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Abstract

In this work, we design an interactive coding scheme that converts any two party

interactive protocol Π into another interactive protocol Π′, such that even if errors

are introduced during the execution of Π′, the parties are able to determine what the

outcome of running Π would be in an error-free setting.

Importantly, our scheme preserves the space complexity of the protocol, in addition

to the communication and computational complexities. Specifically, if the protocol Π

has communication complexity T , computational complexity t, and space complexity s,

the resulting protocol Π′ is resilient to a constant ε > 0 fraction of adversarial errors,

and has communication complexity approaching T as ε approaches 0, computational

complexity poly(t), and space complexity O(s log T ).

Prior to this work, all known interactive coding schemes required the parties to use

at least Ω(T ) space, as the parties were required to remember the transcript of the

conversation thus far, or considered weaker error models.
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1 Introduction

1.1 Interactive Coding Theory

Background. In the well-studied field of coding theory, which dates back to the seminal

work of Shannon [Sha48], researchers attempt to understand the fundamental limits on

the transfer of information imposed by unreliable communication channels. Most work in

this regime focused on the one-way model of communication, where one party (henceforth

referred to as Alice) wishes to send a single message to a second party (Bob). While classical

coding schemes have found innumerable applications both in theory and in practice, modern

systems, which are often very interactive, have motivated the development of radically new

coding schemes.

Motivated by this scenario, Schulman [Sch96] initiated the study of the following model of

interactive communication over a noisy channel. There are two parties who wish to carry out

a conversation. The additional wrinkle: the channel through which the parties communicate

is now unreliable, and may change some of the sent symbols. Therefore, the goal is to

transform the original protocol into a new protocol which is still guaranteed to correctly

determine the outcome of the original protocol (or, say, succeed with high probability), even

if some errors are introduced into the conversation. The new protocol is referred to as a robust

simulation of the original protocol. In the literature, errors may be random or adversarial,

and in our work, we consider the most general adversarial error model, so our results can be

applied in all other (weaker) error models.

Resource-efficient interactive coding. Schulman’s breakthrough works in the 1990’s

[Sch92, Sch93, Sch96] already showed that every protocol can be robustly simulated by a

protocol that only incurs a constant multiplicative overhead in the communication complex-

ity, even in the case that an adversary is allowed to corrupt a constant fraction of the total

communication. It would be another twenty years before Brakerski and Kalai [BK12] show

that the robust simulation can also be made computationally efficient. That is, the running

time of the two communicating parties in the simulation protocol is polynomial (or even

linear [BKN14]) in the running time of the parties in the original protocol.

Constructing interactive coding schemes that preserve the communication and time com-

plexities of the original protocol (at least up to polynomial factors) is an important step

towards making interactive coding practical. In fact, as in the case of (one-way) classical

codes, we wish for the coding layer to be as “seamless” as possible and for the simulation to

preserve as many of the properties of the original protocol as possible.

In this work, we take another step towards this vision and show that the space complexity

can also be preserved. Specifically, we show how to convert any two party protocol into one

that is resilient to constant fraction of adversarial errors, while preserving the communication

complexity (up to constant factors), the time complexity (up to polynomial factors), and

preserving the space complexity (up to logarithmic factors).
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We note that all prior works on robust simulation blow up the space complexity of the

parties, by forcing them to save in memory the entire transcript of the conversation thus far1.

Storing the entire transcript can be wasteful, or even impractical for very long protocols,

and therefore it is beneficial to have noise-resilient communication protocols which are more

space-efficient.

1.2 Our Result

Our main result is a time-efficient and space-efficient interactive coding scheme with rate

approaching 1 that is resilient to a constant fraction of adversarial errors.

Theorem 1.1 (Informal Statement; cf. Theorem 3.6). Let Π be a protocol of length T ,

computational complexity t, and space s. Let ε > 0 be a small enough constant. There

exists a protocol Π′ that robustly simulates Π with probability 1 − 1
T

in the presence of an ε

fraction of adversarial errors and has length approaching T as ε approaches 0, computational

complexity poly(t), and space complexity O(s log T ).

We mention that our work is essentially a compiler, taking an interactive coding scheme C
(that may not have small space overhead), and outputting a new scheme C ′ with a small

space overhead. The scheme C ′ applies the original scheme C to blocks of consecutive rounds

of Π, and combines the transcripts of Π for these blocks in a space-efficient manner. Since

our scheme C ′ can be viewed as an efficient oracle machine that uses the original scheme C as

an oracle, it preserves the running time and other properties of the original scheme C. For

instance, since in Theorem 3.6, we apply our compiler on the coding scheme C of [CS20] that

has rate approaching 1, we are able to show that our scheme C ′ has rate approaching 1. One

can also apply our compiler to other interactive coding schemes to get additional results,

e.g., applying it to the scheme of [BKN14] would give a scheme C ′ that has an almost linear

running time (but a rate that is a constant bounded away from 1).

We believe that the multiplicative O(log T ) blowup in the space complexity in Theo-

rem 1.1 is necessary when converting protocols into noise resilient ones. Proving or disprov-

ing this conjecture is left as an open problem. We mention that a similar blowup appeared

in [EHK+22]2 (see below for further discussion). At least in the case of [EHK+22], proving

that this blowup is necessary would require proving new circuit lower bounds.

Our model. We finish this section with a discussion of our specific communication model,

noting that our ideas would extend to other models as well. For us, a communication protocol

starts with the parties having an input and a memory of s bits and proceeds in rounds: In

1We note that one exception is the work of [CLPS20], which is a followup to an earlier version of this
work [HR18], and which we elaborate on in Section 1.3.

2In [EHK+22], this blowup manifests itself as a blowup in the circuit size. As in our case, the blowup
occurs as the simulation needs to remember geometrically spaced locations, called “meeting points”, in the
original protocol (see Section 2).
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each round, each party sends a bit (which can be an arbitrary3 function of their input and

current memory state) to the other party over the channel. Upon receiving a (possibly

flipped) bit from the channel, each party updates their memory state to a new memory state

(that is an arbitrary function of their received bit, their input, and their current memory

state) and continue executing the remaining rounds. After all the rounds have been executed,

the parties use their input and memory state to compute an output value. We mention that

in the protocol Π′ in Theorem 1.1, the functions that are used to compute the sent bits

and update the memory are efficient in terms of time and space, given oracle access to the

functions of Π.

We also mention that Theorem 1.1 is shown in the most general fully adaptive adversarial

error model. Specifically, the adversary is assumed to know all inputs, and, at any point in the

execution of the protocol, the adversary sees all the messages that have been communicated

by the parties and all the random strings used by them till that point. For a formal definition,

see Section 3.2.

1.3 Prior Work

Interactive coding. The problem of communicating over a noisy channel was originally

formulated by Schulman [Sch92, Sch93, Sch96], and since then, there have been numerous

works improving various aspects of the resulting robust protocol, such as the communica-

tion rate, the error rate, the time complexity, etc. [GMS11, BR11, BKN14, Bra12, KR13,

Hae14, BE17, GMS14, GH14, GHK+18, EGH16, BGMO17, to cite a few]. See [Gel17] for

an excellent survey.

Space bounded coding. The question of interactive coding with bounded space was first

considered in the unpublished manuscript [HR18]4, which we consider to be an earlier version

of this work. Building on ideas from [HR18], the space bounded interactive coding question

was studied in weaker error models: The work of [CLPS20] gives an interactive coding

scheme that is space efficient (i.e., incurs only logarithmic overhead to the space complexity,

similarly to our work) and also achieves the (conjectured) optimal rate as ε approaches 0.

However, unlike our setting, the scheme of [CLPS20] assumes an oblivious adversary who

makes all its corruption decisions in advance. Specifically, the adversary decides what rounds

to corrupt and what to corrupt them to, without seeing the randomness of the parties or the

communicated transcript.

We note that assuming an oblivious adversary greatly simplifies the question because

the parties can quickly detect when the adversary corrupts the communication5. Therefore,

3In particular, computing this function can take more than s bits of memory.
4This manuscript, now retracted, is by a subset of the current authors, and can be found in

https://arxiv.org/abs/1805.06872v1.
5This can be done, for example, by having the parties exchange hashes of the transcript so far and check

that the hashes are the same. An oblivious adversary will not be able to cause hash collisions: To make Alice
think that Bob has the same hash value when he does not, the adversary needs to know Alice’s hash value and
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they will not add wrong symbols to their local view of the transcript, and in turn, will never

need to rewind to a previous version of this transcript before the errors occurred. A space

bounded interactive coding scheme follows, as the parties only need to remember the current

memory state of the original protocol Π, which is guaranteed to be correct.

Resilient circuits. Another work closely related to ours is the recent work on construct-

ing error resilient circuits [EHK+22], which translates the problem of constructing error

resilient circuits to the problem of constructing space bounded interactive coding schemes

for a non-standard communication-like model (specifically, the model of DAG-protocols with

rectangular correctness). Their model is incomparable to the model we consider, with sev-

eral differences. For example, on the one hand, their model can be seen as a version of

the feedback model, where the parties know what the symbols they sent were corrupted to,

and thus have more information, but on the other hand, their work gives the adversary the

power to tamper with the memory of the parties (in addition to the communication), and

thus makes his task easier.

2 High-Level Intuition

We now give an informal overview of our interactive coding scheme.

2.1 The Rewind-If-Error Framework

The starting point of our interactive coding scheme is the rewind-if-error framework of

[Sch92]. Let Π be the noiseless protocol being simulated and let T be the number of rounds

in Π. In this framework, the protocol Π is divided into constant-sized blocks6 and simulated

block by block. In more detail, the simulation consists of iterations, with each iteration

having a simulation phase and a check phase. In the simulation phase, the parties simulate

one block of Π to obtain a transcript for this block. This transcript is appended to the tran-

script of all the previous blocks and then checked for correctness, by exchanging a hash of

the transcript (say), in the check phase. If the check passes, i.e., if the transcript is correct,

then parties continue to simulate the next block of Π. If not, the parties “rewind” their

transcripts in an attempt to remove the erroneous blocks.

The classic rewind-if-error framework described above suffers from a high space com-

plexity. Indeed, as explained above, when parties run the simulation, they record the entire

transcript of Π so far (using Ω(T ) space) even if a noiseless execution of Π can be done

using a lot less space, say s. The reason the parties record the entire transcript is threefold:

(1) To determine which symbols to send in the next block. (2) To rewind to a previous

change Bob’s communicated hash to this value. Note that the fully adaptive adversaries we consider, that
have knowledge of the parties’ randomness and the communication history, can easily create such collisions.

6Our scheme actually uses blocks of size O(log T ) for reasons to be explained later. See [BK12] and
followup works for other schemes with logarithmically sized blocks.
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correct prefix in case errors are detected in the check phase. (3) To compute a hash value

that allows the parties to check for correctness.

In order to get a space bounded interactive coding scheme, one needs to perform Items 1

to 3 using space as close to s as possible. Item 1 is the simplest to handle, as instead of

storing the entire transcript so far, the parties can simply store the s bit memory state that

it leads to (the current memory state). Now, the fact that Π has space complexity s implies

that the bits the parties send in the future blocks of Π are a function of this s bit memory

state, and we can use this function in our simulation to compute these bits. Handling Items 2

and 3 is much more involved and discussed next.

2.2 Handling Item 2 via Meeting Points

Our solution to handle Item 2 is to adapt the “meeting points” approach of [Hae14]. The main

idea here is to have the parties store not only the memory state that the current transcript

leads to but also the memory state that some (a carefully chosen set) of its prefixes led

to. These prefixes, called meeting points, are chosen to be roughly geometrically apart. In

other words, if the parties are currently simulating round i of Π, then, for all z ∈ [log T ],

the parties also remember the memory state that a prefix of length (roughly) i− 2z led to.

In fact, remembering these log T prefixes is the reason why our coding scheme increases the

space by a log T factor.

With this extra memory to store the meeting points, the parties perform the rewinds

mentioned in Item 2 by going to the closest meeting point that they have in memory. Then,

the next iteration will check if this meeting point is correct. If even this meeting point is

found to be incorrect, the parties will rewind to the one before, and so on. Note that as the

meeting points are geometrically spaced, the parties never have to rewind more than twice

the number of rounds corrupted by the adversary. This is crucial and allows us to handle a

constant fraction of adversarial errors, as explained next.

Why remember log T meeting points? Recall that the reason Theorem 1.1 increases

the space by a log T factor is that the parties remember log T meeting points. One might

wonder if we can get an improvement by simply remembering fewer meeting points. Such an

improvement, without any major new ideas, is unlikely, as if the parties remember o(log T )

meeting points, then there exists a length l such that the parties have no meeting point

between the rounds i− 100l to i− l.
Now, imagine the adversary corrupted all rounds starting from i − l to round i. To fix

these corruptions the parties will have to go back to the closest correct meeting point (before

round i−100l) and continue the simulation from there. Thus, by inserting l corruptions, the

adversary was able to make the parties redo 100l rounds, implying that the protocol cannot

handle more than a 1
100

fraction of corruptions. As the constant 100 was arbitrary, it follows

that the protocol cannot be resilient to any constant fraction of corruptions.
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The variable E. Another way the adversary can cause the parties to waste many rounds

with a small number of corruptions is by causing “fake rewinds”. Imagine that the parties

are currently simulating a round, say i, of Π, and the transcript so far is correct. However,

the parties do not remember any meeting points close to i (due to previous rewinds, for

example) and the closest meeting point they remember is i − ∆, for some large ∆. Now,

if the adversary can insert a small number of corruptions to make the parties believe that

their transcript of length i is actually incorrect and send them to point i −∆, then he has

again made them waste many rounds with a small number of corruptions.

To prevent this from happening, we maintain a variable E that helps the parties avoid

fake rewinds. At a high level, whenever the parties want to rewind, they will increment

E by 1 and only rewind when E reaches ∆, when they also set E back to 0. This means

that if the rewinds are actually fake, the adversary needs to insert ∆ corruptions, and the

previous attack does not work. Finally, we mention that the variable E does slow down the

rewind process in case the rewinds are not fake, but if the rewinds are not fake, the adversary

already inserted enough corruptions to make the parties’ transcripts incorrect, and we can

afford the slowdown.

2.2.1 Taxes

As is evident from the examples above, the length of the correct transcript remembered by

the parties7 may change by a lot in one iteration of our interactive coding scheme. This

complicates our analysis significantly, as traditional approaches of showing that a potential

function (which is governed, amongst other things, by the length of the correct transcript)

increases in every iteration do not work any more.

As an extreme example, consider the following scenario: The simulation proceeds cor-

rectly for the first i iterations and the parties have a correct transcript of length i. At this

point, the adversary starts inserting a lot of corruptions and eventually takes the parties to

an iteration i′ > i where they are about to forget8 the meeting point at length i. Assume for

simplicity that by the time parties reach round i′, they have already forgotten all the meet-

ing points with length smaller than i. Then, before iteration i′, the parties have a correct

transcript of length i but immediately afterwards, the length decreases to 0, causing a huge

drop in the potential in a single iteration.

The way to fix this situation is to note that in order to get this huge drop in potential in a

single iteration, the adversary must have inserted a lot of corruptions in many of the previous

iterations. Thus, if we can somehow “charge” this decrease in potential to those corruptions,

our analysis might still work. We do exactly this, and work with a more involved potential

function that has an extra term called Tax. When the adversary tries to insert corruptions

7More formally, the longest prefix of the correct transcript of Π which we currently have stored as a
meeting point (i.e., the corresponding memory state is stored).

8This must happen as the parties do not have enough memory to store all the lengths and they do not
know which part of the transcript is uncorrupted.
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hoping to cause a sudden drop in potential after a large number of iterations, we use these

corruptions to increase the value of Tax. Eventually, when the drop occurs, we reset Tax to 0

and use this decrease to counter the change in the length of the correct transcript. For more

details, see Lemmas 5.34 and 5.37.

2.3 Handling Item 3 via Chaining Hashes

It remains to describe how the parties check if the simulation so far is correct without the

knowledge of the transcript. Recall that, if the parties knew the transcript, they could simply

exchange a hash of this transcript and if the hashes match, deduce that the transcript is

likely to be correct9. However, we cannot afford to remember the entire transcript, and in

our scheme, the parties only remember the memory state that the transcript leads to.

As a first attempt, one might consider hashing these memory states and checking if the

hash values are equal. Unfortunately, this does not quite work as illustrated by the following

example (also described in [CLPS20]): Let Π be the length O(n) protocol that computes the

Hamming distance of two n-length bit vectors. Such a protocol is possible using O(log n)

space as the parties can exchange their vectors bit by bit, only counting how many bits so

far were different.

This protocol indeed works if there are no errors, but if there are errors, then by corrupting

the bits receive by both parties, an adversary can make both the parties wrongly increment

the counter10. As the counter is essentially all the parties remember, and the fact that

both of them wrongly incremented it, means that their values for the counter still agree, the

parties will not be able to detect this error by simply exchanging hashes of their memory.

More generally, the fact that the two parties have the same memory state does not imply

that this memory state is the correct one.

Chaining hashes. Our solution is to maintain a “chained” hash of their view of the

transcripts and the hash seeds, and exchanging this hash to verify correctness. In more

details, after the first iteration, the parties only have a small transcript and can remember

it in its entirety and compute a hash H1. Then, after the second iteration, the parties hash

the small transcript of this iteration and the hash H1 and the hash seed for H1 to compute

a new hash H2. In the third iteration, the parties would then hash the small transcript of

this iteration and H2 and the hash seed for H2 to get H3, and so on.

The reason we hash this way is that it (except with probability polynomially small in T )

ensures that, if the hashes used by the parties are Ω(log T ) in length, then, for all i ∈ [T ], the

9The reason is that Alice’s transcript has the correct symbols communicated in rounds where she trans-
mits, and Bob’s transcript has the correct symbols communicated in rounds where he transmits. If the
transcripts match, all rounds are correct.

10For instance, consider the case where the first bit in the inputs of both parties is 0, but the adversary
corrupts the transmission of these first bits to make it sound like they are both 1. In this case, after
exchanging the first bits, the counter of both parties will be 1 instead of 0. The reason is that, upon getting
the 1 bit from Bob, since her first bit is 0, Alice increments her counter. Bob does the same.

7



pair Hi = (Hi, seed for Hi) is the same for the parties only if their transcripts so far are the

same (our notation for pairs follows the notation in our protocol, see Eq. (4)). Put differently,

looking at the current hash value and the current hash seed (which can be maintained in

O(log T ) space) allows the parties to check equality of their (much longer) transcripts. To

show the statement, we proceed by contradiction. Consider the smallest i such that the Hi

is the same for both the parties but the transcripts at iteration i are not. By our choice of

i, we have that either Hi−1 is different for the parties, or the transcripts for iteration i − 1

are the same. As the transcripts at iteration i are not the same, the latter can only happen

if the small transcript of iteration i is different.

Now, combine these facts to get that, at iteration i, the values of Hi are the same for the

parties but either Hi−1 or the small transcripts at iteration i are different. This means that

the parties hash two different objects with the same seed in iteration i and get the same

hash value. As the hashes used by the parties are Ω(log T ) in length, this can only happen

with probability polynomially small in T for any given i. Union bounding over the O(T )

many iterations i finishes the proof.

Blocks of length O(log T ). The above approach only works if the hashes the parties

exchange are of length Ω(log T ), as otherwise there may be hash collisions and we lose

our correctness guarantee. In turn, this means that the length of the check phase in any

iteration must be at least Ω(log T ). With such a long check phase, the only way we can have

a constant rate interactive coding scheme that is resilient to a constant fraction of errors is

if the simulation phase also simulates a block of length Ω(log T ) of Π and works even if a

constant fraction of its rounds are corrupted.

To get these guarantees, in our simulation phase, we actually simulate a Θ(log T )-length

block of Π using one of the classic (not necessarily space bounded and with only a weak

exponential time bound) interactive coding schemes present in the literature. Using a scheme

that is not space bounded is okay as the input to the scheme is a protocol of length Θ(log T )

and thus, even in the worst case, it can only take O(log T ) space and poly(T ) running time,

which we can afford.

3 Preliminaries

3.1 Building Blocks

Our protocol can make use of the following objects:

Randomness Efficient Hash Functions. The following lemma is due to [NN93] (see

also [HR18]):

Lemma 3.1. There exists a constant K1 such that the following holds: Let n,m > 0

and define c = K1 · (m+ log n). There exists a family of functions {hsd}sd∈{0,1}c mapping
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{0, 1}n → {0, 1}m such that for all x 6= y ∈ {0, 1}n, it holds that:

Pr
sd∼{0,1}c

(hsd(x) = hsd(y)) ≤ 2−m/K1 .

Furthermore, the time required to evaluate h, given inputs sd and x is polynomial in n,m.

Error Correcting Codes. We use the following standard result for error-correcting codes

(see, e.g., [SS96, GI05]):

Lemma 3.2. There exists a constant K2 such that the following holds: For all n > 0, there

exists a function ECCn : {0, 1}n → {0, 1}K2n such that for all s 6= t ∈ {0, 1}n, we have

∆(ECCn(s),ECCn(t)) > 0.1 ·K2n.

Here, ∆(·, ·) denotes the Hamming distance. Furthermore, the time required to evaluate

ECCn is polynomial in n.

Note that maximum likelihood decoding for an ECC as above can be performed in time

at most exponential in n by brute force.

3.2 Two-Party Communication with Bounded Memory

Recall that our main result is a memory-efficient interactive coding scheme against adver-

sarial noise. Our scheme will be randomized where the parties have access to random coins

in each round of the scheme, and the adversary in any given round will know all the random

bits sampled by the parties so far, but will not know any random bits they will sample in

the future. Specifically, we consider a formalization Alice and Bob are denoted by A and B

respectively and where a protocol is defined by a tuple:

Π =
(
T, s,

{
XC
}
C∈{A,B},Y ,

{
msgCj

}
C∈{A,B},j∈[T ],

{
memC

j

}
C∈{A,B},j∈[T ],

{
outC

}
C∈{A,B}

)
,

where: (1) T = ‖Π‖ is the number of rounds in Π, (2) s = Sp(Π) is the space required by

Π, (3) For all C ∈ {A,B}, XC is the input set of party C, (4) Y is the output space of the

protocol, (5) For all j ∈ [T ] and all C ∈ {A,B}, msgCj : XC × {0, 1}s × ({0, 1}∗)j → {0, 1},
is a function that takes as input the input of party C, the current memory state of party

C, and the random bits sampled by party C in the rounds so far, and computes a bit that

they will send in this round, (6) For all j ∈ [T ] and all C ∈ {A,B}, memC
j : XC × {0, 1}s ×

{0, 1} × ({0, 1}∗)j → {0, 1}s, is a function that takes as input the input of party C, the

current memory state of party C, the bit received by party C in round j, and the random

bits sampled by party C in the rounds so far, and computes their new memory state. (7) For

all C ∈ {A,B}, outC : XC × {0, 1}s × ({0, 1}∗)T → Y is a function that takes as input the

input of party C, its final memory state, all their randomness, and computes their output

in the protocol.
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We say that a protocol Π is deterministic if for all j ∈ [T ] and all C ∈ {A,B}, the

functions memC
j , msgCj , and outC do not depend on their last argument.

Adversaries. Let Π be a protocol as above. An adversary Adv for Π is defined by the

tuple Adv =
(
AdvCj

)
C∈{A,B},j∈[T ], where for all C ∈ {A,B} and j ∈ [T ], the function AdvCj :

XA × XB × ({0, 1}∗)j × ({0, 1}∗)j → {0, 1} takes as inputs the inputs of the two parties

and the randomness sampled by them in the first j rounds and outputs a bit that they will

receive in round j. We stress that this function does not depend on the randomness that

the parties will sample in the future rounds.

Execution of a protocol. Let Π be a protocol as above and Adv be an adversary for Π.

Let xA ∈ XA, xB ∈ XB be a pair of inputs for Alice and Bob respectively. Similarly, let

µA0 = µB0 = 0s denote the initial memory state of Alice and Bob respectively. For C ∈ {A,B}
and j ∈ [T ], let RC

j denote the random string sampled by party C in round j. We shall

use RC
≤j to denote the tuple

(
RC

1 , · · · , RC
j

)
and sometimes write RC

<j instead of RC
≤j−1. The

execution of the protocol Π on inputs xA, xB in the presence of Adv proceeds as follows:

At the beginning of the execution, Alice and Bob start with memory states µA0 and µB0
respectively. In round j ∈ [T ], party C ∈ {A,B} computes the bit βCj = msgCj

(
xC , µCj−1, R

C
≤j
)

and sends it over the channel. In turn, it receives the β′Cj = AdvCj
(
xA, xB, RA

≤j, R
B
≤j
)

and

then updates its memory state to µCj = memC
j

(
xC , µCj−1, b

′C
j , R

C
≤j
)

and moves to the next

round of the protocol. After T rounds, party C simply outputs yC = outC
(
xC , µCT , R

C
≤T
)
.

We define ΠAdv

(
xA, xB

)
=
(
yA, yB

)
.

Corruptions. Using the same notation as above, for C ∈ {A,B} and j ∈ [T ], we say that

the message to party C is corrupted if the symbol received by party C in round j is different

from the symbol sent by the other party in round j. More precisely, we define

corrAj (Π,Adv, xA, xB) = 1
(
βBj 6= β′Aj

)
and corrBj (Π,Adv, xA, xB) = 1

(
βAj 6= β′Bj

)
.

We also define corrj(·) = corrAj (·) + corrBj (·) and corr(·) =
∑

j∈[T ] corrj(·). Observe that

all the quantities in the previous two paragraphs are actually random variables that are

functions of the randomness sampled by the parties. For 0 ≤ ε ≤ 1, we say that the

adversary corrupts at most ε fraction of the messages of Π if for all inputs xA, xB, it holds

that corr(Π,Adv, xA, xB) ≤ 2εT almost surely. When we omit writing Adv in our notations

above, we mean an adversary that corrupts a 0 fraction of the messages of Π. Observe that

in this case, all the quantities mentioned above are determined by Π, xA, and xB.

Simulating protocols. Let Π be a deterministic protocol to be simulated11 and 0 ≤ ε, p ≤
1 be parameters. Let Π′ be a randomized simulation protocol with the same input sets for

11We restrict attention to deterministic protocols as a randomized protocol can be simulated by simulating
all deterministic protocols in its support.
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the parties. We say that the protocol Π′ simulates Π with probability p in the presence of

an ε fraction of errors if for all inputs xA, xB and all adversaries Adv for Π′ that corrupt at

most ε fraction of the messages of Π′, it holds that:

Pr
(
Π′Adv

(
xA, xB

)
= Π

(
xA, xB

))
≥ p,

where the probability is over the randomness sampled by the parties in Π′. We omit writing

p when p = 1.

Remark 3.3. Note that for any protocol Π as above, there is an equivalent protocol Π′ with

the same number of rounds that also satisfies Sp(Π′) ≤ T + 1. This is because the parties

can simply memorize all the bits they receive and reconstruct the actual memory state “on

the fly” using these bits. Thus, we always will assume the bound Sp(Π′) ≤ T + 1.

Remark 3.4 (Space complexity of a protocol). Note that our definition of Sp(·) above does

not actually take into account the space needed by the parties to compute the functions msg,

mem, and out. This is done only to make the definition cleaner and the schemes we describe

in this paper do not suffer from a high space complexity.

We finish this section by recalling a well-known interactive coding result, which can be

found in [CS20] (see also [Hae14]).

Theorem 3.5. Let Π be a deterministic protocol and ε > 0. There exists a deterministic

protocol Π that simulates Π in the presence of an ε fraction of errors such that ‖Π′‖ ≤
‖Π‖·

(
1 +O

(√
ε log(1/ε)

))
. Furthermore, the parties in Π′ run in time at most exponential

in ‖Π‖ given oracle access to Π.

3.3 Formal Statement of Main Result

We are now ready to formally state our main result.

Theorem 3.6. Let Π be a deterministic protocol with T = ‖Π‖ and s = Sp(Π). Let ε > 0

be a small enough constant. There exists a (randomized) protocol Π′ that simulates Π with

probability 1− 1
T

in the presence of an ε fraction of errors such that:

‖Π′‖ ≤ T ·
(

1 +O
(

3
√
ε log(1/ε)

))
and Sp(Π′) ≤ O(s log T ).

Furthermore, the parties in Π′ run in time at most polynomial in T given oracle access to Π.

4 Space Bounded Interactive Coding

The goal of this section is to prove Theorem 3.6. We fix Π and ε as in the theorem statement.

By increasing Sp(Π) by an additive log T , we can assume without loss of generality that the

11



memory of both the parties in Π contains (at least) the round number that they are executing.

Throughout, we use s = Sp(Π) to denote the space required by Π. Let K be a constant

much larger than the constants promised by Lemmas 3.1 and 3.2 and define the parameters:

h = 10K log T ε′ =
ε2/3

3
√

log(1/ε)
B∗ =

K5

ε′5
· log T (1)

M =
T

B∗
M ′ = M ·

(
1 + 106 · ε

ε′

)
r = 10Kh (2)

r′ =
K3

ε′3
· log T � r (3)

We also define {hsd} to be the hash function family promised by Lemma 3.1 with n = 10B∗

and m = h. This family will be used in Line 6 and we will ensure that the input to the

hash function is at most 10B∗ bits in length, and thus can be hashed after being padded

appropriately. Observe that 2r bits of randomness are sufficient to sample a function from

this family and therefore, we will assume sd ∈ {0, 1}2r. For all sd ∈ {0, 1}2r, we now define

the auxiliary function:

Hsd(·) = hsd(·)‖sd. (4)

Namely, the function H outputs the output of h concatenated with sd. We shall use this

function in our protocol. Finally, we let ECC be as promised by Lemma 3.2 with n = r′. The

error correcting code ECC will be implicitly used in our protocol in Lines 5 and 7, i.e., the

messages exchanged by the parties in this line will be encoded using ECC and the receiving

party will decode to the closest possible message. We will ensure that message being encoded

is at most r′ bits and thus ECC can be applied after padding the message appropriately.

4.1 Our Protocol

We now describe the protocol Π′ that shows Theorem 3.6. Roughly speaking, in the protocol

Π′, both Alice and Bob, maintain a pair Z which contains a memory state for the protocol

Π being simulated and a hash of the transcript that led to this memory state. We will

use Z.state to denote the memory state and Z.hash to denote the hash. Recalling our

assumption that the memory state of a party Π contains the round number, we get that Z

also determines a unique round number Z.rn in Π where its memory state can happen. As

our protocol shall attempt to simulate Π in blocks of length B∗, we define Z.bn = Z.rn
B∗

to be

the block number corresponding to the memory state of Z.

Another important variable in the protocol Π′ is the set MP of meeting points. As the

protocol Π′ may have errors, the parties may sometimes need to rewind to correct those

errors, and this is done through the set MP. More precisely, the set MP is initially empty

but as the parties execute Π′, they store some values Z in the set MP (see Line 9). If

they decide to rewind (Line 17), they always rewind to a pair in MP with the largest bn.

Throughout, we adopt the convention that maxM∈MP M.bn = −1 if MP = ∅. For integers
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x, y, we also use bxcy to denote the largest multiple of y that is at most x. For example, we

have b5c3 = 3 and b28c7 = 28.

Finally, recall that our protocol Π′ simulates Π in blocks of length B∗. We now describe

how this is done in more detail. In Line 3, the parties (implicitly) construct a new proto-

col, call it Πblock, where the parties start from the memory state Z.state (instead of the

default starting state) and execute B∗ rounds of Π starting from round Z.bn with the goal of

outputting the length 2B∗ transcript, i.e. the transcript that contains the B∗ symbols they

sent and the B∗ symbols they received. We shall assume that Π is padded with sufficiently

many dummy rounds so that Πblock is always well defined. The parties then construct a

noise resilient version of Πblock using Theorem 3.5 with Πblock and ε′ and execute this noise

resilient version. By Theorem 3.5, this needs at most B∗ ·
(

1 +O
(√

ε′ log(1/ε′)
))

< 2B∗

rounds of communication. Finally, in Line 10, the parties use the received symbols in the

transcript (of length B∗) obtained in Line 3 to update the memory state Z.state of Π (using

the function mem).

We now formally describe our protocol.

5 Analysis

5.1 Complexity

We first show that our protocol in Algorithm 1 is not too long and does not require too much

memory.

Lemma 5.1. It holds that:

‖Π′‖ ≤ T ·
(

1 +O
(
ε1/3 ·

√
log(1/ε)

))
.

Proof. Note that the only communication in Π′ is in Lines 3, 5 and 7. These lines are

executed in each iteration and require communication at most B∗ ·
(

1 +O
(√

ε′ log(1/ε′)
))

,

Kr′, and Kr′ respectively. We get:

‖Π′‖ ≤M ′ ·
(
B∗ ·

(
1 +O

(√
ε′ log(1/ε′)

))
+ 2Kr′

)
≤ T

B∗
·
(

1 + 106 · 3
√
ε log(1/ε)

)
·
(
B∗ ·

(
1 +O

(√
ε′ log(1/ε′)

))
+ ε′B∗

)
(Eq. (1))

≤ T ·
(

1 + 106 · 3
√
ε log(1/ε)

)
·
(

1 +O
(√

ε′ log(1/ε′)
)

+ ε′
)

≤ T ·
(

1 + 106 · 3
√
ε log(1/ε)

)
·
(

1 +O
(

3
√
ε log(1/ε)

)
+ ε2/3

)
(Eq. (1))

≤ T ·
(

1 +O
(

3
√
ε log(1/ε)

))
.
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Algorithm 1 Alice’s side of the space-bounded interactive coding scheme Π′.

Require: Alice starts with an input xA ∈ XA.

1: Z←
(
µA0 ,⊥

)
, MP← ∅, E ← 0.

2: for i ∈ [M ′] do

3: Using the input xA, simulate a block of Π from Z.state with resilience ε′ to get

σ ∈ {0, 1}2B
∗
. As explained above, this is done using the scheme from Theorem 3.5.

4: Sample a uniformly random string R ∈ {0, 1}r.
5: Send R and receive R′. Set sd = R‖R′ ∈ {0, 1}2r.
6: H ← Hsd(Z.hash, σ), b← Z.bn.

7: Send (H,E, b) and receive (H ′, E ′, b′).

8: if H = H ′ and E = E ′ = 0 then

9: MP← MP ∪ {Z}.
10: Z←

(
Use σ and xA to update Z.state, H

)
.

11: else if H = H ′ then

12: E ← max(E − 1, 0).

13: else if b ≥ b′ then

14: E ← E + 1.

15: if maxM∈MP M.bn ≥ b− E then

16: E ← E + maxM∈MP M.bn− b.
17: If MP 6= ∅, set Z← arg maxM∈MP M.bn, breaking ties lexicographically.

18: end if

19: end if

20: MP← {M ∈ MP | ∃z ≥ 0 : M.bn = bZ.bnc2z − 2z}.
21: end for

22: Output what Alice would have output in Π if her input was xA and memory was Z.state.
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Lemma 5.2. It holds that:

Sp(Π′) ≤ O(s log T ).

Proof. To bound the space complexity of Π′, we simply examine the variables used by Π′.

These are the variables Z, MP, E, i, σ, R, R′, sd, H, b, H ′, E ′, b′, and the space needed to

run Line 3. Using Remark 3.3, the space needed to run Line 3 is at most 2B∗. Thus, the

space need for all variables other than Z and MP is:

O(B∗ + log T + r) = O(log T ),

by Eq. (1). To analyze the space needed by MP, we first upper bound |MP|. For this, note

that Line 20 ensures that M.bn < Z.bn for all M ∈ MP. This together with Line 9 ensures

(by induction) that all elements M ∈ MP have different values M.bn. Finally, Line 20 also

ensures that the number of such values is at most log T implying that |MP| ≤ log T . Thus,

the space needed for the variables Z and MP is

O(log T ) · (s+ r) = O(log T ) · (s+ log T ),

by Eq. (1). Adding, we get:

Sp(Π′) ≤ O(log T ) · (s+ log T ) = O(s log T ).

The following observation is due to our choice of parameters in Eq. (1).

Observation 5.3. The runtime of the parties in Algorithm 1 is polynomial in T assuming

oracle access to Π.

5.2 Correctness

We now show that the protocol Π′ indeed simulates the protocol Π with probability 1 − 1
T

in the presence of an ε fraction of errors. For this, fix inputs xA and xB for Alice and Bob

respectively and also fix an adversary Adv satisfying corr(Π′,Adv, xA, xB) ≤ 2ε · ‖Π′‖ almost

surely. Using Lemma 5.1, we have corr(Π′,Adv, xA, xB) ≤ 4εT . We have to show that:

Pr
(
Π′Adv

(
xA, xB

)
= Π

(
xA, xB

))
≥ 1− 1

T
, (5)

Next, note that fixing Adv and the inputs implies that all the variables in Algorithm 1 (for

both Alice and Bob) are random variables that are functions of the randomness sampled by

the parties in Line 5. For i ∈ [M ′] and a variable var in Algorithm 1, we will use varAi to

denote Alice’s value of var at the end of iteration i of the loop in Line 2. We will use varA0
to refer to the value of var at the beginning of the loop. The notations varBi and varB0 are
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defined analogously. We also define the notation Ri =
(
RA
i , R

B
i

)
for all i ∈ [M ′] and fix R0

to be a dummy value. We may use the sans-serif letters, e.g., Ri, to emphasize that we are

looking at Ri as a random variable instead of a fixed realization.

Finally, observe that for all i ∈ [M ′], the values of σAi , σ
B
i are determined by R1, . . . , Ri−1,

and the values varAi , var
B
i of all other variables are determined by R1, . . . , Ri.

5.2.1 No Hash Collisions

Lemma 5.4. Let i ∈ [M ′]. For all R1, . . . , Ri−1 such that
(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
,

it holds that:

Pr
R1,...,Ri

(
HA
i = HB

i | R1, . . . , Ri−1
)
≤ 1

T 5
.

Proof. From Line 6, we get that the left hand side is the same as:

Pr
R1,...,Ri

(
HsdAi

(
ZAi−1.hash, σ

A
i

)
= HsdBi

(
ZBi−1.hash, σ

B
i

)
| R1, . . . , Ri−1

)
.

From Line 5 and Eq. (4), we get that this is the same as:

Pr
R1,...,Ri

(
hRA

i ‖R′Ai

(
ZAi−1.hash, σ

A
i

)
‖RA

i ‖R′Ai = hR′Bi ‖RB
i

(
ZBi−1.hash, σ

B
i

)
‖R′Bi ‖RB

i | R1, . . . , Ri−1

)
.

This can be upper bounded by:

Pr
R1,...,Ri

(
hRA

i ‖RB
i

(
ZAi−1.hash, σ

A
i

)
= hRA

i ‖RB
i

(
ZBi−1.hash, σ

B
i

)
| R1, . . . , Ri−1

)
.

As R1, . . . ,Ri are mutually independent, this is the same as

Pr
Ri

(
hRA

i ‖RB
i

(
ZAi−1.hash, σ

A
i

)
= hRA

i ‖RB
i

(
ZBi−1.hash, σ

B
i

))
.

Observe from Line 5 that RAi ,R
B
i are uniformly random. Thus, by Lemma 3.1, we can bound

this by 1
T 10 , and the lemma follows.

Lemma 5.5. It holds that:

Pr
R1,...,RM′

(
∃i ∈ [M ′] :

(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
∧HA

i = HB
i

)
≤ 1

T 3
.

Proof. By a union bound and the fact that M ′ ≤ 2T (see Eq. (1)), it is enough to show that

for all i ∈ [M ′], we have:

Pr
R1,...,RM′

((
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
∧HA

i = HB
i

)
≤ 1

T 5
.

Note that the event inside the Pr(·) does not depend on Ri+1, . . . ,RM ′ and we can remove

them from the probability. We shall in fact show a stronger statement that for allR1, . . . , Ri−1
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we have:

Pr
R1,...,Ri

((
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
∧HA

i = HB
i | R1, . . . , Ri−1

)
≤ 1

T 5
.

Now, recall that conditioning on R1, . . . , Ri−1 fixes the value of
(
ZCi−1.hash, σ

C
i

)
for C ∈

{A,B}. Thus, it is enough to considerR1, . . . , Ri−1 such that
(
ZAi−1.hash, σ

A
i

)
6=
(
ZBi−1.hash, σ

B
i

)
and show that:

Pr
R1,...,Ri

(
HA
i = HB

i | R1, . . . , Ri−1
)
≤ 1

T 5
.

This is exactly Lemma 5.4.

Lemma 5.6. It holds that:

Pr
R1,...,RM′

(
∃i′ < i ∈ [M ′], C ∈ {A,B} : RCi ∈

{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′

})
≤ 1

T 3
.

Proof. By a union bound and the fact that M ′ ≤ 2T (see Eq. (1)), it is enough to show that

for all i′ < i ∈ [M ′] and all C ∈ {A,B}, we have:

Pr
R1,...,RM′

(
RCi ∈

{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′

})
≤ 1

T 8
.

Note that the event inside the Pr(·) does not depend on Ri+1, . . . ,RM ′ and we can remove

them from the probability. We shall in fact show a stronger statement that for allR1, . . . , Ri−1

we have:

Pr
R1,...,Ri

(
RCi ∈

{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′

}
| R1, . . . , Ri−1

)
≤ 1

T 8
.

Now, observe that conditioning on R1, . . . , Ri−1 fixes the value of
{
RAi′ ,R

B
i′ ,R

′A
i′ ,R

′B
i′

}
. We get

from the fact that RCi is uniformly random and from Eq. (1) that:

Pr
R1,...,Ri

(
RCi ∈

{
RA
i′ , R

B
i′ , R

′A
i′ , R

′B
i′

}
| R1, . . . , Ri−1

)
≤ 4

T 10
≤ 1

T 8
.

For the rest of this proof, we fix an arbitrary R1, . . . ,RM ′ such that the events in Lem-

mas 5.5 and 5.6 do not happen, and show that for any such R1, . . . ,RM ′ , the event in Eq. (5)

happens. This is enough to show Eq. (5).

Observe that as we already fixed the inputs xA and xB for Alice and Bob and an adversary

Adv, fixing R1, . . . ,RM ′ fixes the values of all the variables in all the iterations of Algorithm 1.

For C ∈ {A,B}, we define C9 to be the set of all i ∈ [M ′] such that Line 9 is executed by

party C in iteration i. The notations C12 , C14 , C16 are defined analogously. Finally, for

all C ∈ {A,B} and i ∈ {0} ∪ [M ′], we define MP?Ci = MPCi ∪
{
ZCi
}

.
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5.2.2 The Functions ev(·) and ddl(·)

For an integer l > 0, define ev(l) to be the smallest power of 2 that does not divide l and

define ddl(l) = l + ev(l). Define ev(0) = ddl(0) =∞ for convenience.

Observation 5.7. For all l > 0, we have ev(ddl(l)) = ev(l). Furthermore, for all l, l′ ≥ 0,

we have:

l 6= l′ =⇒ ddl(l) 6= ddl(l′).

Lemma 5.8. For all l ≥ 0 and z ≥ 0, we have ddl(l) ≤ ddl(blc2z).

Proof. Let l′ = blc2z . If l′ = l, there is nothing to show, so we assume that l′ < l. This

implies that ev(l) ≤ 2z ≤ 1
2
· ev(l′). We get:

ddl(l) ≤ l + 2z ≤ l′ + 2z+1 ≤ ddl(l′).

Lemma 5.9. Let l > 0 and λ < ev(l) be a power of 2. For all l < l′ < l + λ, we have

ddl(l′) ≤ l + 3
2
· λ.

Proof. If ev(l′) ≤ λ/2, we are easily done. Otherwise, by definition of ev(·), we must have

l′ = l + λ/2 and our choice of λ implies ev(l′) = λ. The lemma follows.

Lemma 5.10. Consider integers l > 0, l′ ≤ l + 3
4
· ev(l) such that ddl(l′) < ddl(l). We have

ddl(l′) ≤ l + 7
8
· ev(l).

Proof. Proof by contradiction. If the lemma is false, we can use the definition of ddl(·) to

get:

l +
7

8
· ev(l) < ddl(l′) < l + ev(l).

This is impossible if ev(l) ≤ 8, so we assume otherwise. Observe from the definition of ev(l)

that ev(l)/8 is a power of 2 that divides l. Thus, the previous inequality implies that ev(l)/8

does not divide ddl(l′). Equivalently, we can write ev(ddl(l′)) ≤ ev(l)/8. By Observation 5.7,

we get ev(l′) ≤ ev(l)/8. This gives a contradiction as:

ddl(l′) = l′ + ev(l′) ≤ l +
3

4
· ev(l) + ev(l)/8 = l +

7

8
· ev(l).

Lemma 5.11. For all l > 0, it holds that:

1. For all l < l′ < ddl(l), there exists z ≥ 0 such that l = bl′c2z − 2z.

2. For all l′ ≥ ddl(l), there does not exist z ≥ 0 such that l = bl′c2z − 2z.

Proof. We prove each part in turn:
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1. Define z to be such that 2z is the largest power of 2 that is at most l′ − l. As we

assume that 20 = 1 ≤ l′ − l, this is well defined. Moreover, as l′ < ddl(l), we have

2z ≤ ev(l)/2. Thus, by definition of ev(·), we have that 2z divides l. Using this, observe

that bl′c2z = l + 2z finishing the proof.

2. Assume for the sake of contradiction that there exists an z ≥ 0 such that l = bl′c2z−2z.

This means that 2z divides l and thus, we must have that 2z ≤ ev(l)/2. We get:

l = bl′c2z − 2z > l′ − 2z − 2z ≥ ddl(l)− ev(l) = l,

a contradiction.

5.2.3 Meeting Points and the Function Last(·)

Observation 5.12. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. For all M ∈ MPCi , we have

M.bn < ZCi .bn. Due to Line 9 and an inductive argument, it follows that the values M.bn

are distinct for all M ∈ MP?Ci .

Lemma 5.13. Let i ∈ [M ′] and C ∈ {A,B}. For all M ∈ MPCi−1 \MP?Ci , we have ZCi .bn =

ddl(M.bn) and i ∈ C9 . Moreover, if ZCi−1 /∈ MP?Ci , then we have ZCi .bn < ZCi−1.bn.

Proof. To start, use Observation 5.12 to get that M.bn < ZC
i−1.bn. We now show that

M.bn < ZC
i .bn. If ZC

i−1.bn ≤ ZC
i .bn, this is trivial, if not, we must have i ∈ C16 implying

that M.bn ≤ ZC
i .bn. Due to Observation 5.12, this inequality cannot be tight unless M = ZCi

and we are done.

Having shown that M.bn < ZC
i−1.bn, Z

C
i .bn, we combine this with M ∈ MPCi−1 \MP?Ci and

Line 20 and Lemma 5.11 to get ZCi−1.bn < ddl(M.bn) ≤ ZCi .bn. The corollary now follows

as Z.bn increases by at most one in any iteration and increases only when a party executes

Line 9. The “moreover” part is simply because ZCi .bn ≤ ZCi−1.bn+ 1 and Lines 9 and 20.

Lemma 5.14. Let 0 ≤ i′ ≤ i ≤ M ′ and C ∈ {A,B}. For all ZCi′ .bn < l ≤ ZCi .bn, there

exists i′ < i′′ ≤ i such that i′′ ∈ C9 and ZCi′′ .bn = l.

Proof. Proof by induction on i − i′. The base case i = i′ is trivial. We show the result

for i > i′ assuming it holds for i − 1. If l ≤ ZCi−1.bn, the result follows from the induction

hypothesis. If not, we must have ZCi−1.bn < l ≤ ZCi .bn. Observing Algorithm 1, this only

happens if i ∈ C9 and ZCi .bn = l finishing the proof.

The foregoing lemma (with i′ = 0) allows us to define:

Definition 5.15. Let i ∈ {0}∪ [M ′] and C ∈ {A,B}. For all l ∈
[
ZCi .bn

]
, we define LastCi (l)

to be the largest i′ ∈ [i] such that i′ ∈ C9 and ZCi′ .bn = l. We adopt the convention that

LastCi (0) = 0.
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Our definition satisfies the following properties:

Lemma 5.16. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}.

1. For all M ∈ MP?Ci , we have:

(a) M = ZC
LastCi (M.bn)

.

(b) For all LastCi (M.bn) ≤ i′ ≤ i, we have M ∈ MP?Ci′ and ZCi′ .bn < ddl(M.bn).

(c) For all z ≥ 0, there exists M′ ∈ MP?Ci with M′.bn = bM.bnc2z .

2. For all l ∈
[
ZCi .bn

]
, we have:

(a) For all LastCi (l) ≤ i′ ≤ i, it holds that LastCi′ (l) = LastCi (l) and ZCi′ .bn ≥ l. As

Definition 5.15 implies that LastCi (l) are distinct for all l, it follows that:

0 = LastCi (0) < LastCi (1) < · · · < LastCi
(
ZCi .bn

)
≤ i.

(b) ZC
LastCi (l)−1 = ZC

LastCi (l−1).

(c) If there does not exist M ∈ MP?Ci with M.bn = l, then there exists LastCi (l) < i′ ≤ i

such that ZCi′ .bn ≥ ddl(l).

Proof. We prove each part separately.

1. Proof by induction on i. The base case i = 0 is straightforward. For Items 1a and 1b,

note from Algorithm 1 that either M ∈ MP?Ci−1 or i ∈ C9 and M = ZCi , but not both. If

the latter happens, it is easy to see that LastCi (M.bn) = i and therefore Items 1a and 1b

hold. We therefore assume that the former happens, and we have from Observation 5.12

and Definition 5.15 that LastCi (M.bn) = LastCi−1(M.bn) and Item 1a follows from the

induction hypothesis. For Item 1b, all we have to show is that ZCi .bn < ddl(M.bn).

This is because, otherwise, we must have M 6= ZCi ∈ MPCi but this contradicts Line 20

and Lemma 5.11.

It remains to show Item 1c. Note that this is trivial if M.bn = bM.bnc2z , so we

assume that M.bn > bM.bnc2z . We first show that there exists M′ ∈ MP?Ci−1 with

M′.bn = bM.bnc2z . If M ∈ MP?Ci−1, this is because of the induction hypothesis. If

not, we must have ZCi .bn = ZCi−1.bn + 1 and M = ZCi . Now, M.bn > bM.bnc2z implies

bM.bnc2z =
⌊
ZCi−1.bn

⌋
2z

, and we are done by the induction hypothesis.

Next, as either M ∈ MP?Ci−1 or not, we have from M′.bn < M.bn and Observation 5.12

that either M′ ∈ MPCi−1 or i ∈ C9 . Using Lemmas 5.8 and 5.13, this means that the

only way M′ /∈ MP?Ci is if ZCi .bn ≥ ddl(M′.bn) ≥ ddl(M.bn). However, this contradicts

Item 1b.

2. We have:
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(a) If LastCi′ (l) 6= LastCi (l), we have from Definition 5.15 that i′ < LastCi (l), a contra-

diction. If ZCi′ .bn < l, then the i′′ promised by Lemma 5.14 contradicts Defini-

tion 5.15.

(b) Let i′ = LastCi (l) for convenience and note that i′ ∈ C9 by Definition 5.15 imply-

ing that l = ZCi′ .bn = ZCi′−1.bn + 1. We get from Items 1a and 2a that:

ZCi′−1 = ZC
LastC

i′−1
(l−1) = ZC

LastCi (l−1).

(c) Proof by induction on i. The base case i = 0 is straightforward. For i > 0,

note that our assumptions imply that l ≤ ZCi .bn − 1 ≤ ZCi−1.bn. It follows by

Definition 5.15 that LastCi (l) = LastCi−1(l). If there does not exist M ∈ MP?Ci−1
with M.bn = l, we are done by the induction hypothesis. Otherwise, as either

i ∈ C9 or l < ZCi−1.bn implying M ∈ MPCi−1, by Lemma 5.13, the only reason

M /∈ MP?Ci is if ZCi .bn ≥ ddl(l), as desired.

5.2.4 The Variable E

Observation 5.17. The variables E and Z.bn are always non-negative and their values

never increase by more than 1 in one iteration.

Lemma 5.18. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. It holds that:

EC
i < ZCi .bn− max

M∈MPC
i

M.bn.

Furthermore, if i ∈ C16 , we have EC
i = 0 and:

EC
i−1 + 1 = ZCi−1.bn− max

M∈MPC
i−1

M.bn.

Proof. Proof by induction on i. The base case i = 0 is straightforward. We show the result

for i > 0 assuming it holds for i− 1. Consider the following cases:

• When i ∈ C9 : In this case, we must have EC
i−1 = EC

i = 0 and Observation 5.12

finishes the proof.

• When i ∈ C12 : In this case, MP and Z stay unchanged (Line 20 does not affect MP),

and we simply have by the induction hypothesis:

EC
i ≤ EC

i−1 < ZCi−1.bn− max
M∈MPC

i−1

M.bn = ZCi .bn− max
M∈MPC

i

M.bn.
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• When i ∈ C14 and i /∈ C16 : In this case too, MP and Z stay unchanged (Line 20

does not affect MP). Moreover, the fact that i /∈ C16 means that:

EC
i < ZCi .bn− max

M∈MPC
i

M.bn.

• When i ∈ C16 : In this case, we have:

ZCi−1.bn− max
M∈MPC

i−1

M.bn ≤ EC
i−1 + 1.

Together with our induction hypothesis, this implies that the inequality must be tight.

Observing Line 16, we get that EC
i = 0 and the result follows.

5.2.5 The Variable Pre

Definition 5.19. For all i ∈ {0} ∪ [M ′], define the set:

Pi =
{
l ≥ 0 | ∃MA ∈ MP?Ai ,M

B ∈ MP?Bi : MA.hash = MB.hash ∧MA.bn = MB.bn = l
}
.

Observe that 0 ∈ Pi for all i ∈ {0} ∪ [M ′]. Also, define Prei = maxPi.

The following follows from Observation 5.12.

Observation 5.20. For all i ∈ {0} ∪ [M ′] and C ∈ {A,B}, it holds that 0 ≤ Prei ≤ ZCi .bn.

Lemma 5.21. Let i ∈ {0} ∪ [M ′], lA ∈
[
ZAi .bn

]
, lB ∈

[
ZBi .bn

]
be such that ZA

LastAi (lA)
.hash =

ZB
LastBi (lB)

.hash. It holds that:(
LastAi

(
lA
)
, σA

LastAi (lA)
,ZA

LastAi (lA−1).hash
)

=
(
LastBi

(
lB
)
, σB

LastBi (lB)
,ZB

LastBi (lB−1).hash
)
.

Repeatedly applying the above, we also get lA = lB.

Proof. For convenience, we define iC = LastCi
(
lC
)

for all C ∈ {A,B}. We first show that

iA = iB by contradiction. Suppose otherwise and assume without loss of generality that

iA < iB. We have:

ZAiA .hash = ZBiB .hash =⇒ HA
iA = HB

iB (As LastCi (l) ∈ C9 for all C ∈ {A,B})
=⇒ HsdA

iA

(
ZAiA−1.hash, σ

A
iA

)
= HsdB

iB

(
ZBiB−1.hash, σ

B
iB

)
(Line 6)

=⇒ sdAiA = sdBiB (Eq. (4))

=⇒ R′AiA = RB
iB , (Line 5)
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a contradiction to Lemma 5.6. Having shown iA = iB, we call the common value i′. By

Definition 5.15, we have i′ ∈ A9 ∩ B9 and ZCi′ .bn = lC for all C ∈ {A,B}. We get:

ZAi′ .hash = ZBi′ .hash =⇒ HA
i′ = HB

i′ (As i′ ∈ A9 ∩ B9 )

=⇒
(
ZAi′−1.hash, σ

A
i′

)
6=
(
ZBi′−1.hash, σ

B
i′

)
(Lemma 5.5)

=⇒
(
ZA
LastAi (lA−1).hash, σ

A
i′

)
6=
(
ZB
LastBi (lB−1).hash, σ

B
i′

)
.

(Lemma 5.16, Item 2b)

Recalling the definition of i′, the lemma follows.

Corollary 5.22. Let i ∈ [M ′] be such that HA
i = HB

i . It holds that Prei−1 = ZAi−1.bn =

ZBi−1.bn.

Proof. As HA
i = HB

i , we have from Lemma 5.5 that ZAi−1.hash = ZBi−1.hash. Now ap-

plying Item 1a of Lemma 5.16, we get ZA
LastAi−1(ZA

i−1.bn)
.hash = ZB

LastBi−1(ZB
i−1.bn)

.hash. From

Lemma 5.21, we get ZAi−1.bn = ZBi−1.bn. Using Definition 5.19, observe that this implies

ZAi−1.bn = ZBi−1.bn = Prei−1.

Lemma 5.23. Let i ∈ {0} ∪ [M ′]. The following hold:

1. For all 0 ≤ l ≤ Prei, we have ZA
LastAi (l)

.hash = ZB
LastBi (l)

.hash and LastAi (l) = LastBi (l).

2. For all LastAi (Prei) ≤ i′ ≤ i, we have max
(
ZAi′ .bn,Z

B
i′ .bn

)
< ddl(Prei) and Prei ∈ Pi′. It

follows that Prei ≤ Prei′.

3. For all 0 ≤ l ≤ Prei, if there exists MA ∈ MP?Ai , MB ∈ MP?Bi such that MA.bn =

MB.bn = l, then MA.hash = MB.hash. It follows that l ∈ Pi.

Proof. We prove each part separately:

1. The second part follows from the first due to Lemma 5.21. For the first, notice from

Lemma 5.21 that it is sufficient to show the result for l = Prei. For this, we use

Definition 5.19 to get MA ∈ MP?Ai and MB ∈ MP?Bi such that MA.hash = MB.hash

and MA.bn = MB.bn = Prei. The result now follows from Item 1a of Lemma 5.16.

2. By Definition 5.19, there exists MA ∈ MP?Ai and MB ∈ MP?Bi such that MA.hash =

MB.hash and MA.bn = MB.bn = Prei. Using Item 1b of Lemma 5.16, the result follows.

3. By Item 1a of Lemma 5.16, we have MA = ZA
LastAi (l)

and MB = ZB
LastBi (l)

. The result

follows from Item 1.

Lemma 5.24. Let i ∈ [M ′] be such that Prei−1 < Prei. We have i ∈ A9 ∩ B9 .
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Proof. Recall that Prei ∈ Pi and let MA and MB be as in Definition 5.19. If Prei−1 < Prei,

there exists C ∈ {A,B} such that MC /∈ MP?Ci−1. As MC ∈ MP?Ci this is only possible

if i ∈ C9 and MC = ZCi . Conclude from this and Definition 5.15 that LastCi (Prei) = i.

Now use Item 1 of Lemma 5.23 to get that LastAi (Prei) = LastBi (Prei) = i implying that

i ∈ A9 ∩ B9 .

Lemma 5.25. Let i ∈ [M ′] be such that Prei < Prei−1. It holds that:

Pi =
{

0 ≤ l ≤ Prei−1 | ∃MA ∈ MP?Ai ,M
B ∈ MP?Bi : MA.bn = MB.bn = l

}
.

Proof. We let S denote the set on the right. Note that Pi ⊆ S is straightforward from

Definition 5.19 as all elements in Pi are at most Prei < Prei−1. We now show that S ⊆ Pi by

fixing an arbitrary l ∈ S and showing that l ∈ Prei. As l ∈ S, we have MA ∈ MP?Ai and MB ∈
MP?Bi such that MA.bn = MB.bn = l. Thus, it suffices to show that MA.hash = MB.hash.

For this, we first claim that for all C ∈ {A,B}, we have MC ∈ MP?Ci−1. Indeed, if this is not

true for some C ∈ {A,B}, then we have from Algorithm 1 that MC .bn = l = ZCi−1.bn + 1,

which is impossible as l ≤ Prei−1. Together with this claim, Item 3 of Lemma 5.23 says that

MA.hash = MB.hash, as needed.

Corollary 5.26. Let i ∈ [M ′] be such that Prei < Prei−1. It holds that:

bPrei−1cev(Prei−1)
≤ Prei.

Proof. Define l = bPrei−1cev(Prei−1)
for convenience and observe that l < Prei−1. Use Defini-

tion 5.19 and Item 1c of Lemma 5.16 to get that there exists M′A ∈ MP?Ai−1 and M′B ∈ MP?Bi−1
such that M′A.bn = M′B.bn = l. As l < Prei−1, we can conclude that M′C ∈ MPCi−1 for all

C ∈ {A,B}. We now claim that M′C ∈ MP?Ci for all C ∈ {A,B} as if not, we have by Lem-

mas 5.8 and 5.13 that there exists C ∈ {A,B} satisfying ZCi .bn ≥ ddl(l) > ddl(Prei−1). As

ddl(Prei−1) > ZCi−1.bn by Item 2 of Lemma 5.23, this contradicts Observation 5.17. Together

with this claim, Lemma 5.25 implies l ∈ Pi, and the result follows.

5.2.6 The Variable K

For i ∈ {0} ∪ [M ′] and C ∈ {A,B}, we define:

KCi = 1− 6 · 1
(
Prei = ZCi .bn

)
. (6)

Lemma 5.27. Let i ∈ {0} ∪ [M ′] and C ∈ {A,B}. It holds that:

KCi · EC
i ≤ ZCi .bn− Prei.

Proof. If KCi < 0, then we are done by Observations 5.17 and 5.20. If KCi ≥ 0, we have

by Eq. (6) that KCi = 1 and Prei 6= ZCi .bn. By Definition 5.19, this can only happen if
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Prei ≤ maxM∈MPC
i
M.bn. We get by Lemma 5.18 that:

KCi · EC
i = EC

i ≤ ZCi .bn− max
M∈MPC

i

M.bn ≤ ZCi .bn− Prei.

Lemma 5.28. Let i ∈ [M ′] and C ∈ {A,B}. It holds that:

KCi−1 · EC
i−1 − ZCi−1.bn ≤ 6 + KCi · EC

i − ZCi .bn.

Proof. Observe from Eq. (6) that K is never 0. We consider the following cases:

• When KCi−1 < 0: In this case, we have:

KCi−1 · EC
i−1 − ZCi−1.bn = −5 · EC

i−1 − ZCi−1.bn

≤ 6− 5 · EC
i − ZCi .bn (Observation 5.17)

≤ 6 + KCi · EC
i − ZCi .bn. (Observation 5.17)

• When KCi−1,K
C
i > 0: This means KCi−1 = KCi = 1 and these factors can be ignored.

Consider the following subcases:

– When EC
i−1 ≤ EC

i + 5: In this case, we simply note from Observation 5.17 that:

EC
i−1 − ZCi−1.bn ≤ 5 + EC

i − ZCi−1.bn ≤ 6 + EC
i − ZCi .bn.

– When EC
i + 5 < EC

i−1: Observe from Algorithm 1 that this only happens when

i ∈ C16 . Applying Lemma 5.18, we get that EC
i = 0 and we have:

EC
i−1 − ZCi−1.bn = − max

M∈MPC
i−1

M.bn− 1 ≤ −ZCi−1.bn ≤ 6 + EC
i − ZCi .bn.

• When KCi < 0 < KCi−1: This means KCi−1 = 1 and this factor can be ignored. We have

by Eq. (6) and Observation 5.20 that Prei = ZCi .bn and Prei−1 < ZCi−1.bn. We consider

the following subcases:

– When ZCi−1.bn ≤ ZCi .bn: This means that Prei−1 < Prei. We can apply Lemma 5.24

to get i ∈ A9 ∩ B9 . We get EC
i−1 = EC

i = 0 and the lemma is trivial.

– When ZCi .bn < ZCi−1.bn: Observe from Algorithm 1 that this only happens when

i ∈ C16 . Applying Lemma 5.18, we get that EC
i = 0 and we have:

EC
i−1 − ZCi−1.bn = − max

M∈MPC
i−1

M.bn− 1 ≤ −ZCi−1.bn ≤ 6 + KCi · EC
i − ZCi .bn.
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5.2.7 Corruptions

Recall Eq. (1). For i ∈ [M ′], we define Erri to be the indicator variable that is 1 if and only

if the number of corruptions made by the adversary in iteration i is at least ε′B∗ > r′/10.

For a subset I ⊆ [M ′], we define ErrI =
∑

i∈I Erri. When I = [i] for some i ∈ [M ′], we may

instead write Err≤i. We define Err<i analogously.

Lemma 5.29. Let i ∈ [M ′] be such that Erri = 0. The following hold:

1. We have: (
RA
i , H

A
i , E

A
i−1, b

A
i

)
=
(
R′Bi , H

′B
i , E

′B
i−1, b

′B
i

)
,

and likewise with A and B reversed.

2. We have i ∈ A9 ⇐⇒ i ∈ B9 and i ∈ A12 ⇐⇒ i ∈ B12 .

3. We have σAi = σBi .

4. If i /∈ A9 ∪ A12 , we have ZAi−1.hash 6= ZBi−1.hash.

5. If i ∈ A9 , we have Prei−1 + 1 = Prei = ZAi .bn = ZBi .bn.

6. If i /∈ A9 , we have Prei−1 = Prei and:∑
C∈{A,B}

(
KCi−1 · EC

i−1 − ZCi−1.bn
)
<

∑
C∈{A,B}

(
KCi · EC

i − ZCi .bn
)
.

Proof. We prove each part separately.

1. Recall that Lines 5 and 7 implicitly use the code ECC that outputs encodings of length

1000r′. As Erri = 0, at most r′/10 bits of this encoding will be corrupted implying that

the parties will decode each others messages correctly. The result follows. We remark

that it is Ei−1 instead of Ei as the value of E may change in iteration i.

2. Follows from the previous part and Line 8.

3. Recall that the parties execute a protocol satisfying Theorem 3.5 in Line 3. Moreover,

the fact that Erri = 0 implies there are at most ε′B∗ corruptions in this execution.

We get from Theorem 3.5 that the output is the same as the output of a noiseless

execution, which satisfies σAi = σBi .

4. Note from the fact that i /∈ A9 ∪ A12 and Item 1 that HA
i 6= HB

i . By Line 6,

we get that HsdAi

(
ZAi−1.hash, σ

A
i

)
6= HsdBi

(
ZBi−1.hash, σ

B
i

)
. Now, observe that Item 1

implies sdAi = sdBi . Using sd to denote the common value, we get from Eq. (4)

that hsd
(
ZAi−1.hash, σ

A
i

)
6= hsd

(
ZBi−1.hash, σ

B
i

)
. This implies that

(
ZAi−1.hash, σ

A
i

)
6=(

ZBi−1.hash, σ
B
i

)
and Item 3 finishes the proof.
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5. As i ∈ A9 , we have from Items 1 and 2 that i ∈ A9 ∩ B9 and HA
i = HB

i . Using

Corollary 5.22, we get Prei−1 = ZAi−1.bn = ZBi−1.bn and all that remains to show is

Prei = ZAi .bn = ZBi .bn. For this, simply note that HA
i = HB

i with i ∈ A9 ∩ B9 implies

ZAi .hash = ZBi .hash and apply Definition 5.19.

6. Due to Lemma 5.24, it suffices to show that Prei−1 ≤ Prei. We show this by contra-

diction. If not, recall that Prei−1 ∈ Pi−1 and let MA ∈ MP?Ai−1, M
B ∈ MP?Bi−1 be as in

Definition 5.19. Observe that Prei < Prei−1 can happen only if there exists C ∈ {A,B}
such that MC /∈ MP?i. Using Item 2 and Lemma 5.13, this happens only if i ∈ C16

and MC = ZCi−1 implying MC .bn = ZCi−1.bn = Prei−1. Now, using Item 4, we get that

ZAi−1.hash 6= ZBi−1.hash. Due to Observation 5.12 and Definition 5.19, this also means

that ZAi−1.bn 6= ZBi−1.bn. Assume C = A without loss of generality. Using Observa-

tion 5.20, we actually get Prei−1 = ZAi−1.bn < ZBi−1.bn. This means that bAi < bBi = b′Ai
by Item 1. This contradicts i ∈ A16 and we are done.

We now show the remainder of Item 6. For this, recall Item 2 and consider the following

cases:

• When i ∈ A12 ∩ B12 : In this case, the values of MP?A, MP?B, and therefore

also of Pre remain unchanged in iteration i. Moreover, we have EA
i ≤ EA

i−1 and

EB
i ≤ EB

i−1. We use Item 1 to get that HA
i = HB

i and that there exists C ∈ {A,B}
such that EC

i−1 > 0 =⇒ EC
i−1 > EC

i . It follows that EA
i + EB

i < EA
i−1 + EB

i−1.

Using Corollary 5.22, we get Prei−1 = ZAi−1.bn = ZBi−1.bn = Prei = ZAi .bn = ZBi .bn.

We get:∑
C∈{A,B}

(
KCi−1 · EC

i−1 − ZCi−1.bn
)
≤

∑
C∈{A,B}

(
KCi · EC

i−1 − ZCi .bn
)

(Eq. (6))

<
∑

C∈{A,B}

(
KCi · EC

i − ZCi .bn
)
.

(As KAi = KBi < 0 and EA
i + EB

i < EA
i−1 + EB

i−1)

• When i /∈ A12 ∪ B12 : In this case, we claim that for all C ∈ {A,B}, we have

KCi−1 · EC
i−1 − ZCi−1.bn + 1

(
i ∈ C14

)
= KCi · EC

i − ZCi .bn.

The result easily follows from Line 13 and Item 1 and thus it suffices to show the

claim. Fix C ∈ {A,B}. If i /∈ C14 , the claim trivially holds due to Eq. (6) and

the fact that Prei = Prei−1. Thus, we assume that i ∈ C14 .

We first show that Prei−1 < ZCi−1.bn implying by Eq. (6) that KCi−1 = 1. We show

this by contradiction. Suppose not. Then, we have from Observation 5.20 that

Prei−1 = ZCi−1.bn. We also have from Item 4 that ZAi−1.hash 6= ZBi−1.hash. Let
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C be the unique element in {A,B} that is different from C. By Definition 5.19

and Observation 5.12 these two are only possible if ZAi−1.bn 6= ZBi−1.bn which by

Observation 5.20 implies that ZCi−1.bn < ZCi−1.bn. However, due to Item 1, this

means that bCi < b′Ci , a contradiction to i ∈ C14 .

Having shown, KCi−1 = 1, if i /∈ C16 , we get ZCi .bn = ZCi−1.bn implying (as

Prei = Prei−1) that KCi = KCi−1 = 1. We get:

KCi−1 ·EC
i−1 − ZCi−1.bn + 1 = EC

i−1 − ZCi−1.bn + 1 = EC
i − ZCi .bn = KCi ·EC

i − ZCi .bn.

On the other hand, if i /∈ C16 , we have by Lemma 5.18 that EC
i = 0:

KCi−1 · EC
i−1 − ZCi−1.bn + 1 = − max

M∈MPC
i−1

M.bn = −ZCi .bn = KCi · EC
i − ZCi .bn,

where the penultimate inequality is because of Line 17 and the fact that ZCi−1.bn >

Prei−1 ≥ 0 implying MPCi−1 6= ∅.

Corollary 5.30. Let i ∈ [M ′] be such that Erri = 0. It holds that:

11 · Prei−1 +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)
< 11 · Prei +

∑
C∈{A,B}

5 ·
(
KCi · EC

i − ZCi .bn
)
.

Proof. From Item 2 of Lemma 5.29, we have i ∈ A9 ⇐⇒ i ∈ B9 . If both of these are true,

we observe from Line 9 that the terms corresponding to E are 0 and all the other quantities

increase by exactly 1 (see Line 9 and Item 5 of Lemma 5.29). On the other hand, if they are

both false, we simply use Item 6 of Lemma 5.29.

5.2.8 Taxes

Important to our analysis is the following notion of a “tax” associated with each “correct”

meeting point. Let i ∈ {0} ∪ [M ′]. Define the sets:

CMPi =
⋃

C∈{A,B}

CMPCi where CMPCi =
{

0 ≤ l ≤ Prei | ∃M ∈ MP?Ci : M.bn = l
}

(7)

Si = {Prei} ∪
{

max
M∈MPC

i

M.bn

}
C∈{A,B}

∪

{
arg min
M∈CMPC

i

ddl(M.bn)

}
C∈{A,B}

. (8)

We next define, for i ∈ {0} ∪ [M ′] functions Taxi : CMPi → Z inductively as follows: For
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i = 0, observe that CMPi = {0} and define Taxi(0) = 0. For i > 0 and l ∈ CMPi, define:

Taxi(l) =

{
0, if l /∈ CMPi−1

Taxi−1(l) + 1(Erri > 0 ∧ l ∈ Si), if l ∈ CMPi−1
. (9)

Lemma 5.31. Let i ∈ {0}∪ [M ′] and C ∈ {A,B}. Let 0 ≤ l ≤ Prei be such that there exists

M ∈ MP?Ci with M.bn = l. For all LastAi (Prei) ≤ i′ ≤ i, we have l ∈ CMPCi′ ⊆ CMPi′.

Proof. Fix i, C, l, i′ as in the lemma statement. By Item 2 of Lemma 5.23, we have

Prei ≤ Prei′ . It is thus enough to show that M ∈ MP?Ci′ , where M is as promised by the

lemma. This is because of the fact that LastAi (Prei) = LastBi (Prei) (which is due to Item 1 of

Lemma 5.23) and Item 1b of Lemma 5.16.

Using Eq. (9) repeatedly, we also get:

Corollary 5.32. Let i ∈ {0}∪ [M ′], 0 ≤ l ≤ Prei be such that there exists M ∈ MP?Ai ∪MP?Bi
with M.bn = l. It holds that:

Taxi(l) ≥
∑

LastAi (Prei)<i′≤i

1(Erri′ > 0 ∧ l ∈ Si′).

5.2.9 Understanding Taxes

Lemma 5.33. Let i ∈ [M ′]. We have:∑
l∈CMPi

Taxi(l) ≤ 5 · 1(Erri > 0) +
∑

l∈CMPi∩CMPi−1

Taxi−1(l).

Proof. We have:∑
l∈CMPi

Taxi(l) ≤
∑

l∈CMPi∩CMPi−1

Taxi(l) (Eq. (9))

≤
∑

l∈CMPi∩CMPi−1

Taxi−1(l) +
∑

l∈CMPi∩CMPi−1

1(Erri > 0 ∧ l ∈ Si) (Eq. (9))

≤
∑

l∈CMPi∩CMPi−1

Taxi−1(l) + 1(Erri > 0) · |Si|

≤
∑

l∈CMPi∩CMPi−1

Taxi−1(l) + 5 · 1(Erri > 0). (Eq. (8))

Lemma 5.34. Let C ∈ {A,B} and i ∈ C9 be such that ZCi .bn = ddl(Prei−1). It holds that:

Prei−1 − Prei ≤ 8 · Taxi−1(Prei−1) + 8.
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Proof. If Prei−1−Prei ≤ 8, this is trivial, so we assume otherwise. By Corollary 5.26, we get

8 < Prei−1−Prei ≤ Prei−1−bPrei−1cev(Prei−1)
= 1

2
·ev(Prei−1). It follows that ev(Prei−1) ≥ 32.

Moreover, from Corollary 5.32 and the fact that LastAi−1(Prei−1) = LastCi−1(Prei−1) (see Item 1

of Lemma 5.23), we get:

Taxi−1(Prei−1) ≥
∑

LastCi−1(Prei−1)<i′<i

1(Erri′ > 0 ∧ Prei−1 ∈ Si′). (10)

In the remainder of this proof we simply show that the right hand side above is at least
1
16
· ev(Prei−1)− 1. For this, define:

l1 = Prei−1 l2 =
l1 + l5

2
l3 =

l1 + 3l5
4

l4 =
l1 + 7l5

8
l5 = ddl(Prei−1). (11)

As ev(Prei−1) ≥ 32, we get that all of these are integers and l1 < l2 < l3 < l4 < l5. Observe

that i ∈ C9 implies ZCi−1.bn = l5 − 1.We consider the following cases:

• When ZA
LastCi−1(l3)

.hash 6= ZB
LastCi−1(l3)

.hash: In this case, Item 2a of Lemma 5.16 to

continue Eq. (10) as:

Taxi−1(Prei−1) ≥
∑

l4≤l<l5

1
(
ErrLastCi−1(l)

> 0 ∧ Prei−1 ∈ SLastCi−1(l)

)
.

To finish, we show that each term above is 1 and use Eq. (11). Fix l4 ≤ l < l5 and

define i′ = LastCi−1(l). We first claim that Prei′ < l3. Indeed, if not, we have by Item 1

of Lemma 5.23 that ZA
LastC

i′ (l3)
.hash = ZB

LastC
i′ (l3)

.hash. Using Item 2a of Lemma 5.16,

this gives ZA
LastCi−1(l3)

.hash = ZB
LastCi−1(l3)

.hash, a contradiction.

We now use Prei′ < l3 to show that the term corresponding to l is 1. For this, we

need to show that Erri′ > 0 and Prei−1 ∈ Si′ . For the former, note by Definition 5.15

that i′ ∈ C9 and ZCi′ .bn = l and thus, if Erri′ = 0, we can derive a contradiction

from Items 2 and 5 of Lemma 5.29. For the latter, we use Eq. (8) and show that

Prei−1 = arg minM∈CMPC
i′
ddl(M.bn).

Note that Prei−1 ∈ CMPCi′ follows from Definition 5.19 and Lemma 5.31 and it is

enough to show that ddl(Prei−1) ≤ ddl(l′) for all l′ ∈ CMPCi′ . Fix an arbitrary l′ and

note from Eq. (7) that l′ ≤ Prei′ < l3. Use Lemma 5.10 to conclude that either

ddl(l′) ≥ ddl(Prei−1) or ddl(l′) ≤ l4. As Item 1b of Lemma 5.16 implies the latter

cannot happen, we are done.

• When ZA
LastCi−1(l3)

.hash = ZB
LastCi−1(l3)

.hash: Let i3 = LastCi−1(l3). Applying Item 1a

of Lemma 5.16, we get that ZA
LastAi3(Z

A
i3
.bn)

.hash = ZB
LastBi3(Z

B
i3
.bn)

.hash. Now, applying

Lemma 5.21, we get ZAi3 .bn = ZBi3 .bn. As the definition of i3 implies this common value

must be l3, we get from Definition 5.19 that Prei3 = l3 = ZAi3 .bn = ZBi3 .bn.
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Let C ∈ {A,B} be the unique element different from C. By Eq. (8) and Item 2a of

Lemma 5.16, we can continue Eq. (10) as:

Taxi−1(Prei−1) ≥
∑

i3≤i′<i

1

(
Erri′ > 0 ∧ Prei−1 = max

M∈MPC
i′

M.bn

)
.

Now, we claim that:

Claim 5.35. For all i3 ≤ i′ < i, if ZCi′ .bn = Prei′ = l2, then Prei−1 = max
M∈MPC

i′
M.bn.

Proof. Due to Item 2 of Lemma 5.23 we have Prei−1 ∈ Pi′ implying due to ZCi′ .bn = l2
and Definition 5.19 that Prei−1 ≤ max

M∈MPC
i′
M.bn. Thus, it suffices to show that

max
M∈MPC

i′
M.bn ≤ Prei−1. We show this by contradiction. If this is not true, then, by

Observation 5.12, there exists M ∈ MPCi′ such that Prei−1 = l1 < M.bn < l2 = Prei′ .

By Item 1 of Lemma 5.23, this means that LastAi′ (M.bn) = LastBi′ (M.bn) and with

Item 2a of Lemma 5.16, we get that they are both equal to LastCi−1(M.bn). However,

by Item 1b of Lemma 5.16, this means that l3 = ZCi3 .bn < ddl(M.bn), a contradiction

to Lemma 5.9.

Using Claim 5.35, we get:

Taxi−1(Prei−1) ≥
∑

i3≤i′<i

1
(
Erri′ > 0 ∧ ZCi′ .bn = Prei′ = l2

)
.

Now, note that for all i3 ≤ i′ < i such that ZCi′ .bn = Prei′ = l2, i
′ ∈ C14 \ C16 only if

Erri′ > 0. Indeed, i′ ∈ C14 \ C16 implies l2 = ZCi′ .bn = ZCi′−1.bn = bCi′ ≥ b′Ci′ . If Erri′ =

0, we can use Items 1 and 2 of Lemma 5.29 to continue as l2 ≥ bCi′ = ZCi′−1.bn ≥ ZCi′ .bn.

As the last term is at least l3 by Item 2a of Lemma 5.16, this is a contradiction. We

get:

Taxi−1(Prei−1) ≥
∑

i3≤i′<i

1
(
i′ ∈ C14 \ C16 ∧ ZCi′ .bn = Prei′ = l2

)
.

We now claim that:

Claim 5.36. There exists i3 < i∗ < i such that i∗ ∈ C16 and ZCi∗−1.bn = Prei∗−1 = l2.

We defer the proof of Claim 5.36 to later but show here why it finishes our proof of

Lemma 5.34. Let i∗ be as promised by Claim 5.36 and use Claim 5.35 to conclude

that Prei−1 = max
M∈MPC

i∗−1
M.bn. As i∗ ∈ C16 , this means that ZCi∗ .bn = Prei−1. By

Lemma 5.18, we have EC
i∗−1 = l2 − l1 − 1.

Note now from Algorithm 1 that whenever Z or MP change in any iteration, the value

of E is reset to 0 (Line 9 and Lemma 5.18). Moreover, the value of E increases by at
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most 1 in any iteration and is increased only when a party executes Line 14 but not

Line 16. This means the only way we can have EC
i∗−1 = l2−l1−1 is if there are l2−l1−1

iterations a1 < a2 < · · · < al2−l1−1 < i∗, all of them in the set C14 \ C16 such that(
ZCi′ ,MPCi′

)
=
(
ZCi∗−1,MPCi∗−1

)
for all a1 ≤ i′ < i∗. By the definition of i3, this can only

happen if i3 < a1. Thus, we are done if we can show that Prei′ = l2 for all a1 ≤ i′ < i∗.

Fix such an i′. As ZCi′ .bn = ZCi∗−1.bn = l2 and we have Observation 5.20, it is enough

to show that that Prei′ ≥ Prei∗−1 = l2. This is because of Item 2 of Lemma 5.23.

We finish by showing Claim 5.36.

Proof of Claim 5.36. Define i3 < i∗ < i to be the smallest such that Prei∗ < l2 and

Prei∗−1 ≥ l2. Recall that Prei3 = l3 and Prei−1 = l1 and therefore i∗ is well defined.

Now, as Prei∗−1 ≤ ZCi∗−1.bn < l5 by Item 2 of Lemma 5.23 and Corollary 5.26 says that

bPrei∗−1cev(Prei∗−1) ≤ Prei∗ , we have that Prei∗ < l2 is possible only if Prei∗−1 = l2.

We now claim that it is enough to show that ZCi∗ .bn < l2. Indeed, if ZCi∗ .bn <

l2, then ZCi∗ .bn < Prei∗−1 ≤ ZCi∗−1.bn implying that i∗ ∈ C16 and l2 > ZCi∗ .bn =

max
M∈MPC

i∗−1
M.bn. From the latter and the fact that Prei∗−1 = l2, we also get using

Definition 5.19 that ZCi∗−1.bn = l2, as desired.

Finally, we show ZCi∗ .bn < l2. Let MA ∈ MP?Ai∗−1, M
B ∈ MP?Bi∗−1 be as in Definition 5.19.

As Prei∗ < Prei∗−1 = l2, there exists C∗ ∈ {A,B} such that MC∗ ∈ MP?C
∗

i∗−1\MP?C
∗

i∗ . By

Lemma 5.13 we either have ZC
∗

i∗ .bn ≥ ddl(l2) or ZC
∗

i∗ .bn < l2. The former is impossible

as ddl(l2) > ddl(l1) (due to Observation 5.7 and Lemma 5.8) and we have Item 2 of

Lemma 5.23. Additionally, by Item 2a of Lemma 5.16, the latter is possible only if

C∗ = C and we are done.

Lemma 5.37. Let C ∈ {A,B} and i ∈ C16 be such that ZCi−1.bn = Prei−1. It holds that:

Prei−1 − Prei ≤ 2 ·
(
ZCi−1.bn− ZCi .bn

)
+ 8 · Taxi−1(Prei−1).

Proof. We start by defining:

λ1 = Prei−1 − Prei λ2 = ZCi−1.bn− ZCi .bn l1 = Prei−1 −
1

2
· λ1.

As the lemma is trivial otherwise, we assume that 2λ2 < λ1. By Corollary 5.26, we continue

as 2λ2 < λ1 ≤ 1
2
· ev(Prei−1). As i ∈ C16 and ZCi−1.bn = Prei−1 > 0, we have MP?Ci ⊆ MPCi−1

by Algorithm 1. By Line 20, it follows that there exists z1, z2 ≥ 0 such that for all j ∈ [2]

we have Prei−1 − λj = bPrei−1c2zj − 2zj . As 2λ2 < λ1 ≤ 1
2
· ev(Prei−1), this is only possible if

32



for all j ∈ [2], we have λj = 2zj is a power of 2. It follows that:

ddl
(
ZCi .bn

)
= Prei−1 + λ2 ddl(l1) = Prei−1 +

1

2
· λ1 l1 =

⌊
ZCi .bn

⌋
1
2
·λ1

= bPrei−1 − 1c 1
2
·λ1 .

Now use 0 < 2λ2 < λ1 and Lemma 5.25 to get that there exists C ∈ {A,B} such that

M.bn 6= l1 for all M ∈ MP?Ci . By Item 1c of Lemma 5.16, we get that C 6= C. Using,

Item 1 of Lemma 5.23, define i1 = LastCi−1(Prei−1) = LastCi−1(Prei−1). From Corollary 5.32

and Eq. (8), we get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1(Erri′ > 0 ∧ Prei−1 ∈ Si′) ≥
∑

i1<i′<i

1(Erri′ > 0 ∧ Prei−1 = Prei′).

By Lemma 5.29, note that for all i1 < i′ < i, we have that i′ ∈ C9 and ZCi′ .bn > ZCi′ .bn

implies that Erri′ > 0. We get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1
(
i′ ∈ C9 ∧ ZCi′ .bn > ZCi′ .bn ∧ Prei−1 = Prei′

)
.

Next, use Item 1b of Lemma 5.16 to get ZCi′ .bn < ddl
(
ZCi .bn

)
= Prei−1 +λ2 for all i1 ≤ i′ < i.

We get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1
(
i′ ∈ C9 ∧ ZCi′ .bn ≥ Prei−1 + λ2 ∧ Prei−1 = Prei′

)
.

We now claim that for all i1 < i′ < i, if ZCi′ .bn ≥ Prei−1 + 3
2
· λ2, then Prei−1 = Prei′ .

Fix such an i′. As Item 2 of Lemma 5.23 says that Prei−1 ≤ Prei′ and we know Prei′ ≤
ZCi′ .bn < Prei−1 +λ2 from the argument above, all we have to show is that it is impossible for

Prei−1 < Prei′ < Prei−1 + λ2 to hold. Indeed, if this holds we use the fact that λ2 is a power

of 2 and λ2 < ev(Prei−1) together with Lemma 5.9 to get ddl(Prei′) ≤ Prei−1 + 3
2
·λ2 ≤ ZCi′ .bn.

This contradicts Item 2 of Lemma 5.23. We get:

Taxi−1(Prei−1) ≥
∑

i1<i′<i

1

(
i′ ∈ C9 ∧ ZCi′ .bn ≥ Prei−1 +

3

2
· λ2
)
.

Now, note by definition of i1 that ZCi1 = Prei−1. Moreover ZC .bn increases by at most 1 in

any iteration and only increases in iterations in C9 . We get:

Taxi−1(Prei−1) ≥ max
i1<i′<i

ZCi′ .bn− Prei−1 −
3

2
· λ2 + 1.

We now claim that maxi1<i′<i Z
C
i′ .bn ≥ ddl(l1)− 1 = Prei−1 + 1

2
· λ1− 1. Assuming this claim
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for now and recalling that 2λ2 < λ1 =⇒ 4λ2 ≤ λ1 as λ1, λ2 are powers of 2, we get:

Prei−1 − Prei = λ1 ≤ 4λ1 − 10λ2 = 2λ2 + 8 ·
(

1

2
· λ1 −

3

2
· λ2
)
≤ 2λ2 + 8 · Taxi−1(Prei−1).

It remains to show the claim. For this, first note from Observation 5.17 that is suffices to

show that maxi1<i′≤i Z
C
i′ .bn ≥ ddl(l1). If there exists M ∈ MPCi−1 \MP?Ci such that M.bn = l1,

then we are done by Lemma 5.13, so we assume otherwise. As ZCi−1.bn ≥ Prei−1 > l1, this

means that there does not exist M ∈ MP?Ci−1 \MP?Ci such that M.bn = l1. Using our choice

of C, we further get that there does not exist M ∈ MP?Ci−1 such that M.bn = l1.

Now, using Item 2c of Lemma 5.16, we get that max
LastCi−1(l1)<i

′<i
ZCi′ .bn ≥ ddl(l1). It

therefore suffices to show that max
LastCi−1(l1)<i

′≤i1
ZCi′ .bn < ddl(l1). By definition of i1, we

have ZCi1 .bn < ddl(l1) and therefore it suffices to show that max
LastCi−1(l1)<i

′<i1
ZCi′ .bn <

ddl(l1). Use Item 2a of Lemma 5.16 to get that this is exactly the same as showing

max
LastCi1−1(l1)<i

′<i1
ZCi′ .bn < ddl(l1). However, this follows from l1 = bPrei−1 − 1c 1

2
·λ1 , the

definition of i1 and Items 1b and 1c of Lemma 5.16.

5.2.10 A Potential Function

We are now ready to define our potential function Φ. For i ∈ {0} ∪ [M ′], we define:

Φi = 1000 · Err≤i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi · EC

i − ZCi .bn
)
. (12)

In the lemmas that follow, we shall show that Φ increases by at least a constant in every

iteration.

Lemma 5.38. Let i ∈ [M ′] be such that Prei < Prei−1. It holds that:

Φi−1 + 1000 · Erri − 900 ≤ Φi.

Proof. As Prei < Prei−1, we have Prei−1 ∈ CMPi−1 \ CMPi (using Lemma 5.31) which by

Lemma 5.33 gives: ∑
l∈CMPi

Taxi(l) ≤ 5 +
∑

l∈CMPi−1

Taxi−1(l)− Taxi−1(Prei−1). (13)

We also have, by Lemma 5.28, for all C ∈ {A,B}:

KCi−1 · EC
i−1 − ZCi−1.bn ≤ 6 + KCi · EC

i − ZCi .bn. (14)

Next, let MA ∈ MP?Ai−1, M
B ∈ MP?Bi−1 be as in Definition 5.19. As Prei < Prei−1, there exists

C ∈ {A,B} such that MC ∈ MP?Ci−1 \MP?Ci . We assume C = A without loss of generality
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and consider the following cases:

• When MA ∈ MPAi−1 \ MP?Ai : In this case, use Lemma 5.13 to get that i ∈ A9 and

ZAi .bn = ddl
(
MA.bn

)
= ddl(Prei−1). We have from Lemma 5.34 that:

Prei−1 − Prei ≤ 8 · Taxi−1(Prei−1) + 8. (15)

Multiplying Eq. (13) by 100, Eq. (15) by 11, Eq. (14) by 5 (for all C ∈ {A,B}) and

adding, we get

100 ·
∑

l∈CMPi

Taxi(l) + 11 · (Prei−1 − Prei) +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)

≤ 900 + 100 ·
∑

l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi · EC

i − ZCi .bn
)
.

Rearranging and using Eq. (12) finishes the proof.

• When MA = ZAi−1 /∈ MP?Ai : In this case, we have ZAi−1.bn = Prei−1, and using

Lemma 5.13, also have that ZAi .bn < ZAi−1.bn implying i ∈ A16 . We have from

Lemma 5.37 that:

Prei−1 − Prei ≤ 2 ·
(
ZAi−1.bn− ZAi .bn

)
+ 8 · Taxi−1(Prei−1). (16)

Again using i ∈ A16 and ZAi .bn < ZAi−1.bn, we have by Lemma 5.18 that EA
i = 0 and:

EA
i−1 + 1 = ZAi−1.bn− max

M∈MPA
i−1

M.bn = ZAi−1.bn− ZAi .bn.

As Eq. (6) implies that KAi−1 = −5, we get from EA
i = 0 that:

KAi−1 · EA
i−1 − ZAi−1.bn ≤ −5 ·

(
ZAi−1.bn− ZAi .bn− 1

)
− ZAi−1.bn

= 5− 6 ·
(
ZAi−1.bn− ZAi .bn

)
− ZAi .bn

= 5− 6 ·
(
ZAi−1.bn− ZAi .bn

)
+ KAi · EA

i − ZAi .bn.

Multiplying this by 5, Eq. (16) by 11, Eq. (14) for C = B by 5, Eq. (13) by 100 and

adding, we get:

11 · Prei−1 + 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)

≤ 555 + 11 · Prei + 100 ·
∑

l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi · EC

i − ZCi .bn
)

Rearranging and using Eq. (12) finishes the proof.
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Lemma 5.39. Let i ∈ [M ′]. We have:

Φi−1 + 1 ≤ Φi.

Proof. We divide the proof into the following cases:

• When Erri = 0: In this case, we have:

Φi−1 = 1000 · Err≤i + 11 · Prei−1 − 100 ·
∑

l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)

(Eq. (12) and Erri = 0)

≤ 1000 · Err≤i + 11 · Prei−1 − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)

(Lemma 5.33 and Erri = 0)

≤ −1 + 1000 · Err≤i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi · EC

i − ZCi .bn
)

(Corollary 5.30)

≤ Φi − 1. (Eq. (12))

• When Erri = 1 and Prei < Prei−1: In this case, the lemma follows by Lemma 5.38.

• When Erri = 1 and Prei−1 ≤ Prei: In this case, we have:

Φi−1 ≤ 1000 · Err<i + 11 · Prei − 100 ·
∑

l∈CMPi−1

Taxi−1(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)

(Eq. (12) and Prei−1 ≤ Prei)

≤ 500 + 1000 · Err<i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi−1 · EC

i−1 − ZCi−1.bn
)

(Lemma 5.33)

≤ 600 + 1000 · Err<i + 11 · Prei − 100 ·
∑

l∈CMPi

Taxi(l) +
∑

C∈{A,B}

5 ·
(
KCi · EC

i − ZCi .bn
)

(Lemma 5.28)

≤ −100 + Φi. (As Erri = 1)

Corollary 5.40. We have M ≤ PreM ′.
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Proof. Note from Eq. (12) and Lemma 5.39 that Φ0 = 0 and ΦM ′ ≥M ′. This means that

M ′ ≤ 1000 · Err≤M ′ + 11 · PreM ′ − 100 ·
∑

l∈CMPM′

TaxM ′(l) +
∑

C∈{A,B}

5 ·
(
KCM ′ · EC

M ′ − ZCM ′ .bn
)

≤ 1000 · Err≤M ′ + 11 · PreM ′ +
∑

C∈{A,B}

5 ·
(
KCM ′ · EC

M ′ − ZCM ′ .bn
)

≤ 1000 · Err≤M ′ + PreM ′ . (Lemma 5.27)

Next, we claim that Err≤M ′ ≤ 10M · ε
ε′

. Indeed, if not, we have by definition of Err that the

number of corruptions made by the adversary is at least 10εT by Eq. (1), a contradiction.

This means that M ′ ≤ 104M · ε
ε′

+ PreM ′ implying by Eq. (1) that M ≤ PreM ′ .

5.3 Finishing the Proof

We now prove our main result.

Proof of Theorem 3.6. Recall that due to Lemmas 5.1 and 5.2 and Observation 5.3 and

the way we fixed the randomness in Eq. (5), all we have to show is that Π′Adv
(
xA, xB

)
=

Π
(
xA, xB

)
. Let π ∈ {0, 1}2T be the transcript containing the symbols sent by both the

parties in a noiseless execution of Π when the inputs are xA and xB. Observe from Line 22

and the way we padded the protocol Π that Π′Adv
(
xA, xB

)
= Π

(
xA, xB

)
follows if we show

that there exists transcripts πA, πB that agree with π in the first 2T coordinates such that

for all C ∈ {A,B}, party C goes to state ZCM ′ .state when their input is xC and they receive

symbols as in πC . To this end, define, for C ∈ {A,B},

πC = σC
LastC

M′ (1)
‖σC

LastC
M′ (2)
‖ . . . ‖σC

LastC
M′(Z

C
M′ .bn)

.

We first fix an arbitrary C ∈ {A,B} and show that party C goes to state ZCM ′ .state when

their input is xC and they receive symbols as in πC . Due to Item 1a of Lemma 5.16, this

follows from the following claim:

Claim 5.41. For all 0 ≤ l ≤ ZCM ′ .bn, party C goes to state ZC
LastC

M′ (l)
.state when their input

is xC and they receive the first 2B∗l symbols of πC.

Proof. Proof by induction on l. The base case l = 0 is straightforward. We show the

result for l > 0 assuming it holds for l − 1. For this, define i′ = LastCM ′(l) and consider the

iteration i′. From Item 2b of Lemma 5.16, we have ZCi′−1 = ZC
LastC

M′ (l−1)
. Using the induction

hypothesis, we get that party C goes to state ZCi′−1.state when their input is xC and they

receive the first 2B∗(l− 1) symbols of πC . To finish the proof, simply observe from Line 10,

that if party C is in state ZCi′−1.state with input xC and receives σCi′ (which are the next

2B∗ symbols of πC), then it goes to state ZCi′ .state.
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It remains to show that the transcripts πA, πB agree with π in the first 2T coordinates.

For this, note first that due to Lemma 5.21 and Item 1 of Lemma 5.23, we have for all

0 ≤ l ≤ PreM ′ that LastAM ′(l) = LastBM ′(l) and, using il to denote the common value, also

have l > 0 =⇒ σAil = σBil . Due to Corollary 5.40, this in particular holds for all l ∈ [M ]. Fix

l ∈ [M ]. As σAil = σBil , we have that this common value is the transcript generated when the

parties execute B∗ rounds of Π, starting from the states ZAil−1.state, ZBil−1.state with inputs

xA, xB respectively and leads the parties to update their states to ZAil .state and ZBil .state

(respectively). From Item 2b of Lemma 5.16, we have ZCii−1 = ZCil−1
for all C ∈ {A,B} and

thus, we have that σAil = σBil is the transcript generated when the parties execute B∗ rounds

of Π, starting from the states ZAil−1
.state, ZBil−1

.state with inputs xA, xB respectively and

leads the parties to update their states to ZAil .state and ZBil .state. As ZAi0 .state = µA0 and

ZBi0 .state = µB0 are the starting states of Alice and Bob respectively, we get that πA, πB

agree with π in the first 2B∗M = 2T coordinates.
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