))

ν∼w,ℓ(b-indtG(u, v)) · AdjMatG(u, v) y(u,i′)(1− y(v,j′))

(def. of K)

=

n∑
u,v=1

∑
(i′,j′)∈Winw,ℓ(b-indtG(u,v))

ν∼w,ℓ(b-indtG(u, v)) · AdjMatG(u, v) xu(1− xv) (def. of y)

=

n∑
u,v=1

AdjMatG(u, v) xu(1− xv) (def. of ν∼w,ℓ)

= valG(x). (def. of val)

Conversely, let y be any assignment for K. We construct a probabilistic assignment x by, for
each vertex v ∈ [n], sampling i′ ∈ Winw,ℓ(b-indtG(v)) uniformly and independently at random, and
setting xv = y(v,i′). This assignment has expected value

E[valG(x)] = E

 n∑
u,v=1

AdjMatG(u, v)xu(1− xv)

 (def. of val)

=
n∑

u,v=1

AdjMatG(u, v)E[xu(1− xv)] (lin. of E)

=
n∑

u=1

∑
v ̸=u

AdjMatG(u, v)E[xu(1− xv)] (no self-loops in G)

=
n∑

u=1

∑
v ̸=u

AdjMatG(u, v)E[xu]E[1− xv] (independence)

=

n∑
u,v=1

∑
(i′,j′)∈Winw,ℓ(b-indtG(u,v))

ν∼w,ℓ(b-indtG(u, v)) · AdjMatG(u, v) y(u,i′)(1− y(v,j′)),

(def. of x)

which equals valK(y) by the previous calculation.
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A Proofs of preliminary lemmas

Proof of Lemma 2.9. For convenience, let m′ = mGspar denote the number of edges in Gspar, and

let p = pspar; for an assignment x ∈ {0, 1}V , let y(x)
def
= m · valG(x) and y′(x)

def
= m′ · valGspar(x)
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denote the (unnormalized) numbers of constraints satisfied by x in G and Gspar, respectively; and

g
def
= m · valG(x) = maxx∈{0,1}n y(x) and g′

def
= m′ · valGspar(x) = maxx∈{0,1}n y

′(x) denote the
(unnormalized) values of G and G’, respectively.

For each e ∈ E let Ie be the indicator random variable for the event that e survives in Gspar.
Thus, we can write m′ and y′(x) as sums of independent Bernp random variables:

m′ =
∑

(u,v)∈E

Ie and y′(x) =
∑

(u,v)∈E

Iexu(1− xv).

Our first goal is to show that w.h.p., |g′ − pg| ≤ ϵsparpg/2.

Lower-bounding g′. Consider any fixed assignment x∗ ∈ {0, 1}V maximizing G’s Max-DICUT
value, i.e., g = y(x∗). In particular, y(x∗) ≥ 1

4m. We have E[y′(x∗)] = py(x) = pg by linearity of
expectation, so by the Chernoff bound (Corollary 2.3),

Pr[y′(x∗) ≤ (1− ϵspar/2)pg] ≤ exp(−ϵ2sparpg/8).

Since g ≥ m/4, by our assumed bound on p, we get a bound of ≤ exp(−Csparn/32) = o(1). Since
g′ ≥ y′(x∗), we conclude g′ ≥ (1− ϵspar/2)pg except with probability o(1).

Upper-bounding g′. To prove an upper bound on g′, we take a union bound over all assignments
x ∈ {0, 1}n, and prove an o(2−n) bound on the probability that y′(x) ≥ (1 + ϵspar/2)pg.

Fix an assignment x ∈ {0, 1}V . Again, E[y′(x)] = py(x). We consider two cases depending
y(x). If y(x) ≤ m/12, we have

Pr[y′(x) ≥ (1 + ϵspar/2)pg] ≤ Pr[y′(x) ≥ pm/4] ≤ exp(−pm/8)

using g ≥ m/4 and Corollary 2.4. By our assumed bound on p this is exp(−Csparn/(8ϵ2spar)) =
o(2−n). Otherwise, we have

Pr[y′(x) ≥ (1 + ϵspar/2)pg] ≤ Pr[y′(x) ≥ (1 + ϵspar/2)py(x)] ≤ exp(−ϵ2sparpy(x)/12)

using g ≥ y(x) and Lemma 2.1 (with ϵspar ≤ 1). This is ≤ exp(−Csparn/144) = o(2−n) by
assumption on y(x) and p. Thus, even taking a union bound over all 2n assignments, we conclude
that g′ ≤ (1 + ϵspar/2)pg except with probability o(1).

Bounding m′. Finally, by the Chernoff bound (Corollary 2.3), we know

Pr[|m′ − pm| ≥ ϵsparpm/2] ≤ 2 exp(−ϵ2sparpm/12).

By assumption on p, this is at most 2 exp(−Csparn/12) which is o(1).

Putting the bounds together. It remains to prove a bound on |valG−valGspar |. As in Section 6.5,
we split into “real” and “normalization” error terms:

|valG − valGspar | =
∣∣∣∣ 1

m
g − 1

m′ g
′
∣∣∣∣ ≤ ∣∣∣∣ 1

m
g − 1

pm
g′
∣∣∣∣+

∣∣∣∣ 1

pm
− 1

m′

∣∣∣∣g′.
The first term can be bounded by ϵspar/2 since w.h.p. |g′ − pg| ≤ ϵsparpg/2 and g ≤ m. For the
second, using g′ ≤ m′ the term becomes |m′/pm − 1| = |m′ − pm|/(pm), which is at most ϵspar/2
since |m′ − pm| ≤ ϵsparpm/2.
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