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Abstract
We study the black-box function inversion problem, which is the problem of finding « € [N]
such that f(x) =y, given as input some challenge point y in the image of a function f : [N] —
[N], using T oracle queries to f and preprocessed advice o € {0,1}° depending on f. We prove
a number of new results about this problem, as follows.

1. We show an algorithm that works for any 7" and S satisfying
T5? . max{S,T} = O(N?).

In the important setting when S < T, this improves on the celebrated algorithm of Fiat
and Naor [STOC, 1991], which requires T'S® > N3. E.g., Fiat and Naor’s algorithm is
only non-trivial for S > N?/3 while our algorithm gives a non-trivial tradeoff for any
S > N1/2, (Our algorithm and analysis are quite simple. As a consequence of this, we
also give a self-contained and simple proof of Fiat and Naor’s original result, with certain
optimizations left out for simplicity.)

2. We show a non-adaptive algorithm (i.e., an algorithm whose ith query z; is chosen based
entirely on ¢ and y, and not on the f(z1),..., f(z;—1)) that works for any T and S
satisfying

S =O(Nlog(N/T)),

giving the first non-trivial non-adaptive algorithm for this problem. E.g., setting T' =
N/poly log(N) gives S = O(N loglog N). This answers a question due to Corrigan-Gibbs
and Kogan [TCC, 2019], who asked whether it was possible for a non-adaptive algorithm
to work with parameters T' and S satisfying T+ S/log N < o(N). We also observe that
our non-adaptive algorithm is what we call a guess-and-check algorithm, that is, it is non-
adaptive and its final output is always one of the oracle queries z1,...,zr. For guess-and-
check algorithms, we prove a matching lower bound, therefore completely characterizing
the achievable parameters (S, T) for this natural class of algorithms. (Corrigan-Gibbs and
Kogan showed that any such lower bound for arbitrary non-adaptive algorithms would
imply new circuit lower bounds.)

3. We show equivalence between function inversion and a natural decision version of the
problem in both the worst case and the average case, and similarly for functions f : [N] —
[M] with different ranges.

All of the above results are most naturally described in a model with shared randomness (i.e.,
random coins shared between the preprocessing algorithm and the online algorithm). However,
as an additional contribution, we show (using a technique from communication complexity due
to Newman [IPL, 1991]) how to generically convert any algorithm that uses shared randomness
into one that does not.
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1 Introduction

We revisit the fundamental problem of black-box function inversion. That is, we study the problem
of finding x € [N] such that f(z) = y, given as input some challenge point y in the image of
f : [N] — [N] and oracle access to f.

Of course, given only oracle access to f, inverting general functions f will clearly require roughly
N queries, which is not very interesting. However, if we allow our inversion algorithm access to
some additional information about f, then inversion might be possible with much fewer queries.
So, we consider the following model. First, using unlimited computational power, a preprocessing
algorithm P analyzes f and outputs S bits of advice o € {0,1}°. Then, an online algorithm A is
given a point ¥ in the image of f, the advice o, and oracle access to f and, using at most T" oracle
queries, must output some x such that f(x) = y. We wish to design such algorithms that minimize
the complexity measures S and T', which are often referred to informally as “space” and “time.”
For example, notice that it is trivial to invert f if S/log N +T > N, by simply including the first
S/log N values of f as advice and querying the remaining N — S/log N < T values.

This model is very well studied, since it arises naturally in a number of contexts, from cryptog-
raphy [Hel80, Ya090, FN91, GT00, Wee05, Unr07, DTT10, DGK17, CDGS18, CDG18, CK19]
(where an appropriate version of this problem corresponds to the problem of breaking a
black-box one-way function in the non-uniform model) to data structures and complexity the-
ory [Yao90, CK19, GGH'20, DKKS21]. Indeed, many variants of the problem have been studied.
For example, we might ask for algorithms that invert arbitrary functions f [FN91], random functions
f [Hel80] (in which case the algorithm should work with reasonable probability over the function f),
or special classes of functions f, like permutations [Yao90]; or one might place restrictions on the
algorithm by, e.g., requiring the oracle queries to be non-adaptive [CK19, CHM20] or requiring that
the algorithm otherwise has some special structure [BBS06]. Other work has considered stronger
models of computation, such as quantum algorithms [NABT15, CLQ20, CGLQ20].

In his celebrated 1980 work, Hellman [Hel80] published the first non-trivial function inversion
algorithm. Hellman’s algorithm inverts random functions for any S and T satisfying 7. > N2,
under certain heuristic assumptions. (Here and elsewhere in the introduction, we use 2 to represent
an inequality that holds up to factors polylogarithmic in N.) In their seminal 1991 paper, Fiat
and Naor [FN91] presented an algorithm that (1) provably achieves Hellman’s tradeoff for random
functions f; and (2) achieves a different non-trivial tradeoff for any function f. Specifically, their
algorithm can invert any function f provided that S and T satisfy

TS > N3 . (1)

For example, when 7' = S, this works for any S = T' > N3/4, while the result becomes trivial for
S < N?/3 (since in that case they require 7' > N, which can be matched by the trivial algorithm).
Despite thirty years of effort, no improvements have been made to Eq. (1). This has naturally led
to a search for matching lower bounds. Indeed, Barkan, Biham, and Shamir showed that Hellman’s
algorithm (or Fiat and Naor’s variant with proven correctness) gives essentially the optimal tradeoff
between S and T for inverting random functions if we restrict our attention to a certain rather
specific class of algorithms [BBS06]. However, the best known lower bound [Ya090, GT00, DTT10]
against arbitrary algorithms (which applies for random functions and even random permutations)
only says that S and T must satisfy
ST Z N, (2)



which is much weaker than Eq. (1). (While the lower bound in Eq. (2) is quite far from the best
upper bounds known for arbitrary functions or even for random functions, it is actually known to
be tight in the special case when the function f is a permutation [Hel80].)

Corrigan-Gibbs and Kogan explained the lack of progress on lower bounds by showing that
any significant improvement to the lower bound in Eq. (2) would yield a breakthrough in circuit
lower bounds [CK19]. (See also [DKKS21], which showed that lower bounds on function inversion
are closely related to many other major open problems, such as the hardness of sorting and the
Network Coding Conjecture.) In fact, [CK19] showed that even a lower bound against non-adaptive
algorithms that improves upon Eq. (2) would imply new circuit lower bounds. An online algorithm
A is non-adaptive if the queries x1,...,zp that it makes to its oracle are functions only of its
input ¥, the preprocessed advice o, and shared randomness r—i.e., if x;11 is chosen independently
of the answers f(z1),..., f(x;) to the previous queries. This result is quite tantalizing because (1)
all of the non-trivial algorithms described above rely crucially on adaptive queries; (2) very strong
lower bounds are in fact known for slightly weaker models [CHM20]; and (3) it seems intuitively
clear that non-adaptive algorithms should not be able to do much better than the trivial algorithm,
which requires S/log N+T > N. (Notice that in the context of non-adaptive algorithms, we do not
leave out logarithmic factors, as even small improvements are interesting here.) Indeed, Corrigan-
Gibbs and Kogan naturally speculated that no non-adaptive algorithm can do significantly better
than the trivial algorithm—specifically, that no non-adaptive algorithm can solve function inversion
with S < o(Nlog N) and T < o(N).

1.1 Our results

Improving on the Fiat-Naor algorithm for 7" > S.  Our first main result is an algorithm
that inverts any function f : [N] — [N] on any challenge y for any 7" and S satisfying

T28%* > N3 . (3)

Recall that the original Fiat-Naor algorithm requires 793 > N3 (as in Eq. (1)). So, our
algorithm is better than Fiat and Naor’s algorithm if (and only if) 77 > S. This is arguably
the most interesting setting, since non-uniform advice is arguably a more expensive resource than
queries (as Hellman pointed out in [Hel80]).! In particular, our algorithm remains non-trivial (i.e.,
outperforms the trivial algorithm that requires S + 7 2 N) as long as S 2 N 172 whereas the
original Fiat-Naor algorithm is trivial for S < N?/3,

In fact, our algorithm is a surprisingly simple variant of Fiat and Naor’s original. Our presen-
tation of the algorithm and its analysis is also notably simpler. So, as an additional benefit, we
also give a significantly simpler presentation of the original result in [FN91].? Indeed, we present
the two algorithms together, as a single algorithm (that behaves differently in one step depending
on whether S > T') that solves function inversion for any S and T satisfying

TS? - max{S,T} > N?. (4)

"However, a big part of the reason that advice is considered to be expensive is because memory is often considered
to be more expensive than computing time. Unfortunately, though our algorithm can use much less than T bits of
advice, our online algorithm still must use roughly T bits of space. So, though we do show an algorithm that uses
less advice, we do not show an algorithm that uses less space.

2 Admittedly, this simplicity is partially (though not entirely) due to the fact that we chose not to optimize for
parameters other than S and T, while Fiat and Naor were quite careful to optimize, e.g., the actual running time
and space of both the query algorithm and the preprocessing algorithm. See Section 1.4 for more discussion.



In other words, we give a unified presentation that achieves the best of both worlds, matching the
original tradeoff achieved by Fiat and Naor in Eq. (1) and our new tradeoff in Eq. (3).

A better-than-trivial non-adaptive algorithm, and a matching lower bound. Our sec-
ond main result addresses Corrigan-Gibbs and Kogan’s question about whether non-trivial non-
adaptive algorithms are possible. Though [CK19] naturally speculated that such algorithms were
not possible, we show an algorithm that (slightly) outperforms the trivial algorithm.

Specifically, we show a non-adaptive algorithm that inverts any function f using 7' queries for
any T < N and preprocessed advice with bit length

S =O(Nlog(N/T)) . (5)

For example, for T = N/log® N for any constant C' > 0, our algorithm uses S = O(N loglog N) bits
of advice. Recall that the trivial algorithm (which is also non-adaptive) requires S/log N+T > N.
So, our algorithm beats the trivial algorithm by a polylogarithmic factor. As another example, we
can take, e.g., S = O(N logloglog N) and T'= O(N/loglog N).

Our algorithm is relatively simple. (See Section 1.2 for a high-level description and Section 4 for
the details.) In particular, it has the natural property that it always outputs one of its query points
x;. In other words, the online algorithm takes as input a challenge point y € [N] in the image of f
and preprocessed advice o € {0,1}° (and any shared randomness), uses these to (non-adaptively!)
choose a list of queries z1,...,2p € [N], and outputs an z; such that f(z;) = y (if one exists).
We call algorithms with this property guess-and-check (non-adaptive) algorithms, since such an
algorithm can be viewed as using its queries to check whether any of its guesses x1,...,x7 are in
fact a preimage of 7.3

To our knowledge, we are the first to consider this class of algorithms, though we find them to
be quite natural. For example, we note in passing that guess-and-check algorithms can be thought
of as “highly parallel algorithms” in the sense that they capture the model in which T processors
independently compute and check one potential preimage of y (i.e., one “guess”) each x1, ..., xp, and
the algorithm succeeds if and only if any of these processors discovers that x; is in fact a preimage
of y. Indeed, [CK19] introduced non-adaptive algorithms in part because of their relationship with
parallelism. (Other special classes of non-adaptive algorithms were studied in [CK19] and [CHM20],
but none of the previously defined classes captures guess-and-check algorithms, as we explain in
Section 1.3.)

Our third main contribution is a lower bound showing that no guess-and-check algorithm can
do significantly better than Eq. (5) (even for inverting permutations). Specifically, we show that
Eq. (5) is tight up to a constant factor in S and 7. We therefore characterize the query-preprocessing
tradeoff for guess-and-check non-adaptive function inversion up to a constant factor. If our lower
bound could be extended to general non-adaptive algorithms, it would imply new strong circuit
lower bounds, using the result of Corrigan-Gibbs and Kogan [CK19].*

Search-to-decision reductions. Next, we consider a natural variant of function inversion,
which we call decision function inversion (DFI). In DFI, the goal is simply to determine whether

3In general, a non-adaptive algorithm might output z* that depends in a more complicated way on
f(x1),..., f(xr), and in particular might succeed even when f(x;) # y for all z;.

4In fact, two of the authors of the present work originally proved the lower bound without realizing the distinction
between general non-adaptive algorithms and guess-and-check algorithms. We were quite excited to have proven a
new circuit lower bound, before we realized this subtle error.



the input point y € [M] is in the image of a function f : [N] — [M], given oracle access to f, shared
randomness 7, and S bits of preprocessed advice o that may depend on r and f. (Notice that in the
context of DFI, it is natural to consider functions with a range [M] for M > N. In Appendix A,
we show that many versions of function inversion are equivalent to their respective variants when
the range is changed.) Given the very slow progress on the search function inversion (SFI) problem
that we discussed above, it is natural to ask whether the decision variant is any easier.

Unfortunately, we show that this cannot be the case—for either random functions or worst-
case functions. Specifically, we show a reduction from average-case SFI to average-case DFI (in
which both the function and the target are uniformly random, as in definitions Definitions 2.4
and 2.5), and a reduction from worst-case SFI to worst-case DFI. These reductions incur very little
overhead—only increasing S and T' by a factor that is polylogarithmic in N—and both reductions
are non-adaptive, in the sense that they convert non-adaptive DFI algorithms into non-adaptive
SFI algorithms. (See Remarks 5.3 and 5.5.)

These reductions can be viewed as variants of a reduction in [CK19] (as we discuss in Sections 1.2
and 1.3). In Appendix B, we show another search-to-decision reduction for injective functions, which
is a more direct adaptation of the reduction in [CK19).

Removing shared randomness.  Our final contribution is a generic way to convert a function
inversion algorithm with shared randomness into an algorithm without shared randomness, at the
expense of a small (additive) increase in S. Indeed, prior work used slightly different models
for function inversion—depending on whether the preprocessing and query algorithms are allowed
access to a shared random string, which does not count as part of the preprocessed advice. Often,
this shared random string is represented by shared access to a random oracle.

E.g., Corrigan-Gibbs and Kogan [CK19] allowed their query and preprocessing algorithms access
to the same random oracle. In contrast, Fiat and Naor [FN91] did not allow for this. Even in this
more conservative setting, however, it is often far more convenient to first describe algorithms that
do have access to shared randomness, typically in the form of a random oracle, and then to describe
how to remove this shared randomness by, e.g., replacing the random oracle with a suitable carefully
chosen hash function (with a suitably short key that can be included as part of the preprocessed
advice) and arguing that this has little to no effect on the correctness of the algorithm.

We show a generic way to convert any function inversion algorithm with shared randomness
into a function inversion algorithm without shared randomness. Our conversion is quite simple
(and actually applies to a more general class of problems; see Section 6), as it simply replaces
the shared randomness r with a string r; chosen by the preprocessing algorithm from a relatively
small number of fixed strings r1,...,rg. (In fact, a random list of strings will work with high
probability.”) Because the number of such strings is relatively low (e.g., & < N - poly log(N) in all
of our settings), the index i can be appended to the preprocessed advice essentially for free (costing
only an additional log k ~ log N bits of advice).

In particular, nearly all of the results listed are most naturally presented using shared random-
ness, but this procedure shows that this shared randomness can be removed without changing any
of our stated results (up to a lower-order additive term in S)! And, this shows that the carefully

5 At first, this statement might sound trivial, since we started with an algorithm that works with shared random-
ness r, and we seem to have converted into an algorithm with more shared randomness. The difference, however, is
in the order of quantifiers. In the shared randomness model, we ask that for any function f with high probability
over the randomness r, the algorithm inverts f. Here, we show that with high probability over the random strings
T1,...,Tk, for every function f there exists ¢ such that the algorithm inverts f with randomness r;.



chosen hash functions in much prior work were in some sense not necessary. (In particular, our
result implies that it is not necessary to use these hash functions to remove shared randomness.
However, these hash functions are still useful for optimizing additional complexity measures that
we ignore in this work, like the running time of the query and preprocessing algorithms. See
Section 1.4.)

Our proof of this result is an adaptation to our setting of a celebrated result in communica-
tion complexity. Specifically, we adapt Newman’s beautiful technique for converting public-coin
protocols to private-coin protocols [New91].

This does not come completely for free, however. Our proof shows that a random list of strings
r1,...,7 will work with high probability. But, these strings still need to be stored somehow.
So, while our conversion process does not increase the number of queries T' and only (additively)
increases the size S of the advice by a very small amount, it does require both the preprocessing
algorithm P and the online algorithm A to be non-uniform.

Since non-uniformity is often assumed in this setting, this does not bother us much. But, there
do exist practical applications of function inversion algorithms, e.g., in cryptanalysis, for which
truly non-uniform algorithms are an unreasonable model. We note, however, that in practical
applications it is typically sufficient to simply use a cryptographic hash function as a replacement
for a random oracle.

1.2 Our techniques

Improving Fiat-Naor. Our improvement to Fiat and Naor’s algorithm starts by recalling the
following. In the original Fiat-Naor procedure, the preprocessing algorithm first generates a list of
nearly S “heavy hitters”—that is, elements in the image of f such that |f~!(y)| is large—and it
includes this list together with a preimage for each heavy hitter in its advice to the online algorithm.

The online algorithm then operates in two phases. It first checks this list to see if its input y is
a heavy hitter, in which case it immediately outputs the corresponding preimage contained in the
advice. Otherwise, (ignoring important technical details for simplicity) the algorithm effectively
runs a function inversion algorithm on the function f restricted to elements whose images are
not heavy hitters. With the heavy hitters removed, the new restricted function is much better
behaved than the original, allowing for the final tradeoff. (In particular, the restricted function will
have relatively low collision probability, which Fiat and Naor show is sufficient for a Hellman-like
algorithm to invert it with the desired tradeoff. See Section 3 for the details.)

In fact, as Fiat and Naor observe, it is sufficient to simply include a list of nearly S pairs
(w4, f(4))1<i<s for uniformly random z; ~ [N] as part of the advice, rather than explicitly looking
for heavy hitters. (Notice that any elements y € [N] with very many preimages will still be
contained in such a list with high probability, which is why this works.)

At this high (and slightly misleading) level of detail, our modification to Fiat and Naor’s al-
gorithm is straightforward: rather than having the preprocessing algorithm include many random
queries (z;, f(x;)); as part of the preprocessing, we have the online algorithm generate this list itself.
This allows us to replace a list of length S with a list of length 7', which gives us our advantage
over the original algorithm when T > S.

Of course, many details must be worked out to make this actually work. Most significantly, it is
crucial that the same list (z;, f(x;)); is known to both the preprocessing algorithm and the online
algorithm, so that they both work with the same restricted function f’. For this, we rely on shared
randomness (which can then be removed quite painlessly using the result from Section 6), allowing



the online algorithm and the preprocessing algorithm to share the same list (z;); of random query
points.

Our reliance on shared randomness also greatly simplifies the description and analysis of both
our algorithm and Fiat and Naor’s original. Indeed, as we mentioned above, we give a simple
presentation of a single unified algorithm that works whenever

ST - max{S, T} > N3 .

This simplified presentation might itself be of independent interest.

A non-trivial non-adaptive (guess-and-check) algorithm. To describe our non-adaptive
algorithm, we first consider the (rather silly) toy problem in which 7"= 0 and S = log N, i.e., the
case in which S is large enough to write down precisely one element o € [N]. In particular, suppose
that we would like to find some preprocessing o € [N] such that the algorithm A can use o to find
a preimage of some image y := f(x) for uniformly random = ~ [N] and any function f : [N] — [N]
without making any queries at all to f. (Equivalently, we can think of this as a one-query guess-
and-check algorithm.) Of course, such an algorithm cannot hope to succeed with high probability.
But, what if we simply wish to maximize the probability that our algorithm succeeds—even if it’s
still a tiny probability?

A naive approach would achieve success probability 2/N by, e.g., setting o := f(0) and having
A output 0 if y = o and 1 otherwise. But, it is actually possible to achieve a success probability
of roughly (log N/loglog N)/N. To see this, let h: [N] — [N] be a random function, and suppose
that our online algorithm simply outputs g(o,y) := h(y) + 0 mod N on input y € [N]. For each
possible o € [N], consider the set X, := {x € [N] : f(g(o, f(z))) = f(z)}, i.e., the set of all z such
that g(o, f(x)) is a valid inverse to f(x). Then, a relatively straightforward balls-and-bins argument
shows that with high probability there exists a o € [N] such that | X,| > Q(log N/loglog N). The
preprocessing algorithm can output such a o, and the result follows.

In our actual algorithm (in Section 4), we (carefully!) repeat this idea many times, with many
independent random functions h; (constructed using shared randomness) and shifts o;, and use our
oracle queries to check which of the h;(y) + 0; mod N yields a preimage to y. This more-or-less
already works in the case when T'= S/log N ~ N loglog N/log N, but to achieve the full optimal
tradeoff for all S ~ Nlog(N/T), we must apply additional tricks. In particular, we effectively
partition the domain of the function f, so that a single “piece of advice” ¢ as above can represent
many queries. And, we similarly partition the range of f, so that the online algorithm “only uses
advice corresponding to the part of the partition containing the challenge point y.”

A tight bound against guess-and-check algorithms.  The proof of our lower bound against
guess-and-check algorithms follows the high-level framework used by [DTT10] and [DGK17]. The
idea here is to show that a function inversion algorithm with certain properties would imply an
unreasonably succinct way to encode a function f : [N] — [N]—i.e., a succinct bit string that
can be used to recover f. (In this high-level description, we ignore for simplicity the fact that our
algorithms (P,.A) may be randomized and the related fact that they might fail some fraction of
the time. To fix this, we must work with randomized encodings that themselves have some chance
of failure.) In fact, we restrict our attention to permutations f, so that in order to encode f, it
suffices to encode the unique inverse of each element y € [N]. (This only makes our lower bound
stronger.)



Our encoding will consist of the S bits of preprocessed advice o € {0,1}° together with some
additional information. Recall that a non-adaptive algorithm has the property that the queries
$§y), e xgy ) made by A on input y are fixed for fixed o (where here we are ignoring any randomness
for simplicity). Furthermore, if a guess-and-check (non-adaptive) algorithm succeeds, then one of

the x; must be a preimage of y. Our encoding will therefore simply record for each y € [N] the index

iy € [T] such that ij) is the unique preimage of y. Notice that this information, together with o,
is actually enough to completely reconstruct the function f. (Notice also that this argument relies
quite heavily on guess-and-check non-adaptivity. For a general non-adaptive algorithm, it might
be necessary to include the responses to all queries a:(ly), el x%’ ).)

This gives an encoding of f that uses only NlogT + S bits. Since there are N! permutations
over [N], this is a contradiction unless NlogT + S > log(N!) > Q(N log N). Rearranging gives our

lower bound of S > Q(N log(N/T)).

Search-to-decision reductions.  Corrigan-Gibbs and Kogan [CK19] observed that there is a
reduction from SFI on injective functions f : [N] — [M] to (a different version of) DFI on worst-
case functions, where the reduction works by essentially “asking the DFT oracle for the ith bit of
the unique preimage.” Specifically, at a high level their reduction works by essentially running the
DFT algorithm separately on the functions f; : [N/2] — [M] corresponding to f restricted to inputs
whose ith bit is, say, zero. By solving DFI on the functions f; and target point y;, they can recover
the unique preimage to y “one bit at a time.”® Notice in particular that this reduction is careful to
only work with a small number of functions f; that are defined independently of the target point,
which allows the SFI algorithm to work with preprocessed advice from the DFI algorithm for a
small number of functions.

Both of our search-to-decision reductions start with the simple (and, on its own, not particularly
interesting) observation that the above idea can be generalized to invert any function f : [N] — [M],
provided that the target point y that we are inverting has a unique preimage.

At a high level, our reduction from worst-case SFI to worst-case DFI then works by directly
reducing from worst-case SFI with a general target point y to the variant in which y is promised
to have a unique preimage. For this, we use an idea inspired by Valiant and Vazirani’s celebrated
Isolation Lemma [VV85]. Specifically, we find a small number of subsets U; C [N] of the domain
of f (which are chosen independently of y!) such that with high probability y has exactly one
preimage when f is restricted to U;. Then, (ignoring many technical details) we can use the ideas
described above to solve this search problem using only a DFI algorithm.

For our reduction from average-case SFI to average-case DFI, we can more-or-less assume that
the target point y has a unique preimage, since a large fraction of the elements in the image of
a random function f have a unique preimage. However, here we run into a different problem: an
average-case DFI oracle is only guaranteed to work with some reasonable probability when the
function f : [N] — [M] is uniformly random (see Section 5.2 for the details). While the restrictions
fi (as described above) of a uniformly random function f are themselves uniformly random, they
are certainly not independent. This means that a DFI oracle could potentially have very high
success probability but still could, e.g., always fail on one (or even many) of the functions f; (out of

5We are oversimplifying quite a bit here and leaving out many important details. Perhaps most importantly, we
are assuming here for simplicity that the DFI oracle always outputs the correct answer, while Corrigan-Gibbs and
Kogan worked with a much weaker DFI oracle. They were also careful to keep the domain of the functions f; the
same as the domain of the function f, while we are not concerned with this.



log N total functions fi,..., fiog ;), Which would cause our search-to-decision reduction to always
fail to find the ith bit of the preimage (and therefore to fail).

We solve the above problem by using good error-correcting codes. That is, instead of working
with the functions f; corresponding to the bits of elements in [IN] written in binary, we work with a
larger number of functions f/ corresponding to the bits of encodings of elements in [N] using a good
error-correcting code. That is, f/ is the function f restricted to the set of elements in [N] whose
corresponding codeword has ¢th bit equal to zero. By using a good enough code, we can recover a
preimage of the target by solving just O(log N) decision problems, even if a 1/4 — ¢ fraction of the
answers are wrong. (Indeed, we can even decode efficiently, though we mostly do not worry about
this.)

1.3 Related work

Here, we describe some of the related work that has not already been discussed, as it relates to the
present work.

De, Trevisan, and Tulsiani [DTT10] showed improvements to Fiat and Naor’s algorithm along a
different axis. Specifically, they showed how to achieve surprisingly small values of S and T in the
setting in which the algorithm is only required to invert y := f(z) for uniformly random z ~ [N]
with some very small probability . (In contrast, all of our algorithms invert such a y with high
probability.) They show a slight variant of Fiat and Naor’s algorithm that works for any S, T', and
¢ satisfying ST > eN for ¢ < N~/ (which they show is optimal) and T'S® > €5 N3 otherwise.

Like us, Chawin, Haitner, and Mazor [CHM20] showed lower bounds on special cases of non-
adaptive algorithms. In particular, they considered the function gy, : [N]Z — [N] that maps the
responses f(x1),..., f(zr) to the queries made by A to the final output of A (i.e., the guess that
A makes for the preimage of y). For example, they showed that S > Q(N) (regardless of T') if
Joy is an affine function. They also showed that dSlog N + T > Q(N) if g4, can be implemented
by a depth-d affine decision tree. We note that neither of these models captures guess-and-check
algorithms, for which g, 4(y1,...,yr) = x4, where ¢ is such that y; = y. (Such a g, is certainly not
affine, and it seems that it requires depth d ~ T to implement such a function as an affine decision
tree, as one must sequentially check whether y; = y for all i.)

Corrigan-Gibbs and Kogan also defined a special case of non-adaptive algorithms, which they
call strongly non-adaptive [CK19]. For a strongly non-adaptive algorithm, the function g,, may
be arbitrary, but the queries x1, ...,z must be computed independently of the preprocessing (and
non-adaptively), so that they are effectively completely independent of the function f. [CK19]
showed that lower bounds against even such weak models would imply new circuit lower bounds.
However, strongly non-adaptive algorithms are incomparable to our model of guess-and-check al-
gorithms, so that our lower bound on guess-and-check algorithms unfortunately does not directly
apply.

For general non-adaptive algorithms, Dvotdk, Koucky, Kral, and Slivova [DKKS21] showed a
conditional lower bound of T' > Q(log N/ loglog N) for any S < eN log N for some small constant
€ > 0, assuming the Network Coding Conjecture. Notice that this lower bound holds in a more
general setting than our lower bound or those of [CHM20] but it requires an unproven conjecture and
is quantitatively weaker than ours and those in of [CHM20]. (E.g., for guess-and-check algorithms
with § < eNlog N, our lower bound implies that 7" > Nl_o(a).)

There is also a long line of work [DTT10, DGK17, CDGS18, CDG18, CK19, GGKL21] studying
a different version of DFI than the one that we study, which is sometimes simply called the PRG



problem. Here, the goal is to distinguish (perhaps with relatively small distinguishing advantage) a
uniformly random element y ~ [M] from f(x) for uniformly random x ~ [N], where f : [N] — [M].
In particular, Corrigan-Gibbs and Kogan show a search-to-to-decision reduction from SFI over
injective functions to the worst-case PRG problem. Our search-to-decision reductions are essentially
generalizations of the reduction from [CK19] to the setting of non-injective functions. We pay for
this non-injectivity by requiring our DFT algorithm to solve problems that are harder than the PRG
problem, and by requiring significantly more complicated reductions.

1.4 A note on the many facets of function inversion

There are many variants of the function inversion problem and many different complexity measures
that one can use to assess algorithms in this context. The landscape is therefore quite complicated.
Indeed, our search-to-decision reductions and our proof that shared randomness can be removed
(as well as the reductions between versions of SFI with different range sizes in Appendix A) can be
viewed as small steps towards simplifying the picture a bit.

But, there are still certainly many variants and complexity measures that we simply do not
address in this work. E.g., while we mostly focus on the number of queries 7" and the length S of
the preprocessed advice, much prior work was also interested in the time and space complexity of
the algorithms P and A, which we largely ignore. E.g., prior work [FN91, DTT10] used specialized
hash functions to replace shared randomness because removing shared randomness is itself a worthy
goal, but also to optimize the running time of their algorithms (which is not the same as the
query complexity T'). For the sake of simplicity, we have chosen to largely ignore these additional
complexity measures in our algorithms, and we have therefore not optimized our algorithms for
these complexity measures at all. (We do note that our algorithms run in essentially optimal time
when they are implemented with shared randomness in the form of shared access to a random
oracle. In particular, the preprocessing algorithms can be implemented in time O(N), and the
online algorithms can be implemented in time 7" - poly log(N).)

As another example, as we discussed above, De, Trevisan, and Tulsiani [DTT10] studied the
dependence of S and T in terms of the fraction e of inputs z € [N] for which the algorithm
successfully inverts f(x). They showed that for small € one can do much better than Eq. (1), using
essentially the same algorithm. It is natural to ask whether their techniques can be applied to our
new version of the Fiat-Naor algorithm, but we leave this to future work.

2 Preliminaries

We define 1, as 1, = 1 if p1 is true, and 0 otherwise. All logarithms are base 2, i.e., log2" = n.

2.1 Definitions of function inversion problems

In the following definitions, M and N are positive integers, and (P,.A) is a pair of randomized
algorithms. The first few definitions are core to our study of function inversion.

Definition 2.1. We say that
1. (P, A) uses S bits of preprocessing if for all inputs, the output of P has bitlength at most S.

2. (P, A) uses T queries if for all inputs, A’ makes at most T queries to f.



Definition 2.2. We say that (P,.A) solves (NN, M)-search function-inversion ((N,M)-SFI) with
success probability ¢ € (0, 1] if for all f : [N] — [M] and y € f([N]),

Pr [A/(P(f,r),y.r) € [T (y)] > 6.
r~{0,1}

Here r is the shared randomness between the algorithms A and P. It has some (typically
unspecified) finite bitlength [.

Definition 2.3. We say that (P,.A) solves (N, M)-decision function-inversion ((N, M)-DFI) with
advantage ¢ € (0,1/2] if for all f: [N] — [M] and y € [M],

m%"l}l[«“f@(fﬂ”),y,r) =Lyernpl 2 1/2+¢.

In words, A is likely to output 1 when y is in the image of f, but is unlikely to output 1 when y is
in [M]\ f([N]).

We will abuse terminology slightly and simply refer to (P, .4) as an algorithm when the meaning
is clear from context. When N = M, we will drop the parameters and just write SFI or DFI. We
will also sometimes write “worst-case SFI” or “worst-case DFI” to distinguish from the average-case
variants that we define next.

Definition 2.4. We say that (P,.A) solves average-case (N, M)-SFI with success probability 0 if

P P € ) 2
Frolgi [N [M]}
z~ [Ny« f(x)

Definition 2.5. We say that (P,.A) solves average-case (N, M )-DFI with advantage ¢ if

o AN(P(f,r) y,m) = 1] > 1/2 +-¢,
r~40,1

f~{g:[N]—[M]}

z~[N]y+f(z)

and
Pr  [AN(P(f,r),y.r) =01 2 1/2+c.
r~{0,1}
foAg:[N]—=[M]}
y~[M\f([N])
In order to state our results removing shared randomness, we need the following definition of
function-inversion algorithms without shared randomness.

Definition 2.6. We say that (P,.A) solves (N, M)-SFI with success probability § without shared
randomness if for all f : [N] — [M] and all y € f([N]),

Pr [AN(P(f,r1),y,m) € FH(y)] > 6.
r1,ro~{0,1}

We make analogous definitions for the 3 other problems ((N,M)-DFI, average-case (N, M )-SFI,
average-case (N, M)-DFI).
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Note that we will say, for example, “(IN, M)-SFI for injective functions”, when we mean Defini-
tion 2.2, but with the function f ranging over all injective functions from [N] — [M]. Finally, we
define some special classes of algorithms that will be studied in Section 4.

Definition 2.7. An algorithm A is non-adaptive if Af(o,y,r) only queries f on points
x1(o,y,7),...,x7(0,y,7) depending only on the inputs o,y, and r (i.e., not depending on the results
of previous queries).

Definition 2.8. An algorithm A is a guess-and-check algorithm if it is non-adaptive and whenever
x — Af(0,y,r), then x is one of the points queried by A7 .

We will say that (P,.A) is non-adaptive (resp. a guess-and-check algorithm) if A is non-adaptive
(resp. a guess-and-check algorithm).

2.2 Some basic probability results
We will use the following version of Chernoff’s bound (see, e.g., [MU17]).

Lemma 2.9. Suppose X1,...,X, are independent random variables taking values in {0, 1}. Let
X denote their sum, and p:= E[X]. Then for any § > 0,
—52
Pr(X > (14 0)u] < exp (2+’5‘).
Moreover, for 0 <e <1,
PrlX < (1-e)u] < exp (5 F).

We will also need the following simple bound.
Claim 2.10. For any integers N > 1 and M > 2,
Pr 2 €[N] : flz) = f(a)} = 1] > e N/M-N/M>
o B €N | @)= F@)) = 1)
Proof. This is exactly equal to

Pr Vi, i #0] = (1 —1/M)N"1 > o~ N/M—N/M? 0
Y1 yN—1~[M]

2.3 Binary linear codes

Recall that a binary linear code C with rank n is an n-dimensional subspace C C FJ*, and C € Fy**"
is a generator matrix for C if C = CF4. For x € Fy', we write ||x|| g for the Hamming weight of x
(i.e., the number of non-zero coordinates).

Theorem 2.11 ([Jus72, MS77, ABN192, Spi95]). For every constant € > 0, there exists a family
Cne C F5* with rank n and m = my. < O:(n), an efficiently computable generator matrices

C,. € Fi™", and an efficient decoding algorithm Dec such that for every x € F4 and every e € FJ
with |e||g < (1/4 —¢€)-m, Dec(Cp.x P e) =x.

For any C C FJ" and 1 < ¢ < m, we can easily define the subcode C; := {c = (c1,...,cn) €
C : ¢ = 0}. Notice that we have either |C;| = |C| or |C;| = |C|/2 (where the first case only occurs
if all ¢ € C have zero ith coordinate), and that given a generator matrix C € Fy"*" for a code C,
it is trivial to compute a generator matrix for C;. Notice also that we may assume without loss
of generality that the codes C := C, . in Theorem 2.11 satisfy |C;| = |C|/2 for all i (since we may
simply remove any coordinates that are always zero).

11



3 An improvement to Fiat and Naor’s algorithm

From our perspective, there are two core techniques used in Fiat and Naor’s algorithm [FN91]. First,
Fiat and Naor’s algorithm generates a list L of pairs (z, f(x)) for random domain elements = € [N],
which effectively serves as a list of preimages of “heavy hitters”—i.e., elements x such that f(x) has
many preimages. In the original algorithm, L is included as part of the preprocessed advice. Second,
(following Hellman [Hel80]) Fiat and Naor describe a randomized subroutine (P’, A") that takes L as
auxiliary input and for all y € f([V]), inverts y with some small probability. This subroutine is then
run many times to boost its success probability (with a fixed list L but independent randomness for
P’ and A’). Our improvement differs from the original only in the first part, and the difference can
be described in one sentence: if T' > S, instead of including the list L in the preprocessed advice,
we reconstruct it using queries to f. This can be done because the random domain elements x
can be derived from shared randomness (which we also show in Corollary 6.3 is available in the
non-uniform model for essentially no cost). This allows us to construct a larger list L in the case
when T' > S, with |L| ~ T instead of |L| ~ S.
Our formal theorem is the following.

Theorem 3.1. For all S, T satisfying S*T max{S,T} > N3, there exists an algorithm that solves
SFET with success probability 1 using O(Slog® N) bits of preprocessing and O(T log? N) queries.

As mentioned above, this improves on Fiat and Naor’s tradeoff in the important setting where
S < T. On the other hand, when S > T our algorithm is essentially just Fiat and Naor’s algorithm.
However, even in this case, we believe that our presentation and analysis is significantly simpler,
which we view as an additional contribution. Some (though certainly not all) of this simplicity is
because of our choice to optimize only for 7" and S and not for additional complexity measures like
the running time of the online algorithm (see Section 1.4) or the use of shared randomness (which
we show is essentially without loss of generality in Section 6). Fiat and Naor made careful use of
k-wise independent hash functions in order to optimize these parameters.

Below, we present an algorithm which succeeds with probability 1 —O(1/N). By Corollary 6.3,
this implies the result.

3.1 The algorithm

Let K := max{S,T}, and let a := 2K [log N|. Let z1,...,24 ~ [N] be uniformly random and
independent elements generated using the shared randomness. Let L := {(z;, f(z)) : i € [o]}.
Intuitively, we think of L as a list of inverses for “heavy hitters,” that is, elements y in the image
of f that have many preimages. Let L := {y : (z,y) € L}, and let D := {z € [N] : f(z) ¢ L} be
the domain elements whose images are not trivially inverted by lookup in L. Finally, let N' := |D|.

We will show a subroutine (P’, A’) that takes L as input and, provided that L contains all points
with at least N/K preimages, inverts any challenge y € f(D) with small but decent probability. It
uses parameters m := [N/3T| and ¢ := | N'/3S|. The subroutine works by constructing m chains
of length ¢ as in Figure 1.

At a high level, the full algorithm (P, A) then works by constructing L, and running (P’, A")
many times to boost the success probability. More precisely, let ¢ := [100ST log(N)/N], and let
r1,...,7r¢ be independent random strings derived from shared randomness. On input a function f,
the preprocessing algorithm P first constructs L as described above, then for i € [¢], it runs st; <
P(L, f,ri). If S >T, P outputs o := (L,stq,...,sty). Otherwise, it just outputs o := (stq,...,sty).

12



using (z;, h(z;))

Figure 1: The picture captures the basic workings of chain-based algorithms, including Hellman’s
algorithm, Fiat and Naor’s algorithm, and our improvement. Here h = g o f, where ¢ is randomly
sampled from some appropriate distribution. Preprocessing constructs the green chain C(z;) by
sampling a random point z; and iterating h. It stores the pair (z, hf(z;)). On challenge y, online
assumes y is a blue point, and follows the red arrows. That is, it proceeds by computing g(y), then
iterating h until it reaches the stored endpoint h'(z;). Once there, it jumps back to z; and iterates
h until z* € f~1(y) is found.

On input a challenge y and preprocessed advice o, the online algorithm A first recovers L as
follows. If S > T, A just reads L from o. Otherwise, it queries f on the points zi,...,z4 to
recover L. Then A checks if y € E; if so, it returns the corresponding inverse. If not, for i € [¢], it
runs o; < A7 (L, st;,y,r;). If any run ¢ returns o; # L, A outputs o;. Otherwise, it outputs L.

3.1.1 The subroutine

It remains to describe the subroutine (A’,P’). The subroutine receives L as input, but we will view
it as receiving g as input instead, where g : [N] — [D] is a uniformly random function, constructed
using L as follows. Let J := [N/N’-2log N, and let ¢’ : [N] x [J] — [N] be a random function
sampled independently using the shared randomness of P’ and A’. We say that ¢’ is bad if there
exists an i € [N] such that ¢'(i,j) ¢ D for all j € [J]. If ¢’ is bad, our subroutine will simply
fail. But, it is easy to see that for our choice of J this happens with probability at most 2/N.
We will therefore assume below that ¢’ is not bad, which will cost us at most an additive factor
of 2/N in the success probability of our subroutine. Now, define g(y) := ¢'(y, k), where k € [J] is
minimal such that ¢/(y, k) € D. Notice that ¢ is a uniformly random function g : [N] — D, and
that, given L, g(y) can be computed using at most J queries to f by finding the minimal i such
that f(g'(y, 1)) ¢ L. 7

Finally, let h := g o f, and for each z € [N] and s > 1, define the chain C*(z) =
{z,h(z),...,h*(z)}. (Here and below, we use the notation h? to represent h composed with itself
g times.) See Figure 1.

"Indeed, this is the whole purpose of this rather subtle construction of g (which is only a slight variant of the
construction in Fiat and Naor [FN91])—to provide P’ and A’ with access to a shared random function from [N] to
D without requiring A’ to make too many queries. Notice that this is non-trivial because the set D is not known to
A’ and might not have a succinct description. (A’ instead only knows the image L of [N] — D under f.)

13
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Preprocessing: Stores (z;, h!(x;)) for independent 1, ..., 2, ~ D. The h(z;) will be called
endpoints.

Online: On challenge y € f(D) (recall that f(D) = f([N]) — L), online computes Cy =
C*Y(g(y)) and checks if there is a unique i € [m] such that h(z;) € C,.® If not, it gives up.
Then it computes C*~!(z;) and checks whether any z* € C'~!(z;) satisfies f(z*) = y. If so, it
returns x*; else it returns L.

3.2 Analysis

First we analyze the resource costs. It is clear that the sub-algorithm stores at most 2m[log N|
bits of advice, and makes at most 2t - J queries to f. Hence the data structures stq,...,st, have
total bitlength at most

100ST log N
N

3008T log? N N
—‘ - (2m[log N) < ooC 08 100S log® N .

¢-2m[log N] = { N

If S > T, storing the list L, which consists of @ = 2S[log N| pairs of elements of [IN], requires
at most an additional 105 log? N bits. So (P, .A) uses at most 1105 [log N|?bits of preprocessing.
And the total number of queries to f made by A is at most

1OOSTlogN“ ‘ LN/J Nlog N < 2007 log? N .

£+ (2t]) < £-5H(N/N")log N = | = P R
(26) < € 5H(N/N')log R 5~
To analyze the success probability, we first observe that

Lemma 3.2. Ezcept with probability 2/N, all x € D satisfy |f~1(f(x))] < N/K.

Proof. The condition above is equivalent to the list L containing all u € [N] with | f~!(u)| > N/K.
But since o := 2K [log N1, we have N/K > 2log N - N/«, and so for any u with |f~!(u)| > N/K,
there exists i € [a] with f(z;) = u (which implies u € L) except with probability 2/N2. The lemma
then follows by union bound. O

We claim that the subalgorithm satisfies the following guarantee:

Theorem 3.3. Let f : [N] — [N] for some N > 1. Let U > 1, and suppose that for all x € D,
lf1(f(x))| < U. Lety € f(D). Then the sub-algorithm with parameters 0 < m,t < N finds an
inverse of y with probability at least

(1—6mt*U/N")- (1 —t*U/N") - |f Y (y)| - mt/N' —2/N .

In particular, if N is sufficiently large, the bound U = N/K from Lemma 3.2 holds, and the
parameter settings are m = |N/3T|, t = | N'/3S] as above, the probability is at least

mt/(2N') > N/(100ST).

Using Theorem 3.3, it is straightforward to show Theorem 3.1.

8The requirement of uniqueness substantially simplifies the analysis. However, it is possible to use a weaker
condition.
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Proof of Theorem 3.1 assuming Theorem 3.5.

Lemma 3.2 states that all z € D satisfy |f~1(f(z))] < U except with probability 2/N over the
random choices of zj,...,z,. Assuming this holds, Theorem 3.3 says that for all y € f(D) (i.e.,
all y ¢ L), the subalgorithm (P, A') inverts y with probability at least N/(100ST). Thus, for all
y & L, except with probability O(1/N), at least one of the £ = [100log N - (ST/N)] iterations of
(P', A") inverts y. Of course, the points y € L are trivially inverted by lookup in L. Hence for all
y € f([N]), (P,.A) inverts y except with probability O(1/N). By Corollary 6.3, this implies the
result. O

It remains to prove Theorem 3.3.
Proof of Theorem 3.3. The particular statement easily follows from the general statement. Indeed,

mt*U/N' < (N/3T) - (N'/35)? - (N/K)/N'
< N2N'J(27S*TK) < N3/(27S*TK) < 1/27.

And for sufficiently large N, it follows that

(1—6mt*U/N’)- (1 —t*U/N") - |f~(y)| - mt/N' —2/N
(1 —7mt*U/N’) -mt/N' —2/N
(1—7/27)-mt/N' —2/N

>1/2- (mt/N")

> (N/3T) - (N'/35)/(2N')

> N/(18ST).

>
>

We now prove the general statement of Theorem 3.3. Fix f,U, and y as in the theorem
statement. In what follows, we will assume that ¢’ is not bad (so that g is a random function
from [N] to [D]), at the cost of an additive 2/N in the success probability. By inspection, the
subalgorithm inverts y if and only if the following event E; occurs for some ¢ € [m]: (1) y is
contained in f(C?"!(z;)) (which implies h!(z;) € Cy), and (2), for all j # i, h'(z;) ¢ C,. Moreover,
these events F; are disjoint and symmetric. So the probability that the subalgorithm inverts y is
exactly m Pr[E].

Let B} be the event that hi(z;) & C, for all j # 1, and let Ef be the event that y € f(C*1(z1));
then £y = E{ N E?. To lower bound Pr[E;], we will first lower bound Pr[E?], then lower bound
Pr[E} | 2.

We claim that

Claim 3.4.
Pr[Ef] == Prly € f(C"!(21))] > (1 = £2U/N") - [f7 ()| - t/N".

For convenience, define
(Z1,- 3 Ze) = (21, b(21), o B () = CF ()

Let Ap be the universal event (i.e., Pr[4g] = 1) and for 1 <14 <t¢—1, let A; be the event that (1)
A;—1 holds, (2) Z; ¢ f~Y(y), and (3) f(Z:) ¢ f({Z1,...,Zi—1}). More explicitly, for 1 <i <t —1,
A; is the event that (1) Zy,Z3...,Z; ¢ f~'(y), and (2) the values f(Z1), f(Z2),..., f(Z;) are all
distinct.
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It is not hard to see that for all 1 < i < ¢, conditioned on A;_1, Z; is uniformly random and
independent of (Z1,...,Z;—1). (Here the probability is over x1,..., %, and the random function
g.) Indeed, the claim is trivial for ¢ = 1. For ¢ > 1, observe that conditioned on A4;_1, it holds that
f(Zich) ¢ f({Z1,...,Zi—2}),s0 Z; = g(f(Zi—1)) is a fresh uniform sample from D, independent of
(Z1y.o s Zizq).

For 1 < i < t, let B; be the event that (1) A; 1 holds, and (2) Z; € f~!(y). That is,
B; is the event that (1) Z; € f~Yy), (2) Z; ¢ f~'(y) for all j < 4, and (3), the values
f(Z1), f(Z3),..., f(Z;i—1) are all distinct. By construction, the events B; are mutually exclusive.
So,

t t t—1
Prly € f(C"'(z1))] > Pr[|J Bi] =) Pr[Bi] = Y Pr[Ai| Pr[Bis1 | A .
i=1 =1 =0
First we obtain a lower bound on Pr[4;].

Pr{Aip1 | Ail = Pr[Zip1 ¢ [ (y) and f(Zisa) ¢ ({21, .., Zi}) | All
=Pr[Zipn & (T W)U (FA(Z) U0 FHF(20)) | A
= 1= Ut (f(2) U U (f(Z0) /N
>1—((i + )U)/N’
>1—tU/N'.

It follows that for all 0 <i <t —1,
Pr[4;] > (1 —tU/N")! > 1 —t*U/N’.
By a similar calculation, for all 0 <i <t —1,
Pr(Biy1 | Ail = Pr[Zip1 € [~ (y) | Al = |f (y)l/N'.
Putting everything together, we have the desired lower bound:
Pr(E] = Prly € f(C'(21))] = (L — £U/N') - |f~ ()] - /N

Next we turn to lower bounding Pr[E} | EZ]. We claim that

Claim 3.5.
Pr[E} | E?] > 1 —6mt*U/N’ .

It suffices to prove this claim. Indeed, combining it with Claim 3.4 gives
Pr{1] = m Pr[Ey) = mPr{EZ] - Pr[E} | B2 > m(1 — 6mtU/N') - (1 = U/N') - |7 (y)] - /N
Next we prove Claim 3.5. By union bound and symmetry,
PrE} | B2 = Prlvj # L' (a;) ¢ Cy | EZ) 2 1—m - Pr[h!(az) € C, |y € F(C"(x1)] . (6)

Thus, our goal is to upper bound Pr[h!(z3) € Cy | y € f(C*"!(x1))]. We reason similarly to the
proof of Claim 3.4.

16



Notice that, if y € f(C*~1(z1)), then g(y) € C'(z1), and so Cy := C*71(g(y)) C C*(z1). It
follows that

Pr[h(22) € Cy |y € F(C' 7 (21))] < Pr[h(22) € C*(a1) | y € F(C7(21))] -

This is convenient, since we have combined two events that would otherwise need to be considered
separately; namely, the event that the chain C*(z9) starting at x5 intersects Cy;, and the event that
C'(x3) intersects C*~!(x1). Next, we reason as follows.

Pr[h!(22) € C*(21) |y € F(C'7(21))]
< Pr[f(h'(22)) € F(C*(21)) | y € F(C'7H(21))]

< Pr[\/ f(W(22)) € f(C*(21)) | y € F(C* (21))]

§=0
< Y Prlf(W(x2)) € F(C*(21)) | VE < j, f(*(x2)) & F(C*(21)),y € F(C (21))] -
=0

Intuitively, the j-th term in the sum corresponds to the chain starting at x5 intersecting the chain
starting at x; after j steps, but not before. We write

CONDy ; := Yk < j, f(hF(22)) ¢ f(C?*(21)) and CONDy :=y € f(C* (1))
We claim that for all 0 < j < ¢, the j-th term satisfies the following bound:
Pr[f(h(22)) € f(C*(21)) | CONDy,;, COND2] < |F7H(£(C*(21)))I/N".

Notice that if j = 0, then CONDy ; is vacuous, hi(z2) = x5 is a fresh independent uniform sample
from D, and the claimed bound holds with equality.

For j > 1, consider the event COND3 ; that, for some k < j — 1, f(hI~Y(x2)) = f(h¥(z2)). It is
not hard to see that

Pr[f(h?(x2)) € f(C*(x1)) | COND; ;, CONDy, COND3 ;] = 0.

Indeed, applying fog to both sides of COND3 ; gives f(h/(z2)) = f(h**!(x2)), but COND; ; implies
F(RF (@) ¢ F(CP(a1))-
On the other hand, if we condition on ~COND3; (and COND; ; and COND3), we know that
v; := f(hI~Y(x2)) is distinct from the values f(h¥(x2)) for 0 < k < j—1. By COND; ; and CONDg,
v; is also distinct from the values f(h'(x1)) for 0 < i < 2¢. In other words, v; is not in the set V;
defined by
Vi = {0 ()) |0 < k< j — 1} U{F(R (1) | 0 < i < 21,

But it is not difficult to verify that the events COND; ;, COND2, and CONDs3 ; can be expressed
solely in terms of 1, z2, and the random variables g(x) for € V}. (As a sanity check, it is helpful
to note that h/~'(z9) = g(f(h?~2(x3))) only depends on the random variables g(f(h*(x2))) for
k < j—1.) In particular, these events are independent of g(v;). It follows that, even conditional on
COND; j, CONDs, and =CONDs j, h/(z2) = g(v;) is a fresh uniform sample from D, independent
of the random variables in the conditional. So we have

Pr(f (R (22)) € f(C* (1)) | CONDyj, CONDy, ~COND3 5] = |~ (£(C*(x1))|/N",
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and we have established the claimed bound on the terms of the sum. Plugging the bound in, we
see

Pr[h!(22) € C*(21) |y € F(C'H(21))]

<D @)V
j=0

t
<) U-(2t+1)/N'
=0
<U-(t+1)-(2t+1)/N' <6t°U/N’.

(The last line only holds if ¢ > 0, but otherwise Claim 3.5 is trivial.) Combining this with
Eq. (6) concludes the proof of Claim 3.5 and hence the proof of Theorem 3.3. O

4 Non-adaptive algorithms

All known non-trivial algorithms for function inversion make queries adaptively (as far as the
authors are aware). That is, the answers of previous queries are used to decide which domain
element to query next. If instead all query points must be specified at once, the only known scheme
is the trivial inverter that stores inverses for (say) the first k elements and, for worst-case functions,
queries all the non-stored elements. Thus in the worst case, it uses advice of bitlength S = klog N
and makes T'= N — k queries, so that S/log N +T = N.

We make progress on non-adaptive function inversion, by giving a non-trivial non-adaptive
algorithm. E.g., our algorithm achieves S = O(N loglog N) for any T' = N/polylog(N). This
resolves a question of Corrigan-Gibbs and Kogan [CK19], who asked whether it was possible to
give a non-adaptive algorithm with S/log N +T < o(IN). Our algorithm is even a guess-and-check
algorithm in the sense that the preimage that it outputs is always one of its query points. (See
Definition 2.8.) Specifically, we show the following.

Theorem 4.1. For any 1 < T < N/2, there exists a guess-and-check algorithm that solves SFI
with success probability 1 —exp(—Q(min{T, 2N/T})) using S < O(N log(N/T)) bits of preprocessing
and T queries.

We remark that for 7' not too extreme—say 10log N < T < N/(10loglog N)—the failure
probability can be made 1 using Corollary 6.3. We also show a lower bound, which shows that
our algorithm is optimal among guess-and-check algorithms, up to a constant factor in S or 7.
Specifically, we prove the following lower bound.

Theorem 4.2. Any guess-and-check algorithm that solves SFI for permutations with success prob-

ability at least 3/4 using S bits of preprocessing and T queries must have S > (N/2)log (N/6T) —4.

4.1 A non-trivial non-adaptive (guess-and-check) algorithm

In this section, we prove Theorem 4.1. We will use the following fact about balls and bins. The
lemma is just a special case of [Mit96, Lemma 2.13], except that it includes explicit constants. We
include a proof in Appendix C for completeness.

18



Lemma 4.3. Suppose M < N/log N balls are thrown uniformly and independently into N > 300
bins. Let t(M,N) be the largest integer t such that with probability at least 0.9 at least one bin has
at least t balls in it. Then t(M,N) > |log N/(3log(N/M))].

Our main theorem will be a corollary of the following lemma, which gives a parameterized family
of guess-and-check algorithms.

Lemma 4.4. Let T, N', N be positive integers such that T',N' < N. Then, there exists a guess-
and-check algorithm (P, A) that solves (N, N)-SFI with success probability 1 — exp(—Q(T")) using
S < (16N log N')/t* bits of preprocessing and T < T'[N/N'| queries, where t* := t([T"/2], N').

Before proving the lemma, we show how to use it to prove our main theorem. This amounts to
carefully setting parameters and some simple case analysis.

Proof of Theorem 4.1. If 1 < T < 2N/log N, we set N’ = N, T = T, and we may assume
without loss of generality that N’ > 300. Then by Lemma 4.3, the t* in Lemma 4.4 satisfies
t* > |log N/(3log (2N/T))|, so that

S < (16N log N')/t* < 100N log(2N/T) |,

and the error probability is exp(—Q(T”")) = exp(—Q(T)), as needed.

For 2N/logN < T < N, we set N’ := [22N/T] < N and T’ = | N’/log N'|. We may again
assume without loss of generality that N’ > 300. And, it is easy to verify that 7'[N/N'] < T.
Again, by Lemma 4.3, t* in Lemma 4.4 satisfies t* > |log N'/3log (2N’/T")] and

S < (16N log N")/t* < 100N log (2N'/T") < 100N log(4log N') < 100N log(16N/T) ,

where the third inequality is due to N’'/T" > log(N')/2, and the fourth inequality is due to log N' <
AN/T by our choice of N and T’'. Moreover, the error probability is exp(—Q(N’/log N')) <
exp(—Q(2N/T)), as claimed. O

Proof of Lemma 4.4. For positive integers A < N, we define the map |- |4 : [N] = [A] as | B4 :
|AB/N|. We think of |- |4 as partitioning [N] into A sets, each with size roughly N/A (and we
could equivalently use any function with this property). Let g1,...,g7 : [N] = [N’] be uniformly
random functions derived from the shared randomness of P and A.

Before describing the algorithm in detail, we provide a high-level overview. The algorithm
divides the elements y € [N] in the range of f into K sets of roughly equal size, according to |y|x,
where K ~ N/(T't*). Our algorithm will treat these sets separately.

In particular, the online algorithm will attempt to invert y € [N] with |y] x = ¢ using the advice
bi, ..., by € [N']. Intuitively, we think of each b; ; as suggesting that the preimage x of y might
satisfy |z|n = b;j + gj(y) mod N'. Le., each b;; suggests roughly N/N’ queries that A should
make, corresponding to the roughly N/N’ elements o’ € [N] with |2’ |n = b; j + g;(y). The total
number of queries made by our algorithm will therefore be essentially N/N'- T’ as claimed.

To choose the b; j, the preprocessing algorithm essentially just greedily picks for each j =
1,...,T" the bin b;; that inverts the maximum number of elements y that have not yet been
inverted. This corresponds to throwing one ball for each y with |y|x = ¢ that has not yet been
inverted into the bin |x|y — g;(y) mod N’. Notice that these bins are uniformly random and
independent in [N’] (because g; is a random function). Therefore, if the number of uninverted y
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with |y|x =i in the jth step is not much smaller than 7", then we expect b; ; to successfully invert
at least t new choices of these y. After 7" steps, we thus expect to invert roughly T't* ~ N/K
of these elements y. Since we do this for each of the K sets in the partition of the range [N], we
expect to invert the entire range. (Here, for simplicity, we have ignored the possibility that the
image of f is smaller than the range. Of course, below we handle this carefully.)

We now describe the algorithm in careful detail.

Preprocessing: The preprocessing algorithm P first fixes an arbitrary preimage z, € [N] for
each image y € f([N]), and partitions f([N]) into K sets Riy, ..., Rk, where K := [4N/(T"t*)]
and R; o :={y € f([N]) : lylxk =i}. Let h;j := gj o f. The preprocessing algorithm then performs
the following operations for each i = 1,2,..., K.

)

1. For each j =1,2,...,T",

(a) Define the bin bz(f’j) € [N’] corresponding to ball y € R;j_1 as b?(f’j) = |zylN —
hj(x,) mod N’. Notice that (h;j(zy))yecr,,;_, is a uniformly random list of |R;; 1| el-
ements in [N’], and the bins (bg’j))yeR
distributed in [N'].

(b) Given a bin b € [N], define L;;(b) := {y € Rij—1 : b"’ = b}. Set b;; € [N'] to
maximize | Li,j (b17])|

(C) Let Li,j = Ll(b%]) Set RZ'J' = Ri,j—l \LiJ.

.;_1 are therefore independent and uniformly

Finally, the preprocessing outputs as its advice o := (b; ;)i j. Notice that the final advice string
consists of KT" elements in [N’]. Therefore S < KT'[log N'] < (16N log N')/t*.

Online: In the online phase, given the advice o := (b;;);; and the challenge y € [N], the
algorithm computes i := |y] k, and uses the advice b; j; to compute the set of non-adaptive queries
Qy :={z: |z|n =bi;+9g;(y) mod N’ for any j =1,...,T'}. Finally, it simply queries all elements
in @, and outputs any preimage that it finds. (If no preimages are found, it simply outputs L.)
Notice that this is a guess-and-check algorithm and @, has size at most 7"[N/N']. Therefore
T <T'[N/N"].

Analysis: Notice that y € f([N]) lies in R;p for i := |y]|k, and that y is correctly inverted if
y € L; ; for some j € [T"]. Notice further that R; is equal to the disjoint union

R@o = Ri,T’ U (U Li,j) .
J

Therefore, if R; 7+ is empty, it immediately follows that our algorithm successfully inverts y (and
indeed successfully inverts all elements in R; ). This is captured by the following claim.

Claim 4.5. Consider the sequence of random variables By, By, ..., where By < [T't/4] and t* :=
t([T"/2],N"), and By is obtained by throwing B; balls uniformly and independently into N bins,
and taking Biy1 = B; — X;, where X; is the maximum number of balls in any bin. With probability
at least 1 — exp(—Q(T")), it holds that B = 0.
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Proof. Since Bjy1 < max{0, B; — 1} (i.e., as long as the number of balls thrown is non-zero, there
is always a bin with at least one ball in it), it suffices to show that By, < M where M := [T"/2]
except with probability at most exp(—Q(M)).

To that end, notice that for each j € [M], either Bj_; < M (which immediately implies that
By < M) or with probability at least 9/10, B; < Bj_; — t*. Thus, with probability at least 9/10,
Bj <max{Bj_; —t*, M — 1}. But if this happens at least [M /2] times, then

By < max{By — [M/2]t*, M — 1} < max{[T't"/4] — [T'/4|t*\M — 1} < M .

The probability that By; > M is thus at most the probability that the sum of M independent
Bernoulli random variables, each with probability 9/10 of equaling 1, is no more than M /2. But
by the Chernoff bound (Lemma 2.9), this probability is at most exp(—©(M)). O

O]

4.2 A tight lower bound against guess-and-check algorithms.

In this section, we prove Theorem 4.2. Following De et al. [DTT10] and Dodis et al. [DGK17], we
will consider randomized encoding and decoding procedures for a set of functions, and rely on the
following lemma which lower bounds the encoding length.

Lemma 4.6. (/[DTT10, DGK17]) Suppose there exist randomized encoding and decoding procedures
(Enc, Dec) for a set F. We say such an encoding has recovery probability & if for all f € F,

Pr [Dec(Enc(f,r),r)=f]>9.
r~{0,1}¢

The encoding length of (Enc,Dec), defined to be max¢,{|Enc(f,r)|}, is at least log |F| —log1/é.

Our main lemma gives a randomized encoding for the family of permutations given a guess-
and-check inversion algorithm.

Lemma 4.7. Suppose that there exists a guess-and-check algorithm (P, A) that solves SFI for
permutations with success probability 3/4 using S bits of preprocessing and T queries. Then there
exists a randomized encoding for the set of all permutations from [N] to [N], with recovery probability
at least 1/2 and encoding length at most

N!
S+ [N/2]-1logT +log ———= +3.
[N/2]!
We first observe that Theorem 4.2 follows immediately from the above lemmas. Indeed, com-
bining the two lemmas and recalling that there are N! permutations from [N] to [N], we have

+ [N/2] -logT +log ———=+3 > log N! —log2 .

N!
[N/2]!
Hence,

N
log — —4
og 6T )
where the second inequality is due to the fact m! > (m/e)™ > (m/3)™ (by Stirling’s approximation)
and [N/2] > N/2.

S >log [N/2]! = [N/2] -logT — 4 > g
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Proof of Lemma 4.7. Fix an arbitrary permutation f: [N] — [N]. We encode f as follows. Given
f and randomness r, the encoder simulates (P, .A) on every y € [IN]. Let st be the output of P(f,r)
and G be the set of y such that Af(st,y,r) = f~'(y). By an averaging argument,

1

_ 1
Pr [ Pr [‘Af(Stvva) =f l(y)] > 5] > 9

r~{0,1}¢ y~[N]
In other words, with probability at least 1/2 the size of G is at least N’ := [N/2]. Assuming
|G| > N’, we pick a set G’ C G with size exactly N’ and encode f as follows,

1. Include st, and a description of G’. This requires S + [log ( ]]\,V/)] bits.

2. For each y € G’ (in lexicographic order), run Af(st,y,r) and include the index i such that
the answer to the ith oracle query is y. This requires [N’ -logT] bits in total.

3. Store the mapping from [N]\ f~!(G’) to [N]\ G’ corresponding to f restricted to [N]\ f~1(G")
using [log(N — N")!] bits.

Given the shared randomness r, the decoder does the following:
1. Recover st and G'.

2. For each y € G, run A(st,y,r) to generate T non-adaptive queries x1, ..., 2z, recover the
index ¢ and set f(z;) = y. We remark that this step heavily relies on the guess-and-check
property of A.

3. After the above two steps, the decoder reconstructs f~(G’) and G’ (hence [N]\ f~1(G’) and
[N]\ G’). Then the decoder recovers the values of [N]\ f~!(G’) using the remainder of the
encoding.

Assuming |G| > N/2, the decoding procedure recovers f. The encoding length is

S + [log (N

N!
N’>1 + [N’ -logT7 + [log(N — N')!11 < S+ N'-logT +log —~ + 3,

N

as claimed. n

5 Comparing variants of function inversion

In this section, we prove that different formulations of the function inversion problem are equivalent
(up to polylogarithmic factors in .S and T'). First, we prove that the decision version of the Function
Inversion problem, that merely asks to check whether a query y is in the image of the preprocessed
function f, is as hard as the search version of the problem where the goal is to find a preimage of y.
We prove this equivalence for three different settings: for arbitrary (i.e., worst-case) functions in
Section 5.1, for random functions in Section 5.2, and for injective functions in Appendix B.? Also,
[CK19, Lemma 21| proves that for worst-case functions and M > N, inverting f: [N] — [M] is as

9We remark that the result for injective functions is very similar to [CK19, Theorem 8]. We simply include it for
completeness.
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hard as inverting f’: [N] — [N]. In Appendix A, we show that this result can be extended to the
setting of random functions.

These equivalences suggest that the hardness of function inversion is specified by the domain
size and the class of functions (worst-case/injective/random), but not by the search/decision type
of the problem or the range size.

5.1 Search-to-decision reduction for arbitrary functions

In this section, we prove an essentially tight search-to-decision reduction for worst-case function
inversion. Namely, given an algorithm that solves DFI (for all functions; see Definition 2.3) in
query time T and preprocessing S, we design an algorithm that solves SFI (for all functions) in
query time 7T - poly(log N') and preprocessing S - poly(log N') (or even query time O(T - log N) and
preprocessing O(S - log N), see Remark 5.3).

First, in Lemma 5.1 we observe that, given an algorithm for DFI, one can solve SFI on all inputs
y that have unique preimages. Then, in Theorem 5.2 we use the Isolation Lemma [VV85, MVVS87,
Ta-15] to reduce the general case of SFI to the case where y has a unique preimage.

Lemma 5.1. Let N = 2" and ¢ := &(N) € (0,1/2]. Suppose there exists an algorithm
(P, A) that solves (N, M)-DFI with advantage € using S bits of preprocessing and T queries.
Then there exists an algorithm (P', A’) that uses S' < O(Sn(logn)/e?) bits of preprocessing and
T' < O(Tn(logn)/e?) queries with the following guarantees. For every f: [N] — [M] and every

y € [M] satistying [{f~(y)}| =1,

Pr [ « (A (P'(f,r),y,r) : f(z') =y] > 1—1/(10n%).
r~{0,1}¢

Furthermore, for every f: [N] — [M] and every y € [M],

{Pf }”[x/ — (A (P'(fir),y,r) = 2’ # L oand f(2') #y] < 1/(100%) .10

r~{0,1

Proof. By running (P, A) a total of k = O((logn)/c?) times with fresh randomness and taking the
majority of the query answers, we may assume that (P, .A) has failure probability at most 1/(20n?)
(by the Chernoff bound in Lemma 2.9). Therefore, it suffices to show an algorithm (P’, A’) that uses
O(Tn) queries and O(Sn) bits of preprocessed advice for the special case when ¢ = 1/2 —1/(20n3).
For an x € [N], by z; we denote the i¢th bit in the binary representation of x. For inverting a
function f: [N] — [M], we first define the following 2n = 2log N functions from [N] to [M]. For
i € [n], let

M otherwise . M otherwise .

g?<x>={f(w> S gi<x>={f(w) =1

Notice that an oracle query to gf can be trivially simulated by making at most one oracle query to

f.
We now present the algorithms P’ and A’. For each i € [n] and b € {0,1}, r? ~ {0,1}¢, P’

runs o? < P(g%,7?), and outputs ¢’ = (69,0} ...,0%,0}). Finally, P’ outputs a preimage of M if

) n’

it exists: z € f~1(M). This implies that S’ < O(Sn + n) = O(Sn).

90ne could reduce the latter probability of failure to 0 with an adaptive reduction, but we prefer to keep the
reduction non-adaptive with a small probability of error.
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Given a query y € [M], the algorithm A" (with oracle access to f) proceeds as follows. If y = M,
the algorithm just outputs the stored preimage z of M. For y € [M — 1], the algorithm A’ for each
i € [n] and b € {0, 1}, computes d° = .Ag?(af,y,rﬁ?).

Intuitively, we expect d? = 1 if there exists a preimage of y with the ith bit 0, and dl-1 =1if
there exists a preimage of y with the ith bit 1. Now we check that y has a unique preimage as
follows. If for some i € [n], d? = dzl, then A’ outputs L and terminates. Otherwise, for each i, A’
sets 2} = b where b € {0,1} is such that d’ = 1 and d}fb = 0. Finally, the algorithm A’ outputs
= (2},...,2}) € [N].

It is clear that the number of queries made by A’ is at most O(Tn), as needed. If y € [M] has
a unique preimage x under f, then all 2n queries to A are simultaneously answered correctly with

probability at least 1 — 2n/(20n3) > 1 — 1/(10n?), which immediately implies

{Pr} [z — (A (P'(f,r),y,r) : &' =2] >1—1/(10n?).
r~{0,1}¢

If y € [M] doesn’t have a preimage under f, then

Pr [z« (A (P'(f,r),y,r) : &’ =1]> Pr [dl=0andd =0]>1-1/(10n3).

re{0,1}¢ r~{0,1}¢
Finally, if y € [M] has at least two preimages that differ in ith bit, then

Pr [z« (A (P'(f,r),y,7) : @’ =1]> Pr [d=1andd =1]>1-1/(10n°).

rrf{0,1}¢ r~{0,1}¢
The result follows. O

We are now ready to prove the main result of this section. The main difference in the statements
of Lemma 5.1 and Theorem 5.2 is that the SFI algorithm in Lemma 5.1 is only guaranteed to
succeed on queries that have a unique preimage, while the SFI algorithm in Theorem 5.2 works for
all queries.

Theorem 5.2. Let N = 2", and let € := ¢(N) € (0,1/2]. Suppose there exists an algorithm
(P, A) that solves (N,M)-DFI with advantage € using S bits of preprocessing and T queries.
Then there exists an algorithm (P”, A”) that solves (N, M)-SFI with success probability 0.9,
S" < O(Sn?(logn)/e?) bits of preprocessing, and T" < O(Tn?*(logn)/e?) queries.

Proof. Let n = log N and k = 50. Using shared randomness, the algorithms P” and A” define
kn sets U;; C [N] for i € [n] and j € [k], where each each element x € [N] is placed in U ;
independently with probability 2771,

In order to invert a function f: [N] — [M], we first define the following kn functions from [V]
to [M]. For i € [n] and j € [k], let

gij(z) = {f(x) ifx €U,

M otherwise .

Notice that an oracle query to g; ; can be trivially simulated by making at most one oracle query

to f.
The algorithm P” runs the algorithm P’ guaranteed in Lemma 5.1 for the kn functions g; ;.
That is, let r11,. ..,y be independent random binary strings of length ¢. For i € [n] and j € [k,
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P" runs o;; < P'(gi;,ri;), and outputs o’ = (o11,...,0,). Finally, P” outputs a preimage of
M if it exists: z = f~1(M). In particular, S” < O(S'kn +n) < O(Sn?(logn)/e?).

Given a query y € [M], the algorithm A” (with oracle access to f) proceeds as follows. If
y = M, then A” just outputs the stored preimage of M. If y < M, then for each i € [n] and j € [k],
A" computes z; j = (A')%3(0; ;,y,7i;), where A’ is the algorithm guaranteed in Lemma 5.1. If for
all i € [n] and j € [k], z; ; = L, then A” outputs L, otherwise A” outputs any x; ; with x; ; # L.

It is immediate that A” makes at most 7" < O(T'nk) = O(Tn?*(logn)/e?) queries to f. By
Lemma 5.1, with probability at least 1 —kn/(10n?) > 0.99, all kn queries to the algorithms P’ and
A’ are answered correctly. In particular, the algorithm (A")%7 returns z; ; satisfying f(z;;) =y
for y € [M — 1] having a unique preimage under g; j, and returns L (or a correct preimage of y)
otherwise. Therefore, it suffices to prove that for every y € f([N]),

Pr [Ji€nl,j€[k]: g, (y)] =1]>099.
r~{0,1}¢

For ay € f([N]), let Sy = {z: f(z) = y}. Let i € [n] be such that 2¢=1 < |S,| < 2%, For x € Sy, let
p=Pr.[z € U;;] =271, We have that 1/4 < p|S,| < 1/2. Then for each j € [k],

{Fo’rl}e,[lgif}(y)l =1 =S, p- (1 —p)t >1/4. 219 > 1/(4e),

where we used 1 —z > e 2* for 0 < z < 1/2. From independence of U; ; and k = 50,

i 35 € [k]: g} ()| =1 > 1—(1—1/(4e))* > 0.99

which finishes the proof. O
Remark 5.3. A few extensions of Theorem 5.2 are in order.

1. To simplify the proof of Theorem 5.2, we used shared randomness to gain access to the same
random sets U; ;j in the preprocessing and query algorithms. As always, shared randomness
can be removed using Corollary 6.3. Alternatively, one can avoid using shared randomness in
the proof of Theorem 5.2 by sampling O(n) functions from a family of pairwise independent
hash functions (see, e.g., [VV85]), and storing their descriptions using additional O(n?) bits
of advice.

2. We remark that the presented search-to-decision reduction is non-adaptive, so a non-adaptive
algorithm for DFI implies a non-adaptive algorithm for SFI (and an adaptive algorithm for
DFI implies an adaptive algorithm for SFI).

3. In the proof of Lemma 5.1, the logn factor in the advice length and the number of queries
comes from the amplification of the success probability of the assumed DFI algorithm from
1/2+¢ to1—0(1/n®). We remark that one can get rid of this logn factor by recovering the
bits of C(z) rather than the bits of x for a good linear code C (similarly to how it is done in
the proof of Theorem 5.4). This modification will also improve the parameters S” and T" in
Theorem 5.2 by a logn factor (though unfortunately it does not preserve non-adaptivity).

4. Furthermore, in the proof of Theorem 5.2, one can define the functions g;;: [N/2'] — [M]
with domain of size N/2'. If the assumed DFI algorithm works for all (large enough) values
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of N and has advice length and number of queries S(N) and T(N), then this modification
would give us S”" < O((S(N) + S(N/2) +---+ S(N/2"))n) and T" < O((T(N) + T(N/2) +
.-+ T(N/2™)n). For the most interesting regime of S(N),T(N) = NOW  this gives us
S” < O(Sn) and T" < O(Tn).

5.2 Search-to-decision reduction for average-case functions

In this section, we show a different search-to-decision reduction for average-case function inversion.
(See Definition 2.4 for the formal definition of average-case SFI and Definition 2.5 for the formal
definition of average-case DFI.) The proof of Theorem 5.2 does not work for the case of average-
case functions as Lemma 5.1 heavily relies on the fact that the assumed DFI algorithm works
for all functions. Nevertheless, we can extend the techniques of the previous section to recover
bits of a certain encoding of x rather than the individual bits of x and prove an essentially tight
search-to-decision reduction for average-case function inversion in Theorem 5.4.

Theorem 5.4. Let N = 2". Suppose there exists an algorithm (P, A) that solves average-case
(2N, M)-DFI with advantage ¢ > 1/2 — exp (—2N/M — 2N/M?)/4, using S bits of preprocessing
and T queries. Then for any constant § € (0,1/4), there exists an algorithm (P', A’) that solves
average-case (N, M)-SFI with success probability exp (—2N/M —2N/M?) — (1/2 — ¢)/(1/4 — 6)
using S" < Og(nS) bits of preprocessing and T' < Og(nT) queries.

Proof. Let C := C,41,5 be a code as guaranteed by Theorem 2.11, with generator matrix C :=
Chiis € F;nx(nﬂ) with m < Os(n) and efficient decoding algorithm Dec. Recall that for 1 < i < m,
we write C; :== {c € C : ¢ = 0} and that we may assume without loss of generality that
|Ci| =|C|/2 = 2" = N. Notice that X; := {z : Cz € C;} is an n-dimensional subspace of Fj*!,
and let B; € IF‘;”H)X” be a basis for Aj. (B; can be computed efficiently, given C and i.) Finally,
we define f; : [N] — [M] by fi(x) := f(B;x), where here we interpret & € [N] as an n-bit vector
x € Fy by writing  in binary.

Given the setup above, our algorithms P’ and A’ are relatively simple. On input f ~ {g : [2N] —
[M]} and r ~ {0,1}¢, P’ runs o; < P(f;,r) for i = 1,...,m and outputs o’ := (o1,...,0,)."' In
particular S” < mS < Os(nS), as claimed.

The algorithm A" (with oracle access to f) behaves as follows on input o’ = (o1,...,0m),
y := f(z), and r. For i = 1,...,m, it computes d; := 1 — Afi(o;,y,r), which can be done using
at most T queries to f. (Intuitively, “d; = 0 means that there is likely to be a preimage of y
in X;.”) Finally, the algorithm outputs 2’ := Dec(d) € [2N] (where we interpret the (n + 1)-bit
string returned by Dec as the binary representation of an element of [2N]). In particular, the total
number of oracle queries made by A’ is 7" < mT < Os(nT), as claimed.

Let ¢ := Cx € F3', where x € F;‘H is the bit string corresponding to the binary representation
of z € 2N]. Let e := cdd € F". Notice that ' = z if |le||g < (1/4 —d)m. So, it suffices to argue
that |le||g < (1/4 — §)m with the claimed probability.

Let E, be the event that [{z* : f(z*) =y}| =1, i.e., the event that x is the unique preimage
of y under f. Let e} = 1 if and only if “Afi(0;,y,r) fails,” i.e., €} = 1 if either d; = 0 but there is a

/

preimage of y in &; or d; = 1 but there is a preimage of y in X;. Notice that Prle; =1] < (1/2—¢)

)

by assumption, so that E[||€’|| z] < (1/2—&)m. (Here, we are using the fact that (1) f; is a uniformly

We really can run P with the same random bit string 7 in each of these calls, as our proof will not require
independence of the randomness used by the m evaluations of P.
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random function; (2) conditioned on y being in the image of f;, y is distributed identically to f;(z*)
for uniformly random z* ~ [N]; and (3) conditioned on y not being in the image of f;, y is uniformly
random in [M]\ fi([N]).) Notice that, if E, holds, then e = €'. Therefore,

Pr[f(z') = y] > Pr[|le[s# < (1/4 — 6)m and E,]
=Pr[||€/|z < (1/4—0)m and E,]
> Pr[Ey) — Pr[||€/||u > (1/4 — 6)m] .

Finally, by Claim 2.10, we have Pr[E,] > e~ 2N/M-2N/M * and by Markov’s inequality, we have

Pr (€|l > (1/4 — 6)m] < (Euillgil < 52:; .

The result follows. O
Remark 5.5.

1. Similarly to the reduction in Theorem 5.2, the search-to-decision reduction of Theorem 5. is
non-adaptive.

2. For simplicity of presentation, in the proof of Theorem 5.4 we only invert queries that have
a unique preimage. For the standard setting of M > Q(N) this already gives relatively high
constant probability of success. One can amplify this probability to an arbitrarily large constant
by using the Isolation Lemma (see the proof of Theorem 5.2) to invert points with more than
one preimage, too.

3. A drawback of Theorem 5.4 is that it requires the DFI algorithm to have very large advan-
tage €. This is because we actually need the DFI algorithm to have non-negligible advantage
in distinguishing between (1) uniformly random y that is not in the image of f; and (2) uni-
formly random y with |f~1(y)| = 1 (i.e., a random image that has a unique preimage). (This
is true even if we use the Isolation Lemma idea described above.) We could have worked
directly with this assumption on the DFI algorithm, but we prefer the simpler (but strictly
stronger) assumption in Theorem 5.4.

6 Removing shared randomness

In this section, we adapt to our setting Newman’s technique for converting public-coin protocols
to private-coin protocols [New91] in the context of communication complexity. We first define a
general notion of a computational problem with preprocessing to which our technique will apply.

Definition 6.1. Let F be a set of functions f : D — R, and let Y, X be sets. A preprocessing-
queries tradeoff problem is a function g : F x Y — 2%, where 2% denotes the powerset of X. Let
(P, A) be a pair of randomized algorithms. We say that

1. (P, A) solves g with success probability § € (0,1] if for all f € F and y € Y,

Pr [AN(P(f,r).y.7) € g(f.y)] = 0.
re{0,1}
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2. (P, A) solves g without shared randomness with success probability 6 € (0,1] if for all f € F
andy € Y,
Pr [AI(P(f,r1),y.72) € g(f.9)] = 6.

r1,ra~{0,1}
Our generic lemma for removing shared randomness is as follows.

Lemma 6.2. Suppose there exists an algorithm that solves a preprocessing-queries tradeoff problem
g: FxY — 2% with success probability 1—¢ using preprocessing S and T. Then there exists another
algorithm that solves g without shared randomness, with success probability 1 — 2¢, preprocessing
S+log(K/e%)+O(1), and T queries, where K = log |F x Y|. If the first algorithm is non-adaptive
(resp. guess-and-check) then so is the second. Moreover, the success probability can be increased to
1 at the cost of an additional 4¢|Y|[log |V|]| bits of preprocessing.

Proof. The proof is adapted from the proof of Newman’s technique given in [RY20]. Sample
k = O(2K /%) independent random strings r1,...,7% € {0, 1}\.

We claim that with probability at least 1 — 275, these random strings satisfy the following
property: For all functions f € F and inputs y € ), we have

o A(P(firi)yor) € g(Fy)] 2 1 - 2. (M)
From the claim, it follows that k fixed strings r], ..., r}; with this property must exist. Then the

algorithms (A’,P’) are simple. On input f, P’ first samples i ~ [k], then simulates P to compute
st :=P(f,r}). It outputs advice (st,i). On input y, A"/ simply returns A/ (st,y,r}). Clearly A’ is
non-adaptive (resp. guess-and-check) if A is.

It remains to prove the claim. Fix a function f and an input y. For each independent random
string r; we have

Pr[AL(P(f.ri).y.m0) € g(fy)] > 1 e

Hence by the Chernoff bound (Lemma 2.9), the probability that 2ck strings r; satisfy
AL (P(f,7),y,m3) ¢ g(f,y) is at most 20Ue?k) < 2-2K  Gince there are at most 2K possible pairs
(f,y), by union bound, the probability that this occurs for any f,y is at most 275, as claimed.

For the “Moreover”, fix a function f € F. Notice that by an averaging argument, Eq. (7)
implies that for some ¢* € [k], 7% satisfies

PrlA(P(firD),y,ri) € gy 21— 2.
Thus there are only b = 2¢|Y| inputs y1, . . ., yp for which AY(P(f,r%),y;,75) € g(f,y). P’ outputs
(st,i*, E), where E := {(y;,%;)};ep), and for each j € [0], z; € g(f,y). (Such an x; is guaranteed
to exist because the original algorithm (A4, 7P) is assumed to have positive success probability on
all input-challenge pairs (f,y).) Given challenge y, A"/ first checks if (y,z) € E for some x € X. If
S0, it returns x. Otherwise, it returns A/ (st,y,r}) as before. It is easy to see that (P’, A’) always
succeeds, uses at most S +1log(K/e?) +4¢e|Y|[log |V|] +O(1) bits of preprocessing, and uses at most
T queries. And again, A’ is clearly non-adaptive (resp. guess-and-check) if A is. O

(Of course, choosing the strings at random will not allow us to obtain success probability 1.)
The following is an immediate corollary in our setting.
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Corollary 6.3. Suppose that for some class F of functions f : [N] — [M] there ezists a function-
inversion algorithm that solves (N, M)-SFI (resp. solves (N, M)-DFI) for F with success probability
1 — e, using preprocessing S, and queries T. Then there exists a function-inversion algorithm that
solves (N, M)-SFI (resp. solves (N, M)-DFI) for F with success probability 1 — 2e without shared
randomness, using S + log(N/e?) + loglog M + O(1) bits of preprocessing and T queries. If the
first algorithm is non-adaptive (resp. guess-and-check) then so is the second. Moreover, the success
probability can be made 1 at the cost of an additional 4e N log N bits of preprocessing.

Proof. 1t is easy to check that each of these function-inversion problems is a preprocessing-queries
tradeoff problem, with ) = [M]. Thus Lemma 6.2 applies. So it suffices to observe that

log(K/e?) = log K — log &*
= loglog | F x Y| — log &?
= loglog MN*1 — log &?
= log((N + 1)log M) — log?
= log(N + 1) + loglog M — log &*
= 0(1) +log N —loge? + loglog M
= O(1) +log(N/e?) 4 loglog M. O
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A Reducing the range size

In this section, we prove that for worst-case and average-case function inversion, the size of the
range does not matter. The result of Lemma A.1 was already proven in [CK19, Lemma 21], and
the presented proof is similar to that of [CK19, Lemma 21]. We include it for completeness and to
simplify the presentation in Lemma A.2. Recall that we denote (N, N)-SFI by SFIL.

Lemma A.1. Let 0 < g,6 < 1 be constants, and let M > N. Suppose there exists an algorithm
(P, A) that solves worst-case SFI with success probability ¢ using S bits of preprocessing and T
queries. Then there exists an algorithm (P’, A’) that solves worst-case (N, M)-SFI with success
probability §, S" = O(S) bits of preprocessing, and T = O(T') queries.

Proof. Let k := [log(1 — d)/log(1 — €/e?)]. Using shared randomness, the algorithms P’ and A’
define k independent random functions hq, ..., hg: [M] — [N].

In order to invert a function f: [N] — [M], we define the functions gi,...,gx: [N] — [N]
as gi(z) = hi(f(x)) for x € [N] and i € [k]. Let r1,...,7% € {0,1}* be independent random
binary strings of length ¢. The algorithm P’ runs o; + P(g;,7;) for each i € [k], and outputs
o' = (01,...,0%). In particular, S" < Sk = O(S).

The algorithm A’, given a query y € [M] proceeds as follows. For i € [k], it computes z() <
A% (c;, hi(y), ;). Then A’ makes k additional queries to f, and outputs z(® if f(z(®) = y for an
i € [k]. If for all i € [k], f(z(®) # y, then A’ outputs L. We have that the number of queries made
by A'isT' <Tk+k=0(T).

Clearly, if A’ outputs 2’ # L, then f(2’) = y. It remains to show that for each y € f([N]), the
algorithm A’ outputs x € f~1(y) with probability at least §. For every y € f([N]), let E;/ be the
event that [{y’ € [M]: hi(y') = hi(y)}| = 1, i.e., the event that y is the unique preimage of h;(y)
under h;. Notice that if E; holds, then every preimage of h;(y) under g; is also a preimage of y
under f. By Claim 2.10 and M > N,

Pr E! >e_N/M_N/M2 > e 2.
hin{B[M][N]} Y B

For every function f and every y € f([V]), if E; holds, then A returns a correct preimage of y
under f with probability at least e. By repeating this k = [log(1—§)/log(1—e/e?)] times, we have
that for every f and every y € [M], the algorithm A’ finds a correct preimage of y with probability
at least 9. O

Lemma A.2. Let § := §(N) € (0,1], n = log N, and let M be a multiple of N. Suppose there
exists an algorithm (P, A) that solves average-case SFI with success probability & using S bits
of preprocessing and T queries. Then there exists an algorithm (P', A') that solves average-case
(N, M)-SFI with success probability 6 — 1/(10n?), S’ = O(Slogn) bits of preprocessing, and T' =
O(T'logn) queries.

Proof. Let k = [4logn + 6]. Using shared randomness, the algorithms P’ and A’ define k inde-
pendent random bijective functions hy, ..., hg: [M] — [M].

In order to invert a function f: [N] — [M], we define the functions gi,...,gx: [N] — [N] as
gi(z) = hi(f(z)) mod N for x € [N] and i € [k]. Let r1,...,7 € {0,1}¢ be independent random
binary strings of length ¢. The algorithm P’ runs o; < P(g;,7;) for each i € [k], and outputs
o' = (o1,...,0%). In particular, S” < Sk = O(Slogn).
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The algorithm A’, given a query y € [M] proceeds as follows. For i € [k], it computes z()
A% (0, hi(y) mod N,r;). Then A’ makes k additional queries to f, and outputs =¥ if f(z()) =y
for an i € [k]. If for all i € [k], f((®) # y, then A’ outputs L. We have that the number of queries
made by A" is T" < Tk +k = O(Tlogn).

For every a function f: [N] — [M] and z € [N],y = f(z), let E. be the event that |{y €
F(IN]): hi(y') = hi(y) mod N}| = 1. Observe that if EZ holds, then every preimage of h;(y) mod N
under g; is also a preimage of y under f. Indeed, if EZ holds, then every x satisfying h;(y) = g;(z) =
hi(f(z)) mod N must also satisfy y = f(x). Since h: [M] — [M] is bijective, for every f and z,

s (Y (40 () () e

From independence of hy, ..., hg, for every x € [N] and every f: [N] — [M] we have that
Pr [Vi€ [k]: =El] = lir[ﬂE;]k <(1—1/e)* <1/(10n?) .
1

-

The success probability of the algorithm (P’, A’) is at least

Pr (A (P(f,r), f(z),r) € F ()]

r~{0,1}!
f:IN]=[M]
z~[N]; y=f ()
> Pr [Fi € [k]: EL and (A)% (P(g;,7), hi(x) mod N,r) € g; *(hi(x) mod N)]
r~{0,1}
f:N]=[M]
z~[N]
>1-1/(10n%) — Forul [AY(P(g,7),9(z),m) & 97" (y)]
FN]= (M)
h:[M]—[M] bij.
g=(mod N)ohof
z~[N]; y=g(z)
>1-1/(10n) — Forul [AY(P(g,7),9(x),m) & 97" (y)]
g:[N] 5[N]
a~[N]; y=g(z)

>1-—1/(10n%) — (1—06) =6 — 1/(10n?)

where the last inequality follows from the success guarantee of the algorithm (P, .A). O

B Search-to-decision reduction for injective functions

We observe that the reduction of Theorem 5.2 that preserves the domain and the range of the
functions cannot be extended to the case of injective function inversion. Indeed, if M = N, then
the injective DFI problem is trivial (the output to every query is one), while the injective SFI
problem is the permutation inversion problem that is known to require ST 2 N [Ya090]. In
the following lemma we provide a search-to-decision reduction for injective function inversion that
increases the range by a factor of two. The main difference between the proofs of Lemma 5.1
and Lemma B.1 is in the definitions of functions gf. We define injective SFI and DFI problems
similarly to Definition 2.2 and Definition 2.3 with the only difference being that the algorithms are
guaranteed to work only for injective functions f.
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We include the proof of Lemma B.1 for completeness. This proof closely follows the proof of
[CK19, Theorem 8] with the following minor differences. [CK19] reduces injective (NN, M)-SFI to
(N, M)-DFTI over an arbitrary function but average-case input y, while we reduce injective (N, M )-
SFI to injective (N, M + N)-DFL. It is easy to see that the functions that [CK19] constructs in the
proof are 2-to-1, so a straightforward modification of their reduction results in injective functions
(but with a larger range of size M + N).

Lemma B.1. Let € := ¢(N) € (0,1/2]. Suppose there exists an algorithm (P, A) that solves
injective (N, M + N)-DFI with advantage € using S bits of preprocessing and T queries. Then there
exists an algorithm (P', A') that solves injective (N, M)-SFI with success probability 1 — 1/(10n?)
using S' < O(Sn(logn)/e?) bits of preprocessing and T' < O(Tn(logn)/e?) queries.

Proof. By running A and P k = O((logn)/e?) times with fresh randomness and taking the majority
of the query answers, we may assume that A and P have failure probability at most 1/(20n3) (by
the Chernoff bound in Lemma 2.9). Therefore, it suffices to show an algorithm (P’,.A") that uses
O(Tn) queries and O(Sn) bits of preprocessed advice for the special case when ¢ = 1/2 —1/(20n3).

For inverting an injective function f: [N] — [M], we define the following 2n injective functions
from [N] to [M + N]. For i € [n], let

g?<a:>={f("“’> i g3<x>:{f(x> o =1,

xz+ M otherwise . x+ M otherwise .

Notice that an oracle query to gg’ can be trivially simulated by making at most one oracle query
to f.

For each i € [n] and b € {0,1}, r? ~ {0,1}¢, P’ runs o? « P(g?,7?), and outputs o/ =
(0,01...,0%, k). In particular, S’ < O(Sn).

Given a query y € [M], for each i € [n] and b € [k], A’ computes d? = A% (o, y,r?), which is
done using at most O(T'n) queries to f. Informally, d = 1 if there exists a preimage of y with the
ith bit 0, and d} = 1 if there exists a preimage of y with the ith bit 1. If for some i € [n], d? = d},
then A’ outputs L. Otherwise, for each i, A’ sets o} = b where b € {0,1} is such that d’ = 1 and
dil_b = 0. Finally, the algorithm A’ outputs 2’ = (2},...,2},) € [N]. In particular, the number of
queries is 77 < O(Tn).

All 2n queries to A are answered correctly with probability at least 1—2n/(20n3) > 1—1/(10n2).
If y € [M] has a (unique) preimage x under f, we have that Pr, 1y [z’ < (AN (P! (f,7),y,7) -
¥ = 2] > 1—1/(10n?). If y € [M] doesn’t have a preimage under f, then Pr,_ o1 [/«
(AN (P (f,r),y,r) + 2 = 1] > 1— Pr, oneldl = lordi = 1] > 1 —1/(10n%). The result
follows. O

C Balls and bins: Proof of Lemma 4.3

We will need the following lemma, which is a special case of [Mit96, Corollary 2.12]. It relates the
case when a fixed number M of balls are thrown into N bins to the case when the number of balls
in each bin is independently chosen from a Poisson distribution with mean M/N.

Lemma C.1. For any positive integers M, N,k with 1 < k < M, if M balls are thrown inde-
pendently and uniformly at random into N bins, then the probability that there is no bin that has
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exactly k balls in it is at most 4(1 — p)V < 4e™PN | where

_ o M/N (M/N)*

P Kl
is the probability that a Poisson distribution with mean M /N takes the value k.

Our proof of Lemma 4.3 is a minor adaptation of the proof of [Mit96, Lemma 2.13]. The only
difference between our Lemma 4.3 and [Mit96, Lemma 2.13] is that our lemma makes the constant
explicit.

Proof of Lemma 4.3. Let k := |log N/(3log(N/M))|. Notice that the statement is trivial if k£ <1
(since there is always a bin with at least one ball in it), so we may assume that & > 2. By
Lemma C.1, it suffices to prove that 4e P < 1/10, where

pim et T ey

where we have used the assumption that M < N/log N and that N > 300, which in particular
implies that e=™/N > 1/2 > k/k* for k > 2. Furthermore, by the same assumption, we have that

M/(EN) > M/(Nlog N) > (M/N)*.
Therefore, we have
pN > (M/N)Qk N > (M/N)(2/3)-logN/log(N/M) N = N1/3 )

It follows that 4e PN < qe—N'? < 1/10, since N > 300. ]
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