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Abstract
In this paper, we study the circuit value problem for monotone Boolean circuits (that is, circuits
without negation gates) when the circuits are embedded on a surface of bounded genus, and all
inputs to the circuits lie on at most constantly many faces. We show that this problem can be
solved in LogDCFL thus by a result of Cook [6], yielding a space-efficient (O(log2 n)-space) and
polynomial time algorithm for the problem. It also yields a highly parallel algorithm (simultaneously
O(log n)-time with polynomially many processors).

This generalises the previous bound of LogDCFL on one input face planar circuits [5]. More
precisely, we show that if a monotone circuit is embedded on a surface of polylogarithmic genus g and
has k faces on which all the inputs are present, then the circuit can be evaluated on a CROW-PRAM
(concurrent read owner write parallel random access machine) in time O(g(k + g) log n) using nO(1)

many processors.
Our main technical idea is a distance metric in single sink DAGs that can be computed in

deterministic logarithmic space (L) and is useful in partitioning the circuit into subcircuits such that
each one is a one-input face monotone planar circuit. We show that the partitioning procedure is in L.
Thus we are able to side-step the barrier of computing the usual distance in bounded genus graphs,
for which the best bound known is UL ∩ coUL [17, 30] and therefore not known to be contained in
LogDCFL.
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1 Introduction

The Circuit Value Problem CVP – “Given a Boolean circuit consisting of AND (∧), OR (∨),
NOT (¬)-gates and a Boolean assignment to its input values, what is the value output by the
circuit?” – occupies an important place in complexity theory as the archetypal P-complete
problem. Various relaxations of the problem are known to be P-complete such as Monotone
Circuit Value Problem MCVP where there are no ¬ gates and Planar Circuit Value Problem
PCVP where the circuit is itself embedded as a planar graph [12]. It is somewhat remarkable
that a combination of the previous two problems Monotone Planar Circuit Value Problem
MPCVP is parallelisable and therefore contained in NC [7, 32, 21] and hence is not expected
to be P-complete. A series of papers have been devoted to refining the exact complexity of
MPCVP and its restrictions [7, 22, 3, 19, 5]. Layering the circuit and restricting the outer face
of the circuit to contain all the inputs are two specializations which dramatically improves
the complexity bound on MPCVP.
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23:2 Evaluating Monotone Circuits on Surfaces

MCVP can also be viewed as a generalization of reachability in a restricted class of graphs.
This is so because reachability in a single sink DAG can be viewed as a circuit in which all
gates are ∨-gates. Thus, MPCVP is a generalization of single sink planar DAG reachability.
There has been considerable work on trying to pin down the exact complexity of planar
reachability [4, 29] and of other topologically restricted reachability instances such as those
embedded on a surface of bounded genus [17, 14]. Another thread of work has focused on
DAG reachability with few sources/sinks in planar [1] and somewhat non-planar instances
[1, 26, 27].

Overall there are three common restrictions on MCVP that make the problem efficiently
parallelizable:

Topological: Ensuring that the circuit is embedded on a plane or on a surface of bounded
genus.
Layering: Ensuring that the gates are partitioned into layers such that edges are between
adjacent layers only.
Single input face: Ensuring that there is a face containing all the inputs of the circuit.

The first set of papers [13, 9] on the topic imposed all three kinds of restrictions and gave
the LogCFL ⊆ NC2 bound on the problem. Subsequent work [22, 21] gave parallel algorithms
for the problems which were processor efficient (i.e. used linearly many processors) but
had weaker bounds on the running time with and without the layering constraint. In an
independent thread of work [7] used the single input face constraint and used it to solve
the (node bimodal) MPCVP problem in NC. Notice that they assumed that each gate has
only two inputs by expanding gates with larger fan-in as a tree – this is directly possible
only if the inputs and outputs of a gate do not intersperse i.e. as a directed graph, the each
node is bimodal. The bound on upward planar, layered and single input face MPCVP was
optimized to LogDCFL in [3]. Later, [19] removed the upward planar and layering restrictions
but kept the single input face restriction to prove a bound using both LogDCFL and planar
longest path in DAGs, the latter problem is known to be in UL ⊆ NL (by [18, 4, 29]). In [5]
this dependence on finding a planar longest path was removed. Also, in [19] the topological
restrictions were relaxed from planar to toroidal yielding a L(LogCFL) = SAC2 ⊆ NC3 bound
for the monotone toroidal circuit value problem with no restriction on number of input faces.

In this work, we dispense completely with the layering restriction and show a smooth
tradeoff between parameterized versions of the other two restrictions on the one hand and
the complexity of the MCVP problem on the other. This provides a common generalization
of the MPCVP results and of the DAG-reachability results mentioned above.

1.1 Our Results
The primary problem of interest for us is what we call kMgCVP – this stands for monotone
circuit value problem for genus g circuits such that there are k faces of the embedded circuit
that contain all the inputs. Thus the case with k = 1, g = 0 is the usual single input
face MPCVP that was studied in [5] building on [3] and using insights from [19]. In this
work, building on [3, 19, 5] we show that kMgCVP is solvable in CROW[g(k + g) log n] where
CROW[t(n)] is the class of languages accepted by a Concurrent Read Owner Write PRAM
(or CROW PRAM) machine in (parallel) time O(t(n)) and with nO(1) processors.

Notice that Dymond and Ruzzo [10] proved that CROW[log n] is precisely LogDCFL, i.e.
recognizable by a deterministic logspace machine equipped additionally with a polynomial
height stack. Our main results can be summarised as follows:

▶ Theorem 1. The following are true:
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1. kMgCVP problem when the number of input faces k = O(1) and the genus g = O(1) can
be solved in LogDCFL.

2. The MGCVP problem with the number of input faces k = (log n)O(1) and with the genus
g = (log n)O(1) is in NC.

Notice that the length of the longest path was used in [19] and previous papers to layer the
graph so that the LogDCFL algorithm of [3] can be used. Since this is in UL ∩ coUL for planar
DAGs they got a complexity bound larger than this. In [5], layering was done by using a
grid embedding and so the complexity of layering was reduced to L. Some cut-and-paste
surgery was also required, which was the main technical content of [5]. Generalizing this to
a larger genus seems difficult because working with a grid embedding on a surface is hard.
Even if we could work with a grid-embedded fundamental polygon of the surface – we would
need to do major surgery as in [17]. We are not sure how to do this while preserving the
grid embedding. We take a different approach as outlined below. The main idea behind

Restrictions Bound
Topological Layering #input faces

Upward Planar ✓ 1 DSPACE[log2 n] [13]
Upward Planar ✓ 1 LogCFL[13]
Upward Planar ✓ 1 LogDCFL = CROW[log n] [3]
Planar (g = 0) ✓ ∞ EREW[log2 n] [21]
Planar (g = 0) ✗ ∞ CRCW[log4 n] [7]
Planar (g = 0) ✗ ∞ EREW[log6 n] [22]
Planar (g = 0) ✗ 1 LogDCFL ⊕ (UL ∩ coUL) [19]
Planar (g = 0) ✗ 1 LogDCFL [5]

Toroidal (g = 1) ✗ ∞ AC1(LogCFL) = SAC2 [19]
g = O(1) ✗ O(1) LogDCFL

g = (log n)O(1) ✗ (log n)O(1) NC
Table 1 Previously known and new results (∞ refers to unbounded number of input faces)

our results is the introduction of a new measure of the “distance” of a node in a graph to
the unique sink t that is conceptually simple as well as computable in L. This allows us to
chop up a planar circuit into annuli consisting of vertices spanning a range of distances to t

such that the number of input faces in each annulus is at most half of those in the parent
graph. Thus we can, in O(k) number of steps (where k is the number of input faces in the
original planar graph) reach the base case of one input face. That can be solved via [5] in
LogDCFL and by the equivalence of LogDCFL and CROW[log n] [10] by an Owner PRAM in
logarithmic time. Composing the computation of the individual PRAMs we get an O(k log n)
parallel time algorithm for planar i.e. genus zero graphs. Moving on to circuits embedded on
a genus g surface we chop them into O(g) subcircuits each of which is either planar with
O(g + k) number of input faces or of constant depth (even though it may be embedded
on a high genus surface) and hence can be evaluated in CROW[(g + k) log n] in both the
cases. Composing the functions computed by the O(g) pieces, we are able to get a bound of
CROW(g(g + k) log n)).

Our notion of “distance” is based on the number Nv of nodes that can reach a node v.
Thus, distance between two nodes u and v, d#(u, v) can be defined as Nv − Nu if u can reach
v and ∞ (alternatively, undefined) otherwise. Notice that if reachability in a class of DAGs
is in C then d#(., .) is computable in LC . In our case C is almost invariably L ensuring that
d#(., .) is also computable in L.

CVIT 2016
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1.2 Organization of the Paper
The rest of the paper is organized as follows. In Section 2, we state some previous results, talk
briefly about some complexity classes and among them and define some necessary notation
that we use in the paper. In the first part of Section 3, we prove our result for planar circuits
and then in the second part we generalize it to bounded genus circuits. Finally, in Section 4,
we conclude our result and leave some open questions for future work.

2 Preliminaries

A Boolean circuit is a DAG (directed acyclic graph) which contains three types of nodes:
source nodes, a sink node and internal nodes. Each internal node is labelled by an AND,
OR or NOT gate. Edges in the graph represent the connection (wires) between two nodes
(gates). In a Boolean circuit, source nodes are fed with an input binary string, and the
circuit produces an output on the sink node by applying the sequence of Boolean operations
represented by internal nodes. A circuit is called n-input circuit if the number of source nodes
in the circuit is n. Given a n-input circuit along with a binary string of length n, problem of
evaluating the output of the circuit (value at sink node) is called circuit-value problem (CVP).
A Boolean circuit which does not have any NOT gate is called a monotone circuit. A circuit
that can be embedded on a plane without crossing its edges is called a planar circuit and
the problem of evaluating those monotone circuits is called monotone planar circuit value
problem (MPCVP). Circuits that can be embedded on surfaces are a natural extension of
planar circuits. For a circuit embedded on a surface such that all the source nodes of the
circuit lie on k-faces, we call it k-input-face circuit. We denote the problem of evaluating
a k-input faces monotone circuit that can be embedded on a genus g surface as kMgCVP.
Which is the problem we are focusing on in this paper. We use the following result proved
for one-input-face planar circuits.

▶ Lemma 2. [5] One-input-face monotone planar circuit value problem can be solved in
LogDCFL.

As we mentioned that a circuit could be represented by a DAG; thus from now on we
will identify a circuit as a DAG and write everything in terms of graphs. If a node in the
graph does not have any incoming edges of the graph incident on it, we call it a source node
or input node. Similarly, a node with no outgoing edges is called a sink node of the graph.

2.1 Graph Theory
Most of the directed graphs that we use are Directed Acyclic Graphs or DAGs. A DAG is
said to be connected when the underlying undirected graph is connected. In general, when
we refer to digraphs as graphs we are referring to the underlying undirected graph.

Graphs that can be embedded on surfaces form an important class for us and we proceed
to introduce them. See [8, Appendix B] for a more detailed exposition. A g-genus surface is
a sphere with g-many handles on it. A graph is called a g-genus graph if g is the minimum
integer such that the graph can be embedded on a g-genus surface without intersecting its
edges. A 2-cell embedding of a graph is an embedding in which every face of the graphs
is homeomorphic to an open disk. A graph of genus g always has a 2-cell embedding on
a surface of genus g. For a graph G and surface S, we will use g(G) and g(S) to denote
the genus of G and S respectively. We know that if G is embedded on S then g(G) ≤ g(S).
Cycles in a surface embedded graph can be divided into two categories, surface separating
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cycles and surface non-separating cycles. As the name suggests, surface separating cycles are
those cycle such that cutting the surface along those cycles divides the surface into at least
two disjoint surfaces. Surface non-separating cycles are those cycles such that cutting the
surface along these cycles does not separate the surface but reduces the genus of the surface.
We will use the following lemmas related to surface separating and surface non-separating
cycles in surface embedded graphs. We will also use the following lemmas in our result
(Lemma B.4 and Lemma B.5 from [8]).

▶ Lemma 3 ([8]). Let C be a surface separating cycle in a surface S, and S′ and S′′ be the
surfaces obtained from S by cutting along C and capping the holes. Then g(S) = g(S′)+g(S′′).

▶ Lemma 4 ([8]). Let C is a surface non-separating cycle in a surface S, and S′ be the
surface obtained from S by cutting along C and capping the holes. Then g(S′) = g(S) − 1.

We will also use the following lemmas about the deterministic logarithmic space (L)
computable properties of graphs (a crucial final step in their proof is the equivalece of SL
and L [23])

▶ Lemma 5 ([2]). Given a graph G, we can check if G is planar or not in L.

▶ Lemma 6 ([27]). Given a directed acyclic graph embedded on a surface of genus 2O(
√

log n)

with 2O(
√

log n) source nodes, we can check whether there is a directed path from a node u to
another node v in L.

Our algorithm requires an embedding that has simultaneously bounded genus and bounded
number of input faces. While it is possible to test for the embeddability of a graph on a
surface of bounded genus and even obtain the embedding in L [11] – this does not suffice
for our purpose since we do not know how to concurrently ensure that the embedding has a
bounded number of input faces.

V (G), E(G) and F (G) to represent the set of nodes, set of edges and set faces in a graph
G, respectively. Although, when we write that v ∈ G ( or e ∈ G, f ∈ G), we mean v ∈ V (G)
(respectively e ∈ E(G), f ∈ F (G)). We refer to the number of vertices, faces and edges in a
graph G by #v(G), #f(G), #e(G) respectively.

2.2 Complexity classes
Classically, the common parallel computation model is the PRAM or Parallel Random Access
Machine [16] where many processors communicate via shared memory. A problem is said to
be parallelisable if it can be solved in the PRAM model using logO(1) n time using polynomial
number of processors. PRAM models can further be distinguished on the basis of how they
resolve read and write conflicts. Thus the weakest model is the EREW PRAM model or the
exclusive read exclusive write model that stipulates that there are no concurrent writes or
reads for any memory location. On the other extreme is the CRCW PRAM where concurrent
reads and writes are both permitted with several ways of resolving conflicts, most of which
are shown to be equivalent (see [16]). Intermediate between these two types of PRAM models
are the CREW PRAM models where the writes are exclusive but reads can be concurrent.
While the fine-grained mapping between CREW, EREW PRAM models and Turing machine
models or circuit models is not precise, CRCW PRAM models correspond naturally to both
alternating Turing machines [24] and unbounded fan-in circuits [25]. There is a variant of the
CREW PRAM model namely, the CROW PRAM model – where writes are not only exclusive
but can be made only by a designated owner processor for a particular memory cell – that

CVIT 2016
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L

CROW[logn] = LogDCFL SC2 SC

LogCFL = SAC1 AC1 = CRCW[logn] NC2 NC

P

UL ∩ coUL

UL

coUL NL

Figure 1 Relevant complexity classes and relation among them.

yields a complexity class corresponding to a natural Turing machine class. This is our main
protagonist amongst complexity classes. We put it in perspective below.

LogDCFL : class of languages reducible to deterministic context-free languages using
logspace reductions [28]. Alternatively, they are languages accepted by deterministic Aux-
PDAs with a pushdown stack in polynomial time (colloquially “logspace with polynomial
stack”) [28]. Cook proved that LogDCFL is contained in the class of problems that can be
solved simultaneously in polylogarithmic space and polynomial time SC [6, 31]. They are
also known to be contained in LogCFL—the class languages that are logspace reducible
to context-free languages. Alternatively, LogCFLs are the uniform version of the circuit
class SAC1, which is a class of languages that are accepted by a circuit family of depth
O(log n) and size polynomial in the number of inputs (like AC1) but only OR-gates have
polynomial fan-out while the AND-gates have bounded fan-in. LogCFL is known to be
contained in NC2 (by just replacing large fan-in OR-gates by trees of fan-in 2) thus, so is
LogDCFL though LogCFL is not known to be contained in SC.
Dymond and Ruzzo [10] showed a PRAM characterisation of LogDCFL in terms of Owner
writes (any subset of processors can read from a memory location but only the designated
owner of a memory location can write to it – a notion weaker than the CREW PRAM
model) in a model known as CROW-PRAM. They showed that LogDCFL is precisely the
class of languages that can be solved by polynomially many processors in O(log n) time
which form a concurrent read owner write PRAM or equivalently CROW[log n]. Further
[20] show other circuit based characterisations of LogDCFL, LogCFL.
UL or unambiguous logspace is the class of languages accepted by a nondeterministic
Turing machine that is unambiguous i.e. has at most one accepting path on any input.
This class is clearly contained in NL ⊆ LogCFL ⊆ NC2 but like LogCFL is not known to be
contained in SC. This class has achieved some prominence because planar restrictions of
important problems like reachability [4, 29] and distance [30] are known to be contained
here (or indeed in the slightly smaller class UL ∩ coUL).
These unambiguous classes are the main villains for us and we show how to circumvent
these by instead using the logspace algorithms for single sink planar DAG reachability
from [1] and similar reachability for DAGs with a single sink embedded on a surface of
bounded genus [26, 27].

3 Evaluating Monotone Circuits

Let us first define the notion of distance that we are using in this paper. If G is a directed
acyclic graph and v is in a node in G then Nv represents the number of nodes in G which
can reach v, i.e. nodes that have a directed path to v. We define distance d#(u, v) between
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Figure 2 Graph G with two input faces f1 = {v1, v2, v3, v4} and f2 = {v8, v9, v12}, edge partitioned
into the graphs L, M and R such that f1 is contained in L and f2 is contained in R. Output from L

(i.e. v5, v6, v7) is input for M and output of M is input for R. After edge partition the outer face
{v8, v9, v10, v11, v13} of R becomes a new input face in R, receiving inputs at v8, v9 and v10.

two nodes u and v as follows1:

d#(u, v) =
{

Nv − Nu, if there is directed path from u to v

∞, otherwise.

▶ Observation 7. If there is a directed path from a node u to node v in G such that u ̸= v

then d#(u, w) > d#(v, w), for all nodes w reachable from both u and v.

Since G is DAG and there is path from u to v, there will not be a path from v to u. Thus
we know that Nv > Nu, which implies that d#(u, w) > d#(v, w). If G is a DAG with only
one sink node t then we define G(i) to be the subgraph of G induced by the vertices v such
that d#(v, t) ≤ i. This means G(0) = t (the sink node), and G(n) = G.

▶ Lemma 8. For any connected directed acyclic graph G, G(i) is a connected subgraph of G

for all i ∈ [n].

Proof. The claim trivially holds for when G(i) = t. For the sake of contradiction, assume
the graph G(i) contains more than one node and is disconnected i.e., there is a node u such
that u and t are in different components of G(i). Since G is a DAG with only one sink node
t, we know that there is a directed path P from u to t in G. Now assume that u and t are in
different components of G(i). We can say that there exists a node v in P such that v does not
belong to G(i). If v is not a node in G(i), this means d#(v, t) > i. On the other hand u is a
node in G(i) therefore d#(u, t) ≤ i. By Observation 7, it must hold that d#(u, t) > d#(v, t),
which is a contradiction. Thus we can conclude that G(i) is a connected subgraph of G. ◀

1 d#(., .) is a quasimetric that satisfies axioms of metric except symmetry. The fact that we can compute
this in L may be of independent interest (see Lemma 9).

CVIT 2016
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▶ Lemma 9. In a bounded genus directed acyclic graph with one sink, we can compute
d#(u, v) for any pair of nodes u and v in the graph in L.

Above lemma follows simply from Lemma 6. We can reverse the direction of all the edges
of the single sink DAG so that the resulting graph becomes a single source DAG and then
we can use Lemma 6 to check reachability.

In the following sections, we begin with a graph (planar or bounded genus) and divide it
into multiple subgraphs. At any point, for any two nodes u and v of the graph, no matter
whether u and v remain in the same subgraph or different after division, d#(u, v) is always
computed with respect to the initial graph.

CROW-Transducers: A CROW-PRAM accepts a language but we can as well use CROW-
PRAMs to define functions that take a sequence of bits and output a polynomially bounded
sequence of bits. In particular, we say that a function family fn : {0, 1}n → {0, 1}m, where
(m = m(n) is polynomially bounded in n) is computable by a CROW[log n] transducer if the
map f (i) : x 7→ (f(x))i is 2 in CROW[log n] for every i ∈ {1, . . . , m}.

We define functional composition of functional families with polynomially bounded
outputs is the usual way: let, fn : {0, 1}n → {0, 1}m(n) and and f ′

n : {0, 1}n → {0, 1}m′(n)

be two function families where m(n), m′(n) = nO(1). Define the function family g = f ′ ◦ f

where, gn : {0, 1}n → {0, 1}m′(m(n)) maps gn : x 7→ f ′(f(x)). The following lemma is what
what makes the equivalence of LogDCFL and CROW[log n] useful for us:

▶ Lemma 10. If f, f ′ are functional families with polynomially bounded outputs computable
in CROW[log n] then so is their composition f ′ ◦ f .

The proof is straightforward and we supply it only for the sake of completion.

Proof. Given a string x ∈ {0, 1}n, each of the nc bits of fn(x) can be computed in e log n

time using nd processors in via a CROW-PRAM. Here c, d, e are constants. Thus with nc+d

processors we can compute all bits of the outputof f Let, the corresponding constants for f ′

be c′, d′, e′ Then the time to compute all the bits of f ′ ◦ f on input x is (e + e′) log n and the
number of processors required is nc+d + n(c+d)(c′+d′).

Moreover there are no concurrent writes in the composition since we can assign the same
owners to memory locations as those in the computation of each bit of f(x), f ′(y) where
y = f(x). ◀

3.1 Monotone Circuit Value Problem in Planar Graphs
In this section, we will prove that a monotone planar circuit such that all its inputs lie on at
most k-faces, can be evaluated in CROW[log k log n]. The high-level idea is as follows. We
show that if G is the planar DAG that represents the given circuit such that it has at most
k-input faces, we edge-partition G using a logspace procedure into three subgraphs L, M

and R such that (i) L is a collection of DAGs each containing (k
2 ) input faces, (ii) R is a

DAG that contains at most ( k
2 ) input faces and, (iii) M is a 2-layered graph – a graph with

two layers of nodes such that all the edges go from one layer to another. Then we recursively
apply the same procedure on graphs L and R. We repeat this procedure for O(log k) steps.
In each recursive call, we decrease the number of input faces in each graph by half. Therefore,
after O(log k) steps, we partition the graph into smaller graphs such that each graph that

2 For a string s ∈ {0, 1}n, the i-th bit of s is represented by si for i ∈ {1, . . . , n}.
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we obtain either has one-input face or is a 2-layered graph. A graph may be partitioned into
multiple graphs in one recursive call, but the number of graphs that can be obtained is at
most n (the number of nodes in G). A 2-layered CVP can be solved trivially in CROW[log n]
and we also know that one-input face MPCVP can be solved in CROW[log n] [5]. Therefore,
we can combine them and obtain CROW[log k log n] bound for evaluating G. Below we give
a formal description of this idea.

First, we show how we edge-partition G into L, M and R. Note that when we partition G

into many subgraphs, some faces of G may remain faces in one of the subgraphs, and some
faces may get divided in this partition. More precisely, when we edge-partition the graph G,
edges of a face f of G may appear in different subgraphs of G after the partition. Suppose
that G is partitioned into subgraphs and H is one such subgraph. We say that a face of G is
contained in H (or H contains a face of G), if H contains all the edges of the face. Similarly,
we say that a face of G is incident on H if H contains some of the edges of that face. Note
that a face of G that is contained in H is also incident on H, but a face of G that is incident
on H might not be contained in H. Let F ′ be the set of input faces of G. Graph G(n) (which
is nothing but G) contains all the input faces from F ′ and graph G(0) has a single node (sink
t), i.e. contains no input faces of G. Thus, we can say that there exists a positive integer i

such that G(i) contains at least ( k
2 − 1) faces from F ′. Let r be the largest integer such that

G(r) contains at most ( k
2 − 1) faces from F ′. We define graphs L, M and R as follows.

We define R to be the graph G(r).
L is the graph induced by the nodes V (L) := V (G) − V (G(r)).
M is the graph induced by the edges: E(M) := {(u, v) | u /∈ G(r) and v ∈ G(r)}.

We also define two sets of vertices V1 and V2 as follows: V1 = {u | (u, v) ∈ E(M)} and
V2 = {v | (u, v) ∈ E(M)}. Note that V1 = V (L) ∩ V (M), V2 = V (M) ∩ V (R) and
V1 ∪ V2 = V (M).

▶ Lemma 11. Edges of graph M form an edge-cut for graph G.

Proof. To prove this lemma, it is sufficient to prove that there is no edge (u, v) ∈ G such that
u ∈ R and v ∈ L. Because all the edges that go from L to R, are already in M . We know that
for each node x ∈ L, d#(x, t) > r. Now assume that there edge (u, v) such that u is node in
R and v is a node in L. If v is node in L, we know that d#(v, t) > r. From Observation 7, we
can say that d#(u, t) > d#(v, t). However, we know that for each node y in R, d#(y, t) ≤ r.
This implies that d#(u, t) ≤ r =⇒ d#(v, t) < r, which is a contradiction. ◀

From Lemma 11, we can say the edges of M form a cut for G, such that removing the
edges of M from G divides it into graphs L and R. Faces in F ′ can now be divided into three
classes: (i) faces which are contained in L, (ii) faces which are contained in R and (iii) faces
which are incident to M . Faces of F ′, which are contained in L and R, remain input faces
in L and R, respectively. However, some new input faces may appear on these graphs (for
example, see Figure 2). Let us first prove that R has a total of at most ( k

2 ) input faces (note
that this includes faces from F ′ as well as the new input faces that appear after partition).
From Lemma 8, we know that R is a connected graph. We also know that R contains at
most (k

2 − 1) faces from F ′. Note that the edges of M are incident on the outer face of R.
Thus sink nodes of M – nodes in the set V2 are source nodes of R, and all these nodes lie
on the outer face of R. Therefore the outer face of R will also become an input face in R.
Therefore, we can conclude that R has at most ( k

2 ) input faces. Let H be the graph defined
as H = M ∪ R. We will now prove that each graph in L also has at most (k

2 ) input faces.
Before that, we prove the following lemma.
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▶ Lemma 12. Graph G(r+1) is a subgraph of the graph H.

Proof. For the sake of contradiction, assume that G(r+1) is not a subgraph of H. This
implies that there exists a node u in G(r+1) such that u /∈ H. We know that there is a
directed path in G from u to the sink node t. Since the edges of M form a cut for graph G, we
can say that there exists a node w ∈ V1 such that this path goes via node w. We know that
for each node v ∈ V1, d#(v, t) > r. Also by Observation 7, we know that d#(u, t) > d#(w, t).
This implies that d(w, t) > r. Hence we can say that d#(u, t) > r + 1. which is contradiction
because u is node in G(r+1). ◀

From Lemma 12, we can say that H contains more than ( k
2 − 1) input faces of G. Since L

and M ∪ R are edge-disjoint subgraphs, there are at most k
2 faces from F ′ incident on L. In

Lemma 11 we proved that there are no edges in G that go from R to L. Thus any source of
L is already a source in G and so belongs to a face of F ′. We can say that the (number of
input faces in L) ≤ (number of faces from F ′ incident to L). We know that the number faces
from F ′ incident to L are at most k

2 . Therefore the number of input faces in L are at most k
2 .

Now that we have divided the graph G into three subgraphs L, M and R, such that L

and R are planar DAG with at most k
2 input faces and M is a 2-layered graph. We can

recursively apply the same procedure in L and R. The only problem is that, unlike R, L

may have many sink nodes and the algorithm that we have described works with graphs that
have only one sink node. Assume that t1, t2, . . . are sink nodes in L. Using Lemma 6 we can
obtain graphs L1, L2, . . . such that Li is the graph induced by the nodes that can reach ti,
in logspace. Then we can apply the same algorithm in each Li recursively. At the end all
the graphs that we obtain are one input face planar DAG or 2-layered. Since there are k

input faces in the graph initially, the total number of graphs that we obtain are k. We know
that we can evaluate 2-layered circuits in AC0(⊆ LogDCFL) and one input face MPCVP in
LogDCFL = CROW[log n]. Notice that these circuits cannot be evaluated independently in
parallel because output from one circuit may be an input for another. Therefore we will
have to evaluate them sequentially. In order to evaluate the entire circuit represented by
G, we need to sequentially compose the evaluations these k circuit. This can be done in
CROW[k log n] using Lemma 10.

3.2 Monotone Circuit Value Problem in Bounded Genus Graphs
In this section, we will prove that a monotone circuit embedded on a g genus surface such that
all the inputs lie on at most k-faces, can be evaluated by CROW-PRAMS in O(g log k log n)
time using (gkn)O(1) many processors. The approach that we use in this section is similar to
the one that we used in the previous section. Given a DAG G representing the monotone
circuit embedded on a g-genus surface, we divide it into three subgraphs L, M and R such
that L has genus at most (g − 1), M is a 2-layered graph, and R is a planar graph with
at most (g + 3k−1

2 ) input faces. Now we recursively apply the same procedure with L. In
each recursive step, the genus of the resulting graphs decreases at least by one. Thus after g

many iterations, we divide the graph G into subgraphs such that each of them is either a
planar graph with at most (g + 3k−1

2 ) input faces or a 2-layered graph. We know that we can
solve the circuit value problem represented by a 2-layered graph trivially in CROW[log n].
From Section 3.1, we know that we can solve circuit value problem represented by a planar
DAG with (g + 3k−1

2 )-input faces in CROW[log(g + k) log n]. Thus by combining them, we
obtain a CROW[g log(g + k) log n] algorithm for evaluating G. We describe the idea formally
as follows.
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Similar to Section 3.1, given a DAG G of g-genus with one sink node t, we first compute
the distance d#(v, t) for each node in G using Lemma 6 (since we are interested in (log n)O(1)

genus graphs, we can use Lemma 6). Notice that G(n) (which is nothing but G) is a g-genus
graph and G(0) contains a single node t therefore is a planar graph. Thus we can say that
there exists an integer i ∈ [n] such that G(i) is a nonplanar graph. Let r be the largest
integer such that G(r) is a planar graph. Similar to Section 3.1, we define graphs L, M and
R as follows:

R is the graph G(r).
L is the graph induced by the nodes V (L) := V (G) − V (G(r)).
M is the graph induced by the edges: E(M) := {(u, v) | u /∈ G(r) and v ∈ G(r)}.

V1 and V2 are defined similarly: V1 = {u | (u, v) ∈ E(M)} and V2 = {v | (u, v) ∈ E(M)}.
Note that V1 = V (L) ∩ V (M), V2 = V (M) ∩ V (R) and V1 ∪ V2 = V (M). By our assumption,
we know that G(r+1) is nonplanar subgraph of G and similar to Lemma 12, we can prove
that G(r+1) is a subset of M ∪ R. Let H = M ∪ R.

▶ Lemma 13. Graph R has (g + 3k−1
2 ) input faces and L has genus at most (g − 1).

We will first prove that L has genus at most (g − 1). Let us assume that G is embedded
on a surface S of genus g such that the embedding is a 2-cell embedding (we do not need
such an embedding explicitly, we just assume that such an embedding exists and use that
embedding to prove that L has genus less than g). Let F ′ be the set of the k-input faces of
G. We modify the graph G as follows: we split each node u ∈ V1 into two nodes u′ and u′′

such that all the edges of L and M ∪ R which were incident on u will now be incident on
u′ and u′′ respectively. Let V ′

1 = {u′ | u ∈ V1} and V ′′
1 = {u′′ | u ∈ V1}. If there was edge

{u, v} in G such that u, v ∈ V1, we add an edge {u′, v′} (note that we do not add an edge
between nodes u′′ and v′′). We also add a dummy edge between u′ and u′′ for all u ∈ V1.
L, M and R still represent the same subgraphs as earlier (except now L and H use node
sets V ′

1 and V ′′
1 respectively instead of V1). Let f be a face that contains nodes from both

sets V ′
1 and V ′′

1 . We split f into faces f1, f2, . . . by adding dummy edges of {u′, v′′} where
u′ ∈ V ′

1 and v′′ ∈ V ′′
1 , inside f such that each fi contains exactly two nodes of V ′′

1 . Let E1
be set of all edges {u′, v′′} such that u′ ∈ V ′

1 and v′′ ∈ V ′′
1 . Remember that we are doing

all these constructions so that we can prove that L has genus (g − 1). We do not do these
constructions as a part of our final algorithm. Let Gm be this new graph. We can see that
the embedding of Gm is also a 2-cell embedding on S. Before splitting the nodes of V1, we
had that V1 = V (L) ∩ V (H). Therefore, we can say that the set of edges in E1 forms a cut
for Gm after the split.

Now consider the dual graph G∗
m of Gm with respect to its embedding on surface S. Each

face in Gm becomes a node in G∗ and vice-versa. Also, there is a one-to-one correspondence
between the edges of Gm and G∗

m. Let E∗
1 be the set of dual edges corresponding to edges in

E1 and F1 be the set of faces in Gm that contain edges of E′
1. Let f ∈ F1 be a face and f∗

be the corresponding nodes in G∗
m. By our construction, we know that f contains exactly

two edges of E1. Thus f∗ has exactly two edges of E∗
1 incident on it. Therefore, we can say

that the subgraph of G∗
m induced by edges in E∗

1 must be a collection of node-disjoint cycles.
Let C∗ be the set of these dual cycles. The following lemma is standard. However, for the
sake of completion we provide a proof here.

▶ Lemma 14. Cutting the surface S along cycles in C∗ divides the surface into two or more
surfaces.

Proof. (Extracted from [15]) We assume that the graph is 2-cell embedded that is all faces
of G are topological disks. After cutting along C∗, each face is a topological disk bounded
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Figure 3 Surface S is divided into two surfaces S1 and S2, by cutting it along the dual cycle
C∗ ∈ C∗ (in red). Cx and Cy are the corresponding primal cycles created by this cutting that
become facial cycles in the respective surfaces.

by either a cycle of G, or a cycle that consists of two arcs (one on G and one on C∗) with
common endpoints (at the intersection between edges of C and their duals), where the arc on
C∗ lies on the boundary of the cut surface. In particular, the boundary of any face intersects
G in a single component.

Now, assume for a contradiction that the surface after cutting is still connected, and
consider an edge (u, v) ∈ C. Then there exists a path π on the cut surface connecting u

and v. By the above property of faces, we can snap π to a path on G − C, showing that u

and v lie in the same component of G − C. Therefore, C − (u, v) is still an edge cut for G,
contradicting minimality of C and hence connectedness of the cut surface. ◀

We know that there is a one-to-one correspondence between the edges of Gm and G∗
m.

Let C∗ be a cycle in C∗ that contains dual edges e∗
1, e∗

2, . . . e∗
t in some cyclic order. Let

ei = {u′
i, u′′

i } be the respective primal edges in Gm, in the same cyclic order. Note that when
we cut the surface S along a dual edge e∗

i , the respective primal edge gets divided in two
edges. Let us assume that edge {u′

i, u′′
j } is divided into two edges {u′

i, xij} and {yij , u′′
i }

when we cut S along C∗ (see Figure 3). Let Cx be the primal cycle that is obtained by
adding dummy edges among the nodes xij and Cy be the the primal cycle that is obtained
by adding the edges among the nodes yij , corresponding to cycle C∗. We cap the holes that
appear on the surface (or the surfaces if C∗ is a separating cycle) after we cut S along C∗.
We do this for all the cycles in C∗. Let L′ be the graph that contains all the edges of L along
with the edges {u′

i, xij} and the edges of Cx, for all C∗ ∈ C∗. Similarly, let H ′ be the graph
that contains all the edges of H along with the edges {yij , u′′

i } and the edges of Cy, for all
C∗ ∈ C∗.

We know that cutting the surface along the cycles in C∗ divides the surface into two or
more surfaces. Let S1, S2, . . . be the surfaces obtained after cutting S along C∗ and capping
the holes. Since H ′ is a connected graph, it remains embedded on one of the surfaces, say
S1. However, L′ may contain many connected components that are embedded on different
surfaces.
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▶ Lemma 15. Graph L′ has genus at most (g − 1).

Proof. We divide the analysis into the following two cases:
C∗ contains only surface separating cycles: By Lemma 3, we know that if we cut the
surface S along a surface separating cycle, then the sum of the genus of the surfaces
obtained by cutting S along the cycle (and capping the holes) must be equal to the genus
of S. If all the cycles in C∗ are surface separating then we can say that there exists a
cycle C∗ ∈ C∗ such that cutting S along C∗ separates S1 from the rest of the surface.
Since H ′ is a nonplanar graph that is embedded on S1, we can say that genus of S1 ≥ 1.
Therefore, the genus of the remaining surface (on which L′ is embedded) after cutting S

along C∗ and capping holes is at most (g − 1). Hence in this case genus of L′ is at most
(g − 1).
C∗ contains a surface non-separating cycle: If it contains a surface non-separating cycle
C∗ then from Lemma 4 we know that surfaces obtained by cutting surface S along C∗

and capping the holes will have genus smaller than that of S. Therefore in this case also,
L′ has genus most (g − 1).

◀

Since graph L is a subgraph of L′, we can conclude that L has genus at most (g − 1). Now
we turn to prove the second part of Lemma 13 that R has at most (g + 3k−1

2 ) input faces.
We know that unlike H ′, L′ may have many connected components. Nevertheless, we know
that each connected component of L′ must contain at least one of the initial k input faces
(because for a node w in L′, every predecessor of w in G must be in the same connected
component of L′ as w). Therefore we can say that L′ has l ≤ k connected components. We
will first prove the following lemma.

▶ Lemma 16. C∗ contains at most g + (k−1)
2 cycles.

Proof. By Euler’s formula for surface embedded graphs, we know that

#v(H ′) − #e(H ′) + #f(H ′) = 2 − 2g(H ′) (1)
#v(L′) − #e(L′) + #f(L′) = 1 + l − 2g(L′). (2)

For each dual cycle C∗ ∈ C∗, we create two cycles Cx and Cy. Let nCx and nCy be the total
number of nodes in cycle Cx and Cy. Let us define nC := nCx = nCy . Therefore,

#v(H ′) + #v(L′) = #v(G) +
∑

C∗∈C∗ 2nC , (3)

also, while cutting the surface along C∗, we destroy some edges of G and some create new
edges. For each destroyed edge {u′

i, u′′
j }we create four new edges {u′

i, xij}, {yij , u′′
j }, {xij , xpq},

and {yij , yst}, for some nodes xpq and yst that lie on cycles Cx and Cy, respectively (see
Figure 3. Therefore,

#e(H ′) + #v(L′) = #e(G) +
∑

C∗∈C∗ 3nC . (4)

Note that cycles Cx and Cy become faces in L′ and H ′, respectively. In addition, while
cutting along C∗ we destroy nC faces of G and create nC faces in both H ′ and L′. Therefore,

#f(H ′) + #f(L′) = #f(G) + |{Cx : C∗ ∈ C∗}| + |{Cy : Cj ∈ C∗}| +
∑

C∗∈C∗

nC

⇒ #f(H ′) + #f(L′) = #f(G) + 2|C∗| +
∑

C∗∈C∗

nC (5)
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From these equations, we can conclude that,

2 − 2g(H ′) + 1 + l − 2g(L′) = #v(G) − #e(G) + #f(G) + 2|C∗|
⇒ 2 − 2g(H ′) + 1 + l − 2g(L′) = 2 − 2g(G) + 2|C∗|
⇒ 2g − 2(g(H ′) + g(L′)) + l − 1 = 2|C∗|

⇒ |C∗| ≤ g + (k − 1)
2

◀

Proof of Lemma 13. Graph R may have at most k initial input faces of G i.e. faces from
the set F ′. Also, there may appear at most one input face in R with respect to each cycle
Cy (see Figure 3) such that C∗ ∈ C∗. This implies that R can have at most (g + 3k−1

2 ) input
faces. This along with Lemma 15 completes the proof of Lemma 13. ◀

Overall Evaluation: Since R is a planar DAG with only one sink node, from Section 3.1 we
know that it can be evaluated in CROW[log(k + g) log n]. Notice that L can have multiple
sink nodes. Let t1, t2, . . . tl be sinks in L. For each ti we can compute the graph consisting of
nodes that can reach ti say Li using Lemma 6 in L. Using the same argument that we use in
Section 3.1, we can say that no new input face appears in L after partition. Therefore, each
Li has at most k input faces and one sink node. We can recursively apply the same procedure
discussed in this section to further decompose each Li until each obtained subgraph is planar.
To summarise, we begin with a graph with genus g and with each recursive step, the graphs
we obtain are either graphs of genus at most (g − 1) with at most (g + 3k−1

2 ) input faces
or 2-layered. Therefore, after g many recursive steps all the subgraphs that we obtain are
planar with at most (g + 3k−1

2 ) input faces or 2-layered. We can evaluate each such graph
using CROW-PRAMS in time O((k + g) log n) with (n)O(1) many processors. Since depth of
the recursion is g, overall evaluation can be done in CROW[g(k + g) log n]. Notice that we
assume that g is polylogarithmically bounded. In particular, for bounded g and k, we can
evaluate the circuit in CROW[log n], equivalently in LogDCFL.

4 Conclusion and Open Questions

We show that the LogDCFL bound of [5] for single input face monotone circuit value problem,
that builds on [19, 3], can be extended to monotone circuits with constantly many input
faces and embedded on a surface of bounded genus. Further, for a monotone circuit with
polylogarithmically many input faces that is embedded on a surface of polylogarithmic genus
we show an NC bound. We leave a further improvement of this bound as our main open
question.

In this work we have dealt with only orientable surfaces. Extending the results to circuits
embedded on non-orientable surfaces is yet another open question.

It is known from [5] that single input face MPCVP is L-hard. Improving this lower bound
to LogDCFL is our other open question.
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